A progress report on estuary modeling by the finite-element method
Gray, William G.
1978-01-01
Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)
Spatial Convergence of Three Dimensional Turbulent Flows
NASA Technical Reports Server (NTRS)
Park, Michael A.; Anderson, W. Kyle
2016-01-01
Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.
Stabilized Finite Elements in FUN3D
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Newman, James C.; Karman, Steve L.
2017-01-01
A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation
Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei
2013-01-01
We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L 2(Ω))2 space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term w = −Δu and a priori error estimates in (L 2)2-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes. PMID:23864831
A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.
Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei; Liu, Yang
2013-01-01
We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L²(Ω))² space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L² and H¹-norm for both the scalar unknown u and the diffusion term w = -Δu and a priori error estimates in (L²)²-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes.
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1995-01-01
A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.
Numerical Methods Using B-Splines
NASA Technical Reports Server (NTRS)
Shariff, Karim; Merriam, Marshal (Technical Monitor)
1997-01-01
The seminar will discuss (1) The current range of applications for which B-spline schemes may be appropriate (2) The property of high-resolution and the relationship between B-spline and compact schemes (3) Comparison between finite-element, Hermite finite element and B-spline schemes (4) Mesh embedding using B-splines (5) A method for the incompressible Navier-Stokes equations in curvilinear coordinates using divergence-free expansions.
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
Development of non-linear finite element computer code
NASA Technical Reports Server (NTRS)
Becker, E. B.; Miller, T.
1985-01-01
Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.
COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION
A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...
High-Accuracy Finite Element Method: Benchmark Calculations
NASA Astrophysics Data System (ADS)
Gusev, Alexander; Vinitsky, Sergue; Chuluunbaatar, Ochbadrakh; Chuluunbaatar, Galmandakh; Gerdt, Vladimir; Derbov, Vladimir; Góźdź, Andrzej; Krassovitskiy, Pavel
2018-02-01
We describe a new high-accuracy finite element scheme with simplex elements for solving the elliptic boundary-value problems and show its efficiency on benchmark solutions of the Helmholtz equation for the triangle membrane and hypercube.
A study of the response of nonlinear springs
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Knott, T. W.; Johnson, E. R.
1991-01-01
The various phases to developing a methodology for studying the response of a spring-reinforced arch subjected to a point load are discussed. The arch is simply supported at its ends with both the spring and the point load assumed to be at midspan. The spring is present to off-set the typical snap through behavior normally associated with arches, and to provide a structure that responds with constant resistance over a finite displacement. The various phases discussed consist of the following: (1) development of the closed-form solution for the shallow arch case; (2) development of a finite difference analysis to study (shallow) arches; and (3) development of a finite element analysis for studying more general shallow and nonshallow arches. The two numerical analyses rely on a continuation scheme to move the solution past limit points, and to move onto bifurcated paths, both characteristics being common to the arch problem. An eigenvalue method is used for a continuation scheme. The finite difference analysis is based on a mixed formulation (force and displacement variables) of the governing equations. The governing equations for the mixed formulation are in first order form, making the finite difference implementation convenient. However, the mixed formulation is not well-suited for the eigenvalue continuation scheme. This provided the motivation for the displacement based finite element analysis. Both the finite difference and the finite element analyses are compared with the closed form shallow arch solution. Agreement is excellent, except for the potential problems with the finite difference analysis and the continuation scheme. Agreement between the finite element analysis and another investigator's numerical analysis for deep arches is also good.
ICASE Semiannual Report, October 1, 1992 through March 31, 1993
1993-06-01
NUMERICAL MATHEMATICS Saul Abarbanel Further results have been obtained regarding long time integration of high order compact finite difference schemes...overall accuracy. These problems are common to all numerical methods: finite differences , finite elements and spectral methods. It should be noted that...fourth order finite difference scheme. * In the same case, the D6 wavelets provide a sixth order finite difference , noncompact formula. * The wavelets
A Mixed Finite Volume Element Method for Flow Calculations in Porous Media
NASA Technical Reports Server (NTRS)
Jones, Jim E.
1996-01-01
A key ingredient in the simulation of flow in porous media is the accurate determination of the velocities that drive the flow. The large scale irregularities of the geology, such as faults, fractures, and layers suggest the use of irregular grids in the simulation. Work has been done in applying the finite volume element (FVE) methodology as developed by McCormick in conjunction with mixed methods which were developed by Raviart and Thomas. The resulting mixed finite volume element discretization scheme has the potential to generate more accurate solutions than standard approaches. The focus of this paper is on a multilevel algorithm for solving the discrete mixed FVE equations. The algorithm uses a standard cell centered finite difference scheme as the 'coarse' level and the more accurate mixed FVE scheme as the 'fine' level. The algorithm appears to have potential as a fast solver for large size simulations of flow in porous media.
Interpolation Hermite Polynomials For Finite Element Method
NASA Astrophysics Data System (ADS)
Gusev, Alexander; Vinitsky, Sergue; Chuluunbaatar, Ochbadrakh; Chuluunbaatar, Galmandakh; Gerdt, Vladimir; Derbov, Vladimir; Góźdź, Andrzej; Krassovitskiy, Pavel
2018-02-01
We describe a new algorithm for analytic calculation of high-order Hermite interpolation polynomials of the simplex and give their classification. A typical example of triangle element, to be built in high accuracy finite element schemes, is given.
Weak Galerkin method for the Biot’s consolidation model
Hu, Xiaozhe; Mu, Lin; Ye, Xiu
2017-08-23
In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less
Weak Galerkin method for the Biot’s consolidation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaozhe; Mu, Lin; Ye, Xiu
In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less
Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin
2012-01-01
An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108
Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin
2012-01-01
An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.
Chronopoulos, D
2017-01-01
A systematic expression quantifying the wave energy skewing phenomenon as a function of the mechanical characteristics of a non-isotropic structure is derived in this study. A structure of arbitrary anisotropy, layering and geometric complexity is modelled through Finite Elements (FEs) coupled to a periodic structure wave scheme. A generic approach for efficiently computing the angular sensitivity of the wave slowness for each wave type, direction and frequency is presented. The approach does not involve any finite differentiation scheme and is therefore computationally efficient and not prone to the associated numerical errors. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of hypervelocity meteoroid impact on orbital space stations
NASA Technical Reports Server (NTRS)
Leimbach, K. R.; Prozan, R. J.
1973-01-01
Structural damage resulting in hypervelocity impact of a meteorite on a spacecraft is discussed. Of particular interest is the backside spallation caused by such a collision. To treat this phenomenon two numerical schemes were developed in the course of this study to compute the elastic-plastic flow fracture of a solid. The numerical schemes are a five-point finite difference scheme and a four-node finite element scheme. The four-node finite element scheme proved to be less sensitive to the type of boundary conditions and loadings. Although further development work is needed to improve the program versatility (generalization of the network topology, secondary storage for large systems, improving of the coding to reduce the run time, etc.), the basic framework is provided for a utilitarian computer program which may be used in a wide variety of situations. Analytic results showing the program output are given for several test cases.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.
1993-01-01
Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).
Edge equilibrium code for tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xujing; Zakharov, Leonid E.; Drozdov, Vladimir V.
2014-01-15
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.
Supercomputer implementation of finite element algorithms for high speed compressible flows
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.
1986-01-01
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.
NASA Technical Reports Server (NTRS)
Ecer, A.; Akay, H. U.
1981-01-01
The finite element method is applied for the solution of transonic potential flows through a cascade of airfoils. Convergence characteristics of the solution scheme are discussed. Accuracy of the numerical solutions is investigated for various flow regions in the transonic flow configuration. The design of an efficient finite element computational grid is discussed for improving accuracy and convergence.
Edge Equilibrium Code (EEC) For Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xujling
2014-02-24
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids
NASA Technical Reports Server (NTRS)
Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modeled by fractional integrodifferential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating, as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator.
A comparative study of an ABC and an artificial absorber for truncating finite element meshes
NASA Technical Reports Server (NTRS)
Oezdemir, T.; Volakis, John L.
1993-01-01
The type of mesh termination used in the context of finite element formulations plays a major role on the efficiency and accuracy of the field solution. The performance of an absorbing boundary condition (ABC) and an artificial absorber (a new concept) for terminating the finite element mesh was evaluated. This analysis is done in connection with the problem of scattering by a finite slot array in a thick ground plane. The two approximate mesh truncation schemes are compared with the exact finite element-boundary integral (FEM-BI) method in terms of accuracy and efficiency. It is demonstrated that both approximate truncation schemes yield reasonably accurate results even when the mesh is extended only 0.3 wavelengths away from the array aperture. However, the artificial absorber termination method leads to a substantially more efficient solution. Moreover, it is shown that the FEM-BI method remains quite competitive with the FEM-artificial absorber method when the FFT is used for computing the matrix-vector products in the iterative solution algorithm. These conclusions are indeed surprising and of major importance in electromagnetic simulations based on the finite element method.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.
Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less
A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes
Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.
2017-02-05
Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less
NASA Astrophysics Data System (ADS)
Glazyrina, O. V.; Pavlova, M. F.
2016-11-01
We consider the parabolic inequality with monotone with respect to a gradient space operator, which is depended on integral with respect to space variables solution characteristic. We construct a two-layer differential scheme for this problem with use of penalty method, semidiscretization with respect to time variable method and the finite element method (FEM) with respect to space variables. We proved a convergence of constructed mothod.
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.; Bova, Stephen W.; Bond, Ryan B.
2011-01-01
Presentation topics include background and motivation; physical modeling including governing equations and thermochemistry; finite element formulation; results of inviscid thermal nonequilibrium chemically reacting flow and viscous thermal equilibrium chemical reacting flow; and near-term effort.
Finite element analysis of the end notched flexure specimen for measuring Mode II fracture toughness
NASA Technical Reports Server (NTRS)
Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.
1986-01-01
The paper presents a finite element analysis of the end-notched flexure (ENF) test specimen for Mode II interlaminar fracture testing of composite materials. Virtual crack closure and compliance techniques employed to calculate strain energy release rates from linear elastic two-dimensional analysis indicate that the ENF specimen is a pure Mode II fracture test within the constraints of small deflection theory. Furthermore, the ENF fracture specimen is shown to be relatively insensitive to process-induced cracks, offset from the laminate midplane. Frictional effects are investigated by including the contact problem in the finite element model. A parametric study investigating the influence of delamination length, span, thickness, and material properties assessed the accuracy of beam theory expressions for compliance and strain energy release rate, GII. Finite element results indicate that data reduction schemes based upon beam theory underestimate GII by approximately 20-40 percent for typical unidirectional graphite fiber composite test specimen geometries. Consequently, an improved data reduction scheme is proposed.
Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter
2018-01-01
This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks. Regarding the time discretization, a fourth order strong stability preserving Runge-Kutta method is used. In the proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge-Kutta stage in order to flag those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient and robust manner.
A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.
1989-01-01
A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.
NASA Astrophysics Data System (ADS)
Tjong, Tiffany; Yihaa’ Roodhiyah, Lisa; Nurhasan; Sutarno, Doddy
2018-04-01
In this work, an inversion scheme was performed using a vector finite element (VFE) based 2-D magnetotelluric (MT) forward modelling. We use an inversion scheme with Singular value decomposition (SVD) method toimprove the accuracy of MT inversion.The inversion scheme was applied to transverse electric (TE) mode of MT. SVD method was used in this inversion to decompose the Jacobian matrices. Singular values which obtained from the decomposition process were analyzed. This enabled us to determine the importance of data and therefore to define a threshold for truncation process. The truncation of singular value in inversion processcould improve the resulted model.
NASA Astrophysics Data System (ADS)
Le Hardy, D.; Favennec, Y.; Rousseau, B.
2016-08-01
The 2D radiative transfer equation coupled with specular reflection boundary conditions is solved using finite element schemes. Both Discontinuous Galerkin and Streamline-Upwind Petrov-Galerkin variational formulations are fully developed. These two schemes are validated step-by-step for all involved operators (transport, scattering, reflection) using analytical formulations. Numerical comparisons of the two schemes, in terms of convergence rate, reveal that the quadratic SUPG scheme proves efficient for solving such problems. This comparison constitutes the main issue of the paper. Moreover, the solution process is accelerated using block SOR-type iterative methods, for which the determination of the optimal parameter is found in a very cheap way.
Applications of Taylor-Galerkin finite element method to compressible internal flow problems
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.
1989-01-01
A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.
Newmark local time stepping on high-performance computing architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch
In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less
Analysis of the transient behavior of rubbing components
NASA Technical Reports Server (NTRS)
Quezdou, M. B.; Mullen, R. L.
1986-01-01
Finite element equations are developed for studying deformations and temperatures resulting from frictional heating in sliding system. The formulation is done for linear steady state motion in two dimensions. The equations include the effect of the velocity on the moving components. This gives spurious oscillations in their solutions by Galerkin finite element methods. A method called streamline upwind scheme is used to try to deal with this deficiency. The finite element program is then used to investigate the friction of heating in gas path seal.
Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling
NASA Astrophysics Data System (ADS)
Melvin, Thomas
2018-02-01
Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.
NASA Astrophysics Data System (ADS)
Busto, S.; Ferrín, J. L.; Toro, E. F.; Vázquez-Cendón, M. E.
2018-01-01
In this paper the projection hybrid FV/FE method presented in [1] is extended to account for species transport equations. Furthermore, turbulent regimes are also considered thanks to the k-ε model. Regarding the transport diffusion stage new schemes of high order of accuracy are developed. The CVC Kolgan-type scheme and ADER methodology are extended to 3D. The latter is modified in order to profit from the dual mesh employed by the projection algorithm and the derivatives involved in the diffusion term are discretized using a Galerkin approach. The accuracy and stability analysis of the new method are carried out for the advection-diffusion-reaction equation. Within the projection stage the pressure correction is computed by a piecewise linear finite element method. Numerical results are presented, aimed at verifying the formal order of accuracy of the scheme and to assess the performance of the method on several realistic test problems.
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
NASA Technical Reports Server (NTRS)
Reed, K. W.; Stonesifer, R. B.; Atluri, S. N.
1983-01-01
A new hybrid-stress finite element algorith, suitable for analyses of large quasi-static deformations of inelastic solids, is presented. Principal variables in the formulation are the nominal stress-rate and spin. A such, a consistent reformulation of the constitutive equation is necessary, and is discussed. The finite element equations give rise to an initial value problem. Time integration has been accomplished by Euler and Runge-Kutta schemes and the superior accuracy of the higher order schemes is noted. In the course of integration of stress in time, it has been demonstrated that classical schemes such as Euler's and Runge-Kutta may lead to strong frame-dependence. As a remedy, modified integration schemes are proposed and the potential of the new schemes for suppressing frame dependence of numerically integrated stress is demonstrated. The topic of the development of valid creep fracture criteria is also addressed.
Finite-element numerical modeling of atmospheric turbulent boundary layer
NASA Technical Reports Server (NTRS)
Lee, H. N.; Kao, S. K.
1979-01-01
A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.
DAMAGE ASSESSMENT OF RC BEAMS BY NONLINEAR FINITE ELEMENT ANALYSES
NASA Astrophysics Data System (ADS)
Saito, Shigehiko; Maki, Takeshi; Tsuchiya, Satoshi; Watanabe, Tadatomo
This paper presents damage assessment schemes by using 2-dimensional nonlinear finite element analyses. The second strain invariant of deviatoric strain tensor and consumed strain energy are calculated by local strain at each integration po int of finite elements. Those scalar values are averaged over certain region. The produced nonlocal values are used for indices to verify structural safety by confirming which the ultimate limit state for failure is reached or not. Flexural and shear failure of reinforced concrete beams are estimated by us ing the proposed indices.
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
A weak Galerkin generalized multiscale finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
The internal structure is discussed of the MHOST finite element program designed for 3-D inelastic analysis of gas turbine hot section components. The computer code is the first implementation of the mixed iterative solution strategy for improved efficiency and accuracy over the conventional finite element method. The control structure of the program is covered along with the data storage scheme and the memory allocation procedure and the file handling facilities including the read and/or write sequences.
Adaptive finite element method for turbulent flow near a propeller
NASA Astrophysics Data System (ADS)
Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois
1994-11-01
This paper presents an adaptive finite element method based on remeshing to solve incompressible turbulent free shear flow near a propeller. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Turbulence is modeled by a mixing length formulation. Two general purpose error estimators, which take into account swirl and the variation of the eddy viscosity, are presented and applied to the turbulent wake of a propeller. Predictions compare well with experimental measurements. The proposed adaptive scheme is robust, reliable and cost effective.
A Dynamic Finite Element Method for Simulating the Physics of Faults Systems
NASA Astrophysics Data System (ADS)
Saez, E.; Mora, P.; Gross, L.; Weatherley, D.
2004-12-01
We introduce a dynamic Finite Element method using a novel high level scripting language to describe the physical equations, boundary conditions and time integration scheme. The library we use is the parallel Finley library: a finite element kernel library, designed for solving large-scale problems. It is incorporated as a differential equation solver into a more general library called escript, based on the scripting language Python. This library has been developed to facilitate the rapid development of 3D parallel codes, and is optimised for the Australian Computational Earth Systems Simulator Major National Research Facility (ACcESS MNRF) supercomputer, a 208 processor SGI Altix with a peak performance of 1.1 TFlops. Using the scripting approach we obtain a parallel FE code able to take advantage of the computational efficiency of the Altix 3700. We consider faults as material discontinuities (the displacement, velocity, and acceleration fields are discontinuous at the fault), with elastic behavior. The stress continuity at the fault is achieved naturally through the expression of the fault interactions in the weak formulation. The elasticity problem is solved explicitly in time, using the Saint Verlat scheme. Finally, we specify a suitable frictional constitutive relation and numerical scheme to simulate fault behaviour. Our model is based on previous work on modelling fault friction and multi-fault systems using lattice solid-like models. We adapt the 2D model for simulating the dynamics of parallel fault systems described to the Finite-Element method. The approach uses a frictional relation along faults that is slip and slip-rate dependent, and the numerical integration approach introduced by Mora and Place in the lattice solid model. In order to illustrate the new Finite Element model, single and multi-fault simulation examples are presented.
Seakeeping with the semi-Lagrangian particle finite element method
NASA Astrophysics Data System (ADS)
Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio
2017-07-01
The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.
Fluid-structure interaction with the entropic lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Dorschner, B.; Chikatamarla, S. S.; Karlin, I. V.
2018-02-01
We propose a fluid-structure interaction (FSI) scheme using the entropic multi-relaxation time lattice Boltzmann (KBC) model for the fluid domain in combination with a nonlinear finite element solver for the structural part. We show the validity of the proposed scheme for various challenging setups by comparison to literature data. Beyond validation, we extend the KBC model to multiphase flows and couple it with a finite element method (FEM) solver. Robustness and viability of the entropic multi-relaxation time model for complex FSI applications is shown by simulations of droplet impact on elastic superhydrophobic surfaces.
Computational plasticity algorithm for particle dynamics simulations
NASA Astrophysics Data System (ADS)
Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.
2018-01-01
The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation, deformation of a cantilever bracket, and Boycott effects). The applicability of the method is not limited to flow in porous media, but can also be employed to describe many other physical systems governed by a similar set of equations, including e.g. multi-component materials.
NASA Technical Reports Server (NTRS)
Gartling, D. K.; Roache, P. J.
1978-01-01
The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
NASA Astrophysics Data System (ADS)
Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo
2015-10-01
The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.
Gonzales, Matthew J.; Sturgeon, Gregory; Krishnamurthy, Adarsh; Hake, Johan; Jonas, René; Stark, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.; Zhang, Yongjie; Segars, W. Paul; McCulloch, Andrew D.
2013-01-01
High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the “local-to-global” derivative mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite models of the human atria with extraordinary vertices from computed tomography images of a patient with atrial fibrillation. To an accuracy of 0.6 millimeters, we were able to capture the left atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models and defined fiber orientation fields in agreement with diagrammatic data from the literature using only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and elements with aspect ratios near unity, and are shared with the public. These new methods will allow for more compact and efficient patient-specific models of human atrial and whole heart physiology. PMID:23602918
Reissner-Mindlin Legendre Spectral Finite Elements with Mixed Reduced Quadrature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brito, K. D.; Sprague, M. A.
2012-10-01
Legendre spectral finite elements (LSFEs) are examined through numerical experiments for static and dynamic Reissner-Mindlin plate bending and a mixed-quadrature scheme is proposed. LSFEs are high-order Lagrangian-interpolant finite elements with nodes located at the Gauss-Lobatto-Legendre quadrature points. Solutions on unstructured meshes are examined in terms of accuracy as a function of the number of model nodes and total operations. While nodal-quadrature LSFEs have been shown elsewhere to be free of shear locking on structured grids, locking is demonstrated here on unstructured grids. LSFEs with mixed quadrature are, however, locking free and are significantly more accurate than low-order finite-elements for amore » given model size or total computation time.« less
NASA Astrophysics Data System (ADS)
Gusev, A. A.; Chuluunbaatar, O.; Vinitsky, S. I.; Derbov, V. L.; Hai, L. L.; Kazaryan, E. M.; Sarkisyan, H. A.
2018-04-01
We present new calculation schemes using high-order finite element method implemented on unstructured grids with triangle elements for solving boundary-value problems that describe axially symmetric quantum dots. The efficiency of the algorithms and software is demonstrated by benchmark calculations of the energy spectrum, the envelope eigenfunctions of electron, hole and exciton states, and the direct interband light absorption in conical and spheroidal impenetrable quantum dots.
A new parallel-vector finite element analysis software on distributed-memory computers
NASA Technical Reports Server (NTRS)
Qin, Jiangning; Nguyen, Duc T.
1993-01-01
A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Blanchard, D. K.
1975-01-01
A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.
Adaptive implicit-explicit and parallel element-by-element iteration schemes
NASA Technical Reports Server (NTRS)
Tezduyar, T. E.; Liou, J.; Nguyen, T.; Poole, S.
1989-01-01
Adaptive implicit-explicit (AIE) and grouped element-by-element (GEBE) iteration schemes are presented for the finite element solution of large-scale problems in computational mechanics and physics. The AIE approach is based on the dynamic arrangement of the elements into differently treated groups. The GEBE procedure, which is a way of rewriting the EBE formulation to make its parallel processing potential and implementation more clear, is based on the static arrangement of the elements into groups with no inter-element coupling within each group. Various numerical tests performed demonstrate the savings in the CPU time and memory.
Element-by-element Solution Procedures for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Winget, J. M.; Levit, I.
1984-01-01
Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in nonlinear structural mechanics. Architectural and data base advantages of the present algorithms over traditional direct elimination schemes are noted. Results of calculations suggest considerable potential for the methods described.
Simulating Progressive Damage of Notched Composite Laminates with Various Lamination Schemes
NASA Astrophysics Data System (ADS)
Mandal, B.; Chakrabarti, A.
2017-05-01
A three dimensional finite element based progressive damage model has been developed for the failure analysis of notched composite laminates. The material constitutive relations and the progressive damage algorithms are implemented into finite element code ABAQUS using user-defined subroutine UMAT. The existing failure criteria for the composite laminates are modified by including the failure criteria for fiber/matrix shear damage and delamination effects. The proposed numerical model is quite efficient and simple compared to other progressive damage models available in the literature. The efficiency of the present constitutive model and the computational scheme is verified by comparing the simulated results with the results available in the literature. A parametric study has been carried out to investigate the effect of change in lamination scheme on the failure behaviour of notched composite laminates.
Crack Turning and Arrest Mechanisms for Integral Structure
NASA Technical Reports Server (NTRS)
Pettit, Richard; Ingraffea, Anthony
1999-01-01
In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate quarter-point scheme to obtain stress intensity factors.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.
1989-01-01
The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.
Discontinuous Galerkin Finite Element Method for Parabolic Problems
NASA Technical Reports Server (NTRS)
Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.
2004-01-01
In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
High-order asynchrony-tolerant finite difference schemes for partial differential equations
NASA Astrophysics Data System (ADS)
Aditya, Konduri; Donzis, Diego A.
2017-12-01
Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.
Galerkin finite element scheme for magnetostrictive structures and composites
NASA Astrophysics Data System (ADS)
Kannan, Kidambi Srinivasan
The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin, on the response of magnetostrictive structures to complex mechanical and magnetic loading conditions, is carefully examined. While monolithic magnetostrictive materials have been commercially-available since the late eighties, attention in the smart structures research community has recently focussed upon building and using magnetostrictive particulate composite structures for conventional actuation applications and novel sensing methodologies in structural health monitoring. A particulate magnetostrictive composite element has been developed in the present work to model such structures. This composite element incorporates interactions between magnetostrictive particles by combining a numerical micromechanical analysis based on magneto-mechanical Green's functions, with a homogenization scheme based upon the Mori-Tanaka approach. This element has been applied to the simulation of particulate actuators and sensors reported in the literature. Simulation results are compared to experimental data for validation purposes. The computational schemes developed, for bulk materials and for composites, are expected to be of great value to researchers and designers of novel applications based on magnetostrictives.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong
2013-02-01
A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-06-01
The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.
Real-time adaptive finite element solution of time-dependent Kohn-Sham equation
NASA Astrophysics Data System (ADS)
Bao, Gang; Hu, Guanghui; Liu, Di
2015-01-01
In our previous paper (Bao et al., 2012 [1]), a general framework of using adaptive finite element methods to solve the Kohn-Sham equation has been presented. This work is concerned with solving the time-dependent Kohn-Sham equations. The numerical methods are studied in the time domain, which can be employed to explain both the linear and the nonlinear effects. A Crank-Nicolson scheme and linear finite element space are employed for the temporal and spatial discretizations, respectively. To resolve the trouble regions in the time-dependent simulations, a heuristic error indicator is introduced for the mesh adaptive methods. An algebraic multigrid solver is developed to efficiently solve the complex-valued system derived from the semi-implicit scheme. A mask function is employed to remove or reduce the boundary reflection of the wavefunction. The effectiveness of our method is verified by numerical simulations for both linear and nonlinear phenomena, in which the effectiveness of the mesh adaptive methods is clearly demonstrated.
TAP 2: A finite element program for thermal analysis of convectively cooled structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1980-01-01
A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.
Computer-Aided Engineering of Semiconductor Integrated Circuits
1979-07-01
equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last
A compact finite element method for elastic bodies
NASA Technical Reports Server (NTRS)
Rose, M. E.
1984-01-01
A nonconforming finite method is described for treating linear equilibrium problems, and a convergence proof showing second order accuracy is given. The close relationship to a related compact finite difference scheme due to Phillips and Rose is examined. A condensation technique is shown to preserve the compactness property and suggests an approach to a certain type of homogenization.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
Finite-element lattice Boltzmann simulations of contact line dynamics
NASA Astrophysics Data System (ADS)
Matin, Rastin; Krzysztof Misztal, Marek; Hernández-García, Anier; Mathiesen, Joachim
2018-01-01
The lattice Boltzmann method has become one of the standard techniques for simulating a wide range of fluid flows. However, the intrinsic coupling of momentum and space discretization restricts the traditional lattice Boltzmann method to regular lattices. Alternative off-lattice Boltzmann schemes exist for both single- and multiphase flows that decouple the velocity discretization from the underlying spatial grid. The current study extends the applicability of these off-lattice methods by introducing a finite element formulation that enables simulating contact line dynamics for partially wetting fluids. This work exemplifies the implementation of the scheme and furthermore presents benchmark experiments that show the scheme reduces spurious currents at the liquid-vapor interface by at least two orders of magnitude compared to a nodal implementation and allows for predicting the equilibrium states accurately in the range of moderate contact angles.
A simple and efficient shear-flexible plate bending element
NASA Technical Reports Server (NTRS)
Chaudhuri, Reaz A.
1987-01-01
A shear-flexible triangular element formulation, which utilizes an assumed quadratic displacement potential energy approach and is numerically integrated using Gauss quadrature, is presented. The Reissner/Mindlin hypothesis of constant cross-sectional warping is directly applied to the three-dimensional elasticity theory to obtain a moderately thick-plate theory or constant shear-angle theory (CST), wherein the middle surface is no longer considered to be the reference surface and the two rotations are replaced by the two in-plane displacements as nodal variables. The resulting finite-element possesses 18 degrees of freedom (DOF). Numerical results are obtained for two different numerical integration schemes and a wide range of meshes and span-to-thickness ratios. These, when compared with available exact, series or finite-element solutions, demonstrate accuracy and rapid convergence characteristics of the present element. This is especially true in the case of thin to very thin plates, when the present element, used in conjunction with the reduced integration scheme, outperforms its counterpart, based on discrete Kirchhoff constraint theory (DKT).
On the dynamics of approximating schemes for dissipative nonlinear equations
NASA Technical Reports Server (NTRS)
Jones, Donald A.
1993-01-01
Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.
ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.
2018-07-01
We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved space-times. In this paper, we assume the background space-time to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local time-stepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed space-times. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.
ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.
2018-03-01
We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved spacetimes. In this paper we assume the background spacetime to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully-discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local timestepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a-posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed spacetimes. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.
NASA Astrophysics Data System (ADS)
Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso
2017-09-01
This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.
NASA Astrophysics Data System (ADS)
Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia
2016-04-01
In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.
Transient Finite Element Computations on a Variable Transputer System
NASA Technical Reports Server (NTRS)
Smolinski, Patrick J.; Lapczyk, Ireneusz
1993-01-01
A parallel program to analyze transient finite element problems was written and implemented on a system of transputer processors. The program uses the explicit time integration algorithm which eliminates the need for equation solving, making it more suitable for parallel computations. An interprocessor communication scheme was developed for arbitrary two dimensional grid processor configurations. Several 3-D problems were analyzed on a system with a small number of processors.
High speed inviscid compressible flow by the finite element method
NASA Technical Reports Server (NTRS)
Zienkiewicz, O. C.; Loehner, R.; Morgan, K.
1984-01-01
The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen
1994-01-01
A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.
1994-01-01
Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.
Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo
2003-08-01
In this paper, an inversion scheme for piezoelectric constants of piezoelectric transformers is proposed. The impedance of piezoelectric transducers is calculated using a three-dimensional finite element method. The validity of this is confirmed experimentally. The effects of material coefficients on piezoelectric transformers are investigated numerically. Six material coefficient variables for piezoelectric transformers were selected, and a design sensitivity method was adopted as an inversion scheme. The validity of the proposed method was confirmed by step-up ratio calculations. The proposed method is applied to the analysis of a sample piezoelectric transformer, and its resonance characteristics are obtained by numerically combined equivalent circuit method.
Hypermatrix scheme for finite element systems on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Voigt, S. J.
1975-01-01
A study is made of the adaptation of the hypermatrix (block matrix) scheme for solving large systems of finite element equations to the CDC STAR-100 computer. Discussion is focused on the organization of the hypermatrix computation using Cholesky decomposition and the mode of storage of the different submatrices to take advantage of the STAR pipeline (streaming) capability. Consideration is also given to the associated data handling problems and the means of balancing the I/Q and cpu times in the solution process. Numerical examples are presented showing anticipated gain in cpu speed over the CDC 6600 to be obtained by using the proposed algorithms on the STAR computer.
A 3-dimensional mass conserving element for compressible flows
NASA Technical Reports Server (NTRS)
Fix, G.; Suri, M.
1985-01-01
A variety of finite element schemes has been used in the numerical approximation of compressible flows particularly in underwater acoustics. In many instances instabilities have been generated due to the lack of mass conservation. Two- and three-dimensional elements are developed which avoid these problems.
NASA Technical Reports Server (NTRS)
Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.
1997-01-01
A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.
Computational aspects of helicopter trim analysis and damping levels from Floquet theory
NASA Technical Reports Server (NTRS)
Gaonkar, Gopal H.; Achar, N. S.
1992-01-01
Helicopter trim settings of periodic initial state and control inputs are investigated for convergence of Newton iteration in computing the settings sequentially and in parallel. The trim analysis uses a shooting method and a weak version of two temporal finite element methods with displacement formulation and with mixed formulation of displacements and momenta. These three methods broadly represent two main approaches of trim analysis: adaptation of initial-value and finite element boundary-value codes to periodic boundary conditions, particularly for unstable and marginally stable systems. In each method, both the sequential and in-parallel schemes are used and the resulting nonlinear algebraic equations are solved by damped Newton iteration with an optimally selected damping parameter. The impact of damped Newton iteration, including earlier-observed divergence problems in trim analysis, is demonstrated by the maximum condition number of the Jacobian matrices of the iterative scheme and by virtual elimination of divergence. The advantages of the in-parallel scheme over the conventional sequential scheme are also demonstrated.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1993-01-01
A new numerical framework for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods--i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to avoid several key limitations to the above traditional methods. An explicit model scheme for solving a simple 1-D unsteady convection-diffusion equation is constructed and used to illuminate major differences between the current method and those mentioned above. Unexpectedly, its amplification factors for the pure convection and pure diffusion cases are identical to those of the Leapfrog and the DuFort-Frankel schemes, respectively. Also, this explicit scheme and its Navier-Stokes extension have the unusual property that their stabilities are limited only by the CFL condition. Moreover, despite the fact that it does not use any flux-limiter or slope-limiter, the Navier-Stokes solver is capable of generating highly accurate shock tube solutions with shock discontinuities being resolved within one mesh interval. An accurate Euler solver also is constructed through another extension. It has many unusual properties, e.g., numerical diffusion at all mesh points can be controlled by a set of local parameters.
NASA Technical Reports Server (NTRS)
Putcha, N. S.; Reddy, J. N.
1986-01-01
A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and nonlinear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boundary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.
Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-12-22
Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less
Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less
The Use of Non-Standard Devices in Finite Element Analysis
NASA Technical Reports Server (NTRS)
Schur, Willi W.; Broduer, Steve (Technical Monitor)
2001-01-01
A general mathematical description of the response behavior of thin-skin pneumatic envelopes and many other membrane and cable structures produces under-constrained systems that pose severe difficulties to analysis. These systems are mobile, and the general mathematical description exposes the mobility. Yet the response behavior of special under-constrained structures under special loadings can be accurately predicted using a constrained mathematical description. The static response behavior of systems that are infinitesimally mobile, such as a non-slack membrane subtended from a rigid or elastic boundary frame, can be easily analyzed using such general mathematical description as afforded by the non-linear, finite element method using an implicit solution scheme if the incremental uploading is guided through a suitable path. Similarly, if such structures are assembled with structural lack of fit that provides suitable self-stress, then dynamic response behavior can be predicted by the non-linear, finite element method and an implicit solution scheme. An explicit solution scheme is available for evolution problems. Such scheme can be used via the method of dynamic relaxation to obtain the solution to a static problem. In some sense, pneumatic envelopes and many other compliant structures can be said to have destiny under a specified loading system. What that means to the analyst is that what happens on the evolution path of the solution is irrelevant as long as equilibrium is achieved at destiny under full load and that the equilibrium is stable in the vicinity of that load. The purpose of this paper is to alert practitioners to the fact that non-standard procedures in finite element analysis are useful and can be legitimate although they burden their users with the requirement to use special caution. Some interesting findings that are useful to the US Scientific Balloon Program and that could not be obtained without non-standard techniques are presented.
NASA Astrophysics Data System (ADS)
Balzani, Daniel; Gandhi, Ashutosh; Tanaka, Masato; Schröder, Jörg
2015-05-01
In this paper a robust approximation scheme for the numerical calculation of tangent stiffness matrices is presented in the context of nonlinear thermo-mechanical finite element problems and its performance is analyzed. The scheme extends the approach proposed in Kim et al. (Comput Methods Appl Mech Eng 200:403-413, 2011) and Tanaka et al. (Comput Methods Appl Mech Eng 269:454-470, 2014 and bases on applying the complex-step-derivative approximation to the linearizations of the weak forms of the balance of linear momentum and the balance of energy. By incorporating consistent perturbations along the imaginary axis to the displacement as well as thermal degrees of freedom, we demonstrate that numerical tangent stiffness matrices can be obtained with accuracy up to computer precision leading to quadratically converging schemes. The main advantage of this approach is that contrary to the classical forward difference scheme no round-off errors due to floating-point arithmetics exist within the calculation of the tangent stiffness. This enables arbitrarily small perturbation values and therefore leads to robust schemes even when choosing small values. An efficient algorithmic treatment is presented which enables a straightforward implementation of the method in any standard finite-element program. By means of thermo-elastic and thermo-elastoplastic boundary value problems at finite strains the performance of the proposed approach is analyzed.
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation
NASA Astrophysics Data System (ADS)
Litaker, Eric T.
1994-12-01
The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.
Hou, Chieh; Ateshian, Gerard A.
2015-01-01
Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation. PMID:26291492
Hou, Chieh; Ateshian, Gerard A
2016-01-01
Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.
NASA Technical Reports Server (NTRS)
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Muscle-driven finite element simulation of human foot movements.
Spyrou, L A; Aravas, N
2012-01-01
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.
Neural adaptive control for vibration suppression in composite fin-tip of aircraft.
Suresh, S; Kannan, N; Sundararajan, N; Saratchandran, P
2008-06-01
In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H(infinity) control scheme.
Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, Mario Ivan; Drumm, Clifton R.
Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
NASA Astrophysics Data System (ADS)
Schröder, Jörg; Viebahn, Nils; Wriggers, Peter; Auricchio, Ferdinando; Steeger, Karl
2017-09-01
In this work we investigate different mixed finite element formulations for the detection of critical loads for the possible occurrence of bifurcation and limit points. In detail, three- and two-field formulations for incompressible and quasi-incompressible materials are analyzed. In order to apply various penalty functions for the volume dilatation in displacement/pressure mixed elements we propose a new consistent scheme capturing the non linearities of the penalty constraints. It is shown that for all mixed formulations, which can be reduced to a generalized displacement scheme, a straight forward stability analysis is possible. However, problems based on the classical saddle-point structure require a different analyses based on the change of the signature of the underlying matrix system. The basis of these investigations is the work from Auricchio et al. (Comput Methods Appl Mech Eng 194:1075-1092, 2005, Comput Mech 52:1153-1167, 2013).
NASA Technical Reports Server (NTRS)
Padovan, Joe
1986-01-01
In a three part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modelled by fractional integro-differential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator. In the second and third parts of the paper, 3-D extensions are developed along with transient contact strategies enabling the handling of impacts with obstructions. Overall, the various developments are benchmarked via comprehensive 2- and 3-D simulations. These are correlated with experimental data to define modelling capabilities.
Unified control/structure design and modeling research
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.; Blelloch, P. A.; Adamian, A.
1986-01-01
To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed.
NASA Astrophysics Data System (ADS)
Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu
2018-04-01
In this paper, a fast linearized conservative finite element method is studied for solving the strongly coupled nonlinear fractional Schrödinger equations. We prove that the scheme preserves both the mass and energy, which are defined by virtue of some recursion relationships. Using the Sobolev inequalities and then employing the mathematical induction, the discrete scheme is proved to be unconditionally convergent in the sense of L2-norm and H α / 2-norm, which means that there are no any constraints on the grid ratios. Then, the prior bound of the discrete solution in L2-norm and L∞-norm are also obtained. Moreover, we propose an iterative algorithm, by which the coefficient matrix is independent of the time level, and thus it leads to Toeplitz-like linear systems that can be efficiently solved by Krylov subspace solvers with circulant preconditioners. This method can reduce the memory requirement of the proposed linearized finite element scheme from O (M2) to O (M) and the computational complexity from O (M3) to O (Mlog M) in each iterative step, where M is the number of grid nodes. Finally, numerical results are carried out to verify the correction of the theoretical analysis, simulate the collision of two solitary waves, and show the utility of the fast numerical solution techniques.
Asynchronous variational integration using continuous assumed gradient elements.
Wolff, Sebastian; Bucher, Christian
2013-03-01
Asynchronous variational integration (AVI) is a tool which improves the numerical efficiency of explicit time stepping schemes when applied to finite element meshes with local spatial refinement. This is achieved by associating an individual time step length to each spatial domain. Furthermore, long-term stability is ensured by its variational structure. This article presents AVI in the context of finite elements based on a weakened weak form (W2) Liu (2009) [1], exemplified by continuous assumed gradient elements Wolff and Bucher (2011) [2]. The article presents the main ideas of the modified AVI, gives implementation notes and a recipe for estimating the critical time step.
NASA Astrophysics Data System (ADS)
Sauer, Roger A.
2013-08-01
Recently an enriched contact finite element formulation has been developed that substantially increases the accuracy of contact computations while keeping the additional numerical effort at a minimum reported by Sauer (Int J Numer Meth Eng, 87: 593-616, 2011). Two enrich-ment strategies were proposed, one based on local p-refinement using Lagrange interpolation and one based on Hermite interpolation that produces C 1-smoothness on the contact surface. Both classes, which were initially considered for the frictionless Signorini problem, are extended here to friction and contact between deformable bodies. For this, a symmetric contact formulation is used that allows the unbiased treatment of both contact partners. This paper also proposes a post-processing scheme for contact quantities like the contact pressure. The scheme, which provides a more accurate representation than the raw data, is based on an averaging procedure that is inspired by mortar formulations. The properties of the enrichment strategies and the corresponding post-processing scheme are illustrated by several numerical examples considering sliding and peeling contact in the presence of large deformations.
On the Exploitation of Sensitivity Derivatives for Improving Sampling Methods
NASA Technical Reports Server (NTRS)
Cao, Yanzhao; Hussaini, M. Yousuff; Zang, Thomas A.
2003-01-01
Many application codes, such as finite-element structural analyses and computational fluid dynamics codes, are capable of producing many sensitivity derivatives at a small fraction of the cost of the underlying analysis. This paper describes a simple variance reduction method that exploits such inexpensive sensitivity derivatives to increase the accuracy of sampling methods. Three examples, including a finite-element structural analysis of an aircraft wing, are provided that illustrate an order of magnitude improvement in accuracy for both Monte Carlo and stratified sampling schemes.
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini
2017-01-01
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
NASA Astrophysics Data System (ADS)
Al-Rousan, R. Z.
2015-09-01
The main objective of this study was to assess the effect of the number and schemes of carbon-fiber-reinforced polymer (CFRP) sheets on the capacity of bending moment, the ultimate displacement, the ultimate tensile strain of CFRP, the yielding moment, concrete compression strain, and the energy absorption of RC beams and to provide useful relationships that can be effectively utilized to determine the required number of CFRP sheets for a necessary increase in the flexural strength of the beams without a major loss in their ductility. To accomplish this, various RC beams, identical in their geometric and reinforcement details and having different number and configurations of CFRP sheets, are modeled and analyzed using the ANSYS software and a nonlinear finite-element analysis.
Numerical simulation of conservation laws
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; To, Wai-Ming
1992-01-01
A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.
Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere
NASA Astrophysics Data System (ADS)
Yi, Tae-Hyeong; Park, Ja-Rin
2017-06-01
A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.
A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains
NASA Astrophysics Data System (ADS)
Lopes, I. A. Rodrigues; Pires, F. M. Andrade; Reis, F. J. P.
2018-02-01
A mixed parallel strategy for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains is proposed. The approach aims to reduce the computational time and memory requirements of non-linear coupled simulations that use finite element discretization at both scales (FE^2). In the first level of the algorithm, a non-conforming domain decomposition technique, based on the FETI method combined with a mortar discretization at the interface of macroscopic subdomains, is employed. A master-slave scheme, which distributes tasks by macroscopic element and adopts dynamic scheduling, is then used for each macroscopic subdomain composing the second level of the algorithm. This strategy allows the parallelization of FE^2 simulations in computers with either shared memory or distributed memory architectures. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme. Several examples are presented to demonstrate the robustness and efficiency of the proposed parallel strategy.
Finite Volume Methods: Foundation and Analysis
NASA Technical Reports Server (NTRS)
Barth, Timothy; Ohlberger, Mario
2003-01-01
Finite volume methods are a class of discretization schemes that have proven highly successful in approximating the solution of a wide variety of conservation law systems. They are extensively used in fluid mechanics, porous media flow, meteorology, electromagnetics, models of biological processes, semi-conductor device simulation and many other engineering areas governed by conservative systems that can be written in integral control volume form. This article reviews elements of the foundation and analysis of modern finite volume methods. The primary advantages of these methods are numerical robustness through the obtention of discrete maximum (minimum) principles, applicability on very general unstructured meshes, and the intrinsic local conservation properties of the resulting schemes. Throughout this article, specific attention is given to scalar nonlinear hyperbolic conservation laws and the development of high order accurate schemes for discretizing them. A key tool in the design and analysis of finite volume schemes suitable for non-oscillatory discontinuity capturing is discrete maximum principle analysis. A number of building blocks used in the development of numerical schemes possessing local discrete maximum principles are reviewed in one and several space dimensions, e.g. monotone fluxes, E-fluxes, TVD discretization, non-oscillatory reconstruction, slope limiters, positive coefficient schemes, etc. When available, theoretical results concerning a priori and a posteriori error estimates are given. Further advanced topics are then considered such as high order time integration, discretization of diffusion terms and the extension to systems of nonlinear conservation laws.
Efficient parallel resolution of the simplified transport equations in mixed-dual formulation
NASA Astrophysics Data System (ADS)
Barrault, M.; Lathuilière, B.; Ramet, P.; Roman, J.
2011-03-01
A reactivity computation consists of computing the highest eigenvalue of a generalized eigenvalue problem, for which an inverse power algorithm is commonly used. Very fine modelizations are difficult to treat for our sequential solver, based on the simplified transport equations, in terms of memory consumption and computational time. A first implementation of a Lagrangian based domain decomposition method brings to a poor parallel efficiency because of an increase in the power iterations [1]. In order to obtain a high parallel efficiency, we improve the parallelization scheme by changing the location of the loop over the subdomains in the overall algorithm and by benefiting from the characteristics of the Raviart-Thomas finite element. The new parallel algorithm still allows us to locally adapt the numerical scheme (mesh, finite element order). However, it can be significantly optimized for the matching grid case. The good behavior of the new parallelization scheme is demonstrated for the matching grid case on several hundreds of nodes for computations based on a pin-by-pin discretization.
Nonlinear Aeroacoustics Computations by the Space-Time CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
The Space-Time Conservation Element and Solution Element Method, or CE/SE Method for short, is a recently developed numerical method for conservation laws. Despite its second order accuracy in space and time, it possesses low dispersion errors and low dissipation. The method is robust enough to cover a wide range of compressible flows: from weak linear acoustic waves to strong discontinuous waves (shocks). An outstanding feature of the CE/SE scheme is its truly multi-dimensional, simple but effective non-reflecting boundary condition (NRBC), which is particularly valuable for computational aeroacoustics (CAA). In nature, the method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its careful treatment of the surface fluxes and geometry, it is different from the existing schemes. Currently, the CE/SE scheme has been developed to a matured stage that a 3-D unstructured CE/SE Navier-Stokes solver is already available. However, in the present review paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen and sketched in section 2. Then applications of the 2-D and 3-D CE/SE schemes to linear, and in particular, nonlinear aeroacoustics are depicted in sections 3, 4, and 5 to demonstrate its robustness and capability.
Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members.
Ann, Ki Yong; Cho, Chang-Geun
2013-09-10
The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test.
Aagaard, Brad T.; Knepley, M.G.; Williams, C.A.
2013-01-01
We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.
A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates
NASA Technical Reports Server (NTRS)
Putcha, N. S.; Reddy, J. N.
1986-01-01
The present study is concerned with the development of a mixed shear flexible finite element with relaxed continuity for the geometrically linear and nonlinear analysis of laminated anisotropic plates. The formulation of the element is based on a refined higher-order theory. This theory satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate. Shear correction coefficients are not needed. The developed element consists of 11 degrees-of-freedom per node, taking into account three displacements, two rotations, and six moment resultants. An evaluation of the element is conducted with respect to the accuracy obtained in the bending of laminated anistropic rectangular plates with different lamination schemes, loadings, and boundary conditions.
A Note on Multigrid Theory for Non-nested Grids and/or Quadrature
NASA Technical Reports Server (NTRS)
Douglas, C. C.; Douglas, J., Jr.; Fyfe, D. E.
1996-01-01
We provide a unified theory for multilevel and multigrid methods when the usual assumptions are not present. For example, we do not assume that the solution spaces or the grids are nested. Further, we do not assume that there is an algebraic relationship between the linear algebra problems on different levels. What we provide is a computationally useful theory for adaptively changing levels. Theory is provided for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse to fine grid with no correction iterations) schemes. We include examples showing the applicability of this theory: finite element examples using quadrature in the matrix assembly and finite volume examples with non-nested grids. Our theory applies directly to other discretizations as well.
Extended bounds limiter for high-order finite-volume schemes on unstructured meshes
NASA Astrophysics Data System (ADS)
Tsoutsanis, Panagiotis
2018-06-01
This paper explores the impact of the definition of the bounds of the limiter proposed by Michalak and Ollivier-Gooch in [56] (2009), for higher-order Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) numerical schemes on unstructured meshes in the finite-volume (FV) framework. A new modification of the limiter is proposed where the bounds are redefined by utilising all the spatial information provided by all the elements in the reconstruction stencil. Numerical results obtained on smooth and discontinuous test problems of the Euler equations on unstructured meshes, highlight that the newly proposed extended bounds limiter exhibits superior performance in terms of accuracy and mesh sensitivity compared to the cell-based or vertex-based bounds implementations.
Hierarchical Material Properties in Finite Element Analysis: The Oilfield Infrastructure Problem.
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Wilson, G. A.
2017-12-01
Geophysical simulation of low-frequency electromagnetic signals within built environments such as urban centers and industrial landscapes facilities is a challenging computational problem because strong conductors (e.g., pipes, fences, rail lines, rebar, etc.) are not only highly conductive and/or magnetic relative to the surrounding geology, but they are very small in one or more of their physical length coordinates. Realistic modeling of such structures as idealized conductors has long been the standard approach; however this strategy carries with it computational burdens such as cumbersome implementation of internal boundary conditions, and limited flexibility for accommodating realistic geometries. Another standard approach is "brute force" discretization (often coupled with an equivalent medium model) whereby 100's of millions of voxels are used to represent these strong conductors, but at the cost of extreme computation times (and mesh design) for a simulation result when possible. To minimize these burdens, a new finite element scheme (Weiss, Geophysics, 2017) has been developed in which the material properties reside on a hierarchy of geometric simplicies (i.e., edges, facets and volumes) within an unstructured tetrahedral mesh. This allows thin sheet—like structures, such as subsurface fractures, to be economically represented by a connected set of triangular facets, for example, that freely conform to arbitrary "real world" geometries. The same holds thin pipe/wire-like structures, such as casings or pipelines. The hierarchical finite element scheme has been applied to problems in electro- and magnetostatics for oilfield problems where the elevated, but finite, conductivity and permeability of the steel-cased oil wells must be properly accounted for, yielding results that are otherwise unobtainable, with run times as low as a few 10s of seconds. Extension of the hierarchical finite element concept to broadband electromagnetics is presently underway, as are its implications for geophysical inversion.
An efficient structural finite element for inextensible flexible risers
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.
2017-12-01
A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.
Solving the transport equation with quadratic finite elements: Theory and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, J.M.
1997-12-31
At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids.
Wong, J.; Göktepe, S.; Kuhl, E.
2014-01-01
Summary Computational modeling of the human heart allows us to predict how chemical, electrical, and mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac disease has advanced significantly over the past decades, yet it remains unclear how the local biochemistry of an individual heart cell translates into global cardiac function. Here we propose a novel, unified strategy to simulate excitable biological systems across three biological scales. To discretize the governing chemical, electrical, and mechanical equations in space, we propose a monolithic finite element scheme. We apply a highly efficient and inherently modular global-local split, in which the deformation and the transmembrane potential are introduced globally as nodal degrees of freedom, while the chemical state variables are treated locally as internal variables. To ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference scheme to discretize the resulting system in time. To increase algorithmic robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and stable, with calculation times on the order of four days on a standard desktop computer. PMID:23798328
NASA Technical Reports Server (NTRS)
Meade, Andrew James, Jr.
1989-01-01
A numerical study of the laminar and compressible boundary layer, about a circular cone in a supersonic free stream, is presented. It is thought that if accurate and efficient numerical schemes can be produced to solve the boundary layer equations, they can be joined to numerical codes that solve the inviscid outer flow. The combination of these numerical codes is competitive with the accurate, but computationally expensive, Navier-Stokes schemes. The primary goal is to develop a finite element method for the calculation of 3-D compressible laminar boundary layer about a yawed cone. The proposed method can, in principle, be extended to apply to the 3-D boundary layer of pointed bodies of arbitrary cross section. The 3-D boundary layer equations governing supersonic free stream flow about a cone are examined. The 3-D partial differential equations are reduced to 2-D integral equations by applying the Howarth, Mangler, Crocco transformations, a linear relation between viscosity, and a Blasius-type of similarity variable. This is equivalent to a Dorodnitsyn-type formulation. The reduced equations are independent of density and curvature effects, and resemble the weak form of the 2-D incompressible boundary layer equations in Cartesian coordinates. In addition the coordinate normal to the wall has been stretched, which reduces the gradients across the layer and provides high resolution near the surface. Utilizing the parabolic nature of the boundary layer equations, a finite element method is applied to the Dorodnitsyn formulation. The formulation is presented in a Petrov-Galerkin finite element form and discretized across the layer using linear interpolation functions. The finite element discretization yields a system of ordinary differential equations in the circumferential direction. The circumferential derivatives are solved by an implicit and noniterative finite difference marching scheme. Solutions are presented for a 15 deg half angle cone at angles of attack of 5 and 10 deg. The numerical solutions assume a laminar boundary layer with free stream Mach number of 7. Results include circumferential distribution of skin friction and surface heat transfer, and cross flow velocity distributions across the layer.
NASA Astrophysics Data System (ADS)
Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.
2016-12-01
The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water flow via operator splitting (fractional step) schemes. Particular attention will be given to verification and validation of the numerical model and important qualitative features of the numerical methods including phase conservation, wave energy dissipation, and computational efficiency in regimes of interest.
Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices
NASA Astrophysics Data System (ADS)
Polstyanko, Sergey V.; Lee, Jin-Fa
1998-03-01
In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.
NASA Astrophysics Data System (ADS)
Savin, Andrei V.; Smirnov, Petr G.
2018-05-01
Simulation of collisional dynamics of a large ensemble of monodisperse particles by the method of discrete elements is considered. Verle scheme is used for integration of the equations of motion. Non-conservativeness of the finite-difference scheme is discovered depending on the time step, which is equivalent to a pure-numerical energy source appearance in the process of collision. Compensation method for the source is proposed and tested.
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan
2017-01-01
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.
Deformation of two-phase aggregates using standard numerical methods
NASA Astrophysics Data System (ADS)
Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.
2013-04-01
Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.
NASA Technical Reports Server (NTRS)
Glaisner, F.; Tezduyar, T. E.
1987-01-01
Finite element procedures for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation have been implemented. For both formulations, streamline-upwind/Petrov-Galerkin techniques are used for the discretization of the transport equations. The main problem associated with the vorticity stream-function formulation is the lack of boundary conditions for vorticity at solid surfaces. Here an implicit treatment of the vorticity at no-slip boundaries is incorporated in a predictor-multicorrector time integration scheme. For the primitive variable formulation, mixed finite-element approximations are used. A nine-node element and a four-node + bubble element have been implemented. The latter is shown to exhibit a checkerboard pressure mode and a numerical treatment for this spurious pressure mode is proposed. The two methods are compared from the points of view of simulating internal and external flows and the possibilities of extensions to three dimensions.
Primal-mixed formulations for reaction-diffusion systems on deforming domains
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo
2015-10-01
We propose a finite element formulation for a coupled elasticity-reaction-diffusion system written in a fully Lagrangian form and governing the spatio-temporal interaction of species inside an elastic, or hyper-elastic body. A primal weak formulation is the baseline model for the reaction-diffusion system written in the deformed domain, and a finite element method with piecewise linear approximations is employed for its spatial discretization. On the other hand, the strain is introduced as mixed variable in the equations of elastodynamics, which in turn acts as coupling field needed to update the diffusion tensor of the modified reaction-diffusion system written in a deformed domain. The discrete mechanical problem yields a mixed finite element scheme based on row-wise Raviart-Thomas elements for stresses, Brezzi-Douglas-Marini elements for displacements, and piecewise constant pressure approximations. The application of the present framework in the study of several coupled biological systems on deforming geometries in two and three spatial dimensions is discussed, and some illustrative examples are provided and extensively analyzed.
Involution and Difference Schemes for the Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Gerdt, Vladimir P.; Blinkov, Yuri A.
In the present paper we consider the Navier-Stokes equations for the two-dimensional viscous incompressible fluid flows and apply to these equations our earlier designed general algorithmic approach to generation of finite-difference schemes. In doing so, we complete first the Navier-Stokes equations to involution by computing their Janet basis and discretize this basis by its conversion into the integral conservation law form. Then we again complete the obtained difference system to involution with eliminating the partial derivatives and extracting the minimal Gröbner basis from the Janet basis. The elements in the obtained difference Gröbner basis that do not contain partial derivatives of the dependent variables compose a conservative difference scheme. By exploiting arbitrariness in the numerical integration approximation we derive two finite-difference schemes that are similar to the classical scheme by Harlow and Welch. Each of the two schemes is characterized by a 5×5 stencil on an orthogonal and uniform grid. We also demonstrate how an inconsistent difference scheme with a 3×3 stencil is generated by an inappropriate numerical approximation of the underlying integrals.
High performance computation of radiative transfer equation using the finite element method
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.
2018-05-01
This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.
NASA Astrophysics Data System (ADS)
Bayat, Hamid Reza; Krämer, Julian; Wunderlich, Linus; Wulfinghoff, Stephan; Reese, Stefanie; Wohlmuth, Barbara; Wieners, Christian
2018-03-01
This work presents a systematic study of discontinuous and nonconforming finite element methods for linear elasticity, finite elasticity, and small strain plasticity. In particular, we consider new hybrid methods with additional degrees of freedom on the skeleton of the mesh and allowing for a local elimination of the element-wise degrees of freedom. We show that this process leads to a well-posed approximation scheme. The quality of the new methods with respect to locking and anisotropy is compared with standard and in addition locking-free conforming methods as well as established (non-) symmetric discontinuous Galerkin methods with interior penalty. For several benchmark configurations, we show that all methods converge asymptotically for fine meshes and that in many cases the hybrid methods are more accurate for a fixed size of the discrete system.
Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members
Ann, Ki Yong; Cho, Chang-Geun
2013-01-01
The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test. PMID:28788312
NASA Astrophysics Data System (ADS)
Guo, Hongbo; He, Xiaowei; Liu, Muhan; Zhang, Zeyu; Hu, Zhenhua; Tian, Jie
2017-03-01
Cerenkov luminescence tomography (CLT), as a promising optical molecular imaging modality, can be applied to cancer diagnostic and therapeutic. Most researches about CLT reconstruction are based on the finite element method (FEM) framework. However, the quality of FEM mesh grid is still a vital factor to restrict the accuracy of the CLT reconstruction result. In this paper, we proposed a multi-grid finite element method framework, which was able to improve the accuracy of reconstruction. Meanwhile, the multilevel scheme adaptive algebraic reconstruction technique (MLS-AART) based on a modified iterative algorithm was applied to improve the reconstruction accuracy. In numerical simulation experiments, the feasibility of our proposed method were evaluated. Results showed that the multi-grid strategy could obtain 3D spatial information of Cerenkov source more accurately compared with the traditional single-grid FEM.
A stable partitioned FSI algorithm for incompressible flow and deforming beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L., E-mail: lil19@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Banks, J.W., E-mail: banksj3@rpi.edu
2016-05-01
An added-mass partitioned (AMP) algorithm is described for solving fluid–structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier–Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler–Bernoulli beam model, and these equations are solved in a Lagrangian frame usingmore » two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet–Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for one benchmark problem modeling blood flow in a deforming artery are also compared with corresponding results available in the literature.« less
Problems with heterogeneous and non-isotropic media or distorted grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, J.; Shashkov, M.; Steinberg, S.
1996-08-01
This paper defines discretizations of the divergence and flux operators that produce symmetric, positive-definite, and accurate approximations to steady-state diffusion problems. Because discontinuous material properties and highly distorted grids are allowed, the flux operator, rather than the gradient, is used as a fundamental operator to be discretized. Resulting finite-difference scheme is similar to those obtained from the mixed finite-element method.
Nonlinear Computational Aeroelasticity: Formulations and Solution Algorithms
2003-03-01
problem is proposed. Fluid-structure coupling algorithms are then discussed with some emphasis on distributed computing strategies. Numerical results...the structure and the exchange of structure motion to the fluid. The computational fluid dynamics code PFES is our finite element code for the numerical ...unstructured meshes). It was numerically demonstrated [1-3] that EBS can be less diffusive than SUPG [4-6] and the standard Finite Volume schemes
Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong
2014-01-01
We discuss and analyze an H 1-Galerkin mixed finite element (H 1-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H 1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H 1-GMFE method. Based on the discussion on the theoretical error analysis in L 2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H 1-norm. Moreover, we derive and analyze the stability of H 1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure. PMID:25184148
NASA Astrophysics Data System (ADS)
Youn, Dong Joon
This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach combining XFEM and random field is named as eXtended Random Finite Element Method (XRFEM). All the numerical analysis codes in this thesis are written in Fortran 2003, and these codes are applicable as a series of sub-modules within a suite of finite element codes developed by Smith and Griffiths (2004).
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Mathematical simulation of bearing ring grinding process
NASA Astrophysics Data System (ADS)
Koltunov, I. I.; Gorbunova, T. N.; Tumanova, M. B.
2018-03-01
The paper suggests the method of forming a solid finite element model of the bearing ring. Implementation of the model allowed one to evaluate the influence of the inner cylindrical surface grinding scheme on the ring shape error.
A Least-Squares Finite Element Method for Electromagnetic Scattering Problems
NASA Technical Reports Server (NTRS)
Wu, Jie; Jiang, Bo-nan
1996-01-01
The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.; Nguyen, Duc T.
2008-01-01
A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.
NASA Astrophysics Data System (ADS)
Cervone, A.; Manservisi, S.; Scardovelli, R.
2010-09-01
A multilevel VOF approach has been coupled to an accurate finite element Navier-Stokes solver in axisymmetric geometry for the simulation of incompressible liquid jets with high density ratios. The representation of the color function over a fine grid has been introduced to reduce the discontinuity of the interface at the cell boundary. In the refined grid the automatic breakup and coalescence occur at a spatial scale much smaller than the coarse grid spacing. To reduce memory requirements, we have implemented on the fine grid a compact storage scheme which memorizes the color function data only in the mixed cells. The capillary force is computed by using the Laplace-Beltrami operator and a volumetric approach for the two principal curvatures. Several simulations of axisymmetric jets have been performed to show the accuracy and robustness of the proposed scheme.
Computational Aeroacoustics by the Space-time CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2001-01-01
In recent years, a new numerical methodology for conservation laws-the Space-Time Conservation Element and Solution Element Method (CE/SE), was developed by Dr. Chang of NASA Glenn Research Center and collaborators. In nature, the new method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its rigorous treatment of the fluxes and geometry, it is different from the existing schemes. The CE/SE scheme features: (1) space and time treated on the same footing, the integral equations of conservation laws are solve( for with second order accuracy, (2) high resolution, low dispersion and low dissipation, (3) novel, truly multi-dimensional, simple but effective non-reflecting boundary condition, (4) effortless implementation of computation, no numerical fix or parameter choice is needed, an( (5) robust enough to cover a wide spectrum of compressible flow: from weak linear acoustic waves to strong, discontinuous waves (shocks) appropriate for linear and nonlinear aeroacoustics. Currently, the CE/SE scheme has been developed to such a stage that a 3-13 unstructured CE/SE Navier-Stokes solver is already available. However, in the present paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen as a prototype and is sketched in Section 2. Then applications of the CE/SE scheme to linear, nonlinear aeroacoustics and airframe noise are depicted in Sections 3, 4, and 5 respectively to demonstrate its robustness and capability.
Development of an hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1993-01-01
The purpose of this research effort was to begin the study of the application of hp-version finite elements to the numerical solution of optimal control problems. Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element. One possible drawback is the increased computational effort within each element required in implementing hp-version finite elements. We are trying to determine whether this computational effort is sufficiently offset by the reduction in the number of time elements used and improved Newton-Raphson convergence so as to be useful in solving optimal control problems in real time. Because certain of the element interior unknowns can be eliminated at the element level by solving a small set of nonlinear algebraic equations in which the nodal values are taken as given, the scheme may turn out to be especially powerful in a parallel computing environment. A different processor could be assigned to each element. The number of processors, strictly speaking, is not required to be any larger than the number of sub-regions which are free of discontinuities of any kind.
Multidisciplinary aeroelastic analysis of a generic hypersonic vehicle
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Petersen, K. L.
1993-01-01
This paper presents details of a flutter and stability analysis of aerospace structures such as hypersonic vehicles. Both structural and aerodynamic domains are discretized by the common finite element technique. A vibration analysis is first performed by the STARS code employing a block Lanczos solution scheme. This is followed by the generation of a linear aerodynamic grid for subsequent linear flutter analysis within subsonic and supersonic regimes of the flight envelope; the doublet lattice and constant pressure techniques are employed to generate the unsteady aerodynamic forces. Flutter analysis is then performed for several representative flight points. The nonlinear flutter solution is effected by first implementing a CFD solution of the entire vehicle. Thus, a 3-D unstructured grid for the entire flow domain is generated by a moving front technique. A finite element Euler solution is then implemented employing a quasi-implicit as well as an explicit solution scheme. A novel multidisciplinary analysis is next effected that employs modal and aerodynamic data to yield aerodynamic damping characteristics. Such analyses are performed for a number of flight points to yield a large set of pertinent data that define flight flutter characteristics of the vehicle. This paper outlines the finite-element-based integrated analysis procedures in detail, which is followed by the results of numerical analyses of flight flutter simulation.
NASA Astrophysics Data System (ADS)
Li, G. Q.; Zhu, Z. H.
2015-12-01
Dynamic modeling of tethered spacecraft with the consideration of elasticity of tether is prone to the numerical instability and error accumulation over long-term numerical integration. This paper addresses the challenges by proposing a globally stable numerical approach with the nodal position finite element method (NPFEM) and the implicit, symplectic, 2-stage and 4th order Gaussian-Legendre Runge-Kutta time integration. The NPFEM eliminates the numerical error accumulation by using the position instead of displacement of tether as the state variable, while the symplectic integration enforces the energy and momentum conservation of the discretized finite element model to ensure the global stability of numerical solution. The effectiveness and robustness of the proposed approach is assessed by an elastic pendulum problem, whose dynamic response resembles that of tethered spacecraft, in comparison with the commonly used time integrators such as the classical 4th order Runge-Kutta schemes and other families of non-symplectic Runge-Kutta schemes. Numerical results show that the proposed approach is accurate and the energy of the corresponding numerical model is conservative over the long-term numerical integration. Finally, the proposed approach is applied to the dynamic modeling of deorbiting process of tethered spacecraft over a long period.
NASA Astrophysics Data System (ADS)
Kit Wong, Ching; Wu, Patrick
2017-04-01
Wu (2004) developed a transformation scheme to model viscoelatic deformation due to glacial loading by commercial finite element package - ABAQUS. Benchmark tests confirmed that this method works extremely well on incompressible earth model. Bangtsson & Lund (2008),however, showed that the transformation scheme would lead to incorrect results if compressible material parameters are used. Their study implies that Wu's method of stress transformation is inadequate to model the load induced deformation of a compressible earth under the framework of ABAQUS. In light of this, numerical experiments are carried out to find if there exist other methods that serve this purpose. All the tested methods are not satisfying as the results failed to converge through iterations, except at the elastic limit. Those tested methods will be outlined and the results will be presented. Possible reasons of failure will also be discussed. Bängtsson, E., & Lund, B. (2008). A comparison between two solution techniques to solve the equations of glacially induced deformation of an elastic Earth. International journal for numerical methods in engineering, 75(4), 479-502. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2017-10-01
We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier-Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Sonnad, Vijay
1991-01-01
A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated.
NASA Technical Reports Server (NTRS)
Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.
2004-01-01
A recent paper is generalized to a case where the spatial region is taken in R(sup 3). The region is assumed to be a thin body, such as a panel on the wing or fuselage of an aerospace vehicle. The traditional h- as well as hp-finite element methods are applied to the surface defined in the x - y variables, while, through the thickness, the technique of the p-element is employed. Time and spatial discretization scheme based upon an assumption of certain weak singularity of double vertical line u(sub t) double vertical line 2, is used to derive an optimal a priori error estimate for the current method.
A finite element formulation for scattering from electrically large 2-dimensional structures
NASA Technical Reports Server (NTRS)
Ross, Daniel C.; Volakis, John L.
1992-01-01
A finite element formulation is given using the scattered field approach with a fictitious material absorber to truncate the mesh. The formulation includes the use of arbitrary approximation functions so that more accurate results can be achieved without any modification to the software. Additionally, non-polynomial approximation functions can be used, including complex approximation functions. The banded system that results is solved with an efficient sparse/banded iterative scheme and as a consequence, large structures can be analyzed. Results are given for simple cases to verify the formulation and also for large, complex geometries.
NASA Technical Reports Server (NTRS)
Sohn, J. L.; Heinrich, J. C.
1990-01-01
The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.
A triangular thin shell finite element: Nonlinear analysis. [structural analysis
NASA Technical Reports Server (NTRS)
Thomas, G. R.; Gallagher, R. H.
1975-01-01
Aspects of the formulation of a triangular thin shell finite element which pertain to geometrically nonlinear (small strain, finite displacement) behavior are described. The procedure for solution of the resulting nonlinear algebraic equations combines a one-step incremental (tangent stiffness) approach with one iteration in the Newton-Raphson mode. A method is presented which permits a rational estimation of step size in this procedure. Limit points are calculated by means of a superposition scheme coupled to the incremental side of the solution procedure while bifurcation points are calculated through a process of interpolation of the determinants of the tangent-stiffness matrix. Numerical results are obtained for a flat plate and two curved shell problems and are compared with alternative solutions.
Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods
NASA Astrophysics Data System (ADS)
Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco
2015-04-01
The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface resistivity. The Hessian of the regularization term is used as preconditioner which requires an additional PDE solution in each iteration step. As it turns out, the relevant PDEs are naturally formulated in the finite element framework. Using the domain decomposition method provided in Escript, the inversion scheme has been parallelized for distributed memory computers with multi-core shared memory nodes. We show numerical examples from simple layered models to complex 3D models and compare with the results from other methods. The inversion scheme is furthermore tested on a field data example to characterise localised freshwater discharge in a coastal environment.. References: L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306
Stabilized finite element methods to simulate the conductances of ion channels
NASA Astrophysics Data System (ADS)
Tu, Bin; Xie, Yan; Zhang, Linbo; Lu, Benzhuo
2015-03-01
We have previously developed a finite element simulator, ichannel, to simulate ion transport through three-dimensional ion channel systems via solving the Poisson-Nernst-Planck equations (PNP) and Size-modified Poisson-Nernst-Planck equations (SMPNP), and succeeded in simulating some ion channel systems. However, the iterative solution between the coupled Poisson equation and the Nernst-Planck equations has difficulty converging for some large systems. One reason we found is that the NP equations are advection-dominated diffusion equations, which causes troubles in the usual FE solution. The stabilized schemes have been applied to compute fluids flow in various research fields. However, they have not been studied in the simulation of ion transport through three-dimensional models based on experimentally determined ion channel structures. In this paper, two stabilized techniques, the SUPG and the Pseudo Residual-Free Bubble function (PRFB) are introduced to enhance the numerical robustness and convergence performance of the finite element algorithm in ichannel. The conductances of the voltage dependent anion channel (VDAC) and the anthrax toxin protective antigen pore (PA) are simulated to validate the stabilization techniques. Those two stabilized schemes give reasonable results for the two proteins, with decent agreement with both experimental data and Brownian dynamics (BD) simulations. For a variety of numerical tests, it is found that the simulator effectively avoids previous numerical instability after introducing the stabilization methods. Comparison based on our test data set between the two stabilized schemes indicates both SUPG and PRFB have similar performance (the latter is slightly more accurate and stable), while SUPG is relatively more convenient to implement.
An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1994-01-01
This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
2000-01-01
This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. On the analysis side, we have studied the efficient and stable discontinuous Galerkin framework for small second derivative terms, for example in Navier-Stokes equations, and also for related equations such as the Hamilton-Jacobi equations. This is a truly local discontinuous formulation where derivatives are considered as new variables. On the applied side, we have implemented and tested the efficiency of different approaches numerically. Related issues in high order ENO and WENO finite difference methods and spectral methods have also been investigated. Jointly with Hu, we have presented a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the RungeKutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method. Jointly with Hu, we have constructed third and fourth order WENO schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. The third order schemes are based on a combination of linear polynomials with nonlinear weights, and the fourth order schemes are based on combination of quadratic polynomials with nonlinear weights. We have addressed several difficult issues associated with high order WENO schemes on unstructured mesh, including the choice of linear and nonlinear weights, what to do with negative weights, etc. Numerical examples are shown to demonstrate the accuracies and robustness of the methods for shock calculations. Jointly with P. Montarnal, we have used a recently developed energy relaxation theory by Coquel and Perthame and high order weighted essentially non-oscillatory (WENO) schemes to simulate the Euler equations of real gas. The main idea is an energy decomposition under the form epsilon = epsilon(sub 1) + epsilon(sub 2), where epsilon(sub 1) is associated with a simpler pressure law (gamma)-law in this paper) and the nonlinear deviation epsilon(sub 2) is convected with the flow. A relaxation process is performed for each time step to ensure that the original pressure law is satisfied. The necessary characteristic decomposition for the high order WENO schemes is performed on the characteristic fields based on the epsilon(sub l) gamma-law. The algorithm only calls for the original pressure law once per grid point per time step, without the need to compute its derivatives or any Riemann solvers. Both one and two dimensional numerical examples are shown to illustrate the effectiveness of this approach.
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Lauritzen, P. H.; Reed, K. A.
2017-12-01
The spectral element dynamical core of the Community Atmosphere Model (CAM) has recently been coupled to an approximately isotropic, finite-volume grid per implementation of the conservative semi-Lagrangian multi-tracer transport scheme (CAM-SE-CSLAM; Lauritzen et al. 2017). In this framework, the semi-Lagrangian transport of tracers are computed on the finite-volume grid, while the adiabatic dynamics are solved using the spectral element grid. The physical parameterizations are evaluated on the finite-volume grid, as opposed to the unevenly spaced Gauss-Lobatto-Legendre nodes of the spectral element grid. Computing the physics on the finite-volume grid reduces numerical artifacts such as grid imprinting, possibly because the forcing terms are no longer computed at element boundaries where the resolved dynamics are least smooth. The separation of the physics grid and the dynamics grid allows for a unique opportunity to understand the resolution sensitivity in CAM-SE-CSLAM. The observed large sensitivity of CAM to horizontal resolution is a poorly understood impediment to improved simulations of regional climate using global, variable resolution grids. Here, a series of idealized moist simulations are presented in which the finite-volume grid resolution is varied relative to the spectral element grid resolution in CAM-SE-CSLAM. The simulations are carried out at multiple spectral element grid resolutions, in part to provide a companion set of simulations, in which the spectral element grid resolution is varied relative to the finite-volume grid resolution, but more generally to understand if the sensitivity to the finite-volume grid resolution is consistent across a wider spectrum of resolved scales. Results are interpreted in the context of prior ideas regarding resolution sensitivity of global atmospheric models.
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, Gerald W.; Mahadevan, L.
1987-01-01
A hybrid stress finite element method is developed for accurate stress and vibration analysis of problems in linear anisotropic elasticity. A modified form of the Hellinger-Reissner principle is formulated for dynamic analysis and an algorithm for the determination of the anisotropic elastic and compliance constants from experimental data is developed. These schemes were implemented in a finite element program for static and dynamic analysis of linear anisotropic two dimensional elasticity problems. Specific numerical examples are considered to verify the accuracy of the hybrid stress approach and compare it with that of the standard displacement method, especially for highly anisotropic materials. It is that the hybrid stress approach gives much better results than the displacement method. Preliminary work on extensions of this method to three dimensional elasticity is discussed, and the stress shape functions necessary for this extension are included.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Watson, Willie R. (Technical Monitor)
2005-01-01
The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.
NASA Astrophysics Data System (ADS)
Daude, F.; Galon, P.
2018-06-01
A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
Implementation of a finite-amplitude method in a relativistic meson-exchange model
NASA Astrophysics Data System (ADS)
Sun, Xuwei; Lu, Dinghui
2017-08-01
The finite-amplitude method is a feasible numerical approach to large scale random phase approximation calculations. It avoids the storage and calculation of residual interaction elements as well as the diagonalization of the RPA matrix, which will be prohibitive when the configuration space is huge. In this work we finished the implementation of a finite-amplitude method in a relativistic meson exchange mean field model with axial symmetry. The direct variation approach makes our FAM scheme capable of being extended to the multipole excitation case.
NASA Astrophysics Data System (ADS)
Qin, Shanlin; Liu, Fawang; Turner, Ian W.
2018-03-01
The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.
Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui
2018-06-01
Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.
Seismic waves in heterogeneous material: subcell resolution of the discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Castro, Cristóbal E.; Käser, Martin; Brietzke, Gilbert B.
2010-07-01
We present an important extension of the arbitrary high-order discontinuous Galerkin (DG) finite-element method to model 2-D elastic wave propagation in highly heterogeneous material. In this new approach we include space-variable coefficients to describe smooth or discontinuous material variations inside each element using the same numerical approximation strategy as for the velocity-stress variables in the formulation of the elastic wave equation. The combination of the DG method with a time integration scheme based on the solution of arbitrary accuracy derivatives Riemann problems still provides an explicit, one-step scheme which achieves arbitrary high-order accuracy in space and time. Compared to previous formulations the new scheme contains two additional terms in the form of volume integrals. We show that the increasing computational cost per element can be overcompensated due to the improved material representation inside each element as coarser meshes can be used which reduces the total number of elements and therefore computational time to reach a desired error level. We confirm the accuracy of the proposed scheme performing convergence tests and several numerical experiments considering smooth and highly heterogeneous material. As the approximation of the velocity and stress variables in the wave equation and of the material properties in the model can be chosen independently, we investigate the influence of the polynomial material representation on the accuracy of the synthetic seismograms with respect to computational cost. Moreover, we study the behaviour of the new method on strong material discontinuities, in the case where the mesh is not aligned with such a material interface. In this case second-order linear material approximation seems to be the best choice, with higher-order intra-cell approximation leading to potential instable behaviour. For all test cases we validate our solution against the well-established standard fourth-order finite difference and spectral element method.
A 3/D finite element approach for metal matrix composites based on micromechanical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less
ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION
HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG
2011-01-01
We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem. The convergence and accuracy of the overall AFEM algorithm is also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein. PMID:21949541
Application of NASTRAN to TFTR toroidal field coil structures
NASA Technical Reports Server (NTRS)
Chen, S. J.; Lee, E.
1978-01-01
The primary applied loads on the TF coils were electromagnetic and thermal. The complex structure and the tremendous applied loads necessitated computer type of solutions for the design problems. In the early stage of the TF coil design, many simplified finite element models were developed for the purpose of investigating the effects of material properties, supporting schemes, and coil case material on the stress levels in the case and in the copper coil. In the more sophisticated models that followed the parametric and scoping studies, the isoparametric elements, such as QUAD4, HEX8, and HEXA, were used. The analysis results from using these finite element models and the NASTRAN system were considered accurate enough to provide timely design information.
Adaptive computational methods for aerothermal heating analysis
NASA Technical Reports Server (NTRS)
Price, John M.; Oden, J. Tinsley
1988-01-01
The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.
A 3-D turbulent flow analysis using finite elements with k-ɛ model
NASA Astrophysics Data System (ADS)
Okuda, H.; Yagawa, G.; Eguchi, Y.
1989-03-01
This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.
An extension of the finite cell method using boolean operations
NASA Astrophysics Data System (ADS)
Abedian, Alireza; Düster, Alexander
2017-05-01
In the finite cell method, the fictitious domain approach is combined with high-order finite elements. The geometry of the problem is taken into account by integrating the finite cell formulation over the physical domain to obtain the corresponding stiffness matrix and load vector. In this contribution, an extension of the FCM is presented wherein both the physical and fictitious domain of an element are simultaneously evaluated during the integration. In the proposed extension of the finite cell method, the contribution of the stiffness matrix over the fictitious domain is subtracted from the cell, resulting in the desired stiffness matrix which reflects the contribution of the physical domain only. This method results in an exponential rate of convergence for porous domain problems with a smooth solution and accurate integration. In addition, it reduces the computational cost, especially when applying adaptive integration schemes based on the quadtree/octree. Based on 2D and 3D problems of linear elastostatics, numerical examples serve to demonstrate the efficiency and accuracy of the proposed method.
Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H
2017-08-01
We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mass-corrections for the conservative coupling of flow and transport on collocated meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waluga, Christian, E-mail: waluga@ma.tum.de; Wohlmuth, Barbara; Rüde, Ulrich
2016-01-15
Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilizedmore » linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sommer, A., E-mail: a.sommer@lte.uni-saarland.de; Farle, O., E-mail: o.farle@lte.uni-saarland.de; Dyczij-Edlinger, R., E-mail: edlinger@lte.uni-saarland.de
2015-10-15
This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
2004-01-01
This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. Other related issues in high order WENO finite difference and finite volume methods have also been investigated. methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present some quantitative comparisons of the third order finite volume WENO methods and discontinuous Galerkin methods for a series of test problems to assess their relative merits in accuracy and CPU timing. In [3], we review the development of the Runge-Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.
Finite element code development for modeling detonation of HMX composites
NASA Astrophysics Data System (ADS)
Duran, Adam V.; Sundararaghavan, Veera
2017-01-01
In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.
Highly accurate adaptive finite element schemes for nonlinear hyperbolic problems
NASA Astrophysics Data System (ADS)
Oden, J. T.
1992-08-01
This document is a final report of research activities supported under General Contract DAAL03-89-K-0120 between the Army Research Office and the University of Texas at Austin from July 1, 1989 through June 30, 1992. The project supported several Ph.D. students over the contract period, two of which are scheduled to complete dissertations during the 1992-93 academic year. Research results produced during the course of this effort led to 6 journal articles, 5 research reports, 4 conference papers and presentations, 1 book chapter, and two dissertations (nearing completion). It is felt that several significant advances were made during the course of this project that should have an impact on the field of numerical analysis of wave phenomena. These include the development of high-order, adaptive, hp-finite element methods for elastodynamic calculations and high-order schemes for linear and nonlinear hyperbolic systems. Also, a theory of multi-stage Taylor-Galerkin schemes was developed and implemented in the analysis of several wave propagation problems, and was configured within a general hp-adaptive strategy for these types of problems. Further details on research results and on areas requiring additional study are given in the Appendix.
NASA Astrophysics Data System (ADS)
Germain, Norbert; Besson, Jacques; Feyel, Frédéric
2007-07-01
Simulating damage and failure of laminate composites structures often fails when using the standard finite element procedure. The difficulties arise from an uncontrolled mesh dependence caused by damage localization and an increase in computational costs. One of the solutions to the first problem, widely used to predict the failure of metallic materials, consists of using non-local damage constitutive equations. The second difficulty can then be solved using specific finite element formulations, such as shell element, which decrease the number of degrees of freedom. The main contribution of this paper consists of extending these techniques to layered materials such as polymer matrix composites. An extension of the non-local implicit gradient formulation, accounting for anisotropy and stratification, and an original layered shell element, based on a new partition of the unity, are proposed. Finally the efficiency of the resulting numerical scheme is studied by comparing simulation with experimental results.
NASA Technical Reports Server (NTRS)
Padovan, J.; Adams, M.; Lam, P.; Fertis, D.; Zeid, I.
1982-01-01
Second-year efforts within a three-year study to develop and extend finite element (FE) methodology to efficiently handle the transient/steady state response of rotor-bearing-stator structure associated with gas turbine engines are outlined. The two main areas aim at (1) implanting the squeeze film damper element into a general purpose FE code for testing and evaluation; and (2) determining the numerical characteristics of the FE-generated rotor-bearing-stator simulation scheme. The governing FE field equations are set out and the solution methodology is presented. The choice of ADINA as the general-purpose FE code is explained, and the numerical operational characteristics of the direct integration approach of FE-generated rotor-bearing-stator simulations is determined, including benchmarking, comparison of explicit vs. implicit methodologies of direct integration, and demonstration problems.
Mass-conservative reconstruction of Galerkin velocity fields for transport simulations
NASA Astrophysics Data System (ADS)
Scudeler, C.; Putti, M.; Paniconi, C.
2016-08-01
Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration values that can moreover cause the numerical solution to explode. These problems do not occur when using LN post-processed velocities.
NASA Astrophysics Data System (ADS)
Kel'manov, A. V.; Khandeev, V. I.
2016-02-01
The strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters of given sizes (cardinalities) minimizing the sum (over both clusters) of the intracluster sums of squared distances from the elements of the clusters to their centers is considered. It is assumed that the center of one of the sought clusters is specified at the desired (arbitrary) point of space (without loss of generality, at the origin), while the center of the other one is unknown and determined as the mean value over all elements of this cluster. It is shown that unless P = NP, there is no fully polynomial-time approximation scheme for this problem, and such a scheme is substantiated in the case of a fixed space dimension.
NASA Astrophysics Data System (ADS)
Sancho de Salas, Fernando
2017-12-01
A ringed finite space is a ringed space whose underlying topological space is finite. The category of ringed finite spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a ringed finite space. We introduce the notions of schematic finite space and schematic morphism, showing that they behave, with respect to quasi-coherence, like schemes and morphisms of schemes do. Finally, we construct a fully faithful and essentially surjective functor from a localization of a full subcategory of the category of schematic finite spaces and schematic morphisms to the category of quasi-compact and quasi-separated schemes.
An Energy Decaying Scheme for Nonlinear Dynamics of Shells
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.
Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity
2015-08-13
conditions. 15. SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...associated Laplacian. We use the general theory for approximation of Hilbert complexes and the finite element exterior calculus and introduce some stable mixed
A numerical spectral approach to solve the dislocation density transport equation
NASA Astrophysics Data System (ADS)
Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.
2015-09-01
A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.
NASA Astrophysics Data System (ADS)
Goldberg, Niels; Ospald, Felix; Schneider, Matti
2017-10-01
In this article we introduce a fiber orientation-adapted integration scheme for Tucker's orientation averaging procedure applied to non-linear material laws, based on angular central Gaussian fiber orientation distributions. This method is stable w.r.t. fiber orientations degenerating into planar states and enables the construction of orthotropic hyperelastic energies for truly orthotropic fiber orientation states. We establish a reference scenario for fitting the Tucker average of a transversely isotropic hyperelastic energy, corresponding to a uni-directional fiber orientation, to microstructural simulations, obtained by FFT-based computational homogenization of neo-Hookean constituents. We carefully discuss ideas for accelerating the identification process, leading to a tremendous speed-up compared to a naive approach. The resulting hyperelastic material map turns out to be surprisingly accurate, simple to integrate in commercial finite element codes and fast in its execution. We demonstrate the capabilities of the extracted model by a finite element analysis of a fiber reinforced chain link.
High-Order Entropy Stable Formulations for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Fisher, Travis C.
2013-01-01
A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm, summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation finite-element operators, and certain finite-volume operators. Examples are presented using various entropy stable formulations that demonstrate the current state-of-the-art of these schemes.
Transient and steady state viscoelastic rolling contact
NASA Technical Reports Server (NTRS)
Padovan, J.; Paramadilok, O.
1985-01-01
Based on moving total Lagrangian coordinates, a so-called traveling Hughes type contact strategy is developed. Employing the modified contact scheme in conjunction with a traveling finite element strategy, an overall solution methodology is developed to handle transient and steady viscoelastic rolling contact. To verify the scheme, the results of both experimental and analytical benchmarking is presented. The experimental benchmarking includes the handling of rolling tires up to their upper bound behavior, namely the standing wave response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Z.; Department of Applied Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083; Lin, P.
In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C{sup 0} finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy lawmore » (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C{sup 0} finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.« less
Large-eddy simulation using the finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCallen, R.C.; Gresho, P.M.; Leone, J.M. Jr.
1993-10-01
In a large-eddy simulation (LES) of turbulent flows, the large-scale motion is calculated explicitly (i.e., approximated with semi-empirical relations). Typically, finite difference or spectral numerical schemes are used to generate an LES; the use of finite element methods (FEM) has been far less prominent. In this study, we demonstrate that FEM in combination with LES provides a viable tool for the study of turbulent, separating channel flows, specifically the flow over a two-dimensional backward-facing step. The combination of these methodologies brings together the advantages of each: LES provides a high degree of accuracy with a minimum of empiricism for turbulencemore » modeling and FEM provides a robust way to simulate flow in very complex domains of practical interest. Such a combination should prove very valuable to the engineering community.« less
FINITE EXPANSION METHOD FOR THE CALCULATION AND INTERPRETATION OF MOLECULAR ELECTROSTATIC POTENTIALS
Because it is useful to have the molecular electrostatic potential as an element in a complex scheme to assess the toxicity of large molecules, efficient and reliable methods are needed for the calculation and characterization of these potentials. A multicenter multipole expansio...
Patient-specific finite element modeling for femoral bone augmentation
Basafa, Ehsan; Armiger, Robert S.; Kutzer, Michael D.; Belkoff, Stephen M.; Mears, Simon C.; Armand, Mehran
2015-01-01
The aim of this study was to provide a fast and accurate finite element (FE) modeling scheme for predicting bone stiffness and strength suitable for use within the framework of a computer-assisted osteoporotic femoral bone augmentation surgery system. The key parts of the system, i.e. preoperative planning and intraoperative assessment of the augmentation, demand the finite element model to be solved and analyzed rapidly. Available CT scans and mechanical testing results from nine pairs of osteoporotic femur bones, with one specimen from each pair augmented by polymethylmethacrylate (PMMA) bone cement, were used to create FE models and compare the results with experiments. Correlation values of R2 = 0.72–0.95 were observed between the experiments and FEA results which, combined with the fast model convergence (~3 min for ~250,000 degrees of freedom), makes the presented modeling approach a promising candidate for the intended application of preoperative planning and intraoperative assessment of bone augmentation surgery. PMID:23375663
Algorithms for elasto-plastic-creep postbuckling
NASA Technical Reports Server (NTRS)
Padovan, J.; Tovichakchaikul, S.
1984-01-01
This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.
1986-01-01
A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.
Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham
2016-01-01
Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.
NASA Astrophysics Data System (ADS)
Regnier, D.; Verrière, M.; Dubray, N.; Schunck, N.
2016-03-01
We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.
NASA Astrophysics Data System (ADS)
Ohchi, Masashi; Furukawa, Tatsuya
Induction heating has found a new feasibility in domestic appliances. Its application is known as an “induction range” or an “induction heating oven”. Conventional design schemes of them have depended on the experience and insight of designers. In the paper, the authors treat it as an electromagnetic device to investigate the mechanism of power dissipation using the Finite Element Method, where an impressed voltage supply is taken account of and the constant V/f condition is imposed for the constant impressed magnetic flux. Furthermore the authors will examine how to heat an aluminum pan and discuss the optimal frequency of a power supply.
NASA Technical Reports Server (NTRS)
Usab, William J., Jr.; Jiang, Yi-Tsann
1991-01-01
The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.
A Runge-Kutta discontinuous finite element method for high speed flows
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. T.
1991-01-01
A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.
The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan
1995-01-01
The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.
DNS of Flows over Periodic Hills using a Discontinuous-Galerkin Spectral-Element Method
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2014-01-01
Direct numerical simulation (DNS) of turbulent compressible flows is performed using a higher-order space-time discontinuous-Galerkin finite-element method. The numerical scheme is validated by performing DNS of the evolution of the Taylor-Green vortex and turbulent flow in a channel. The higher-order method is shown to provide increased accuracy relative to low-order methods at a given number of degrees of freedom. The turbulent flow over a periodic array of hills in a channel is simulated at Reynolds number 10,595 using an 8th-order scheme in space and a 4th-order scheme in time. These results are validated against previous large eddy simulation (LES) results. A preliminary analysis provides insight into how these detailed simulations can be used to improve Reynoldsaveraged Navier-Stokes (RANS) modeling
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Dunn, Patrick
1995-01-01
A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.
Parallel-Vector Algorithm For Rapid Structural Anlysis
NASA Technical Reports Server (NTRS)
Agarwal, Tarun R.; Nguyen, Duc T.; Storaasli, Olaf O.
1993-01-01
New algorithm developed to overcome deficiency of skyline storage scheme by use of variable-band storage scheme. Exploits both parallel and vector capabilities of modern high-performance computers. Gives engineers and designers opportunity to include more design variables and constraints during optimization of structures. Enables use of more refined finite-element meshes to obtain improved understanding of complex behaviors of aerospace structures leading to better, safer designs. Not only attractive for current supercomputers but also for next generation of shared-memory supercomputers.
A robust, finite element model for hydrostatic surface water flows
Walters, R.A.; Casulli, V.
1998-01-01
A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.
Spilker, R L; de Almeida, E S; Donzelli, P S
1992-01-01
This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.
NASA Technical Reports Server (NTRS)
Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung
2016-01-01
Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov
For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-11-01
The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.
NASA Astrophysics Data System (ADS)
Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.
2017-12-01
The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced nature of the scheme and its convergence properties. We conclude with well-known benchmark problems including the Malpasset dam break (see the attached figure). All numerical experiments are performed and available in the Proteus toolkit, which is an open source python package for modeling continuum mechanical processes and fluid flow.
NASA Astrophysics Data System (ADS)
Jin, G.
2012-12-01
Multiphase flow modeling is an important numerical tool for a better understanding of transport processes in the fields including, but not limited to, petroleum reservoir engineering, remedy of ground water contamination, and risk evaluation of greenhouse gases such as CO2 injected into deep saline reservoirs. However, accurate numerical modeling for multiphase flow remains many challenges that arise from the inherent tight coupling and strong non-linear nature of the governing equations and the highly heterogeneous media. The existence of counter current flow which is caused by the effect of adverse relative mobility contrast and gravitational and capillary forces will introduce additional numerical instability. Recently multipoint flux approximation (MPFA) has become a subject of extensive research and has been demonstrated with great success in reducing considerable grid orientation effects compared to the conventional single point upstream (SPU) weighting scheme, especially in higher dimensions. However, the present available MPFA schemes are mathematically targeted to certain types of grids in two dimensions, a more general form of MPFA scheme is needed for both 2-D and 3-D problems. In this work a new upstream weighting scheme based on multipoint directional incoming fluxes is proposed which incorporates full permeability tensor to account for the heterogeneity of the porous media. First, the multiphase governing equations are decoupled into an elliptic pressure equation and a hyperbolic or parabolic saturation depends on whether the gravitational and capillary pressures are presented or not. Next, a dual secondary grid (called finite volume grid) is formulated from a primary grid (called finite element grid) to create interaction regions for each grid cell over the entire simulation domain. Such a discretization must ensure the conservation of mass and maintain the continuity of the Darcy velocity across the boundaries between neighboring interaction regions. The pressure field is then implicitly calculated from the pressure equation, which in turn results in the derived velocity field for directional flux calculation at each grid node. Directional flux at the center of each interaction surface is also calculated by interpolation from the element nodal fluxes using shape functions. The MPFA scheme is performed by a specific linear combination of all incoming fluxes into the upstream cell represented by either nodal fluxes or interpolated surface boundary fluxes to produce an upwind directional fluxed weighted relative mobility at the center of the interaction region boundary. Such an upwind weighted relative mobility is then used for calculating the saturations of each fluid phase explicitly. The proposed upwind weighting scheme has been implemented into a mixed finite element-finite volume (FE-FV) method, which allows for handling complex reservoir geometry with second-order accuracies in approximating primary variables. The numerical solver has been tested with several bench mark test problems. The application of the proposed scheme to migration path analysis of CO2 injected into deep saline reservoirs in 3-D has demonstrated its ability and robustness in handling multiphase flow with adverse mobility contrast in highly heterogeneous porous media.
Final Report of the Project "From the finite element method to the virtual element method"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzini, Gianmarco; Gyrya, Vitaliy
The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for themore » numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.« less
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities
NASA Technical Reports Server (NTRS)
Bendiksen, Oddvar O.
1994-01-01
This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.
Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves
NASA Astrophysics Data System (ADS)
Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian
2012-12-01
This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.
Hierarchial parallel computer architecture defined by computational multidisciplinary mechanics
NASA Technical Reports Server (NTRS)
Padovan, Joe; Gute, Doug; Johnson, Keith
1989-01-01
The goal is to develop an architecture for parallel processors enabling optimal handling of multi-disciplinary computation of fluid-solid simulations employing finite element and difference schemes. The goals, philosphical and modeling directions, static and dynamic poly trees, example problems, interpolative reduction, the impact on solvers are shown in viewgraph form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannetti, C.; Becker, R.
The software is an ABAQUS/Standard UMAT (user defined material behavior subroutine) that implements the constitutive model for shape-memory alloy materials developed by Jannetti et. al. (2003a) using a fully implicit time integration scheme to integrate the constitutive equations. The UMAT is used in conjunction with ABAQUS/Standard to perform a finite-element analysis of SMA materials.
Self-adaptive Solution Strategies
NASA Technical Reports Server (NTRS)
Padovan, J.
1984-01-01
The development of enhancements to current generation nonlinear finite element algorithms of the incremental Newton-Raphson type was overviewed. Work was introduced on alternative formulations which lead to improve algorithms that avoid the need for global level updating and inversion. To quantify the enhanced Newton-Raphson scheme and the new alternative algorithm, the results of several benchmarks are presented.
NASA Technical Reports Server (NTRS)
Chulya, Abhisak; Walker, Kevin P.
1991-01-01
A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.
NASA Technical Reports Server (NTRS)
Chulya, A.; Walker, K. P.
1989-01-01
A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.
Finite-element modelling of multilayer X-ray optics.
Cheng, Xianchao; Zhang, Lin
2017-05-01
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7 ) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6 ), which causes low solution accuracy; and the number of elements is still very large (10 6 ). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.
Finite-element modelling of multilayer X-ray optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xianchao; Zhang, Lin
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical sizemore » 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6), which causes low solution accuracy; and the number of elements is still very large (10 6). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.« less
NASA Technical Reports Server (NTRS)
Hou, Gene
2004-01-01
The focus of this research is on the development of analysis and sensitivity analysis equations for nonlinear, transient heat transfer problems modeled by p-version, time discontinuous finite element approximation. The resulting matrix equation of the state equation is simply in the form ofA(x)x = c, representing a single step, time marching scheme. The Newton-Raphson's method is used to solve the nonlinear equation. Examples are first provided to demonstrate the accuracy characteristics of the resultant finite element approximation. A direct differentiation approach is then used to compute the thermal sensitivities of a nonlinear heat transfer problem. The report shows that only minimal coding effort is required to enhance the analysis code with the sensitivity analysis capability.
Regnier, D.; Verriere, M.; Dubray, N.; ...
2015-11-30
In this study, we describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in NN-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank–Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle amore » realistic calculation of fission dynamics.« less
An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow
Hu, Rui
2017-03-27
Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less
An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less
NASA Technical Reports Server (NTRS)
Tezduyar, Tayfun E.
1998-01-01
This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.
Approximate minimum-time trajectories for 2-link flexible manipulators
NASA Technical Reports Server (NTRS)
Eisler, G. R.; Segalman, D. J.; Robinett, R. D.
1989-01-01
Powell's nonlinear programming code, VF02AD, was used to generate approximate minimum-time tip trajectories for 2-link semi-rigid and flexible manipulator movements in the horizontal plane. The manipulator is modeled with an efficient finite-element scheme for an n-link, m-joint system with horizontal-plane bending only. Constraints on the trajectory include boundary conditions on position and energy for a rest-to-rest maneuver, straight-line tracking between boundary positions, and motor torque limits. Trajectory comparisons utilize a change in the link stiffness, EI, to transition from the semi-rigid to flexible case. Results show the level of compliance necessary to excite significant modal behavior. Quiescence of the final configuration is examined with the finite-element model.
Mixed models and reduction method for dynamic analysis of anisotropic shells
NASA Technical Reports Server (NTRS)
Noor, A. K.; Peters, J. M.
1985-01-01
A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.
NASA Astrophysics Data System (ADS)
Imbrogno, Stano; Rinaldi, Sergio; Raso, Antonio; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico
2018-05-01
The Additive Manufacturing techniques are gaining more and more interest in various industrial fields due to the possibility of drastically reduce the material waste during the production processes, revolutionizing the standard scheme and strategies of the manufacturing processes. However, the metal parts shape produced, frequently do not satisfy the tolerances as well as the surface quality requirements. During the design phase, the finite element simulation results a fundamental tool to help the engineers in the correct decision of the most suitable process parameters, especially in manufacturing processes, in order to produce products of high quality. The aim of this work is to develop a 3D finite element model of semi-finishing turning operation of Ti6Al4V, produced via Direct Metal Laser Sintering (DMLS). A customized user sub-routine was built-up in order to model the mechanical behavior of the material under machining operations to predict the main fundamental variables as cutting forces and temperature. Moreover, the machining induced alterations are also studied by the finite element model developed.
Interior Noise Predictions in the Preliminary Design of the Large Civil Tiltrotor (LCTR2)
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Cabell, Randolph H.; Boyd, David D.
2013-01-01
A prediction scheme was established to compute sound pressure levels in the interior of a simplified cabin model of the second generation Large Civil Tiltrotor (LCTR2) during cruise conditions, while being excited by turbulent boundary layer flow over the fuselage, or by tiltrotor blade loading and thickness noise. Finite element models of the cabin structure, interior acoustic space, and acoustically absorbent (poro-elastic) materials in the fuselage were generated and combined into a coupled structural-acoustic model. Fluctuating power spectral densities were computed according to the Efimtsov turbulent boundary layer excitation model. Noise associated with the tiltrotor blades was predicted in the time domain as fluctuating surface pressures and converted to power spectral densities at the fuselage skin finite element nodes. A hybrid finite element (FE) approach was used to compute the low frequency acoustic cabin response over the frequency range 6-141 Hz with a 1 Hz bandwidth, and the Statistical Energy Analysis (SEA) approach was used to predict the interior noise for the 125-8000 Hz one-third octave bands.
A nonlinear dynamic finite element approach for simulating muscular hydrostats.
Vavourakis, V; Kazakidi, A; Tsakiris, D P; Ekaterinaris, J A
2014-01-01
An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney-Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton-Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching.
Jabbari, Mohammad Hadi; Sayehbani, Mesbah; Reisinezhad, Arsham
2013-01-01
This paper presents a numerical model based on one-dimensional Beji and Nadaoka's Extended Boussinesq equations for simulation of periodic wave shoaling and its decomposition over morphological beaches. A unique Galerkin finite element and Adams-Bashforth-Moulton predictor-corrector methods are employed for spatial and temporal discretization, respectively. For direct application of linear finite element method in spatial discretization, an auxiliary variable is hereby introduced, and a particular numerical scheme is offered to rewrite the equations in lower-order form. Stability of the suggested numerical method is also analyzed. Subsequently, in order to display the ability of the presented model, four different test cases are considered. In these test cases, dispersive and nonlinearity effects of the periodic waves over sloping beaches and barred beaches, which are the common coastal profiles, are investigated. Outputs are compared with other existing numerical and experimental data. Finally, it is concluded that the current model can be further developed to model any morphological development of coastal profiles. PMID:23853534
Finite element formulation of viscoelastic sandwich beams using fractional derivative operators
NASA Astrophysics Data System (ADS)
Galucio, A. C.; Deü, J.-F.; Ohayon, R.
This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.
NASA Astrophysics Data System (ADS)
Huyakorn, Peter S.; Springer, Everett P.; Guvanasen, Varut; Wadsworth, Terry D.
1986-12-01
A three-dimensional finite-element model for simulating water flow in variably saturated porous media is presented. The model formulation is general and capable of accommodating complex boundary conditions associated with seepage faces and infiltration or evaporation on the soil surface. Included in this formulation is an improved Picard algorithm designed to cope with severely nonlinear soil moisture relations. The algorithm is formulated for both rectangular and triangular prism elements. The element matrices are evaluated using an "influence coefficient" technique that avoids costly numerical integration. Spatial discretization of a three-dimensional region is performed using a vertical slicing approach designed to accommodate complex geometry with irregular boundaries, layering, and/or lateral discontinuities. Matrix solution is achieved using a slice successive overrelaxation scheme that permits a fairly large number of nodal unknowns (on the order of several thousand) to be handled efficiently on small minicomputers. Six examples are presented to verify and demonstrate the utility of the proposed finite-element model. The first four examples concern one- and two-dimensional flow problems used as sample problems to benchmark the code. The remaining examples concern three-dimensional problems. These problems are used to illustrate the performance of the proposed algorithm in three-dimensional situations involving seepage faces and anisotropic soil media.
Merei, Bilal; Badel, Pierre; Davis, Lindsey; Sutton, Michael A; Avril, Stéphane; Lessner, Susan M
2017-03-01
Finite element analyses using cohesive zone models (CZM) can be used to predict the fracture of atherosclerotic plaques but this requires setting appropriate values of the model parameters. In this study, material parameters of a CZM were identified for the first time on two groups of mice (ApoE -/- and ApoE -/- Col8 -/- ) using the measured force-displacement curves acquired during delamination tests. To this end, a 2D finite-element model of each plaque was solved using an explicit integration scheme. Each constituent of the plaque was modeled with a neo-Hookean strain energy density function and a CZM was used for the interface. The model parameters were calibrated by minimizing the quadratic deviation between the experimental force displacement curves and the model predictions. The elastic parameter of the plaque and the CZM interfacial parameter were successfully identified for a cohort of 11 mice. The results revealed that only the elastic parameter was significantly different between the two groups, ApoE -/- Col8 -/- plaques being less stiff than ApoE -/- plaques. Finally, this study demonstrated that a simple 2D finite element model with cohesive elements can reproduce fairly well the plaque peeling global response. Future work will focus on understanding the main biological determinants of regional and inter-individual variations of the material parameters used in the model. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.
2015-12-01
Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties. Several representative numerical examples are discussed to illustrate the importance of the proposed numerical formulations to accurately describe various aspects of mixing process in chaotic flows and to simulate transport in highly heterogeneous anisotropic media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, James V.; Wellman, Gerald William; Emery, John M.
2011-09-01
Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictionsmore » had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.« less
Numerical scheme approximating solution and parameters in a beam equation
NASA Astrophysics Data System (ADS)
Ferdinand, Robert R.
2003-12-01
We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.
A point-value enhanced finite volume method based on approximate delta functions
NASA Astrophysics Data System (ADS)
Xuan, Li-Jun; Majdalani, Joseph
2018-02-01
We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.
Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains
NASA Astrophysics Data System (ADS)
Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.
2004-07-01
Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.
A new approach to flow simulation in highly heterogeneous porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rame, M.; Killough, J.E.
In this paper, applications are presented for a new numerical method - operator splittings on multiple grids (OSMG) - devised for simulations in heterogeneous porous media. A coarse-grid, finite-element pressure solver is interfaced with a fine-grid timestepping scheme. The CPU time for the pressure solver is greatly reduced and concentration fronts have minimal numerical dispersion.
NASA Astrophysics Data System (ADS)
Kamiński, M.; Supeł, Ł.
2016-02-01
It is widely known that lateral-torsional buckling of a member under bending and warping restraints of its cross-sections in the steel structures are crucial for estimation of their safety and durability. Although engineering codes for steel and aluminum structures support the designer with the additional analytical expressions depending even on the boundary conditions and internal forces diagrams, one may apply alternatively the traditional Finite Element or Finite Difference Methods (FEM, FDM) to determine the so-called critical moment representing this phenomenon. The principal purpose of this work is to compare three different ways of determination of critical moment, also in the context of structural sensitivity analysis with respect to the structural element length. Sensitivity gradients are determined by the use of both analytical and the central finite difference scheme here and contrasted also for analytical, FEM as well as FDM approaches. Computational study is provided for the entire family of the steel I- and H - beams available for the practitioners in this area, and is a basis for further stochastic reliability analysis as well as durability prediction including possible corrosion progress.
Large-eddy simulation of flow past a circular cylinder
NASA Technical Reports Server (NTRS)
Mittal, R.
1995-01-01
Some of the most challenging applications of large-eddy simulation are those in complex geometries where spectral methods are of limited use. For such applications more conventional methods such as finite difference or finite element have to be used. However, it has become clear in recent years that dissipative numerical schemes which are routinely used in viscous flow simulations are not good candidates for use in LES of turbulent flows. Except in cases where the flow is extremely well resolved, it has been found that upwind schemes tend to damp out a significant portion of the small scales that can be resolved on the grid. Furthermore, it has been found that even specially designed higher-order upwind schemes that have been used successfully in the direct numerical simulation of turbulent flows produce too much dissipation when used in conjunction with large-eddy simulation. The objective of the current study is to perform a LES of incompressible flow past a circular cylinder at a Reynolds number of 3900 using a solver which employs an energy-conservative second-order central difference scheme for spatial discretization and compare the results obtained with those of Beaudan & Moin (1994) and with the experiments in order to assess the performance of the central scheme for this relatively complex geometry.
Digital-Analog Hybrid Scheme and Its Application to Chaotic Random Number Generators
NASA Astrophysics Data System (ADS)
Yuan, Zeshi; Li, Hongtao; Miao, Yunchi; Hu, Wen; Zhu, Xiaohua
2017-12-01
Practical random number generation (RNG) circuits are typically achieved with analog devices or digital approaches. Digital-based techniques, which use field programmable gate array (FPGA) and graphics processing units (GPU) etc. usually have better performances than analog methods as they are programmable, efficient and robust. However, digital realizations suffer from the effect of finite precision. Accordingly, the generated random numbers (RNs) are actually periodic instead of being real random. To tackle this limitation, in this paper we propose a novel digital-analog hybrid scheme that employs the digital unit as the main body, and minimum analog devices to generate physical RNs. Moreover, the possibility of realizing the proposed scheme with only one memory element is discussed. Without loss of generality, we use the capacitor and the memristor along with FPGA to construct the proposed hybrid system, and a chaotic true random number generator (TRNG) circuit is realized, producing physical RNs at a throughput of Gbit/s scale. These RNs successfully pass all the tests in the NIST SP800-22 package, confirming the significance of the scheme in practical applications. In addition, the use of this new scheme is not restricted to RNGs, and it also provides a strategy to solve the effect of finite precision in other digital systems.
A decentralized linear quadratic control design method for flexible structures
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1990-01-01
A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass and stiffness properties.
Hybrid finite difference/finite element immersed boundary method.
E Griffith, Boyce; Luo, Xiaoyu
2017-12-01
The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.
Finite element code development for modeling detonation of HMX composites
NASA Astrophysics Data System (ADS)
Duran, Adam; Sundararaghavan, Veera
2015-06-01
In this talk, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for sod shock and ZND strong detonation models and then used to perform 2D and 3D shock simulations. We will present benchmark problems for geometries in which a single HMX crystal is subjected to a shock condition. Our current progress towards developing microstructural models of HMX/binder composite will also be discussed.
Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K
2011-11-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.
NASA Astrophysics Data System (ADS)
Wang, W.; Liu, J.
2016-12-01
Forward modelling is the general way to obtain responses of geoelectrical structures. Field investigators might find it useful for planning surveys and choosing optimal electrode configurations with respect to their targets. During the past few decades much effort has been put into the development of numerical forward codes, such as integral equation method, finite difference method and finite element method. Nowadays, most researchers prefer the finite element method (FEM) for its flexible meshing scheme, which can handle models with complex geometry. Resistivity Modelling with commercial sofewares such as ANSYS and COMSOL is convenient, but like working with a black box. Modifying the existed codes or developing new codes is somehow a long period. We present a new way to obtain resistivity forward modelling codes quickly, which is based on the commercial sofeware FEPG (Finite element Program Generator). Just with several demanding scripts, FEPG could generate FORTRAN program framework which can easily be altered to adjust our targets. By supposing the electric potential is quadratic in each element of a two-layer model, we obtain quite accurate results with errors less than 1%, while more than 5% errors could appear by linear FE codes. The anisotropic half-space model is supposed to concern vertical distributed fractures. The measured apparent resistivities along the fractures are bigger than results from its orthogonal direction, which are opposite of the true resistivities. Interpretation could be misunderstood if this anisotropic paradox is ignored. The technique we used can obtain scientific codes in a short time. The generated powerful FORTRAN codes could reach accurate results by higher-order assumption and can handle anisotropy to make better interpretations. The method we used could be expand easily to other domain where FE codes are needed.
Conservative properties of finite difference schemes for incompressible flow
NASA Technical Reports Server (NTRS)
Morinishi, Youhei
1995-01-01
The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.
Multigrid solutions to quasi-elliptic schemes
NASA Technical Reports Server (NTRS)
Brandt, A.; Taasan, S.
1985-01-01
Quasi-elliptic schemes arise from central differencing or finite element discretization of elliptic systems with odd order derivatives on non-staggered grids. They are somewhat unstable and less accurate then corresponding staggered-grid schemes. When usual multigrid solvers are applied to them, the asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown by mode analyses and numerical experiments that the usual FMG algorithm is very efficient in solving quasi-elliptic equations to the level of truncation errors. Also, a new type of multigrid algorithm is presented, mode analyzed and tested, for which even the asymptotic algebraic convergence is fast. The essence of that algorithm is applicable to other kinds of problems, including highly indefinite ones.
Multigrid solutions to quasi-elliptic schemes
NASA Technical Reports Server (NTRS)
Brandt, A.; Taasan, S.
1985-01-01
Quasi-elliptic schemes arise from central differencing or finite element discretization of elliptic systems with odd order derivatives on non-staggered grids. They are somewhat unstable and less accurate than corresponding staggered-grid schemes. When usual multigrid solvers are applied to them, the asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown by mode analyses and numerical experiments that the usual FMG algorithm is very efficient in solving quasi-elliptic equations to the level of truncation errors. Also, a new type of multigrid algorithm is presented, mode analyzed and tested, for which even the asymptotic algebraic convergence is fast. The essence of that algorithm is applicable to other kinds of problems, including highly indefinite ones.
Multi-level adaptive finite element methods. 1: Variation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1979-01-01
A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.
Arridge, S R; Dehghani, H; Schweiger, M; Okada, E
2000-01-01
We present a method for handling nonscattering regions within diffusing domains. The method develops from an iterative radiosity-diffusion approach using Green's functions that was computationally slow. Here we present an improved implementation using a finite element method (FEM) that is direct. The fundamental idea is to introduce extra equations into the standard diffusion FEM to represent nondiffusive light propagation across a nonscattering region. By appropriate mesh node ordering the computational time is not much greater than for diffusion alone. We compare results from this method with those from a discrete ordinate transport code, and with Monte Carlo calculations. The agreement is very good, and, in addition, our scheme allows us to easily model time-dependent and frequency domain problems.
NASA Astrophysics Data System (ADS)
Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.
2007-04-01
In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.
Finite element implementation of state variable-based viscoplasticity models
NASA Technical Reports Server (NTRS)
Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.
1991-01-01
The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.
A multilevel finite element method for Fredholm integral eigenvalue problems
NASA Astrophysics Data System (ADS)
Xie, Hehu; Zhou, Tao
2015-12-01
In this work, we proposed a multigrid finite element (MFE) method for solving the Fredholm integral eigenvalue problems. The main motivation for such studies is to compute the Karhunen-Loève expansions of random fields, which play an important role in the applications of uncertainty quantification. In our MFE framework, solving the eigenvalue problem is converted to doing a series of integral iterations and eigenvalue solving in the coarsest mesh. Then, any existing efficient integration scheme can be used for the associated integration process. The error estimates are provided, and the computational complexity is analyzed. It is noticed that the total computational work of our method is comparable with a single integration step in the finest mesh. Several numerical experiments are presented to validate the efficiency of the proposed numerical method.
NASA Astrophysics Data System (ADS)
Zanotti, Olindo; Dumbser, Michael
2016-01-01
We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER schemes provide less oscillatory solutions when compared to ADER finite volume schemes based on the reconstruction in conserved variables, especially for the RMHD and the Baer-Nunziato equations. For the RHD and RMHD equations, the overall accuracy is improved and the CPU time is reduced by about 25 %. Because of its increased accuracy and due to the reduced computational cost, we recommend to use this version of ADER as the standard one in the relativistic framework. At the end of the paper, the new approach has also been extended to ADER-DG schemes on space-time adaptive grids (AMR).
NASA Technical Reports Server (NTRS)
Noor, A. K.; Stephens, W. B.
1973-01-01
Several finite difference schemes are applied to the stress and free vibration analysis of homogeneous isotropic and layered orthotropic shells of revolution. The study is based on a form of the Sanders-Budiansky first-approximation linear shell theory modified such that the effects of shear deformation and rotary inertia are included. A Fourier approach is used in which all the shell stress resultants and displacements are expanded in a Fourier series in the circumferential direction, and the governing equations reduce to ordinary differential equations in the meridional direction. While primary attention is given to finite difference schemes used in conjunction with first order differential equation formulation, comparison is made with finite difference schemes used with other formulations. These finite difference discretization models are compared with respect to simplicity of application, convergence characteristics, and computational efficiency. Numerical studies are presented for the effects of variations in shell geometry and lamination parameters on the accuracy and convergence of the solutions obtained by the different finite difference schemes. On the basis of the present study it is shown that the mixed finite difference scheme based on the first order differential equation formulation and two interlacing grids for the different fundamental unknowns combines a number of advantages over other finite difference schemes previously reported in the literature.
Specialty functions singularity mechanics problems
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1989-01-01
The focus is in the development of more accurate and efficient advanced methods for solution of singular problems encountered in mechanics. At present, finite element methods in conjunction with special functions, boolean sum and blending interpolations are being considered. In dealing with systems which contain a singularity, special finite elements are being formulated to be used in singular regions. Further, special transition elements are being formulated to couple the special element to the mesh that models the rest of the system, and to be used in conjunction with 1-D, 2-D and 3-D elements within the same mesh. Computational simulation with a least squares fit is being utilized to construct special elements, if there is an unknown singularity in the system. A novel approach is taken in formulation of the elements in that: (1) the material properties are modified to include time, temperature, coordinate and stress dependant behavior within the element; (2) material properties vary at nodal points of the elements; (3) a hidden-symbolic computation scheme is developed and utilized in formulating the elements; and (4) special functions and boolean sum are utilized in order to interpolate the field variables and their derivatives along the boundary of the elements. It may be noted that the proposed methods are also applicable to fluids and coupled problems.
Study on launch scheme of space-net capturing system.
Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang
2017-01-01
With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.
Study on launch scheme of space-net capturing system
Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang
2017-01-01
With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187
Multiple crack detection in 3D using a stable XFEM and global optimization
NASA Astrophysics Data System (ADS)
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.
2018-02-01
A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
NASA Astrophysics Data System (ADS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-06-01
Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semi-discrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re → ∞ their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.
Benchmarks for single-phase flow in fractured porous media
NASA Astrophysics Data System (ADS)
Flemisch, Bernd; Berre, Inga; Boon, Wietse; Fumagalli, Alessio; Schwenck, Nicolas; Scotti, Anna; Stefansson, Ivar; Tatomir, Alexandru
2018-01-01
This paper presents several test cases intended to be benchmarks for numerical schemes for single-phase fluid flow in fractured porous media. A number of solution strategies are compared, including a vertex and two cell-centred finite volume methods, a non-conforming embedded discrete fracture model, a primal and a dual extended finite element formulation, and a mortar discrete fracture model. The proposed benchmarks test the schemes by increasing the difficulties in terms of network geometry, e.g. intersecting fractures, and physical parameters, e.g. low and high fracture-matrix permeability ratio as well as heterogeneous fracture permeabilities. For each problem, the results presented are the number of unknowns, the approximation errors in the porous matrix and in the fractures with respect to a reference solution, and the sparsity and condition number of the discretized linear system. All data and meshes used in this study are publicly available for further comparisons.
NASA Technical Reports Server (NTRS)
Mostrel, M. M.
1988-01-01
New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.
Two-level schemes for the advection equation
NASA Astrophysics Data System (ADS)
Vabishchevich, Petr N.
2018-06-01
The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.
Phase averaging method for the modeling of the multiprobe and cutaneous cryosurgery
NASA Astrophysics Data System (ADS)
E Shilnikov, K.; Kudryashov, N. A.; Y Gaiur, I.
2017-12-01
In this paper we consider the problem of planning and optimization of the cutaneous and multiprobe cryosurgery operations. An explicit scheme based on the finite volume approximation of phase averaged Pennes bioheat transfer model is applied. The flux relaxation method is used for the stability improvement of scheme. Skin tissue is considered as strongly inhomogeneous media. Computerized planning tool is tested on model cryotip-based and cutaneous cryosurgery problems. For the case of cutaneous cryosurgery the method of an additional freezing element mounting is studied as an approach to optimize the cellular necrosis front propagation.
Finite element analyses of thin film active grazing incidence x-ray optics
NASA Astrophysics Data System (ADS)
Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.
2010-09-01
The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.
NASA Astrophysics Data System (ADS)
Alves, J. L.; Oliveira, M. C.; Menezes, L. F.
2004-06-01
Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Corato, M., E-mail: marco.decorato@unina.it; Slot, J.J.M., E-mail: j.j.m.slot@tue.nl; Hütter, M., E-mail: m.huetter@tue.nl
In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered withinmore » the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.« less
Finite-volume scheme for anisotropic diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
The first ANDES elements: 9-DOF plate bending triangles
NASA Technical Reports Server (NTRS)
Militello, Carmelo; Felippa, Carlos A.
1991-01-01
New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES) formulation. This is a brand new variant of the assumed natural strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for constructing high-performance elements for linear and nonlinear analysis. The ANDES formulation is based on an extended parametrized variational principle developed in recent publications. The key concept is that only the deviatoric part of the strains is assumed over the element whereas the mean strain part is discarded in favor of a constant stress assumption. Unlike conventional ANS elements, ANDES elements satisfy the individual element test (a stringent form of the patch test) a priori while retaining the favorable distortion-insensitivity properties of ANS elements. The first application of this formulation is the development of several Kirchhoff plate bending triangular elements with the standard nine degrees of freedom. Linear curvature variations are sampled along the three sides with the corners as gage reading points. These sample values are interpolated over the triangle using three schemes. Two schemes merge back to conventional ANS elements, one being identical to the Discrete Kirchhoff Triangle (DKT), whereas the third one produces two new ANDES elements. Numerical experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to previously derived high-performance plate-bending elements, while retaining accuracy for nondistorted elements.
Moving Particles Through a Finite Element Mesh
Peskin, Adele P.; Hardin, Gary R.
1998-01-01
We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2008-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.
Bending and stretching finite element analysis of anisotropic viscoelastic composite plates
NASA Technical Reports Server (NTRS)
Hilton, Harry H.; Yi, Sung
1990-01-01
Finite element algorithms have been developed to analyze linear anisotropic viscoelastic plates, with or without holes, subjected to mechanical (bending, tension), temperature, and hygrothermal loadings. The analysis is based on Laplace transforms rather than direct time integrations in order to improve the accuracy of the results and save on extensive computational time and storage. The time dependent displacement fields in the transverse direction for the cross ply and angle ply laminates are calculated and the stacking sequence effects of the laminates are discussed in detail. Creep responses for the plates with or without a circular hole are also studied. The numerical results compare favorably with analytical solutions, i.e. within 1.8 percent for bending and 10(exp -3) 3 percent for tension. The tension results of the present method are compared with those using the direct time integration scheme.
FINITE ELEMENT MODEL FOR TIDES AND CURRENTS WITH FIELD APPLICATIONS.
Walters, Roy A.
1988-01-01
A finite element model, based upon the shallow water equations, is used to calculate tidal amplitudes and currents for two field-scale test problems. Because tides are characterized by line spectra, the governing equations are subjected to harmonic decomposition. Thus the solution variables are the real and imaginary parts of the amplitude of sea level and velocity rather than a time series of these variables. The time series is recovered through synthesis. This scheme, coupled with a modified form of the governing equations, leads to high computational efficiency and freedom from excessive numerical noise. Two test-cases are presented. The first is a solution for eleven tidal constituents in the English Channel and southern North Sea, and three constituents are discussed. The second is an analysis of the frequency response and tidal harmonics for south San Francisco Bay.
NASA Astrophysics Data System (ADS)
Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang
2017-11-01
Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.
Development of 3D electromagnetic modeling tools for airborne vehicles
NASA Technical Reports Server (NTRS)
Volakis, John L.
1992-01-01
The main goal of this report is to advance the development of methodologies for scattering by airborne composite vehicles. Although the primary focus continues to be the development of a general purpose computer code for analyzing the entire structure as a single unit, a number of other tasks are also being pursued in parallel with this effort. One of these tasks discussed within is on new finite element formulations and mesh termination schemes. The goal here is to decrease computation time while retaining accuracy and geometric adaptability.The second task focuses on the application of wavelets to electromagnetics. Wavelet transformations are shown to be able to reduce a full matrix to a band matrix, thereby reducing the solutions memory requirements. Included within this document are two separate papers on finite element formulations and wavelets.
Healy, R.W.; Russell, T.F.
1993-01-01
A new mass-conservative method for solution of the one-dimensional advection-dispersion equation is derived and discussed. Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods, in terms of accuracy and efficiency, for solute transport problems that are dominated by advection. For dispersion-dominated problems, the performance of the method is similar to that of standard methods. Like previous ELLAM formulations, FVELLAM systematically conserves mass globally with all types of boundary conditions. FVELLAM differs from other ELLAM approaches in that integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking, as used by most characteristic methods, of characteristic lines intersecting inflow boundaries. FVELLAM extends previous ELLAM results by obtaining mass conservation locally on Lagrangian space-time elements. Details of the integration, tracking, and boundary algorithms are presented. Test results are given for problems in Cartesian and radial coordinates.
NASA Astrophysics Data System (ADS)
Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Springer, E. P.
1994-06-01
This paper discusses the verification and application of the three-dimensional (3-D) multiphase flow model presented by Huyakorn et al. (Part 1 in this issue) for assessing contamination due to subsurface releases of non-aqueous-phase liquids (NAPL's). Attention is focussed on situations involving one-, two- and three-dimensional flow through porous media. The model formulations and numerical schemes are tested for highly nonlinear field conditions. The utility and accuracy of various simplifications to certain simulation scenarios are assessed. Five simulation examples are included for demonstrative purposes. The first example verifies the model for vertical flow and compares the performance of the fully three-phase and the passive-air-phase formulations. Air-phase boundary conditions are noted to have considerable effects on simulation results. The second example verifies the model for cross-sectional analyses involving LNAPL and DNAPL migration. Finite-difference (5-point) and finite-element (9-point) spatial approximations are compared for different grid aspect ratios. Unless corrected, negative-transmissivity conditions were found to have undesirable impact on the finite-element solutions. The third example provides a model validation against laboratory experimental data on 5-spot water-flood treatment of oil reservoirs. The sensitivity to grid orientation is noted for the finite-difference schemes. The fourth example demonstrates model utility in characterizing the 3-D migration of LNAPL and DNAPL from surface sources. The final example present a modeling study of air sparging. Critical parameters affecting the performance of air-sparging system are examined. In general, the modeling results indicate sparging is more effective in water-retentive soils, and larger values of sparge influence radius may be achieved for certain anisotropic conditions.
NASA Astrophysics Data System (ADS)
Guo, Qiaona; Huang, Jiangwei
2018-02-01
In this paper, the finite element software FEFLOW is used to simulate the seepage field of the interlayer staggered zone C2 in the basalt of Jinsha River Basin. The influence of the interlayer staggered zone C2 on the building is analyzed. Combined with the waterproof effect of current design scheme of anti-seepage curtain, the seepage field in the interlayer staggered zone C2 is discussed under different design schemes. The optimal design scheme of anti-seepage curtain is put forward. The results showed that the case four can effectively reduce the head and hydraulic gradient of underground powerhouse area, and improve the groundwater seepage field in the plant area.
NASA Technical Reports Server (NTRS)
Engquist, B. E. (Editor); Osher, S. (Editor); Somerville, R. C. J. (Editor)
1985-01-01
Papers are presented on such topics as the use of semi-Lagrangian advective schemes in meteorological modeling; computation with high-resolution upwind schemes for hyperbolic equations; dynamics of flame propagation in a turbulent field; a modified finite element method for solving the incompressible Navier-Stokes equations; computational fusion magnetohydrodynamics; and a nonoscillatory shock capturing scheme using flux-limited dissipation. Consideration is also given to the use of spectral techniques in numerical weather prediction; numerical methods for the incorporation of mountains in atmospheric models; techniques for the numerical simulation of large-scale eddies in geophysical fluid dynamics; high-resolution TVD schemes using flux limiters; upwind-difference methods for aerodynamic problems governed by the Euler equations; and an MHD model of the earth's magnetosphere.
An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Saether, E.; Glaessgen, E.H.; Yamakov, V.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1992-01-01
A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.
The effect of numerical methods on the simulation of mid-ocean ridge hydrothermal models
NASA Astrophysics Data System (ADS)
Carpio, J.; Braack, M.
2012-01-01
This work considers the effect of the numerical method on the simulation of a 2D model of hydrothermal systems located in the high-permeability axial plane of mid-ocean ridges. The behavior of hot plumes, formed in a porous medium between volcanic lava and the ocean floor, is very irregular due to convective instabilities. Therefore, we discuss and compare two different numerical methods for solving the mathematical model of this system. In concrete, we consider two ways to treat the temperature equation of the model: a semi-Lagrangian formulation of the advective terms in combination with a Galerkin finite element method for the parabolic part of the equations and a stabilized finite element scheme. Both methods are very robust and accurate. However, due to physical instabilities in the system at high Rayleigh number, the effect of the numerical method is significant with regard to the temperature distribution at a certain time instant. The good news is that relevant statistical quantities remain relatively stable and coincide for the two numerical schemes. The agreement is larger in the case of a mathematical model with constant water properties. In the case of a model with nonlinear dependence of the water properties on the temperature and pressure, the agreement in the statistics is clearly less pronounced. Hence, the presented work accentuates the need for a strengthened validation of the compatibility between numerical scheme (accuracy/resolution) and complex (realistic/nonlinear) models.
A stabilized element-based finite volume method for poroelastic problems
NASA Astrophysics Data System (ADS)
Honório, Hermínio T.; Maliska, Clovis R.; Ferronato, Massimiliano; Janna, Carlo
2018-07-01
The coupled equations of Biot's poroelasticity, consisting of stress equilibrium and fluid mass balance in deforming porous media, are numerically solved. The governing partial differential equations are discretized by an Element-based Finite Volume Method (EbFVM), which can be used in three dimensional unstructured grids composed of elements of different types. One of the difficulties for solving these equations is the numerical pressure instability that can arise when undrained conditions take place. In this paper, a stabilization technique is developed to overcome this problem by employing an interpolation function for displacements that considers also the pressure gradient effect. The interpolation function is obtained by the so-called Physical Influence Scheme (PIS), typically employed for solving incompressible fluid flows governed by the Navier-Stokes equations. Classical problems with analytical solutions, as well as three-dimensional realistic cases are addressed. The results reveal that the proposed stabilization technique is able to eliminate the spurious pressure instabilities arising under undrained conditions at a low computational cost.
Direct Density Functional Energy Minimization using an Tetrahedral Finite Element Grid
NASA Astrophysics Data System (ADS)
Vaught, A.; Schmidt, K. E.; Chizmeshya, A. V. G.
1998-03-01
We describe an O(N) (N proportional to volume) technique for solving electronic structure problems using the finite element method (FEM). A real--space tetrahedral grid is used as a basis to represent the electronic density, of a free or periodic system and Poisson's equation is solved as a boundary value problem. Nuclear cusps are treated using a local grid consisting of radial elements. These features facilitate the implementation of complicated energy functionals and permit a direct (constrained) energy minimization with respect to the density. We demonstrate the usefulness of the scheme by calculating the binding trends and polarizabilities of a number of atoms and molecules using a number of recently proposed non--local, orbital--free kinetic energy functionals^1,2. Scaling behavior, computational efficiency and the generalization to band--structure will also be discussed. indent 0 pt øbeylines øbeyspaces skip 0 pt ^1 P. Garcia-Gonzalez, J.E. Alvarellos and E. Chacon, Phys. Rev. B 54, 1897 (1996). ^2 A. J. Thakkar, Phys.Rev.B 46, 6920 (1992).
Adaptive Meshing of Ship Air-Wake Flowfields
2014-10-21
performs cut- cell operations at geometry boundaries. A second-order spatial finite-volume scheme has been incorporated with explicit first order...The cells intersected by the geometry are handled using the “cut- cell ” approach, which is basically creating arbitrary polyhedral elements with...appropriate surface boundary conditions. Any cells completely outside the computational domain are tagged external and not solved in the flow solution
NASA Astrophysics Data System (ADS)
Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.
2017-07-01
In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also produce the physically anticipated behaviours for the inductive and galvanic components of the electric field. For a realistic geophysical scenario, the gauged scheme is also used to synthesize the magnetic field response of a model of the Ovoid ore deposit at Voisey's Bay, Labrador, Canada. The results are in good agreement with the helicopter-borne EM data from the real survey, and the inductive and galvanic parts of the current density show expected behaviours.
Numerical simulation of a shear-thinning fluid through packed spheres
NASA Astrophysics Data System (ADS)
Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol
2012-12-01
Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.
NASA Astrophysics Data System (ADS)
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Weixiong; Wang, Yaqi; DeHart, Mark D.
2016-09-01
In this report, we present a new upwinding scheme for the multiscale capability in Rattlesnake, the MOOSE based radiation transport application. Comparing with the initial implementation of multiscale utilizing Lagrange multipliers to impose strong continuity of angular flux on interface of in-between subdomains, this scheme does not require the particular domain partitioning. This upwinding scheme introduces discontinuity of angular flux and resembles the classic upwinding technique developed for solving first order transport equation using discontinuous finite element method (DFEM) on the subdomain interfaces. Because this scheme restores the causality of radiation streaming on the interfaces, significant accuracy improvement can bemore » observed with moderate increase of the degrees of freedom comparing with the continuous method over the entire solution domain. Hybrid SN-PN is implemented and tested with this upwinding scheme. Numerical results show that the angular smoothing required by Lagrange multiplier method is not necessary for the upwinding scheme.« less
Finite Difference Schemes as Algebraic Correspondences between Layers
NASA Astrophysics Data System (ADS)
Malykh, Mikhail; Sevastianov, Leonid
2018-02-01
For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.
NASA Astrophysics Data System (ADS)
Kumari, Komal; Donzis, Diego
2017-11-01
Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.
Apparatus for and method of simulating turbulence
Dimas, Athanassios; Lottati, Isaac; Bernard, Peter; Collins, James; Geiger, James C.
2003-01-01
In accordance with a preferred embodiment of the invention, a novel apparatus for and method of simulating physical processes such as fluid flow is provided. Fluid flow near a boundary or wall of an object is represented by a collection of vortex sheet layers. The layers are composed of a grid or mesh of one or more geometrically shaped space filling elements. In the preferred embodiment, the space filling elements take on a triangular shape. An Eulerian approach is employed for the vortex sheets, where a finite-volume scheme is used on the prismatic grid formed by the vortex sheet layers. A Lagrangian approach is employed for the vortical elements (e.g., vortex tubes or filaments) found in the remainder of the flow domain. To reduce the computational time, a hairpin removal scheme is employed to reduce the number of vortex filaments, and a Fast Multipole Method (FMM), preferably implemented using parallel processing techniques, reduces the computation of the velocity field.
NASA Technical Reports Server (NTRS)
Abramopoulos, Frank
1988-01-01
The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.
Development of solution techniques for nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Vos, R. G.; Andrews, J. S.
1974-01-01
Nonlinear structural solution methods in the current research literature are classified according to order of the solution scheme, and it is shown that the analytical tools for these methods are uniformly derivable by perturbation techniques. A new perturbation formulation is developed for treating an arbitrary nonlinear material, in terms of a finite-difference generated stress-strain expansion. Nonlinear geometric effects are included in an explicit manner by appropriate definition of an applicable strain tensor. A new finite-element pilot computer program PANES (Program for Analysis of Nonlinear Equilibrium and Stability) is presented for treatment of problems involving material and geometric nonlinearities, as well as certain forms on nonconservative loading.
Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES
NASA Astrophysics Data System (ADS)
Marras, Simone; Nazarov, Murtazo; Giraldo, Francis X.
2015-11-01
The high order spectral element approximation of the Euler equations is stabilized via a dynamic sub-grid scale model (Dyn-SGS). This model was originally designed for linear finite elements to solve compressible flows at large Mach numbers. We extend its application to high-order spectral elements to solve the Euler equations of low Mach number stratified flows. The major justification of this work is twofold: stabilization and large eddy simulation are achieved via one scheme only. Because the diffusion coefficients of the regularization stresses obtained via Dyn-SGS are residual-based, the effect of the artificial diffusion is minimal in the regions where the solution is smooth. The direct consequence is that the nominal convergence rate of the high-order solution of smooth problems is not degraded. To our knowledge, this is the first application in atmospheric modeling of a spectral element model stabilized by an eddy viscosity scheme that, by construction, may fulfill stabilization requirements, can model turbulence via LES, and is completely free of a user-tunable parameter. From its derivation, it will be immediately clear that Dyn-SGS is independent of the numerical method; it could be implemented in a discontinuous Galerkin, finite volume, or other environments alike. Preliminary discontinuous Galerkin results are reported as well. The straightforward extension to non-linear scalar problems is also described. A suite of 1D, 2D, and 3D test cases is used to assess the method, with some comparison against the results obtained with the most known Lilly-Smagorinsky SGS model.
On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids
NASA Astrophysics Data System (ADS)
Kaus, B.; Pusok, A. E.; Popov, A.
2015-12-01
The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation reduces the dispersion or clustering of markers and that the density of markers remains steady over time without the need of additional marker control. Jenny et al. (2001, J Comp Phys, 166, 218-252 Meyer and Jenny (2004), Proc Appl Math Mech, 4, 466-467 Wang et al. (2015), G3, Vol.16 Funding was provided by the ERC Starting Grant #258830.
Parallel Semi-Implicit Spectral Element Atmospheric Model
NASA Astrophysics Data System (ADS)
Fournier, A.; Thomas, S.; Loft, R.
2001-05-01
The shallow-water equations (SWE) have long been used to test atmospheric-modeling numerical methods. The SWE contain essential wave-propagation and nonlinear effects of more complete models. We present a semi-implicit (SI) improvement of the Spectral Element Atmospheric Model to solve the SWE (SEAM, Taylor et al. 1997, Fournier et al. 2000, Thomas & Loft 2000). SE methods are h-p finite element methods combining the geometric flexibility of size-h finite elements with the accuracy of degree-p spectral methods. Our work suggests that exceptional parallel-computation performance is achievable by a General-Circulation-Model (GCM) dynamical core, even at modest climate-simulation resolutions (>1o). The code derivation involves weak variational formulation of the SWE, Gauss(-Lobatto) quadrature over the collocation points, and Legendre cardinal interpolators. Appropriate weak variation yields a symmetric positive-definite Helmholtz operator. To meet the Ladyzhenskaya-Babuska-Brezzi inf-sup condition and avoid spurious modes, we use a staggered grid. The SI scheme combines leapfrog and Crank-Nicholson schemes for the nonlinear and linear terms respectively. The localization of operations to elements ideally fits the method to cache-based microprocessor computer architectures --derivatives are computed as collections of small (8x8), naturally cache-blocked matrix-vector products. SEAM also has desirable boundary-exchange communication, like finite-difference models. Timings on on the IBM SP and Compaq ES40 supercomputers indicate that the SI code (20-min timestep) requires 1/3 the CPU time of the explicit code (2-min timestep) for T42 resolutions. Both codes scale nearly linearly out to 400 processors. We achieved single-processor performance up to 30% of peak for both codes on the 375-MHz IBM Power-3 processors. Fast computation and linear scaling lead to a useful climate-simulation dycore only if enough model time is computed per unit wall-clock time. An efficient SI solver is essential to substantially increase this rate. Parallel preconditioning for an iterative conjugate-gradient elliptic solver is described. We are building a GCM dycore capable of 200 GF% lOPS sustained performance on clustered RISC/cache architectures using hybrid MPI/OpenMP programming.
NASA Technical Reports Server (NTRS)
Li, Wei; Saleeb, Atef F.
1995-01-01
This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of the report, we focus on the specific details of the numerical schemes, and associated computer algorithms, for the finite-element implementation of GVIPS and NAV models.
NASA Astrophysics Data System (ADS)
Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.
2018-02-01
Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.
Possibilities of the particle finite element method for fluid-soil-structure interaction problems
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín
2011-09-01
We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.
A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time
NASA Astrophysics Data System (ADS)
Lang, Holger; Linn, Joachim
2009-09-01
We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.
Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces
NASA Astrophysics Data System (ADS)
Tal, Yuval; Hager, Bradford H.
2017-09-01
This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.
Unsteady combustion of solid propellants
NASA Astrophysics Data System (ADS)
Chung, T. J.; Kim, P. K.
The oscillatory motions of all field variables (pressure, temperature, velocity, density, and fuel fractions) in the flame zone of solid propellant rocket motors are calculated using the finite element method. The Arrhenius law with a single step forward chemical reaction is used. Effects of radiative heat transfer, impressed arbitrary acoustic wave incidence, and idealized mean flow velocities are also investigated. Boundary conditions are derived at the solid-gas interfaces and at the flame edges which are implemented via Lagrange multipliers. Perturbation expansions of all governing conservation equations up to and including the second order are carried out so that nonlinear oscillations may be accommodated. All excited frequencies are calculated by means of eigenvalue analyses, and the combustion response functions corresponding to these frequencies are determined. It is shown that the use of isoparametric finite elements, Gaussian quadrature integration, and the Lagrange multiplier boundary matrix scheme offers a convenient approach to two-dimensional calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGhee, J.M.; Roberts, R.M.; Morel, J.E.
1997-06-01
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less
NASA Astrophysics Data System (ADS)
Rao, Chengping; Zhang, Youlin; Wan, Decheng
2017-12-01
Fluid-Structure Interaction (FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to ensure the safety of offshore structures. This paper presents the Moving Particle Semi-implicit and Finite Element Coupled Method (MPS-FEM) to simulate FSI problems. The Moving Particle Semi-implicit (MPS) method is used to calculate the fluid domain, while the Finite Element Method (FEM) is used to address the structure domain. The scheme for the coupling of MPS and FEM is introduced first. Then, numerical validation and convergent study are performed to verify the accuracy of the solver for solitary wave generation and FSI problems. The interaction between the solitary wave and an elastic structure is investigated by using the MPS-FEM coupled method.
Multiscale Multifunctional Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Minnetyan, L.
2012-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.
On nonlinear finite element analysis in single-, multi- and parallel-processors
NASA Technical Reports Server (NTRS)
Utku, S.; Melosh, R.; Islam, M.; Salama, M.
1982-01-01
Numerical solution of nonlinear equilibrium problems of structures by means of Newton-Raphson type iterations is reviewed. Each step of the iteration is shown to correspond to the solution of a linear problem, therefore the feasibility of the finite element method for nonlinear analysis is established. Organization and flow of data for various types of digital computers, such as single-processor/single-level memory, single-processor/two-level-memory, vector-processor/two-level-memory, and parallel-processors, with and without sub-structuring (i.e. partitioning) are given. The effect of the relative costs of computation, memory and data transfer on substructuring is shown. The idea of assigning comparable size substructures to parallel processors is exploited. Under Cholesky type factorization schemes, the efficiency of parallel processing is shown to decrease due to the occasional shared data, just as that due to the shared facilities.
Porosity Measurement in Laminated Composites by Thermography and FEA
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
The Design and Analysis of the Hydraulic-pressure Seal of the Engine Box
NASA Astrophysics Data System (ADS)
Chen, Zhenya; Shen, Xingquan; Xin, Zhijie; Guo, Tingting; Liao, Kewei
2017-12-01
According to the sealing requirements of engine casing, using NX software to establish three-dimensional solid model of the engine box. Designing two seals suppress schemes basing on analyzing the characteristics of the case structure, one of seal is using two pins on one side to localize, the other is using cylinder to top tight and fasten, Clarifying the reasons for the using the former scheme have a lower cost. At the same time analysesing of the forces and deformation of the former scheme using finite element analysis software and the NX software, results proved that the pressure scheme can meet the actual needs of the program. It illustrated the composition of the basic principles of manual pressure and hydraulic system, verifed the feasibility of the seal program using experiment, providing reference for the experimental program of hydrostatic pressure in the future.
Design of a Variational Multiscale Method for Turbulent Compressible Flows
NASA Technical Reports Server (NTRS)
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
A spectral-element framework is presented for the simulation of subsonic compressible high-Reynolds-number flows. The focus of the work is maximizing the efficiency of the computational schemes to enable unsteady simulations with a large number of spatial and temporal degrees of freedom. A collocation scheme is combined with optimized computational kernels to provide a residual evaluation with computational cost independent of order of accuracy up to 16th order. The optimized residual routines are used to develop a low-memory implicit scheme based on a matrix-free Newton-Krylov method. A preconditioner based on the finite-difference diagonalized ADI scheme is developed which maintains the low memory of the matrix-free implicit solver, while providing improved convergence properties. Emphasis on low memory usage throughout the solver development is leveraged to implement a coupled space-time DG solver which may offer further efficiency gains through adaptivity in both space and time.
Tension Cutoff and Parameter Identification for the Viscoplastic Cap Model.
1983-04-01
computer program "VPDRVR" which employs a Crank-Nicolson time integration scheme and a Newton-Raphson iterative solution procedure. Numerical studies were...parameters was illustrated for triaxial stress and uniaxial strain loading for a well- studied sand material (McCormick Ranch Sand). Lastly, a finite element...viscoplastic tension-cutoff cri- terion and to establish parameter identification techniques with experimental data. Herein lies the impetus of this study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorda, Antonius, E-mail: dorda@tugraz.at; Schürrer, Ferdinand, E-mail: ferdinand.schuerrer@tugraz.at
2015-03-01
We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of themore » phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.« less
Dorda, Antonius; Schürrer, Ferdinand
2015-01-01
We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations. PMID:25892748
Dorda, Antonius; Schürrer, Ferdinand
2015-03-01
We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.
Multidimensional FEM-FCT schemes for arbitrary time stepping
NASA Astrophysics Data System (ADS)
Kuzmin, D.; Möller, M.; Turek, S.
2003-05-01
The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.
Damageable contact between an elastic body and a rigid foundation
NASA Astrophysics Data System (ADS)
Campo, M.; Fernández, J. R.; Silva, A.
2009-02-01
In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.
Using EIGER for Antenna Design and Analysis
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Khayat, Michael; Kennedy, Timothy F.; Fink, Patrick W.
2007-01-01
EIGER (Electromagnetic Interactions GenERalized) is a frequency-domain electromagnetics software package that is built upon a flexible framework, designed using object-oriented techniques. The analysis methods used include moment method solutions of integral equations, finite element solutions of partial differential equations, and combinations thereof. The framework design permits new analysis techniques (boundary conditions, Green#s functions, etc.) to be added to the software suite with a sensible effort. The code has been designed to execute (in serial or parallel) on a wide variety of platforms from Intel-based PCs and Unix-based workstations. Recently, new potential integration scheme s that avoid singularity extraction techniques have been added for integral equation analysis. These new integration schemes are required for facilitating the use of higher-order elements and basis functions. Higher-order elements are better able to model geometrical curvature using fewer elements than when using linear elements. Higher-order basis functions are beneficial for simulating structures with rapidly varying fields or currents. Results presented here will demonstrate curren t and future capabilities of EIGER with respect to analysis of installed antenna system performance in support of NASA#s mission of exploration. Examples include antenna coupling within an enclosed environment and antenna analysis on electrically large manned space vehicles.
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Verrière, M.; Schunck, N.
2018-04-01
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this paper, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank-Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. We emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).
Hierarchically partitioned nonlinear equation solvers
NASA Technical Reports Server (NTRS)
Padovan, Joseph
1987-01-01
By partitioning solution space into a number of subspaces, a new multiply constrained partitioned Newton-Raphson nonlinear equation solver is developed. Specifically, for a given iteration, each of the various separate partitions are individually and simultaneously controlled. Due to the generality of the scheme, a hierarchy of partition levels can be employed. For finite-element-type applications, this includes the possibility of degree-of-freedom, nodal, elemental, geometric substructural, material and kinematically nonlinear group controls. It is noted that such partitioning can be continuously updated, depending on solution conditioning. In this context, convergence is ascertained at the individual partition level.
Analysis and topology optimization design of high-speed driving spindle
NASA Astrophysics Data System (ADS)
Wang, Zhilin; Yang, Hai
2018-04-01
The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.
NASA Astrophysics Data System (ADS)
Bauer, Werner; Behrens, Jörn
2017-04-01
We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger absolute error values, it shows similar convergence rates as the other split schemes, but does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much to fast. Despite this, the finding of this new scheme illustrates the potential of our discretization framework as a toolbox to find and to study new FE schemes based on new combinations of FE spaces. [1] Bauer, W. [2016], A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7(1), 31-101.
Tensor methodology and computational geometry in direct computational experiments in fluid mechanics
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia
2017-07-01
The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.
NASA Astrophysics Data System (ADS)
Williams, Charles A.; Wadge, Geoff
We have used a three-dimensional elastic finite element model to examine the effects of topography on the surface deformation predicted by models of magma chamber deflation. We used the topography of Mt. Etna to control the geometry of our model, and compared the finite element results to those predicted by an analytical solution for a pressurized sphere in an elastic half-space. Topography has a significant effect on the predicted surface deformation for both displacement profiles and synthetic interferograms. Not only are the predicted displacement magnitudes significantly different, but also the map-view patterns of displacement. It is possible to match the predicted displacement magnitudes fairly well by adjusting the elevation of a reference surface; however, the horizontal pattern of deformation is still significantly different. Thus, inversions based on constant-elevation reference surfaces may not properly estimate the horizontal position of a magma chamber. We have investigated an approach where the elevation of the reference surface varies for each computation point, corresponding to topography. For vertical displacements and tilts this method provides a good fit to the finite element results, and thus may form the basis for an inversion scheme. For radial displacements, a constant reference elevation provides a better fit to the numerical results.
NASA Astrophysics Data System (ADS)
Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong
2018-04-01
A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.
A feasibility study of a 3-D finite element solution scheme for aeroengine duct acoustics
NASA Technical Reports Server (NTRS)
Abrahamson, A. L.
1980-01-01
The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.
DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems
NASA Astrophysics Data System (ADS)
Braun, Jean; Thieulot, Cédric; Fullsack, Philippe; DeKool, Marthijn; Beaumont, Christopher; Huismans, Ritske
2008-12-01
We present a new finite element code for the solution of the Stokes and energy (or heat transport) equations that has been purposely designed to address crustal-scale to mantle-scale flow problems in three dimensions. Although it is based on an Eulerian description of deformation and flow, the code, which we named DOUAR ('Earth' in Breton language), has the ability to track interfaces and, in particular, the free surface, by using a dual representation based on a set of particles placed on the interface and the computation of a level set function on the nodes of the finite element grid, thus ensuring accuracy and efficiency. The code also makes use of a new method to compute the dynamic Delaunay triangulation connecting the particles based on non-Euclidian, curvilinear measure of distance, ensuring that the density of particles remains uniform and/or dynamically adapted to the curvature of the interface. The finite element discretization is based on a non-uniform, yet regular octree division of space within a unit cube that allows efficient adaptation of the finite element discretization, i.e. in regions of strong velocity gradient or high interface curvature. The finite elements are cubes (the leaves of the octree) in which a q1- p0 interpolation scheme is used. Nodal incompatibilities across faces separating elements of differing size are dealt with by introducing linear constraints among nodal degrees of freedom. Discontinuities in material properties across the interfaces are accommodated by the use of a novel method (which we called divFEM) to integrate the finite element equations in which the elemental volume is divided by a local octree to an appropriate depth (resolution). A variety of rheologies have been implemented including linear, non-linear and thermally activated creep and brittle (or plastic) frictional deformation. A simple smoothing operator has been defined to avoid checkerboard oscillations in pressure that tend to develop when using a highly irregular octree discretization and the tri-linear (or q1- p0) finite element. A three-dimensional cloud of particles is used to track material properties that depend on the integrated history of deformation (the integrated strain, for example); its density is variable and dynamically adapted to the computed flow. The large system of algebraic equations that results from the finite element discretization and linearization of the basic partial differential equations is solved using a multi-frontal massively parallel direct solver that can efficiently factorize poorly conditioned systems resulting from the highly non-linear rheology and the presence of the free surface. The code is almost entirely parallelized. We present example results including the onset of a Rayleigh-Taylor instability, the indentation of a rigid-plastic material and the formation of a fold beneath a free eroding surface, that demonstrate the accuracy, efficiency and appropriateness of the new code to solve complex geodynamical problems in three dimensions.
Towards a large-scale scalable adaptive heart model using shallow tree meshes
NASA Astrophysics Data System (ADS)
Krause, Dorian; Dickopf, Thomas; Potse, Mark; Krause, Rolf
2015-10-01
Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy.
Order of accuracy of QUICK and related convection-diffusion schemes
NASA Technical Reports Server (NTRS)
Leonard, B. P.
1993-01-01
This report attempts to correct some misunderstandings that have appeared in the literature concerning the order of accuracy of the QUICK scheme for steady-state convective modeling. Other related convection-diffusion schemes are also considered. The original one-dimensional QUICK scheme written in terms of nodal-point values of the convected variable (with a 1/8-factor multiplying the 'curvature' term) is indeed a third-order representation of the finite volume formulation of the convection operator average across the control volume, written naturally in flux-difference form. An alternative single-point upwind difference scheme (SPUDS) using node values (with a 1/6-factor) is a third-order representation of the finite difference single-point formulation; this can be written in a pseudo-flux difference form. These are both third-order convection schemes; however, the QUICK finite volume convection operator is 33 percent more accurate than the single-point implementation of SPUDS. Another finite volume scheme, writing convective fluxes in terms of cell-average values, requires a 1/6-factor for third-order accuracy. For completeness, one can also write a single-point formulation of the convective derivative in terms of cell averages, and then express this in pseudo-flux difference form; for third-order accuracy, this requires a curvature factor of 5/24. Diffusion operators are also considered in both single-point and finite volume formulations. Finite volume formulations are found to be significantly more accurate. For example, classical second-order central differencing for the second derivative is exactly twice as accurate in a finite volume formulation as it is in single-point.
An update on the BQCD Hybrid Monte Carlo program
NASA Astrophysics Data System (ADS)
Haar, Taylor Ryan; Nakamura, Yoshifumi; Stüben, Hinnerk
2018-03-01
We present an update of BQCD, our Hybrid Monte Carlo program for simulating lattice QCD. BQCD is one of the main production codes of the QCDSF collaboration and is used by CSSM and in some Japanese finite temperature and finite density projects. Since the first publication of the code at Lattice 2010 the program has been extended in various ways. New features of the code include: dynamical QED, action modification in order to compute matrix elements by using Feynman-Hellman theory, more trace measurements (like Tr(D-n) for K, cSW and chemical potential reweighting), a more flexible integration scheme, polynomial filtering, term-splitting for RHMC, and a portable implementation of performance critical parts employing SIMD.
Grid sensitivity capability for large scale structures
NASA Technical Reports Server (NTRS)
Nagendra, Gopal K.; Wallerstein, David V.
1989-01-01
The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.
Three-Dimensional Numerical Analyses of Earth Penetration Dynamics
1979-01-31
Lagrangian formulation based on the HEMP method and has been adapted and validated for treatment of normal-incidence (axisymmetric) impact and...code, is a detailed analysis of the structural response of the EPW. This analysis is generated using a nonlinear dynamic, elastic- plastic finite element...based on the HEMP scheme. Thus, the code has the same material modeling capabilities and abilities to track large scale motion found in the WAVE-L code
Boundary value problems with incremental plasticity in granular media
NASA Technical Reports Server (NTRS)
Chung, T. J.; Lee, J. K.; Costes, N. C.
1974-01-01
Discussion of the critical state concept in terms of an incremental theory of plasticity in granular (soil) media, and formulation of the governing equations which are convenient for a computational scheme using the finite element method. It is shown that the critical state concept with its representation by the classical incremental theory of plasticity can provide a powerful means for solving a wide variety of boundary value problems in soil media.
Finite difference schemes for long-time integration
NASA Technical Reports Server (NTRS)
Haras, Zigo; Taasan, Shlomo
1993-01-01
Finite difference schemes for the evaluation of first and second derivatives are presented. These second order compact schemes were designed for long-time integration of evolution equations by solving a quadratic constrained minimization problem. The quadratic cost function measures the global truncation error while taking into account the initial data. The resulting schemes are applicable for integration times fourfold, or more, longer than similar previously studied schemes. A similar approach was used to obtain improved integration schemes.
Numerical Simulations of Reacting Flows Using Asynchrony-Tolerant Schemes for Exascale Computing
NASA Astrophysics Data System (ADS)
Cleary, Emmet; Konduri, Aditya; Chen, Jacqueline
2017-11-01
Communication and data synchronization between processing elements (PEs) are likely to pose a major challenge in scalability of solvers at the exascale. Recently developed asynchrony-tolerant (AT) finite difference schemes address this issue by relaxing communication and synchronization between PEs at a mathematical level while preserving accuracy, resulting in improved scalability. The performance of these schemes has been validated for simple linear and nonlinear homogeneous PDEs. However, many problems of practical interest are governed by highly nonlinear PDEs with source terms, whose solution may be sensitive to perturbations caused by communication asynchrony. The current work applies the AT schemes to combustion problems with chemical source terms, yielding a stiff system of PDEs with nonlinear source terms highly sensitive to temperature. Examples shown will use single-step and multi-step CH4 mechanisms for 1D premixed and nonpremixed flames. Error analysis will be discussed both in physical and spectral space. Results show that additional errors introduced by the AT schemes are negligible and the schemes preserve their accuracy. We acknowledge funding from the DOE Computational Science Graduate Fellowship administered by the Krell Institute.
Exact finite difference schemes for the non-linear unidirectional wave equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.
Final Report - Subcontract B623760
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bank, R.
2017-11-17
During my visit to LLNL during July 17{27, 2017, I worked on linear system solvers. The two level hierarchical solver that initiated our study was developed to solve linear systems arising from hp adaptive finite element calculations, and is implemented in the PLTMG software package, version 12. This preconditioner typically requires 3-20% of the space used by the stiffness matrix for higher order elements. It has multigrid like convergence rates for a wide variety of PDEs (self-adjoint positive de nite elliptic equations, convection dominated convection-diffusion equations, and highly indefinite Helmholtz equations, among others). The convergence rate is not independent ofmore » the polynomial degree p as p ! 1, but but remains strong for p 9, which is the highest polynomial degree allowed in PLTMG, due to limitations of the numerical quadrature rules implemented in the software package. A more complete description of the method and some numerical experiments illustrating its effectiveness appear in. Like traditional geometric multilevel methods, this scheme relies on knowledge of the underlying finite element space in order to construct the smoother and the coarse grid correction.« less
Projection methods for incompressible flow problems with WENO finite difference schemes
NASA Astrophysics Data System (ADS)
de Frutos, Javier; John, Volker; Novo, Julia
2016-03-01
Weighted essentially non-oscillatory (WENO) finite difference schemes have been recommended in a competitive study of discretizations for scalar evolutionary convection-diffusion equations [20]. This paper explores the applicability of these schemes for the simulation of incompressible flows. To this end, WENO schemes are used in several non-incremental and incremental projection methods for the incompressible Navier-Stokes equations. Velocity and pressure are discretized on the same grid. A pressure stabilization Petrov-Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to account for the violation of the discrete inf-sup condition. Algorithmic aspects of the proposed schemes are discussed. The schemes are studied on several examples with different features. It is shown that the WENO finite difference idea can be transferred to the simulation of incompressible flows. Some shortcomings of the methods, which are due to the splitting in projection schemes, become also obvious.
Computing an upper bound on contact stress with surrogate duality
NASA Astrophysics Data System (ADS)
Xuan, Zhaocheng; Papadopoulos, Panayiotis
2016-07-01
We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.
Comments on the Diffusive Behavior of Two Upwind Schemes
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and locally one-dimensional finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over finite volume.
Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.
Mathematical modeling of the stress-strain state of the outlet guide vane made of various materials
NASA Astrophysics Data System (ADS)
Grinev, M. A.; Anoshkin, A. N.; Pisarev, P. V.; Zuiko, V. Yu.; Shipunov, G. S.
2016-11-01
The present work is devoted to the detailed stress-strain analysis of the composite outlet guide vane (OGV) for aircraft engines with a special focus on areas with twisted layers where the initiation of high interlaminar stresses is most expected. Various polymer composite materials and reinforcing schemes are researched. The technological scheme of laying-out of anisotropic plies and the fastening method are taken into account in the model. The numerical simulation is carried out by the finite element method (FEM) with the ANSYS Workbench software. It is shown that interlaminar shear stresses are most dangerous. It is found that balanced carbon fiber reinforced plastic (CFRP) with the [0°/±45°] reinforcing scheme allows us to provide the double strength margin under working loads for the developed OGV.
Numerical simulation of electrophoresis separation processes
NASA Technical Reports Server (NTRS)
Ganjoo, D. K.; Tezduyar, T. E.
1986-01-01
A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.
Error analysis of multipoint flux domain decomposition methods for evolutionary diffusion problems
NASA Astrophysics Data System (ADS)
Arrarás, A.; Portero, L.; Yotov, I.
2014-01-01
We study space and time discretizations for mixed formulations of parabolic problems. The spatial approximation is based on the multipoint flux mixed finite element method, which reduces to an efficient cell-centered pressure system on general grids, including triangles, quadrilaterals, tetrahedra, and hexahedra. The time integration is performed by using a domain decomposition time-splitting technique combined with multiterm fractional step diagonally implicit Runge-Kutta methods. The resulting scheme is unconditionally stable and computationally efficient, as it reduces the global system to a collection of uncoupled subdomain problems that can be solved in parallel without the need for Schwarz-type iteration. Convergence analysis for both the semidiscrete and fully discrete schemes is presented.
NASA Astrophysics Data System (ADS)
Popescu, Mihaela; Shyy, Wei; Garbey, Marc
2005-12-01
In developing suitable numerical techniques for computational aero-acoustics, the dispersion-relation-preserving (DRP) scheme by Tam and co-workers and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the coefficients for better resolution of short waves with respect to the computational grid while maintaining pre-determined formal orders of accuracy. In the present study, finite volume formulations of both schemes are presented to better handle the nonlinearity and complex geometry encountered in many engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have been adopted as the test problems. Highlighting the principal characteristics of the schemes and utilizing linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC schemes offers substantially better solutions in regions of high gradient or discontinuity.
A mimetic finite difference method for the Stokes problem with elected edge bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnikov, K; Berirao, L
2009-01-01
A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this articlemore » is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.« less
Review of fatigue and fracture research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Everett, Richard A., Jr.
1988-01-01
Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.
NASA Astrophysics Data System (ADS)
Delandmeter, Philippe; Lambrechts, Jonathan; Legat, Vincent; Vallaeys, Valentin; Naithani, Jaya; Thiery, Wim; Remacle, Jean-François; Deleersnijder, Eric
2018-03-01
The discontinuous Galerkin (DG) finite element method is well suited for the modelling, with a relatively small number of elements, of three-dimensional flows exhibiting strong velocity or density gradients. Its performance can be highly enhanced by having recourse to r-adaptivity. Here, a vertical adaptive mesh method is developed for DG finite elements. This method, originally designed for finite difference schemes, is based on the vertical diffusion of the mesh nodes, with the diffusivity controlled by the density jumps at the mesh element interfaces. The mesh vertical movement is determined by means of a conservative arbitrary Lagrangian-Eulerian (ALE) formulation. Though conservativity is naturally achieved, tracer consistency is obtained by a suitable construction of the mesh vertical velocity field, which is defined in such a way that it is fully compatible with the tracer and continuity equations at a discrete level. The vertically adaptive mesh approach is implemented in the three-dimensional version of the geophysical and environmental flow Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM 3D; www.climate.be/slim). Idealised benchmarks, aimed at simulating the oscillations of a sharp thermocline, are dealt with. Then, the relevance of the vertical adaptivity technique is assessed by simulating thermocline oscillations of Lake Tanganyika. The results are compared to measured vertical profiles of temperature, showing similar stratification and outcropping events.
Large-scale computation of incompressible viscous flow by least-squares finite element method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.
On the Treatment of Field Quantities and Elemental Continuity in FEM Solutions.
Jallepalli, Ashok; Docampo-Sanchez, Julia; Ryan, Jennifer K; Haimes, Robert; Kirby, Robert M
2018-01-01
As the finite element method (FEM) and the finite volume method (FVM), both traditional and high-order variants, continue their proliferation into various applied engineering disciplines, it is important that the visualization techniques and corresponding data analysis tools that act on the results produced by these methods faithfully represent the underlying data. To state this in another way: the interpretation of data generated by simulation needs to be consistent with the numerical schemes that underpin the specific solver technology. As the verifiable visualization literature has demonstrated: visual artifacts produced by the introduction of either explicit or implicit data transformations, such as data resampling, can sometimes distort or even obfuscate key scientific features in the data. In this paper, we focus on the handling of elemental continuity, which is often only continuous or piecewise discontinuous, when visualizing primary or derived fields from FEM or FVM simulations. We demonstrate that traditional data handling and visualization of these fields introduce visual errors. In addition, we show how the use of the recently proposed line-SIAC filter provides a way of handling elemental continuity issues in an accuracy-conserving manner with the added benefit of casting the data in a smooth context even if the representation is element discontinuous.
NASA Astrophysics Data System (ADS)
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María
2014-06-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the parallel context.
A Numerical Model for Predicting Shoreline Changes.
1980-07-01
minimal shorelines for finite - difference scheme of time lAt (B) . . . 27 11 Transport function Q(ao) = cos ao sin za o for selected values of z . 28 12...generate the preceding examples was based on the use of implicit finite differences . Such schemes, whether implicit or ex- plicit (or both), are...10(A) shows an initially straight shoreline. In any finite - difference scheme, after one time increment At, the shoreline is bounded below by the solid
NASA Technical Reports Server (NTRS)
Syed, S. A.; Chiappetta, L. M.
1985-01-01
A methodological evaluation for two-finite differencing schemes for computer-aided gas turbine design is presented. The two computational schemes include; a Bounded Skewed Finite Differencing Scheme (BSUDS); and a Quadratic Upwind Differencing Scheme (QSDS). In the evaluation, the derivations of the schemes were incorporated into two-dimensional and three-dimensional versions of the Teaching Axisymmetric Characteristics Heuristically (TEACH) computer code. Assessments were made according to performance criteria for the solution of problems of turbulent, laminar, and coannular turbulent flow. The specific performance criteria used in the evaluation were simplicity, accuracy, and computational economy. It is found that the BSUDS scheme performed better with respect to the criteria than the QUDS. Some of the reasons for the more successful performance BSUDS are discussed.
NASA Astrophysics Data System (ADS)
Balas, Mark
1991-11-01
Assembly and operation of large space structures (LSS) in orbit will require robot-assisted docking and berthing of partially-assembled structures. These operations require new solutions to the problems of controls. This is true because of large transient and persistent disturbances, controller-structure interaction with unmodeled modes, poorly known structure parameters, slow actuator/sensor dynamical behavior, and excitation of nonlinear structure vibrations during control and assembly. For on-orbit assembly, controllers must start with finite element models of LSS and adapt on line to the best operating points, without compromising stability. This is not easy to do, since there are often unmodeled dynamic interactions between the controller and the structure. The indirect adaptive controllers are based on parameter estimation. Due to the large number of modes in LSS, this approach leads to very high-order control schemes with consequent poor stability and performance. In contrast, direct model reference adaptive controllers operate to force the LSS to track the desirable behavior of a chosen model. These schemes produce simple control algorithms which are easy to implement on line. One problem with their use for LSS has been that the model must be the same dimension as the LSS - i.e., quite large. A control theory based on the command generator tracker (CGT) ideas of Sobel, Mabins, Kaufman and Wen, Balas to obtain very low-order models based on adaptive algorithms was developed. Closed-loop stability for both finite element models and distributed parameter models of LSS was proved. In addition, successful numerical simulations on several LSS databases were obtained. An adaptive controller based on our theory was also implemented on a flexible robotic manipulator at Martin Marietta Astronautics. Computation schemes for controller-structure interaction with unmodeled modes, the residual mode filters or RMF, were developed. The RMF theory was modified to compensate slow actuator/sensor dynamics. These new ideas are being applied to LSS simulations to demonstrate the ease with which one can incorporate slow actuator/sensor effects into our design. It was also shown that residual mode filter compensation can be modified for small nonlinearities to produce exponentially stable closed-loop control.
NASA Technical Reports Server (NTRS)
Balas, Mark
1991-01-01
Assembly and operation of large space structures (LSS) in orbit will require robot-assisted docking and berthing of partially-assembled structures. These operations require new solutions to the problems of controls. This is true because of large transient and persistent disturbances, controller-structure interaction with unmodeled modes, poorly known structure parameters, slow actuator/sensor dynamical behavior, and excitation of nonlinear structure vibrations during control and assembly. For on-orbit assembly, controllers must start with finite element models of LSS and adapt on line to the best operating points, without compromising stability. This is not easy to do, since there are often unmodeled dynamic interactions between the controller and the structure. The indirect adaptive controllers are based on parameter estimation. Due to the large number of modes in LSS, this approach leads to very high-order control schemes with consequent poor stability and performance. In contrast, direct model reference adaptive controllers operate to force the LSS to track the desirable behavior of a chosen model. These schemes produce simple control algorithms which are easy to implement on line. One problem with their use for LSS has been that the model must be the same dimension as the LSS - i.e., quite large. A control theory based on the command generator tracker (CGT) ideas of Sobel, Mabins, Kaufman and Wen, Balas to obtain very low-order models based on adaptive algorithms was developed. Closed-loop stability for both finite element models and distributed parameter models of LSS was proved. In addition, successful numerical simulations on several LSS databases were obtained. An adaptive controller based on our theory was also implemented on a flexible robotic manipulator at Martin Marietta Astronautics. Computation schemes for controller-structure interaction with unmodeled modes, the residual mode filters or RMF, were developed. The RMF theory was modified to compensate slow actuator/sensor dynamics. These new ideas are being applied to LSS simulations to demonstrate the ease with which one can incorporate slow actuator/sensor effects into our design. It was also shown that residual mode filter compensation can be modified for small nonlinearities to produce exponentially stable closed-loop control. A theory for disturbance accommodating controllers based on reduced order models of structures was developed, and stability results for these controllers in closed-loop with large-scale finite element models of structures were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, D.; Dubray, N.; Verriere, M.
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less
Regnier, D.; Dubray, N.; Verriere, M.; ...
2017-12-20
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Computation of Tone Noise From Supersonic Jet Impinging on Flat Plates
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Blech, Richard A. (Technical Monitor)
2005-01-01
A supersonic jet impinging normally on a flat plate has both practical importance and theoretical interests. The physical phenomenon is not fully understood yet. Research concentrates either on the hydrodynamics (e.g., lift loss for STOVL) or on the aeroacoustic loading. In this paper, a finite volume scheme - the space-time conservation element and solution element (CE/SE) method - is employed to numerically study the near-field noise of an underexpanded supersonic jet from a converging nozzle impinging normally on a flat plate. The numerical approach is of the MILES type (monotonically integrated large eddy simulation). The computed results compare favorably with the experimental findings.
WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS
MU, LIN; WANG, JUNPING; WEI, GUOWEI; YE, XIU; ZHAO, SHAN
2013-01-01
Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution. PMID:24072935
NASA Astrophysics Data System (ADS)
Jin, L.; Zoback, M. D.
2017-10-01
We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.
NASA Astrophysics Data System (ADS)
Pötz, Walter
2017-11-01
A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.
NASA Astrophysics Data System (ADS)
Kumar, Vivek; Raghurama Rao, S. V.
2008-04-01
Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.
NASA Technical Reports Server (NTRS)
Day, Brad A.; Meade, Andrew J., Jr.
1993-01-01
A semi-discrete Galerkin (SDG) method is under development to model attached, turbulent, and compressible boundary layers for transonic airfoil analysis problems. For the boundary-layer formulation the method models the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby providing high resolution near the wall and permitting the use of a uniform finite element grid which automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past RAE 2822 and NACA 0012 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack.
Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Numerical simulation of aerothermal loads in hypersonic engine inlets due to shock impingement
NASA Technical Reports Server (NTRS)
Ramakrishnan, R.
1992-01-01
The effect of shock impingement on an axial corner simulating the inlet of a hypersonic vehicle engine is modeled using a finite-difference procedure. A three-dimensional dynamic grid adaptation procedure is utilized to move the grids to regions with strong flow gradients. The adaptation procedure uses a grid relocation stencil that is valid at both the interior and boundary points of the finite-difference grid. A linear combination of spatial derivatives of specific flow variables, calculated with finite-element interpolation functions, are used as adaptation measures. This computational procedure is used to study laminar and turbulent Mach 6 flows in the axial corner. The description of flow physics and qualitative measures of heat transfer distributions on cowl and strut surfaces obtained from the analysis are compared with experimental observations. Conclusions are drawn regarding the capability of the numerical scheme for enhanced modeling of high-speed compressible flows.
NASA Astrophysics Data System (ADS)
Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.
2018-03-01
An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.
A Multiphysics Finite Element and Peridynamics Model of Dielectric Breakdown
2017-09-01
A method for simulating dielectric breakdown in solid materials is presented that couples electro-quasi-statics, the adiabatic heat equation, and...temperatures or high strains. The Kelvin force computation used in the method is verified against a 1-D solution and the linearization scheme used to treat the...plane problems, a 2-D composite capacitor with a conductive flaw, and a 3-D point–plane problem. The results show that the method is capable of
Small Crack Growth and Its Influence in Near Alpha-Titanium Alloys
1989-06-01
geometries via finite element and boundary-collocation analysis 8 , 9 . Elastic plastic fracture mechanics ( EPFM ) 1 0 , 1 1 and local crack tip field...correlation was found between experimental and predicted data, general application of the model is not possible as both 0 and rp are sensitive to changes in...cracks at low AK the load reduction schemes should be altered to remove the residual deformations, perhaps via machining or the application of large
NASA Astrophysics Data System (ADS)
Lai, Wencong; Khan, Abdul A.
2018-04-01
A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.
Kohno, H.; Myra, J. R.
2017-07-24
A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Xiao, Mingqing; Liang, Yajun; Tang, Xilang; Li, Chao
2018-01-01
The solenoid valve is a kind of basic automation component applied widely. It’s significant to analyze and predict its degradation failure mechanism to improve the reliability of solenoid valve and do research on prolonging life. In this paper, a three-dimensional finite element analysis model of solenoid valve is established based on ANSYS Workbench software. A sequential coupling method used to calculate temperature filed and mechanical stress field of solenoid valve is put forward. The simulation result shows the sequential coupling method can calculate and analyze temperature and stress distribution of solenoid valve accurately, which has been verified through the accelerated life test. Kalman filtering algorithm is introduced to the data processing, which can effectively reduce measuring deviation and restore more accurate data information. Based on different driving current, a kind of failure mechanism which can easily cause the degradation of coils is obtained and an optimization design scheme of electro-insulating rubbers is also proposed. The high temperature generated by driving current and the thermal stress resulting from thermal expansion can easily cause the degradation of coil wires, which will decline the electrical resistance of coils and result in the eventual failure of solenoid valve. The method of finite element analysis can be applied to fault diagnosis and prognostic of various solenoid valves and improve the reliability of solenoid valve’s health management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Benzhuo; Holst, Michael J.; Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA 92093
2010-09-20
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for simulating electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised formore » time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.« less
Lu, Benzhuo; Holst, Michael J.; McCammon, J. Andrew; Zhou, Y. C.
2010-01-01
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems. PMID:21709855
Lu, Benzhuo; Holst, Michael J; McCammon, J Andrew; Zhou, Y C
2010-09-20
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohno, H.; Myra, J. R.
A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less
FV-MHMM: A Discussion on Weighting Schemes.
NASA Astrophysics Data System (ADS)
Franc, J.; Gerald, D.; Jeannin, L.; Egermann, P.; Masson, R.
2016-12-01
Upscaling or homogenization techniques consist in finding block-equivalentor equivalent upscaled properties on a coarse grid from heterogeneousproperties defined on an underlying fine grid. However, this couldbecome costly and resource consuming. Harder et al., 2013, have developeda Multiscale Hybrid-Mixed Method (MHMM) of upscaling to treat Darcytype equations on heterogeneous fields formulated using a finite elementmethod. Recently, Franc et al. 2016, has extended this method of upscalingto finite volume formulation (FV-MHMM). Although convergence refiningLagrange multipliers space has been observed, numerical artefactscan occur while trapping numerically the flow in regions of low permeability. This work will present the development of the method along with theresults obtained from its classical formulation. Then, two weightingschemes and their benefits on the FV-MHMM method will be presented insome simple random permeability cases. Next example will involve alarger heterogeneous 2D permeability field extracted from the 10thSPE test case. Eventually, multiphase flow will be addressed asan extension of this single phase flow method. An elliptic pressureequation solved on the coarse grid via FV-MHMM will be sequentiallycoupled with a hyperbolic saturation equation on the fine grid. Theimproved accuracy thanks to the weighting scheme will be measuredcompared to a finite volume fine grid solution. References: Harder, C., Paredes, D. and Valentin, F., A family of multiscalehybrid-mixed finite element methods for the Darcy equation with roughcoefficients, Journal of Computational Physics, 2013. Franc J., Debenest G., Jeannin L., Egermann P. and Masson R., FV-MHMMfor reservoir modelling ECMOR XV-15th European Conference on the Mathematicsof Oil Recovery, 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehm, Dominic; Pavel, Robert S.; Barros, Kipton
We present an adaptive sampling method supplemented by a distributed database and a prediction method for multiscale simulations using the Heterogeneous Multiscale Method. A finite-volume scheme integrates the macro-scale conservation laws for elastodynamics, which are closed by momentum and energy fluxes evaluated at the micro-scale. In the original approach, molecular dynamics (MD) simulations are launched for every macro-scale volume element. Our adaptive sampling scheme replaces a large fraction of costly micro-scale MD simulations with fast table lookup and prediction. The cloud database Redis provides the plain table lookup, and with locality aware hashing we gather input data for our predictionmore » scheme. For the latter we use kriging, which estimates an unknown value and its uncertainty (error) at a specific location in parameter space by using weighted averages of the neighboring points. We find that our adaptive scheme significantly improves simulation performance by a factor of 2.5 to 25, while retaining high accuracy for various choices of the algorithm parameters.« less
Distributed database kriging for adaptive sampling (D²KAS)
Roehm, Dominic; Pavel, Robert S.; Barros, Kipton; ...
2015-03-18
We present an adaptive sampling method supplemented by a distributed database and a prediction method for multiscale simulations using the Heterogeneous Multiscale Method. A finite-volume scheme integrates the macro-scale conservation laws for elastodynamics, which are closed by momentum and energy fluxes evaluated at the micro-scale. In the original approach, molecular dynamics (MD) simulations are launched for every macro-scale volume element. Our adaptive sampling scheme replaces a large fraction of costly micro-scale MD simulations with fast table lookup and prediction. The cloud database Redis provides the plain table lookup, and with locality aware hashing we gather input data for our predictionmore » scheme. For the latter we use kriging, which estimates an unknown value and its uncertainty (error) at a specific location in parameter space by using weighted averages of the neighboring points. We find that our adaptive scheme significantly improves simulation performance by a factor of 2.5 to 25, while retaining high accuracy for various choices of the algorithm parameters.« less
NASA Astrophysics Data System (ADS)
Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.
2018-01-01
Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.
1975-01-01
Two computational procedures for analyzing complex structural systems for their natural modes and frequencies of vibration are presented. Both procedures are based on a substructures methodology and both employ the finite-element stiffness method to model the constituent substructures. The first procedure is a direct method based on solving the eigenvalue problem associated with a finite-element representation of the complete structure. The second procedure is a component-mode synthesis scheme in which the vibration modes of the complete structure are synthesized from modes of substructures into which the structure is divided. The analytical basis of the methods contains a combination of features which enhance the generality of the procedures. The computational procedures exhibit a unique utilitarian character with respect to the versatility, computational convenience, and ease of computer implementation. The computational procedures were implemented in two special-purpose computer programs. The results of the application of these programs to several structural configurations are shown and comparisons are made with experiment.
Discontinuous Galerkin Methods for NonLinear Differential Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy; Mansour, Nagi (Technical Monitor)
2001-01-01
This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the PDE (partial differential equation) system. Central to the development of the simplified DG methods is the Eigenvalue Scaling Theorem which characterizes right symmetrizers of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobian matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler equations of gas dynamics and extended conservation law systems derivable as moments of the Boltzmann equation. Using results from kinetic Boltzmann moment closure theory, we then derive and prove energy stability for several approximate DG fluxes which have practical and theoretical merit.
Strength analysis and lightweight research of a fertilizing and soil covering vehicle
NASA Astrophysics Data System (ADS)
Sun, Heng-Hui; Zhang, Zheng-Yong; Liu, Yang; Xu, Hai-Ming; Chen, En-Wei
2018-03-01
In this paper, parametric modeling is carried out for the frame part of a kind of fertilizing and soil covering vehicle to define boundary conditions such as load, constraint, etc. when the frame is under the working condition of normal full load. ANSYS software is used to produce finite element model of frame, and to analyze and solve the model, so as to obtain stress and stain variation diagram of each part of frame under working condition of normal full load. The calculation result shows that: the structure of frame is able to meet the strength requirement, and the maximum value of stress is located at joint between frame and external hinge, which should be appropriately improved in thickening way. According to the result of finite element, the scheme with size optimization is employed to design the frame in lightweight way. The research result of this paper provides the theoretical basis for the design of frame of fertilizing and soil covering vehicle, which has deep theoretical significance and application value.
Wheatley, Benjamin B.; Fischenich, Kristine M.; Button, Keith D.; Haut, Roger C.; Haut Donahue, Tammy L.
2015-01-01
Inverse finite element (FE) analysis is an effective method to predict material behavior, evaluate mechanical properties, and study differences in biological tissue function. The meniscus plays a key role in load distribution within the knee joint and meniscal degradation is commonly associated with the onset of osteoarthritis. In the current study, a novel transversely isotropic hyper-poro-viscoelastic constitutive formulation was incorporated in a FE model to evaluate changes in meniscal material properties following tibiofemoral joint impact. A non-linear optimization scheme was used to fit the model output to indentation relaxation experimental data. This study is the first to investigate rate of relaxation in healthy versus impacted menisci. Stiffness was found to be decreased (p=0.003), while the rate of tissue relaxation increased (p=0.010) at twelve weeks post impact. Total amount of relaxation, however, did not change in the impacted tissue (p=0.513). PMID:25776872
Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites
NASA Astrophysics Data System (ADS)
Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.
2008-02-01
Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.
NASA Astrophysics Data System (ADS)
Zhang, Ziyu; Jiang, Wen; Dolbow, John E.; Spencer, Benjamin W.
2018-01-01
We present a strategy for the numerical integration of partial elements with the eXtended finite element method (X-FEM). The new strategy is specifically designed for problems with propagating cracks through a bulk material that exhibits inelasticity. Following a standard approach with the X-FEM, as the crack propagates new partial elements are created. We examine quadrature rules that have sufficient accuracy to calculate stiffness matrices regardless of the orientation of the crack with respect to the element. This permits the number of integration points within elements to remain constant as a crack propagates, and for state data to be easily transferred between successive discretizations. In order to maintain weights that are strictly positive, we propose an approach that blends moment-fitted weights with volume-fraction based weights. To demonstrate the efficacy of this simple approach, we present results from numerical tests and examples with both elastic and plastic material response.
Efficient calculation of higher-order optical waveguide dispersion.
Mores, J A; Malheiros-Silveira, G N; Fragnito, H L; Hernández-Figueroa, H E
2010-09-13
An efficient numerical strategy to compute the higher-order dispersion parameters of optical waveguides is presented. For the first time to our knowledge, a systematic study of the errors involved in the higher-order dispersions' numerical calculation process is made, showing that the present strategy can accurately model those parameters. Such strategy combines a full-vectorial finite element modal solver and a proper finite difference differentiation algorithm. Its performance has been carefully assessed through the analysis of several key geometries. In addition, the optimization of those higher-order dispersion parameters can also be carried out by coupling to the present scheme a genetic algorithm, as shown here through the design of a photonic crystal fiber suitable for parametric amplification applications.
Computational methods for the identification of spatially varying stiffness and damping in beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Rosen, I. G.
1986-01-01
A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.
NASA Astrophysics Data System (ADS)
Yannopapas, Vassilios; Paspalakis, Emmanuel
2018-07-01
We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.
NASA Technical Reports Server (NTRS)
Melis, M. E.
1994-01-01
A significant percentage of time spent in a typical finite element analysis is taken up in the modeling and assignment of loads and constraints. This process not only requires the analyst to be well-versed in the art of finite element modeling, but also demands familiarity with some sort of preprocessing software in order to complete the task expediently. COMGEN (COmposite Model GENerator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or "session files" to be submitted to the finite element pre- and post-processor program, PATRAN. (PDA Engineering, Costa Mesa, CA.) In modeling a composite material, COMGEN assumes that its constituents can be represented by a "unit cell" of a fiber surrounded by matrix material. Two basic cell types are available. The first is a square packing arrangement where the fiber is positioned in the center of a square matrix cell. The second type, hexagonal packing, has the fiber centered in a hexagonal matrix cell. Different models can be created using combinations of square and hexagonal packing schemes. Variations include two- and three- dimensional cases, models with a fiber-matrix interface, and different constructions of unit cells. User inputs include fiber diameter and percent fiber-volume of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned to the models within COMGEN. The PATRAN program then uses a COMGEN session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC. COMGEN is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and SGI IRIS series workstations under IRIX. If the user has the PATRAN package available, the output can be graphically displayed. Without PATRAN, the output is tabular. The VAX VMS version is available on a 5.25 inch 360K MS-DOS format diskette (standard distribution media) or a 9-track 1600 BPI DEC VAX FILES-11 format magnetic tape, and it requires about 124K of main memory. The standard distribution media for the IRIS version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The memory requirement for the IRIS version is 627K. COMGEN was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. PATRAN is a registered trademark of PDA Engineering. SGI IRIS and IRIX are trademarks of Silicon Graphics, Inc. MS-DOS is a registered trademark of Microsoft Corporation. UNIX is a registered trademark of AT&T.
Lattice Boltzmann simulation of antiplane shear loading of a stationary crack
NASA Astrophysics Data System (ADS)
Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf
2018-01-01
In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.
Incompressible spectral-element method: Derivation of equations
NASA Technical Reports Server (NTRS)
Deanna, Russell G.
1993-01-01
A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.
Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems
NASA Astrophysics Data System (ADS)
Leuschner, Matthias; Fritzen, Felix
2017-11-01
Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.
NASA Astrophysics Data System (ADS)
Sharma, Nitin; Ranjan Mahapatra, Trupti; Panda, Subrata Kumar; Sahu, Pruthwiraj
2018-03-01
In this article, the acoustic radiation characteristics of laminated and sandwich composite spherical panels subjected to harmonic point excitation under thermal environment are investigated. The finite element (FE) simulation model of the vibrating panel structure is developed in ANSYS using ANSYS parametric design language (APDL) code. Initially, the critical buckling temperatures of the considered structures are obtained and the temperature loads are assorted accordingly. Then, the modal analysis of the thermally stressed panels is performed and the thermo-elastic free vibration responses so obtained are validated with the benchmark solutions. Subsequently, an indirect boundary element (BE) method is utilized to conduct a coupled FE-BE analysis to compute the sound radiation properties of panel structure. The agreement of the present sound power responses with the existing results available in the published literature establishes the validity of the proposed scheme. Finally, the current standardised scheme is extended to solve several numerical examples to bring out the influence of various parameters on the thermo-acoustic characteristics of laminated composite panels.
Critical study of higher order numerical methods for solving the boundary-layer equations
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1978-01-01
A fourth order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method, which is the natural extension of the second order box scheme to fourth order, was demonstrated with application to the incompressible, laminar and turbulent, boundary layer equations. The efficiency of the present method is compared with two point and three point higher order methods, namely, the Keller box scheme with Richardson extrapolation, the method of deferred corrections, a three point spline method, and a modified finite element method. For equivalent accuracy, numerical results show the present method to be more efficient than higher order methods for both laminar and turbulent flows.
Time integration algorithms for the two-dimensional Euler equations on unstructured meshes
NASA Technical Reports Server (NTRS)
Slack, David C.; Whitaker, D. L.; Walters, Robert W.
1994-01-01
Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.
Dispersion-relation-preserving finite difference schemes for computational acoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1993-01-01
Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.
NASA Astrophysics Data System (ADS)
Kokurin, M. Yu.
2010-11-01
A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.
Multiscale techniques for parabolic equations.
Målqvist, Axel; Persson, Anna
2018-01-01
We use the local orthogonal decomposition technique introduced in Målqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the [Formula: see text]-norm. We present numerical examples, which confirm our theoretical findings.
On the superconvergence of Galerkin methods for hyperbolic IBVP
NASA Technical Reports Server (NTRS)
Gottlieb, David; Gustafsson, Bertil; Olsson, Pelle; Strand, BO
1993-01-01
Finite element Galerkin methods for periodic first order hyperbolic equations exhibit superconvergence on uniform grids at the nodes, i.e., there is an error estimate 0(h(sup 2r)) instead of the expected approximation order 0(h(sup r)). It will be shown that no matter how the approximating subspace S(sup h) is chosen, the superconvergence property is lost if there are characteristics leaving the domain. The implications of this result when constructing compact implicit difference schemes is also discussed.
Numerical solution of fluid flow and heat tranfer problems with surface radiation
NASA Technical Reports Server (NTRS)
Ahuja, S.; Bhatia, K.
1995-01-01
This paper presents a numerical scheme, based on the finite element method, to solve strongly coupled fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The overall solution strategy is verified by comparing the available results with those obtained using this approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is clearly explained.
NASA Technical Reports Server (NTRS)
Yefet, Amir; Petropoulos, Peter G.
1999-01-01
We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.
Cross-sectional mapping for refined beam elements with applications to shell-like structures
NASA Astrophysics Data System (ADS)
Pagani, A.; de Miguel, A. G.; Carrera, E.
2017-06-01
This paper discusses the use of higher-order mapping functions for enhancing the physical representation of refined beam theories. Based on the Carrera unified formulation (CUF), advanced one-dimensional models are formulated by expressing the displacement field as a generic expansion of the generalized unknowns. According to CUF, a novel physically/geometrically consistent model is devised by employing Legendre-like polynomial sets to approximate the generalized unknowns at the cross-sectional level, whereas a local mapping technique based on the blending functions method is used to describe the exact physical boundaries of the cross-section domain. Classical and innovative finite element methods, including hierarchical p-elements and locking-free integration schemes, are utilized to solve the governing equations of the unified beam theory. Several numerical applications accounting for small displacements/rotations and strains are discussed, including beam structures with cross-sectional curved edges, cylindrical shells, and thin-walled aeronautical wing structures with reinforcements. The results from the proposed methodology are widely assessed by comparisons with solutions from the literature and commercial finite element software tools. The attention is focussed on the high computational efficiency and the marked capabilities of the present beam model, which can deal with a broad spectrum of structural problems with unveiled accuracy in terms of geometrical representation of the domain boundaries.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations
NASA Astrophysics Data System (ADS)
Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek
2018-04-01
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.
Influence of Finite Element Size in Residual Strength Prediction of Composite Structures
NASA Technical Reports Server (NTRS)
Satyanarayana, Arunkumar; Bogert, Philip B.; Karayev, Kazbek Z.; Nordman, Paul S.; Razi, Hamid
2012-01-01
The sensitivity of failure load to the element size used in a progressive failure analysis (PFA) of carbon composite center notched laminates is evaluated. The sensitivity study employs a PFA methodology previously developed by the authors consisting of Hashin-Rotem intra-laminar fiber and matrix failure criteria and a complete stress degradation scheme for damage simulation. The approach is implemented with a user defined subroutine in the ABAQUS/Explicit finite element package. The effect of element size near the notch tips on residual strength predictions was assessed for a brittle failure mode with a parametric study that included three laminates of varying material system, thickness and stacking sequence. The study resulted in the selection of an element size of 0.09 in. X 0.09 in., which was later used for predicting crack paths and failure loads in sandwich panels and monolithic laminated panels. Comparison of predicted crack paths and failure loads for these panels agreed well with experimental observations. Additionally, the element size vs. normalized failure load relationship, determined in the parametric study, was used to evaluate strength-scaling factors for three different element sizes. The failure loads predicted with all three element sizes provided converged failure loads with respect to that corresponding with the 0.09 in. X 0.09 in. element size. Though preliminary in nature, the strength-scaling concept has the potential to greatly reduce the computational time required for PFA and can enable the analysis of large scale structural components where failure is dominated by fiber failure in tension.
Convergence Rates of Finite Difference Stochastic Approximation Algorithms
2016-06-01
dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It
Four-level conservative finite-difference schemes for Boussinesq paradigm equation
NASA Astrophysics Data System (ADS)
Kolkovska, N.
2013-10-01
In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.
Finite element simulation for damage detection of surface rust in steel rebars using elastic waves
NASA Astrophysics Data System (ADS)
Tang, Qixiang; Yu, Tzuyang
2016-04-01
Steel rebar corrosion reduces the integrity and service life of reinforced concrete (RC) structures and causes their gradual and sudden failures. Early stage detection of steel rebar corrosion can improve the efficiency of routine maintenance and prevent sudden failures from happening. In this paper, detecting the presence of surface rust in steel rebars is investigated by the finite element method (FEM) using surface-generated elastic waves. Simulated wave propagation mimics the sensing scheme of a fiber optic acoustic generator mounted on the surface of steel rebars. Formation of surface rust in steel rebars is modeled by changing material's property at local elements. In this paper, various locations of a fiber optic acoustic transducer and a receiver were considered. Megahertz elastic waves were used and different sizes of surface rust were applied. Transient responses of surface displacement and pressure were studied. It is found that surface rust is most detectable when the rust location is between the transducer and the receiver. Displacement response of intact steel rebar is needed in order to obtain background-subtracted response with a better signal-to-noise ratio. When the size of surface rust increases, reduced amplitude in displacement was obtained by the receiver.
NASA Technical Reports Server (NTRS)
Padovan, J.; Lackney, J.
1986-01-01
The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.
NASA Astrophysics Data System (ADS)
Molcard, A. J.; Pinardi, N.; Ansaloni, R.
A new numerical model, SEOM (Spectral Element Ocean Model, (Iskandarani et al, 1994)), has been implemented in the Mediterranean Sea. Spectral element methods combine the geometric flexibility of finite element techniques with the rapid convergence rate of spectral schemes. The current version solves the shallow water equations with a fifth (or sixth) order accuracy spectral scheme and about 50.000 nodes. The domain decomposition philosophy makes it possible to exploit the power of parallel machines. The original MIMD master/slave version of SEOM, written in F90 and PVM, has been ported to the Cray T3D. When critical for performance, Cray specific high-performance one-sided communication routines (SHMEM) have been adopted to fully exploit the Cray T3D interprocessor network. Tests performed with highly unstructured and irregular grid, on up to 128 processors, show an almost linear scalability even with unoptimized domain decomposition techniques. Results from various case studies on the Mediterranean Sea are shown, involving realistic coastline geometry, and monthly mean 1000mb winds from the ECMWF's atmospheric model operational analysis from the period January 1987 to December 1994. The simulation results show that variability in the wind forcing considerably affect the circulation dynamics of the Mediterranean Sea.
NASA Astrophysics Data System (ADS)
Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin
2018-07-01
We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.
NASA Astrophysics Data System (ADS)
Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin
2018-03-01
We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.
NASA Astrophysics Data System (ADS)
Aichi, M.; Tokunaga, T.
2006-12-01
In the fields that experienced both significant drawdown/land subsidence and the recovery of groundwater potential, temporal change of the effective stress in the clayey layers is not simple. Conducting consolidation tests of core samples is a straightforward approach to know the pre-consolidation stress. However, especially in the urban area, the cost of boring and the limitation of sites for boring make it difficult to carry out enough number of tests. Numerical simulation to reproduce stress history can contribute to selecting boring sites and to complement the results of the laboratory tests. To trace the effective stress profile in the clayey layers by numerical simulation, discretization in the clayey layers should be fine. At the same time, the size of the modeled domain should be large enough to calculate the effect of regional groundwater extraction. Here, we developed a new scheme to reduce memory consumption based on domain decomposition technique. A finite element model of coupled groundwater flow and land subsidence is used for the local model, and a finite difference groundwater flow model is used for the regional model. The local model is discretized to fine mesh in the clayey layers to reproduce the temporal change of pore pressure in the layers while the regional model is discretized to relatively coarse mesh to reproduce the effect of the regional groundwater extraction on the groundwater flow. We have tested this scheme by comparing the results obtained from this scheme with those from the finely gridded model for the entire calculation domain. The difference between the results of these models was small enough and our new scheme can be used for the practical problem.
On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids
NASA Astrophysics Data System (ADS)
Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.
2017-03-01
The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
A finite difference solution for the propagation of sound in near sonic flows
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Lester, H. C.
1983-01-01
An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.
Geometrical and topological issues in octree based automatic meshing
NASA Technical Reports Server (NTRS)
Saxena, Mukul; Perucchio, Renato
1987-01-01
Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is discussed. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary representation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractor. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.
Octree based automatic meshing from CSG models
NASA Technical Reports Server (NTRS)
Perucchio, Renato
1987-01-01
Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is emphasized. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary respresentation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractors. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.
Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.
Idkaidek, Ashraf; Jasiuk, Iwona
2015-12-01
We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.
Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems
NASA Technical Reports Server (NTRS)
Skollermo, G.
1979-01-01
Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.
Finite-time stabilization of chaotic gyros based on a homogeneous supertwisting-like algorithm
NASA Astrophysics Data System (ADS)
Khamsuwan, Pitcha; Sangpet, Teerawat; Kuntanapreeda, Suwat
2018-01-01
This paper presents a finite-time stabilization scheme for nonlinear chaotic gyros. The scheme utilizes a supertwisting-like continuous control algorithm for the systems of dimension more than one with a Lipschitz disturbance. The algorithm yields finite-time convergence similar to that produces by discontinuous sliding mode control algorithms. To design the controller, the nonlinearities in the gyro are treated as a disturbance in the system. Thanks to the dissipativeness of chaotic systems, the nonlinearities also possess the Lipschitz property. Numerical results are provided to illustrate the effectiveness of the scheme.
Shock-driven fluid-structure interaction for civil design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Stephen L; Deiterding, Ralf
The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering.more » Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.« less
Flowfield-Dependent Mixed Explicit-Implicit (FDMEL) Algorithm for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Garcia, S. M.; Chung, T. J.
1997-01-01
Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
NASA Astrophysics Data System (ADS)
Liu, Chao; Yang, Guigeng; Zhang, Yiqun
2015-01-01
The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killian, D.E.; Yoon, K.K.
1996-12-01
Flaws on the inside surface of cladded reactor vessels are often analyzed by modelling the carbon steel base metal without consideration of a layer of stainless steel cladding material, thus ignoring the effects of this bimetallic discontinuity. Adding cladding material to the inside surface of a finite element model of a vessel raises concerns regarding adequate mesh refinement in the vicinity of the base metal/cladding interface. This paper presents results of three-dimensional linear stress analysis that has been performed to obtain stress intensity factors for clad and unclad reactor vessels subjected to internal pressure loading. The study concentrates on semi-ellipticalmore » longitudinal surface flaws with a 6 to 1 length-to-depth ratio and flaw depths of 1/8 and 1/4 of the base metal thickness. Various meshing schemes are evaluated for modelling the crack front profile, with particular emphasis on the region near the inside surface and at the base metal/cladding interface. The shape of the crack front profile through the cladding layer and the number of finite elements used to discretize the cladding thickness are found to have a significant influence on typical fracture mechanic measures of the crack tip stress fields. Results suggest that the stress intensity factor at the inner surface of a cladded vessel may be affected as much by the finite element mesh near the surface as by the material discontinuity between the two parts of the structure.« less
NASA Astrophysics Data System (ADS)
Luo, Li; Wang, Xiao-Ping; Cai, Xiao-Chuan
2017-11-01
We study numerically the dynamics of a three-dimensional droplet spreading on a rough solid surface using a phase-field model consisting of the coupled Cahn-Hilliard and Navier-Stokes equations with a generalized Navier boundary condition (GNBC). An efficient finite element method on unstructured meshes is introduced to cope with the complex geometry of the solid surfaces. We extend the GNBC to surfaces with complex geometry by including its weak form along different normal and tangential directions in the finite element formulation. The semi-implicit time discretization scheme results in a decoupled system for the phase function, the velocity, and the pressure. In addition, a mass compensation algorithm is introduced to preserve the mass of the droplet. To efficiently solve the decoupled systems, we present a highly parallel solution strategy based on domain decomposition techniques. We validate the newly developed solution method through extensive numerical experiments, particularly for those phenomena that can not be achieved by two-dimensional simulations. On a surface with circular posts, we study how wettability of the rough surface depends on the geometry of the posts. The contact line motion for a droplet spreading over some periodic rough surfaces are also efficiently computed. Moreover, we study the spreading process of an impacting droplet on a microstructured surface, a qualitative agreement is achieved between the numerical and experimental results. The parallel performance suggests that the proposed solution algorithm is scalable with over 4,000 processors cores with tens of millions of unknowns.
Wang, Yujuan; Song, Yongduan; Ren, Wei
2017-07-06
This paper presents a distributed adaptive finite-time control solution to the formation-containment problem for multiple networked systems with uncertain nonlinear dynamics and directed communication constraints. By integrating the special topology feature of the new constructed symmetrical matrix, the technical difficulty in finite-time formation-containment control arising from the asymmetrical Laplacian matrix under single-way directed communication is circumvented. Based upon fractional power feedback of the local error, an adaptive distributed control scheme is established to drive the leaders into the prespecified formation configuration in finite time. Meanwhile, a distributed adaptive control scheme, independent of the unavailable inputs of the leaders, is designed to keep the followers within a bounded distance from the moving leaders and then to make the followers enter the convex hull shaped by the formation of the leaders in finite time. The effectiveness of the proposed control scheme is confirmed by the simulation.
Finite and spectral cell method for wave propagation in heterogeneous materials
NASA Astrophysics Data System (ADS)
Joulaian, Meysam; Duczek, Sascha; Gabbert, Ulrich; Düster, Alexander
2014-09-01
In the current paper we present a fast, reliable technique for simulating wave propagation in complex structures made of heterogeneous materials. The proposed approach, the spectral cell method, is a combination of the finite cell method and the spectral element method that significantly lowers preprocessing and computational expenditure. The spectral cell method takes advantage of explicit time-integration schemes coupled with a diagonal mass matrix to reduce the time spent on solving the equation system. By employing a fictitious domain approach, this method also helps to eliminate some of the difficulties associated with mesh generation. Besides introducing a proper, specific mass lumping technique, we also study the performance of the low-order and high-order versions of this approach based on several numerical examples. Our results show that the high-order version of the spectral cell method together requires less memory storage and less CPU time than other possible versions, when combined simultaneously with explicit time-integration algorithms. Moreover, as the implementation of the proposed method in available finite element programs is straightforward, these properties turn the method into a viable tool for practical applications such as structural health monitoring [1-3], quantitative ultrasound applications [4], or the active control of vibrations and noise [5, 6].
Parallelized modelling and solution scheme for hierarchically scaled simulations
NASA Technical Reports Server (NTRS)
Padovan, Joe
1995-01-01
This two-part paper presents the results of a benchmarked analytical-numerical investigation into the operational characteristics of a unified parallel processing strategy for implicit fluid mechanics formulations. This hierarchical poly tree (HPT) strategy is based on multilevel substructural decomposition. The Tree morphology is chosen to minimize memory, communications and computational effort. The methodology is general enough to apply to existing finite difference (FD), finite element (FEM), finite volume (FV) or spectral element (SE) based computer programs without an extensive rewrite of code. In addition to finding large reductions in memory, communications, and computational effort associated with a parallel computing environment, substantial reductions are generated in the sequential mode of application. Such improvements grow with increasing problem size. Along with a theoretical development of general 2-D and 3-D HPT, several techniques for expanding the problem size that the current generation of computers are capable of solving, are presented and discussed. Among these techniques are several interpolative reduction methods. It was found that by combining several of these techniques that a relatively small interpolative reduction resulted in substantial performance gains. Several other unique features/benefits are discussed in this paper. Along with Part 1's theoretical development, Part 2 presents a numerical approach to the HPT along with four prototype CFD applications. These demonstrate the potential of the HPT strategy.
James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael
2009-01-01
A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.
Studies of finite element analysis of composite material structures
NASA Technical Reports Server (NTRS)
Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.
1975-01-01
Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, S.W.; Heinstein, M.W.; Stone, C.M.
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less
NASA Technical Reports Server (NTRS)
Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.
1990-01-01
A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.
NASA Astrophysics Data System (ADS)
Tong, F.; Niemi, A. P.; Yang, Z.; Fagerlund, F.; Licha, T.; Sauter, M.
2011-12-01
This paper presents a new finite element method (FEM) code for modeling tracer transport in a non-isothermal two-phase flow system. The main intended application is simulation of the movement of so-called novel tracers for the purpose of characterization of geologically stored CO2 and its phase partitioning and migration in deep saline formations. The governing equations are based on the conservation of mass and energy. Among the phenomena accounted for are liquid-phase flow, gas flow, heat transport and the movement of the novel tracers. The movement of tracers includes diffusion and the advection associated with the gas and liquid flow. The temperature, gas pressure, suction, concentration of tracer in liquid phase and concentration of tracer in gas phase are chosen as the five primary variables. Parameters such as the density, viscosity, thermal expansion coefficient are expressed in terms of the primary variables. The governing equations are discretized in space using the Galerkin finite element formulation, and are discretized in time by one-dimensional finite difference scheme. This leads to an ill-conditioned FEM equation that has many small entries along the diagonal of the non-symmetric coefficient matrix. In order to deal with the problem of non-symmetric ill-conditioned matrix equation, special techniques are introduced . Firstly, only nonzero elements of the matrix need to be stored. Secondly, it is avoided to directly solve the whole large matrix. Thirdly, a strategy has been used to keep the diversity of solution methods in the calculation process. Additionally, an efficient adaptive mesh technique is included in the code in order to track the wetting front. The code has been validated against several classical analytical solutions, and will be applied for simulating the CO2 injection experiment to be carried out at the Heletz site, Israel, as part of the EU FP7 project MUSTANG.
NASA Astrophysics Data System (ADS)
Kettle, L. M.; Mora, P.; Weatherley, D.; Gross, L.; Xing, H.
2006-12-01
Simulations using the Finite Element method are widely used in many engineering applications and for the solution of partial differential equations (PDEs). Computational models based on the solution of PDEs play a key role in earth systems simulations. We present numerical modelling of crustal fault systems where the dynamic elastic wave equation is solved using the Finite Element method. This is achieved using a high level computational modelling language, escript, available as open source software from ACcESS (Australian Computational Earth Systems Simulator), the University of Queensland. Escript is an advanced geophysical simulation software package developed at ACcESS which includes parallel equation solvers, data visualisation and data analysis software. The escript library was implemented to develop a flexible Finite Element model which reliably simulates the mechanism of faulting and the physics of earthquakes. Both 2D and 3D elastodynamic models are being developed to study the dynamics of crustal fault systems. Our final goal is to build a flexible model which can be applied to any fault system with user-defined geometry and input parameters. To study the physics of earthquake processes, two different time scales must be modelled, firstly the quasi-static loading phase which gradually increases stress in the system (~100years), and secondly the dynamic rupture process which rapidly redistributes stress in the system (~100secs). We will discuss the solution of the time-dependent elastic wave equation for an arbitrary fault system using escript. This involves prescribing the correct initial stress distribution in the system to simulate the quasi-static loading of faults to failure; determining a suitable frictional constitutive law which accurately reproduces the dynamics of the stick/slip instability at the faults; and using a robust time integration scheme. These dynamic models generate data and information that can be used for earthquake forecasting.
Patient-specific finite element modeling of bones.
Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A
2013-04-01
Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.
NASA Astrophysics Data System (ADS)
Huyakorn, P. S.; Panday, S.; Wu, Y. S.
1994-06-01
A three-dimensional, three-phase numerical model is presented for stimulating the movement on non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is designed for practical application to a wide variety of contamination and remediation scenarios involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The formulation is then extended to handle fractured systems using the dual-porosity and discrete-fracture modeling approaches The model accommodates a wide variety of boundary conditions, including withdrawal and injection well conditions which are treated rigorously using fully implicit schemes. The three-phase of formulation collapses to its simpler forms when air-phase dynamics are neglected, capillary effects are neglected, or two-phase-air-liquid, liquid-liquid systems with one or two active phases are considered. A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes leading to finite-difference, finite-element and hybrid spatial approximations in three dimensions are incorporated in the formulation. Selection of primary variables and evaluation of the terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The various nodal lattice options, and their significance to the computational time and memory requirements with regards to the block-Orthomin solution scheme are noted. Aggressive time-stepping schemes and under-relaxation formulas implemented in the code further alleviate the computational burden.
A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena
NASA Technical Reports Server (NTRS)
Zingg, David W.
1996-01-01
This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.
Study on numerical simulation of asymmetric structure aluminum profile extrusion based on ALE method
NASA Astrophysics Data System (ADS)
Chen, Kun; Qu, Yuan; Ding, Siyi; Liu, Changhui; Yang, Fuyong
2018-05-01
Using the HyperXtrude module based on the Arbitrary Lagrangian-Eulerian (ALE) finite element method, the paper simulates the steady extrusion process of the asymmetric structure aluminum die successfully. A verification experiment is carried out to verify the simulation results. Having obtained and analyzed the stress-strain field, temperature field and extruded velocity of the metal, it confirms that the simulation prediction results and the experimental schemes are consistent. The scheme of the die correction and optimization are discussed at last. By adjusting the bearing length and core thickness, adopting the structure of feeder plate protection, short shunt bridge in the upper die and three-level bonding container in the lower die to control the metal flowing, the qualified aluminum profile can be obtained.
An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Erickson, Larry L.
1994-01-01
A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.
Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems
NASA Astrophysics Data System (ADS)
Kotyczka, Paul; Maschke, Bernhard; Lefèvre, Laurent
2018-05-01
We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.
Numerical algorithms for computations of feedback laws arising in control of flexible systems
NASA Technical Reports Server (NTRS)
Lasiecka, Irena
1989-01-01
Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Loubère, Raphaël
2016-08-01
In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order accurate finite volume reconstruction technique. Consequently, if the number Ns is sufficiently large (Ns ≥ N + 1), the subscale resolution capability of the DG scheme is fully maintained, while preserving at the same time an essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG limiters only adjust the discrete solution in troubled cells, based on the limiting of higher order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at the new time t n + 1. Instead, our new DG limiter entirely recomputes the troubled cells by solving the governing PDE system again starting from valid data at the old time level tn, but using this time a more robust scheme on the sub-grid level. In other words, the piecewise polynomials produced by the new limiter are the result of a more robust solution of the PDE system itself, while most standard DG limiters are simply based on a mere nonlinear data post-processing of the discrete solution. Technically speaking, the new method corresponds to an element-wise checkpointing and restarting of the solver, using a lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure floating point errors like NaN values that have occurred after divisions by zero or after the computation of roots from negative numbers. This is a unique feature of our new algorithm among existing DG limiters. The new a posteriori sub-cell stabilization approach is developed within a high order accurate one-step ADER-DG framework on multidimensional unstructured meshes for hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-conservative products. The method is applied to the Euler equations of compressible gas dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-equation Baer-Nunziato model of compressible multi-phase flows. A large set of standard test problems is solved in order to assess the accuracy and robustness of the new limiter.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling
NASA Technical Reports Server (NTRS)
Bloemhof, Eric E.; Lam, Jonathan C.; Feria, V. Alfonso; Chang, Zensheu
2007-01-01
The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.
Optimum Design of a Ceramic Tensile Creep Specimen Using a Finite Element Method
Wang, Z.; Chiang, C. K.; Chuang, T.-J.
1997-01-01
An optimization procedure for designing a ceramic tensile creep specimen to minimize stress concentration is carried out using a finite element method. The effect of pin loading and the specimen geometry are considered in the stress distribution calculations. A growing contact zone between the pin and the specimen has been incorporated into the problem solution scheme as the load is increased to its full value. The optimization procedures are performed for the specimen, and all design variables including pinhole location and pinhole diameter, head width, neck radius, and gauge length are determined based on a set of constraints imposed on the problem. In addition, for the purpose of assessing the possibility of delayed failure outside the gage section, power-law creep in the tensile specimen is considered in the analysis. Using a particular grade of advanced ceramics as an example, it is found that if the specimen is not designed properly, significant creep deformation and stress redistribution may occur in the head of the specimen resulting in undesirable (delayed) head failure of the specimen during the creep test. PMID:27805126
Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel
NASA Astrophysics Data System (ADS)
Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong
2018-04-01
A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Li, Z.; Ng, C.
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less
A fully implicit finite element method for bidomain models of cardiac electromechanics
Dal, Hüsnü; Göktepe, Serdar; Kaliske, Michael; Kuhl, Ellen
2012-01-01
We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes. PMID:23175588
Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator
NASA Astrophysics Data System (ADS)
Vabishchevich, P. N.
2018-03-01
A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.
Constitutive Modeling of Piezoelectric Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Tom (Technical Monitor)
2003-01-01
A new modeling approach is proposed for predicting the bulk electromechanical properties of piezoelectric composites. The proposed model offers the same level of convenience as the well-known Mori-Tanaka method. In addition, it is shown to yield predicted properties that are, in most cases, more accurate or equally as accurate as the Mori-Tanaka scheme. In particular, the proposed method is used to determine the electromechanical properties of four piezoelectric polymer composite materials as a function of inclusion volume fraction. The predicted properties are compared to those calculated using the Mori-Tanaka and finite element methods.
Approximating a retarded-advanced differential equation that models human phonation
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2017-11-01
In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multifactor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multi-factor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
Tangle-Free Finite Element Mesh Motion for Ablation Problems
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.
On the optimization of discrete structures with aeroelastic constraints
NASA Technical Reports Server (NTRS)
Mcintosh, S. C., Jr.; Ashley, H.
1978-01-01
The paper deals with the problem of dynamic structural optimization where constraints relating to flutter of a wing (or other dynamic aeroelastic performance) are imposed along with conditions of a more conventional nature such as those relating to stress under load, deflection, minimum dimensions of structural elements, etc. The discussion is limited to a flutter problem for a linear system with a finite number of degrees of freedom and a single constraint involving aeroelastic stability, and the structure motion is assumed to be a simple harmonic time function. Three search schemes are applied to the minimum-weight redesign of a particular wing: the first scheme relies on the method of feasible directions, while the other two are derived from necessary conditions for a local optimum so that they can be referred to as optimality-criteria schemes. The results suggest that a heuristic redesign algorithm involving an optimality criterion may be best suited for treating multiple constraints with large numbers of design variables.
A general algorithm using finite element method for aerodynamic configurations at low speeds
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1975-01-01
A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.
Granular materials interacting with thin flexible rods
NASA Astrophysics Data System (ADS)
Neto, Alfredo Gay; Campello, Eduardo M. B.
2017-04-01
In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.
Contact Modelling of Large Radius Air Bending with Geometrically Exact Contact Algorithm
NASA Astrophysics Data System (ADS)
Vorkov, V.; Konyukhov, A.; Vandepitte, D.; Duflou, J. R.
2016-08-01
Usage of high-strength steels in conventional air bending is restricted due to limited bendability of these metals. Large-radius punches provide a typical approach for decreasing deformations during the bending process. However, as deflection progresses the loading scheme changes gradually. Therefore, modelling of the contact interaction is essential for an accurate description of the loading scheme. In the current contribution, the authors implemented a plane frictional contact element based on the penalty method. The geometrically exact contact algorithm is used for the penetration determination. The implementation is done using the OOFEM - open source finite element solver. In order to verify the simulation results, experiments have been conducted on a bending press brake for 4 mm Weldox 1300 with a punch radius of 30 mm and a die opening of 80 mm. The maximum error for the springback calculation is 0.87° for the bending angle of 144°. The contact interaction is a crucial part of large radius bending simulation and the implementation leads to a reliable solution for the springback angle.
Multiple-copy state discrimination: Thinking globally, acting locally
NASA Astrophysics Data System (ADS)
Higgins, B. L.; Doherty, A. C.; Bartlett, S. D.; Pryde, G. J.; Wiseman, H. M.
2011-05-01
We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N→∞. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.
Multiple-copy state discrimination: Thinking globally, acting locally
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, B. L.; Pryde, G. J.; Wiseman, H. M.
2011-05-15
We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N{yields}{infinity}. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements,more » and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.« less
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.