Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
Algebraic surface design and finite element meshes
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.
1992-01-01
Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Adaptive mesh generation for edge-element finite element method
NASA Astrophysics Data System (ADS)
Tsuboi, Hajime; Gyimothy, Szabolcs
2001-06-01
An adaptive mesh generation method for two- and three-dimensional finite element methods using edge elements is proposed. Since the tangential component continuity is preserved when using edge elements, the strategy of creating new nodes is based on evaluation of the normal component of the magnetic vector potential across element interfaces. The evaluation is performed at the middle point of edge of a triangular element for two-dimensional problems or at the gravity center of triangular surface of a tetrahedral element for three-dimensional problems. At the boundary of two elements, the error estimator is the ratio of the normal component discontinuity to the maximum value of the potential in the same material. One or more nodes are set at the middle points of the edges according to the value of the estimator as well as the subdivision of elements where new nodes have been created. A final mesh will be obtained after several iterations. Some computation results of two- and three-dimensional problems using the proposed method are shown.
Hopenfeld, Bruce
2006-01-01
Background In some cases, it may be necessary to combine distinct finite element meshes into a single system. The present work describes a scheme for coupling a finite element mesh, which may have curvilinear elements, to a voxel based finite element mesh. Methods The method is described with reference to a sample problem that involves combining a heart, which is defined by a curvilinear mesh, with a voxel based torso mesh. The method involves the creation of a temporary (scaffolding) mesh that couples the outer surface of the heart mesh to a voxel based torso mesh. The inner surface of the scaffolding mesh is the outer heart surface, and the outer surface of the scaffolding mesh is defined by the nodes in the torso mesh that are nearest (but outside of) the heart. The finite element stiffness matrix for the scaffolding mesh is then computed. This stiffness matrix includes extraneous nodes that are then removed, leaving a coupling matrix that couples the original outer heart surface nodes to adjacent nodes in the torso voxel mesh. Finally, a complete system matrix is assembled from the pre-existing heart stiffness matrix, the heart/torso coupling matrix, and the torso stiffness matrix. Results Realistic body surface electrocardiograms were generated. In a test involving a dipole embedded in a spherical shell, relative error of the scheme rapidly converged to slightly over 4%, although convergence thereafter was relatively slow. Conclusion The described method produces reasonably accurate results and may be best suited for problems where computational speed and convenience have a higher priority than very high levels of accuracy. PMID:17112373
Auto-adaptive finite element meshes
NASA Technical Reports Server (NTRS)
Richter, Roland; Leyland, Penelope
1995-01-01
Accurate capturing of discontinuities within compressible flow computations is achieved by coupling a suitable solver with an automatic adaptive mesh algorithm for unstructured triangular meshes. The mesh adaptation procedures developed rely on non-hierarchical dynamical local refinement/derefinement techniques, which hence enable structural optimization as well as geometrical optimization. The methods described are applied for a number of the ICASE test cases are particularly interesting for unsteady flow simulations.
A Decoupled Finite Element Heterogeneous Coarse Mesh Transport Method.
Mosher, S. W.; Rahnema, Farzad
2005-01-01
In a recent paper, an original finite element (FE) method was presented for solving eigenvalue transport problems on a coarse spatial mesh. The method employed a surface Green's function expansion of the angular flux trial functions, so that heterogeneous coarse-meshes could be treated with relative ease. Numerical problems were solved using the multigroup discrete ordinates approximation in one-dimensional (1-D) slab geometry. Unfortunately, difficulties were encountered in finding solutions to the algebraic finite element equations, which led to sizeable angular flux discontinuities at coarse-mesh interfaces and significant errors. For this reason, a nonvariational iterative technique was ultimately favored for converging the angular flux distribution, and was used in conjunction with a Rayleigh quotient for converging the eigenvalue. In this paper, a new derivation of finite element equations is presented, which seems to offer a remedy for at least some of the numerical ills that plagued the previous work. First, the equations are derived in terms of a generalized response function expansion. This allows a more efficient response basis to be employed and vastly reduces the overall computational effort without a substantial loss of accuracy. Second, the tight coupling between coarse-meshes in the original equations is effectively broken by assuming that an accurate estimate of the flux distribution entering a given coarse-mesh is known. With an additional assumption that an accurate eigenvalue estimate is known, an iterative approach to solving these decoupled finite element (DFE) equations is developed. The DFE method has been applied to both 1- and 2-D heterogeneous coarse-mesh problems with a far greater degree of success than the original FE method. However, some numerical difficulties remain to be overcome before the new approach can be considered robust.
A General-Purpose Mesh Generator for Finite Element Codes.
1984-02-28
Version 00 INGEN is a general-purpose mesh generator for use in conjunction with two and three dimensional finite element programs. The basic components of INGEN are surface and three-dimensional region generators that use linear-blending interpolation formulae. These generators are based on an i, j, k index scheme, which is used to number nodal points, construct elements, and develop displacement and traction boundary conditions.
Adaptive Mesh Refinement Algorithms for Parallel Unstructured Finite Element Codes
Parsons, I D; Solberg, J M
2006-02-03
This project produced algorithms for and software implementations of adaptive mesh refinement (AMR) methods for solving practical solid and thermal mechanics problems on multiprocessor parallel computers using unstructured finite element meshes. The overall goal is to provide computational solutions that are accurate to some prescribed tolerance, and adaptivity is the correct path toward this goal. These new tools will enable analysts to conduct more reliable simulations at reduced cost, both in terms of analyst and computer time. Previous academic research in the field of adaptive mesh refinement has produced a voluminous literature focused on error estimators and demonstration problems; relatively little progress has been made on producing efficient implementations suitable for large-scale problem solving on state-of-the-art computer systems. Research issues that were considered include: effective error estimators for nonlinear structural mechanics; local meshing at irregular geometric boundaries; and constructing efficient software for parallel computing environments.
Extraction and applications of skeletons in finite element mesh generation.
Quadros, William Roshan
2010-05-01
This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.
Finite element meshing approached as a global minimization process
WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.
2000-03-01
The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested
GPU accelerated spectral finite elements on all-hex meshes
NASA Astrophysics Data System (ADS)
Remacle, J.-F.; Gandham, R.; Warburton, T.
2016-11-01
This paper presents a spectral element finite element scheme that efficiently solves elliptic problems on unstructured hexahedral meshes. The discrete equations are solved using a matrix-free preconditioned conjugate gradient algorithm. An additive Schwartz two-scale preconditioner is employed that allows h-independence convergence. An extensible multi-threading programming API is used as a common kernel language that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Performance tests demonstrate that problems with over 50 million degrees of freedom can be solved in a few seconds on an off-the-shelf GPU.
Fracture and Fragmentation of Simplicial Finite Elements Meshes using Graphs
Mota, A; Knap, J; Ortiz, M
2006-10-18
An approach for the topological representation of simplicial finite element meshes as graphs is presented. It is shown that by using a graph, the topological changes induced by fracture reduce to a few, local kernel operations. The performance of the graph representation is demonstrated and analyzed, using as reference the 3D fracture algorithm by Pandolfi and Ortiz [22]. It is shown that the graph representation initializes in O(N{sub E}{sup 1.1}) time and fractures in O(N{sub I}{sup 1.0}) time, while the reference implementation requires O(N{sub E}{sup 2.1}) time to initialize and O(N{sub I}{sup 1.9}) time to fracture, where NE is the number of elements in the mesh and N{sub I} is the number of interfaces to fracture.
3D Finite Element Trajectory Code with Adaptive Meshing
NASA Astrophysics Data System (ADS)
Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien
2004-11-01
Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.
A Finite Element Mesh Generation Code System with On-Line Graphic Display.
1980-05-30
Version 00 LOOM-P is a two-dimensional mesh generation program which produces a best finite element mesh network for a reactor core geometry. This is an on-line automatic mesh generating program which can produce triangular mesh elements as an edit program to QMESH-RENUM.
3D unstructured mesh discontinuous finite element hydro
Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.
1995-07-01
The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.
Thermal Radiation Transport on Unstructured Finite Element Meshes
R. P. Smedley-Stevenson
2000-11-12
This paper describes investigations on the use of finite element methods to solve the time-dependent thermal radiation transport equations on unstructured meshes. The solution of this equation will be incorporated in AWE's two-dimensional (2-D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic code CORVUS in order to solve complex radiation hydrodynamic problems. A 2-D discretization of the grey transport equation has been studied based on the use of lumped linear DFEs for the spatial variation and piecewise constant finite elements for the angular variation. The use of an adaptive angular approximation has been explored in order to improve the computational efficiency, together with a technique for mitigating the ray effect when it is impractical to converge the angular discretization. A revised spatial discretization is required for the diffusion synthetic acceleration (DSA) equations used to accelerate the solution of the first-order transport equation for quadrilateral elements. So far, this appears to be unconditionally efficient at accelerating the solution of the grey first-order transport equation, n the presence of large aspect ratio and/or distorted elements. The solution of the multigroup equations using the linear multi-frequency grey (LMFG) method is currently under investigation. The pseudoscattering term arising from the LMFG treatment has the same form as the fission source in neutron transport problems. The discretization of the DSA equations described in this paper will be employed for both the within-group coherent scattering contribution and the separate grey acceleration equation used to accelerate the pseudoscattering term.
Iterative methods for elliptic finite element equations on general meshes
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.; Choudhury, Shenaz
1986-01-01
Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.
Finite element adaptive mesh analysis using a cluster of workstations
NASA Astrophysics Data System (ADS)
Wang, K. P.; Bruch, J. C., Jr.
1998-01-01
Parallel computation on clusters of workstations is becoming one of the major trends in the study of parallel computations, because of their high computing speed, cost effectiveness and scalability. This paper presents studies of using a cluster of workstations for the finite element adaptive mesh analysis of a free surface seepage problem. A parallel algorithm proven to be simple to implement and efficient is used to perform the analysis. A network of workstations is used as the hardware of a parallel system. Two parallel software packages, P4 and PVM (parallel virtual machine), are used to handle communications among networked workstations. Computational issues to be discussed are domain decomposition, load balancing, and communication time.
Effect of mesh element type of Finite Element Model (FEM) on unimorph cantilever vibration
NASA Astrophysics Data System (ADS)
Aris, H.; Fitrio, D.; Singh, J.
2013-12-01
This paper discusses mesh refinement methods used to perform Finite Element Analysis (FEA) for vibration based MEMS Energy Harvester. The three types of meshing elements, 1) Linear Hexahedral, 2) Parabolic Hexahedral and 3) Parabolic Tetrahedral, were used in this study. The meshing methods are used to ensure accurate simulation result particularly in stress, and strain analysis obtained, since they are determined by the displacement of each node in the physical structure. The study of the accuracy of an mesh analysis is also known as mesh convergence study which element aspect ratios must be refined consistently. In this paper the dimensions of each elements were also varied in order to investigate the significant of this methods in achieving better ratios of simulation to theoretical results.
Method and apparatus for connecting finite element meshes and performing simulations therewith
Dohrmann, Clark R.; Key, Samuel W.; Heinstein, Martin W.
2003-05-06
The present invention provides a method of connecting dissimilar finite element meshes. A first mesh, designated the master mesh, and a second mesh, designated the slave mesh, each have interface surfaces proximal the other. Each interface surface has a corresponding interface mesh comprising a plurality of interface nodes. Each slave interface node is assigned new coordinates locating the interface node on the interface surface of the master mesh. The slave interface surface is further redefined to be the projection of the slave interface mesh onto the master interface surface.
Approaches to the automatic generation and control of finite element meshes
NASA Technical Reports Server (NTRS)
Shephard, Mark S.
1987-01-01
The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.
Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.
1999-01-01
This report documents a collection of papers on a family of uniform strain tetrahedral finite elements and their connection to different element types. Also included in the report are two papers which address the general problem of connecting dissimilar meshes in two and three dimensions. Much of the work presented here was motivated by the development of the tetrahedral element described in the report "A Suitable Low-Order, Eight-Node Tetrahedral Finite Element For Solids," by S. W. Key {ital et al.}, SAND98-0756, March 1998. Two basic issues addressed by the papers are: (1) the performance of alternative tetrahedral elements with uniform strain and enhanced uniform strain formulations, and (2) the proper connection of tetrahedral and other element types when two meshes are "tied" together to represent a single continuous domain.
Determination of an Initial Mesh Density for Finite Element Computations via Data Mining
Kanapady, R; Bathina, S K; Tamma, K K; Kamath, C; Kumar, V
2001-07-23
Numerical analysis software packages which employ a coarse first mesh or an inadequate initial mesh need to undergo a cumbersome and time consuming mesh refinement studies to obtain solutions with acceptable accuracy. Hence, it is critical for numerical methods such as finite element analysis to be able to determine a good initial mesh density for the subsequent finite element computations or as an input to a subsequent adaptive mesh generator. This paper explores the use of data mining techniques for obtaining an initial approximate finite element density that avoids significant trial and error to start finite element computations. As an illustration of proof of concept, a square plate which is simply supported at its edges and is subjected to a concentrated load is employed for the test case. Although simplistic, the present study provides insight into addressing the above considerations.
Pamgen, a library for parallel generation of simple finite element meshes.
Foucar, James G.; Drake, Richard Roy; Hensinger, David M.; Gardiner, Thomas Anthony
2008-04-01
Generating finite-element meshes is a serious bottleneck for large parallel simulations. When mesh generation is limited to serial machines and element counts approach a billion, this bottleneck becomes a roadblock. Pamgen is a parallel mesh generation library that allows on-the-fly scalable generation of hexahedral and quadrilateral finite element meshes for several simple geometries. It has been used to generate more that 1.1 billion elements on 17,576 processors. Pamgen generates an unstructured finite element mesh on each processor at the start of a simulation. The mesh is specified by commands passed to the library as a 'C'-programming language string. The resulting mesh geometry, topology, and communication information can then be queried through an API. pamgen allows specification of boundary condition application regions using sidesets (element faces) and nodesets (collections of nodes). It supports several simple geometry types. It has multiple alternatives for mesh grading. It has several alternatives for the initial domain decomposition. Pamgen makes it easy to change details of the finite element mesh and is very useful for performance studies and scoping calculations.
Examples of finite element mesh generation using SDRC IDEAS
NASA Technical Reports Server (NTRS)
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
A Method for Connecting Dissimilar Finite Element Meshes in Three Dimensions
Dohrmann, C.R.; Heinstein, M.W.; Key, S.W.
1998-11-12
A method is presented for connecting dissimilar finite element meshes in three dimensions. The method combines the concept of master and slave surfaces with the uniform strain approach for surface, corrections finite elements- By modifyhg the are made to element formulations boundaries of elements on the slave such that first-order patch tests are passed. The method can be used to connect meshes which use different element types. In addition, master and slave surfaces can be designated independently of relative mesh resolutions. Example problems in three-dimensional linear elasticity are presented.
Lee, W; Kim, T-S; Cho, M; Lee, S
2005-01-01
In studying bioelectromagnetic problems, finite element method offers several advantages over other conventional methods such as boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropy. Mesh generation is the first requirement in the finite element analysis and there are many different approaches in mesh generation. However conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes, resulting in numerous elements in the smaller volume regions, thereby increasing computational load and demand. In this work, we present an improved content-adaptive mesh generation scheme that is efficient and fast along with options to change the contents of meshes. For demonstration, mesh models of the head from a volume MRI are presented in 2-D and 3-D.
Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics
NASA Technical Reports Server (NTRS)
Kayrak, C.; Ozsoy, T.
1985-01-01
An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.
Unconstrained paving and plastering method for generating finite element meshes
Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert
2010-03-02
Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.
ESCHER: An interactive mesh-generating editor for preparing finite-element input
NASA Technical Reports Server (NTRS)
Oakes, W. R., Jr.
1984-01-01
ESCHER is an interactive mesh generation and editing program designed to help the user create a finite-element mesh, create additional input for finite-element analysis, including initial conditions, boundary conditions, and slidelines, and generate a NEUTRAL FILE that can be postprocessed for input into several finite-element codes, including ADINA, ADINAT, DYNA, NIKE, TSAAS, and ABUQUS. Two important ESCHER capabilities, interactive geometry creation and mesh archival storge are described in detail. Also described is the interactive command language and the use of interactive graphics. The archival storage and restart file is a modular, entity-based mesh data file. Modules of this file correspond to separate editing modes in the mesh editor, with data definition syntax preserved between the interactive commands and the archival storage file. Because ESCHER was expected to be highly interactive, extensive user documentation was provided in the form of an interactive HELP package.
A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.
1993-01-01
Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).
Finite element based electrostatic-structural coupled analysis with automated mesh morphing
OWEN,STEVEN J.; ZHULIN,V.I.; OSTERGAARD,D.F.
2000-02-29
A co-simulation tool based on finite element principles has been developed to solve coupled electrostatic-structural problems. An automated mesh morphing algorithm has been employed to update the field mesh after structural deformation. The co-simulation tool has been successfully applied to the hysteric behavior of a MEMS switch.
Bucki, Marek; Lobos, Claudio; Payan, Yohan
2010-06-01
Finite Element mesh generation remains an important issue for patient specific biomechanical modeling. While some techniques make automatic mesh generation possible, in most cases, manual mesh generation is preferred for better control over the sub-domain representation, element type, layout and refinement that it provides. Yet, this option is time consuming and not suited for intraoperative situations where model generation and computation time is critical. To overcome this problem we propose a fast and automatic mesh generation technique based on the elastic registration of a generic mesh to the specific target organ in conjunction with element regularity and quality correction. This Mesh-Match-and-Repair (MMRep) approach combines control over the mesh structure along with fast and robust meshing capabilities, even in situations where only partial organ geometry is available. The technique was successfully tested on a database of 5 pre-operatively acquired complete femora CT scans, 5 femoral heads partially digitized at intraoperative stage, and 50 CT volumes of patients' heads. In the latter case, both skin and bone surfaces were taken into account by the mesh registration process in order to model the face muscles and fat layers. The MMRep algorithm succeeded in all 60 cases, yielding for each patient a hex-dominant, Atlas based, Finite Element mesh with submillimetric surface representation accuracy, directly exploitable within a commercial FE software.
Coupling finite element and integral equation solutions using decoupled boundary meshes
NASA Technical Reports Server (NTRS)
Cwik, Tom
1992-01-01
A method is outlined for calculating scattered fields from inhomogeneous penetrable objects using a coupled finite element-integral equation solution. The finite element equation can efficiently model fields in penetrable and inhomogeneous regions, while the integral equation exactly models fields on the finite element mesh boundary and in the exterior region. By decoupling the interior finite element and exterior integral equation meshes, considerable flexibility is found in both the number of field expansion points as well as their density. Only the nonmetal portions of the object need be modeled using a finite element expansion; exterior perfect conducting surfaces are modeled using an integral equation with a single unknown field since E(tan) is identically zero on these surfaces. Numerical convergence, accuracy, and stability at interior resonant frequencies are studied in detail.
Adaptive meshing technique applied to an orthopaedic finite element contact problem.
Roarty, Colleen M; Grosland, Nicole M
2004-01-01
Finite element methods have been applied extensively and with much success in the analysis of orthopaedic implants. Recently a growing interest has developed, in the orthopaedic biomechanics community, in how numerical models can be constructed for the optimal solution of problems in contact mechanics. New developments in this area are of paramount importance in the design of improved implants for orthopaedic surgery. Finite element and other computational techniques are widely applied in the analysis and design of hip and knee implants, with additional joints (ankle, shoulder, wrist) attracting increased attention. The objective of this investigation was to develop a simplified adaptive meshing scheme to facilitate the finite element analysis of a dual-curvature total wrist implant. Using currently available software, the analyst has great flexibility in mesh generation, but must prescribe element sizes and refinement schemes throughout the domain of interest. Unfortunately, it is often difficult to predict in advance a mesh spacing that will give acceptable results. Adaptive finite-element mesh capabilities operate to continuously refine the mesh to improve accuracy where it is required, with minimal intervention by the analyst. Such mesh adaptation generally means that in certain areas of the analysis domain, the size of the elements is decreased (or increased) and/or the order of the elements may be increased (or decreased). In concept, mesh adaptation is very appealing. Although there have been several previous applications of adaptive meshing for in-house FE codes, we have coupled an adaptive mesh formulation with the pre-existing commercial programs PATRAN (MacNeal-Schwendler Corp., USA) and ABAQUS (Hibbit Karlson and Sorensen, Pawtucket, RI). In doing so, we have retained several attributes of the commercial software, which are very attractive for orthopaedic implant applications.
Multigrid waveform relaxation on spatial finite element meshes
Janssen, J.; Vandewalle, S.
1994-12-31
The authors shall discuss the numerical solution of a parabolic partial differential equation {partial_derivative}u/{partial_derivative}t(x,t) = Lu(x,t) + f(x,t), x{element_of}{Omega}, t>0, (1) supplied with a boundary condition and given initial values. The spatial finite element discretization of (1) on a discrete grid {Omega}{sub h} leads to an initial value problem of the form B{dot u} + Au = f, u(0) = u{sub o}, t > 0, (2) with B a non-singular matrix. The waveform relaxation method is a method for solving ordinary differential equations. It differs from most standard iterative techniques in that it is a continuous-time method, iterating with functions in time, and thereby well-suited for parallel computation.
Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis
2005-12-01
This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.
Tangle-Free Finite Element Mesh Motion for Ablation Problems
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
In numerical simulations involving boundaries that evolve in time, the primary challenge is updating the computational mesh to reflect the physical changes in the domain. In particular, the fundamental objective for any such \\mesh motion" scheme is to maintain mesh quality and suppress unphysical geometric anamolies and artifacts. External to a physical process of interest, mesh motion is an added component that determines the specifics of how to move the mesh given certain limited information from the main system. This paper develops a set of boundary conditions designed to eliminate tangling and internal collision within the context of PDE-based mesh motion (linear elasticity). These boundary conditions are developed for two- and three-dimensional meshes. The paper presents detailed algorithms for commonly occuring topological scenarios and explains how to apply them appropriately. Notably, the techniques discussed herein make use of none of the specifics of any particular formulation of mesh motion and thus are more broadly applicable. The two-dimensional algorithms are validated by an extensive verification procedure. Finally, many examples of diverse geometries in both two- and three-dimensions are shown to showcase the capabilities of the tangle-free boundary conditions.
Tangle-Free Finite Element Mesh Motion for Ablation Problems
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.
Spherical harmonic-based finite element meshing scheme for modelling current flow within the heart.
Hopenfeld, B
2004-11-01
The paper describes a spherical harmonic-based finite element scheme for solving Poisson-type equations throughout volumes characterised by irregularly shaped inner and outer surfaces. The inner and outer surfaces are defined by spherical harmonics, and the volume in between these surfaces is divided into nested shells that are weighted averages of the inner and outer surfaces. The resulting mesh comprises hexahedral elements, wherein each hexahedral element is defined by inner and outer shells in the radial direction and divisions in the polar and azimuthal directions. The spacing between shells can be set to any desired value. Similarly, the size of the polar and azimuthal divisions can be specified. A test of the scheme on an anisotropic sphere, meshed with 720 nodes, yielded a relative error of 0.78% on the sphere's surface. As a comparison, a previously published combined finite element/boundary element scheme with a 946-node mesh produced a corresponding error of 3.57%.
Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption.
Dresel, T; Beyerlein, M; Schwider, J
1996-12-10
Computer-generated phase-only holograms can be used for laser beam shaping, i.e., for focusing a given aperture with intensity and phase distributions into a pregiven intensity pattern in their focal planes. A numerical approach based on iterative finite-element mesh adaption permits the design of appropriate phase functions for the task of focusing into two-dimensional reconstruction patterns. Both the hologram aperture and the reconstruction pattern are covered by mesh mappings. An iterative procedure delivers meshes with intensities equally distributed over the constituting elements. This design algorithm adds new elementary focuser functions to what we call object-oriented hologram design. Some design examples are discussed.
Learning to use the finite-element mesh generator, ESCHER 3. 2
Oakes, W.R. Jr.
1989-08-01
ESCHER is a finite-element mesh generator designed to generate valid and well proportioned two-dimensional and three-dimensional meshes. It is intended for use in a loosely integrated analysis system. Edge-geometry data can be input to ESCHER from almost any computer-aided drafting program used today. ESCHER produces a finite-element model in a neutral file format that can be translated for input to specific finite-element analysis codes. This report describes how to use ESCHER. It explains what constitutes a valid geometrical model, how to construct one from edge geometry, how to define a finite-element model given a geometrical model, and how to verify that the created model is valid. The computer-hardware system required is explained, and ESCHER's relationship to other computer codes in the Integrated Design Engineering Analysis Library, IDEAL, is discussed. 5 refs., 11 figs.
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
NASA Astrophysics Data System (ADS)
Dancette, S.; Browet, A.; Martin, G.; Willemet, M.; Delannay, L.
2016-06-01
A new procedure for microstructure-based finite element modeling of polycrystalline aggregates is presented. The proposed method relies (i) on an efficient graph-based community detection algorithm for crystallographic data segmentation and feature contour extraction and (ii) on the generation of selectively refined meshes conforming to grain boundaries. It constitutes a versatile and close to automatic environment for meshing complex microstructures. The procedure is illustrated with polycrystal microstructures characterized by orientation imaging microscopy. Hot deformation of a Duplex stainless steel is investigated based on ex-situ EBSD measurements performed on the same region of interest before and after deformation. A finite element mesh representing the initial microstructure is generated and then used in a crystal plasticity simulation of the plane strain compression. Simulation results and experiments are in relatively good agreement, confirming a large potential for such directly coupled experimental and modeling analyses, which is facilitated by the present image-based meshing procedure.
A comparative study of an ABC and an artificial absorber for truncating finite element meshes
NASA Technical Reports Server (NTRS)
Oezdemir, T.; Volakis, John L.
1993-01-01
The type of mesh termination used in the context of finite element formulations plays a major role on the efficiency and accuracy of the field solution. The performance of an absorbing boundary condition (ABC) and an artificial absorber (a new concept) for terminating the finite element mesh was evaluated. This analysis is done in connection with the problem of scattering by a finite slot array in a thick ground plane. The two approximate mesh truncation schemes are compared with the exact finite element-boundary integral (FEM-BI) method in terms of accuracy and efficiency. It is demonstrated that both approximate truncation schemes yield reasonably accurate results even when the mesh is extended only 0.3 wavelengths away from the array aperture. However, the artificial absorber termination method leads to a substantially more efficient solution. Moreover, it is shown that the FEM-BI method remains quite competitive with the FEM-artificial absorber method when the FFT is used for computing the matrix-vector products in the iterative solution algorithm. These conclusions are indeed surprising and of major importance in electromagnetic simulations based on the finite element method.
Lee, W H; Kim, T-S; Cho, M H; Ahn, Y B; Lee, S Y
2006-12-01
In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.
Merlin 2 - A computer program to transfer solution data betwwen finite element meshes
Gartling, D.K.
1991-07-01
The MERLIN 2 program is designed to transfer data between finite element meshes of arbitrary geometry. The program is structured to accurately interpolate previously computed solutions onto a given mesh and format the resulting data for immediate use in another analysis program. Data from either two-dimensional or three-dimensional meshes may be considered. The theoretical basis and computational algorithms used in the program are described and complete user instructions are presented. Several example problems are included to demonstrate program usage. 13 refs. 15 figs.
Finite Element approach for Density Functional Theory calculations on locally refined meshes
Fattebert, J; Hornung, R D; Wissink, A M
2007-02-23
We present a quadratic Finite Element approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.
Finite Elements approach for Density Functional Theory calculations on locally refined meshes
Fattebert, J; Hornung, R D; Wissink, A M
2006-03-27
We present a quadratic Finite Elements approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.
Manual for automatic generation of finite element models of spiral bevel gears in mesh
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Reddy, S.; Kumar, A.
1994-01-01
The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.
NASA Astrophysics Data System (ADS)
Thuburn, John; Cotter, Colin J.
2015-06-01
A new numerical method is presented for solving the shallow water equations on a rotating sphere using quasi-uniform polygonal meshes. The method uses special families of finite element function spaces to mimic key mathematical properties of the continuous equations and thereby capture several desirable physical properties related to balance and conservation. The method relies on two novel features. The first is the use of compound finite elements to provide suitable finite element spaces on general polygonal meshes. The second is the use of dual finite element spaces on the dual of the original mesh, along with suitably defined discrete Hodge star operators to map between the primal and dual meshes, enabling the use of a finite volume scheme on the dual mesh to compute potential vorticity fluxes. The resulting method has the same mimetic properties as a finite volume method presented previously, but is more accurate on a number of standard test cases.
Contact stresses in meshing spur gear teeth: Use of an incremental finite element procedure
NASA Technical Reports Server (NTRS)
Hsieh, Chih-Ming; Huston, Ronald L.; Oswald, Fred B.
1992-01-01
Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental finite element procedure that simultaneously determines the stresses in the contact region between the meshing teeth. The teeth themselves are modeled by two dimensional plain strain elements. Friction effects are included, with the friction forces assumed to obey Coulomb's law. The analysis assumes that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure is validated by comparing its results with those for the classical two contacting semicylinders obtained from the Hertz method. Agreement is excellent.
Charged particle tracking through electrostatic wire meshes using the finite element method
NASA Astrophysics Data System (ADS)
Devlin, L. J.; Karamyshev, O.; Welsch, C. P.
2016-06-01
Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.
MAPVAR - A Computer Program to Transfer Solution Data Between Finite Element Meshes
Wellman, G.W.
1999-03-01
MAPVAR, as was the case with its precursor programs, MERLIN and MERLIN II, is designed to transfer solution results from one finite element mesh to another. MAPVAR draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR are described. User instructions are presented. Example problems are included to demonstrate the operation of the code and the effects of various input options.
Using Multi-threading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1998-01-01
In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.
On the Interconnection of Incompatible Solid Finite Element Meshes Using Multipoint Constraints
NASA Technical Reports Server (NTRS)
Fox, G. L.
1985-01-01
Incompatible meshes, i.e., meshes that physically must have a common boundary, but do not necessarily have coincident grid points, can arise in the course of a finite element analysis. For example, two substructures may have been developed at different times for different purposes and it becomes necessary to interconnect the two models. A technique that uses only multipoint constraints, i.e., MPC cards (or MPCS cards in substructuring), is presented. Since the method uses only MPC's, the procedure may apply at any stage in an analysis; no prior planning or special data is necessary.
A mass-redistributed finite element method (MR-FEM) for acoustic problems using triangular mesh
NASA Astrophysics Data System (ADS)
He, Z. C.; Li, Eric; Liu, G. R.; Li, G. Y.; Cheng, A. G.
2016-10-01
The accuracy of numerical results using standard finite element method (FEM) in acoustic problems will deteriorate with increasing frequency due to the "dispersion error". Such dispersion error depends on the balance between the "stiffness" and "mass" of discretization equation systems. This paper reports an improved finite element method (FEM) for solving acoustic problems by re-distributing the mass in the mass matrix to "tune" the balance, aiming to minimize the dispersion errors. This is done by shifting the integration point locations when computing the entries of the mass matrix, while ensuring the mass conservation. The new method is verified through the detailed numerical error analysis, and a strategy is also proposed for the best mass redistribution in terms of minimizing dispersion error. The relative dispersion error of present mass-redistributed finite element method (MR-FEM) is found to be much smaller than the FEM solution, in both theoretical prediction and numerical examination. The present MR-FEM works well by using the linear triangular elements that can be generated automatically, which enables automation in computation and saving computational cost in mesh generation. Numerical examples demonstrate the advantages of MR-FEM, in comparison with the standard FEM using the same triangular meshes and quadrilateral meshes.
Parameter studies of gear cooling using an automatic finites element mesh generator
NASA Technical Reports Server (NTRS)
El-Bayoumy, L. E.; Akin, L. S.; Townsend, D. P.
1984-01-01
The range of accuracies achieved in the gear tooth temperature using an automatic finite element mesh generator were investigated. Gear web contribution to the gear cooling process was studied by introducing a varying size hole at the center of the gear because of the versatility of program TARG in allowing different heat transfer coefficients in different areas of the gear tooth. A study was carried out to evaluate the contribution of the loaded and unloaded faces as well as the top and bottom lands. A general purpose two-dimensional finite element preprocessor ATOGEN has been developed for automatic generation of a finite element mesh over a pie-shaped sector of a gear. The program was used for facilitating the input to an upgraded version of a previously developed program for the thermal analysis of running gears (TARG). The latter program determined the steady state temperature distribution throughout the specified gear. The automatic mesh generator program includes a band width minimization routine for reducing computer cost.
BLOT: A mesh and curve plot program for the output of a finite element analysis
Gilkey, A.P.; Glick, J.H.
1989-06-01
BLOT is a graphics program for post-processing of finite element analysis output that is presented in the EXODUS database format. It is command driven with free-format input and can drive any graphics device supported by the Sandia Virtual Device Interface. BLOT produces mesh plots with various representations of the analysis output variables. The major mesh plot capabilities are deformed mesh plots, line contours, banded contours, vector plots of two or three variables (e.g., velocity vectors), and symbol plots of scalar variables (e.g., temperature). Pathlines of analysis variables can also be drawn on the mesh. BLOT's features include element selection by material, element birth and death, multiple views for combining several displays on each plot, symmetry mirroring, and node and element numbering. BLOT can also produce X-Y curve plots of the analysis variables. BLOT generates time-versus-variable plots or variable-versus-variable plots. It also generates distance versus-variable plots at selected time steps where the distance is the accumulated distance between pairs of nodes or element centers. 14 refs.
Adaptive superposition of finite element meshes in linear and nonlinear dynamic analysis
NASA Astrophysics Data System (ADS)
Yue, Zhihua
2005-11-01
The numerical analysis of transient phenomena in solids, for instance, wave propagation and structural dynamics, is a very important and active area of study in engineering. Despite the current evolutionary state of modern computer hardware, practical analysis of large scale, nonlinear transient problems requires the use of adaptive methods where computational resources are locally allocated according to the interpolation requirements of the solution form. Adaptive analysis of transient problems involves obtaining solutions at many different time steps, each of which requires a sequence of adaptive meshes. Therefore, the execution speed of the adaptive algorithm is of paramount importance. In addition, transient problems require that the solution must be passed from one adaptive mesh to the next adaptive mesh with a bare minimum of solution-transfer error since this form of error compromises the initial conditions used for the next time step. A new adaptive finite element procedure (s-adaptive) is developed in this study for modeling transient phenomena in both linear elastic solids and nonlinear elastic solids caused by progressive damage. The adaptive procedure automatically updates the time step size and the spatial mesh discretization in transient analysis, achieving the accuracy and the efficiency requirements simultaneously. The novel feature of the s-adaptive procedure is the original use of finite element mesh superposition to produce spatial refinement in transient problems. The use of mesh superposition enables the s-adaptive procedure to completely avoid the need for cumbersome multipoint constraint algorithms and mesh generators, which makes the s-adaptive procedure extremely fast. Moreover, the use of mesh superposition enables the s-adaptive procedure to minimize the solution-transfer error. In a series of different solid mechanics problem types including 2-D and 3-D linear elastic quasi-static problems, 2-D material nonlinear quasi-static problems
Design of an essentially non-oscillatory reconstruction procedure on finite-element type meshes
NASA Technical Reports Server (NTRS)
Abgrall, R.
1991-01-01
An essentially non-oscillatory reconstruction for functions defined on finite-element type meshes was designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitrary meshes and the reconstruction of a function from its average in the control volumes surrounding the nodes of the mesh. Concerning the first problem, we have studied the behavior of the highest coefficients of the Lagrange interpolation function which may admit discontinuities of locally regular curves. This enables us to choose the best stencil for the interpolation. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, because of the very nature of the mesh, the only method that may work is the so called reconstruction via deconvolution method. Unfortunately, it is well suited only for regular meshes as we show, but we also show how to overcome this difficulty. The global method has the expected order of accuracy but is conservative up to a high order quadrature formula only. Some numerical examples are given which demonstrate the efficiency of the method.
Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.
Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan
2016-01-01
Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.
Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design
NASA Technical Reports Server (NTRS)
Li, Wu; Robinson, Jay
2016-01-01
This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.
Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh.
Li, Yusong; LeBoeuf, Eugene J; Basu, P K
2005-10-01
A numerical model of the lattice Boltzmann method (LBM) utilizing least-squares finite-element method in space and the Crank-Nicolson method in time is developed. This method is able to solve fluid flow in domains that contain complex or irregular geometric boundaries by using the flexibility and numerical stability of a finite-element method, while employing accurate least-squares optimization. Fourth-order accuracy in space and second-order accuracy in time are derived for a pure advection equation on a uniform mesh; while high stability is implied from a von Neumann linearized stability analysis. Implemented on unstructured mesh through an innovative element-by-element approach, the proposed method requires fewer grid points and less memory compared to traditional LBM. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow, Couette flow, and flow past a circular cylinder. Finally, the proposed method is applied to estimate the permeability of a randomly generated porous media, which further demonstrates its inherent geometric flexibility. PMID:16383571
Design of an essentially non-oscillatory reconstruction procedure in finite-element type meshes
NASA Technical Reports Server (NTRS)
Abgrall, Remi
1992-01-01
An essentially non oscillatory reconstruction for functions defined on finite element type meshes is designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitary meshes and the reconstruction of a function from its averages in the control volumes surrounding the nodes of the mesh. Concerning the first problem, the behavior of the highest coefficients of two polynomial interpolations of a function that may admit discontinuities of locally regular curves is studied: the Lagrange interpolation and an approximation such that the mean of the polynomial on any control volume is equal to that of the function to be approximated. This enables the best stencil for the approximation to be chosen. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, two methods were studied: one based on an adaptation of the so called reconstruction via deconvolution method to irregular meshes and one that lies on the approximation on the mean as defined above. The first method is conservative up to a quadrature formula and the second one is exactly conservative. The two methods have the expected order of accuracy, but the second one is much less expensive than the first one. Some numerical examples are given which demonstrate the efficiency of the reconstruction.
Pavarino, E.; Neves, L. A.; Machado, J. M.; de Godoy, M. F.; Shiyou, Y.; Momente, J. C.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.
2013-01-01
The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031
Pavarino, E; Neves, L A; Machado, J M; de Godoy, M F; Shiyou, Y; Momente, J C; Zafalon, G F D; Pinto, A R; Valêncio, C R
2013-01-01
The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031
NASA Astrophysics Data System (ADS)
De Corato, M.; Slot, J. J. M.; Hütter, M.; D'Avino, G.; Maffettone, P. L.; Hulsen, M. A.
2016-07-01
In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation-dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.
Optical breast shape capture and finite-element mesh generation for electrical impedance tomography.
Forsyth, J; Borsic, A; Halter, R J; Hartov, A; Paulsen, K D
2011-07-01
X-ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because mammograms expose patients to ionizing radiation. Electrical impedance tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient's breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite-element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis.
NASA Astrophysics Data System (ADS)
Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.
2016-03-01
Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.
Ragusa, Jean C.
2015-01-01
In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement.
Lee, D. W.; Joo, H. G.
2013-07-01
The methods and performance of a three-dimensional S{sub n} transport code employing the Discontinuous Finite Element Method (DFEM) and the Coarse Mesh Finite Difference (CMFD) formulation are presented. The mesh generator GMSH and a post processing visualization tool Visit are combined with the code for flexible geometry processing and versatile visualization. The CMFD method for DFEM Sn applications is formulated and the performance of the CMFD acceleration of eigenvalue calculations is demonstrated for a simple set of neutron transport problems. (authors)
Lipnikov, Konstantin; Agouzal, Abdellatif; Vassilevski, Yuri
2009-01-01
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.
Gonzales, Matthew J.; Sturgeon, Gregory; Krishnamurthy, Adarsh; Hake, Johan; Jonas, René; Stark, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.; Zhang, Yongjie; Segars, W. Paul; McCulloch, Andrew D.
2013-01-01
High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the “local-to-global” derivative mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite models of the human atria with extraordinary vertices from computed tomography images of a patient with atrial fibrillation. To an accuracy of 0.6 millimeters, we were able to capture the left atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models and defined fiber orientation fields in agreement with diagrammatic data from the literature using only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and elements with aspect ratios near unity, and are shared with the public. These new methods will allow for more compact and efficient patient-specific models of human atrial and whole heart physiology. PMID:23602918
NASA Technical Reports Server (NTRS)
Raju, I. S.
1992-01-01
A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.
NASA Astrophysics Data System (ADS)
Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.
2015-12-01
Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.
Blacker, Teddy D.
1994-01-01
An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.
Kaminsky, Jan; Rodt, Thomas; Gharabaghi, Alireza; Forster, Jan; Brand, Gerd; Samii, Madjid
2005-06-01
The FE-modeling of complex anatomical structures is not solved satisfyingly so far. Voxel-based as opposed to contour-based algorithms allow an automated mesh generation based on the image data. Nonetheless their geometric precision is limited. We developed an automated mesh-generator that combines the advantages of voxel-based generation with improved representation of the geometry by displacement of nodes on the object-surface. Models of an artificial 3D-pipe-section and a skullbase were generated with different mesh-densities using the newly developed geometric, unsmoothed and smoothed voxel generators. Compared to the analytic calculation of the 3D-pipe-section model the normalized RMS error of the surface stress was 0.173-0.647 for the unsmoothed voxel models, 0.111-0.616 for the smoothed voxel models with small volume error and 0.126-0.273 for the geometric models. The highest element-energy error as a criterion for the mesh quality was 2.61x10(-2) N mm, 2.46x10(-2) N mm and 1.81x10(-2) N mm for unsmoothed, smoothed and geometric voxel models, respectively. The geometric model of the 3D-skullbase resulted in the lowest element-energy error and volume error. This algorithm also allowed the best representation of anatomical details. The presented geometric mesh-generator is universally applicable and allows an automated and accurate modeling by combining the advantages of the voxel-technique and of improved surface-modeling.
Rate sensitive continuum damage models and mesh dependence in finite element analyses.
Ljustina, Goran; Fagerström, Martin; Larsson, Ragnar
2014-01-01
The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the "damage" does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation. PMID:25530994
Rate Sensitive Continuum Damage Models and Mesh Dependence in Finite Element Analyses
Fagerström, Martin
2014-01-01
The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the “damage” does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation. PMID:25530994
Software Library for Storing and Retrieving Mesh and Results of Finite Element
1997-07-07
EXOII is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code transfer. An EXOII data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
NASA Technical Reports Server (NTRS)
Bibel, George; Lewicki, David G. (Technical Monitor)
2002-01-01
A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.
Yaqi Wang; Jean C. Ragusa
2011-10-01
Diffusion synthetic acceleration (DSA) schemes compatible with adaptive mesh refinement (AMR) grids are derived for the SN transport equations discretized using high-order discontinuous finite elements. These schemes are directly obtained from the discretized transport equations by assuming a linear dependence in angle of the angular flux along with an exact Fick's law and, therefore, are categorized as partially consistent. These schemes are akin to the symmetric interior penalty technique applied to elliptic problems and are all based on a second-order discontinuous finite element discretization of a diffusion equation (as opposed to a mixed or P1 formulation). Therefore, they only have the scalar flux as unknowns. A Fourier analysis has been carried out to determine the convergence properties of the three proposed DSA schemes for various cell optical thicknesses and aspect ratios. Out of the three DSA schemes derived, the modified interior penalty (MIP) scheme is stable and effective for realistic problems, even with distorted elements, but loses effectiveness for some highly heterogeneous configurations. The MIP scheme is also symmetric positive definite and can be solved efficiently with a preconditioned conjugate gradient method. Its implementation in an AMR SN transport code has been performed for both source iteration and GMRes-based transport solves, with polynomial orders up to 4. Numerical results are provided and show good agreement with the Fourier analysis results. Results on AMR grids demonstrate that the cost of DSA can be kept low on locally refined meshes.
NASA Astrophysics Data System (ADS)
Liu, Jun; Nan, Zheng; Yi, Ping
2012-12-01
In the last decade, three dimensional discontinuous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block deformation. In this paper, 3D DDA is coupled with tetrahedron finite elements to tackle these two problems. Tetrahedron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topology shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Validation is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demonstrates the robustness and versatility of the coupled method.
Keeney-Walker, J.; Bass, B.R.
1992-09-01
This report describes the ORNOZL finite-element mesh generator program for computational fracture mechanics analysis. The program automatically generates a three-dimensional (3-D) finite-element model for four different geometries of a comer crack in a nozzle-cylinder intersection. ORNOZL generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. Regular 20-noded isoparametric brick elements are used away from the crack front in the modeling. Also, an option is included that allows for an embedded or penetrating crack in clad materials. As few as five input cards are required to execute the program. ORNOZL is part of a three-program system, ORNOZL-ADINA-ORVIRT, which addresses linear or nonlinear fracture in 2- or 3-D crack geometries. ORNOZL creates files containing nodal point coordinates and element connectivities that have formats compatible with the ADINA structural analysis program. ORVIRT is a postprocessor to ADINA and employs a virtual crack extension technique to compute energy release rates at specified positions along the crack front.
Kelley, Mireille E; Miller, Logan E; Urban, Jillian E; Stitzel, Joel D
2015-01-01
The brain-skull interface plays an important role in the strain and pressure response of the brain due to impact. In this study, a finite element (FE) model was developed from a brain atlas, representing an adult brain, by converting each 1mm isotropic voxel into a single element of the same size using a custom code developed in MATLAB. This model includes the brain (combined cerebrum and cerebellum), cerebrospinal fluid (CSF), ventricles, and a rigid skull. A voxel-based approach to develop a FE model causes the outer surface of each part to be stair-stepped, which may affect the stress and strain measurements at interfaces between parts. To improve the interaction between the skull, CSF, and brain surfaces, a previously developed mesh smoothing algorithm based on a Laplacian non-shrinking smoothing algorithm was applied to the FE model. This algorithm not only applies smoothing to the surface of the model, but also to the interfaces between the brain, CSF, and skull, while preserving volume and element quality. Warpage, jacobian, aspect ratio, and skew were evaluated and reveal that >99% of the elements retain good element quality. Future work includes implementation of contact definitions to accurately represent the brain-skull interface and to ultimately better understand and predict head injury. PMID:25996716
NASA Astrophysics Data System (ADS)
Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian
2013-07-01
Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.
NASA Technical Reports Server (NTRS)
Hua, Chongyu; Volakis, John L.
1990-01-01
AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.
NASA Technical Reports Server (NTRS)
Panthaki, Malcolm J.
1987-01-01
Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.
Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh
Drumm, C.R.
1999-01-01
A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.
DRIESSEN,BRIAN
2000-02-17
In this work, a method is proposed for modifying the standard master-slave stiffness matrix so that linear consistency across the interface of the master and slave meshes is achieved. The existence of such a local stiffness modification is implied by the work of [Dohrmann, et al, to appear]. The present work aims at achieving the same linear consistency through a different method of stiffness modification that is based on simply ensuring zero residual force at the interior interface nodes for all non-zero-stress linear displacement fields and zero residual force at all interface nodes for all rigid-body linear displacement fields. These zero residuals ensure that the local stiffness modification results in an interface that passes the patch test. Numerical examples herein demonstrate that the maximum stress error at the interface goes to zero with the proposed method while it does not for the standard master-slave method.
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.
2006-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.
2004-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.
Toward automatic finite element analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Perucchio, Renato; Voelcker, Herbert
1987-01-01
Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.
Knupp, P.M.
1999-03-26
Three-dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2 x 2 matrices do not hold for 3 x 3 matrices. significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equivalence in two-dimensions of the Smoothness and Condition Number of the Jacobian matrix objective functions does not extend to three dimensions and further. that the equivalence of the Oddy and Condition Number of the Metric Tensor objective functions in two-dimensions also fails to extend to three-dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non-dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all-hexahedral ''whisker-weaved'' meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure.
NASA Astrophysics Data System (ADS)
Salinas, P.; Jackson, M.; Pavlidis, D.; Pain, C.; Adam, A.; Xie, Z.; Percival, J. R.
2015-12-01
We present a new, high-order, control-volume-finite-element (CVFE) method with discontinuous representation for pressure and velocity to simulate multiphase flow in heterogeneous porous media. Time is discretized using an adaptive, fully implicit method. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. A given model typically contains numerous such geologic domains. Our approach conserves mass and does not require the use of CVs that span domain boundaries. Computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields, such as pressure, velocity or saturation, whilst preserving the geometry of the geologic domains. Up-, cross- or down-scaling of material properties during mesh optimization is not required, as the properties are uniform within each geologic domain. We demonstrate that the approach, amongst other features, accurately preserves sharp saturation changes associated with high aspect ratio geologic domains such as fractures and mudstones, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than an equivalent fine, fixed mesh and conventional CVFE methods. The use of implicit time integration allows the method to efficiently converge using highly anisotropic meshes without having to reduce the time-step. The work is significant for two key reasons. First, it resolves a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media, in which CVs span boundaries between domains of contrasting material properties. Second, it reduces computational cost/increases solution accuracy through the use of dynamic mesh optimization and time-stepping with large Courant number.
2006-03-08
MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less
Sjaardema, G.; Wellman, G.; Gartling, D.
2006-03-08
MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operation of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.
Sjaardema, G.; Forsythe, C.
2005-05-07
CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases into a single database which makes it easier to postprocess the results data.
2005-05-07
CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less
The finite cell method for polygonal meshes: poly-FCM
NASA Astrophysics Data System (ADS)
Duczek, Sascha; Gabbert, Ulrich
2016-10-01
In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.
3-D Finite Element Code Postprocessor
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Lin, C L; Chang, C H; Wang, C H; Ko, C C; Lee, H E
2001-06-01
Many researches have addressed the high correlation between the fracture of restored teeth and the prepared cavity geometry. In addition, concerns about bonding versus debonding dental materials from cavity walls and different occlusal force conditions could also alter the mechanical responses in a restored tooth. This study employed an automatic mesh procedure to investigate the mechanical interactions between different interfacial conditions and cavity parameters such as pulpal wall depth under different chewing functions. The results indicated that when occlusal force was applied directly on the tooth, it could increase unfavourable stress dramatically. When interfacial fixation was simulated as the contact condition between the tooth tissue and restorative material, it might increase the fracture potential exponentially compared with the bonded interface. For pulpal wall depth analyses, greater risks of fracture for the remaining tooth were observed in deeper cavity of mesio-occlusal-distal (MOD) restorations and the existence of a pulpal wall is essential even it is only 1 mm above the gingival wall. PMID:11422677
Visualization of higher order finite elements.
Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay
2004-04-01
Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:
Finite element modeling of the human pelvis
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Automatic finite element generators
NASA Technical Reports Server (NTRS)
Wang, P. S.
1984-01-01
The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.
NASA Technical Reports Server (NTRS)
Aminpour, Mohammad
1995-01-01
The work reported here pertains only to the first year of research for a three year proposal period. As a prelude to this two dimensional interface element, the one dimensional element was tested and errors were discovered in the code for built-up structures and curved interfaces. These errors were corrected and the benchmark Boeing composite crown panel was analyzed successfully. A study of various splines led to the conclusion that cubic B-splines best suit this interface element application. A least squares approach combined with cubic B-splines was constructed to make a smooth function from the noisy data obtained with random error in the coordinate data points of the Boeing crown panel analysis. Preliminary investigations for the formulation of discontinuous 2-D shell and 3-D solid elements were conducted.
Finite element formulations for compressible flows
NASA Technical Reports Server (NTRS)
Tezduyar, Tayfun E.
1989-01-01
Researchers started their studies on the development and application of computational methods for compressible flows. Particular attention was given to proper numerical treatment of sharp layers occurring in such problems and to general mesh generation capabilities for intricate computational geometries. Mainly finite element methods enhanced with several state-of-the art techniques (such as the streamline-upwind/Petrov-Galerkin, discontinuity capturing, adaptive implicit-explicit, and trouped element-by-element approximate factorization schemes) were employed.
Lazarov, R; Pasciak, J; Jones, J
2002-02-01
Construction, analysis and numerical testing of efficient solution techniques for solving elliptic PDEs that allow for parallel implementation have been the focus of the research. A number of discretization and solution methods for solving second order elliptic problems that include mortar and penalty approximations and domain decomposition methods for finite elements and finite volumes have been investigated and analyzed. Techniques for parallel domain decomposition algorithms in the framework of PETC and HYPRE have been studied and tested. Hierarchical parallel grid refinement and adaptive solution methods have been implemented and tested on various model problems. A parallel code implementing the mortar method with algebraically constructed multiplier spaces was developed.
A coarse-mesh nodal method-diffusive-mesh finite difference method
Joo, H.; Nichols, W.R.
1994-05-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.
A coarse-mesh nodal method, the diffusive-mesh finite difference method
Joo, H.; Nichols, W.R.
1994-12-31
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross section (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes and can lead to difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the diffusive-mesh finite difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.
Solving finite element equations on concurrent computers
NASA Technical Reports Server (NTRS)
Nour-Omid, B.; Raefsky, A.; Lyzenga, G.
1987-01-01
This paper discusses the development of a concurrent algorithm for the solution of systems of equations arising in finite element applications. The approach is based on a hybrid of direct elimination method and preconditioned conjugate iteration. Two different preconditioners are used; diagonal scaling and a concurrent implementation of incomplete LU factorization. First, an automatic procedure is used to partition the finite element mesh into sub-structures. The particular mesh partition is chosen to minimize an estimate of the cost for evaluating the solution using this algorithm on a concurrent computer. These procedures are implemented in a finite element program on the JPL/CalTech MARK III hypercube computer. An overview of the structure of this program is presented. The performance of the solution method is demonstrated with the aid of a number of numerical test runs, and its advantages for concurrent implementations are discussed. Efficiency and speed-up factors over sequential machines for the numerical examples are highlighted.
NASA Astrophysics Data System (ADS)
Zsáki, Attila M.; Curran, John H.
2005-04-01
The determination of the optimum excavation sequences in mining and civil engineering using numerical stress analysis procedures requires repeated solution of large models. Often such models contain much more complexity and geometric detail than required to arrive at an accurate stress analysis solution, especially considering our limited knowledge of rock mass properties. This paper develops an automated framework for estimating the effects of excavations at a region of interest, and optimizing the geometry used for stress analysis. It eliminates or simplifies the excavations in a model while maintaining the accuracy of analysis results. The framework can equally be applied to two-dimensional boundary and finite element models.The framework will have the largest impact for non-linear finite element analysis. It can significantly reduce computational times for such analysis by simplifying models. Error estimators are used in the framework to assess accuracy. The advantages of applying the framework are demonstrated on an excavation-sequencing scenario.
Grid generation for two-dimensional finite element flowfield computation
NASA Technical Reports Server (NTRS)
Tatum, K. E.
1980-01-01
The finite element method for fluid dynamics was used to develop a two dimensional mesh generation scheme. The method consists of shearing and conformal maps with upper and lower surfaces handled independently to allow sharp leading edges. The method also generates meshes of triangular or quadrilateral elements.
Forsythe, C.; Smith, M.; Sjaardema, G.
2005-06-26
Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or to another format.
Adaptive finite element strategies for shell structures
NASA Technical Reports Server (NTRS)
Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.
1992-01-01
The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Generating meshes for finite-difference analysis using a solid modeler
NASA Astrophysics Data System (ADS)
Laguna, G. W.; White, W. T.; Cabral, B. K.
1987-09-01
One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or mesh, that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.
2005-06-26
Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less
Overcoming element erosion limitations within Lagrangian finite element codes
NASA Astrophysics Data System (ADS)
Vignjevic, Rade; Hughes, Kevin; Walker, Andrew; Taylor, Emma A.
2001-10-01
Lagrangian finite element methods have been used extensively in the past to study the non-linear transient behaviour of materials, ranging from crash test of cars to simulating bird strikes on planes.... However, as this type of space discretization does not allow for motion of the material through the mesh when modelling extremely large deformations, the mesh becomes highly distorted. This paper describes some limitations and applicability of this type of analysis for high velocity impacts. A method for dealing with this problem is by the erosion of elements is proposed where the main issue is the deformation of element failure strains. Results were compared with empirical perforation results and were found to be in good agreement. The results were then used to simulate high velocity impacts upon a multi-layered aluminium target, in order to predict a ballistic limit curve. LS-DYNA3D was used as the FE solver for all simulations. Meshes were generated with Truegrid.
Modular Finite Element Methods Library Version: 1.0
2010-06-22
MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.
Finite element analysis of human joints
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Finite Element Results Visualization for Unstructured Grids
Speck, Douglas E.; Dovey, Donald J.
1996-07-15
GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.
NASA Astrophysics Data System (ADS)
Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T.; Xu, X.
2009-06-01
A carefully designed procedure is presented to modify the piecewise constant strain field of linear triangular FEM models, and to reconstruct a strain field with an adjustable parameter α. A novel Galerkin-like weakform derived from the Hellinger-Reissner variational principle is proposed for establishing the discretized system equations. The new weak form is very simple, possesses the same good properties of the standard Galerkin weakform, and works particularly well for strain construction methods. A superconvergent alpha finite element method (S αFEM) is then formulated by using the constructed strain field and the Galerkin-like weakform for solid mechanics problems. The implementation of the S αFEM is straightforward and no additional parameters are used. We prove theoretically and show numerically that the S αFEM always achieves more accurate and higher convergence rate than the standard FEM of triangular elements (T3) and even more accurate than the four-node quadrilateral elements (Q4) when the same sets of nodes are used. The S αFEM can always produce both lower and upper bounds to the exact solution in the energy norm for all elasticity problems by properly choosing an α. In addition, a preferable- α approach has also been devised to produce very accurate solutions for both displacement and energy norms and a superconvergent rate in the energy error norm. Furthermore, a model-based selective scheme is proposed to formulate a combined S αFEM/NS-FEM model that handily overcomes the volumetric locking problems. Intensive numerical studies including singularity problems have been conducted to confirm the theory and properties of the S αFEM.
IFEMS, an Interactive Finite Element Modeling System Using a CAD/CAM System
NASA Technical Reports Server (NTRS)
Mckellip, S.; Schuman, T.; Lauer, S.
1980-01-01
A method of coupling a CAD/CAM system with a general purpose finite element mesh generator is described. The three computer programs which make up the interactive finite element graphics system are discussed.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
An efficient finite element solution for gear dynamics
NASA Astrophysics Data System (ADS)
Cooley, C. G.; Parker, R. G.; Vijayakar, S. M.
2010-06-01
A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.
Construction of hexahedral elements mesh capturing realistic geometries of Bayou Choctaw SPR site
Park, Byoung Yoon; Roberts, Barry L.
2015-09-01
The three-dimensional finite element mesh capturing realistic geometries of Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh is consisting of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time with maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill, Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for not only various civil and geological structures but also biological applications such as artificial limbs.
Effect of grid system on finite element calculation
NASA Technical Reports Server (NTRS)
Lee, K. D.; Yen, S. M.
1980-01-01
Detailed parametric studies of the effect of grid system on finite element calculation for potential flows were made. These studies led to the formulation of a design criteria for optimum mesh system and the development of two methods to generate the optimum mesh system. The guidelines for optimum mesh system are: (1) the mesh structure should be regular; (2) the element should be as regular and equilateral as possible; (3) the distribution of size of element should be consistent with that of flow variables to insure maximum uniformity in error distribution; (4) for non-Dirichlet boundary conditions, smaller boundary elements or higher order interpolation functions should be used; and (5) the mesh should accommodate the boundary geometry as accurately as possible. The results of the parametric studies are presented.
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Jacobs, C R; Davis, B R; Rieger, C J; Francis, J J; Saad, M; Fyhrie, D P
1999-11-01
The apparent properties of cancellous bone are determined by a combination of both hard tissue properties and microstructural organization. A method is desired to extract the underlying hard tissue properties from simple mechanical tests, free from the complications of microstructure. It has been suggested that microCT voxel-based large-scale finite element models could be employed to accomplish this goal (van Rietbergen et al., 1995, Journal of Biomechanics, 28, 69-81). This approach has recently been implemented and it is becoming increasingly popular as finite element models increase in size and sophistication (Fyhrie et al., 1997, Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, p. 815; van Rietbergen et al., 1997, Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, p. 62). However, no direct quantitative measurements of the accuracy of this method applied to porous structures such as cancellous bone have been made. This project demonstrates the feasibility of this approach by quantifying its best-case accuracy in determining the trabecular hard tissue modulus of analogues fabricated of a material with known material properties determined independently by direct testing. In addition we were able to assess the impact of mesh size and boundary conditions on accuracy. We found that the assumption of a frictionless boundary condition in the parallel plate compression loading configuration was a significant source of error that could be overcome with the use of rigid end-caps similar to those used by Keaveny et al. (1997 Journal of Orthopaedic Research, 15(1), 101-110). In conclusion, we found that this approach is an effective method for determining the average trabecular hard tissue properties of human cancellous bone with an expected practical accuracy level better than 5%.
2-d Finite Element Code Postprocessor
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
Mimetic finite difference method for the stokes problem on polygonal meshes
Lipnikov, K; Beirao Da Veiga, L; Gyrya, V; Manzini, G
2009-01-01
Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.
A novel approach in formulation of special transition elements: Mesh interface elements
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1991-01-01
The objective of this research program is in the development of more accurate and efficient methods for solution of singular problems encountered in various branches of mechanics. The research program can be categorized under three levels. The first two levels involve the formulation of a new class of elements called 'mesh interface elements' (MIE) to connect meshes of traditional elements either in three dimensions or in three and two dimensions. The finite element formulations are based on boolean sum and blending operators. MEI are being formulated and tested in this research to account for the steep gradients encountered in aircraft and space structure applications. At present, the heat transfer and structural analysis problems are being formulated from uncoupled theory point of view. The status report: (1) summarizes formulation for heat transfer and structural analysis; (2) explains formulation of MEI; (3) examines computational efficiency; and (4) shows verification examples.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Finite element shell instability analysis
NASA Technical Reports Server (NTRS)
1975-01-01
Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
Key, S.W.; Heinstein, M.W.; Stone, C.M.
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.
Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1997-01-01
An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.
Dual Formulations of Mixed Finite Element Methods with Applications.
Gillette, Andrew; Bajaj, Chandrajit
2011-10-01
Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail.
Contact stress analysis of spiral bevel gears using nonlinear finite element static analysis
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Kumar, A.; Reddy, S.; Handschuh, Robert F.
1993-01-01
A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented.
Contact Stress Analysis of Spiral Bevel Gears Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Kumar, A; Reddy, S.; Handschuh, R.
1995-01-01
A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented.
Hybrid finite element-finite difference method for thermal analysis of blood vessels.
Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B
2000-01-01
A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems.
Asymmetric quadrilateral shell elements for finite strains
NASA Astrophysics Data System (ADS)
Areias, P.; Dias-da-Costa, D.; Pires, E. B.; Van Goethem, N.
2013-07-01
Very good results in infinitesimal and finite strain analysis of shells are achieved by combining either the enhanced-metric technique or the selective-reduced integration for the in-plane shear energy and an assumed natural strain technique (ANS) in a non-symmetric Petrov-Galerkin arrangement which complies with the patch-test. A recovery of the original Wilson incompatible mode element is shown for the trial functions in the in-plane components. As a beneficial side-effect, Newton-Raphson convergence behavior for non-linear problems is improved with respect to symmetric formulations. Transverse-shear and in-plane patch tests are satisfied while distorted-mesh accuracy is higher than with symmetric formulations. Classical test functions with assumed-metric components are required for compatibility reasons. Verification tests are performed with advantageous comparisons being observed in all of them. Applications to large displacement elasticity and finite strain plasticity are shown with both low sensitivity to mesh distortion and (relatively) high accuracy. A equilibrium-consistent (and consistently linearized) updated-Lagrangian algorithm is proposed and tested. Concerning the time-step dependency, it was found that the consistent updated-Lagrangian algorithm is nearly time-step independent and can replace the multiplicative plasticity approach if only moderate elastic strains are present, as is the case of most metals.
High-order Finite Element Analysis of Boundary Layer Flows
NASA Astrophysics Data System (ADS)
Zhang, Alvin; Sahni, Onkar
2014-11-01
Numerical analysis of boundary layer flows requires careful approximations, specifically the use of a mesh with layered and graded elements near the (viscous) walls. This is referred to as a boundary layer mesh, which for complex geometries is composed of triangular elements on the walls that are inflated or extruded into the volume along the wall-normal direction up to a desired height while the rest of the domain is filled with unstructured tetrahedral elements. Linear elements with C0 inter-element continuity are employed and in some situations higher order C0 elements are also used. However, these elements only enforce continuity whereas high-order smoothness is not attained as will be the case with C1 inter-element continuity and higher. As a result, C0 elements result in a poor approximation of the high-order boundary layer behavior. To achieve greater inter-element continuity in boundary layer region, we employ B-spline basis functions along the wall-normal direction (i.e., only in the layered portion of the mesh). In the rest of the fully unstructured mesh, linear or higher order C0 elements are used as appropriate. In this study we demonstrate the benefits of finite-element analysis based on such higher order and continuity basis functions for boundary layer flows.
Dynamic Analysis of Geared Rotors by Finite Elements
NASA Technical Reports Server (NTRS)
Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.
1992-01-01
A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.
Dynamic analysis of geared rotors by finite elements
NASA Technical Reports Server (NTRS)
Kahraman, Ahmet; Ozguven, H. Nevzat; Houser, Donald R.; Zakrajsek, James J.
1990-01-01
A finite-element model of a geared rotor system on flexible bearings was developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by calculating the critical speeds and determining the response of any point on the shaft to mass unbalances, geometric eccentricities of gears and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.
A suitable low-order, eight-node tetrahedral finite element for solids
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.
Nonlinear, finite deformation, finite element analysis
NASA Astrophysics Data System (ADS)
Nguyen, Nhung; Waas, Anthony M.
2016-06-01
The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated
Elliptic interface problem solved using the mixed finite element method
NASA Astrophysics Data System (ADS)
Wang, Shuqiang
2007-05-01
The elliptic boundary value/interface problem is very important in many applications, for example, in incompressible flow and MHD. Many methods are used to solve these problems in a complex domain, including the finite volume method, the finite element method and the boundary element method. For a complex computational domain, the better choice of the partition of the computational domain is to use an unstructured grid. However, it is not a straight forward task to implement a mesh generation program. Such a program requires extra computing time and resources (such as computer memory). Thus people like to use a structured mesh if possible, especially a cartesian mesh. Popular methods using structured cartesian grids for the elliptic boundary value/interface problem include the immersed boundary method, the immersed interface method, the ghost fluid method, and the embedded boundary method. This thesis solves the elliptic problem using several versions of the mixed nite element method on an unstructured mesh. The results are compared for speed and accuracy to the embedded boundary method. A ghost fluid method for elliptic boundary value/interface problems is also investigated. Finally, a simple test of the 2D Rayleigh-Taylor instability is performed using the FronTier-Lite package. Key Words. Elliptic Boundary Value, Interface, Mesh Generation, Quadtree, Octree, Front Tracking.
Implicit extrapolation methods for multilevel finite element computations
Jung, M.; Ruede, U.
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Finite element analysis of multilayer coextrusion.
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Simulation of extrudate swell using an extended finite element method
NASA Astrophysics Data System (ADS)
Choi, Young Joon; Hulsen, Martien A.
2011-09-01
An extended finite element method (XFEM) is presented for the simulation of extrudate swell. A temporary arbitrary Lagrangian-Eulerian (ALE) scheme is incorporated to cope with the movement of the free surface. The main advantage of the proposed method is that the movement of the free surface can be simulated on a fixed Eulerian mesh without any need of re-meshing. The swell ratio of an upper-convected Maxwell fluid is compared with those of the moving boundary-fitted mesh problems of the conventional ALE technique, and those of Crochet & Keunings (1980). The proposed XFEM combined with the temporary ALE scheme can provide similar accuracy to the boundary-fitted mesh problems for low Deborah numbers. For high Deborah numbers, the method seems to be more stable for the extrusion problem.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
EXODUS: A finite element file format for pre- and postprocessing
Mills-Curran, W.C.; Gilkey, A.P.; Flanagan, D.P.
1988-09-01
The EXODUS format defines a binary file which is used for finite element analysis pre- and postprocessing. It includes data to define the finite element mesh and label both boundary condition and load application points. EXODUS accommodates multiple element types and is sufficiently general format for analysis results. A benefit of combining the mesh definition data and the results data in the same file is that the user is assured that the results data are consistent with the model. EXODUS is currently in use by the entire range of Department 1520 codes (including preprocessors, translators, linear and nonlinear analyses, and postprocessors) and is finding applications in codes outside Department 1520. 2 refs., 2 figs., 1 tab.
Peridynamic Multiscale Finite Element Methods
Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements
NASA Astrophysics Data System (ADS)
Talebi, Hossein; Saputra, Albert; Song, Chongmin
2016-08-01
While dominating the numerical stress analysis of solids, the finite element method requires a mesh to conform to the surface of the geometry. Thus the mesh generation of three dimensional complex structures often require tedious human interventions. In this paper, we present a formulation for arbitrary polyhedral elements based on the scaled boundary finite element method, which reduces the difficulties in automatic mesh generation. We also propose a simple method to generate polyhedral meshes with local refinements. The mesh generation method is based on combining an octree mesh with surfaces defined using signed distance functions. Through several numerical examples, we verify the results, study the convergence behaviour and depict the many advantages and capabilities of the presented method. This contribution is intended to assist us to eventually frame a set of numerical methods and associated tools for the full automation of the engineering analysis where minimal human interaction is needed.
Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements
NASA Astrophysics Data System (ADS)
Talebi, Hossein; Saputra, Albert; Song, Chongmin
2016-10-01
While dominating the numerical stress analysis of solids, the finite element method requires a mesh to conform to the surface of the geometry. Thus the mesh generation of three dimensional complex structures often require tedious human interventions. In this paper, we present a formulation for arbitrary polyhedral elements based on the scaled boundary finite element method, which reduces the difficulties in automatic mesh generation. We also propose a simple method to generate polyhedral meshes with local refinements. The mesh generation method is based on combining an octree mesh with surfaces defined using signed distance functions. Through several numerical examples, we verify the results, study the convergence behaviour and depict the many advantages and capabilities of the presented method. This contribution is intended to assist us to eventually frame a set of numerical methods and associated tools for the full automation of the engineering analysis where minimal human interaction is needed.
Massively parallel computation of RCS with finite elements
NASA Technical Reports Server (NTRS)
Parker, Jay
1993-01-01
One of the promising combinations of finite element approaches for scattering problems uses Whitney edge elements, spherical vector wave-absorbing boundary conditions, and bi-conjugate gradient solution for the frequency-domain near field. Each of these approaches may be criticized. Low-order elements require high mesh density, but also result in fast, reliable iterative convergence. Spherical wave-absorbing boundary conditions require additional space to be meshed beyond the most minimal near-space region, but result in fully sparse, symmetric matrices which keep storage and solution times low. Iterative solution is somewhat unpredictable and unfriendly to multiple right-hand sides, yet we find it to be uniformly fast on large problems to date, given the other two approaches. Implementation of these approaches on a distributed memory, message passing machine yields huge dividends, as full scalability to the largest machines appears assured and iterative solution times are well-behaved for large problems. We present times and solutions for computed RCS for a conducting cube and composite permeability/conducting sphere on the Intel ipsc860 with up to 16 processors solving over 200,000 unknowns. We estimate problems of approximately 10 million unknowns, encompassing 1000 cubic wavelengths, may be attempted on a currently available 512 processor machine, but would be exceedingly tedious to prepare. The most severe bottlenecks are due to the slow rate of mesh generation on non-parallel machines and the large transfer time from such a machine to the parallel processor. One solution, in progress, is to create and then distribute a coarse mesh among the processors, followed by systematic refinement within each processor. Elimination of redundant node definitions at the mesh-partition surfaces, snap-to-surface post processing of the resulting mesh for good modelling of curved surfaces, and load-balancing redistribution of new elements after the refinement are auxiliary
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
Finite octree meshing through topologically driven geometric operators
NASA Technical Reports Server (NTRS)
Grice, Kurt R.
1987-01-01
The octree technique is developed into the finite octree, and an overview is given. Modeler requirements are given. The octree discretization is discussed along with geometric communication operators. Geometric communication operators returning topological associativity and geometric communication operators returning spatial data are also discussed and illustrated. The advantages are given of the boundary representation and of geometric communication operators. The implementation plays an important role in the integration with a variety of geometric modelers. The capabilities of closed loop processes within a complete finite element system are presented.
New hybrid quadrilateral finite element for Mindlin plate
NASA Astrophysics Data System (ADS)
Chin, Yi; Zhang, Jingyu
1994-02-01
A new quadrilateral plate element concerning the effect of transverse shear strain was presented. It was derived from the hybrid finite element model based on the principles of virtual work. The outstanding advantage of this element was to use more rational trial functions of the displacements. For this reason, every variety of plate deformation can be simulated really while the least degrees of freedom was employed. A wide range of numerical tests was conducted and the results illustrate that this element has a very wide application scope to the thickness of plates and satisfactory accuracy can be obtained by coarse mesh for all kinds of examples.
Exponential convergence through linear finite element discretization of stratified subdomains
NASA Astrophysics Data System (ADS)
Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali
2016-10-01
Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.
Two-dimensional Euler computations on a triangular mesh using an upwind, finite-volume scheme
NASA Technical Reports Server (NTRS)
Whitaker, D. L.; Grossman, B.; Lohner, R.
1989-01-01
A numerical procedure was developed for the finite-volume solution of the Euler equations on unstructured triangular meshes based on a flux-difference split upwind method. Techniques for implementing Roe's (1985) approximate Reimann solver together with the preprocessing MUSCL differencing on unstructured grids are presented. Applications and comparisons with structured grid problems are carried out for a supersonic shock reflection problem, the supersonic flow over a blunt body, the transonic flow over NACA 0012 and RAE 2822 airfoils, and the flow about a double element Karman-Trefftz airfoil.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Larson, Mats G.
2000-01-01
We consider a posteriori error estimates for finite volume and finite element methods on arbitrary meshes subject to prescribed error functionals. Error estimates of this type are useful in a number of computational settings: (1) quantitative prediction of the numerical solution error, (2) adaptive meshing, and (3) load balancing of work on parallel computing architectures. Our analysis recasts the class of Godunov finite volumes schemes as a particular form of discontinuous Galerkin method utilizing broken space approximation obtained via reconstruction of cell-averaged data. In this general framework, weighted residual error bounds are readily obtained using duality arguments and Galerkin orthogonality. Additional consideration is given to issues such as nonlinearity, efficiency, and the relationship to other existing methods. Numerical examples are given throughout the talk to demonstrate the sharpness of the estimates and efficiency of the techniques. Additional information is contained in the original.
High speed inviscid compressible flow by the finite element method
NASA Technical Reports Server (NTRS)
Zienkiewicz, O. C.; Loehner, R.; Morgan, K.
1984-01-01
The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.
NASA Astrophysics Data System (ADS)
Cheng, Jiahao; Shahba, Ahmad; Ghosh, Somnath
2016-05-01
Image-based CPFE modeling involves computer generation of virtual polycrystalline microstructures from experimental data, followed by discretization into finite element meshes. Discretization is commonly accomplished using three-dimensional four-node tetrahedral or TET4 elements, which conform to the complex geometries. It has been commonly observed that TET4 elements suffer from severe volumetric locking when simulating deformation of incompressible or nearly incompressible materials. This paper develops and examines three locking-free stabilized finite element formulations in the context of crystal plasticity finite element analysis. They include a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB) based element and a F-bar patch (FP) based element. All three formulations are based on the partitioning of TET4 element meshes and integrating over patches to obtain favorable incompressibility constraint ratios without adding large degrees of freedom. The results show that NUS formulation introduces unstable spurious energy modes, while the LIB and FP elements stabilize the solutions and are preferred for reliable CPFE analysis. The FP element is found to be computationally efficient over the LIB element.
Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R
2011-08-11
Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation.
Finite element study on modification of bracket base and its effects on bond strength
Shyagali, Tarulatha R.; Bhayya, Deepak P.; Urs, Chandralekha B.; Subramaniam, Shashikala
2015-01-01
OBJECTIVE: This article aims to analyze the difference in stresses generated in the bracket-cement-tooth system by means of a peel load in single and double-mesh bracket bases using a three-dimensional finite element computer model. MATERIAL AND METHODS: A three-dimensional finite element model of the bracket-cement-tooth system was constructed and consisted of 40,536 bonds and 49,201 finite elements using a commercial mesh generating programmer (ANSYS 7.0). Both single and double-mesh bracket bases were modified by varying the diameter from 100-400 µm progressively, and the spacing between the mesh wires was kept at 300 µm for each diameter of wire. A peel load was applied on the model to study the stresses generated in different layers. RESULTS: In case of double-mesh bracket base, there was reduction in stress generation at the enamel in comparison to single-mesh bracket base. There was no difference in stress generated at the bracket layer between single and double-mesh bracket bases. At the impregnated wire mesh (IWM), layer stresses increased as the wire diameter of the mesh increased. CONCLUSION: Results show that bracket design modification can improve bonding abilities and simultaneously reduce enamel damage while debonding. These facts may be used in bringing about the new innovative bracket designs for clinical use. PMID:25992991
Probabilistic finite element analysis of a craniofacial finite element model.
Berthaume, Michael A; Dechow, Paul C; Iriarte-Diaz, Jose; Ross, Callum F; Strait, David S; Wang, Qian; Grosse, Ian R
2012-05-01
We employed a probabilistic finite element analysis (FEA) method to determine how variability in material property values affects stress and strain values in a finite model of a Macaca fascicularis cranium. The material behavior of cortical bone varied in three ways: isotropic homogeneous, isotropic non-homogeneous, and orthotropic non-homogeneous. The material behavior of the trabecular bone and teeth was always treated as isotropic and homogeneous. All material property values for the cranium were randomized with a Gaussian distribution with either coefficients of variation (CVs) of 0.2 or with CVs calculated from empirical data. Latin hypercube sampling was used to determine the values of the material properties used in the finite element models. In total, four hundred and twenty six separate deterministic FE simulations were executed. We tested four hypotheses in this study: (1) uncertainty in material property values will have an insignificant effect on high stresses and a significant effect on high strains for homogeneous isotropic models; (2) the effect of variability in material property values on the stress state will increase as non-homogeneity and anisotropy increase; (3) variation in the in vivo shear strain values reported by Strait et al. (2005) and Ross et al. (2011) is not only due to variations in muscle forces and cranial morphology, but also due to variation in material property values; (4) the assumption of a uniform coefficient of variation for the material property values will result in the same trend in how moderate-to-high stresses and moderate-to-high strains vary with respect to the degree of non-homogeneity and anisotropy as the trend found when the coefficients of variation for material property values are calculated from empirical data. Our results supported the first three hypotheses and falsified the fourth. When material properties were varied with a constant CV, as non-homogeneity and anisotropy increased the level of variability in
Domain decomposition methods for mortar finite elements
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Generation of multi-million element meshes for solid model-based geometries: The Dicer algorithm
Melander, D.J.; Benzley, S.E.; Tautges, T.J.
1997-06-01
The Dicer algorithm generates a fine mesh by refining each element in a coarse all-hexahedral mesh generated by any existing all-hexahedral mesh generation algorithm. The fine mesh is geometry-conforming. Using existing all-hexahedral meshing algorithms to define the initial coarse mesh simplifies the overall meshing process and allows dicing to take advantage of improvements in other meshing algorithms immediately. The Dicer algorithm will be used to generate large meshes in support of the ASCI program. The authors also plan to use dicing as the basis for parallel mesh generation. Dicing strikes a careful balance between the interactive mesh generation and multi-million element mesh generation processes for complex 3D geometries, providing an efficient means for producing meshes of varying refinement once the coarse mesh is obtained.
On using moving windows in finite element time domain simulation for long accelerator structures
Lee, L.-Q.; Candel, Arno; Ng, Cho; Ko, Kwok
2010-12-10
A finite element moving window technique is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the keys to implementing a moving window in a finite element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal finite element time domain (FETD) method and the advantages of using the moving window technique are discussed.
Parallel performance of a preconditioned CG solver for unstructured finite element applications
Shadid, J.N.; Hutchinson, S.A.; Moffat, H.K.
1994-12-31
A parallel unstructured finite element (FE) implementation designed for message passing MIMD machines is described. This implementation employs automated problem partitioning algorithms for load balancing unstructured grids, a distributed sparse matrix representation of the global finite element equations and a parallel conjugate gradient (CG) solver. In this paper a number of issues related to the efficient implementation of parallel unstructured mesh applications are presented. These include the differences between structured and unstructured mesh parallel applications, major communication kernels for unstructured CG solvers, automatic mesh partitioning algorithms, and the influence of mesh partitioning metrics on parallel performance. Initial results are presented for example finite element (FE) heat transfer analysis applications on a 1024 processor nCUBE 2 hypercube. Results indicate over 95% scaled efficiencies are obtained for some large problems despite the required unstructured data communication.
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
An iterative algorithm for finite element analysis
NASA Astrophysics Data System (ADS)
Laouafa, F.; Royis, P.
2004-03-01
In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Bochev, Pavel Blagoveston
2011-06-01
We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The formulation uses standard nodal elements for the concentrations and expands the flux in terms of the lowest-order Nedelec H(curl; {Omega})-compatible finite element basis. The SG formula is applied to the edges of the elements to express the Nedelec element degree of freedom on this edge in terms of the nodal degrees of freedom associated with the endpoints of the edge. The resulting upwind flux incorporates the upwind effects from all edges and is defined at the interior of the element. This allows for accurate evaluation of integrals on the boundaries of the control volumes for arbitrary quadrilateral elements. The new formulation admits efficient implementation through a standard loop over the elements in the mesh followed by loops over the element nodes (associated with control volume fractions in the element) and element edges (associated with flux degrees of freedom). The quantities required for the SG formula can be precomputed and stored for each edge in the mesh for additional efficiency gains. For clarity the details are presented for two-dimensional quadrilateral grids. Extension to other element shapes and three dimensions is straightforward.
Finite element model for brittle fracture and fragmentation
Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; Samulyak, Roman; Lu, Cao
2016-06-01
A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.
Finite-Element Composite-Analysis Program
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
FEMHD: An adaptive finite element method for MHD and edge modelling
Strauss, H.R.
1995-07-01
This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.
Books and monographs on finite element technology
NASA Technical Reports Server (NTRS)
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Finite element speaker-specific face model generation for the study of speech production.
Bucki, Marek; Nazari, Mohammad Ali; Payan, Yohan
2010-08-01
In situations where automatic mesh generation is unsuitable, the finite element (FE) mesh registration technique known as mesh-match-and-repair (MMRep) is an interesting option for quickly creating a subject-specific FE model by fitting a predefined template mesh onto the target organ. The irregular or poor quality elements produced by the elastic deformation are corrected by a 'mesh reparation' procedure ensuring that the desired regularity and quality standards are met. Here, we further extend the MMRep capabilities and demonstrate the possibility of taking into account additional relevant anatomical features. We illustrate this approach with an example of biomechanical model generation of a speaker's face comprising face muscle insertions. While taking advantage of the a priori knowledge about tissues conveyed by the template model, this novel, fast and automatic mesh registration technique makes it possible to achieve greater modelling realism by accurately representing the organ surface as well as inner anatomical or functional structures of interest.
Finite element speaker-specific face model generation for the study of speech production.
Bucki, Marek; Nazari, Mohammad Ali; Payan, Yohan
2010-08-01
In situations where automatic mesh generation is unsuitable, the finite element (FE) mesh registration technique known as mesh-match-and-repair (MMRep) is an interesting option for quickly creating a subject-specific FE model by fitting a predefined template mesh onto the target organ. The irregular or poor quality elements produced by the elastic deformation are corrected by a 'mesh reparation' procedure ensuring that the desired regularity and quality standards are met. Here, we further extend the MMRep capabilities and demonstrate the possibility of taking into account additional relevant anatomical features. We illustrate this approach with an example of biomechanical model generation of a speaker's face comprising face muscle insertions. While taking advantage of the a priori knowledge about tissues conveyed by the template model, this novel, fast and automatic mesh registration technique makes it possible to achieve greater modelling realism by accurately representing the organ surface as well as inner anatomical or functional structures of interest. PMID:20635262
Crystal level simulations using Eulerian finite element methods
Becker, R; Barton, N R; Benson, D J
2004-02-06
Over the last several years, significant progress has been made in the use of crystal level material models in simulations of forming operations. However, in Lagrangian finite element approaches simulation capabilities are limited in many cases by mesh distortion associated with deformation heterogeneity. Contexts in which such large distortions arise include: bulk deformation to strains approaching or exceeding unity, especially in highly anisotropic or multiphase materials; shear band formation and intersection of shear bands; and indentation with sharp indenters. Investigators have in the past used Eulerian finite element methods with material response determined from crystal aggregates to study steady state forming processes. However, Eulerian and Arbitrary Lagrangian-Eulerian (ALE) finite element methods have not been widely utilized for simulation of transient deformation processes at the crystal level. The advection schemes used in Eulerian and ALE codes control mesh distortion and allow for simulation of much larger total deformations. We will discuss material state representation issues related to advection and will present results from ALE simulations.
The Treatment of Reacting Surfaces for Finite-Volume Schemes on Unstructured Meshes
NASA Astrophysics Data System (ADS)
Mazumder, Sandip; Lowry, Samuel A.
2001-11-01
A rigorous and robust numerical procedure to treat surface reaction boundary conditions for finite-volume schemes in unstructured meshes is presented. The procedure is applicable to arbitrary cell topologies and multistep finite-rate surface reactions of arbitrary complexity. The accuracy of the numerical procedure has been verified by systematically comparing solutions obtained using unstructured meshes with perfectly orthogonal meshes for both two-dimensional and three-dimensional geometries. Validation results presented for gallium arsenide growth in a full-scale commercial metal organic-chemical vapor-deposition reactor, exhibit excellent match with experimental data.
NASA Astrophysics Data System (ADS)
Ha, Manh Hung; Cauvin, Ludovic; Rassineux, Alain
2016-04-01
We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.
Immersed finite element method and its applications to biological systems
Liu, Wing Kam; Liu, Yaling; Farrell, David; Zhang, Lucy; Wang, X. Sheldon; Fukui, Yoshio; Patankar, Neelesh; Zhang, Yongjie; Bajaj, Chandrajit; Lee, Junghoon; Hong, Juhee; Chen, Xinyu; Hsu, Huayi
2009-01-01
This paper summarizes the newly developed immersed finite element method (IFEM) and its applications to the modeling of biological systems. This work was inspired by the pioneering work of Professor T.J.R. Hughes in solving fluid–structure interaction problems. In IFEM, a Lagrangian solid mesh moves on top of a background Eulerian fluid mesh which spans the entire computational domain. Hence, mesh generation is greatly simplified. Moreover, both fluid and solid domains are modeled with the finite element method and the continuity between the fluid and solid subdomains is enforced via the interpolation of the velocities and the distribution of the forces with the reproducing Kernel particle method (RKPM) delta function. The proposed method is used to study the fluid–structure interaction problems encountered in human cardiovascular systems. Currently, the heart modeling is being constructed and the deployment process of an angioplasty stent has been simulated. Some preliminary results on monocyte and platelet deposition are presented. Blood rheology, in particular, the shear-rate dependent de-aggregation of red blood cell (RBC) clusters and the transport of deformable cells, are modeled. Furthermore, IFEM is combined with electrokinetics to study the mechanisms of nano/bio filament assembly for the understanding of cell motility. PMID:20200602
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Zapp, John; Hsa, Chang-Yu; Volakis, John L.
1990-01-01
An extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation (FFT) is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. By virtue of the finite element method, the algorithm is applicable to structures of arbitrary material composition. Several improvements to the two dimensional algorithm are also described. These include: (1) modifications for terminating the mesh at circular boundaries without distorting the convolutionality of the boundary integrals; (2) the development of nonproprietary mesh generation routines for two dimensional applications; (3) the development of preprocessors for interfacing SDRC IDEAS with the main algorithm; and (4) the development of post-processing algorithms based on the public domain package GRAFIC to generate two and three dimensional gray level and color field maps.
Hierarchicalp-version finite elements for radiation heat transfer
NASA Astrophysics Data System (ADS)
Gould, Dana Craig
Methods to compute surface-to-surface radiation heat transfer between diffuse-gray surfaces using hierarchical p-version finite elements have been developed and applied to the analysis of a high-speed aircraft wing. A review of traditional methods for surface-to-surface radiation exchange is given. Traditional methods rely on the assumption of isothermal surfaces with incoming and outgoing radiation heat flux assumed constant over the surface. These assumptions are not appropriate for p-version finite elements, so new methods for evaluating the incoming and outgoing radiation flux over a finite element surface were required. Two methods for computing the surface-to-surface radiation heat transfer that do not rely on the above assumptions are developed and validated. The first approach uses traditional methods to compute the radiation exchange on an element sub-mesh, then transfers this data back to the parent element for the computation of the radiation heat flux. The second method requires the numerical integration of the net radiation exchange equation for each element. The methods are validated and evaluated using simple problems with analytical solutions. The radiation sub-element method is less costly than the direct integration method, but it is also less accurate. Both methods are computationally more expensive than traditional methods for a given number of degrees of freedom; however, for a given accuracy, they are less expensive. The new methods are used to analyze the wing of a High Speed Civil Transport vehicle. The p-elements were effective in capturing significant temperature variations over large sections of the wing and reduced the mesh complexity and associated modeling time while maintaining accuracy.
Nonlinear Schwarz-Fas Methods for Unstructured Finite Element Elliptic Problems
Jones, J E; Vassilevski, P S; Woodward, C S
2002-09-30
This paper provides extensions of an element agglomeration AMG method to nonlinear elliptic problems discretized by the finite element method on general unstructured meshes. The method constructs coarse discretization spaces and corresponding coarse nonlinear operators as well as their Jacobians. We introduce both standard (fairly quasi-uniformly coarsened) and non-standard (coarsened away) coarse meshes and respective finite element spaces. We use both kind of spaces in FAS type coarse subspace correction (or Schwarz) algorithms. Their performance is illustrated on a number of model problems. The coarsened away spaces seem to perform better than the standard spaces for problems with nonlinearities in the principal part of the elliptic operator.
NASA Astrophysics Data System (ADS)
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
Will Finite Elements Replace Structural Mechanics?
NASA Astrophysics Data System (ADS)
Ojalvo, I. U.
1984-01-01
This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.
Simulating Space Capsule Water Landing with Explicit Finite Element Method
NASA Technical Reports Server (NTRS)
Wang, John T.; Lyle, Karen H.
2007-01-01
A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
NASA Astrophysics Data System (ADS)
Todarello, Giovanni; Vonck, Floris; Bourasseau, Sébastien; Peter, Jacques; Désidéri, Jean-Antoine
2016-05-01
A new goal-oriented mesh adaptation method for finite volume/finite difference schemes is extended from the structured mesh framework to a more suitable setting for adaptation of unstructured meshes. The method is based on the total derivative of the goal with respect to volume mesh nodes that is computable after the solution of the goal discrete adjoint equation. The asymptotic behaviour of this derivative is assessed on regularly refined unstructured meshes. A local refinement criterion is derived from the requirement of limiting the first order change in the goal that an admissible node displacement may cause. Mesh adaptations are then carried out for classical test cases of 2D Euler flows. Efficiency and local density of the adapted meshes are presented. They are compared with those obtained with a more classical mesh adaptation method in the framework of finite volume/finite difference schemes [46]. Results are very close although the present method only makes usage of the current grid.
ORION96. 2-d Finite Element Code Postprocessor
Sanford, L.A.; Hallquist, J.O.
1992-02-02
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation
Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; /SLAC
2010-06-07
A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
A multilevel finite element method for Fredholm integral eigenvalue problems
NASA Astrophysics Data System (ADS)
Xie, Hehu; Zhou, Tao
2015-12-01
In this work, we proposed a multigrid finite element (MFE) method for solving the Fredholm integral eigenvalue problems. The main motivation for such studies is to compute the Karhunen-Loève expansions of random fields, which play an important role in the applications of uncertainty quantification. In our MFE framework, solving the eigenvalue problem is converted to doing a series of integral iterations and eigenvalue solving in the coarsest mesh. Then, any existing efficient integration scheme can be used for the associated integration process. The error estimates are provided, and the computational complexity is analyzed. It is noticed that the total computational work of our method is comparable with a single integration step in the finest mesh. Several numerical experiments are presented to validate the efficiency of the proposed numerical method.
Finite element modeling of electromagnetic fields and waves using NASTRAN
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.; Schroeder, Erwin
1989-01-01
The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.
Parallel finite element simulation of mooring forces on floating objects
NASA Astrophysics Data System (ADS)
Aliabadi, S.; Abedi, J.; Zellars, B.
2003-03-01
The coupling between the equations governing the free-surface flows, the six degrees of freedom non-linear rigid body dynamics, the linear elasticity equations for mesh-moving and the cables has resulted in a fluid-structure interaction technology capable of simulating mooring forces on floating objects. The finite element solution strategy is based on a combination approach derived from fixed-mesh and moving-mesh techniques. Here, the free-surface flow simulations are based on the Navier-Stokes equations written for two incompressible fluids where the impact of one fluid on the other one is extremely small. An interface function with two distinct values is used to locate the position of the free-surface. The stabilized finite element formulations are written and integrated in an arbitrary Lagrangian-Eulerian domain. This allows us to handle the motion of the time dependent geometries. Forces and momentums exerted on the floating object by both water and hawsers are calculated and used to update the position of the floating object in time. In the mesh moving scheme, we assume that the computational domain is made of elastic materials. The linear elasticity equations are solved to obtain the displacements for each computational node. The non-linear rigid body dynamics equations are coupled with the governing equations of fluid flow and are solved simultaneously to update the position of the floating object. The numerical examples includes a 3D simulation of water waves impacting on a moored floating box and a model boat and simulation of floating object under water constrained with a cable.
Finite Element Vibration Analysis of Rectangular Membrane
NASA Astrophysics Data System (ADS)
Chen, S. H.; Lin, W. J.; Leung, A. Y. T.
2010-05-01
Some pre-tensioned 4-node rectangular elements and 8-node triangular elements are constructed for the free vibration analysis of membranes by finite element. The shape functions are given to derive the element stiffness and mass matrices in accordance with the minimum potential energy principle. Two typical examples show that the calculation by the 4-node rectangular element is very close to the theoretical solution, and 8-node rectangular element has higher accuracy than the 4-node rectangular element. For dense grid, the result is almost consistent with the theoretical solution.
Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis
NASA Technical Reports Server (NTRS)
Foye, R. L.
1992-01-01
There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Merging of intersecting triangulations for finite element modeling.
Cebral, J R; Löhner, R; Choyke, P L; Yim, P J
2001-06-01
Surface mesh generation over intersecting triangulations is a problem common to many branches of biomechanics. A new strategy for merging intersecting triangulations is described. The basis of the method is that object surfaces are represented as the zero-level iso-surface of the distance-to-surface function defined on a background grid. Thus, the triangulation of intersecting objects reduces to the extraction of an iso-surface from an unstructured grid. In a first step, a regular background mesh is constructed. For each point of the background grid, the closest distance to the surface of each object is computed. Background points are then classified as external or internal by checking the direction of the surface normal at the closest location and assigned a positive or negative distance, respectively. Finally, the zero-level iso-surface is constructed. This is the final triangulation of the intersecting objects. The overall accuracy is enhanced by adaptive refinement of the background grid elements. The resulting surface models are used as support surfaces to generate three-dimensional grids for finite element analysis. The algorithms are demonstrated by merging arterial branches independently reconstructed from contrast-enhanced magnetic resonance images and by adding extra features such as vascular stents. Although the methodology is presented in the context of finite element analysis of blood flow, the algorithms are general and can be applied in other areas as well. PMID:11470121
Error estimates of triangular finite elements under a weak angle condition
NASA Astrophysics Data System (ADS)
Mao, Shipeng; Shi, Zhongci
2009-08-01
In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin,1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma.
NASA Astrophysics Data System (ADS)
Suvorov, A. S.; Sokov, E. M.; V'yushkina, I. A.
2016-09-01
A new method is presented for the automatic refinement of finite element models of complex mechanical-acoustic systems using the results of experimental studies. The method is based on control of the spectral characteristics via selection of the optimal distribution of adjustments to the stiffness of a finite element mesh. The results of testing the method are given to show the possibility of its use to significantly increase the simulation accuracy of vibration characteristics of bodies with arbitrary spatial configuration.
Finite Element Interface to Linear Solvers
Williams, Alan
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.
NASA Astrophysics Data System (ADS)
Li, L.; Wang, K.; Li, H.; Eibert, T. F.
2014-11-01
A hybrid higher-order finite element boundary integral (FE-BI) technique is discussed where the higher-order FE matrix elements are computed by a fully analytical procedure and where the gobal matrix assembly is organized by a self-identifying procedure of the local to global transformation. This assembly procedure applys to both, the FE part as well as the BI part of the algorithm. The geometry is meshed into three-dimensional tetrahedra as finite elements and nearly orthogonal hierarchical basis functions are employed. The boundary conditions are implemented in a strong sense such that the boundary values of the volume basis functions are directly utilized within the BI, either for the tangential electric and magnetic fields or for the asssociated equivalent surface current densities by applying a cross product with the unit surface normals. The self-identified method for the global matrix assembly automatically discerns the global order of the basis functions for generating the matrix elements. Higher order basis functions do need more unknowns for each single FE, however, fewer FEs are needed to achieve the same satisfiable accuracy. This improvement provides a lot more flexibility for meshing and allows the mesh size to raise up to λ/3. The performance of the implemented system is evaluated in terms of computation time, accuracy and memory occupation, where excellent results with respect to precision and computation times of large scale simulations are found.
Thermal Analysis of a High-Speed Aircraft Wing Using p-Version Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2001-01-01
This paper presents the results of conceptual level thermal analyses of a High Speed Civil Transport (HSCT) wing using p-version finite elements. The work was motivated by a thermal analysis of a HSCT wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining a traditional finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Further study indicated using p-version finite elements might improve computation performance for this class of problem. Methods for determining internal radiation heat transfer were then developed and demonstrated on test problems representative of the geometry found in an aircraft wing structure. This paper presents the results of the application of these new methods to the analysis of a high speed aircraft wing. Results for both a wing box model as well as a full wing model are presented. 'Me reduced wing box model allows for a comparison of the traditional finite element method with mesh refinement (h-refinement) to the new p-version finite elements while the full wing model demonstrates the applicability and efficiency of p-version finite elements for large models.
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2014-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. PMID:25301974
Finite-element models of continental extension
NASA Technical Reports Server (NTRS)
Lynch, H. David; Morgan, Paul
1990-01-01
Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.
Manzini, Gianmarco
2012-07-13
We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.
Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A
2016-03-21
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics.
Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element
NASA Technical Reports Server (NTRS)
Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.
2010-01-01
Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.
Accelerated finite element elastodynamic simulations using the GPU
Huthwaite, Peter
2014-01-15
An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source.
NASA Astrophysics Data System (ADS)
Dolean, Victoria; Lanteri, Stéphane
2001-11-01
We report on our recent efforts on the formulation and the evaluation of a domain decomposition algorithm for the parallel solution of two-dimensional compressible inviscid flows. The starting point is a flow solver for the Euler equations, which is based on a mixed finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is obtained using a linearized backward Euler implicit scheme. As a result, each pseudo-time step requires the solution of a sparse linear system for the flow variables. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface operators that allow us to express the domain decomposition algorithm as a Richardson-type iteration on the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical (normal) fluxes. Copyright
Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)
Dolbow, John; Zhang, Ziyu; Spencer, Benjamin; Jiang, Wen
2015-09-01
Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside of the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Cai, X.C.
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
2008-01-01
Parallel Heterogeneous Dynamic unstructured Mesh (phdMesh) data structure library and integration testing code that performs dynamic load balancing of the data structure and parallel geometric proximity search on a contrived test problem. The phdMesh library is intended to be module within a finite element or finite volume library or code. The integration testing code is intended to provide a compact and highly portable performance evaluation code for parallel computing systems.
Use of edge-based finite elements for solving three dimensional scattering problems
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Jin, J. M.; Volakis, John L.
1991-01-01
Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.
Phase-space finite elements in a least-squares solution of the transport equation
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshing tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)
Parallel processing in finite element structural analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1987-01-01
A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).
A moving mesh finite difference method for equilibrium radiation diffusion equations
NASA Astrophysics Data System (ADS)
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor-corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
A moving mesh finite difference method for equilibrium radiation diffusion equations
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
Lee, Jae Hoon; Joshi, Amit; Sevick-Muraca, Eva M
2008-01-01
A variety of biomedical imaging techniques such as optical and fluorescence tomography, electrical impedance tomography, and ultrasound imaging can be cast as inverse problems, wherein image reconstruction involves the estimation of spatially distributed parameter(s) of the PDE system describing the physics of the imaging process. Finite element discretization of imaged domain with tetrahedral elements is a popular way of solving the forward and inverse imaging problems on complicated geometries. A dual-adaptive mesh-based approach wherein, one mesh is used for solving the forward imaging problem and the other mesh used for iteratively estimating the unknown distributed parameter, can result in high resolution image reconstruction at minimum computation effort, if both the meshes are allowed to adapt independently. Till date, no efficient method has been reported to identify and resolve intersection between tetrahedrons in independently refined or coarsened dual meshes. Herein, we report a fast and robust algorithm to identify and resolve intersection of tetrahedrons within nested dual meshes generated by 8-similar subtetrahedron subdivision scheme. The algorithm exploits finite element weight functions and gives rise to a set of weight functions on each vertex of disjoint tetrahedron pieces that completely cover up the intersection region of two tetrahedrons. The procedure enables fully adaptive tetrahedral finite elements by supporting independent refinement and coarsening of each individual mesh while preserving fast identification and resolution of intersection. The computational efficiency of the algorithm is demonstrated by diffuse photon density wave solutions obtained from a single- and a dual-mesh, and by reconstructing a fluorescent inclusion in simulated phantom from boundary frequency domain fluorescence measurements.
Finite element radiation transport in one dimension
Painter, J.F.
1997-05-09
A new physics package solves radiation transport equations in one space dimension, multiple energy groups and directions. A discontinuous finite element method discretizes radiation intensity with respect to space and angle, and a continuous finite element method discretizes electron temperature `in space. A splitting method solves the resulting linear equations. This is a one-dimensional analog of Kershaw and Harte`s two-dimensional package. This package has been installed in a two-dimensional inertial confinement fusion code, and has given excellent results for both thermal waves and highly directional radiation. In contrast, the traditional discrete ordinate and spherical harmonic methods show less accurate results in both cases.
An adaptive mesh finite volume method for the Euler equations of gas dynamics
NASA Astrophysics Data System (ADS)
Mungkasi, Sudi
2016-06-01
The Euler equations have been used to model gas dynamics for decades. They consist of mathematical equations for the conservation of mass, momentum, and energy of the gas. For a large time value, the solution may contain discontinuities, even when the initial condition is smooth. A standard finite volume numerical method is not able to give accurate solutions to the Euler equations around discontinuities. Therefore we solve the Euler equations using an adaptive mesh finite volume method. In this paper, we present a new construction of the adaptive mesh finite volume method with an efficient computation of the refinement indicator. The adaptive method takes action automatically at around places having inaccurate solutions. Inaccurate solutions are reconstructed to reduce the error by refining the mesh locally up to a certain level. On the other hand, if the solution is already accurate, then the mesh is coarsened up to another certain level to minimize computational efforts. We implement the numerical entropy production as the mesh refinement indicator. As a test problem, we take the Sod shock tube problem. Numerical results show that the adaptive method is more promising than the standard one in solving the Euler equations of gas dynamics.
NASA Astrophysics Data System (ADS)
Stupkiewicz, Stanisław
2009-10-01
Soft elastohydrodynamic lubrication (EHL) problem is studied for a reciprocating elastomeric seal with full account of finite configuration changes. The fluid part is described by the Reynolds equation which is formulated on the deformed boundary of the seal treated as a hyperelastic body. The paper is concerned with the finite element (FE) treatment of this soft EHL problem. Displacement-based FE discretization is applied for the solid part. The Reynolds equation is discretized using the FE method or, alternatively, the discontinuous Galerkin method, both employing higher-order interpolation of pressure. The performance of both methods is assessed by studying convergence and stability of the solution for a benchmark problem of an O-ring seal. It is shown that the solution may exhibit spurious oscillations which occur in severe lubrication conditions. Mesh refinement results in reduction of these oscillations, while increasing the pressure interpolation order or application of the discontinuous Galerkin method does not help significantly.
Nonlinear explicit transient finite element analysis on the Intel Delta
Plaskacz, E.J. ); Ramirez, M.R.; Gupta, S. . Dept. of Civil Engineering)
1993-01-01
Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.
Nonlinear explicit transient finite element analysis on the Intel Delta
Plaskacz, E.J.; Ramirez, M.R.; Gupta, S.
1993-03-01
Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.
3-dimensional wells and tunnels for finite element grids
Cherry, T.A.; Gable, C.W.; Trease, H.
1996-12-31
Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free-surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.
3-dimensional wells and tunnels for finite element grids
Cherry, T.A.; Gable, C.W.; Trease, H.
1996-04-01
Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free- surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.
Method of modifying a volume mesh using sheet extraction
Borden, Michael J.; Shepherd, Jason F.
2007-02-20
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.
Finite element based simulation of dry sliding wear
NASA Astrophysics Data System (ADS)
Hegadekatte, V.; Huber, N.; Kraft, O.
2005-01-01
In order to predict wear and eventually the life-span of complex mechanical systems, several hundred thousand operating cycles have to be simulated. Therefore, a finite element (FE) post-processor is the optimum choice, considering the computational expense. A wear simulation approach based on Archard's wear law is implemented in an FE post-processor that works in association with a commercial FE package, ABAQUS, for solving the general deformable-deformable contact problem. Local wear is computed and then integrated over the sliding distance using the Euler integration scheme. The wear simulation tool works in a loop and performs a series of static FE-simulations with updated surface geometries to get a realistic contact pressure distribution on the contacting surfaces. It will be demonstrated that this efficient approach can simulate wear on both two-dimensional and three-dimensional surface topologies. The wear on both the interacting surfaces is computed using the contact pressure distribution from a two-dimensional or three-dimensional simulation, depending on the case. After every wear step the geometry is re-meshed to correct the deformed mesh due to wear, thus ensuring a fairly uniform mesh for further processing. The importance and suitability of such a wear simulation tool will be enunciated in this paper.
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
Edge-based finite elements and vector ABCs applied to 3D scattering
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Jin, J. M.; Volakis, John L.
1992-01-01
An edge based finite element formulation with vector absorbing boundary conditions is presented for scattering by composite structures having boundaries satisfying impedance and/or transition conditions. Remarkably accurate results are obtained by placing the mesh a small fraction of a wavelength away from the scatterer.
NASA Astrophysics Data System (ADS)
Hansbo, Peter; Larson, Mats G.; Larsson, Fredrik
2015-07-01
We develop a finite element method for a large deformation membrane elasticity problem on meshed curved surfaces using a tangential differential calculus approach that avoids the use of classical differential geometric methods. The method is also applied to form finding problems.
Automated volumetric grid generation for finite element modeling of human hand joints
Hollerbach, K.; Underhill, K.; Rainsberger, R.
1995-02-01
We are developing techniques for finite element analysis of human joints. These techniques need to provide high quality results rapidly in order to be useful to a physician. The research presented here increases model quality and decreases user input time by automating the volumetric mesh generation step.
Simulation of wind effects on tall structures by finite element method
NASA Astrophysics Data System (ADS)
Ebrahimi, Masood
2016-06-01
In the present study finite element method is used to predict the wind forces on a tall structure. The governing equations of mass and momentum with boundary conditions are solved. The κ- ɛ turbulence model is utilized to calculate the turbulence viscosity. The results are independent from the generated mesh. The numerical results are validated with American Society of Civil Engineering standards.
Efficient finite element simulation of slot spirals, slot radomes and microwave structures
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.
1995-01-01
This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Finite element modeling of nonisothermal polymer flows
NASA Technical Reports Server (NTRS)
Roylance, D.
1981-01-01
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.
NASA Astrophysics Data System (ADS)
Sohn, Dongwoo; Im, Seyoung
2013-06-01
In this paper, novel finite elements that include an arbitrary number of additional nodes on each edge of a quadrilateral element are proposed to achieve compatible connection of neighboring nonmatching meshes in plate and shell analyses. The elements, termed variable-node plate elements, are based on two-dimensional variable-node elements with point interpolation and on the Mindlin-Reissner plate theory. Subsequently the flat shell elements, termed variable-node shell elements, are formulated by further extending the plate elements. To eliminate a transverse shear locking phenomenon, the assumed natural strain method is used for plate and shell analyses. Since the variable-node plate and shell elements allow an arbitrary number of additional nodes and overcome locking problems, they make it possible to connect two nonmatching meshes and to provide accurate solutions in local mesh refinement. In addition, the curvature and strain smoothing methods through smoothed integration are adopted to improve the element performance. Several numerical examples are presented to demonstrate the effectiveness of the elements in terms of the accuracy and efficiency of the analyses.
Evans, Alistair R.; McHenry, Colin R.
2015-01-01
The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620
McCurry, Matthew R; Evans, Alistair R; McHenry, Colin R
2015-01-01
The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context.
Animation of finite element models and results
NASA Technical Reports Server (NTRS)
Lipman, Robert R.
1992-01-01
This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.
Finite element displacement analysis of a lung.
NASA Technical Reports Server (NTRS)
Matthews, F. L.; West, J. B.
1972-01-01
A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.
Finite element analysis of a meniscus mirror
NASA Astrophysics Data System (ADS)
Yamashita, Y.
1989-10-01
Finite element analyses were carried out for a 7.5 m meniscus mirror of 20 cm thickness. Calculations were made for deformations of the mirror surface due to the gravity and the effect of a hole through which a lateral supporting mechanism would be installed. Vibrational eigenmodes were also calculated when the mirror is fixed by three axial and three lateral hard points.
Direct finite element equation solving algorithms
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Utku, S.; Salama, M.
1985-01-01
This paper presents and examines direct solution algorithms for the linear simultaneous equations that arise when finite element models represent an engineering system. It identifies the mathematical processing of four solution methods and assesses their data processing implications using concurrent processing.
A Floating Node Method for the Modelling of Discontinuities Within a Finite Element
NASA Technical Reports Server (NTRS)
Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.
2013-01-01
This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Finite element computation with parallel VLSI
NASA Technical Reports Server (NTRS)
Mcgregor, J.; Salama, M.
1983-01-01
This paper describes a parallel processing computer consisting of a 16-bit microcomputer as a master processor which controls and coordinates the activities of 8086/8087 VLSI chip set slave processors working in parallel. The hardware is inexpensive and can be flexibly configured and programmed to perform various functions. This makes it a useful research tool for the development of, and experimentation with parallel mathematical algorithms. Application of the hardware to computational tasks involved in the finite element analysis method is demonstrated by the generation and assembly of beam finite element stiffness matrices. A number of possible schemes for the implementation of N-elements on N- or n-processors (N is greater than n) are described, and the speedup factors of their time consumption are determined as a function of the number of available parallel processors.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Finite Element Interface to Linear Solvers
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themore » problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.« less
Finite Element Heat & Mass Transfer Code
1996-10-10
FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less
Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature
Rudd, R E; Broughton, J Q
2005-05-30
Coarse-grained molecular dynamics (CGMD) is a technique developed as a concurrent multiscale model that couples conventional molecular dynamics (MD) to a more coarse-grained description of the periphery. The coarse-grained regions are modeled on a mesh in a formulation that generalizes conventional finite element modeling (FEM) of continuum elasticity. CGMD is derived solely from the MD model, however, and has no continuum parameters. As a result, it provides a coupling that is smooth and provides control of errors that arise at the coupling between the atomistic and coarse-grained regions. In this article, we elaborate on the formulation of CGMD, describing in detail how CGMD is applied to anharmonic solids and finite temperature simulations. As tests of CGMD, we present in detail the calculation of the phonon spectra for solid argon and tantalum in 3D, demonstrating how CGMD provides a better description of the elastic waves than that provided by FEM. We also present elastic wave scattering calculations that show the elastic wave scattering is more benign in CGMD than FEM. We also discuss the dependence of scattering on the properties of the mesh. We introduce a rigid approximation to CGMD that eliminates internal relaxation, similar to the Quasicontinuum technique, and compare it to the full CGMD.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
Investigation of Radar Propagation in Buildings: A 10 Billion Element Cartesian-Mesh FETD Simulation
Stowell, M L; Fasenfest, B J; White, D A
2008-01-14
In this paper large scale full-wave simulations are performed to investigate radar wave propagation inside buildings. In principle, a radar system combined with sophisticated numerical methods for inverse problems can be used to determine the internal structure of a building. The composition of the walls (cinder block, re-bar) may effect the propagation of the radar waves in a complicated manner. In order to provide a benchmark solution of radar propagation in buildings, including the effects of typical cinder block and re-bar, we performed large scale full wave simulations using a Finite Element Time Domain (FETD) method. This particular FETD implementation is tuned for the special case of an orthogonal Cartesian mesh and hence resembles FDTD in accuracy and efficiency. The method was implemented on a general-purpose massively parallel computer. In this paper we briefly describe the radar propagation problem, the FETD implementation, and we present results of simulations that used over 10 billion elements.
Evaluation of a Kinematically-Driven Finite Element Footstrike Model.
Hannah, Iain; Harland, Andy; Price, Dan; Schlarb, Heiko; Lucas, Tim
2016-06-01
A dynamic finite element model of a shod running footstrike was developed and driven with 6 degree of freedom foot segment kinematics determined from a motion capture running trial. Quadratic tetrahedral elements were used to mesh the footwear components with material models determined from appropriate mechanical tests. Model outputs were compared with experimental high-speed video (HSV) footage, vertical ground reaction force (GRF), and center of pressure (COP) excursion to determine whether such an approach is appropriate for the development of athletic footwear. Although unquantified, good visual agreement to the HSV footage was observed but significant discrepancies were found between the model and experimental GRF and COP readings (9% and 61% of model readings outside of the mean experimental reading ± 2 standard deviations, respectively). Model output was also found to be highly sensitive to input kinematics with a 120% increase in maximum GRF observed when translating the force platform 2 mm vertically. While representing an alternative approach to existing dynamic finite element footstrike models, loading highly representative of an experimental trial was not found to be achievable when employing exclusively kinematic boundary conditions. This significantly limits the usefulness of employing such an approach in the footwear development process.
Simplified Finite Element Modelling of Acoustically Treated Structures
NASA Astrophysics Data System (ADS)
Carfagni, M.; Citti, P.; Pierini, M.
1997-07-01
The application of non-optimized damping and phono-absorbent materials to automotive systems has not proved fully satisfactory in abating noise and vibration. The objective of this work was to develop a simple finite element modelling procedure that would allow optimizing structures such as a car body-in-white in terms of vibroacoustic behavior from the design stage. A procedure was developed to determine the modifications to be made in the mass, stiffness and damping characteristics in the finite element (FE) modelling of a metal structure meshed with shell elements so that the model would describe the behavior of the acoustically treated structure. To validate the modifications, a numerical-experimental comparison of the velocities on the vibrating surface was carried out, followed by a numerical-experimental comparison of the sound pressures generated by the vibrating plate. In the comparison a simple monopole model was used, in which each area of vibrating surface could be likened to a point source. The simulation and experimental procedures, previously validated for the metal structure, were then applied to multi-layered panels. Good agreement between the experimental and simulated velocities and sound pressures resulted for all the multi-layered panel configurations examined.
NASA Technical Reports Server (NTRS)
Ramakrishnan, R.; Wieting, Allan R.; Thornton, Earl A.
1990-01-01
An adaptive mesh refinement procedure that uses nodeless variables and quadratic interpolation functions is presented for analyzing transient thermal problems. A temperature based finite element scheme with Crank-Nicolson time marching is used to obtain the thermal solution. The strategies used for mesh adaption, computing refinement indicators, and time marching are described. Examples in one and two dimensions are presented and comparisons are made with exact solutions. The effectiveness of this procedure for transient thermal analysis is reflected in good solution accuracy, reduction in number of elements used, and computational efficiency.
Cwik, T.; Jamnejad, V.; Zuffada, C.
1994-12-31
The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.
Finite Element Analysis of Honeycomb Impact Attenuator
NASA Astrophysics Data System (ADS)
Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu
To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.
Single Grit Grinding Simulation by Using Finite Element Analysis
NASA Astrophysics Data System (ADS)
Öpöz, Tahsin Tecelli; Chen, Xun
2011-01-01
In this research, basic material removal characteristics in a single grit grinding have been investigated by using Finite Element Analysis (FEA). ABAQUS/Standard is used as a computational environment. The influences of both friction and undeformed chip thickness are considered in the analyses of the grit ploughing, stress distribution and total force variation. Remeshing strategy is performed in the simulation to produce very fine meshes in the contact area to mitigate the material distortion due to large plastic deformation. The results show that the increase of undeformed chip thickness and frictional coefficient would increase ploughing action and grinding stress magnitude. Moreover, friction would cause the stress distribution circle on grit inclined backwards. Finally, FEM analysis can be considered as a strong tool for the single grit simulation of grinding process.
High speed finite element simulations on the graphics card
Huthwaite, P.; Lowe, M. J. S.
2014-02-18
A software package is developed to perform explicit time domain finite element simulations of ultrasonic propagation on the graphical processing unit, using Nvidia’s CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The technique is compared to a commercial CPU equivalent, demonstrating an overall speedup of at least 100 for a non-destructive testing weld model.
Finite element methods for integrated aerodynamic heating analysis
NASA Technical Reports Server (NTRS)
Morgan, K.; Peraire, J.
1991-01-01
This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability.
A Lagrange multiplier based divide and conquer finite element algorithm
NASA Technical Reports Server (NTRS)
Farhat, C.
1991-01-01
A novel domain decomposition method based on a hybrid variational principle is presented. Prior to any computation, a given finite element mesh is torn into a set of totally disconnected submeshes. First, an incomplete solution is computed in each subdomain. Next, the compatibility of the displacement field at the interface nodes is enforced via discrete, polynomial and/or piecewise polynomial Lagrange multipliers. In the static case, each floating subdomain induces a local singularity that is resolved very efficiently. The interface problem associated with this domain decomposition method is, in general, indefinite and of variable size. A dedicated conjugate projected gradient algorithm is developed for solving the latter problem when it is not feasible to explicitly assemble the interface operator. When implemented on local memory multiprocessors, the proposed methodology requires less interprocessor communication than the classical method of substructuring. It is also suitable for parallel/vector computers with shared memory and compares favorably with factorization based parallel direct methods.
High speed finite element simulations on the graphics card
NASA Astrophysics Data System (ADS)
Huthwaite, P.; Lowe, M. J. S.
2014-02-01
A software package is developed to perform explicit time domain finite element simulations of ultrasonic propagation on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established `greedy' partitioner and a new, more efficient `aligned' partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The technique is compared to a commercial CPU equivalent, demonstrating an overall speedup of at least 100 for a non-destructive testing weld model.
Numerical Analysis of a Finite Element/Volume Penalty Method
NASA Astrophysics Data System (ADS)
Maury, Bertrand
The penalty method makes it possible to incorporate a large class of constraints in general purpose Finite Element solvers like freeFEM++. We present here some contributions to the numerical analysis of this method. We propose an abstract framework for this approach, together with some general error estimates based on the discretization parameter ɛ and the space discretization parameter h. As this work is motivated by the possibility to handle constraints like rigid motion for fluid-particle flows, we shall pay a special attention to a model problem of this kind, where the constraint is prescribed over a subdomain. We show how the abstract estimate can be applied to this situation, in the case where a non-body-fitted mesh is used. In addition, we describe how this method provides an approximation of the Lagrange multiplier associated to the constraint.
Finite Element Analysis of Reverberation Chambers
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Finite element based electric motor design optimization
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1993-01-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
Finite element methods in fracture mechanics
NASA Technical Reports Server (NTRS)
Liebowitz, H.; Moyer, E. T., Jr.
1989-01-01
Finite-element methodology specific to the analysis of fracture mechanics problems is reviewed. Primary emphasis is on the important algorithmic developments which have enhanced the numerical modeling of fracture processes. Methodologies to address elastostatic problems in two and three dimensions, elastodynamic problems, elastoplastic problems, special considerations for three-dimensional nonlinear problems, and the modeling of stable crack growth are reviewed. In addition, the future needs of the fracture community are discussed and open questions are identified.
Finite element based electric motor design optimization
NASA Astrophysics Data System (ADS)
Campbell, C. Warren
1993-11-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
ExodusII Finite Element Data Model
2005-05-14
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface. (exodus II is based on netcdf)
EXODUS II: A finite element data model
Schoof, L.A.; Yarberry, V.R.
1994-09-01
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
FESDIF -- Finite Element Scalar Diffraction theory code
Kraus, H.G.
1992-09-01
This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.
Transient finite element method using edge elements for moving conductor
Tani, Koji; Nishio, Takayuki; Yamada, Takashi ); Kawase, Yoshihiro . Dept. of Information Science)
1999-05-01
For the next generation of high speed railway systems and automobiles new braking systems are currently under development. These braking systems take into account the eddy currents, which are produced by the movement of the conductor in the magnetic field. For their optimum design, it is necessary to know the distribution of eddy currents in the moving conductor. The finite element method (FEM) is often used to simulate them. Here, transient finite element method using edge elements for moving conductor is presented. Here the magnetic vector potential is interpolated at the upwind position and the time derivative term is discretized by the backward difference method. As a result, the system matrix becomes symmetric and the ICCG method is applicable to solve the matrix. This method is used to solve an eddy current rail brake system. The results demonstrate that this approach is suitable to solve transient problems involving movement.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.
1990-01-01
COMGEN (Composite Model Generator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or session files to be submitted to the finite element pre- and postprocessor PATRAN based on a few simple user inputs such as fiber diameter and percent fiber volume fraction of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned easily to the models within COMGEN. PATRAN uses a session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC.
Abascal, Juan-Felipe P J; Arridge, Simon R; Lionheart, William R B; Bayford, Richard H; Holder, David S
2007-07-01
Electrical impedance tomography is an imaging method, with which volumetric images of conductivity are produced by injecting electrical current and measuring boundary voltages. It has the potential to become a portable non-invasive medical imaging technique. Until now, implementations have neglected anisotropy even though human tissues such as bone, muscle and brain white matter are markedly anisotropic. We present a numerical solution using the finite-element method that has been modified for modelling anisotropic conductive media. It was validated in an anisotropic domain against an analytical solution in an isotropic medium after the isotropic domain was diffeomorphically transformed into an anisotropic one. Convergence of the finite element to the analytical solution was verified by showing that the finite-element error norm decreased linearly related to the finite-element size, as the mesh density increased, for the simplified case of Laplace's equation in a cubic domain with a Dirichlet boundary condition.
Two-dimensional finite element multigroup diffusion theory for neutral atom transport in plasmas
Hasan, M.Z.; Conn, R.W.
1986-02-01
Solution of the energy dependent diffusion equation in two dimensions is formulated by multigroup approximation of the energy variable and general triangular mesh, finite element discretization of the spatial domain. Finite element formulation is done by Galerkin's method. Based on this formulation, a two-dimensional multigroup finite element diffusion theory code, FENAT, has been developed for the transport of neutral atoms in fusion plasmas. FENAT solves the multigroup diffusion equation in X-Y cartesian and R-Z cylindrical/toroidal geometries. Use of the finite element method allows solution of problems in which the plasma cross-section has an arbitrary shape. The accuracy of FENAT has been verified by comparing results to those obtained using the two-dimensional discrete ordinate transport theory code, DOT-4.3. Results of application of FENAT to the transport of limiter-originated neutral atoms in a tokamak fusion machine are presented.
Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2012-01-01
The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.
TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh
Schnack, D.D.; Lottati, I.; Mikic, Z.
1995-07-01
The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.
A new parallel algorithm for contact detection in finite element methods
Hendrickson, B.; Plimpton, S.; Attaway, S.; Vaughan, C.; Gardner, D.
1996-03-01
In finite-element, transient dynamics simulations, physical objects are typically modeled as Lagrangian meshes because the meshes can move and deform with the objects as they undergo stress. In many simulations, such as computations of impacts or explosions, portions of the deforming mesh come in contact with each other as the simulation progresses. These contacts must be detected and the forces they impart to the mesh must be computed at each timestep to accurately capture the physics of interest. While the finite-element portion of these computations is readily parallelized, the contact detection problem is difficult to implement efficiently on parallel computers and has been a bottleneck to achieving high performance on large parallel machines. In this paper we describe a new parallel algorithm for detecting contacts. Our approach differs from previous work in that we use two different parallel decompositions, a static one for the finite element analysis and dynamic one for contact detection. We present results for this algorithm in a parallel version of the transient dynamics code PRONTO-3D running on a large Intel Paragon.
He, Xiaowei; Hou, Yanbin; Chen, Duofang; Jiang, Yuchuan; Shen, Man; Liu, Junting; Zhang, Qitan; Tian, Jie
2011-01-01
Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes might aggravate the ill-posedness of BLT. Additionally, accurately quantitative information of density and power has not been simultaneously obtained so far. In this paper, we present a novel multilevel sparse reconstruction method based on adaptive FEM framework. In this method, permissible source region gradually reduces with adaptive local mesh refinement. By using sparse reconstruction with l(1) regularization on multilevel adaptive meshes, simultaneous recovery of density and power as well as accurate source location can be achieved. Experimental results for heterogeneous phantom and mouse atlas model demonstrate its effectiveness and potentiality in the application of quantitative BLT.
Finite element methods of analysis for 3D inviscid compressible flows
NASA Technical Reports Server (NTRS)
Peraire, Jaime
1990-01-01
The applicants have developed a finite element based approach for the solution of three-dimensional compressible flows. The procedure enables flow solutions to be obtained on tetrahedral discretizations of computational domains of complex form. A further development was the incorporation of a solution adaptive mesh strategy in which the adaptivity is achieved by complete remeshing of the solution domain. During the previous year, the applicants were working with the Advanced Aerodynamics Concepts Branch at NASA Ames Research Center with an implementation of the basic meshing and solution procedure. The objective of the work to be performed over this twelve month period was the transfer of the adaptive mesh technology and also the undertaking of basic research into alternative flow algorithms for the Euler equations on unstructured meshes.
Finite Element Transient Dynamic Analysis of Laminated Stiffened Shells
NASA Astrophysics Data System (ADS)
PRUSTY, B. GANGADHARA; SATSANGI, S. K.
2001-11-01
The present work describes the transient dynamic response of unstiffened/stiffened composite plates/shells using finite element method. Composite panels find wide applications in aerospace, marine and other engineering because of its high strength to weight ratios. These structures are often subjected to air-blast loading, underwater shock etc., which requires a thorough dynamic response analysis under such loading. A modified approach of shell and stiffener modelling is adopted here using an eight-noded isoparametric quadratic element for the shell and a three-noded curved stiffener element for the stiffeners on the concept of equal displacements at the shell-stiffener interface. The present formulation obviates the need for imposing the mesh line along the stiffeners; rather it accommodates the stiffeners elegantly anywhere placed arbitrarily inside the element with computational efficiency. Newmarks method for direct time integration has been adopted for the solution of the governing equation for undamped motion. The transient dynamic response of stiffened and unstiffened structures subjected to various kinds of time variant loading has been studied and the results are compared with the published ones.
Finite element prediction of fatigue damage growth in cancellous bone.
Hambli, Ridha; Frikha, Sana; Toumi, Hechmi; Tavares, João Manuel R S
2016-01-01
Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture.
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
Stokes, Ian A.; Chegini, Salman; Ferguson, Stephen J.; Gardner-Morse, Mack G.; Iatridis, James C.; Laible, Jeffrey P.
2010-01-01
The finite element method is used in biomechanics to provide numerical solutions to simulations of structures having complex geometry and spatially differing material properties. Time-varying load deformation behaviors can result from solid viscoelasticity as well as viscous fluid flow through porous materials. Finite element poroelastic analysis of rapidly loaded slow-draining materials may be ill-conditioned, but this problem is not widely known in the biomechanics field. It appears as instabilities in the calculation of interstitial fluid pressures, especially near boundaries and between different materials. Accurate solutions can require impractical compromises between mesh size and time steps. This article investigates the constraints imposed by this problem on tissues representative of the intervertebral disc, subjected to moderate physiological rates of deformation. Two test cylindrical structures were found to require over 104 linear displacement-constant pressure elements to avoid serious oscillations in calculated fluid pressure. Fewer Taylor–Hood (quadratic displacement–linear pressure elements) were required, but with complementary increases in computational costs. The Vermeer–Verruijt criterion for 1D mesh size provided guidelines for 3D mesh sizes for given time steps. Pressure instabilities may impose limitations on the use of the finite element method for simulating fluid transport behaviors of biological soft tissues at moderately rapid physiological loading rates. PMID:20306136
Bouayed, Kaïss; Hamdi, Mohamed-Ali
2012-08-01
This paper presents numerical and experimental validation of results obtained by a shell finite element, which has been developed for modeling of the dynamic behavior of sandwich multilayered structures with a viscoelastic core. The proposed shell finite element is very easy to implement in existing finite element solvers, since it uses only the displacements as degrees of freedom at external faces and at inter-layer interfaces. The displacement field is linearly interpolated in the thickness direction of each layer, and analytical integration is made in the thickness direction in order to avoid meshing of each sandwich layer by solid elements. Only the two dimensional mid-surface of reference is meshed, facilitating the mesh generation task. A simplified modal approach using a real modal basis is also proposed to efficiently calculate the dynamic response of the sandwich structure. The proposed method reduces the memory size and computing time and takes into account the frequency-dependence of the polymer core mechanical properties. Results obtained by the proposed element in conjunction with the simplified modal method have been numerically and experimentally validated by comparison to results obtained by commercial software codes (MSC/NASTRAN and ESI/RAYON-VTM), and to measurements done on automobile windscreens. PMID:22894198
Modelling the arterial wall by finite elements.
Mosora, F; Harmant, A; Bernard, C; Fossion, A; Pochet, T; Juchmes, J; Cescotto, S
1993-01-01
The mechanical behaviour of the arterial wall was determined theoretically utilizing some parameters of blood flow measured in vivo. Continuous experimental measurements of pressure and diameter were recorded in anesthetized dogs on the thoracic ascending and midabdominal aorta. The pressure was measured by using a catheter, and the diameter firstly, at the same site, by a plethysmograph with mercury gauge and secondly, by a sonomicrometer with ferroelectric ceramic transducers. The unstressed radius and thickness were measured at the end of each experiment in situ. Considering that the viscous component is not important relatively to the nonlinear component of the elasticity and utilizing several equations for Young modulus calculation (thick and thin wall circular cylindrical tube formulas and Bergel's equation) the following values were obtained for this parameter: 0.6 MPa-2 MPa in midabdominal aorta and 2 MPa-6.5 MPa in thoracic ascending aorta. The behaviour of the aorta wall was modelled considering an elastic law and using the finite element program "Lagamine" working in large deformations. The discretized equilibrium equations are non-linear and a unique axi-symmetric, iso-parametric element of 1 cm in length with 8 knots was used for this bi-dimensional problem. The theoretical estimation of radius vessel, utilizing a constant 5 MPa Young modulus and also a variable one, are in good agreement with the experimental results, showing that this finite element model can be applied to study mechanical properties of the arteries in physiological and pathological conditions.
NASA Astrophysics Data System (ADS)
Zeng, X.; Scovazzi, G.
2016-06-01
We present a monolithic arbitrary Lagrangian-Eulerian (ALE) finite element method for computing highly transient flows with strong shocks. We use a variational multiscale (VMS) approach to stabilize a piecewise-linear Galerkin formulation of the equations of compressible flows, and an entropy artificial viscosity to capture strong solution discontinuities. Our work demonstrates the feasibility of VMS methods for highly transient shock flows, an area of research for which the VMS literature is extremely scarce. In addition, the proposed monolithic ALE method is an alternative to the more commonly used Lagrangian+remap methods, in which, at each time step, a Lagrangian computation is followed by mesh smoothing and remap (conservative solution interpolation). Lagrangian+remap methods are the methods of choice in shock hydrodynamics computations because they provide nearly optimal mesh resolution in proximity of shock fronts. However, Lagrangian+remap methods are not well suited for imposing inflow and outflow boundary conditions. These issues offer an additional motivation for the proposed approach, in which we first perform the mesh motion, and then the flow computations using the monolithic ALE framework. The proposed method is second-order accurate and stable, as demonstrated by extensive numerical examples in two and three space dimensions.
A class of hybrid finite element methods for electromagnetics: A review
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Chatterjee, A.; Gong, J.
1993-01-01
Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.
Performance of low-rank QR approximation of the finite element Biot-Savart law
White, D A; Fasenfest, B J
2006-01-12
We are concerned with the computation of magnetic fields from known electric currents in the finite element setting. In finite element eddy current simulations it is necessary to prescribe the magnetic field (or potential, depending upon the formulation) on the conductor boundary. In situations where the magnetic field is due to a distributed current density, the Biot-Savart law can be used, eliminating the need to mesh the nonconducting regions. Computation of the Biot-Savart law can be significantly accelerated using a low-rank QR approximation. We review the low-rank QR method and report performance on selected problems.
[Developing a finite element model of human head with true anatomic structure mandible].
Ma, Chunsheng; Zhang, Haizhong; Du, Huiliang; Huang, Shilin; Zhang, Jinhuan
2005-02-01
A finite element model of human mandible is developed from CT scan images by the technologies of three-dimensional reconstruction, image processing and meshing. The mandible model is connected to one modified head model of Hybrid III dummy with joint according to the anatomic structure and mechanical characteristics of the temporomandibular joint. Then a finite element model of the human head with the true anatomic structure mandible is developed. This model has been validated with the cadaver test results. It can be used in researches on the mechanism of craniofacial blunt-impact injury and on the assessment of injury severity. PMID:15762115
2-D Finite Element Heat Conduction
1989-10-30
AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less
Chemorheology of reactive systems: Finite element analysis
NASA Technical Reports Server (NTRS)
Douglas, C.; Roylance, D.
1982-01-01
The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.
A finite element model of ultrasonic extrusion
NASA Astrophysics Data System (ADS)
Lucas, M.; Daud, Y.
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
NASA Technical Reports Server (NTRS)
Gelinas, R. J.; Doss, S. K.; Vajk, J. P.; Djomehri, J.; Miller, K.
1983-01-01
The mathematical background regarding the moving finite element (MFE) method of Miller and Miller (1981) is discussed, taking into account a general system of partial differential equations (PDE) and the amenability of the MFE method in two dimensions to code modularization and to semiautomatic user-construction of numerous PDE systems for both Dirichlet and zero-Neumann boundary conditions. A description of test problem results is presented, giving attention to aspects of single square wave propagation, and a solution of the heat equation.
Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
Srivastava, S; Yazdchi, K; Luding, S
2014-08-01
A new method for two-way fluid-particle coupling on an unstructured mesoscopically coarse mesh is presented. In this approach, we combine a (higher order) finite-element method (FEM) on the moving mesh for the fluid with a soft sphere discrete-element method for the particles. The novel feature of the proposed scheme is that the FEM mesh is a dynamic Delaunay triangulation based on the positions of the moving particles. Thus, the mesh can be multi-purpose: it provides (i) a framework for the discretization of the Navier-Stokes equations, (ii) a simple tool for detecting contacts between moving particles, (iii) a basis for coarse-graining or upscaling, and (iv) coupling with other physical fields (temperature, electromagnetic, etc.). This approach is suitable for a wide range of dilute and dense particulate flows, because the mesh resolution adapts with particle density in a given region. Two-way momentum exchange is implemented using semi-empirical drag laws akin to other popular approaches; for example, the discrete particle method, where a finite-volume solver on a coarser, fixed grid is used. We validate the methodology with several basic test cases, including single- and double-particle settling with analytical and empirical expectations, and flow through ordered and random porous media, when compared against finely resolved FEM simulations of flow through fixed arrays of particles. PMID:24982251
Method of modifying a volume mesh using sheet insertion
Borden, Michael J.; Shepherd, Jason F.
2006-08-29
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.
Dynamic and thermal response finite element models of multi-body space structural configurations
NASA Technical Reports Server (NTRS)
Edighoffer, Harold H.
1987-01-01
Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
Motamarri, P.; Nowak, M.R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688
Finite element modeling of blast lung injury in sheep.
Gibbons, Melissa M; Dang, Xinglai; Adkins, Mark; Powell, Brian; Chan, Philemon
2015-04-01
A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic-plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strain-rate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.
Bailey, T S; Adams, M L; Chang, J H
2008-10-01
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.
Impeller deflection and modal finite element analysis.
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
Finite element analysis of bolted flange connections
NASA Astrophysics Data System (ADS)
Hwang, D. Y.; Stallings, J. M.
1994-06-01
A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.
Development of an hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1993-01-01
The purpose of this research effort is to develop a means to use, and to ultimately implement, hp-version finite elements in the numerical solution of optimal control problems. The hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element.
A multigrid solution method for mixed hybrid finite elements
Schmid, W.
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
The design of improved smoothing operators for finite volume flow solvers on unstructured meshes
NASA Astrophysics Data System (ADS)
de Foy, Benjamin; Dawes, William
2001-08-01
Spatial operators used in unstructured finite volume flow solvers are analysed for accuracy using Taylor series expansion and Fourier analysis. While approaching second-order accuracy on very regular grids, operators in common use are shown to have errors resulting in accuracy of only first-, zeroth- or even negative-order on three-dimensional tetrahedral meshes. A technique using least-squares optimization is developed to design improved operators on arbitrary meshes. This is applied to the fourth-order edge sum smoothing operator. The improved numerical dissipation leads to a much more accurate prediction of the Strouhal number for two-dimensional flow around a cylinder and a reduction of a factor of three in the loss coefficient for inviscid flow over a three-dimensional hump. Copyright
Implementation of Implicit Adaptive Mesh Refinement in an Unstructured Finite-Volume Flow Solver
NASA Technical Reports Server (NTRS)
Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.
2013-01-01
This paper explores the implementation of adaptive mesh refinement in an unstructured, finite-volume solver. Unsteady and steady problems are considered. The effect on the recovery of high-order numerics is explored and the results are favorable. Important to this work is the ability to provide a path for efficient, implicit time advancement. A method using a simple refinement sensor based on undivided differences is discussed and applied to a practical problem: a shock-shock interaction on a hypersonic, inviscid double-wedge. Cases are compared to uniform grids without the use of adapted meshes in order to assess error and computational expense. Discussion of difficulties, advances, and future work prepare this method for additional research. The potential for this method in more complicated flows is described.
Directionally adaptive finite element method for multidimensional Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Tan, Zhiqiang; Varghese, Philip L.
1993-01-01
A directionally adaptive finite element method for multidimensional compressible flows is presented. Quadrilateral and hexahedral elements are used because they have several advantages over triangular and tetrahedral elements. Unlike traditional methods that use quadrilateral/hexahedral elements, our method allows an element to be divided in each of the three directions in 3D and two directions in 2D. Some restrictions on mesh structure are found to be necessary, especially in 3D. The refining and coarsening procedures, and the treatment of constraints are given. A new implementation of upwind schemes in the constrained finite element system is presented. Some example problems, including a Mach 10 shock interaction with the walls of a 2D channel, a 2D viscous compression corner flow, and inviscid and viscous 3D flows in square channels, are also shown.
NASA Astrophysics Data System (ADS)
Beilina, Larisa
2016-08-01
We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.
Finite element modeling of seismic wave propagation in earthen embankments
NASA Astrophysics Data System (ADS)
Tadese, Binyam Darsema
The detection of internal seepage zones in embankments (dams and levees) by geophysical seismic techniques such as seismic refraction is limited by a number of factors. Some factors are associated with inversion and smoothing problems during processing, while others are associated with the natural characteristics of embankments and seepage anomalies. In this research, changes in the seismic response associated with: embankment soil compositions and moisture, characteristics of the seepage zone, presence of water in the reservoir, and shape of embankment was studied via 2D and 3D finite element (FE) embankment models. Artificial reflections from external boundaries and numerical dispersion were first examined in the frame work of COMSOL. A combination of an absorbing layer and dashpot elements produced minimal reflections. The numerical dispersion study suggested a mesh composed of 5 quartic (4th order) elements per wavelength and a time step of 1/4 of 1/20 of the minimum period to be optimal. COMSOL models were verified by comparing to the analytic solutions for a transient point source in an unbounded media. The agreement of arrival times from a point source and a line source were also ascertained for an elastic half space model. The seismic response of dry and wet seepage zones in an embankment were evaluated for 2D longitudinal and transverse models. The zones considered in this study do not cause substantial deviations on the first arrival times but behave as scatters and their signatures were, predominantly, wavelet distortion. Wet (high impedance) zone produces a higher amplitude wavelet that is delayed in time, whereas a dry (low impedance) zone produces an earlier arriving lower amplitude, first arriving wavelet. Processing algorithms such as tomography that can incorporate such finite frequency effects may improve the detection of internal seepage in earthen embankments. The results from preliminary 3D models suggest that the water in the reservoir and the
Adaptive finite-element approach for analysis of bone/prosthesis interaction.
Hübsch, P F; Middleton, J; Meroi, E A; Natali, A N
1995-01-01
The study uses the finite-element method to analyse the stress field in a perfectly bonded hip prosthesis arising from loading through body weight. Special attention is paid to the accuracy of the numerical analysis, and adaptive mesh refinement is introduced to reduce the discretisation error. The finite-element procedure developed is especially well suited to analyse the behaviour of a bonded interface as it is capable of calculating accurately the stress at the nodal positions while satisfying the natural discontinuity in the stress field at this location. An orthotropic material model is used for the representation of the behaviour of the bone, and an axisymmetric geometry with non-symmetrical loading is adopted for the analysis. The results demonstrate the usefulness of adaptive mesh refinement and the significance of adopting anisotropic material modelling in the context of tissue/prosthesis interaction.
GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography
Schweiger, Martin
2011-01-01
We introduce a GPU-accelerated finite element forward solver for the computation of light transport in scattering media. The forward model is the computationally most expensive component of iterative methods for image reconstruction in diffuse optical tomography, and performance optimisation of the forward solver is therefore crucial for improving the efficiency of the solution of the inverse problem. The GPU forward solver uses a CUDA implementation that evaluates on the graphics hardware the sparse linear system arising in the finite element formulation of the diffusion equation. We present solutions for both time-domain and frequency-domain problems. A comparison with a CPU-based implementation shows significant performance gains of the graphics accelerated solution, with improvements of approximately a factor of 10 for double-precision computations, and factors beyond 20 for single-precision computations. The gains are also shown to be dependent on the mesh complexity, where the largest gains are achieved for high mesh resolutions. PMID:22013431
Real-Time Nonlinear Finite Element Computations on GPU - Application to Neurosurgical Simulation
Joldes, Grand Roman; Wittek, Adam; Miller, Karol
2010-01-01
Application of biomechanical modeling techniques in the area of medical image analysis and surgical simulation implies two conflicting requirements: accurate results and high solution speeds. Accurate results can be obtained only by using appropriate models and solution algorithms. In our previous papers we have presented algorithms and solution methods for performing accurate nonlinear finite element analysis of brain shift (which includes mixed mesh, different non-linear material models, finite deformations and brain-skull contacts) in less than a minute on a personal computer for models having up to 50.000 degrees of freedom. In this paper we present an implementation of our algorithms on a Graphics Processing Unit (GPU) using the new NVIDIA Compute Unified Device Architecture (CUDA) which leads to more than 20 times increase in the computation speed. This makes possible the use of meshes with more elements, which better represent the geometry, are easier to generate, and provide more accurate results. PMID:21179562
GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography.
Schweiger, Martin
2011-01-01
We introduce a GPU-accelerated finite element forward solver for the computation of light transport in scattering media. The forward model is the computationally most expensive component of iterative methods for image reconstruction in diffuse optical tomography, and performance optimisation of the forward solver is therefore crucial for improving the efficiency of the solution of the inverse problem. The GPU forward solver uses a CUDA implementation that evaluates on the graphics hardware the sparse linear system arising in the finite element formulation of the diffusion equation. We present solutions for both time-domain and frequency-domain problems. A comparison with a CPU-based implementation shows significant performance gains of the graphics accelerated solution, with improvements of approximately a factor of 10 for double-precision computations, and factors beyond 20 for single-precision computations. The gains are also shown to be dependent on the mesh complexity, where the largest gains are achieved for high mesh resolutions.
Mesh-based enhancement schemes in diffuse optical tomography.
Gu, Xuejun; Xu, Yong; Jiang, Huabei
2003-05-01
Two mesh-based methods including dual meshing and adaptive meshing are developed to improve the finite element-based reconstruction of both absorption and scattering images of heterogeneous turbid media. The idea of dual meshing scheme is to use a fine mesh for the solution of photon propagation and a coarse mesh for the inversion of optical property distributions. The adaptive meshing method is accomplished by the automatic mesh refinement in the region of heterogeneity during reconstruction. These schemes are validated using tissue-like phantom measurements. Our results demonstrate the capabilities of the dual meshing and adaptive meshing in both qualitative and quantitative improvement of optical image reconstruction.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
Taylor, G.; Dong, C.; Sun, S.
2010-03-18
A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The finite volume method and the standard MFE method are used to approximate the convection and dispersion terms respectively. The model is used to investigate the interaction of adsorption with transport and to extract information on effective adsorption distribution coefficients. Numerical examples in different fractured media illustrate the robustness and efficiency of the proposed numerical model.
Integrated transient thermal-structural finite element analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.
1981-01-01
An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Balsara, Dinshaw S.; Dumbser, Michael
2014-06-01
In this paper we use the genuinely multidimensional HLL Riemann solvers recently developed by Balsara et al. in [13] to construct a new class of computationally efficient high order Lagrangian ADER-WENO one-step ALE finite volume schemes on unstructured triangular meshes. A nonlinear WENO reconstruction operator allows the algorithm to achieve high order of accuracy in space, while high order of accuracy in time is obtained by the use of an ADER time-stepping technique based on a local space-time Galerkin predictor. The multidimensional HLL and HLLC Riemann solvers operate at each vertex of the grid, considering the entire Voronoi neighborhood of each node and allow for larger time steps than conventional one-dimensional Riemann solvers. The results produced by the multidimensional Riemann solver are then used twice in our one-step ALE algorithm: first, as a node solver that assigns a unique velocity vector to each vertex, in order to preserve the continuity of the computational mesh; second, as a building block for genuinely multidimensional numerical flux evaluation that allows the scheme to run with larger time steps compared to conventional finite volume schemes that use classical one-dimensional Riemann solvers in normal direction. The space-time flux integral computation is carried out at the boundaries of each triangular space-time control volume using the Simpson quadrature rule in space and Gauss-Legendre quadrature in time. A rezoning step may be necessary in order to overcome element overlapping or crossing-over. Since our one-step ALE finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, the remapping stage is not needed, making our algorithm a so-called direct ALE method.
CUBIT mesh generation environment. Volume 1: Users manual
Blacker, T.D.; Bohnhoff, W.J.; Edwards, T.L.
1994-05-01
The CUBIT mesh generation environment is a two- and three-dimensional finite element mesh generation tool which is being developed to pursue the goal of robust and unattended mesh generation--effectively automating the generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor that meshes volume and surface solid models for finite element analysis. A combination of techniques including paving, mapping, sweeping, and various other algorithms being developed are available for discretizing the geometry into a finite element mesh. CUBIT also features boundary layer meshing specifically designed for fluid flow problems. Boundary conditions can be applied to the mesh through the geometry and appropriate files for analysis generated. CUBIT is specifically designed to reduce the time required to create all-quadrilateral and all-hexahedral meshes. This manual is designed to serve as a reference and guide to creating finite element models in the CUBIT environment.
Ismagilov, Timur Z.
2015-02-01
This paper presents a second order finite volume scheme for numerical solution of Maxwell's equations with discontinuous dielectric permittivity and magnetic permeability on unstructured meshes. The scheme is based on Godunov scheme and employs approaches of Van Leer and Lax–Wendroff to increase the order of approximation. To keep the second order of approximation near dielectric permittivity and magnetic permeability discontinuities a novel technique for gradient calculation and limitation is applied near discontinuities. Results of test computations for problems with linear and curvilinear discontinuities confirm second order of approximation. The scheme was applied to modelling propagation of electromagnetic waves inside photonic crystal waveguides with a bend.
A staggered mesh finite difference scheme for the computation of hypersonic Euler flows
NASA Technical Reports Server (NTRS)
Sanders, Richard
1991-01-01
A shock capturing finite difference method for systems of hyperbolic conservation laws is presented which avoids the need to solve Riemann problems while being competitive in performance with other current methods. A staggered spatial mesh is employed, so that complicated nonlinear waves generated at cell interfaces are averaged over cell interiors at the next time level. The full method combines to form a conservative version of the modified method of characteristics. The advantages of the method are discussed, and numerical results are presented for the two-dimensional double ellipse problem.
An adaptive-mesh finite-difference solution method for the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Luchini, Paolo
1987-02-01
An adjustable variable-spacing grid is presented which permits the addition or deletion of single points during iterative solutions of the Navier-Stokes equations by finite difference methods. The grid is designed for application to two-dimensional steady-flow problems which can be described by partial differential equations whose second derivatives are constrained to the Laplacian operator. An explicit Navier-Stokes equations solution technique defined for use with the grid incorporates a hybrid form of the convective terms. Three methods are developed for automatic modifications of the mesh during calculations.
A shell finite element model of the pelvic floor muscles.
d'Aulignac, D; Martins, J A C; Pires, E B; Mascarenhas, T; Jorge, R M Natal
2005-10-01
The pelvic floor gives support to the organs in the abdominal cavity. Using the dataset made public in (Janda et al. J. Biomech. (2003) 36(6), pp. 749-757), we have reconstructed the geometry of one of the most important parts of the pelvic floor, the levator ani, using NURB surfaces. Once the surface is triangulated, the corresponding mesh is used in a finite element analysis with shell elements. Based on the 3D behavior of the muscle we have constructed a shell that takes into account the direction of the muscle fibers and the incompressibility of the tissue. The constitutive model for the isotropic strain energy and the passive strain energy stored in the fibers is adapted from Humphrey's model for cardiac muscles. To this the active behavior of the skeletal muscle is added. We present preliminary results of a simulation of the levator ani muscle under pressure and with active contraction. This research aims at helping simulate the damages to the pelvic floor that can occur after childbirth. PMID:16298856
A finite element model with nonviscous damping
NASA Technical Reports Server (NTRS)
Roussos, L. A.; Hyer, M. W.; Thornton, E. A.
1981-01-01
A constitutive law by which structural damping is modeled as a relationship between stress, strain, and strain rate in a material is used in conjunction with the finite element method to develop general integral expressions for viscous and nonviscous damping matrices. To solve the set of nonlinear equations resulting from the presence of nonviscous damping, a solution technique is developed by modifying the Newmark method to accommodate an iterative solution and treat the nonviscous damping as a pseudo-force. The technique is then checked for accuracy and convergence in single- and multi-degree-of-freedom problems, and is found to be accurate and efficient for initial-condition problems with small nonviscous damping.
Finite-element solutions for geothermal systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Conel, J. E.
1977-01-01
Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.
Finite-element modeling of nanoindentation
Knapp, J.A.; Follstaedt, D.M.; Myers, S.M.; Barbour, J.C.; Friedmann, T.A.
1999-02-01
Procedures have been developed based on finite-element modeling of nanoindentation data to obtain the mechanical properties of thin films and ion-beam-modified layers independently of the properties of the underlying substrates. These procedures accurately deduce the yield strength, Young{close_quote}s elastic modulus, and layer hardness from indentations as deep as 50{percent} of the layer thickness or more. We have used these procedures to evaluate materials ranging from ion implanted metals to deposited, diamond-like carbon layers. The technique increases the applicability of indentation testing to very thin layers, composite layers, and modulated compositions. This article presents an overview of the procedures involved and illustrates them with selected examples. {copyright} {ital 1999 American Institute of Physics.}
Finite element simulation of pipe dynamic response
Slagis, G.C.; Litton, R.W.
1996-12-01
Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.
3-D Finite Element Heat Transfer
1992-02-01
TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
Immersed molecular electrokinetic finite element method
NASA Astrophysics Data System (ADS)
Kopacz, Adrian M.; Liu, Wing K.
2013-07-01
A unique simulation technique has been developed capable of modeling electric field induced detection of biomolecules such as viruses, at room temperatures where thermal fluctuations must be considered. The proposed immersed molecular electrokinetic finite element method couples electrokinetics with fluctuating hydrodynamics to study the motion and deformation of flexible objects immersed in a suspending medium under an applied electric field. The force induced on an arbitrary object due to an electric field is calculated based on the continuum electromechanics and the Maxwell stress tensor. The thermal fluctuations are included in the Navier-Stokes fluid equations via the stochastic stress tensor. Dielectrophoretic and fluctuating forces acting on the particle are coupled through the fluid-structure interaction force calculated within the surrounding environment. This method was used to perform concentration and retention efficacy analysis of nanoscale biosensors using gold particles of various sizes. The analysis was also applied to a human papillomavirus.
An implementation analysis of the linear discontinuous finite element method
Becker, T. L.
2013-07-01
This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory constraints against any
Finite element analyses of CCAT preliminary design
NASA Astrophysics Data System (ADS)
Sarawit, Andrew T.; Kan, Frank W.
2014-07-01
This paper describes the development of the CCAT telescope finite element model (FEM) and the analyses performed to support the preliminary design work. CCAT will be a 25 m diameter telescope operating in the 0.2 to 2 mm wavelength range. It will be located at an elevation of 5600 m on Cerro Chajnantor in Northern Chile, near ALMA. The telescope will be equipped with wide-field cameras and spectrometers mounted at the two Nasmyth foci. The telescope will be inside an enclosure to protect it from wind buffeting, direct solar heating, and bad weather. The main structures of the telescope include a steel Mount and a carbon-fiber-reinforced-plastic (CFRP) primary truss. The finite element model developed in this study was used to perform modal, frequency response, seismic response spectrum, stress, and deflection analyses of telescope. Modal analyses of telescope were performed to compute the structure natural frequencies and mode shapes and to obtain reduced order modal output at selected locations in the telescope structure to support the design of the Mount control system. Modal frequency response analyses were also performed to compute transfer functions at these selected locations. Seismic response spectrum analyses of the telescope subject to the Maximum Likely Earthquake were performed to compute peak accelerations and seismic demand stresses. Stress analyses were performed for gravity load to obtain gravity demand stresses. Deflection analyses for gravity load, thermal load, and differential elevation drive torque were performed so that the CCAT Observatory can verify that the structures meet the stringent telescope surface and pointing error requirements.
Simulation of a Single-Element Lean-Direct Injection Combustor Using Arbitrary Polyhedral Mesh
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2012-01-01
This paper summarizes procedures of generating the arbitrary polyhedral mesh as well as presents sample results from its application to the numerical solution of a single-element LDI combustor using a preliminary version of the new OpenNCC.
POD-Galerkin reduced-order modeling with adaptive finite element snapshots
NASA Astrophysics Data System (ADS)
Ullmann, Sebastian; Rotkvic, Marko; Lang, Jens
2016-11-01
We consider model order reduction by proper orthogonal decomposition (POD) for parametrized partial differential equations, where the underlying snapshots are computed with adaptive finite elements. We address computational and theoretical issues arising from the fact that the snapshots are members of different finite element spaces. We propose a method to create a POD-Galerkin model without interpolating the snapshots onto their common finite element mesh. The error of the reduced-order solution is not necessarily Galerkin orthogonal to the reduced space created from space-adapted snapshot. We analyze how this influences the error assessment for POD-Galerkin models of linear elliptic boundary value problems. As a numerical example we consider a two-dimensional convection-diffusion equation with a parametrized convective direction. To illustrate the applicability of our techniques to non-linear time-dependent problems, we present a test case of a two-dimensional viscous Burgers equation with parametrized initial data.
NASA Astrophysics Data System (ADS)
Jiwen, Wang; Ruxun, Liu
2001-12-01
A composite finite volume method (FVM) is developed on unstructured triangular meshes and tested for the two-dimensional free-surface flow equations. The methodology is based on the theory of the remainder effect of finite difference schemes and the property that the numerical dissipation and dispersion of the schemes are compensated by each other in a composite scheme. The composite FVM is formed by global composition of several Lax-Wendroff-type steps followed by a diffusive Lax-Friedrich-type step, which filters out the oscillations around shocks typical for the Lax-Wendroff scheme. To test the efficiency and reliability of the present method, five typical problems of discontinuous solutions of two-dimensional shallow water are solved. The numerical results show that the proposed method, which needs no use of a limiter function, is easy to implement, is accurate, robust and is highly stable. Copyright
NASA Technical Reports Server (NTRS)
Helfrich, Reinhard
1987-01-01
The concepts of software engineering which allow a user of the finite element method to describe a model, to collect and to check the model data in a data base as well as to form the matrices required for a finite element calculation are examined. Next the components of the model description are conceived including the mesh tree, the topology, the configuration, the kinematic boundary conditions, the data for each element, and the loads. The possibilities for description and review of the data are considered. The concept of the segments for the modularization of the programs follows the components of the model description. The significance of the mesh tree as a globular guiding structure will be understood in view of the principle of the unity of the model, the mesh tree, and the data base. The user-friendly aspects of the software system will be summarized: the principle of language communication, the data generators, error processing, and data security.
A voxel-based finite element model for the prediction of bladder deformation
Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan
2012-01-15
Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to
NASA Technical Reports Server (NTRS)
Buczek, M. B.; Gregory, M. A.; Herakovich, C. T.
1983-01-01
CLFE2D is a two dimensional generalized plane strain finite element code, using a linear, four node, general quadrilateral, isoparametric element. The program is developed to calculate the displacements, strains, stresses, and strain energy densities in a finite width composite laminate. CLFE2D offers any combination of the following load types: nodal displacements, nodal forces, uniform normal strain, or hygrothermal. The program allows the user to input one set of three dimensional orthotropic material properties. The user can then specify the angle of material principal orientation for each element in the mesh. Output includes displacements, stresses, strains and strain densities at points selected by the user. An option is also available to plot the underformed and deformed finite element meshes.
NASA Technical Reports Server (NTRS)
Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)
2001-01-01
In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.
A unified multigrid solver for the Navier-Stokes equations on mixed element meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Venkatakrishnan, V.
1995-01-01
A unified multigrid solution technique is presented for solving the Euler and Reynolds-averaged Navier-Stokes equations on unstructured meshes using mixed elements consisting of triangles and quadrilaterals in two dimensions, and of hexahedra, pyramids, prisms, and tetrahedra in three dimensions. While the use of mixed elements is by no means a novel idea, the contribution of the paper lies in the formulation of a complete solution technique which can handle structured grids, block structured grids, and unstructured grids of tetrahedra or mixed elements without any modification. This is achieved by discretizing the full Navier-Stokes equations on tetrahedral elements, and the thin layer version of these equations on other types of elements, while using a single edge-based data-structure to construct the discretization over all element types. An agglomeration multigrid algorithm, which naturally handles meshes of any types of elements, is employed to accelerate convergence. An automatic algorithm which reduces the complexity of a given triangular or tetrahedral mesh by merging candidate triangular or tetrahedral elements into quadrilateral or prismatic elements is also described. The gains in computational efficiency afforded by the use of non-simplicial meshes over fully tetrahedral meshes are demonstrated through several examples.
Application of 3D X-ray CT data sets to finite element analysis
Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.
1995-08-31
Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here.
A new spectral finite volume method for elastic wave modelling on unstructured meshes
NASA Astrophysics Data System (ADS)
Zhang, Wensheng; Zhuang, Yuan; Chung, Eric T.
2016-07-01
In this paper, we consider a new spectral finite volume method (FVM) for the elastic wave equations. Our new FVM is based on a piecewise constant approximation on a fine mesh and a high-order polynomial reconstruction on a coarser mesh. Our new method is constructed based on two existing techniques, the high-order FVM and the spectral FVM. In fact, we will construct a new method to take advantage of both methods. More precisely, our method has two distinctive features. The first one is that the local polynomial reconstructions are performed on the coarse triangles and the reconstruction matrices for all the coarse triangles are the same. This fact enhances the parallelization of our algorithm. We will present a parallel implementation of our method and show excellent efficiency results. The second one is that, by using a suitable number of finer triangles with a coarse triangle, we obtain an overdetermined reconstruction system, which can enhance the robustness of the reconstruction process. To derive our scheme, standard finite volume technique is applied to each fine triangle, and the high-order reconstructed polynomials, computed on coarse triangles, are used to compute numerical fluxes. We will present numerical results to show the performance of our method. Our method is presented for 2-D problems, but the same methodology can be applied to 3-D.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).
NASA Technical Reports Server (NTRS)
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
Development of an adaptive hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1994-01-01
In this research effort, the usefulness of hp-version finite elements and adaptive solution-refinement techniques in generating numerical solutions to optimal control problems has been investigated. Under NAG-939, a general FORTRAN code was developed which approximated solutions to optimal control problems with control constraints and state constraints. Within that methodology, to get high-order accuracy in solutions, the finite element mesh would have to be refined repeatedly through bisection of the entire mesh in a given phase. In the current research effort, the order of the shape functions in each element has been made a variable, giving more flexibility in error reduction and smoothing. Similarly, individual elements can each be subdivided into many pieces, depending on the local error indicator, while other parts of the mesh remain coarsely discretized. The problem remains to reduce and smooth the error while still keeping computational effort reasonable enough to calculate time histories in a short enough time for on-board applications.
A cut finite element method for coupled bulk-surface problems on time-dependent domains
NASA Astrophysics Data System (ADS)
Hansbo, Peter; Larson, Mats G.; Zahedi, Sara
2016-08-01
In this contribution we present a new computational method for coupled bulk-surface problems on time-dependent domains. The method is based on a space-time formulation using discontinuous piecewise linear elements in time and continuous piecewise linear elements in space on a fixed background mesh. The domain is represented using a piecewise linear level set function on the background mesh and a cut finite element method is used to discretize the bulk and surface problems. In the cut finite element method the bilinear forms associated with the weak formulation of the problem are directly evaluated on the bulk domain and the surface defined by the level set, essentially using the restrictions of the piecewise linear functions to the computational domain. In addition a stabilization term is added to stabilize convection as well as the resulting algebraic system that is solved in each time step. We show in numerical examples that the resulting method is accurate and stable and results in well conditioned algebraic systems independent of the position of the interface relative to the background mesh.
NASA Technical Reports Server (NTRS)
1976-01-01
The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
A finite element method for solving the shallow water equations on the sphere
NASA Astrophysics Data System (ADS)
Comblen, Richard; Legrand, Sébastien; Deleersnijder, Eric; Legat, Vincent
Within the framework of ocean general circulation modeling, the present paper describes an efficient way to discretize partial differential equations on curved surfaces by means of the finite element method on triangular meshes. Our approach benefits from the inherent flexibility of the finite element method. The key idea consists in a dialog between a local coordinate system defined for each element in which integration takes place, and a nodal coordinate system in which all local contributions related to a vectorial degree of freedom are assembled. Since each element of the mesh and each degree of freedom are treated in the same way, the so-called pole singularity issue is fully circumvented. Applied to the shallow water equations expressed in primitive variables, this new approach has been validated against the standard test set defined by [Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N., 1992. A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics 102, 211-224]. Optimal rates of convergence for the P1NC-P1 finite element pair are obtained, for both global and local quantities of interest. Finally, the approach can be extended to three-dimensional thin-layer flows in a straightforward manner.
Evaluation of an improved finite-element thermal stress calculation technique
NASA Technical Reports Server (NTRS)
Camarda, C. J.
1982-01-01
A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.
Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Loehner, Rainald; Morgan, Ken; Peraire, Jaime; Vahdati, Mehdi
1987-01-01
A high resolution finite element method for the solution of problems involving high speed compressible flows is presented. The method uses the concepts of flux-corrected transport and is presented in a form which is suitable for implementation on completely unstructured triangular or tetrahedral meshes. Transient and steady state examples are solved to illustrate the performance of the algorithm.
Kim, S.
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
NASA Technical Reports Server (NTRS)
Gong, J.; Ozdemir, T.; Volakis, J; Nurnberger, M.
1995-01-01
Year 1 progress can be characterized with four major achievements which are crucial toward the development of robust, easy to use antenna analysis code on doubly conformal platforms. (1) A new FEM code was developed using prismatic meshes. This code is based on a new edge based distorted prism and is particularly attractive for growing meshes associated with printed slot and patch antennas on doubly conformal platforms. It is anticipated that this technology will lead to interactive, simple to use codes for a large class of antenna geometries. Moreover, the codes can be expanded to include modeling of the circuit characteristics. An attached report describes the theory and validation of the new prismatic code using reference calculations and measured data collected at the NASA Langley facilities. The agreement between the measured and calculated data is impressive even for the coated patch configuration. (2) A scheme was developed for improved feed modeling in the context of FEM. A new approach based on the voltage continuity condition was devised and successfully tested in modeling coax cables and aperture fed antennas. An important aspect of this new feed modeling approach is the ability to completely separate the feed and antenna mesh regions. In this manner, different elements can be used in each of the regions leading to substantially improved accuracy and meshing simplicity. (3) A most important development this year has been the introduction of the perfectly matched interface (PMI) layer for truncating finite element meshes. So far the robust boundary integral method has been used for truncating the finite element meshes. However, this approach is not suitable for antennas on nonplanar platforms. The PMI layer is a lossy anisotropic absorber with zero reflection at its interface. (4) We were able to interface our antenna code FEMA_CYL (for antennas on cylindrical platforms) with a standard high frequency code. This interface was achieved by first generating
Lekien, Francois; Ross, Shane D
2010-03-01
We generalize the concepts of finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on cylinders and Mobius strips, as well as for the splitting of the Antarctic polar vortex in the spherical stratosphere and a related point vortex model. We modify the FTLE computational method and accommodate unstructured meshes of triangles and tetrahedra to fit manifolds of arbitrary shape, as well as to facilitate dynamic refinement of the FTLE mesh.
Representation of bioelectric current sources using Whitney elements in the finite element method
NASA Astrophysics Data System (ADS)
Oguz Tanzer, I.; Järvenpää, Seppo; Nenonen, Jukka; Somersalo, Erkki
2005-07-01
Bioelectric current sources of magneto- and electroencephalograms (MEG, EEG) are usually modelled with discrete delta-function type current dipoles, despite the fact that the currents in the brain are naturally continuous throughout the neuronal tissue. In this study, we represent bioelectric current sources in terms of Whitney-type elements in the finite element method (FEM) using a tetrahedral mesh. The aim is to study how well the Whitney elements can reproduce the potential and magnetic field patterns generated by a point current dipole in a homogeneous conducting sphere. The electric potential is solved for a unit sphere model with isotropic conductivity and magnetic fields are calculated for points located on a cap outside the sphere. The computed potential and magnetic field are compared with analytical solutions for a current dipole. Relative difference measures between the FEM and analytical solutions are less than 1%, suggesting that Whitney elements as bioelectric current sources are able to produce the same potential and magnetic field patterns as the point dipole sources.
SULEC: Benchmarking a new ALE finite-element code
NASA Astrophysics Data System (ADS)
Buiter, S.; Ellis, S.
2012-04-01
We have developed a 2-D/3-D arbitrary lagrangian-eulerian (ALE) finite-element code, SULEC, based on known techniques from literature. SULEC is successful in tackling many of the problems faced by numerical models of lithosphere and mantle processes, such as the combination of viscous, elastic, and plastic rheologies, the presence of a free surface, the contrast in viscosity between lithosphere and the underlying asthenosphere, and the occurrence of large deformations including viscous flow and offset on shear zones. The aim of our presentation is (1) to describe SULEC, and (2) to present a set of analytical and numerical benchmarks that we use to continuously test our code. SULEC solves the incompressible momentum equation coupled with the energy equation. It uses a structured mesh that is built of quadrilateral or brick elements that can vary in size in all dimensions, allowing to achieve high resolutions where required. The elements are either linear in velocity with constant pressure, or quadratic in velocity with linear pressure. An accurate pressure field is obtained through an iterative penalty (Uzawa) formulation. Material properties are carried on tracer particles that are advected through the Eulerian mesh. Shear elasticity is implemented following the approach of Moresi et al. [J. Comp. Phys. 184, 2003], brittle materials deform following a Drucker-Prager criterion, and viscous flow is by temperature- and pressure-dependent power-law creep. The top boundary of our models is a true free surface (with free surface stabilisation) on which simple surface processes models may be imposed. We use a set of benchmarks that test viscous, viscoelastic, elastic and plastic deformation, temperature advection and conduction, free surface behaviour, and pressure computation. Part of our benchmark set is automated allowing easy testing of new code versions. Examples include Poiseuille flow, Couette flow, Stokes flow, relaxation of viscous topography, viscous pure shear
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
Accelerated finite element elastodynamic simulations using the GPU
NASA Astrophysics Data System (ADS)
Huthwaite, Peter
2014-01-01
An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy' partitioner and a new, more efficient ‘aligned' partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from http://www.pogo-fea.com/ to benefit the community.
A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo
2013-09-15
A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can
TACO: a finite element heat transfer code
Mason, W.E. Jr.
1980-02-01
TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.
Finite element modeling of retinal prosthesis mechanics
NASA Astrophysics Data System (ADS)
Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.
2009-10-01
Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.
A plane stress finite element model for elastic-plastic mode I/II crack growth
NASA Astrophysics Data System (ADS)
James, Mark Anthony
A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.
Finite Element Analysis (FEA) in Design and Production.
ERIC Educational Resources Information Center
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
Integrated transient thermal-structural finite element analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Decahaumphai, P.; Tamma, K. K.; Wieting, A. R.
1981-01-01
An integrated thermal-structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. New integrated thermal-structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal-structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction-elasticity solutions and conventional finite element thermal-finite element structural analyses. Results indicate that the approach offers significant potential for further development with other elements.
NASA Astrophysics Data System (ADS)
Cai, Hongzhu; Xiong, Bin; Han, Muran; Zhdanov, Michael
2014-12-01
This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions of anomalous conductivity and close to the location of the source. In order to avoid the source singularity, we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system of finite element equations is solved using a quasi-minimum residual method with a Jacobian preconditioner. We have applied the developed algorithm to compute a typical MCSEM response over a 3D model of a hydrocarbon reservoir located in both isotropic and anisotropic mediums. The modeling results are in a good agreement with the solutions obtained by the integral equation method.
A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials
NASA Astrophysics Data System (ADS)
Safdari, Masoud; Najafi, Ahmad R.; Sottos, Nancy R.; Geubelle, Philippe H.
2016-08-01
A 3D NURBS-based interface-enriched generalized finite element method (NIGFEM) is introduced to solve problems with complex discontinuous gradient fields observed in the analysis of heterogeneous materials. The method utilizes simple structured meshes of hexahedral elements that do not necessarily conform to the material interfaces in heterogeneous materials. By avoiding the creation of conforming meshes used in conventional FEM, the NIGFEM leads to significant simplification of the mesh generation process. To achieve an accurate solution in elements that are crossed by material interfaces, the NIGFEM utilizes Non-Uniform Rational B-Splines (NURBS) to enrich the solution field locally. The accuracy and convergence of the NIGFEM are tested by solving a benchmark problem. We observe that the NIGFEM preserves an optimal rate of convergence, and provides additional advantages including the accurate capture of the solution fields in the vicinity of material interfaces and the built-in capability for hierarchical mesh refinement. Finally, the use of the NIGFEM in the computational analysis of heterogeneous materials is discussed.
Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P
2011-04-01
Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials. PMID:21428686
Finite Element Model of Cardiac Electrical Conduction.
NASA Astrophysics Data System (ADS)
Yin, John Zhihao
1994-01-01
In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very
Adaptive mesh strategies for the spectral element method
NASA Technical Reports Server (NTRS)
Mavriplis, Catherine
1992-01-01
An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.
Woo, K.
1993-01-01
Textile composites are known to have improved out-of-plane properties and impact resistance. However, detailed analysis of textile composites is very difficult to perform due to the geometric complexity. In the present study, a practical computational procedure based on a global/local finite element method was developed for detailed analysis of textile composites. This procedure utilizes two problem levels: global and local levels. At the global level, an initial solution was obtained using a coarse global mesh. At the local level, a small portion of the textile composite was refined in a local mesh and analyzed in a great detail. In this study, single-field and multi-field macro elements were used in the global analysis. The macro elements are defined herein to be elements with microstructure within each element. Both the conventional finite element method and the global/local finite element method with macro elements were used to study the variation of effective properties and failure behavior of plain weave and satin weave textile composites. Results indicated that the global/local procedure was very efficient for the detailed analysis of the textile composites. The use of macro elements in the global mesh predicted the global response well and the detailed local stress distribution was obtained by the refined local mesh with discrete material modeling. With a small loss of accuracy, the global/local procedure was able to provide a reasonable solution where the conventional finite element analysis was not possible due to huge computer resource requirements. The effective properties of plain weave and satin weave textile composites were dependent on waviness. The effective properties also showed strong dependency on the number of layers. Quick convergence was obtained, however, as the number of layers increased. The stress and failure index distribution of thin plain weave textile composites were different from that of thick plain weave textile composites.
Semi-automatic computer construction of three-dimensional shapes for the finite element method.
Aharon, S; Bercovier, M
1993-12-01
Precise estimation of spatio-temporal distribution of ions (or other constitutives) in three-dimensional geometrical configuration plays a major role in biology. Since a direct experimental information regarding the free intracellular Ca2+ spatio-temporal distribution is not available to date, mathematical models have been developed. Most of the existing models are based on the classical numerical method of finite-difference (FD). Using this method one is limited when dealing with complicated geometry, general boundary conditions and variable or non-linear material properties. These difficulties are easily solved when the finite-element-method (FEM) is employed. The first step in the implementation of the FEM procedure is the mesh generation which is the single most tedious, time consuming task and vulnerable to mistake. In order to overcome these limitations we developed a new interface called AUTOMESH. This tool is used as a preprocessor program which generates two- and three-dimensional meshes for some known and often-used shapes in neurobiology. AUTOMESH creates an appropriate mesh by using the mesh generator commercial tool of FIDAP.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Higher-order adaptive finite-element methods for orbital-free density functional theory
Motamarri, Phani; Iyer, Mrinal; Knap, Jaroslaw; Gavini, Vikram
2012-08-15
In the present work, we study various numerical aspects of higher-order finite-element discretizations of the non-linear saddle-point formulation of orbital-free density-functional theory. We first investigate the robustness of viable solution schemes by analyzing the solvability conditions of the discrete problem. We find that a staggered solution procedure where the potential fields are computed consistently for every trial electron-density is a robust solution procedure for higher-order finite-element discretizations. We next study the convergence properties of higher-order finite-element discretizations of orbital-free density functional theory by considering benchmark problems that include calculations involving both pseudopotential as well as Coulomb singular potential fields. Our numerical studies suggest close to optimal rates of convergence on all benchmark problems for various orders of finite-element approximations considered in the present study. We finally investigate the computational efficiency afforded by various higher-order finite-element discretizations, which constitutes the main aspect of the present work, by measuring the CPU time for the solution of discrete equations on benchmark problems that include large Aluminum clusters. In these studies, we use mesh coarse-graining rates that are derived from error estimates and an a priori knowledge of the asymptotic solution of the far-field electronic fields. Our studies reveal a significant 100-1000 fold computational savings afforded by the use of higher-order finite-element discretization, alongside providing the desired chemical accuracy. We consider this study as a step towards developing a robust and computationally efficient discretization of electronic structure calculations using the finite-element basis.
Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh
NASA Astrophysics Data System (ADS)
Patil, Dhiraj V.; Lakshmisha, K. N.
2009-08-01
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier-Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.
Fakhari, Abbas; Lee, Taehun
2014-03-01
An adaptive-mesh-refinement (AMR) algorithm for the finite-difference lattice Boltzmann method (FDLBM) is presented in this study. The idea behind the proposed AMR is to remove the need for a tree-type data structure. Instead, pointer attributes are used to determine the neighbors of a certain block via appropriate adjustment of its children identifications. As a result, the memory and time required for tree traversal are completely eliminated, leaving us with an efficient algorithm that is easier to implement and use on parallel machines. To allow different mesh sizes at separate parts of the computational domain, the Eulerian formulation of the streaming process is invoked. As a result, there is no need for rescaling the distribution functions or using a temporal interpolation at the fine-coarse grid boundaries. The accuracy and efficiency of the proposed FDLBM AMR are extensively assessed by investigating a variety of vorticity-dominated flow fields, including Taylor-Green vortex flow, lid-driven cavity flow, thin shear layer flow, and the flow past a square cylinder.
NOTE: Solving the ECG forward problem by means of a meshless finite element method
NASA Astrophysics Data System (ADS)
Li, Z. S.; Zhu, S. A.; He, Bin
2007-07-01
The conventional numerical computational techniques such as the finite element method (FEM) and the boundary element method (BEM) require laborious and time-consuming model meshing. The new meshless FEM only uses the boundary description and the node distribution and no meshing of the model is required. This paper presents the fundamentals and implementation of meshless FEM and the meshless FEM method is adapted to solve the electrocardiography (ECG) forward problem. The method is evaluated on a single-layer torso model, in which the analytical solution exists, and tested in a realistic geometry homogeneous torso model, with satisfactory results being obtained. The present results suggest that the meshless FEM may provide an alternative for ECG forward solutions.
Finite Element analyses of soil bioengineered slopes
NASA Astrophysics Data System (ADS)
Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar
2014-05-01
Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio
Nondestructive Evaluation Correlated with Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Azid, Ali; Baaklini, George Y.
1999-01-01
Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.
2.5D Finite/infinite Element Approach for Simulating Train-Induced Ground Vibrations
NASA Astrophysics Data System (ADS)
Yang, Y. B.; Hung, H. H.; Kao, J. C.
2010-05-01
The 2.5D finite/infinite element approach for simulating the ground vibrations by surface or underground moving trains will be briefly summarized in this paper. By assuming the soils to be uniform along the direction of the railway, only a two-dimensional profile of the soil perpendicular to the railway need be considered in the modeling. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing the train loads and irregular structures is simulated by the finite elements, while the far field covering the soils with infinite boundary by the infinite elements, by which due account is taken of the radiation effects for the moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, incorporated with a proposed load generation mechanism that takes the rail irregularity and dynamic properties of trains into account, an illustrative case study was performed. This paper investigates the vibration isolation effect of the elastic foundation that separates the concrete slab track from the underlying soil or tunnel structure. In addition, the advantage of the 2.5D approach was clearly demonstrated in that the three-dimensional wave propagation effect can be virtually captured using a two-dimensional finite/infinite element mesh. Compared with the conventional 3D approach, the present approach appears to be simple, efficient and generally accurate.
Davis, Matthew L; Moreno, Daniel P; Vavalle, Nicholas A; Gayzik, F Scott
2013-01-01
Motor vehicle crashes commonly result in blunt abdominal trauma. Approximately 19,000 such injuries occur each year in the United States. While finite element models of the human body are becoming an important tool for injury assessment, their reliability depends on the accuracy of the material models used. Recently, Samur et al. proposed a hyperelastic and viscoelastic material model of the liver. The aim of this study was to compare the results of a computational model using this material law to uniaxial tension and compression data from biomechanical tests on liver samples by Kemper et al. In this study, the liver samples were modeled using the finite element method. Both the tension and compression test specimen geometries were created from descriptions in the literature. Each sample was meshed using four approaches: fine hexahedral, coarse hexahedral, fine tetrahedral, and coarse tetrahedral. The average element edge lengths of the coarse and fine meshes were 5 mm and 2.5 mm respectively. The samples were loaded in both tension and compression at four rates: 0.01 strain/sec, 0.1 strain/sec, 1 strain/sec, and 10 strain/sec. For each mesh type (n=4), strain rate (n=4), and loading condition (n=2), 32 simulations in total, the results were plotted against the published experimental data. The results were quantitatively evaluated for magnitude and phase agreement with the experimental data using an objective comparison software package, CORA. The model predicted the tensile response of the liver sample more accurately than the compressive response with an average CORA size error factor of 0.66 versus 0.19 for the compressive model (1 is a perfect match). The fine tetrahedral, fine hexahedral, and coarse hexahedral meshes predicted a similar response. The worst performing mesh was the coarse tetrahedral mesh, which had an average size error factor of 8.6% higher than the fine tetrahedral simulations. The peak stress in both tension and compression varied as a
Experience with automatic, dynamic load balancing and adaptive finite element computation
Wheat, S.R.; Devine, K.D.; Maccabe, A.B.
1993-10-01
Distributed memory, Massively Parallel (MP), MIMD technology has enabled the development of applications requiring computational resources previously unobtainable. Structural mechanics and fluid dynamics applications, for example, are often solved by finite element methods (FEMs) requiring, millions of degrees of freedom to accurately simulate physical phenomenon. Adaptive methods, which automatically refine or coarsen meshes and vary the order of accuracy of the numerical solution, offer greater robustness and computational efficiency than traditional FEMs by reducing the amount of computation required away from physical structures such as shock waves and boundary layers. On MP computers, FEMs frequently result in distributed processor load imbalances. To overcome load imbalance, many MP FEMs use static load balancing as a preprocessor to the finite element calculation. Adaptive methods complicate the load imbalance problem since the work per element is not uniform across the solution domain and changes as the computation proceeds. Therefore, dynamic load balancing is required to maintain global load balance. We describe a dynamic, fine-grained, element-based data migration system that maintains global load balance and is effective in the presence of changing work loads. Global load balance is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method utilizes an automatic element management system library to which a programmer integrates the application`s computational description. The library`s flexibility supports a large class of finite element and finite difference based applications.
NASA Astrophysics Data System (ADS)
Robbins, Joshua; Voth, Thomas E.
2007-12-01
The eXtended Finite Element Method (X-FEM) is a finite-element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static meso-scale material failure to dendrite growth. Here we adapt the recent advances of Vitali and Benson [2] and Song et al. [3] to model dynamic loading of a polycrystalline material. We use demonstration problems to examine the method's efficacy for modeling the dynamic response of polycrystalline materials at the meso-scale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries.
Simulation of two-dimensional waterflooding by using mixed finite elements
Chavent, G.; Cohen, G.; Dieste, I.; Dupuy, M.; Jaffre, J.
1984-08-01
A new method to simulate incompressible diphasic flow in two dimensions (2D) is presented. Its distinctive features include (1) a reformulation of the basic equation using the premise of a global pressure and (2) approximation of convective terms by an upwind scheme for discontinuous finite elements. A mixed finite-element method approximates both the scalar functions (pressure and saturation) and the vector functions (total velocity field and capillary diffusion vector). The pressure (resp. the saturation) is approximated by a discontinuous function piecewise constant (resp. linear) on the elements of the mesh. A basis of divergence-free vectors is used in the pressure equation, which accelerates computation. Several test examples, which include gravity and capillary effects, are presented.
Stress Recovery Based h-Adaptive Finite Element Simulation of Sheet Forming Operations
NASA Astrophysics Data System (ADS)
Ahmed, Mohd.; Singh, Devinder
2016-07-01
In the present work, stress recovery techniques based adaptive finite element analysis of sheet forming operations is presented. An adaptive two dimensional finite element computer code allows the analysis of sheet forming operations and results in distribution of adaptively refined mesh, effective strain, and punch load, stress and strain rate tensor in the domain that has been developed. The recovery scheme for determining more accurate stress field is based on the least squares fitting of the computed stresses in an element patch surrounding and including a particular node. The solution error is estimated on the basis of an energy norm. It is shown with the help of an illustrative example of axi-symmetric stretching of a metal blank by a hemispherical punch that the adaptive analysis may be usefully employed to predict accurately deformation process, the seats of large deformations and locations of possible instability.
Strain energy release rate determination of stress intensity factors by finite element methods
NASA Technical Reports Server (NTRS)
Walsh, R. M., Jr.; Pipes, R. B.
1985-01-01
The stiffness derivative finite element technique is used to determine the Mode I stress intensity factors for three-crack configurations. The geometries examined include the double edge notch, single edge notch, and the center crack. The results indicate that when the specified guidelines of the Stiffness Derivative Method are used, a high degree of accuracy can be achieved with an optimized, relatively coarse finite element mesh composed of standard, four-node, plane strain, quadrilateral elements. The numerically generated solutions, when compared with analytical ones, yield results within 0.001 percent of each other for the double edge crack, 0.858 percent for the single edge crack, and 2.021 percent for the center crack.
Thermal Analysis of Thin Plates Using the Finite Element Method
NASA Astrophysics Data System (ADS)
Er, G. K.; Iu, V. P.; Liu, X. L.
2010-05-01
The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Paraschivoiu, Marius
1998-01-01
We present a finite element technique for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions; the finite element discretization is effected by Crouzeix-Raviart elements, the discontinuous pressure approximation of which is central to our approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic "energy" reformulation of the desired output; the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the intersubdomain continuity conditions on velocity. Appeal to the dual max-min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine-mesh discretization; the Lagrange multipliers are generated by exploiting an associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound technique requires solution only of local subdomain Stokes problems on the fine-mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flowrate past, and the lift force on, a body immersed in a channel.
Unconditionally stable concurrent procedures for transient finite-element analysis
NASA Technical Reports Server (NTRS)
Ortiz, Michael; Nour-Omid, Bahram
1989-01-01
A family of algorithms was outlined which would appear to be particularly well-suited for implementation in a parallel environment. This is due to the fact that for any partition of the mesh each subdomain in the partition can be processed over a time step simultaneously and independently of the rest. The method eliminates the need for assembling and factorizing large global arrays while retaining the unconditional stability properties of the algorithms used at the local level. To critically appraise the proposed methodology, two limiting cases were considered: element-by-element mesh partitions, and coarse mesh partitions. It was concluded that while the proposed methodology can be useful in sequential machines, it would appear to be promising as it bears on computation. It should also be emphasized that extensions of the method to nonlinear problems are possible.
Multiphase control volume finite element simulations of fractured reservoirs
NASA Astrophysics Data System (ADS)
Fu, Yao
With rapid evolution of hardware and software techniques in energy sector, reservoir simulation has become a powerful tool for field development planning and reservoir management. Many of the widely used commercial simulators were originally designed for structured grids and implemented with finite difference method (FDM). In recent years, technical advances in griding, fluid modeling, linear solver, reservoir and geological modeling, etc. have created new opportunities. At the same time, new reservoir simulation technology is required for solving large-scale heterogeneous problems. A three-dimensional, three-phase black-oil reservoir simulator has been developed using the control volume finite element (CVFE) formulation. Flux-based upstream weighting is employed to ensure flux continuity. The CVFE method is embedded in a fully-implicit formulation. State-of-the-art parallel, linear solvers are used. The implementation takes the advantages of object-oriented programming capabilities of C++ to provide maximum reuse and extensibility for future students. The results from the simulator have excellent agreement with those from commercial simulators. The convergence properties of the new simulator are verified using the method of manufactured solutions. The pressure and saturation solutions are verified to be first-order convergent as expected. The efficiency of the simulators and their capability to handle real large-scale field models are improved by implementing the models in parallel. Another aspect of the work dealt with multiphase flow of fractured reservoirs was performed. The discrete-fracture model is implemented in the simulator. Fractures and faults are represented by lines and planes in two- and three-dimensional spaces, respectively. The difficult task of generating an unstructured mesh for complex domains with fractures and faults is accomplished in this study. Applications of this model for two-phase and three-phase simulations in a variety of fractured
ImageParser: a tool for finite element generation from three-dimensional medical images
Yin, HM; Sun, LZ; Wang, G; Yamada, T; Wang, J; Vannier, MW
2004-01-01
Background The finite element method (FEM) is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures) of interest (ROIs) may be irregular and fuzzy. Methods A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. Results The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. Conclusion The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information. PMID:15461787
NASA Astrophysics Data System (ADS)
Pieczynska-Kozlowska, Joanna
2014-05-01
One of a geotechnical problem in the area of Wroclaw is an anthropogenic embankment layer delaying to the depth of 4-5m, arising as a result of historical incidents. In such a case an assumption of bearing capacity of strip footing might be difficult. The standard solution is to use a deep foundation or foundation soil replacement. However both methods generate significant costs. In the present paper the authors focused their attention on the influence of anthropogenic embankment variability on bearing capacity. Soil parameters were defined on the basis of CPT test and modeled as 2D anisotropic random fields and the assumption of bearing capacity were made according deterministic finite element methods. Many repeated of the different realizations of random fields lead to stable expected value of bearing capacity. The algorithm used to estimate the bearing capacity of strip footing was the random finite element method (e.g. [1]). In traditional approach of bearing capacity the formula proposed by [2] is taken into account. qf = c'Nc + qNq + 0.5γBN- γ (1) where: qf is the ultimate bearing stress, cis the cohesion, qis the overburden load due to foundation embedment, γ is the soil unit weight, Bis the footing width, and Nc, Nq and Nγ are the bearing capacity factors. The method of evaluation the bearing capacity of strip footing based on finite element method incorporate five parameters: Young's modulus (E), Poisson's ratio (ν), dilation angle (ψ), cohesion (c), and friction angle (φ). In the present study E, ν and ψ are held constant while c and φ are randomized. Although the Young's modulus does not affect the bearing capacity it governs the initial elastic response of the soil. Plastic stress redistribution is accomplished using a viscoplastic algorithm merge with an elastic perfectly plastic (Mohr - Coulomb) failure criterion. In this paper a typical finite element mesh was assumed with 8-node elements consist in 50 columns and 20 rows. Footings width B
NASA Astrophysics Data System (ADS)
Sharifi, Hamid; Larouche, Daniel
2015-09-01
The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium-copper alloy (Al-5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie-Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected.
NASA Astrophysics Data System (ADS)
Robbins, Joshua; Voth, Thomas
2007-06-01
The eXtended Finite Element Method (X-FEM) is a finite element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static mesoscale material failure to dendrite growth. Here we adapt the recent advances of Benson et al. [2] and Belytchko et al. [3] to model shock loading of polycrystalline material. Through several demonstration problems we evaluate the method for modeling the shock response of polycrystalline materials at the mesoscale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries. ([1] N. Moes, J. Dolbow, J and T. Belytschko, 1999,``A finite element method for crack growth without remeshing,'' International Journal for Numerical Methods in Engineering, 46, 131-150. [2] E. Vitali, and D. J. Benson, 2006, ``An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations,'' International Journal for Numerical Methods in Engineering, 67, 1420-1444. [3] J-H Song, P. M. A. Areias and T. Belytschko, 2006, ``A method for dynamic crack and shear band propagation with phantom nodes,'' International Journal for Numerical Methods in Engineering, 67, 868-893.)
NASA Technical Reports Server (NTRS)
Caruso, J. J.
1984-01-01
Finite element substructuring is used to predict unidirectional fiber composite hygral (moisture), thermal, and mechanical properties. COSMIC NASTRAN and MSC/NASTRAN are used to perform the finite element analysis. The results obtained from the finite element model are compared with those obtained from the simplified composite micromechanics equations. A unidirectional composite structure made of boron/HM-epoxy, S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite element analysis is performed using three dimensional isoparametric brick elements and two distinct models. The first model consists of a single cell (one fiber surrounded by matrix) to form a square. The second model uses the single cell and substructuring to form a nine cell square array. To compare computer time and results with the nine cell superelement model, another nine cell model is constructed using conventional mesh generation techniques. An independent computer program consisting of the simplified micromechanics equation is developed to predict the hygral, thermal, and mechanical properties for this comparison. The results indicate that advanced techniques can be used advantageously for fiber composite micromechanics.
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2015-01-01
This paper summarizes the procedures of (1) generating control volumes anchored at the nodes of a mesh; and (2) generating staggered control volumes via mesh reconstructions, in terms of either mesh realignment or mesh refinement, as well as presents sample results from their applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).
Two-dimensional mesh-connected parallel processor with complex processing elements
NASA Astrophysics Data System (ADS)
Chen, Chaoyang; Shen, Xubang; Wang, Zhong; Sang, Hongshi
2001-09-01
LS MPP is a massively parallel processor .It has fine-grained parallelism with up to 4096 processing elements arranged in a SIMD architecture .The processing elements are arranged in 64x64 two-dimensional mesh-connected array for low-level image processing .In this paper, the system architecture ,the components of processing element ,array controller ,memory organization of LS MPP processor are described .In the final ,we have discussed the performance of LS MPP.
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
Nonlinear finite element modeling of THUNDER piezoelectric actuators
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-06-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (Thin Layer Unimorph Ferroelectric Driver) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem
NASA Technical Reports Server (NTRS)
Roy, Indranil Danda; Eversman, Walter; Meyer, H. D.
1993-01-01
Improvements have been made in the finite element model of the acoustic radiated field from a turbofan engine inlet in the presence of a mean flow. The problem of acoustic radiation from a turbofan engine inlet is difficult to model numerically because of the large domain and high frequencies involved. A numerical model with conventional finite elements in the near field and wave envelope elements in the far field has been constructed. By employing an irrotational mean flow assumption, both the mean flow and the acoustic perturbation problem have been posed in an axisymmetric formulation in terms of the velocity potential; thereby minimizing computer storage and time requirements. The finite element mesh has been altered in search of an improved solution. The mean flow problem has been reformulated with new boundary conditions to make it theoretically rigorous. The sound source at the fan face has been modeled as a combination of positive and negative propagating duct eigenfunctions. Therefore, a finite element duct eigenvalue problem has been solved on the fan face and the resulting modal matrix has been used to implement a source boundary condition on the fan face in the acoustic radiation problem. In the post processing of the solution, the acoustic pressure has been evaluated at Gauss points inside the elements and the nodal pressure values have been interpolated from them. This has significantly improved the results. The effect of the geometric position of the transition circle between conventional finite elements and wave envelope elements has been studied and it has been found that the transition can be made nearer to the inlet than previously assumed.
Stabilized finite elements for 3D reactive flows
NASA Astrophysics Data System (ADS)
Braack, M.; Richter, Th.
2006-07-01
Objective of this work is the numerical solution of chemically reacting flows in three dimensions described by detailed reaction mechanism. The contemplated problems include, e.g. burners with 3D geometry. Contrary to the usual operator splitting method the equations are treated fully coupled with a Newton solver. This leads to the necessity of the solution of large linear non-symmetric, indefinite systems. Due to the complexity of the regarded problems we combine a variety of numerical methods, as there are goal-oriented adaptive mesh refinement, a parallel multigrid solver for the linear systems and economical stabilization techniques for the stiff problems.By blocking the solution components for every ansatz function and applying special matrix structures for each block of degrees of freedom, we can significantly reduce the required memory effort without worsening the convergence. Considering the Galerkin formulation of the regarded problems this is established by using lumping of the mass matrix and the chemical source terms. However, this technique is not longer feasible for standard stabilized finite elements as for instance Galerkin least squares techniques or streamline diffusion. Those stabilized schemes are well established for Navier-Stokes flows but for reactive flows, they introduce many further couplings into the system compared to Galerkin formulations. In this work, we discuss this issue in connection with combustion in more detail and propose the local projection stabilization technique for reactive flows. Beside the robustness of the arising linear systems we are able to maintain the problem-adapted matrix structures presented above. Finally, we will present numerical results for the proposed methods. In particular, we simulate a methane burner with a detailed reaction system involving 15 chemical species and 84 elementary reactions.
On the Development of the SIMon Finite Element Head Model.
Takhounts, Erik G; Eppinger, Rolf H; Campbell, J Quinn; Tannous, Rabih E; Power, Erik D; Shook, Lauren S
2003-10-01
The SIMon (Simulated Injury Monitor) software package is being developed to advance the interpretation of injury mechanisms based on kinematic and kinetic data measured in the advanced anthropomorphic test dummy (AATD) and applying the measured dummy response to the human mathematical models imbedded in SIMon. The human finite element head model (FEHM) within the SIMon environment is presented in this paper. Three-dimensional head kinematic data in the form of either a nine accelerometer array or three linear CG head accelerations combined with three angular velocities serves as an input to the model. Three injury metrics are calculated: Cumulative strain damage measure (CSDM) - a correlate for diffuse axonal injury (DAI); Dilatational damage measure (DDM) - to estimate the potential for contusions; and Relative motion damage measure (RMDM) - a correlate for acute subdural hematoma (ASDH). During the development, the SIMon FEHM was tuned using cadaveric neutral density targets (NDT) data and further validated against the other available cadaveric NDT data and animal brain injury experiments. The hourglass control methods, integration schemes, mesh density, and contact stiffness penalty coefficient were parametrically altered to investigate their effect on the model's response. A set of numerical and physical parameters was established that allowed a satisfactory prediction of the motion of the brain with respect to the skull, when compared with the NDT data, and a proper separation of injury/no injury cases, when compared with the brain injury data. Critical limits for each brain injury metric were also established. Finally, the SIMon FEHM performance was compared against HIC15 through the use of NHTSA frontal and side impact crash test data. It was found that the injury metrics in the current SIMon model predicted injury in all cases where HIC15 was greater than 700 and several cases from the side impact test data where HIC15 was relatively small. Side impact was
Development of an hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1993-01-01
The purpose of this research effort was to begin the study of the application of hp-version finite elements to the numerical solution of optimal control problems. Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element. One possible drawback is the increased computational effort within each element required in implementing hp-version finite elements. We are trying to determine whether this computational effort is sufficiently offset by the reduction in the number of time elements used and improved Newton-Raphson convergence so as to be useful in solving optimal control problems in real time. Because certain of the element interior unknowns can be eliminated at the element level by solving a small set of nonlinear algebraic equations in which the nodal values are taken as given, the scheme may turn out to be especially powerful in a parallel computing environment. A different processor could be assigned to each element. The number of processors, strictly speaking, is not required to be any larger than the number of sub-regions which are free of discontinuities of any kind.
Application of finite-element method to three-dimensional nuclear reactor analysis
Cheung, K.Y.
1985-01-01
The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired.
A finite element solution algorithm for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1974-01-01
A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.
Modified Immersed Finite Element Method For Fully-Coupled Fluid-Structure Interations.
Wang, Xingshi; Zhang, Lucy T
2013-12-01
In this paper, we develop a "modified" immersed finite element method (mIFEM), a non-boundary-fitted numerical technique, to study fluid-structure interactions. Using this method, we can more precisely capture the solid dynamics by solving the solid governing equation instead of imposing it based on the fluid velocity field as in the original immersed finite element (IFEM). Using the IFEM may lead to severe solid mesh distortion because the solid deformation is been over-estimated, especially for high Reynolds number flows. In the mIFEM, the solid dynamics is solved using appropriate boundary conditions generated from the surrounding fluid, therefore produces more accurate and realistic coupled solutions. We show several 2-D and 3-D testing cases where the mIFEM has a noticeable advantage in handling complicated fluid-structure interactions when the solid behavior dominates the fluid flow.
Solving elliptic finite element systems in near-linear time with support preconditioners.
Vavasis, Stephen; Hendrickson, Bruce Alan; Boman, Erik Gunnar
2005-01-01
We consider linear systems arising from the use of the finite element method for solving a certain class of linear elliptic problems. Our main result is that these linear systems, which are symmetric and positive semidefinite, are well approximated by symmetric diagonally dominant matrices. Our framework for defining matrix approximation is support theory. Significant graph theoretic work has already been developed in the support framework for preconditioners in the diagonally dominant case, and in particular it is known that such systems can be solved with iterative methods in nearly linear time. Thus, our approximation result implies that these graph theoretic techniques can also solve a class of finite element problems in nearly linear time. We show that the quality of our approximation, which controls the number of iterations in the preconditioned iterative solver, depends primarily on a mesh quality measure but not on the problem size or shape of the domain.
Influence of Material Models Used in Finite Element Modeling on Cutting Forces in Machining
NASA Astrophysics Data System (ADS)
Jivishov, Vusal; Rzayev, Elchin
2016-08-01
Finite element modeling of machining is significantly influenced by various modeling input parameters such as boundary conditions, mesh size and distribution, as well as properties of workpiece and tool materials. The flow stress model of the workpiece material is the most critical input parameter. However, it is very difficult to obtain experimental values under the same conditions as in machining operations.. This paper analyses the influence of different material models for two steels (AISI 1045 and hardened AISI 52100) in finite element modelling of cutting forces. In this study, the machining process is scaled by a constant ratio of the variable depth of cut h and cutting edge radius rβ. The simulation results are compared with experimental measurements. This comparison illustrates some of the capabilities and limitations of FEM modelling.
Evolutionary topology optimization using the extended finite element method and isolines
NASA Astrophysics Data System (ADS)
Abdi, Meisam; Wildman, Ricky; Ashcroft, Ian
2014-05-01
This study presents a new algorithm for structural topological optimization of two-dimensional continuum structures by combining the extended finite element method (X-FEM) with an evolutionary optimization algorithm. Taking advantage of an isoline design approach for boundary representation in a fixed grid domain, X-FEM can be implemented to improve the accuracy of finite element solutions on the boundary during the optimization process. Although this approach does not use any remeshing or moving mesh algorithms, final topologies have smooth and clearly defined boundaries which need no further interpretation. Numerical comparisons of the converged solutions with standard bi-directional evolutionary structural optimization solutions show the efficiency of the proposed method, and comparison with the converged solutions using MSC NASTRAN confirms the high accuracy of this method.
Use of geostatistical modeling to capture complex geology in finite-element analyses
Rautman, C.A.; Longenbaugh, R.S.; Ryder, E.E.
1995-12-01
This paper summarizes a number of transient thermal analyses performed for a representative two-dimensional cross section of volcanic tuffs at Yucca Mountain using the finite element, nonlinear heat-conduction code COYOTE-II. In addition to conventional design analyses, in which material properties are formulated as a uniform single material and as horizontally layered, internally uniform matters, an attempt was made to increase the resemblance of the thermal property field to the actual geology by creating two fairly complex, geologically realistic models. The first model was created by digitizing an existing two-dimensional geologic cross section of Yucca Mountain. The second model was created using conditional geostatistical simulation. Direct mapping of geostatistically generated material property fields onto finite element computational meshes was demonstrated to yield temperature fields approximately equivalent to those generated through more conventional procedures. However, the ability to use the geostatistical models offers a means of simplifying the physical-process analyses.
NASA Technical Reports Server (NTRS)
Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.
2013-01-01
A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.
Three-dimensional reconstruction of surface-breaking flaws using finite element methods
NASA Astrophysics Data System (ADS)
Gladchtein, R. Schifini; Bruno, A. C.
2000-05-01
We present an iterative algorithm that reconstructs the geometry of three-dimensional surface-breaking flaws from measurements using an NDE magnetic flux leakage technique. Several surface-breaking flaws in a ferromagnetic sample have been modeled using the finite element method and later reconstructed by an optimization routine. This reconstruction was achieved by modifying the coordinates of several surface nodes of the finite element mesh, solving the magnetostatic problem, and optimizing it by a least-squares method. The magnetic field was measured above the surface of the sample. This inverse solution algorithm might be particularly useful to characterize flaws detected by magnetic in-line inspection tools in oil and gas pipelines.
Bailey, T S; Chang, J H; Warsa, J S; Adams, M L
2010-12-22
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Finite element analysis of constrained total Condylar Knee Prosthesis
1998-07-13
selected for production. Because of unanticipated delays in the CRADA funding, the knee design had to be finalized before the analysis could be accomplished. Thus, the scope of work was modified by the industrial partner. It was decided that it would be most beneficial to perform FEA that would closely replicate the lab tests that had been done as the basis of the design. Exactech was responsible for transmitting the component geometries to Livermore, as well as providing complete data from the quasi-static laboratory loading tests that were performed on various designs. LLNL was responsible for defining the basic finite element mesh and carrying out the analysis. We performed the initial computer simulation and verified model integrity, using the laboratory data. After performing the parametric studies, the results were reviewed with Exactech. Also, the results were presented at the Orthopedic Research Society meeting in a poster session.
A new weak Galerkin finite element method for elliptic interface problems
Mu, Lin; Wang, Junping; Ye, Xiu; Zhao, Shan
2016-08-26
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A new weak Galerkin finite element method for elliptic interface problems
NASA Astrophysics Data System (ADS)
Mu, Lin; Wang, Junping; Ye, Xiu; Zhao, Shan
2016-11-01
A new weak Galerkin (WG) finite element method is introduced and analyzed in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. Extensive numerical experiments have been conducted to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.
Application of Mass Lumped Higher Order Finite Elements
Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.
2005-11-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
Validation of high displacement piezoelectric actuator finite element models
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.
2000-08-01
The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
NASA Astrophysics Data System (ADS)
Bai, YanHong; Wu, YongKe; Xie, XiaoPing
2016-09-01
Superconvergence and a posteriori error estimators of recovery type are analyzed for the 4-node hybrid stress quadrilateral finite element method proposed by Pian and Sumihara (Int. J. Numer. Meth. Engrg., 1984, 20: 1685-1695) for linear elasticity problems. Uniform superconvergence of order $O(h^{1+\\min\\{\\alpha,1\\}})$ with respect to the Lam\\'{e} constant $\\lambda$ is established for both the recovered gradients of the displacement vector and the stress tensor under a mesh assumption, where $\\alpha>0$ is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. A posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.
Preprocessor and postprocessor computer programs for a radial-flow finite-element model
Pucci, A.A.; Pope, D.A.
1987-01-01
Preprocessing and postprocessing computer programs that enhance the utility of the U.S. Geological Survey radial-flow model have been developed. The preprocessor program: (1) generates a triangular finite element mesh from minimal data input, (2) produces graphical displays and tabulations of data for the mesh , and (3) prepares an input data file to use with the radial-flow model. The postprocessor program is a version of the radial-flow model, which was modified to (1) produce graphical output for simulation and field results, (2) generate a statistic for comparing the simulation results with observed data, and (3) allow hydrologic properties to vary in the simulated region. Examples of the use of the processor programs for a hypothetical aquifer test are presented. Instructions for the data files, format instructions, and a listing of the preprocessor and postprocessor source codes are given in the appendixes. (Author 's abstract)
A Parallel Multigrid Method for the Finite Element Analysis of Mechanical Contact
Hales, J D; Parsons, I D
2002-03-21
A geometrical multigrid method for solving the linearized matrix equations arising from node-on-face three-dimensional finite element contact is described. The development of an efficient implementation of this combination that minimizes both the memory requirements and the computational cost requires careful construction and storage of the portion of the coarse mesh stiffness matrices that are associated with the contact stiffness on the fine mesh. The multigrid contact algorithm is parallelized in a manner suitable for distributed memory architectures: results are presented that demonstrates the scheme's scalability. The solution of a large contact problem derived from an analysis of the factory joints present in the Space Shuttle reusable solid rocket motor demonstrates the usefulness of the general approach.
Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation
NASA Astrophysics Data System (ADS)
Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.
2011-08-01
Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. Applying BHE in regional discretizations optimal conditions of mesh spacing around singular BHE nodes are derived. Optimal meshes have shown superior to such discretizations which are either too fine or too coarse. The numerical methods are benchmarked against analytical and numerical reference solutions. Practical application to a borehole thermal energy store (BTES) consisting of 80 BHE is given for the real-site BTES Crailsheim, Germany. The simulations are controlled by the specifically developed FEFLOW-TRNSYS coupling module. Scenarios indicate the effect of the groundwater flow regime on efficiency and reliability of the subsurface heat storage system.
A finite element formulation for scattering from electrically large 2-dimensional structures
NASA Technical Reports Server (NTRS)
Ross, Daniel C.; Volakis, John L.
1992-01-01
A finite element formulation is given using the scattered field approach with a fictitious material absorber to truncate the mesh. The formulation includes the use of arbitrary approximation functions so that more accurate results can be achieved without any modification to the software. Additionally, non-polynomial approximation functions can be used, including complex approximation functions. The banded system that results is solved with an efficient sparse/banded iterative scheme and as a consequence, large structures can be analyzed. Results are given for simple cases to verify the formulation and also for large, complex geometries.
Finite element simulation of turbulent Couette-Poiseuille flows using a low Reynolds number k- model
NASA Astrophysics Data System (ADS)
Kazemzadeh Hannani, Siamak; Stanislas, Michel
1999-05-01
Developing Couette-Poiseuille flows at Re=5000 are studied using a low Reynolds number k- two-equation model and a finite element formulation. Mesh-independent solutions are obtained using a standard Galerkin formulation and a Galerkin/least-squares stabilized method. The predictions for the velocity and turbulent kinetic energy are compared with available experimental results and to the DNS data. Second moment closure's solutions are also compared with those of the k- model. The deficiency of eddy viscosity models to predict dissymmetric low Reynolds number channel flows has been demonstrated. Copyright
TRINITY II: A post-processing program for two-dimensional finite element analysis data
Glick, J.H.; Gartling, D.K.
1988-05-01
TRINITY II is a program for post-processing data from two-dimensional finite element analyses. The program provides graphical display of mesh and solution data as well as data manipulation, file editing and selective printing of data. TRINITY II accepts data from any analysis code that employs the EXODUS file format; post-processing can be done interactively or in batch mode using any graphics device supported by the Sandia Virtual Device Interface. The capabilities and use of the program are described. 4 refs.
Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh; Lang, Jerry
2010-01-01
Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
Finite Element Analysis for Pseudo Hyperbolic Integral-Differential Equations
NASA Astrophysics Data System (ADS)
Cui, Xia
The finite element method and its analysis for pseudo-hyperbolic integral-differential equations with nonlinear boundary conditions is considered. A new projection is introduced to obtain optimal L2 convergence estimates. The present techniques can be applied to treat elastic wave problems with absorbing boundary conditions in porous media. Keywords: pseudo-hyperbolic integral-differential equation, finite element, Sobolev-Volterra projection, convergence analysis
Simulation of two-dimensional waterflooding using mixed finite elements
Chavent, G.; Jaffre, J.; Cohen, G.; Dupuy, M.; Dieste, I.
1982-01-01
A new method for the simulation of incompressible diphasic flows in two dimensions is presented, the distinctive features of which are: (1) reformation of the basic equation and specific choices of the finite element approximation of the same; (11) use of a mixed finite elements method, approximating both scalar and vector functions. Several test examples are shown, including gravity and capillary effects. The use of discontinuous basis functions proved successful for an accurate representation of sharp fronts. 16 refs.
Integration of geometric modeling and advanced finite element preprocessing
NASA Technical Reports Server (NTRS)
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Finite element analysis of vibration and damping of laminated composites
NASA Astrophysics Data System (ADS)
Rikards, Rolands
Simple finite elements are used to form a special laminated beam and plate superelements excluding all degrees of freedom in the nodes of the middle layer, and the finite element analysis of this structure is performed. To estimate damping of structures, modal loss factors are calculated, using two methods: the 'exact' method of complex eigenvalues and the approximate energy method. It was found that both methods give satisfactory results. However, the energy method needs less computer time than the exact method.
Finite element analysis of a composite wheelchair wheel design
NASA Technical Reports Server (NTRS)
Ortega, Rene
1994-01-01
The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.
Mathematical aspects of finite element methods for incompressible viscous flows
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
Gaston, L.; Glut, B.; Bellet, M.; Chenot, J.L.
1995-12-31
This paper presents a two-dimensional lagrangian-eulerian finite element approach of non-steady state Navier-Stokes fluid flows with free surfaces, like those occurring during the mould filling stage in casting processes. The proposed model is based on a mixed velocity-pressure finite element formulation, including an augmented Lagrangian technique and an iterative solver of Uzawa type. Mesh updating is carried out through an arbitrary lagrangian-eulerian method in order to describe properly the free surface evolution. Heat transfer through the fluid flow is solved by a convection-diffusion splitting technique. The efficiency of the method is illustrated on an example of gravity casting.
Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F
2015-08-01
Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. PMID:26054803
Aguinaga, Iker; Fierz, Basil; Spillmann, Jonas; Harders, Matthias
2010-12-01
The behavior, performance, and run-time of mechanical simulations in interactive virtual surgery depend heavily on the type of numerical differential equation solver used to integrate in time the dynamic equations obtained from simulation methods, such as the Finite Element Method. Explicit solvers are fast but only conditionally stable. The condition number of the stiffness matrix limits the highest possible time step. This limit is related to the geometrical properties of the underlying mesh, such as element shape and size. In fact, it can be governed by a small set of ill-shaped elements. For many applications this issue can be solved a priori by a careful meshing. However, when meshes are cut during interactive surgery simulation, it is difficult and computationally expensive to control the quality of the resulting elements. As an alternative, we propose to modify the elemental stiffness matrices directly in order to ensure stability. In this context, we first investigate the behavior of the eigenmodes of the elemental stiffness matrix in a Finite Element Method. We then propose a simple filter to reduce high model frequencies and thus allow larger time steps, while maintaining the general mechanical behavior. PMID:20869390
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
Wang, Dafang; Kirby, Robert M; Johnson, Chris R
2011-06-01
We consider the inverse electrocardiographic problem of computing epicardial potentials from a body-surface potential map. We study how to improve numerical approximation of the inverse problem when the finite-element method is used. Being ill-posed, the inverse problem requires different discretization strategies from its corresponding forward problem. We propose refinement guidelines that specifically address the ill-posedness of the problem. The resulting guidelines necessitate the use of hybrid finite elements composed of tetrahedra and prism elements. Also, in order to maintain consistent numerical quality when the inverse problem is discretized into different scales, we propose a new family of regularizers using the variational principle underlying finite-element methods. These variational-formed regularizers serve as an alternative to the traditional Tikhonov regularizers, but preserves the L(2) norm and thereby achieves consistent regularization in multiscale simulations. The variational formulation also enables a simple construction of the discrete gradient operator over irregular meshes, which is difficult to define in traditional discretization schemes. We validated our hybrid element technique and the variational regularizers by simulations on a realistic 3-D torso/heart model with empirical heart data. Results show that discretization based on our proposed strategies mitigates the ill-conditioning and improves the inverse solution, and that the variational formulation may benefit a broader range of potential-based bioelectric problems.
The L sub 1 finite element method for pure convection problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1991-01-01
The least squares (L sub 2) finite element method is introduced for 2-D steady state pure convection problems with smooth solutions. It is proven that the L sub 2 method has the same stability estimate as the original equation, i.e., the L sub 2 method has better control of the streamline derivative. Numerical convergence rates are given to show that the L sub 2 method is almost optimal. This L sub 2 method was then used as a framework to develop an iteratively reweighted L sub 2 finite element method to obtain a least absolute residual (L sub 1) solution for problems with discontinuous solutions. This L sub 1 finite element method produces a nonoscillatory, nondiffusive and highly accurate numerical solution that has a sharp discontinuity in one element on both coarse and fine meshes. A robust reweighting strategy was also devised to obtain the L sub 1 solution in a few iterations. A number of examples solved by using triangle and bilinear elements are presented.
Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments
NASA Astrophysics Data System (ADS)
Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak
2015-10-01
The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.
Dynamical observer for a flexible beam via finite element approximations
NASA Technical Reports Server (NTRS)
Manitius, Andre; Xia, Hong-Xing
1994-01-01
The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.
Finite element methods for enhanced oil recovery Simulation
Cohen, M.F.
1985-02-01
A general, finite element procedure for reservoir simulation is presented. This effort is directed toward improving the numerical behavior of standard upstream, or upwind, finite difference techniques, without significantly increasing the computational costs. Two methods from previous authors' work are modified and developed: upwind finite elements and the Petrov-Galerkin method. These techniques are applied in a one- and two-dimensional, surfactant/ polymer simulator. The paper sets forth the mathematical formulation and several details concerning the implementation. The results indicate that the PetrovGalerkin method does significantly reduce numericaldiffusion errors, while it retains the stability of the first-order, upwind methods. It is also relatively simple to implement. Both the upwind, and PetrovGalerkin, finite element methods demonstrate little sensitivity to grid orientation.
Shadid, J.N.; Moffat, H.K.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Salinger, A.G.
1996-05-01
The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solver coupled multiple Poisson or advection-diffusion- reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element data base suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.
All-electron Kohn–Sham density functional theory on hierarchic finite element spaces
Schauer, Volker; Linder, Christian
2013-10-01
In this work, a real space formulation of the Kohn–Sham equations is developed, making use of the hierarchy of finite element spaces from different polynomial order. The focus is laid on all-electron calculations, having the highest requirement onto the basis set, which must be able to represent the orthogonal eigenfunctions as well as the electrostatic potential. A careful numerical analysis is performed, which points out the numerical intricacies originating from the singularity of the nuclei and the necessity for approximations in the numerical setting, with the ambition to enable solutions within a predefined accuracy. In this context the influence of counter-charges in the Poisson equation, the requirement of a finite domain size, numerical quadratures and the mesh refinement are examined as well as the representation of the electrostatic potential in a high order finite element space. The performance and accuracy of the method is demonstrated in computations on noble gases. In addition the finite element basis proves its flexibility in the calculation of the bond-length as well as the dipole moment of the carbon monoxide molecule.
An overset mesh approach for 3D mixed element high-order discretizations
NASA Astrophysics Data System (ADS)
Brazell, Michael J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.
2016-10-01
A parallel high-order Discontinuous Galerkin (DG) method is used to solve the compressible Navier-Stokes equations in an overset mesh framework. The DG solver has many capabilities including: hp-adaption, curved cells, support for hybrid, mixed-element meshes, and moving meshes. Combining these capabilities with overset grids allows the DG solver to be used in problems with bodies in relative motion and in a near-body off-body solver strategy. The overset implementation is constructed to preserve the design accuracy of the baseline DG discretization. Multiple simulations are carried out to validate the accuracy and performance of the overset DG solver. These simulations demonstrate the capability of the high-order DG solver to handle complex geometry and large scale parallel simulations in an overset framework.
Full gradient stabilized cut finite element methods for surface partial differential equations
NASA Astrophysics Data System (ADS)
Burman, Erik; Hansbo, Peter; Larson, Mats G.; Massing, André; Zahedi, Sara
2016-10-01
We propose and analyze a new stabilized cut finite element method for the Laplace-Beltrami operator on a closed surface. The new stabilization term provides control of the full $\\mathbb{R}^3$ gradient on the active mesh consisting of the elements that intersect the surface. Compared to face stabilization, based on controlling the jumps in the normal gradient across faces between elements in the active mesh, the full gradient stabilization is easier to implement and does not significantly increase the number of nonzero elements in the mass and stiffness matrices. The full gradient stabilization term may be combined with a variational formulation of the Laplace-Beltrami operator based on tangential or full gradients and we present a simple and unified analysis that covers both cases. The full gradient stabilization term gives rise to a consistency error which, however, is of optimal order for piecewise linear elements, and we obtain optimal order a priori error estimates in the energy and $L^2$ norms as well as an optimal bound of the condition number. Finally, we present detailed numerical examples where we in particular study the sensitivity of the condition number and error on the stabilization parameter.
An alternative Laplacian electrostatic field finite element formulation
Barber, P.F.; Lauber, T.S.
1987-01-01
An alternative finite element method for calculating three-dimensional electrostatic fields is described. The matrix equation is assembled using linear tetrahedral elements and an electrical network solution techniques known as impedance matrix building with axis discarding. The solutions of sample problems are described.
Maker, B.N.
1995-04-14
This report provides a user`s manual for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Over twenty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a factorization method, for which case bandwidth minimization is optional. Data may be stored either in or out of core memory to allow for large analyses.
A Finite Element Evaluation of Residual Stress in a Thread Form Generated by a Cold-Rolling Process
Martin, J.A.
1999-02-26
This paper presents a finite element evaluation of residual stress in a thread form generated by a cold rolling process. Included in this evaluation area mesh development study, methodology sensitivity studies, and the effects of applied loads on the stress in a rolled thread root. A finite element analysis of the thread forming process using implicit modeling methodology, incremental large deformation, elastic-plastic material properties, and adaptive meshing techniques was performed. Results of the study indicate the axial component of the residual stress in the thread root of the fastener is highly compressive. Results also indicate that a rolled threaded fastener loaded to an average tensile stress equal to yield through the cross-section will retain compressive stresses in the thread root. This compressive stress state will be advantageous when evaluating fasteners for fatigue and environmental concerns.
Adaptive explicit and implicit finite element methods for transient thermal analysis
NASA Technical Reports Server (NTRS)
Probert, E. J.; Hassan, O.; Morgan, K.; Peraire, J.
1992-01-01
The application of adaptive finite element methods to the solution of transient heat conduction problems in two dimensions is investigated. The computational domain is represented by an unstructured assembly of linear triangular elements and the mesh adaptation is achieved by local regeneration of the grid, using an error estimation procedure coupled to an automatic triangular mesh generator. Two alternative solution procedures are considered. In the first procedure, the solution is advanced by explicit timestepping, with domain decomposition being used to improve the computational efficiency of the method. In the second procedure, an algorithm for constructing continuous lines which pass only once through each node of the mesh is employed. The lines are used as the basis of a fully implicit method, in which the equation system is solved by line relaxation using a block tridiagonal equation solver. The numerical performance of the two procedures is compared for the analysis of a problem involving a moving heat source applied to a convectively cooled cylindrical leading edge.
Numerical Quadrature and Operator Splitting in Finite Element Methods for Cardiac Electrophysiology
Krishnamoorthi, Shankarjee; Sarkar, Mainak; Klug, William S.
2015-01-01
SUMMARY We examine carefully the numerical accuracy and computational efficiency of alternative formulations of the finite-element solution procedure for the mono-domain equations of cardiac electrophysiology (EP), focusing on the interaction of spatial quadrature implementations with operator splitting, examining both nodal and Gauss quadrature methods, and implementations that mix nodal storage of state variables with Gauss quadrature. We evaluate the performance of all possible combinations of “lumped” approximations of consistent capacitance and mass matrices. Most generally we find that quadrature schemes and lumped approximations that produce decoupled nodal ionic equations allow for the greatest computational efficiency, this being afforded through the use of asynchronous adaptive time-stepping of the ionic state-variable ODEs. We identify two lumped approximation schemes that exhibit superior accuracy, rivaling that of the most expensive variationally consistent implementations. Finally we illustrate some of the physiological consequences of discretization error in EP simulation relevant to cardiac arrhythmia and fibrillation. These results suggest caution with the use of semi-automated free-form tetrahedral and hexahedral meshing algorithms available in most commercially available meshing software, which produce non-uniform meshes having a large distribution of element sizes. PMID:23873868
Adaptive grid finite element model of the tokamak scrapeoff layer
Kuprat, A.P.; Glasser, A.H.
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
Finite element analysis of two disk rotor system
NASA Astrophysics Data System (ADS)
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Preconditioned CG-solvers and finite element grids
Bauer, R.; Selberherr, S.
1994-12-31
To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Design and finite element analysis of oval man way
Hari, Y.; Gryder, B.
1996-12-01
This paper presents the design of an oval man way in the side wall of a cylindrical pressure vessel. ASME Code Section 8 is used to obtain the design parameters of the oval man way, man way cover and bolts. The code calculations require some assumptions which may not be valid. A typical design example is taken. STAAD III finite element code with plate elements is used to model the oval man way, man way cover and bolts. The stresses calculated using ASME Code Section 8 and other analytical formulas for plate and shells are compared with the stresses obtained by Finite Element Modeling. This paper gives the designer of oval man way the ability to perform a finite element analysis and compare it with the analytical calculations and assumptions made. This gives added confidence to the designer as to the validity of his calculations and assumptions.
Guo, Hongqiang; Shah, Mitul; Spilker, Robert L.
2014-01-01
The study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. However, to date, few biphasic finite element contact analysis for 3D physiological geometries under finite deformation has been developed. The objective of this paper is to develop a hyperelastic biphasic contact implementation for finite deformation and sliding problem. An augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The finite element implementation was based on a general purpose software, COMSOL Multiphysics. The accuracy of the implementation is verified using example problems, for which solutions are available by alternative analyses. The implementation was proven to be robust and able to handle finite deformation and sliding. PMID:24496915
NASA Astrophysics Data System (ADS)
Grayver, Alexander V.
2015-07-01
This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-element method (FEM). The key novel aspect of the introduced algorithm is the use of automatic mesh refinement techniques for both forward and inverse modelling. These techniques alleviate tedious and subjective procedure of choosing a suitable model parametrization. To avoid overparametrization, meshes for forward and inverse problems were decoupled. For calculation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM fields for each frequency were calculated using independent meshes in order to account for substantially different spatial behaviour of the fields over a wide range of frequencies. An automatic approach for efficient initial mesh design in inverse problems based on linearized model resolution matrix was developed. To make this algorithm suitable for large-scale problems, it was proposed to use a low-rank approximation of the linearized model resolution matrix. In order to fill a gap between initial and true model complexities and resolve emerging 3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined in the neighborhoods of points with the largest variations. A series of numerical tests were performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement based on the model resolution estimates provides an efficient tool to derive initial meshes which account for arbitrary survey layouts, data types, frequency content and measurement uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve features on multiple scales while keeping number of unknowns low. However, such meshes exhibit dependency on an initial model guess. Additionally, it is demonstrated
Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves
NASA Astrophysics Data System (ADS)
Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian
2012-12-01
This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.
Modeling fluid flow in deformation bands with stabilized localization mixed finite elements
NASA Astrophysics Data System (ADS)
Sun, W.; Ostien, J. T.; Foulk, J. W.; Abdeljawad, F.
2012-12-01
Deformation bands in geological materials refer to narrow zones of inhomogeneous strain. Their onset and propagation may cause significant changes in microstructures and therefore profoundly enhance or suppress fluid flow and induce anisotropy. These changes in hydraulic properties have strong implications in geotechnical engineering, carbon dioxide sequestration and nuclear waste storage. The difficulty in modeling such multiphysics phenomena is threefold. 1. Monolithically coupled promechanics formulation may lead to non-physical oscillation in pore pressure near the undrained limit if identical mesh and basis functions are used for pore pressure and displacement. 2. Onsets of deformation bands may lead to non-converging mesh-dependent results if no length scale is introduced to the finite element formulation. 3. Modeling anisotropy induced by the deformation band may require a very fine mesh to capture the sharp pore pressure gradient and results in a computational intensive system. In this study, we introduce a projection-based technique to stabilize a large deformation finite element model that eliminates the non-physical oscillation in pore pressure. Using a 1D analytical solution as guideline, we introduce a simple scheme that can adaptively update the optimal value for the stabilization parameter that can restore stability without over-diffusing the system. This stabilized model is coupled with a localization element technique used to introduce proper length scale to regularize the governing equations and resolve the fluid flow jumps across the deformation bands. Numerical examples are presented to demonstrate the properties and performance of the proposed localized models. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
Deformation modes in the finite element absolute nodal coordinate formulation
NASA Astrophysics Data System (ADS)
Sugiyama, Hiroyuki; Gerstmayr, Johannes; Shabana, Ahmed A.
2006-12-01
The objective of this study is to provide interpretation of the deformation modes in the finite element absolute nodal coordinate formulation using several strain definitions. In this finite element formulation, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element as well as at the nodal points. The results obtained in this study clearly show cross-section deformation modes eliminated when the number of the finite element nodal coordinates is systematically and consistently reduced. Using the procedure discussed in this paper one can obtain a reduced order dynamic model, eliminate position vector gradients that introduce high frequencies to the solution of some problems, achieve the continuity of the remaining gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Furthermore, the resulting dynamic model, unlike large rotation finite element formulations, leads to a unique rotation field, and as a consequence, the obtained formulation does not suffer from the problem of coordinate redundancy that characterizes existing large deformation finite element formulations. In order to accurately define strain components that can have easy physical interpretation, a material coordinate system is introduced to define the material element rotation and deformation. Using the material coordinate system, the Timoshenko-Reissner and Euler -Bernoulli beam models can be systematically obtained as special cases of the absolute nodal coordinate formulation beam models. While a constraint approach is used in this study to eliminate the cross-section deformation modes, it is important to point out as mentioned in this paper that lower-order finite elements, some of which already presented in previous investigations, can be efficiently used in thin and stiff structure applications.
Development and validation of a three-dimensional finite element model of the face.
Barbarino, G G; Jabareen, M; Trzewik, J; Nkengne, A; Stamatas, G; Mazza, E
2009-04-01
A detailed three-dimensional finite element model of the face is presented in this paper. Bones, muscles, skin, fat, and superficial muscoloaponeurotic system were reconstructed from magnetic resonance images and modeled according to anatomical, plastic, and reconstructive surgery literature. The finite element mesh, composed of hexahedron elements, was generated through a semi-automatic procedure with an effective compromise between the detailed representation of anatomical parts and the limitation of the computational time. Nonlinear constitutive equations are implemented in the finite element model. The corresponding model parameters were selected according to previous work with mechanical measurements on soft facial tissue, or based on reasonable assumptions. Model assumptions concerning tissue geometry, interactions, mechanical properties, and the boundary conditions were validated through comparison with experiments. The calculated response of facial tissues to gravity loads, to the application of a pressure inside the oral cavity and to the application of an imposed displacement was shown to be in good agreement with the data from corresponding magnetic resonance images and holographic measurements. As a first application, gravimetric soft tissue descent was calculated from the long time action of gravity on the face in the erect position, with tissue aging leading to a loss of stiffness. Aging predictions are compared with the observations from an "aging database" with frontal photos of volunteers at different age ranges (i.e., 20-40 years and 50-70 years). PMID:19275435
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2014-01-01
This paper summarizes the procedures of inserting a thin-layer mesh to existing inviscid polyhedral mesh either with or without hanging-node elements as well as presents sample results from its applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).
NASA Technical Reports Server (NTRS)
Wey, Changju Thomas; Liu, Nan-Suey
2014-01-01
This paper summarizes the procedures of inserting a thin-layer mesh to existing inviscid polyhedral mesh either with or without hanging-node elements as well as presents sample results from its applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).
p-version finite element modeling for NDE
NASA Astrophysics Data System (ADS)
Issa, Camille A.; Balasubramaniam, Krishnan
The formulation for the quadrilateral element of a p-version FEM for NDE is presented. Nodal shape, side shape, and internal shape functions are derived. The problem of wave propagation in solids is investigated using a Newmark direct integration scheme applied to p-version FEM meshes. It is found that numerical noise prevails for all the time steps and along the whole structure, and that there is no apparent wave propagation phenomenon in the displacement time-history. The numerical noise suggests that the abrupt change in the element material properties between the different layers of composite material and glue resin is a fatal modeling defect. The negative effect of using higher order p-version elements and the abrupt change of the element material properties should be countered by using a greater number of elements to model each layer and higher order mapping functions in the mapping process.
New triangular and quadrilateral plate-bending finite elements
NASA Technical Reports Server (NTRS)
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report
Siefert, Christopher; Bochev, Pavel Blagoveston; Kramer, Richard Michael Jack; Voth, Thomas Eugene; Cox, James
2014-09-01
Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.
Analytical and finite element simulation of a three-bar torsion spring
NASA Astrophysics Data System (ADS)
Rădoi, M.; Cicone, T.
2016-08-01
The present study is dedicated to the innovative 3-bar torsion spring used as suspension solution for the first time at Lunokhod-1, the first autonomous vehicle sent for the exploration of the Moon in the early 70-ies by the former USSR. The paper describes a simple analytical model for calculation of spring static characteristics, taking into account both torsion and bending effects. Closed form solutions of this model allows quick and elegant parametric analysis. A comparison with a single torsion bar with the same stiffness reveal an increase of the maximum stress with more than 50%. A 3D finite element (FE) simulation is proposed to evaluate the accuracy of the analytical model. The model was meshed in an automated pattern (sweep for hubs and tetrahedrons for bars) with mesh morphing. Very close results between analytical and numerical solutions have been found, concluding that the analytical model is accurate. The 3-D finite element simulation was used to evaluate the effects of design details like fillet radius of the bars or contact stresses in the hex hub.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
NASA Astrophysics Data System (ADS)
Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane
2014-10-01
We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.
A 3D finite element ALE method using an approximate Riemann solution
Chiravalle, V. P.; Morgan, N. R.
2016-08-09
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less
Spectral finite-element methods for parametric constrained optimization problems.
Anitescu, M.; Mathematics and Computer Science
2009-01-01
We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.
Development and analysis of a finite element model to simulate pulmonary emphysema in CT imaging.
Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo
2015-01-01
In CT imaging, pulmonary emphysema appears as lung regions with Low-Attenuation Areas (LAA). In this study we propose a finite element (FE) model of lung parenchyma, based on a 2-D grid of beam elements, which simulates pulmonary emphysema related to smoking in CT imaging. Simulated LAA images were generated through space sampling of the model output. We employed two measurements of emphysema extent: Relative Area (RA) and the exponent D of the cumulative distribution function of LAA clusters size. The model has been used to compare RA and D computed on the simulated LAA images with those computed on the models output. Different mesh element sizes and various model parameters, simulating different physiological/pathological conditions, have been considered and analyzed. A proper mesh element size has been determined as the best trade-off between reliable results and reasonable computational cost. Both RA and D computed on simulated LAA images were underestimated with respect to those calculated on the models output. Such underestimations were larger for RA (≈ -44 ÷ -26%) as compared to those for D (≈ -16 ÷ -2%). Our FE model could be useful to generate standard test images and to design realistic physical phantoms of LAA images for the assessment of the accuracy of descriptors for quantifying emphysema in CT imaging.
Investigation of Finite Element-Abc Methods for Electromagnetic Field Simulation
NASA Astrophysics Data System (ADS)
Chatterjee, Arindam
The demand for accurate characterization and design of complex, composite structures has necessitated the use of numerical techniques for their analysis. Since these structures are often not amenable to closed-form analytical expressions, numerical methods are the only recourse for analyzing these structures. However, a viable numerical method needs to be as efficient and economical as possible such that increasingly complex and large problems can be modeled with minimal computational resources. To this end, the method of finite elements in conjunction with absorbing boundary conditions (ABCs) is proposed in this thesis for solving large and complex three-dimensional problems in unbounded domains. The problem is first formulated using the variational as well as the weighted residual approach. The field variable is expanded in terms of edge-based finite elements on tetrahedra, for the sake of accurate modeling of field continuity and ease of imposing boundary conditions. Initially, the closed problem is solved by determining the eigenvalues of arbitrary, inhomogeneous metallic cavities. For the open problem, ABCs are used as boundary conditions on spherical mesh termination boundaries. The resulting matrix system is sparse symmetric and is found to converge rapidly when solved iteratively. Remarkably accurate results are obtained by placing the truncation boundary only 0.3 lambda from the farthest edge of the target. In order to solve very large problems, the code is optimized on vector as well as parallel architectures like the KSR1 and the Intel iPSC/860. Near-linear speedup is obtained on the KSR1 for the computationally intensive portions of the finite element code, allowing extremely rapid solution for problems involving about half a million unknowns. Since existing ABCs were applicable on spherical mesh termination boundaries, long, thin geometries could be solved only at enormous computational cost. New ABCs enforceable on mesh termination boundaries
Cubit Mesh Generation Toolkit V11.1
2009-03-25
CUBIT prepares models to be used in computer-based simulation of real-world events. CUBIT is a full-featured software toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking assemblies.
Finite Element Method for Capturing Ultra-relativistic Shocks
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2003-01-01
While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.