Finite Element Simulation of Smart Structures
NASA Technical Reports Server (NTRS)
Cui, Y. Lawrence; Panahandeh, M.
1996-01-01
Finite element equations representing the behavior of piezoelectric materials when bounded to a typical structure and used as sensors and actuators were developed. Emphasis was placed on generating sensor output equations of piezoelectric sensors and responses of a typical structure bonded with piezoelectric sensors and actuators on the basis of finite element formulation. The model can predict not only structural responses due to both mechanical and electrical loading but also electrical potential due to mechanical or thermal effects. The resulted finite element equations were then used for simple control design and performance evaluation. In the control algorithm, voltages coming out from piezoelectric sensors, which are proportional to strains at sensing locations, are taken as input. The voltages applied to the piezoelectric actuators are used as output. The feasibility of integrating control algorithm with the element routine developed herein and FEAP was demonstrated. In particular, optimal independent modal space control was implemented in a software package on the basis of finite element formulation. A rudimentary finite element-control algorithm package was also developed to evaluate the performance of candidate control laws. A few numerical simulations using the software package developed herein were given. The integrated software package will provide a design tool to address issues such as how adaptive smart systems will scale to a full size aircraft, the amount of piezoelectric materials and the powers needed to actuate it for desired performance. It will also provide a viable new structural control design concept for practical applications in large flexible structures such as aerospace vehicles and aircraft.
Finite element simulation of pipe dynamic response
Slagis, G.C.; Litton, R.W.
1996-12-01
Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.
Finite Element Aircraft Simulation of Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E.
1997-01-01
A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.
Simulation of two-dimensional waterflooding using mixed finite elements
Chavent, G.; Jaffre, J.; Cohen, G.; Dupuy, M.; Dieste, I.
1982-01-01
A new method for the simulation of incompressible diphasic flows in two dimensions is presented, the distinctive features of which are: (1) reformation of the basic equation and specific choices of the finite element approximation of the same; (11) use of a mixed finite elements method, approximating both scalar and vector functions. Several test examples are shown, including gravity and capillary effects. The use of discontinuous basis functions proved successful for an accurate representation of sharp fronts. 16 refs.
Boundary element and finite element coupling for aeroacoustics simulations
NASA Astrophysics Data System (ADS)
Balin, Nolwenn; Casenave, Fabien; Dubois, François; Duceau, Eric; Duprey, Stefan; Terrasse, Isabelle
2015-08-01
We consider the scattering of acoustic perturbations in the presence of a flow. We suppose that the space can be split into a zone where the flow is uniform and a zone where the flow is potential. In the first zone, we apply a Prandtl-Glauert transformation to recover the Helmholtz equation. The well-known setting of boundary element method for the Helmholtz equation is available. In the second zone, the flow quantities are space dependent, we have to consider a local resolution, namely the finite element method. Herein, we carry out the coupling of these two methods and present various applications and validation test cases. The source term is given through the decomposition of an incident acoustic field on a section of the computational domain's boundary. Validations against analytic, another numerical method and measurements on different test cases are presented.
SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2007-01-01
This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Process control of large-scale finite element simulation software
Spence, P.A.; Weingarten, L.I.; Schroder, K.; Tung, D.M.; Sheaffer, D.A.
1996-02-01
We have developed a methodology for coupling large-scale numerical codes with process control algorithms. Closed-loop simulations were demonstrated using the Sandia-developed finite element thermal code TACO and the commercially available finite element thermal-mechanical code ABAQUS. This new capability enables us to use computational simulations for designing and prototyping advanced process-control systems. By testing control algorithms on simulators before building and testing hardware, enormous time and cost savings can be realized. The need for a closed-loop simulation capability was demonstrated in a detailed design study of a rapid-thermal-processing reactor under development by CVC Products Inc. Using a thermal model of the RTP system as a surrogate for the actual hardware, we were able to generate response data needed for controller design. We then evaluated the performance of both the controller design and the hardware design by using the controller to drive the finite element model. The controlled simulations provided data on wafer temperature uniformity as a function of ramp rate, temperature sensor locations, and controller gain. This information, which is critical to reactor design, cannot be obtained from typical open-loop simulations.
Crystal level simulations using Eulerian finite element methods
Becker, R; Barton, N R; Benson, D J
2004-02-06
Over the last several years, significant progress has been made in the use of crystal level material models in simulations of forming operations. However, in Lagrangian finite element approaches simulation capabilities are limited in many cases by mesh distortion associated with deformation heterogeneity. Contexts in which such large distortions arise include: bulk deformation to strains approaching or exceeding unity, especially in highly anisotropic or multiphase materials; shear band formation and intersection of shear bands; and indentation with sharp indenters. Investigators have in the past used Eulerian finite element methods with material response determined from crystal aggregates to study steady state forming processes. However, Eulerian and Arbitrary Lagrangian-Eulerian (ALE) finite element methods have not been widely utilized for simulation of transient deformation processes at the crystal level. The advection schemes used in Eulerian and ALE codes control mesh distortion and allow for simulation of much larger total deformations. We will discuss material state representation issues related to advection and will present results from ALE simulations.
Parallel finite element simulation of large ram-air parachutes
NASA Astrophysics Data System (ADS)
Kalro, V.; Aliabadi, S.; Garrard, W.; Tezduyar, T.; Mittal, S.; Stein, K.
1997-06-01
In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-dependent models will continue to be a major computational challenge, advanced finite element simulation techniques recently developed for this purpose and the execution of these techniques on HPC platforms are significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is limited to parachutes with similar configurations to those for which data are available. The other approach is 3D finite element computations based on the Navier-Stokes equations governing the airflow around the parachute canopy and Newtons law of motion governing the 3D dynamics of the canopy, with the forces acting on the canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and glides. These finite element computations are carried out on the massively parallel supercomputers CRAY T3D and Thinking Machines CM-5, typically with millions of coupled, non-linear finite element equations solved simultaneously at every time step or pseudo-time step of the simulation.
Finite element simulation of temperature dependent free surface flows
NASA Technical Reports Server (NTRS)
Engelman, M. S.; Sani, R. L.
1985-01-01
The method of Engelman and Sani (1984) for a finite-element simulation of incompressible surface flows with a free and/or moving fluid interface, such as encountered in crystal growth and coating and polymer technology, is extended to temperature-dependent flows, including the effect of temperature-dependent surface tension. The basic algorithm of Saito and Scriven (1981) and Ruschak (1980) has been generalized and implemented in a robust and versatile finite-element code that can be employed with relative ease for the simulation of free-surface problems in complex geometries. As a result, the costly dependence on the Newton-Raphson algorithm has been eliminated by replacing it with a quasi-Newton iterative method, which nearly retains the superior convergence properties of the Newton-Raphson method.
Finite element simulation of impact response of wire mesh screens
NASA Astrophysics Data System (ADS)
Wang, Caizheng; Shankar, Krishna; Fien, Alan
2015-09-01
In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE) simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg) and a large mass (40 kg) providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.
3D finite element simulations of high velocity projectile impact
NASA Astrophysics Data System (ADS)
Ožbolt, Joško; İrhan, Barış; Ruta, Daniela
2015-09-01
An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.
Galerkin finite-element simulation of a geothermal reservoir
Mercer, J.W., Jr.; Pinder, G.F.
1973-01-01
The equations describing fluid flow and energy transport in a porous medium can be used to formulate a mathematical model capable of simulating the transient response of a hot-water geothermal reservoir. The resulting equations can be solved accurately and efficiently using a numerical scheme which combines the finite element approach with the Galerkin method of approximation. Application of this numerical model to the Wairakei geothermal field demonstrates that hot-water geothermal fields can be simulated using numerical techniques currently available and under development. ?? 1973.
Finite-element simulation of thermoemission electron guns
NASA Astrophysics Data System (ADS)
Greenfield, D.
2006-05-01
The peculiarity of the numeric simulation of the thermoemission electron guns consists in the principal necessity of taking into account the contribution of the electrons' charge into the potential distribution in the beam formation region. Ths fact makes the mathematical model essentially nonlinear especially in the high-perveance operation mode. Moreover, the charge density is extremely high in the vicinity of emitting surfaces, rising infinitely in the limit of zero initial velocities. A special semi-analytical approach has been applied to deal with the charge singularity. Being combined with traditional finite-element numerical techniques, this approach provides an efficient way to simulate thermoemission electron guns.
Finite Element Simulation of Metal-Semiconductor-Metal Photodetector
Guarino, G.; Donaldson, W.R.; Mikulics, M.; Marso, M.; Kordos, P.; Sobolewski, R.
2009-08-19
The successful application of finite element analysis to ultrafast optoelectronic devices is demonstrated. Finite element models have been developed for both an alloyed- and surface-contact metal–semiconductor–metal photodetectors. The simulation results agree with previously reported experimental data. The alloyed device, despite having a somewhat larger capacitance, has a non-illuminated region of lower resistance with a more-uniform and deeper-penetrating electric field and carrier transport current. The latter explains, in terms of the equivalent lumped parameters, the experimentally observed faster response of the alloyed device. The model is further used to predict improved responsivity, based on electrode spacing and antireflective coating. We project that increasing the depth of the alloyed contact beyond approximately half of the optical penetration depth will not yield significantly improved responsivity.
Large-eddy simulation using the finite element method
McCallen, R.C.; Gresho, P.M.; Leone, J.M. Jr.; Kollmann, W.
1993-10-01
In a large-eddy simulation (LES) of turbulent flows, the large-scale motion is calculated explicitly (i.e., approximated with semi-empirical relations). Typically, finite difference or spectral numerical schemes are used to generate an LES; the use of finite element methods (FEM) has been far less prominent. In this study, we demonstrate that FEM in combination with LES provides a viable tool for the study of turbulent, separating channel flows, specifically the flow over a two-dimensional backward-facing step. The combination of these methodologies brings together the advantages of each: LES provides a high degree of accuracy with a minimum of empiricism for turbulence modeling and FEM provides a robust way to simulate flow in very complex domains of practical interest. Such a combination should prove very valuable to the engineering community.
Applications of finite element simulation in orthopedic and trauma surgery.
Herrera, Antonio; Ibarz, Elena; Cegoñino, José; Lobo-Escolar, Antonio; Puértolas, Sergio; López, Enrique; Mateo, Jesús; Gracia, Luis
2012-04-18
Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography (CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element (FE) simulation lets us know the biomechanical changes that take place after hip prostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints
Simulating Space Capsule Water Landing with Explicit Finite Element Method
NASA Technical Reports Server (NTRS)
Wang, John T.; Lyle, Karen H.
2007-01-01
A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.
Finite Element Modeling, Simulation, Tools, and Capabilities at Superform
NASA Astrophysics Data System (ADS)
Raman, Hari; Barnes, A. J.
2010-06-01
Over the past thirty years Superform has been a pioneer in the SPF arena, having developed a keen understanding of the process and a range of unique forming techniques to meet varying market needs. Superform’s high-profile list of customers includes Boeing, Airbus, Aston Martin, Ford, and Rolls Royce. One of the more recent additions to Superform’s technical know-how is finite element modeling and simulation. Finite element modeling is a powerful numerical technique which when applied to SPF provides a host of benefits including accurate prediction of strain levels in a part, presence of wrinkles and predicting pressure cycles optimized for time and part thickness. This paper outlines a brief history of finite element modeling applied to SPF and then reviews some of the modeling tools and techniques that Superform have applied and continue to do so to successfully superplastically form complex-shaped parts. The advantages of employing modeling at the design stage are discussed and illustrated with real-world examples.
Stressed mirror polishing: finite element simulation of mirror blank deformation
NASA Astrophysics Data System (ADS)
Han, Yu; Lu, Lihong
2014-08-01
The theoretical principle of Stressed Mirror Polishing (SMP) is introduced, including the representation method of elastic deformation, the formulations of discrete bending moment and shearing force. A Finite Element Analysis (FEA) simulation model of has been set up by ANSYS software. The warping facility in this model is consisted of 36 aluminum alloy arms equally distribute on the ambit of mirror blank. Two forces are applied on each arm to provide bending moment and shearing force. Taking type 82 segment of Thirty Meters Telescope (TMT) primary mirror for example, a FEA simulation of mirror blank deformation has been performed. Simulation result shows that, the deformation error is 33μm PV. The theoretical deformation PV value is 205μm and the simulation deformation PV value is 172μm, converging rate reaches to 0.84 in a single warping cycle. After three or four warping cycles, the residue error may converge into 1μm.
Assessing performance and validating finite element simulations using probabilistic knowledge
Dolin, Ronald M.; Rodriguez, E. A.
2002-01-01
Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrence results are used to validate finite element predictions.
Finite Element Simulation of Diametral Strength Test of Hydroxyapatite
Ozturk, Fahrettin; Toros, Serkan; Evis, Zafer
2011-01-17
In this study, the diametral strength test of sintered hydroxyapatite was simulated by the finite element software, ABAQUS/Standard. Stress distributions on diametral test sample were determined. The effect of sintering temperature on stress distribution of hydroxyapatite was studied. It was concluded that high sintering temperatures did not reduce the stress on hydroxyapatite. It had a negative effect on stress distribution of hydroxyapatite after 1300 deg. C. In addition to the porosity, other factors (sintering temperature, presence of phases and the degree of crystallinity) affect the diametral strength of the hydroxyapatite.
A nonlinear dynamic finite element approach for simulating muscular hydrostats.
Vavourakis, V; Kazakidi, A; Tsakiris, D P; Ekaterinaris, J A
2014-01-01
An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney-Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton-Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching. PMID:23025686
Finite element simulation of food transport through the esophageal body
Yang, Wei; Fung, Tat Ching; Chian, Kerm Sim; Chong, Chuh Khiun
2007-01-01
The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structure-mechanics relationship of the tissue. In this study, a finite element model (FEM) was developed to simulate food transport through the esophagus. The FEM consists of three components, i.e., tissue, food bolus and peristaltic wave, as well as the interactions between them. The transport process was simulated as three stages, i.e., the filling of fluid, contraction of circular muscle and traveling of peristaltic wave. It was found that the maximal passive intraluminal pressure due to bolus expansion was in the range of 0.8-10 kPa and it increased with bolus volume and fluid viscosity. It was found that the highest normal and shear stresses were at the inner surface of muscle layer. In addition, the peak pressure required for the fluid flow was predicted to be 1-15 kPa at the bolus tail. The diseases of systemic sclerosis or osteogenesis imperfecta, with the remodeled microstructures and mechanical properties, might induce the malfunction of esophageal transport. In conclusion, the current simulation was demonstrated to be able to capture the main characteristics in the intraluminal pressure and bolus geometry as measured experimentally. Therefore, the finite element model established in this study could be used to further explore the mechanism of esophageal transport in various clinical applications. PMID:17457965
High-order finite element methods for cardiac monodomain simulations.
Vincent, Kevin P; Gonzales, Matthew J; Gillette, Andrew K; Villongco, Christopher T; Pezzuto, Simone; Omens, Jeffrey H; Holst, Michael J; McCulloch, Andrew D
2015-01-01
Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori. PMID:26300783
High-order finite element methods for cardiac monodomain simulations
Vincent, Kevin P.; Gonzales, Matthew J.; Gillette, Andrew K.; Villongco, Christopher T.; Pezzuto, Simone; Omens, Jeffrey H.; Holst, Michael J.; McCulloch, Andrew D.
2015-01-01
Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori. PMID:26300783
Accelerated finite element elastodynamic simulations using the GPU
Huthwaite, Peter
2014-01-15
An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source.
High speed finite element simulations on the graphics card
Huthwaite, P.; Lowe, M. J. S.
2014-02-18
A software package is developed to perform explicit time domain finite element simulations of ultrasonic propagation on the graphical processing unit, using Nvidia’s CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The technique is compared to a commercial CPU equivalent, demonstrating an overall speedup of at least 100 for a non-destructive testing weld model.
Modeling bistable behaviors in morphing structures through finite element simulations.
Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi
2014-01-01
Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering. PMID:24211939
High speed finite element simulations on the graphics card
NASA Astrophysics Data System (ADS)
Huthwaite, P.; Lowe, M. J. S.
2014-02-01
A software package is developed to perform explicit time domain finite element simulations of ultrasonic propagation on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established `greedy' partitioner and a new, more efficient `aligned' partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The technique is compared to a commercial CPU equivalent, demonstrating an overall speedup of at least 100 for a non-destructive testing weld model.
Finite element analysis simulations for ultrasonic array NDE inspections
NASA Astrophysics Data System (ADS)
Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony
2016-02-01
Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.
Unstructured finite element simulations of compressible phase change phenomena
NASA Astrophysics Data System (ADS)
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad; Scientific Computation Research Center (Scorec) Team
2015-11-01
Modeling interactions between compressible gas flow and multiple combusting solid objects, which may undergo large deformations, is a problem with several challenging aspects that include, compressible turbulent flows, shocks, strong interfacial fluxes, discontinuous fields and large topological changes. We have developed and implemented a mathematically consistent, computational framework for simulating such problems. Within our framework the fluid is modeled by solving the compressible Navier Stokes equations with a stabilized finite element method. Turbulence is modeled using large eddy simulation, while shocks are captured using discontinuity capturing methods. The solid is modeled as a hyperelastic material, and its deformation is determined by writing the constitutive relation in a rate form. Appropriate jump conditions are derived from conservations laws applied to an evolving interface, and are implemented using discontinuous functions at the interface. The mesh is updated using the Arbitrary Lagrangian Eulerian (ALE) approach, and is refined and adapted during the simulation. In this talk we will present this framework and will demonstrate its capabilities by solving canonical phase change problems. We acknowledge the support from Army Research Office (ARO) under ARO Grant # W911NF-14-1-0301.
A finite element simulation of biological conversion processes in landfills
Robeck, M.; Ricken, T.
2011-04-15
Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.
Nitsche Extended Finite Element Methods for Earthquake Simulation
NASA Astrophysics Data System (ADS)
Coon, Ethan T.
Modeling earthquakes and geologically short-time-scale events on fault networks is a difficult problem with important implications for human safety and design. These problems demonstrate a. rich physical behavior, in which distributed loading localizes both spatially and temporally into earthquakes on fault systems. This localization is governed by two aspects: friction and fault geometry. Computationally, these problems provide a stern challenge for modelers --- static and dynamic equations must be solved on domains with discontinuities on complex fault systems, and frictional boundary conditions must be applied on these discontinuities. The most difficult aspect of modeling physics on complicated domains is the mesh. Most numerical methods involve meshing the geometry; nodes are placed on the discontinuities, and edges are chosen to coincide with faults. The resulting mesh is highly unstructured, making the derivation of finite difference discretizations difficult. Therefore, most models use the finite element method. Standard finite element methods place requirements on the mesh for the sake of stability, accuracy, and efficiency. The formation of a mesh which both conforms to fault geometry and satisfies these requirements is an open problem, especially for three dimensional, physically realistic fault. geometries. In addition, if the fault system evolves over the course of a dynamic simulation (i.e. in the case of growing cracks or breaking new faults), the geometry must he re-meshed at each time step. This can be expensive computationally. The fault-conforming approach is undesirable when complicated meshes are required, and impossible to implement when the geometry is evolving. Therefore, meshless and hybrid finite element methods that handle discontinuities without placing them on element boundaries are a desirable and natural way to discretize these problems. Several such methods are being actively developed for use in engineering mechanics involving crack
NASA Astrophysics Data System (ADS)
Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad
2016-03-01
Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.
NASA Astrophysics Data System (ADS)
Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad
2016-06-01
Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.
Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A
2016-03-21
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037
Towards parallel I/O in finite element simulations
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Pramono, Eddy; Felippa, Carlos
1989-01-01
I/O issues in finite element analysis on parallel processors are addressed. Viable solutions for both local and shared memory multiprocessors are presented. The approach is simple but limited by currently available hardware and software systems. Implementation is carried out on a CRAY-2 system. Performance results are reported.
Accelerated finite element elastodynamic simulations using the GPU
NASA Astrophysics Data System (ADS)
Huthwaite, Peter
2014-01-01
An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy' partitioner and a new, more efficient ‘aligned' partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from http://www.pogo-fea.com/ to benefit the community.
3D finite element simulation of TIG weld pool
NASA Astrophysics Data System (ADS)
Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.
2012-07-01
The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.
Lower extremity finite element model for crash simulation
Schauer, D.A.; Perfect, S.A.
1996-03-01
A lower extremity model has been developed to study occupant injury mechanisms of the major bones and ligamentous soft tissues resulting from vehicle collisions. The model is based on anatomically correct digitized bone surfaces of the pelvis, femur, patella and the tibia. Many muscles, tendons and ligaments were incrementally added to the basic bone model. We have simulated two types of occupant loading that occur in a crash environment using a non-linear large deformation finite element code. The modeling approach assumed that the leg was passive during its response to the excitation, that is, no active muscular contraction and therefore no active change in limb stiffness. The approach recognized that the most important contributions of the muscles to the lower extremity response are their ability to define and modify the impedance of the limb. When nonlinear material behavior in a component of the leg model was deemed important to response, a nonlinear constitutive model was incorporated. The accuracy of these assumptions can be verified only through a review of analysis results and careful comparison with test data. As currently defined, the model meets the objective for which it was created. Much work remains to be done, both from modeling and analysis perspectives, before the model can be considered complete. The model implements a modeling philosophy that can accurately capture both kinematic and kinetic response of the lower limb. We have demonstrated that the lower extremity model is a valuable tool for understanding the injury processes and mechanisms. We are now in a position to extend the computer simulation to investigate the clinical fracture patterns observed in actual crashes. Additional experience with this model will enable us to make a statement on what measures are needed to significantly reduce lower extremity injuries in vehicle crashes. 6 refs.
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
Key, S.W.; Heinstein, M.W.; Stone, C.M.
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.
Efficient finite element simulation of slot spirals, slot radomes and microwave structures
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.
1995-01-01
This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.
A Finite Element Model for Simulation of Carbon Dioxide Sequestration
Bao, Jie; Xu, Zhijie; Fang, Yilin
2015-07-23
We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.
System and Method for Finite Element Simulation of Helicopter Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E. (Inventor); Dulsenberg, Ken (Inventor)
1999-01-01
The present invention provides a turbulence model that has been developed for blade-element helicopter simulation. This model uses an innovative temporal and geometrical distribution algorithm that preserves the statistical characteristics of the turbulence spectra over the rotor disc, while providing velocity components in real time to each of five blade-element stations along each of four blades. for a total of twenty blade-element stations. The simulator system includes a software implementation of flight dynamics that adheres to the guidelines for turbulence set forth in military specifications. One of the features of the present simulator system is that it applies simulated turbulence to the rotor blades of the helicopter, rather than to its center of gravity. The simulator system accurately models the rotor penetration into a gust field. It includes time correlation between the front and rear of the main rotor, as well as between the side forces felt at the center of gravity and at the tail rotor. It also includes features for added realism, such as patchy turbulence and vertical gusts in to which the rotor disc penetrates. These features are realized by a unique real time implementation of the turbulence filters. The new simulator system uses two arrays one on either side of the main rotor to record the turbulence field and to produce time-correlation from the front to the rear of the rotor disc. The use of Gaussian Interpolation between the two arrays maintains the statistical properties of the turbulence across the rotor disc. The present simulator system and method may be used in future and existing real-time helicopter simulations with minimal increase in computational workload.
Large-eddy simulation in complex domains using the finite element method
McCallen, R.C.; Kornblum, B.T.; Kollman, W.
1996-11-12
Finite element methods (FEM) are demonstrated in combination with large-eddy simulations (LES) as a valuable tool for the study of turbulent, separating channel flows, specifically the flow over a backward facing step.
Fotos, P G; Spyrakos, C C; Bernard, D O
1990-01-01
The finite element method has been used to determine the stress distribution generated by the initial placement of a simulated preset bracket-type orthodontic appliance utilizing titanium-nickel alloy archwire. PMID:2256565
Finite Element Simulations to Explore Assumptions in Kolsky Bar Experiments.
Crum, Justin
2015-08-05
The chief purpose of this project has been to develop a set of finite element models that attempt to explore some of the assumptions in the experimental set-up and data reduction of the Kolsky bar experiment. In brief, the Kolsky bar, sometimes referred to as the split Hopkinson pressure bar, is an experimental apparatus used to study the mechanical properties of materials at high strain rates. Kolsky bars can be constructed to conduct experiments in tension or compression, both of which are studied in this paper. The basic operation of the tension Kolsky bar is as follows: compressed air is inserted into the barrel that contains the striker; the striker accelerates towards the left and strikes the left end of the barrel producing a tensile stress wave that propogates first through the barrel and then down the incident bar, into the specimen, and finally the transmission bar. In the compression case, the striker instead travels to the right and impacts the incident bar directly. As the stress wave travels through an interface (e.g., the incident bar to specimen connection), a portion of the pulse is transmitted and the rest reflected. The incident pulse, as well as the transmitted and reflected pulses are picked up by two strain gauges installed on the incident and transmitted bars as shown. By interpreting the data acquired by these strain gauges, the stress/strain behavior of the specimen can be determined.
Taylor, Z A; Cheng, M; Ourselin, S
2008-05-01
The use of biomechanical modelling, especially in conjunction with finite element analysis, has become common in many areas of medical image analysis and surgical simulation. Clinical employment of such techniques is hindered by conflicting requirements for high fidelity in the modelling approach, and fast solution speeds. We report the development of techniques for high-speed nonlinear finite element analysis for surgical simulation. We use a fully nonlinear total Lagrangian explicit finite element formulation which offers significant computational advantages for soft tissue simulation. However, the key contribution of the work is the presentation of a fast graphics processing unit (GPU) solution scheme for the finite element equations. To the best of our knowledge, this represents the first GPU implementation of a nonlinear finite element solver. We show that the present explicit finite element scheme is well suited to solution via highly parallel graphics hardware, and that even a midrange GPU allows significant solution speed gains (up to 16.8 x) compared with equivalent CPU implementations. For the models tested the scheme allows real-time solution of models with up to 16,000 tetrahedral elements. The use of GPUs for such purposes offers a cost-effective high-performance alternative to expensive multi-CPU machines, and may have important applications in medical image analysis and surgical simulation. PMID:18450538
A finite element simulation of sound attenuation in a finite duct with a peripherally variable liner
NASA Technical Reports Server (NTRS)
Watson, W. R.
1977-01-01
Using multimodal analysis, a variational finite element method is presented for analyzing sound attenuation in a three-dimensional finite duct with a peripherally variable liner in the absence of flow. A rectangular element, with cubic shaped functions, is employed. Once a small portion of a peripheral liner is removed, the attenuation rate near the frequency where maximum attenuation occurs drops significantly. The positioning of the liner segments affects the attenuation characteristics of the liner. Effects of the duct termination are important in the low frequency ranges. The main effect of peripheral variation of the liner is a broadening of the attenuation characteristics in the midfrequency range. Because of matrix size limitations of the presently available computer program, the eigenvalue equations should be solved out of core in order to handle realistic sources.
Review of correlation methods for evaluating finite element simulations of impact injury risk.
Wang, Qian; Gabler, Hampton C
2008-01-01
Finite element models have been used to understand human injury responses in various crash configurations. Most of the model validations were limited to qualitative descriptions. Quantitative analysis was needed for the validation of finite element models against experimental results. The purpose of this study is to compare the existing correlation techniques and to determine the best method to use for evaluating finite element simulations of impact injury risk in vehicle crashes. Five correlation methods in the literature were reviewed for systematic comparisons between simulations and tests. A full frontal impact test of a 1997 Geo Metro was simulated. The finite element model of a 1997 Geo Metro was obtained from NCAC finite element model archive. The acceleration and velocity responses of the vehicle seat were extracted from the simulation and compared to the test data. Evaluations of the validation methods were based on the analysis results compared to the suggested criteria. Performance of the different methods showed that the Comprehensive Error Factor method was the best overall correlation method, and therefore was recommended for assessing occupant injury potentials in vehicle accidents. PMID:19141927
Rocha, Bernardo M.; Kickinger, Ferdinand; Prassl, Anton J.; Haase, Gundolf; Vigmond, Edward J.; dos Santos, Rodrigo Weber; Zaglmayr, Sabine; Plank, Gernot
2011-01-01
Electrical activity in cardiac tissue can be described by the bidomain equations whose solution for large scale simulations still remains a computational challenge. Therefore, improvements in the discrete formulation of the problem which decrease computational and/or memory demands are highly desirable. In this study, we propose a novel technique for computing shape functions of finite elements. The technique generates macro finite elements (MFEs) based on the local decomposition of elements into tetrahedral sub-elements with linear shape functions. Such an approach necessitates the direct use of hybrid meshes composed of different types of elements. MFEs are compared to classic standard finite elements with respect to accuracy and RAM memory usage under different scenarios of cardiac modeling including bidomain and monodomain simulations in 2D and 3D for simple and complex tissue geometries. In problems with analytical solutions, MFEs displayed the same numerical accuracy of standard linear triangular and tetrahedral elements. In propagation simulations, conduction velocity and activation times agreed very well with those computed with standard finite elements. However, MFEs offer a significant decrease in memory requirements. We conclude that hybrid meshes composed of MFEs are well suited for solving problems in cardiac computational electrophysiology. PMID:20699206
A finite element simulation system in reservoir engineering
Gu, Xiaozhong
1996-03-01
Reservoir engineering is performed to predict the future performance of a reservoir based on its current state and past performance and to explore other methods for increasing the recovery of hydrocarbons from a reservoir. Reservoir simulations are routinely used for these purposes. A reservoir simulator is a sophisticated computer program which solves a system of partial differential equations describing multiphase fluid flow (oil, water, and gas) in a porous reservoir rock. This document describes the use of a reservoir simulator version of BOAST which was developed by the National Institute for Petroleum and Energy Research in July, 1991.
Schwarze, M.; Reese, S.
2007-05-17
Finite element simulations of sheet metal forming processes are highly non-linear problems. The non-linearity arises not only from the kinematical relations and the material formulation, furthermore the contact between workpiece and the forming tools leads to an increased number of iterations within the Newton-Raphson scheme. This fact puts high demands on the robustness of finite element formulations. For this reason we study the enhanced assumed strain (EAS) concept as proposed in [1]. The goal is to improve the robustness of the solid-shell formulation in deep drawing simulations.
NASA Astrophysics Data System (ADS)
Jacob, Anaïs; Mehmanparast, Ali
2016-07-01
The effects of microstructure, grain and grain boundary (GB) properties on predicted damage paths and indicative crack propagation direction have been examined for a polycrystalline material using mesoscale finite element simulations. Numerical analyses were carried out on a compact tension specimen geometry containing granular mesh structures with random grain shapes and sizes of average diameter 100μm. Nanoindentation tests were performed to investigate the dependency of mesoscale hardness measurements on the indentation location with respect to grain and GB regions. Finite element results have shown that under tensile loading conditions, the predicted damage paths are very sensitive to the granular mesh structure, GB properties and individual grain properties. Furthermore, finite element results have revealed that the cracking mode (i.e., transgranular/intergranular) and maximum crack deviation angle are strongly dependent on the material microstructures employed in simulations.
Simulation of 3D tumor cell growth using nonlinear finite element method.
Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi
2016-06-01
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth. PMID:26213205
A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo
2013-09-15
A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can
Finite Element Simulation of Sheet Metal Forming Process Using Local Interpolation for Tool Surfaces
Hama, Takayuki; Takuda, Hirohiko; Takamura, Masato; Makinouchi, Akitake; Teodosiu, Cristian
2005-08-05
Treatment of contact between a sheet and tools is one of the most difficult problems to deal with in finite-element simulations of sheet forming processes. In order to obtain more accurate tool models without increasing the number of elements, this paper describes a new formulation for contact problems using interpolation proposed by Nagata for tool surfaces. A contact search algorithm between sheet nodes and the interpolated tool surfaces was developed and was introduced into the static-explicit elastoplastic finite-element method code STAMP3D. Simulations of a square cup deep drawing process with a very coarsely discretized punch model were carried out. The simulated results showed that the proposed algorithm gave the proper drawn shape, demonstrating the validity of the proposed algorithm.
Finite element simulations involving simultaneous multiple interface fronts in phase change problems
NASA Technical Reports Server (NTRS)
Ouyang, Tianhong; Tamma, Kumar K.
1992-01-01
The present paper describes the simulation of phase change problems involving simultaneous multiple interface fronts employing the finite element method. Much of the past investigations employing finite elements have been restricted to primarily a single phase change situation. The existence of more than one phase, that is, the presence of multiple phase fronts poses certain challenges and further complications. However, the results provide a very interesting thermal behavior for this class of problems. In this paper, attention is focused on fixed grid methods and the trapezoidal family of one-step methods using the enthalpy formulations. Illustrative examples which handle simultaneous multiple fronts in phase change problems are presented.
A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation
Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; ,
2010-06-07
A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.
Fully Integrated EAS-Based Solid-Shell Finite Elements in Implicit Sheet Metal Forming Simulations
Valente, R.A. Fontes; Cardoso, R.P.R.; Alves de Sousa, R.J.; Parente, M.P.L.; Jorge, R.M. Natal
2005-08-05
In this communication sheet metal forming problems are analyzed with the Finite Element Method and a fully-integrated solid-shell element, based on the Enhanced Assumed Strain (EAS) method. Among the solid-shell element's distinguish features, it should be mentioned the solely use of the EAS approach in dealing with either transverse and volumetric-based locking pathologies, thus avoiding the inclusion of other mixed methods into the formulation. The adopted methodology is then able to successfully deal with small thickness shell problems within the incompressible range, aspects commonly appearing in sheet metal forming modeling with solid elements.Simulations of this type of forming processes are mainly solved resorting to membrane and shell-type finite elements, included in explicit commercial programs. Nevertheless, the presented solid-shell formulation, within a fully implicit approach, provides reliable solutions when compared to experimental results. It is also worth mentioning that the present solid-shell formulation encompasses a minimum set of enhancing strain variables, if compared to other fully integrated hexahedral finite elements in the literature.In order to assess the performance of the presented formulation, the S-Rail Forming problem of an aluminum alloy is described and analyzed, with the results being compared to experimental and numerical simulation data.
The simulation of electrostatic coupling intra-body communication based on finite-element models
NASA Astrophysics Data System (ADS)
Song, Yong; Yang, Guang; Hao, Qun; Wang, Ming
2008-12-01
Intra-body Body Communication (IBC) is a communication technology in which human body is used as a signal transmission medium. Due to its unique characters, IBC technology is proposed as a novel and promising technology for personal area network (PAN), computer network access, implant biomedical monitoring, human energy transmission, etc. In this paper, investigation has been done in the computer simulation of the electrostatic coupling IBC by using the developed finite-element models, in which (1) the incidence and reflection of electronic signal in the upper arm model were analyzed by using the theory of electromagnetic wave, (2) the finite-element models of electrostatic coupling IBC were developed by using the electromagnetic analysis package of ANSYS software, (3) the signal attenuation of electrostatic coupling IBC were simulated under the conditions of different signal frequency, electrodes direction, electrodes size and transmission distance. Finally, some important conclusions are deduced on the basis of simulation results.
Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator
1993-08-02
SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less
A Finite-Element Model for Simulation of Carbon Dioxide Sequestration
Bao, Jie; Xu, Zhijie; Fang, Yilin
2014-09-01
Herein, we present a coupled thermal-hydro-mechanical model for geological sequestration of carbon dioxide followed by the stress, deformation, and shear-slip failure analysis. This fully coupled model considers the geomechanical response, fluid flow, and thermal transport relevant to geological sequestration. Both analytical solutions and numerical approach via finite element model are introduced for solving the thermal-hydro-mechanical model. Analytical solutions for pressure, temperature, deformation, and stress field were obtained for a simplified typical geological sequestration scenario. The finite element model is more general and can be used for arbitrary geometry. It was built on an open-source finite element code, Elmer, and was designed to simulate the entire period of CO2 injection (up to decades) both stably and accurately—even for large time steps. The shear-slip failure analysis was implemented based on the numerical results from the finite element model. The analysis reveals the potential failure zone caused by the fluid injection and thermal effect. From the simulation results, the thermal effect is shown to enhance well injectivity, especially at the early time of the injection. However, it also causes some side effects, such as the appearance of a small failure zone in the caprock. The coupled thermal-hydro-mechanical model improves prediction of displacement, stress distribution, and potential failure zone compared to the model that neglects non-isothermal effects, especially in an area with high geothermal gradient.
Finite element solution of a Schelkunoff vector potential for frequency domain, EM field simulation
NASA Astrophysics Data System (ADS)
Kordy, M. A.; Wannamaker, P. E.; Cherkaev, E.
2011-12-01
A novel method for the 3-D diffusive electromagnetic (EM) forward problem is developed and tested. A Lorentz-gauge, Schelkunoff complex vector potential is used to represent the EM field in the frequency domain and the nodal finite element method is used for numerical simulation. The potential allows for three degrees of freedom per node, instead of four if Coulomb-gauge vector and scalar potentials are used. Unlike the finite-difference method, which minimizes error at discrete points, the finite element method minimizes error over the entire domain cell volumes and may easily adapt to complex topography. Existence and uniqueness of this continuous Schelkunoff potential is proven, boundary conditions are found and a governing equation satisfied by the potential in weak form is obtained. This approach for using a Schelkunoff potential in the finite element method differs from other trials found in the literature. If the standard weak form of the Helmholtz equation is used, the obtained solution is continuous and has continuous normal derivative across boundaries of regions with different physical properties; however, continuous Schelkunoff potential components do not have continuous normal derivative, divergence of the potential divided by (complex) conductivity and magnetic permeability is continuous instead. The weak form of governing equation used here imposes proper boundary conditions on the solution. Moreover, as the solution is continuous, nodal shape functions are used instead of edge elements. Magnetotelluric (MT) simulation results using the new method are compared with those from other MT forward codes
Felice, Maria V.; Velichko, Alexander; Wilcox, Paul D.; Barden, Tim J.; Dunhill, Tony K.
2014-02-18
A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.
NASA Technical Reports Server (NTRS)
Sawyer, P. L.
1980-01-01
The paper describes the simulation approach for the finite element machine (FEM), a special-purpose computer for structural analysis calculations under development at the NASA-Langley Research Center. The FEM consists of an array (1000 or more) of general-purpose microcomputers performing structural analysis in an asychronous parallel manner. A simulator of sufficient flexibility to model the behavior of the FEM on many levels has been designed and coded, and verification has begun using the experimental FEM hardware. The structure of the simulator is described, and preliminary simulation results are presented.
Neurosurgery simulation using non-linear finite element modeling and haptic interaction
NASA Astrophysics Data System (ADS)
Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet
2012-02-01
Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
A 3D finite element simulation model for TBM tunnelling in soft ground
NASA Astrophysics Data System (ADS)
Kasper, Thomas; Meschke, Günther
2004-12-01
A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright
Simulation of micromechanical behavior of polycrystals: finite elements vs. fast Fourier transforms
Lebensohn, Ricardo A; Prakash, Arun
2009-01-01
In this work, we compare finite element and fast Fourier transform approaches for the prediction of micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular, stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases - rolling of aluminium and wire drawing of tungsten - are used to evaluate the predictions of the two mode1s. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison to the fast Fourier transform simulations.
Simulation of Aircraft Landing Gears with a Nonlinear Dynamic Finite Element Code
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Jackson, Karen E.; Fasanella, Edwin L.
2000-01-01
Recent advances in computational speed have made aircraft and spacecraft crash simulations using an explicit, nonlinear, transient-dynamic, finite element analysis code more feasible. This paper describes the development of a simple landing gear model, which accurately simulates the energy absorbed by the gear without adding substantial complexity to the model. For a crash model, the landing gear response is approximated with a spring where the force applied to the fuselage is computed in a user-written subroutine. Helicopter crash simulations using this approach are compared with previously acquired experimental data from a full-scale crash test of a composite helicopter.
NASA Technical Reports Server (NTRS)
Taylor, B. K.; Casasent, D. P.
1989-01-01
The use of simplified error models to accurately simulate and evaluate the performance of an optical linear-algebra processor is described. The optical architecture used to perform banded matrix-vector products is reviewed, along with a linear dynamic finite-element case study. The laboratory hardware and ac-modulation technique used are presented. The individual processor error-source models and their simulator implementation are detailed. Several significant simplifications are introduced to ease the computational requirements and complexity of the simulations. The error models are verified with a laboratory implementation of the processor, and are used to evaluate its potential performance.
Simulation of two-dimensional waterflooding by using mixed finite elements
Chavent, G.; Cohen, G.; Dieste, I.; Dupuy, M.; Jaffre, J.
1984-08-01
A new method to simulate incompressible diphasic flow in two dimensions (2D) is presented. Its distinctive features include (1) a reformulation of the basic equation using the premise of a global pressure and (2) approximation of convective terms by an upwind scheme for discontinuous finite elements. A mixed finite-element method approximates both the scalar functions (pressure and saturation) and the vector functions (total velocity field and capillary diffusion vector). The pressure (resp. the saturation) is approximated by a discontinuous function piecewise constant (resp. linear) on the elements of the mesh. A basis of divergence-free vectors is used in the pressure equation, which accelerates computation. Several test examples, which include gravity and capillary effects, are presented.
A Dynamic Finite Element Method for Simulating the Physics of Faults Systems
NASA Astrophysics Data System (ADS)
Saez, E.; Mora, P.; Gross, L.; Weatherley, D.
2004-12-01
We introduce a dynamic Finite Element method using a novel high level scripting language to describe the physical equations, boundary conditions and time integration scheme. The library we use is the parallel Finley library: a finite element kernel library, designed for solving large-scale problems. It is incorporated as a differential equation solver into a more general library called escript, based on the scripting language Python. This library has been developed to facilitate the rapid development of 3D parallel codes, and is optimised for the Australian Computational Earth Systems Simulator Major National Research Facility (ACcESS MNRF) supercomputer, a 208 processor SGI Altix with a peak performance of 1.1 TFlops. Using the scripting approach we obtain a parallel FE code able to take advantage of the computational efficiency of the Altix 3700. We consider faults as material discontinuities (the displacement, velocity, and acceleration fields are discontinuous at the fault), with elastic behavior. The stress continuity at the fault is achieved naturally through the expression of the fault interactions in the weak formulation. The elasticity problem is solved explicitly in time, using the Saint Verlat scheme. Finally, we specify a suitable frictional constitutive relation and numerical scheme to simulate fault behaviour. Our model is based on previous work on modelling fault friction and multi-fault systems using lattice solid-like models. We adapt the 2D model for simulating the dynamics of parallel fault systems described to the Finite-Element method. The approach uses a frictional relation along faults that is slip and slip-rate dependent, and the numerical integration approach introduced by Mora and Place in the lattice solid model. In order to illustrate the new Finite Element model, single and multi-fault simulation examples are presented.
Finite element model-simulation-based characterization of a magnetostrictive gyrosensor
Marschner, U.; Graham, F.; Yoo, J.-H.; Flatau, A. B.; Mudivarthi, C.; Neubert, H.
2010-05-15
This paper analyzes a prototype microgyrosensor that employs the magnetostrictive alloy Galfenol for transduction of Coriolis-induced forces into an electrical output for quantifying a given angular velocity. The magnetic induction distribution in the Galfenol sensor patch depends on its bending shape and magnetoelastic properties and is investigated using a finite element model. Fluctuations in magnetic induction caused by a sinusoidal rotation of the sensor produce an amplitude modulated voltage in a surrounding coil which is simulated and measured.
Simulation and evaluation of tablet-coating burst based on finite element method.
Yang, Yan; Li, Juan; Miao, Kong-Song; Shan, Wei-Guang; Tang, Lan; Yu, Hai-Ning
2016-09-01
The objective of this study was to simulate and evaluate the burst behavior of coated tablets. Three-dimensional finite element models of tablet-coating were established using software ANSYS. Swelling pressure of cores was measured by a self-made device and applied at the internal surface of the models. Mechanical properties of the polymer film were determined using a texture analyzer and applied as material properties of the models. The resulted finite element models were validated by experimental data. The validated models were used to assess the factors those influenced burst behavior and predict the coating burst behavior. The simulation results of coating burst and failure location were strongly matched with the experimental data. It was found that internal swelling pressure, inside corner radius and corner thickness were three main factors controlling the stress distribution and burst behavior. Based on the linear relationship between the internal pressure and the maximum principle stress on coating, burst pressure of coatings was calculated and used to predict the burst behavior. This study demonstrated that burst behavior of coated tablets could be simulated and evaluated by finite element method. PMID:26727401
Simulation of dynamic fracture using peridynamics, finite element modeling, and contact.
Littlewood, David John
2010-11-01
Peridynamics is a nonlocal extension of classical solid mechanics that allows for the modeling of bodies in which discontinuities occur spontaneously. Because the peridynamic expression for the balance of linear momentum does not contain spatial derivatives and is instead based on an integral equation, it is well suited for modeling phenomena involving spatial discontinuities such as crack formation and fracture. In this study, both peridynamics and classical finite element analysis are applied to simulate material response under dynamic blast loading conditions. A combined approach is utilized in which the portion of the simulation modeled with peridynamics interacts with the finite element portion of the model via a contact algorithm. The peridynamic portion of the analysis utilizes an elastic-plastic constitutive model with linear hardening. The peridynamic interface to the constitutive model is based on the calculation of an approximate deformation gradient, requiring the suppression of possible zero-energy modes. The classical finite element portion of the model utilizes a Johnson-Cook constitutive model. Simulation results are validated by direct comparison to expanding tube experiments. The coupled modeling approach successfully captures material response at the surface of the tube and the emerging fracture pattern. The coupling of peridynamics and finite element analysis via a contact algorithm has been shown to be a viable means for simulating material fracture in a high-velocity impact experiment. A combined peridynamics/finite element approach was applied to model an expanding tube experiment performed by Vogler, et al., in which loading on the tube is a result of Lexan slugs impacting inside the tube. The Lexan portion of the simulation was modeled with finite elements and a Johnson-Cook elastic-plastic material model in conjunction with an equation-of-state law. The steel tube portion of the simulation was modeled with peridynamics, an elastic
Radhakrishnan, B.; Sarma, G.; Zacharia, T.
1998-11-01
A novel simulation technique for predicting the microstructure and texture evolution during thermomechanical processing is presented. The technique involves coupling a finite element microstructural deformation model based on crystal plasticity with a Monte Carlo simulation of recovery and recrystallization. The finite element model captures the stored energy and the crystallographic orientation distributions in the deformed microstructure. The Monte Carlo simulation captures the microstructural evolution associated with recovery and recrystallization. A unique feature of the Monte Carlo simulation is that it treats recrystallization as a heterogeneous subgrain growth process, thus providing the natural link between nucleation and growth phenomena, and quantifying the role of recovery in these phenomena. Different nucleation mechanisms based on heterogeneous subgrain growth as well as strain induced boundary migration are automatically included in the recrystallization simulation. The simulations are shown to account for the extent of prior deformation on the microstructure and kinetics of recrystallization during subsequent annealing. The simulations also capture the influence of the presence of cube orientations in the initial microstructure, and the operation of non-octahedral slip during deformation of fcc polycrystals, on the recrystallization texture.
Finite-Element Methods for Real-Time Simulation of Surgery
NASA Technical Reports Server (NTRS)
Basdogan, Cagatay
2003-01-01
Two finite-element methods have been developed for mathematical modeling of the time-dependent behaviors of deformable objects and, more specifically, the mechanical responses of soft tissues and organs in contact with surgical tools. These methods may afford the computational efficiency needed to satisfy the requirement to obtain computational results in real time for simulating surgical procedures as described in Simulation System for Training in Laparoscopic Surgery (NPO-21192) on page 31 in this issue of NASA Tech Briefs. Simulation of the behavior of soft tissue in real time is a challenging problem because of the complexity of soft-tissue mechanics. The responses of soft tissues are characterized by nonlinearities and by spatial inhomogeneities and rate and time dependences of material properties. Finite-element methods seem promising for integrating these characteristics of tissues into computational models of organs, but they demand much central-processing-unit (CPU) time and memory, and the demand increases with the number of nodes and degrees of freedom in a given finite-element model. Hence, as finite-element models become more realistic, it becomes more difficult to compute solutions in real time. In both of the present methods, one uses approximate mathematical models trading some accuracy for computational efficiency and thereby increasing the feasibility of attaining real-time up36 NASA Tech Briefs, October 2003 date rates. The first of these methods is based on modal analysis. In this method, one reduces the number of differential equations by selecting only the most significant vibration modes of an object (typically, a suitable number of the lowest-frequency modes) for computing deformations of the object in response to applied forces.
Finite element simulation of extrusion of optical fiber preforms: Effects of wall slip
NASA Astrophysics Data System (ADS)
Zhang, Zhi Feng; Zhang, Yilei
2016-03-01
Extrusion has been successfully used to fabricate optical fiber preforms, especially microstructured ones. Although simplified mathematical model has been used to calculate the extrusion pressure or speed, more frequently die design and extrusion process optimization depend on trial and error, which is especially true for complex die and preform design. This paper employs the finite element method (FEM) to simulate the billet extrusion process to investigate the relationship between the extruding pressure, the billet viscosity, the wall slip condition and the extruding speed for extrusion of rod preforms. The slipping wall boundary condition is taken into account of the finite element model, and the simulated extruding pressure agrees with the one experimental value reported preciously. Then the dependence of the extruding speed on the extruding pressure, billet viscosity and the slip speed is systematically simulated. Simulated data is fitted to a second order polynomial model to describe their relationship, and the terms of the model are reduced from nine to five by using a statistical method while maintaining the fitting accuracy. The FEM simulation and the fitted model provide a convenient and dependable way to calculate the extrusion pressure, speed or other process parameters, which could be used to guide experimental design for future preform extrusion. Furthermore, the same simulation could be used to optimize die design and extrusion process to improve quality of extruded preforms.
Multiscale Simulation of Microcrack Based on a New Adaptive Finite Element Method
NASA Astrophysics Data System (ADS)
Xu, Yun; Chen, Jun; Chen, Dong Quan; Sun, Jin Shan
In this paper, a new adaptive finite element (FE) framework based on the variational multiscale method is proposed and applied to simulate the dynamic behaviors of metal under loadings. First, the extended bridging scale method is used to couple molecular dynamics and FE. Then, macro damages evolvements of those micro defects are simulated by the adaptive FE method. Some auxiliary strategies, such as the conservative mesh remapping, failure mechanism and mesh splitting technique are also included in the adaptive FE computation. Efficiency of our method is validated by numerical experiments.
Finite element simulation of a local scale air quality model over complex terrain
NASA Astrophysics Data System (ADS)
Oliver, A.; Montero, G.; Montenegro, R.; Rodríguez, E.; Escobar, J. M.; Perez-Foguet, A.
2012-05-01
In this paper we propose a finite element method approach for modelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. We apply our methodology to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain).
Three dimensional finite element simulations of room and pillar mines in rock salt
Hoffman, E.L.; Ehgartner, B.L.
1996-05-01
3-D quasistatic finite element codes are being used at Sandia to simulate large room and pillar mines in rock salt. The two examples presented in this paper are of mines supported by US DOE, under the auspices of the Strategic Petroleum Reserve program. One of the mines is presently used as an oil storage facility. These simulations, validated by field measurements and observations, have provided valuable insight into the failure mechanisms of room and pillar mines in rock salt. The calculations provided the basis for further investigation and the ultimate decision to decommission the DOE oil storage facility.
A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4
NASA Technical Reports Server (NTRS)
Park, Young-Keun; Fahrenthold, Eric P.
2004-01-01
An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.
Mesh management methods in finite element simulations of orthodontic tooth movement.
Mengoni, M; Ponthot, J-P; Boman, R
2016-02-01
In finite element simulations of orthodontic tooth movement, one of the challenges is to represent long term tooth movement. Large deformation of the periodontal ligament and large tooth displacement due to bone remodelling lead to large distortions of the finite element mesh when a Lagrangian formalism is used. We propose in this work to use an Arbitrary Lagrangian Eulerian (ALE) formalism to delay remeshing operations. A large tooth displacement is obtained including effect of remodelling without the need of remeshing steps but keeping a good-quality mesh. Very large deformations in soft tissues such as the periodontal ligament is obtained using a combination of the ALE formalism used continuously and a remeshing algorithm used when needed. This work demonstrates that the ALE formalism is a very efficient way to delay remeshing operations. PMID:26671785
Efficient simulation of cardiac electrical propagation using high order finite elements
NASA Astrophysics Data System (ADS)
Arthurs, Christopher J.; Bishop, Martin J.; Kay, David
2012-05-01
We present an application of high order hierarchical finite elements for the efficient approximation of solutions to the cardiac monodomain problem. We detail the hurdles which must be overcome in order to achieve theoretically-optimal errors in the approximations generated, including the choice of method for approximating the solution to the cardiac cell model component. We place our work on a solid theoretical foundation and show that it can greatly improve the accuracy in the approximation which can be achieved in a given amount of processor time. Our results demonstrate superior accuracy over linear finite elements at a cheaper computational cost and thus indicate the potential indispensability of our approach for large-scale cardiac simulation.
Finite-element simulation of transient heat response in ultrasonic transducers.
Ando, E; Kagawa, Y
1992-01-01
The application of the finite-element method to a transient heat response problem in electrostrictive ultrasonic transducers during their pulsed operation is described. The temperature and thermal stress distribution are of practical importance for the design of the ultrasonic transducers when they are operated at intense levels. Mechanical vibratory loss is responsible for heat in the elastic parts, while dielectric loss is responsible in the ferroelectric parts. A finite-element computer model is proposed for the temperature change evaluation in the transducers with time. Natural and forced cooling convection and heat radiation from the transducers' boundaries are included. Simulation is made for Langevin-type transducer models, for which comparison is made with experimental data. PMID:18267653
Finite-element simulation of transient heat response in ultrasonic transducers
NASA Astrophysics Data System (ADS)
Ando, Ei'ichi; Kagawa, Yukio
1992-05-01
The application of the finite-element method to a transient heat response problem in electrostrictive ultrasonic transducers during their pulsed operation is described. The temperature and thermal stress distribution are of practical importance for the design of the ultrasonic transducers when they are operated at intense levels. Mechanical vibratory loss is responsible for heat in the elastic parts while dielectric loss in the ferroelectric parts. A finite-element computer model is proposed for the temperature change evaluation in the transducers with time. Natural and forced cooling convection and heat radiation from the transducers' boundaries are included. Simulation is made for Langevin-type transducer models, for which comparison is made with experimental data.
Finite element-integral acoustic simulation of JT15D turbofan engine
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Horowitz, S. J.
1984-01-01
An iterative finite element integral technique is used to predict the sound field radiated from the JT15D turbofan inlet. The sound field is divided into two regions: the sound field within and near the inlet which is computed using the finite element method and the radiation field beyond the inlet which is calculated using an integral solution technique. The velocity potential formulation of the acoustic wave equation was employed in the program. For some single mode JT15D data, the theory and experiment are in good agreement for the far field radiation pattern as well as suppressor attenuation. Also, the computer program is used to simulate flight effects that cannot be performed on a ground static test stand.
Generalized finite element dynamic modelling and simulation for flexible robot manipulators
NASA Astrophysics Data System (ADS)
Zhou, Feng
1993-01-01
The finite element approach is used to model multi-link flexible robotic manipulators. The kinematic character of flexible manipulators is analyzed using body-fixed and link element attached coordinates. Dynamic equations for flexible robot manipulators are then derived. The position of each point on the link is expressed using a transformation matrix, and the kinetic and potential energy for each element is computed and summed over all the elements. The Lagrangian formulation is applied to set up the dynamic equations of the system. Computational simulations are performed on single- and two-link manipulators with and without torque to check the validity and correctness of the derived dynamic equations. The Runge-Kutta method is used to solve the dynamic equations for flexible manipulators on which all the joints are revolute.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
2.5D Finite/infinite Element Approach for Simulating Train-Induced Ground Vibrations
NASA Astrophysics Data System (ADS)
Yang, Y. B.; Hung, H. H.; Kao, J. C.
2010-05-01
The 2.5D finite/infinite element approach for simulating the ground vibrations by surface or underground moving trains will be briefly summarized in this paper. By assuming the soils to be uniform along the direction of the railway, only a two-dimensional profile of the soil perpendicular to the railway need be considered in the modeling. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing the train loads and irregular structures is simulated by the finite elements, while the far field covering the soils with infinite boundary by the infinite elements, by which due account is taken of the radiation effects for the moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, incorporated with a proposed load generation mechanism that takes the rail irregularity and dynamic properties of trains into account, an illustrative case study was performed. This paper investigates the vibration isolation effect of the elastic foundation that separates the concrete slab track from the underlying soil or tunnel structure. In addition, the advantage of the 2.5D approach was clearly demonstrated in that the three-dimensional wave propagation effect can be virtually captured using a two-dimensional finite/infinite element mesh. Compared with the conventional 3D approach, the present approach appears to be simple, efficient and generally accurate.
Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.
2003-01-01
A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.
NASA Astrophysics Data System (ADS)
Danilov, D.; Nestler, B.
2005-02-01
We present adaptive finite element simulations of dendritic and eutectic solidification in binary and ternary alloys. The computations are based on a recently formulated phase-field model that is especially appropriate for modelling non-isothermal solidification in multicomponent multiphase systems. In this approach, a set of governing equations for the phase-field variables, for the concentrations of the alloy components and for the temperature has to be solved numerically, ensuring local entropy production and the conservation of mass and inner energy. To efficiently perform numerical simulations, we developed a numerical scheme to solve the governing equations using a finite element method on an adaptive non-uniform mesh with highest resolution in the regions of the phase boundaries. Simulation results of the solidification in ternary Ni60Cu40-xCrx alloys are presented investigating the influence of the alloy composition on the growth morphology and on the growth velocity. A morphology diagram is obtained that shows a transition from a dendritic to a globular structure with increasing Cr concentrations. Furthermore, we comment on 2D and 3D simulations of binary eutectic phase transformations. Regular oscillatory growth structures are observed combined with a topological change of the matrix phase in 3D. An outlook for the application of our methods to describe AlCu eutectics is given.
NASA Astrophysics Data System (ADS)
Tamasco, Cynthia M.; Rais-Rohani, Masoud; Buijk, Arjaan
2013-03-01
This article presents the development and application of a coupled finite element simulation and optimization framework that can be used for design and analysis of sheet-forming processes of varying complexity. The entire forming process from blank gripping and deep drawing to tool release and springback is modelled. The dies, holders, punch and workpiece are modelled with friction, temperature, holder force and punch speed controlled in the process simulation. Both single- and multi-stage sheet-forming processes are investigated. Process simulation is coupled with a nonlinear gradient-based optimization approach for optimizing single or multiple design objectives with imposed sheet-forming response constraints. A MATLAB program is developed and used for data-flow management between process simulation and optimization codes. Thinning, springback, damage and forming limit diagram are used to define failure in the forming process design optimization. Design sensitivity analysis and optimization results of the example problems are presented and discussed.
Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials
NASA Technical Reports Server (NTRS)
Camanho, Pedro P.; Davila, Carlos G.
2002-01-01
A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.
Nanoindentation of soft films on hard substrates: Experiments and finite element simulations
Pharr, G.M.; Tsui, T.Y.; Bolshakov, A.; Hay, J.C.
1997-12-31
Experiments and finite element simulations have been performed to examine error measurement of hardness and elastic modulus caused by pile-up when soft films deposited on hard substrates are tested by nanoindentation methods. Pile-up is exacerbated in soft-film/hard-substrate systems by the constraint imposed on plastic deformation in the film by the relatively non-deformable substrate. To experimentally examine pile-up effects, soft aluminum films with thicknesses of 240, 650, and 1700 nm were deposited on hard soda-lime glass substrates and tested by nanoindentation techniques. This system is attractive because the elastic modulus of the film and the substrate are approximately the same, but the substrate is harder than the film by a factor of about ten. Consequently, substrate influences on the indentation load-displacement behavior are manifested primarily by differences in the plastic flow characteristics alone. The elastic modulus of the film/substrate system, as measured by nanoindentation techniques, exhibits an increase with indenter penetration depth which peaks at a value approximately 30% greater than the true film modulus at a penetration depth close to the film thickness. Finite element simulation shows that this unusual behavior is caused by substrate-induced enhancement of pile-up. Finite element simulation also shows that the amount of pile-up increases with increasing penetration depth, and that the pile-up geometry depends on the work-hardening characteristics of the film. Because of these effects, nanoindentation techniques overestimate the true film hardness and elastic modulus by as much as 68% and 35%, respectively, depending on the work-hardening behavior of the film and the indenter penetration depth. The largest errors occur in non-work-hardening materials at penetration depths close to the film thickness, for which substrate-induced enhancement of pile-up is greatest.
Detached Eddy Simulations of Incompressible Turbulent Flows Using the Finite Element Method
Laskowski, G M
2001-08-01
An explicit Galerkin finite-element formulation of the Spalart-Allmaras (SA) 1 - equation turbulent transport model was implemented into the incompressible flow module of a parallel, multi-domain, Galerkin finite-element, multi-physics code, using both a RANS formulation and a DES formulation. DES is a new technique for simulating/modeling turbulence using a hybrid RANSkES formulation. The turbulent viscosity is constructed from an intermediate viscosity obtained from the transport equation which is spatially discretized using Q1 elements and integrated in time via forward Euler time integration. Three simulations of plane channel flow on a RANS-type grid, using different turbulence models, were conducted in order to validate the implementation of the SA model: SA-RANS, SA-DES and Smagorinksy (without wall correction). Very good agreement was observed between the SA-RANS results and theory, namely the Log Law of the Wall (LLW), especially in the viscous sublayer region and, to a lesser extent, in the log-layer region. The results obtained using the SA-DES model did not agree as well with the LLW, and it is believed that this poor agreement can be attributed to using a DES model on a RANS grid, namely using an incorrect length-scale. It was observed that near the wall, the SA-DES model acted as an RANS model, and away from the wall it acted as an LES model.
Simulation of viscous flows using a multigrid-control volume finite element method
Hookey, N.A.
1994-12-31
This paper discusses a multigrid control volume finite element method (MG CVFEM) for the simulation of viscous fluid flows. The CVFEM is an equal-order primitive variables formulation that avoids spurious solution fields by incorporating an appropriate pressure gradient in the velocity interpolation functions. The resulting set of discretized equations is solved using a coupled equation line solver (CELS) that solves the discretized momentum and continuity equations simultaneously along lines in the calculation domain. The CVFEM has been implemented in the context of both FMV- and V-cycle multigrid algorithms, and preliminary results indicate a five to ten fold reduction in execution times.
Finite Element Simulations on Erosion and Crack Propagation in Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Ma, Z. S.; Fu, L. H.; Yang, L.; Zhou, Y. C.; Lu, C.
2015-07-01
Erosion of thermal barrier coatings occurs when atmospheric or carbon particles from the combustion chamber are ingested into aviation turbine engines. To understand the influence of erosion on the service life of thermal barrier coatings, we introduce the erosion and crack propagation models, and then by using finite element simulations, determine the relationship between the penetrating depth, the maximum principle stress and impingement variables such as velocity and angle. It is shown that cracks nucleate and extend during the erosion process and the length of a crack increases with the increase of the particle velocity and impact angle.
Simulation of acoustic wave behavior in ducts and a plenum using finite elements package ANSYS
NASA Astrophysics Data System (ADS)
Villalobos-Luna, Jose de Jesus; Lopez-Cruz, Pedro; Ramirez-Valencia, Ricardo; Elizondo-Garza, Fernando J.
2002-11-01
This paper shows and discusses the use of the finite element software ANSYS for simulation of the behavior of sound waves in a ducts-plenum system. The modeling is intended for didactic purposes, beginning with simple three-dimensional geometries of ducts and plenum. Two conditions can be included: (1) with and without acoustical absorbent materials on the inside walls of the ducts and (2) including or not labyrinths. The analysis allows students to see the behavior of the waves inside the duct-plenum system and they can manipulate the parameters of the model to improve the attenuation characteristics of the system.
Finite element simulation of eddy current problems using magnetic scalar potentials
NASA Astrophysics Data System (ADS)
Alonso Rodríguez, Ana; Bertolazzi, Enrico; Ghiloni, Riccardo; Valli, Alberto
2015-08-01
We propose a new implementation of the finite element approximation of eddy current problems using, as the principal unknown, the magnetic field. In the non-conducting region a scalar magnetic potential is introduced. The method can deal automatically with any topological configuration of the conducting region and, being based on the search of a scalar magnetic potential in the non-conducting region, has the advantage of making use of a reduced number of unknowns. Several numerical tests are presented for illustrating the performance of the proposed method; in particular, the numerical simulation of a new type of transformer of complicated topological shape is shown.
Stabilized finite element methods to simulate the conductances of ion channels
NASA Astrophysics Data System (ADS)
Tu, Bin; Xie, Yan; Zhang, Linbo; Lu, Benzhuo
2015-03-01
We have previously developed a finite element simulator, ichannel, to simulate ion transport through three-dimensional ion channel systems via solving the Poisson-Nernst-Planck equations (PNP) and Size-modified Poisson-Nernst-Planck equations (SMPNP), and succeeded in simulating some ion channel systems. However, the iterative solution between the coupled Poisson equation and the Nernst-Planck equations has difficulty converging for some large systems. One reason we found is that the NP equations are advection-dominated diffusion equations, which causes troubles in the usual FE solution. The stabilized schemes have been applied to compute fluids flow in various research fields. However, they have not been studied in the simulation of ion transport through three-dimensional models based on experimentally determined ion channel structures. In this paper, two stabilized techniques, the SUPG and the Pseudo Residual-Free Bubble function (PRFB) are introduced to enhance the numerical robustness and convergence performance of the finite element algorithm in ichannel. The conductances of the voltage dependent anion channel (VDAC) and the anthrax toxin protective antigen pore (PA) are simulated to validate the stabilization techniques. Those two stabilized schemes give reasonable results for the two proteins, with decent agreement with both experimental data and Brownian dynamics (BD) simulations. For a variety of numerical tests, it is found that the simulator effectively avoids previous numerical instability after introducing the stabilization methods. Comparison based on our test data set between the two stabilized schemes indicates both SUPG and PRFB have similar performance (the latter is slightly more accurate and stable), while SUPG is relatively more convenient to implement.
Finite-Element Simulation of Conventional and High-Speed Peripheral Milling of Hardened Mold Steel
NASA Astrophysics Data System (ADS)
Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.
2009-12-01
A finite-element model (FEM) with the flow stress and typical fracture is used to simulate a hard machining process, which before this work could not adequately represent the constitutive behavior of workpiece material that is usually heat treated to hardness levels above 50 Rockwell C hardness (HRC). Thus, a flow stress equation with a variation in hardness is used in the computer simulation of hard machining. In this article, the influence of the milling speed on the cutting force, chip morphology, effective stress, and cutting temperature in the deformation zones of both conventional and high-speed peripheral milling hardened mold steel is systematically studied by finite-element analysis (FEA). By taking into consideration the importance of material characteristics during the milling process, the similar Johnson-Cook’s constitutive equation with hardened mold steel is introduced to the FEM to investigate the peripheral milling of hardened mold steel. In comparison with the experimental data of the cutting force at various cutting speeds, the simulation result is identical with the measured data. The results indicate that the model can be used to accurately predict the behavior of hardened mold steel in both conventional and high-speed milling.
Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Yan, Chengzeng; Zheng, Hong; Sun, Guanhua; Ge, Xiurun
2016-04-01
Hydraulic fracturing is widely used in the exploitation of unconventional gas (such as shale gas).Thus, the study of hydraulic fracturing is of particular importance for petroleum industry. The combined finite-discrete element method (FDEM) proposed by Munjiza is an innovative numerical technique to capture progressive damage and failure processes in rock. However, it cannot model the fracturing process of rock driven by hydraulic pressure. In this study, we present a coupled hydro-mechanical model based on FDEM for the simulation of hydraulic fracturing in complex fracture geometries, where an algorithm for updating hydraulic fracture network is proposed. The algorithm can carry out connectivity searches for arbitrarily complex fracture networks. Then, we develop a new combined finite-discrete element method numerical code (Y-flow) for the simulation of hydraulic fracturing. Finally, several verification examples are given, and the simulation results agree well with the analytical or experimental results, indicating that the newly developed numerical code can capture hydraulic fracturing process correctly and effectively.
NASA Astrophysics Data System (ADS)
Tan, S. L.; Covington, J. A.; Gardner, J. W.; Pearce, T. C.
The sense of smell is a powerful biological tool although it is the least understood. Attempts to mimic this feature over the last two decades have resulted in the creation of the electronic nose. In comparison to the biological system, its ability to distinguish complex odours is poor. This has mainly been attributed to the lack of sensors and their diversity compared to the human in the order of 105 and 102 respectively. In our efforts to improve the performance of the electronic nose, here we have used a different approach using a unique feature of the biological olfactory system. This technique is analogous to a multi-dimensional gas chromatography (MD-GC) technique that is capable in generating spatial and temporal signals to aid odour discrimination. As the physical realisation requires expensive and time consuming micro- nano fabrication processes, finite element method simulations have been used to validate the proposed design and aid optimisation. This paper describes the finite element modelling process and compares these simulation results to that of the well-established analytical model. Preliminary results of the optimised system are also presented; these results are in good agreement to the simulated outputs.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-05-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
Finite element simulation of core inspection in helicopter rotor blades using guided waves.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2015-09-01
This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. PMID:26048172
Finite element simulation of magnetic detection of creep damage at seam welds
Sablik, M.J.; Rubin, S.W.; Jiles, D.C.; Kaminski, D.; Bi, Y.
1996-09-01
Using appropriately modified magnetization curves for each element of creep-damaged material, a finite element calculation has been carried out to simulate magnetic detection of non-uniform creep damage around a seam weld in a 2.25 Cr 1 Mo steam pipe. The magnetization curves for the creep-damaged elements were obtained from an earlier model for the magnetic effect of a uniformly creep-damaged material as given by Chen, et al. In the finite element calculation, a magnetic C-core with primary and secondary coils was placed with its pole pieces flush against the specimen in the vicinity of the weld. The secondary emf was shown to be reduced when creep damage was present inside the pipe wall at the cusp of weld and in the vicinity of the cusp. The C-core detected the creep damage best if it completely spanned the weld seam width. Also, the current in the primary needed to be such that the C-core was not magnetically saturated.
Adaptive finite element simulation of flow and transport applications on parallel computers
NASA Astrophysics Data System (ADS)
Kirk, Benjamin Shelton
The subject of this work is the adaptive finite element simulation of problems arising in flow and transport applications on parallel computers. Of particular interest are new contributions to adaptive mesh refinement (AMR) in this parallel high-performance context, including novel work on data structures, treatment of constraints in a parallel setting, generality and extensibility via object-oriented programming, and the design/implementation of a flexible software framework. This technology and software capability then enables more robust, reliable treatment of multiscale--multiphysics problems and specific studies of fine scale interaction such as those in biological chemotaxis (Chapter 4) and high-speed shock physics for compressible flows (Chapter 5). The work begins by presenting an overview of key concepts and data structures employed in AMR simulations. Of particular interest is how these concepts are applied in the physics-independent software framework which is developed here and is the basis for all the numerical simulations performed in this work. This open-source software framework has been adopted by a number of researchers in the U.S. and abroad for use in a wide range of applications. The dynamic nature of adaptive simulations pose particular issues for efficient implementation on distributed-memory parallel architectures. Communication cost, computational load balance, and memory requirements must all be considered when developing adaptive software for this class of machines. Specific extensions to the adaptive data structures to enable implementation on parallel computers is therefore considered in detail. The libMesh framework for performing adaptive finite element simulations on parallel computers is developed to provide a concrete implementation of the above ideas. This physics-independent framework is applied to two distinct flow and transport applications classes in the subsequent application studies to illustrate the flexibility of the
Fiber pushout test - A three-dimensional finite element computational simulation
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.
1991-01-01
A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computational very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictioal stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.
Fiber pushout test: A three-dimensional finite element computational simulation
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.
1990-01-01
A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computationally very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictional stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.
Evaluation of finite-element-based simulation model of photoacoustics in biological tissues
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Ha, Seunghan; Kim, Kang
2012-03-01
A finite element (FE)-based simulation model for photoacoustic (PA) has been developed incorporating light propagation, PA signal generation, and sound wave propagation in soft tissues using a commercial FE simulation package, COMSOL Multiphysics. The developed simulation model is evaluated by comparing with other known simulation models such as Monte Carlo method and heat-pressure model. In this in silico simulation, FE model is composed of three parts of 1) homogeneous background soft tissues submerged in water, 2) target tissue inclusion (or PA contrast agents), and 3) short pulsed laser source (pulse length of 5-10 ns). The laser point source is placed right above the tissues submerged in water. This laser source light propagation through the multi-layer tissues using the diffusion equation is compared with Monte Carlo solution. Photoacoustic signal generation by the target tissue inclusion is simulated using bioheat equation for temperature change, and resultant stress and strain. With stress-strain model, the process of the PA signal generation can be simulated further in details step by step to understand and analyze the photothermal properties of the target tissues or PA contrast agents. The created wide-band acoustic pressure (band width > 150 MHz) propagates through the background tissues to the ultrasound detector located at the tissue surface, governed by sound wave equation. Acoustic scattering and absorption in soft tissues also have been considered. Accuracy and computational time of the developed FE-based simulation model of photoacoustics have been quantitatively analyzed.
Towards registration of temporal mammograms by finite element simulation of MR breast volumes
NASA Astrophysics Data System (ADS)
Qiu, Yan; Sun, Xuejun; Manohar, Vasant; Goldgof, Dmitry
2008-03-01
Performing regular mammographic screening and comparing corresponding mammograms taken from multiple views or at different times are necessary for early detection and treatment evaluation of breast cancer, which is key to successful treatment. However, mammograms taken at different times are often obtained under different compression, orientation, or body position. A temporal pair of mammograms may vary significantly due to the spatial disparities caused by the variety in acquisition environments, including 3D position of the breast, the amount of pressure applied, etc. Such disparities can be corrected through the process of temporal registration. We propose to use a 3D finite element model for temporal registration of digital mammography. In this paper, we apply patient specific 3D breast model constructed from MRI data of the patient, for cases where lesions are detectable in multiple mammographic views across time. The 3D location of the lesion in the breast model is computed through a breast deformation simulation step presented in our earlier work. Lesion correspondence is established by using a nearest neighbor approach in the uncompressed breast volume. Our experiments show that the use of a 3D finite element model for simulating and analyzing breast deformation contributes to good accuracy when matching suspicious regions in temporal mammograms.
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2008-01-01
An approach for assessing the delamination propagation simulation capabilities in commercial finite element codes is presented and demonstrated. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. The load-displacement relationship and the total strain energy obtained from the propagation analysis results and the benchmark results were compared and good agreements could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as was expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.
Three dimensional finite element simulation and analysis of residual stress in milling
NASA Astrophysics Data System (ADS)
Liu, Haitao; Sun, Yazhou; Liang, Yingchun; Lu, Zesheng
2010-10-01
Framework parts are extensively used in aerospace industry and milling is its main processing method. This study aims at the milling of aluminum alloy 2024-T351. With the analysis of the milling cutter structure, the virtual topology technology was used to carry on the pretreatment of the milling cutter model, and the adaptive meshing technique was applied. Johnson-Cook's coupled thermo-mechanical model was used as the material model of workpiece. Johnson-Cook's shear failure principle was used as the material failure criterion. The modified Coulomb's law whose slide friction area is combined with sticking friction was used to compute the friction between tool and workpiece. And a more realistic three-dimensional finite element model of milling was finally established. The process of chip formation was simulated in this model. The distribution of surface residual stress at different spindle speed was obtained through finite element simulating. And with the analysis of the results, the basic affecting law of spindle speed to residual stress of machined surface was found, which provides a basis for practical machining.
Finite-element simulation of firearm injury to the human cranium
NASA Astrophysics Data System (ADS)
Mota, A.; Klug, W. S.; Ortiz, M.; Pandolfi, A.
An advanced physics-based simulation of firearms injury to the human cranium is presented, modeling by finite elements the collision of a firearm projectile into a human parietal bone. The space-discretized equations of motion are explicitly integrated in time with Newmark's time-stepping algorithm. The impact of the projectile on the skull, as well as the collisions between flying fragments, are controlled through a nonsmooth contact algorithm. Cohesive theories of fracture, in conjunction with adaptive remeshing, control the nucleation and the propagation of fractures. The progressive opening of fracture surfaces is governed by a thermodynamically irreversible cohesive law embedded into cohesive-interface elements. Numerical results compare well with forensic data of actual firearm wounds to human crania.
NASA Astrophysics Data System (ADS)
Besson, François; Ferraris, Guy; Guingand, Michèle; Vaujany, Jean-Pierre De
During the last decade, many new technical solutions dedicated to the comfort of automotive vehicle's drivers have raised, like Electrical Power Steering (EPS). To fulfill the more and more demanding requirements in terms of vibration and acoustics, the dynamic behavior of the whole steering is studied. The system is divided into dedicated finite elements (FE) describing the whole steering. The stress was first put on the gears models (worm gear and rack-and-pinion) and their anti-backlash systems as they have been identified as potential vibration sources. Mechanical non-linearities (clearances, non-linear stiffness) of the mechanical system are taken into account in these models. Then, this model allows simulating the transient response of the system to an input excitation. Each developed element is validated using a fitted experimental test bench. Then, the general model is correlated the same way. Hence models can be used to study the dynamic behavior of EPS systems or sub-systems.
Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves
NASA Astrophysics Data System (ADS)
Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian
2012-12-01
This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.
Laser Additive Melting and Solidification of Inconel 718: Finite Element Simulation and Experiment
NASA Astrophysics Data System (ADS)
Romano, John; Ladani, Leila; Sadowski, Magda
2016-03-01
The field of powdered metal additive manufacturing is experiencing a surge in public interest finding uses in aerospace, defense, and biomedical industries. The relative youth of the technology coupled with public interest makes the field a vibrant research topic. The authors have expanded upon previously published finite element models used to analyze the processing of novel engineering materials through the use of laser- and electron beam-based additive manufacturing. In this work, the authors present a model for simulating fabrication of Inconel 718 using laser melting processes. Thermal transport phenomena and melt pool geometries are discussed and validation against experimental findings is presented. After comparing experimental and simulation results, the authors present two correction correlations to transform the modeling results into meaningful predictions of actual laser melting melt pool geometries in Inconel 718.
NASA Astrophysics Data System (ADS)
Mamen, B.; Song, J.; Barriere, T.; Gelin, J.-C.
2013-05-01
Powder injection molding (PIM) is a suitable technology for manufacturing of complex shapes with tungsten powders and has a great potential in many applications. Sintering is one of the most important steps in Powder Injection Molding process. The sintering behaviour of tungsten injection moulded components, under pure hydrogen atmosphere at temperature up to 1700°C using fine 0.4μm and coarse powders 7.0 μm, is investigated by means of the beam bending and dilatometric tests in the Setaram{copyright, serif} analyser. To simulate the shrinkage and shape distortion of tungsten injection moulded components during the sintering process using finite element methods, viscoplastic constitutive law is implemented in ABAQUS software as user subroutine UMAT and incorporated with the identified parameters. Comparison between the numerical simulations results and experimental ones, in term of shrinkages and sintered densities, shows good agreement between the two.
Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets
Mori, K.; Abe, Y.; Kato, T.
2007-05-17
Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.
Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets
NASA Astrophysics Data System (ADS)
Mori, K.; Abe, Y.; Kato, T.
2007-05-01
Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.
Fan, Rong; Sacks, Michael S.
2014-01-01
Computational implementation of physical and physiologically realistic constitutive models is critical for numerical simulation of soft biological tissues in a variety of biomedical applications. It is well established that the highly nonlinear and anisotropic mechanical behaviors of soft tissues are an emergent behavior of the underlying tissue microstructure. In the present study, we have implemented a structural constitutive model into a finite element framework specialized for membrane tissues. We noted that starting with a single element subjected to uniaxial tension, the non-fibrous tissue matrix must be present to prevent unrealistic tissue deformations. Flexural simulations were used to set the non-fibrous matrix modulus because fibers have little effects on tissue deformation under three-point bending. Multiple deformation modes were simulated, including strip biaxial, planar biaxial with two attachment methods, and membrane inflation. Detailed comparisons with experimental data were undertaken to insure faithful simulations of both the macro-level stress-strain insights into adaptations of the fiber architecture under stress, such as fiber reorientation and fiber recruitment. Results indicated a high degree of fidelity and demonstrated interesting microstructural adaptions to stress and the important role of the underlying tissue matrix. Moreover, we apparently resolve a discrepancy in our 1997 study (J Biomech. 1997 Jul;30(7):753–6) where we observed that under strip biaxial stretch the simulated fiber splay responses were not in good agreement with the experimental results, suggesting non-affine deformations may have occurred. However, by correctly accounting for the isotropic phase of the measured fiber splay, good agreement was obtained. While not the final word, these simulations suggest that affine kinematics for planar collagenous tissues is a reasonable assumption at the macro level. Simulation tools such as these are imperative in the design
Real-time nonlinear finite element analysis for surgical simulation using graphics processing units.
Taylor, Zeike A; Cheng, Mario; Ourselin, Sébastien
2007-01-01
Clinical employment of biomechanical modelling techniques in areas of medical image analysis and surgical simulation is often hindered by conflicting requirements for high fidelity in the modelling approach and high solution speeds. We report the development of techniques for high-speed nonlinear finite element (FE) analysis for surgical simulation. We employ a previously developed nonlinear total Lagrangian explicit FE formulation which offers significant computational advantages for soft tissue simulation. However, the key contribution of the work is the presentation of a fast graphics processing unit (GPU) solution scheme for the FE equations. To the best of our knowledge this represents the first GPU implementation of a nonlinear FE solver. We show that the present explicit FE scheme is well-suited to solution via highly parallel graphics hardware, and that even a midrange GPU allows significant solution speed gains (up to 16.4x) compared with equivalent CPU implementations. For the models tested the scheme allows real-time solution of models with up to 16000 tetrahedral elements. The use of GPUs for such purposes offers a cost-effective high-performance alternative to expensive multi-CPU machines, and may have important applications in medical image analysis and surgical simulation. PMID:18051120
NASA Astrophysics Data System (ADS)
Baginski, Michael Edward
Middle atmospheric (altitudes ~ 30-50 km) transient electromagnetic fields generated by lightning-induced charge perturbations are investigated via a simulation of the complete set of Maxwell's equations. A time domain finite element analysis is employed for the simulations. The atmosphere is modeled as a region contained within a right circular cylinder with a height of 80 km and radius of 60 km. All electromagnetic parameters are set equal to their free space value with the exception of the conductivity. Three altitude-varying conductivities, a simple exponential (sigma = sigma _{rm o}exp(z/6000)), the Gish model, and a profile based on measured data are used. The simulation's charge perturbations are designed to temporally and spatially approximate the rearrangement of charge following lightning. Previous investigations of this phenomenon have usually assumed a conservative electric field and, as a consequence, constrained the electric field to decay exponentially in time (nablatimes E = -mu_{rm o}partial H/partialt = 0, E ~ exp(-{rm t}sigma /varepsilon)). The present study simulates field behavior that is in good agreement with data. This simulated behavior is not possible if a conservative electric field restriction is enacted. A concatenation of the simulated electric field signatures is included.
A coupled finite-element, boundary-integral method for simulating ultrasonic flowmeters.
Bezdĕk, Michal; Landes, Hermann; Rieder, Alfred; Lerch, Reinhard
2007-03-01
Today's most popular technology of ultrasonic flow measurement is based on the transit-time principle. In this paper, a numerical simulation technique applicable to the analysis of transit-time flowmeters is presented. A flowmeter represents a large simulation problem that also requires computation of acoustic fields in moving media. For this purpose, a novel boundary integral method, the Helmholtz integral-ray tracing method (HIRM), is derived and validated. HIRM is applicable to acoustic radiation problems in arbitrary mean flows at low Mach numbers and significantly reduces the memory demands in comparison with the finite-element method (FEM). It relies on an approximate free-space Green's function which makes use of the ray tracing technique. For simulation of practical acoustic devices, a hybrid simulation scheme consisting of FEM and HIRM is proposed. The coupling of FEM and HIRM is facilitated by means of absorbing boundaries in combination with a new, reflection-free, acoustic-source formulation. Using the coupled FEM-HIRM scheme, a full three-dimensional (3-D) simulation of a complete transit-time flowmeter is performed for the first time. The obtained simulation results are in good agreement with measurements both at zero flow and under flow conditions. PMID:17375833
Finite element simulation of the film spallation process induced by the pulsed laser peening
NASA Astrophysics Data System (ADS)
Zhou, M.; Zeng, D. Y.; Kan, J. P.; Zhang, Y. K.; Cai, L.; Shen, Z. H.; Zhang, X. R.; Zhang, S. Y.
2003-09-01
The laser spallation technique for measuring the interface strength between a coating and a substrate is similar to laser shock peening, in which the stress wave induced by laser shock cause debond on the interface between a hard coating with micron thickness and a metal substrate. According to the modified experiment setup of the laser spallation technique, finite element analysis simulated the process of the film spallation by taking the laser loading as a direct input. We presented a numerical model of finite element that the laser spallation process includes two related, but uncoupled procedures. One was transient heat transfer in a two-layer medium. The other was the related transient elastic wave propagation in the same two-layer media, which was the result of the thermal misfit by transient heating. Based on the threshold of film spallation, we analyzed the process of laser shocking to study the propagation of stress wave and evaluate the spall resistance of sputtered films. The analysis result showed the dynamic adhesive strength of the interface between the TiN coating and the 304 stainless steel substrate was 193.0 MPa.
Lu Benzhuo; Andrew McCammon, J.; Zhou, Y.C.
2010-09-20
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for simulating electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.
Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)
NASA Astrophysics Data System (ADS)
Ergin, M. Fatih; Aydin, Ismail
2013-12-01
Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.
Joldes, Grand Roman; Wittek, Adam; Miller, Karol
2008-01-01
Real time computation of soft tissue deformation is important for the use of augmented reality devices and for providing haptic feedback during operation or surgeon training. This requires algorithms that are fast, accurate and can handle material nonlinearities and large deformations. A set of such algorithms is presented in this paper, starting with the finite element formulation and the integration scheme used and addressing common problems such as hourglass control and locking. The computation examples presented prove that by using these algorithms, real time computations become possible without sacrificing the accuracy of the results. For a brain model having more than 7000 degrees of freedom, we computed the reaction forces due to indentation with frequency of around 1000 Hz using a standard dual core PC. Similarly, we conducted simulation of brain shift using a model with more than 50 000 degrees of freedom in less than a minute. The speed benefits of our models results from combining the Total Lagrangian formulation with explicit time integration and low order finite elements. PMID:19152791
Numerical simulation of pressure therapy glove by using Finite Element Method.
Yu, Annie; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne; Chan, Ying Fan
2016-02-01
Pressure therapy garments apply pressure to suppress the growth and flatten hypertrophic scars caused by serious burns. The amount of pressure given by the pressure garments is critical to the treatment adherence and outcomes. In the present study, a biomechanical model for simulating the pressure magnitudes and distribution over hand dorsum given by a pressure glove was developed by using finite element method. In this model, the shape geometry of the hand, the mechanical properties of the glove and human body tissues were incorporated in the numerical stress analyses. The geometry of the hand was obtained by a 3D laser scanner. The material properties of two warp knitted fabrics were considered in the glove fabric model that developed from the glove production pattern with 10% size reduction in circumferential dimensions. The glove was regarded an isotropic elastic shell and the hand was assumed to be a homogeneous, isotropic and linearly elastic body. A glove wearing process was carried in the finite element analysis and the surface-to-surface contact pressure between hand and glove fabric was hence obtained. Through validation, the simulated contact pressure showed a good agreement with the experimental interface pressure measurement. The simulation model can be used to predict and visualise the pressure distribution exerted by a pressure therapy glove onto hand dorsum. It can provide information for optimising the material mechanical properties in pressure garment design and development, give a clue to understand the mechanisms of pressure action on hypertrophic scars and ultimately improve the medical functions of pressure garment. PMID:26520450
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.; Shivarama, Ravishankar
2004-01-01
The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.
Simulation of plasmonic and photonic crystal structures using finite-element method
NASA Astrophysics Data System (ADS)
Yang, Sen
In this thesis, the Finite-Element Method (FEM) was utilized to simulate and design the optimal nanostructures for better performances of Surface-Enhanced Raman Scattering (SERS) and lasing. FEM proved its effectiveness in the calculations of target physical models to optimize the model geometry or theoretically validate experimental observations. In chapter 1 and 2, the fundamental theorem of SERS and photonic crystal cavity were introduced and discussed. The most used optical structures for the two effects, metal/dielectric SPP structure and dielectric photonic crystal structure, were introduced as examples. Equations stem from Maxwell equations were derived and discussed to clarify the concepts of SERS and PCC. In chapter 3, the FEM method was carried out to simulate the SERS performance of Au nano-bowl/SiO2/Au nanoparticle structure. The electric field distributions and Raman enhancement factors of models in real experiments were calculated and analyzed theoretically. The simulation result on Raman enhancement factors showed consistency with the experimental observations. In chapter 4, the design process of silicon nitride photonic crystal cavity was introduced and the simulation results were discussed. Using L3 geometrical model, the FEM method successfully revealed the relations between key optical properties, such as quality factor and resonant wavelength, and geometrical parameter selections. The simulations were also helpful in determination of the optimal parameter selection in L3 PCC model for further experimental fabrication.
Webster, Victoria A; Nieto, Santiago G; Grosberg, Anna; Akkus, Ozan; Chiel, Hillel J; Quinn, Roger D
2016-10-01
In this study, new techniques for approximating the contractile properties of cells in biohybrid devices using Finite Element Analysis (FEA) have been investigated. Many current techniques for modeling biohybrid devices use individual cell forces to simulate the cellular contraction. However, such techniques result in long simulation runtimes. In this study we investigated the effect of the use of thermal contraction on simulation runtime. The thermal contraction model was significantly faster than models using individual cell forces, making it beneficial for rapidly designing or optimizing devices. Three techniques, Stoney׳s Approximation, a Modified Stoney׳s Approximation, and a Thermostat Model, were explored for calibrating thermal expansion/contraction parameters (TECPs) needed to simulate cellular contraction using thermal contraction. The TECP values were calibrated by using published data on the deflections of muscular thin films (MTFs). Using these techniques, TECP values that suitably approximate experimental deflections can be determined by using experimental data obtained from cardiomyocyte MTFs. Furthermore, a sensitivity analysis was performed in order to investigate the contribution of individual variables, such as elastic modulus and layer thickness, to the final calibrated TECP for each calibration technique. Additionally, the TECP values are applicable to other types of biohybrid devices. Two non-MTF models were simulated based on devices reported in the existing literature. PMID:27450035
The problem of solute transport in steady nonuniform flow created by a recharging and discharging well pair is investigated. Numerical difficulties encountered with the standard Galerkin formulations in Cartesian coordinates are illustrated. An improved finite element solution st...
A Finite Element Model of the THOR-K Dummy for Aerospace and Aircraft Impact Simulations
NASA Technical Reports Server (NTRS)
Putnam, Jacob; Untaroiu, Costin D.; Somers, Jeffrey T.; Pellettiere, Joseph
2013-01-01
1) Update and Improve the THOR Finite Element (FE) model to specifications of the latest mod kit (THOR-K). 2) Evaluate the kinematic and kinetic response of the FE model in frontal, spinal, and lateral impact loading conditions.
Automatic finite element generators
NASA Technical Reports Server (NTRS)
Wang, P. S.
1984-01-01
The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.
Numerical simulation of fluid-structure interactions with stabilized finite element method
NASA Astrophysics Data System (ADS)
Sváček, Petr
2016-03-01
This paper is interested to the interactions of the incompressible flow with a flexibly supported airfoil. The bending and the torsion modes are considered. The problem is mathematically described. The numerical method is based on the finite element method. A combination of the streamline-upwind/Petrov-Galerkin and pressure stabilizing/Petrov-Galerkin method is used for the stabilization of the finite element method. The numerical results for a three-dimensional problem of flow over an airfoil are shown.
Simulation of ultrasound beam formation of baiji (Lipotes vexillifer) with a finite element model.
Wei, Chong; Zhang, Yu; Au, Whitlow W L
2014-07-01
The baiji (Lipotes vexillifer) of the Yangtze River possesses a sophisticated biosonar system. In this study, a finite element approach was used to numerically investigate the propagation of acoustic waves through the head of the Yangtze River dolphin, which possesses an inhomogeneous and complex structure. The acoustic intensity distribution predicted from models with and without the melon and/or skull showed that the emitted sound beam was narrow and formed a highly directed acoustic beam, and the skull and melon significantly enhanced the directional characteristics of the emitted sound. Finally, for a short duration impulsive source, the emitted sound pressure distributions were also simulated at different propagation times. The results provide useful information for better understanding the operation of the biosonar system in this rare and perhaps extinct animal. PMID:24993226
NASA Astrophysics Data System (ADS)
Percival, James; Xie, Zhihua; Pavlidis, Dimitrios; Gomes, Jefferson; Pain, Christopher; Matar, Omar
2013-11-01
We present results from a new formulation of a numerical model for direct simulation of bed fluidization and multiphase granular flow. The model is based on a consistent application of continuous-discontinuous mixed control volume finite element methods applied to fully unstructured meshes. The unstructured mesh framework allows for both a mesh adaptive capability, modifying the computational geometry in order to bound the error in the numerical solution while maximizing computational efficiency, and a simple scripting interface embedded in the model which allows fast prototyping of correlation models and parameterizations in intercomparison experiments. The model is applied to standard test problems for fluidized beds. EPSRC Programme Grant EP/K003976/1.
Fixation strength analysis of cup to bone material using finite element simulation
NASA Astrophysics Data System (ADS)
Anwar, Iwan Budiwan; Saputra, Eko; Ismail, Rifky; Jamari, J.; van der Heide, Emile
2016-04-01
Fixation of acetabular cup to bone material is an important initial stability for artificial hip joint. In general, the fixation in cement less-type acetabular cup uses press-fit and screw methods. These methods can be applied alone or together. Based on literature survey, the additional screw inside of cup is effective; however, it has little effect in whole fixation. Therefore, an acetabular cup with good fixation, easy manufacture and easy installation is required. This paper is aiming at evaluating and proposing a new cup fixation design. To prove the strength of the present cup fixation design, the finite element simulation of three dimensional cup with new fixation design was performed. The present cup design was examined with twist axial and radial rotation. Results showed that the proposed cup design was better than the general version.
Two-dimensional slope wind simulations in the finite element approximation
Tuerpe, D.R.
1980-06-01
The hydrostatic fluid dynamics model developed at LLL has been used to simulate the development of katabatic winds. This model solves the Navier-Stokes equations in the Boussinesq approximation by the finite element method. Preliminary results indicate that to obtain physically reasonable results one has to choose unequal diffusion parameters in the horizontal (K/sub x/) and vertical (K/sub z/). The maximum velocities obtained with K/sub z/ = 1 m/sup 2//sec and K/sub x/ = 100 m/sup 2//sec are of the order of 2.5 m/sec for a slope of .2. Profiles of the downslope velocities will be presented at different points in the flow. As expected, the magnitude of the vertical diffusion coefficient K/sub z/ controls the depth of the flow which seems to increase only slightly with downhill distance, and the magnitude of the flow increases with cooling rate and slope.
Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation
NASA Astrophysics Data System (ADS)
Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.
2011-08-01
Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. Applying BHE in regional discretizations optimal conditions of mesh spacing around singular BHE nodes are derived. Optimal meshes have shown superior to such discretizations which are either too fine or too coarse. The numerical methods are benchmarked against analytical and numerical reference solutions. Practical application to a borehole thermal energy store (BTES) consisting of 80 BHE is given for the real-site BTES Crailsheim, Germany. The simulations are controlled by the specifically developed FEFLOW-TRNSYS coupling module. Scenarios indicate the effect of the groundwater flow regime on efficiency and reliability of the subsurface heat storage system.
Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic.
Shefelbine, Sandra J; Augat, Peter; Claes, Lutz; Simon, Ulrich
2005-12-01
Trabecular bone fractures heal through intramembraneous ossification. This process differs from diaphyseal fracture healing in that the trabecular marrow provides a rich vascular supply to the healing bone, there is very little callus formation, woven bone forms directly without a cartilage intermediary, and the woven bone is remodelled to form trabecular bone. Previous studies have used numerical methods to simulate diaphyseal fracture healing or bone remodelling, however not trabecular fracture healing, which involves both tissue differentiation and trabecular formation. The objective of this study was to determine if intramembraneous bone formation and remodelling during trabecular bone fracture healing could be simulated using the same mechanobiological principles as those proposed for diaphyseal fracture healing. Using finite element analysis and the fuzzy logic for diaphyseal healing, the model simulated formation of woven bone in the fracture gap and subsequent remodelling of the bone to form trabecular bone. We also demonstrated that the trabecular structure is dependent on the applied loading conditions. A single model that can simulate bone healing and remodelling may prove to be a useful tool in predicting musculoskeletal tissue differentiation in different vascular and mechanical environments. PMID:16214492
An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations
Michael R Tonks; Derek R Gaston; Paul C Millett; David Andrs; Paul Talbot
2012-01-01
The phase field approach is a powerful and popular method for modeling microstructure evolution. In this work, advanced numerical tools are used to create a phase field framework that facilitates rapid model development. This framework, called MARMOT, is based on Idaho National Laboratory's finite element Multiphysics Object-Oriented Simulation Environment. In MARMOT, the system of phase field partial differential equations (PDEs) are solved simultaneously with PDEs describing additional physics, such as solid mechanics and heat conduction, using the Jacobian-Free Newton Krylov Method. An object-oriented architecture is created by taking advantage of commonalities in phase fields models to facilitate development of new models with very little written code. In addition, MARMOT provides access to mesh and time step adaptivity, reducing the cost for performing simulations with large disparities in both spatial and temporal scales. In this work, phase separation simulations are used to show the numerical performance of MARMOT. Deformation-induced grain growth and void growth simulations are included to demonstrate the muliphysics capability.
Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Takazawa, Hiroyuki; Nagase, Kazuo; Ohta, Michihiro; Yamamoto, Atsushi
2015-10-01
A three-dimensional closed-circuit numerical model of a thermoelectric generator (TEG) module has been constructed with COMSOL® Multiphysics to verify a module test system. The Seebeck, Peltier, and Thomson effects and Joule heating are included in the thermoelectric conversion model. The TEG model is employed to simulate the operation of a 16-leg TEG module based on bismuth telluride with temperature-dependent material properties. The module is mounted on a test platform, and simulated by combining the heat conduction process and thermoelectric conversion process. Simulation results are obtained for the terminal voltage, output power, heat flow, and efficiency as functions of the electric current; the results are compared with measurement data. The Joule and Thomson heats in all the thermoelectric legs, as functions of the electric current, are calculated by finite-element volume integration over the entire legs. The Peltier heat being pumped at the hot side and released at the cold side of the module are also presented in relation to the electric current. The energy balance relations between heat and electricity are verified to support the simulation.
Barabash, R. I.; Agarwal, V.; Koric, S.; Jasiuk, I.; Tischler, J. Z.
2016-01-01
Tmore » he depth-dependent strain partitioning across the interfaces in the growth direction of the NiAl/Cr(Mo) nanocomposite between the Cr and NiAl lamellae was directly measured experimentally and simulated using a finite element method (FEM). Depth-resolved X-ray microdiffraction demonstrated that in the as-grown state both Cr and NiAl lamellae grow along the 111 direction with the formation of as-grown distinct residual ~0.16% compressive strains for Cr lamellae and ~0.05% tensile strains for NiAl lamellae.hree-dimensional simulations were carried out using an implicit FEM. First simulation was designed to study residual strains in the composite due to cooling resulting in formation of crystals. Strains in the growth direction were computed and compared to those obtained from the microdiffraction experiments. Second simulation was conducted to understand the combined strains resulting from cooling and mechanical indentation of the composite. Numerical results in the growth direction of crystal were compared to experimental results confirming the experimentally observed trends.« less
A finite-element model for simulating hydraulic interchange of surface and ground water
Glover, K.C.
1988-01-01
A model was developed to be useful for predicting changes in streamflow as a result of groundwater pumping. The stream aquifer model is especially useful for simulating streams that flow intermittently owing to leakage to the aquifer or diversion for irrigation or streams that become perched owing to declining hydraulic head in the aquifer. The model couples the equation of two-dimensional groundwater flow with the kinematic equations of one-dimensional open-channel flow. Darcy 's law for vertical flow through a semipermeable streambed is used to couple the groundwater flow and streamflow equations. The equations of flow are approximated numerically by the finite-element method. A listing of the Fortran program that solves the equations of flow , and a description of data-input formats are given in the report. The program can simulate a variety of hydrologic characteristics including perched streams, streamflow diversions , springs, recharge from irrigated acreage, and evapotranspiration from the water table and phreatophytes. Time-dependent boundary conditions can be simulated. The program can be modified easily to simulate unconfined aquifers and aquifers with variable directions of anisotropy. (USGS)
NASA Astrophysics Data System (ADS)
Zhao, Bin
2015-02-01
Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.
NASA Astrophysics Data System (ADS)
Lemanle Sanga, Roger Pierre; Garnier, Christian; Pantalé, Olivier
2016-06-01
Low velocity barely visible impact damage (BVID) in laminated carbon composite structures has a major importance for aeronautical industries. This contribution leads with the development of finite element models to simulate the initiation and the propagation of internal damage inside a carbon composite structure due by a low velocity impact. Composite plates made from liquid resin infusion process (LRI) have been subjected to low energy impacts (around 25 J) using a drop weight machine. In the experimental procedure, the internal damage is evaluated using an infrared thermographic camera while the indentation depth of the face is measured by optical measurement technique. In a first time we developed a robust model using homogenised shells based on degenerated tri-dimensional brick elements and in a second time we decided to modelize the whole stacking sequence of homogeneous layers and cohesive interlaminar interfaces in order to compare and validate the obtained results. Both layer and interface damage initiation and propagation models based on the Hashin and the Benzeggagh-Kenane criteria have been used for the numerical simulations. Comparison of numerical results and experiments has shown the accuracy of the proposed models.
Tree stability under wind: simulating uprooting with root breakage using a finite element method
Yang, Ming; Défossez, Pauline; Danjon, Frédéric; Fourcaud, Thierry
2014-01-01
Background and Aims Windstorms are the major natural hazard affecting European forests, causing tree damage and timber losses. Modelling tree anchorage mechanisms has progressed with advances in plant architectural modelling, but it is still limited in terms of estimation of anchorage strength. This paper aims to provide a new model for root anchorage, including the successive breakage of roots during uprooting. Methods The model was based on the finite element method. The breakage of individual roots was taken into account using a failure law derived from previous work carried out on fibre metal laminates. Soil mechanical plasticity was considered using the Mohr–Coulomb failure criterion. The mechanical model for roots was implemented in the numerical code ABAQUS using beam elements embedded in a soil block meshed with 3-D solid elements. The model was tested by simulating tree-pulling experiments previously carried out on a tree of Pinus pinaster (maritime pine). Soil mechanical parameters were obtained from laboratory tests. Root system architecture was digitized and imported into ABAQUS while root material properties were estimated from the literature. Key Results Numerical simulations of tree-pulling tests exhibited realistic successive root breakages during uprooting, which could be seen in the resulting response curves. Broken roots could be visually located within the root system at any stage of the simulations. The model allowed estimation of anchorage strength in terms of the critical turning moment and accumulated energy, which were in good agreement with in situ measurements. Conclusions This study provides the first model of tree anchorage strength for P. pinaster derived from the mechanical strength of individual roots. The generic nature of the model permits its further application to other tree species and soil conditions. PMID:25006178
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
NASA Astrophysics Data System (ADS)
Parkinson, S. D.; Hill, J.; Piggott, M. D.; Allison, P. A.
2014-05-01
High resolution direct numerical simulations (DNS) are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier-Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE) DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two, and three-dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring mesh performance in capturing the range of dynamics. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. Use of discontinuous discretisations and adaptive unstructured meshing technologies, which reduce the required element count by approximately two orders of magnitude, results in high resolution DNS models of turbidity currents at a fraction of the cost of traditional FE models. The benefits of this technique will enable simulation of turbidity currents in complex and large domains where DNS modelling was previously unachievable.
An electric-analog simulation of elliptic partial differential equations using finite element theory
Franke, O.L.; Pinder, G.F.; Patten, E.P.
1982-01-01
Elliptic partial differential equations can be solved using the Galerkin-finite element method to generate the approximating algebraic equations, and an electrical network to solve the resulting matrices. Some element configurations require the use of networks containing negative resistances which, while physically realizable, are more expensive and time-consuming to construct. ?? 1982.
High-speed GPU-based finite element simulations for NDT
Huthwaite, P.; Shi, F.; Van Pamel, A.; Lowe, M. J. S.
2015-03-31
The finite element method solved with explicit time increments is a general approach which can be applied to many ultrasound problems. It is widely used as a powerful tool within NDE for developing and testing inspection techniques, and can also be used in inversion processes. However, the solution technique is computationally intensive, requiring many calculations to be performed for each simulation, so traditionally speed has been an issue. For maximum speed, an implementation of the method, called Pogo [Huthwaite, J. Comp. Phys. 2014, doi: 10.1016/j.jcp.2013.10.017], has been developed to run on graphics cards, exploiting the highly parallelisable nature of the algorithm. Pogo typically demonstrates speed improvements of 60-90x over commercial CPU alternatives. Pogo is applied to three NDE examples, where the speed improvements are important: guided wave tomography, where a full 3D simulation must be run for each source transducer and every different defect size; scattering from rough cracks, where many simulations need to be run to build up a statistical model of the behaviour; and ultrasound propagation within coarse-grained materials where the mesh must be highly refined and many different cases run.
High-speed GPU-based finite element simulations for NDT
NASA Astrophysics Data System (ADS)
Huthwaite, P.; Shi, F.; Van Pamel, A.; Lowe, M. J. S.
2015-03-01
The finite element method solved with explicit time increments is a general approach which can be applied to many ultrasound problems. It is widely used as a powerful tool within NDE for developing and testing inspection techniques, and can also be used in inversion processes. However, the solution technique is computationally intensive, requiring many calculations to be performed for each simulation, so traditionally speed has been an issue. For maximum speed, an implementation of the method, called Pogo [Huthwaite, J. Comp. Phys. 2014, doi: 10.1016/j.jcp.2013.10.017], has been developed to run on graphics cards, exploiting the highly parallelisable nature of the algorithm. Pogo typically demonstrates speed improvements of 60-90x over commercial CPU alternatives. Pogo is applied to three NDE examples, where the speed improvements are important: guided wave tomography, where a full 3D simulation must be run for each source transducer and every different defect size; scattering from rough cracks, where many simulations need to be run to build up a statistical model of the behaviour; and ultrasound propagation within coarse-grained materials where the mesh must be highly refined and many different cases run.
Full wave simulation of lower hybrid waves in Maxwellian plasma based on the finite element method
Meneghini, O.; Shiraiwa, S.; Parker, R.
2009-09-15
A full wave simulation of the lower-hybrid (LH) wave based on the finite element method is presented. For the LH wave, the most important terms of the dielectric tensor are the cold plasma contribution and the electron Landau damping (ELD) term, which depends only on the component of the wave vector parallel to the background magnetic field. The nonlocal hot plasma ELD effect was expressed as a convolution integral along the magnetic field lines and the resultant integro-differential Helmholtz equation was solved iteratively. The LH wave propagation in a Maxwellian tokamak plasma based on the Alcator C experiment was simulated for electron temperatures in the range of 2.5-10 keV. Comparison with ray tracing simulations showed good agreement when the single pass damping is strong. The advantages of the new approach include a significant reduction of computational requirements compared to full wave spectral methods and seamless treatment of the core, the scrape off layer and the launcher regions.
NASA Astrophysics Data System (ADS)
Zehner, Björn; Börner, Jana H.; Görz, Ines; Spitzer, Klaus
2015-06-01
Subsurface processing numerical simulations require accurate discretization of the modeling domain such that the geological units are represented correctly. Unstructured tetrahedral grids are particularly flexible in adapting to the shape of geo-bodies and are used in many finite element codes. In order to generate a tetrahedral mesh on a 3D geological model, the tetrahedrons have to belong completely to one geological unit and have to describe geological boundaries by connected facets of tetrahedrons. This is especially complicated at the contact points between several units and for irregular sharp-shaped bodies, especially in case of faulted zones. This study develops, tests and validates three workflows to generate a good tetrahedral mesh from a geological basis model. The tessellation of the model needs (i) to be of good quality to guarantee a stable calculation, (ii) to include certain nodes to apply boundary conditions for the numerical solution, and (iii) support local mesh refinement. As a test case we use the simulation of a transient electromagnetic measurement above a salt diapir. We can show that the suggested workflows lead to a tessellation of the structure on which the simulation can be run robustly. All workflows show advantages and disadvantages with respect to the workload, the control the user has over the resulting mesh and the skills in software handling that are required.
Finite element simulation of laser shock peening on bulk metallic glass
NASA Astrophysics Data System (ADS)
Fu, Jie; Shi, Huigang; Zheng, Chao; Liu, Ren; Ji, Zhong
2014-08-01
Laser shock peening (LSP) can be used to induce compressive residual stresses on the surface of a material, then to improve the mechanical properties such as performance of plasticity and fatigue. However, the residual stresses and their exact spatial distribution are very difficult to measure by experiment, especially for very small workpieces. In this paper, a finite-element model has been developed to numerically simulate the LSP process of bulk metallic glass (BMG) Zr41.2 Ti13.8Cu12.5Ni10Be22.5, and predict the stress distribution. The constitutive equation established in this work is hydrostatic-pressure sensitive and strain-rate dependent, it is based on the free volume model and Coulomb-Mohr yield criterion, and can describe such special deformation behaviors of BMG as strain softening. The simulated results show that, for one-side peening, along depth direction, the compressive residual stress gradually reduced to zero, then change to the tensile residual stress, but for two-side peening, the residual stress is from compressive to tensile and then to compressive along depth direction. These simulation results have a great significance to study the application of LSP in strengthening brittle amorphous alloys.
NASA Astrophysics Data System (ADS)
Gonzalez-Mancera, Andres; Gonzalez Cardenas, Diego
2014-11-01
Flow in the microcirculation is highly dependent on the mechanical properties of the cells suspended in the plasma. Red blood cells have to deform in order to pass through the smaller sections in the microcirculation. Certain deceases change the mechanical properties of red blood cells affecting its ability to deform and the rheological behaviour of blood. We developed a hybrid algorithm based on the Lattice-Boltzmann and Finite Element methods to simulate blood flow in small capillaries. Plasma was modeled as a Newtonian fluid and the red blood cells' membrane as a hyperelastic solid. The fluid-structure interaction was handled using the immersed boundary method. We simulated the flow of plasma with suspended red blood cells through cylindrical capillaries and measured the pressure drop as a function of the membrane's rigidity. We also simulated the flow through capillaries with a restriction and identify critical properties for which the suspended particles are unable to flow. The algorithm output was verified by reproducing certain common features of flow int he microcirculation such as the Fahraeus-Lindqvist effect.
NASA Astrophysics Data System (ADS)
Johanns, K. E.; Lee, J. H.; Gao, Y. F.; Pharr, G. M.
2014-01-01
A cohesive zone model is applied to a finite element (FE) scheme to simulate indentation cracking in brittle materials. Limitations of using the cohesive zone model to study indentation cracking are determined from simulations of a standard fracture toughness specimen and a two-dimensional indentation cracking problem wherein the morphology of the crack and the geometry of the indenter are simplified. It is found that the principles of linear-elastic fracture mechanics can be applied when indentation cracks are long in comparison to the size of the cohesive zone. Vickers and Berkovich pyramidal indentation crack morphologies (3D) are also investigated and found to be controlled by the ratio of elastic modulus to yield strength (E/Y), with median type cracking dominating at low ratios (e.g. E/Y = 10) and Palmqvist type cracking at higher ratios (e.g. E/Y = 100). The results show that cohesive FE simulations of indentation cracking can indeed be used to critically examine the complex relationships between crack morphology, material properties, indenter geometry, and indentation test measurements, provided the crack length is long in comparison to the cohesive zone size.
Full wave simulation of waves in ECRIS plasmas based on the finite element method
Torrisi, G.; Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G.; Di Donato, L.; Sorbello, G.; Isernia, T.
2014-02-12
This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.
Barkaoui, Abdelwahed; Tlili, Brahim; Vercher-Martínez, Ana; Hambli, Ridha
2016-10-01
Bone is a living material with a complex hierarchical structure which entails exceptional mechanical properties, including high fracture toughness, specific stiffness and strength. Bone tissue is essentially composed by two phases distributed in approximately 30-70%: an organic phase (mainly type I collagen and cells) and an inorganic phase (hydroxyapatite-HA-and water). The nanostructure of bone can be represented throughout three scale levels where different repetitive structural units or building blocks are found: at the first level, collagen molecules are arranged in a pentameric structure where mineral crystals grow in specific sites. This primary bone structure constitutes the mineralized collagen microfibril. A structural organization of inter-digitating microfibrils forms the mineralized collagen fibril which represents the second scale level. The third scale level corresponds to the mineralized collagen fibre which is composed by the binding of fibrils. The hierarchical nature of the bone tissue is largely responsible of their significant mechanical properties; consequently, this is a current outstanding research topic. Scarce works in literature correlates the elastic properties in the three scale levels at the bone nanoscale. The main goal of this work is to estimate the elastic properties of the bone tissue in a multiscale approach including a sensitivity analysis of the elastic behaviour at each length scale. This proposal is achieved by means of a novel hybrid multiscale modelling that involves neural network (NN) computations and finite elements method (FEM) analysis. The elastic properties are estimated using a neural network simulation that previously has been trained with the database results of the finite element models. In the results of this work, parametric analysis and averaged elastic constants for each length scale are provided. Likewise, the influence of the elastic constants of the tissue constituents is also depicted. Results highlight
Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis.
Berger, S D; McGruer, N E; Adams, G G
2015-04-17
One of the most important methods for selective and repeatable assembly of carbon nanotubes (CNTs) is alternating current dielectrophoresis (DEP). This method has been demonstrated experimentally as a viable technique for nano-scale manufacturing of novel CNT based devices. Previous numerical analyses have studied the motion of nanotubes, the volume from which they are assembled, and the rate of assembly, but have been restricted by various simplifying assumptions. In this paper we present a method for simulating the motion and behavior of CNTs subjected to dielectrophoresis using a three-dimensional electrostatic finite element analysis. By including the CNT in the finite element model, we can accurately predict the effect of the CNT on the electric field and the resulting force distribution across the CNT can be determined. We have used this information to calculate the motion of CNTs assembling onto the electrodes, and show how they tend to move towards the center of an electrode and come into contact at highly skewed angles. Our analysis suggests that the CNTs move to the electrode gap only after initially contacting the electrodes. We have also developed a model of the elastic deformation of CNTs as they approach the electrodes demonstrating how the induced forces can significantly alter the CNT shape during assembly. These results show that the CNT does not behave as a rigid body when in close proximity to the electrodes. In the future this method can be applied to a variety of real electrode geometries on a case-by-case basis and will provide more detailed insight into the specific motion and assembly parameters necessary for effective DEP assembly. PMID:25804394
Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis
NASA Astrophysics Data System (ADS)
Berger, S. D.; McGruer, N. E.; Adams, G. G.
2015-04-01
One of the most important methods for selective and repeatable assembly of carbon nanotubes (CNTs) is alternating current dielectrophoresis (DEP). This method has been demonstrated experimentally as a viable technique for nano-scale manufacturing of novel CNT based devices. Previous numerical analyses have studied the motion of nanotubes, the volume from which they are assembled, and the rate of assembly, but have been restricted by various simplifying assumptions. In this paper we present a method for simulating the motion and behavior of CNTs subjected to dielectrophoresis using a three-dimensional electrostatic finite element analysis. By including the CNT in the finite element model, we can accurately predict the effect of the CNT on the electric field and the resulting force distribution across the CNT can be determined. We have used this information to calculate the motion of CNTs assembling onto the electrodes, and show how they tend to move towards the center of an electrode and come into contact at highly skewed angles. Our analysis suggests that the CNTs move to the electrode gap only after initially contacting the electrodes. We have also developed a model of the elastic deformation of CNTs as they approach the electrodes demonstrating how the induced forces can significantly alter the CNT shape during assembly. These results show that the CNT does not behave as a rigid body when in close proximity to the electrodes. In the future this method can be applied to a variety of real electrode geometries on a case-by-case basis and will provide more detailed insight into the specific motion and assembly parameters necessary for effective DEP assembly.
Finite Element Modeling to Simulate the Elasto-Plastic Behavior of Polycrystalline in 718
NASA Astrophysics Data System (ADS)
Bonifaz, E. A.
2013-01-01
A 3D strain gradient plasticity finite element model was developed to simulate the elasto-plastic behavior of polycrystalline IN 718 alloys. The proposed model constructed in the basis of the so-called Kocks-Mecking model is used to determine the influence of microstructure attributes on the inelastic stress-strain distribution. Representative Volume Elements (RVEs) of different edge size but similar grain morphology and affordable computational meshes were tested to investigate the link between micro and macro variables of deformation and stress. The virtual specimens subjected to continuous monotonic straining loading conditions were constrained with random periodic boundary conditions. The difference in crystallographic orientation (which evolves in the process of straining) and the incompatibility of deformation between neighboring grains were accounted by the introduction of averaged Taylor factors and the evolution of geometrically necessary dislocation density. The effect of plastic deformation gradients imposed by the microstructure is clearly observed. Results demonstrate a strong dependence of flow stress and plastic strain on phase type and grain size. A main strategy for constitutive modeling of individual bulk grains is presented. The influence of the grain size on the aggregate response, in terms of local stress variations and aggregate elastic moduli was analyzed. It was observed that the elastic modulus in the bulk material is not dependent on grain size.
Finite element simulation for damage detection of surface rust in steel rebars using elastic waves
NASA Astrophysics Data System (ADS)
Tang, Qixiang; Yu, Tzuyang
2016-04-01
Steel rebar corrosion reduces the integrity and service life of reinforced concrete (RC) structures and causes their gradual and sudden failures. Early stage detection of steel rebar corrosion can improve the efficiency of routine maintenance and prevent sudden failures from happening. In this paper, detecting the presence of surface rust in steel rebars is investigated by the finite element method (FEM) using surface-generated elastic waves. Simulated wave propagation mimics the sensing scheme of a fiber optic acoustic generator mounted on the surface of steel rebars. Formation of surface rust in steel rebars is modeled by changing material's property at local elements. In this paper, various locations of a fiber optic acoustic transducer and a receiver were considered. Megahertz elastic waves were used and different sizes of surface rust were applied. Transient responses of surface displacement and pressure were studied. It is found that surface rust is most detectable when the rust location is between the transducer and the receiver. Displacement response of intact steel rebar is needed in order to obtain background-subtracted response with a better signal-to-noise ratio. When the size of surface rust increases, reduced amplitude in displacement was obtained by the receiver.
Simulation of two-phase flow through porous media using the finite-element method
Felton, G.K.
1987-01-01
A finite-element model of two-phase flow of air and water movement through porous media was developed. The formulation for radial flow used axisymmetric linear triangular elements. Due to the radial nature of the problem, a two-dimensional formulation was used to represent three-dimensional space. Governing equations were based on Darcy's equation and continuity. Air was treated as a compressible fluid by using the Ideal Gas Law. A gravity-driven saturated-flow problem was modeled and the predicted flow rate exactly matched the analytical solution. Comparisons of analytical and experimental results of one-phase radial and vertical flow were made in which capillary pressure distributions were almost exactly matched by the two-phase model (TPM). The effect of air compression on infiltration was simulated. It was concluded that the TPM modeled air compression and its inhibiting effect on infiltration even though air counter flow through the surface boundary was not permitted. The difficulty in describing the boundary conditions for air at a boundary where infiltration occurred was examined. The effect of erroneous input data for the soil moisture characteristic curve and the relative permeability curve was examined.
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
Valero, C; Navarro, B; Navajas, D; García-Aznar, J M
2016-09-01
The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments. PMID:27214690
Influence of lips on the production of vowels based on finite element simulations and experiments.
Arnela, Marc; Blandin, Rémi; Dabbaghchian, Saeed; Guasch, Oriol; Alías, Francesc; Pelorson, Xavier; Van Hirtum, Annemie; Engwall, Olov
2016-05-01
Three-dimensional (3-D) numerical approaches for voice production are currently being investigated and developed. Radiation losses produced when sound waves emanate from the mouth aperture are one of the key aspects to be modeled. When doing so, the lips are usually removed from the vocal tract geometry in order to impose a radiation impedance on a closed cross-section, which speeds up the numerical simulations compared to free-field radiation solutions. However, lips may play a significant role. In this work, the lips' effects on vowel sounds are investigated by using 3-D vocal tract geometries generated from magnetic resonance imaging. To this aim, two configurations for the vocal tract exit are considered: with lips and without lips. The acoustic behavior of each is analyzed and compared by means of time-domain finite element simulations that allow free-field wave propagation and experiments performed using 3-D-printed mechanical replicas. The results show that the lips should be included in order to correctly model vocal tract acoustics not only at high frequencies, as commonly accepted, but also in the low frequency range below 4 kHz, where plane wave propagation occurs. PMID:27250177
Shim, Sang Hoon; Jang, Jae-il; Pharr, George Mathews
2008-01-01
A method is presented for estimating the plastic flow behavior of single crystal silicon carbide by nanoindentation experiments using a series of triangular pyramidal indenters with different centerline-to-face angles (35.3?to 75?in this work) in combination with 2-dimensional axisymmetric finite element (FE) simulations. The method is based on Tabor's concepts of characteristic strain, e_char, and constraint factor, C_q, which allow indentation hardness values obtained with indenters of different angles to be related to the flow properties of the indented material. The procedure utilizes FE simulations applied in an iterative manner in order to establish the yield strength and work hardening exponent from the experimentally measured dependence of the hardness on indenter angle. The methodology is applied to a hard, brittle ceramic material, 6H SiC, whose flow behavior cannot be determined by conventional tension or compression testing. It is shown that the friction between the indenter and the material plays a significant role, especially for very sharp indenters.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong
2016-05-01
A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through {˜ }{O}(N^{1.6}) and {˜ }{O}(N) , respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong
2016-08-01
A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.
Constitutive modeling of aluminum foam and finite element implementation for crash simulations
NASA Astrophysics Data System (ADS)
Bi, Jing
In the past decades metallic foams have been increasingly used as filler materials in crashworthiness applications due to their relatively low cost and high capacity of energy absorption. Due to the destructive nature of crashes, studies on the performance of metallic foams using physical testing have been limited to examining the crushing force histories and/or folding patterns that are insufficient for crashworthiness designs. For this reason, numerical simulations, particularly nonlinear finite element (FE) analyses, play an important role in designing crashworthy foam-filled structures. An effective and numerically stable model is needed for modeling metallic foams that are porous and encounter large nonlinear deformations in crashes. In this study a new constitutive model for metallic foams is developed to overcome the deficiency of existing models in commercial FE codes such as LS-DYNA. The new constitutive model accounts for volume changes under hydrostatic compression and combines the hydrostatic pressure and von Mises stress into one yield function. The change of the compressibility of the metallic foam is handled in the constitutive model by allowing for shape changes of the yield surface in the hydrostatic pressure-von Mises stress space. The backward Euler method is adopted to integrate the constitutive equations to achieve numerical accuracy and stability. The new foam model is verified and validated by existing experimental data before used in FE simulations of crushing of foam-filled columns that have square and hexagonal cross-sections.
Zhang, Jingzhou; Niebur, Glen L.; Ovaert, Timothy C.
2009-01-01
Measurement of the mechanical properties of bone is important for estimating the stresses and strains exerted at the cellular level due to loading experienced on a macro-scale. Nano- and micro-mechanical properties of bone are also of interest to the pharmaceutical industry when drug therapies have intentional or non-intentional effects on bone mineral content and strength. The interactions that can occur between nano- and micro-indentation creep test condition parameters were considered in this study, and average hardness and elastic modulus were obtained as a function of indentation testing conditions (maximum load, load/unload rate, load-holding time, and indenter shape). The results suggest that bone reveals different mechanical properties when loading increases from the nano- to the micro-scale range (μN to N), which were measured using low- and high-load indentation testing systems. A four-parameter visco-elastic/plastic constitutive model was then applied to simulate the indentation load vs. depth response over both load ranges. Good agreement between the experimental data and finite element model was obtained when simulating the visco-elastic/plastic response of bone. The results highlight the complexity of bone as a biological tissue and the need to understand the impact of testing conditions on the measured results. PMID:17961578
An integrated finite element simulation of cardiomyocyte function based on triphasic theory
Hatano, Asuka; Okada, Jun-Ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo
2015-01-01
In numerical simulations of cardiac excitation-contraction coupling, the intracellular potential distribution and mobility of cytosol and ions have been mostly ignored. Although the intracellular potential gradient is small, during depolarization it can be a significant driving force for ion movement, and is comparable to diffusion in terms of net flux. Furthermore, fluid in the t-tubules is thought to advect ions to facilitate their exchange with the extracellular space. We extend our previous finite element model that was based on triphasic theory to examine the significance of these factors in cardiac physiology. Triphasic theory allows us to study the behavior of solids (proteins), fluids (cytosol) and ions governed by mechanics and electrochemistry in detailed subcellular structures, including myofibrils, mitochondria, the sarcoplasmic reticulum, membranes, and t-tubules. Our simulation results predicted an electrical potential gradient inside the t-tubules at the onset of depolarization, which corresponded to the Na+ channel distribution therein. Ejection and suction of fluid between the t-tubules and the extracellular compartment during isometric contraction were observed. We also examined the influence of t-tubule morphology and mitochondrial location on the electrophysiology and mechanics of the cardiomyocyte. Our results confirm that the t-tubule structure is important for synchrony of Ca2+ release, and suggest that mitochondria in the sub-sarcolemmal region might serve to cancel Ca2+ inflow through surface sarcolemma, thereby maintaining the intracellular Ca2+ environment in equilibrium. PMID:26539124
NASA Astrophysics Data System (ADS)
Luo, Juan; Kang, Guozheng; Shi, Mingxing
2013-01-01
A crystal plasticity based finite element model (i.e., FE model) is used in this paper to simulate the cyclic deformation of polycrystalline aluminum alloy plates. The Armstrong-Frederick nonlinear kinematic hardening rule is employed in the single crystal constitutive model to capture the Bauschinger effect and ratcheting of aluminum single crystal presented under the cyclic loading conditions. A simple model of latent hardening is used to consider the interaction of dislocations between different slipping systems. The proposed single crystal constitutive model is implemented numerically into a FE code, i.e., ABAQUS. Then, the proposed model is verified by comparing the simulated results of cyclic deformation with the corresponding experimental ones of a face-centered cubic polycrystalline metal, i.e., rolled 5083 aluminum alloy. In the meantime, it is shown that the model is capable of predicting local heterogeneous deformation in single crystal scale, which plays an important role in the macroscopic deformation of polycrystalline aggregates. Under the cyclic loading conditions, the effect of applied strain amplitude on the responded stress amplitude and the dependence of ratcheting strain on the applied stress level are reproduced reasonably.
NASA Astrophysics Data System (ADS)
Sharma, N. K.; Sehgal, D. K.; Pandey, R. K.
2014-10-01
Miniature specimen test technique provides a way of obtaining mechanical properties of components or structures while consuming an amount of material that is very small relative to that required for full-size conventional specimen. This technique is very helpful especially in the case of bone mechanics as bone properties are heterogeneous and anisotropic in nature and it is difficult to obtain standard size of specimen for mechanical testing. In the present study an effort is made to simulate punch specimen setup using mechanical properties of the cortical femur bone material for miniature specimen while considering its nature to be transversely isotropic. The samples were taken in both longitudinal as well as transverse direction. The various load displacement curves and contour profiles obtained for different thicknesses of the miniature specimen using finite element simulation were compared with each other. The values of load at breakaway point were obtained for different cases of miniature specimen. It is anticipated that these values can be further used to evaluate yield strength of the bone material in different cases.
An integrated finite element simulation of cardiomyocyte function based on triphasic theory.
Hatano, Asuka; Okada, Jun-Ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo
2015-01-01
In numerical simulations of cardiac excitation-contraction coupling, the intracellular potential distribution and mobility of cytosol and ions have been mostly ignored. Although the intracellular potential gradient is small, during depolarization it can be a significant driving force for ion movement, and is comparable to diffusion in terms of net flux. Furthermore, fluid in the t-tubules is thought to advect ions to facilitate their exchange with the extracellular space. We extend our previous finite element model that was based on triphasic theory to examine the significance of these factors in cardiac physiology. Triphasic theory allows us to study the behavior of solids (proteins), fluids (cytosol) and ions governed by mechanics and electrochemistry in detailed subcellular structures, including myofibrils, mitochondria, the sarcoplasmic reticulum, membranes, and t-tubules. Our simulation results predicted an electrical potential gradient inside the t-tubules at the onset of depolarization, which corresponded to the Na(+) channel distribution therein. Ejection and suction of fluid between the t-tubules and the extracellular compartment during isometric contraction were observed. We also examined the influence of t-tubule morphology and mitochondrial location on the electrophysiology and mechanics of the cardiomyocyte. Our results confirm that the t-tubule structure is important for synchrony of Ca(2+) release, and suggest that mitochondria in the sub-sarcolemmal region might serve to cancel Ca(2+) inflow through surface sarcolemma, thereby maintaining the intracellular Ca(2+) environment in equilibrium. PMID:26539124
Schmidt, Sebastian; Hudde, Herbert
2009-06-01
Acoustic impedances measured at the entrance of the ear canal provide information on both the ear canal geometry and the terminating impedance at the eardrum, in principle. However, practical experience reveals that measured results in the audio frequency range up to 20 kHz are frequently not very accurate. Measurement methods successfully tested in artificial tubes with varying area functions often fail when applied to real ear canals. The origin of these errors is investigated in this paper. To avoid mixing of systematical and other errors, no real measurements are performed. Instead finite element simulations focusing on the coupling between a connecting tube and the ear canal are regarded without simulating a particular measuring method in detail. It turns out that realistic coupling between the connecting tube and the ear canal causes characteristic shifts of the frequencies of measured pressure minima and maxima. The errors in minima mainly depend on the extent of the area discontinuity arising at the interface; the errors in maxima are determined by the alignment of the tube with respect to the ear canal. In summary, impedance measurements using coupling tubes appear questionable beyond 3 kHz. PMID:19507964
NASA Astrophysics Data System (ADS)
Riedlbauer, Daniel; Steinmann, Paul; Mergheim, Julia
2014-07-01
The present contribution is concerned with the macroscopic modelling of the selective electron beam melting process by using the finite element method. The modelling and simulation of the selective electron beam melting process involves various challenges: complex material behaviour, phase changes, thermomechanical coupling, high temperature gradients, different time and length scales etc. The present contribution focuses on performance considerations of solution approaches for thermomechanically coupled problems, i.e. the monolithic and the adiabatic split approach. The material model is restricted to nonlinear thermoelasticity with temperature-dependent material parameters. As a numerical example a straight scanning path is simulated, the predicted temperatures and stresses are analysed and the performance of the two algorithms is compared. The adiabatic split approach turned out to be much more efficient for linear thermomechanical problems, i.e. the solution time is three times less than with the monolithic approach. For nonlinear problems, stability issues necessitated the use of the Euler backward integration scheme, and therefore, the adiabatic split approach required small time steps for reasonable accuracy. Thus, for nonlinear problems and in combination with the Euler backward integration scheme, the monolithic solver turned out to be more efficient.
Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements
Jun-Youl Lee
2003-05-31
Magnetic particle inspection (MPI) is a widely used nondestructive inspection method for aerospace applications essentially limited to experiment-based approaches. The analysis of MPI characteristics that affect sensitivity and reliability contributes not only reductions in inspection design cost and time but also improvement of analysis of experimental data. Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a magnetic field source, which produces a magnetic field gradient large enough to detect a defect in a test sample or component, is an important factor in magnetic particle inspection. In this work a finite element method (FEM) has been employed for numerical calculation of the MPI simulation technique. The FEM method is known to be suitable for complicated geometries such as defects in samples. This thesis describes the research that is aimed at providing a quantitative scientific basis for magnetic particle inspection. A new FEM solver for MPI simulation has been developed in this research for not only nonlinear reversible permeability materials but also irreversible hysteresis materials that are described by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic properties in this research (i.e., the magnetic properties of the material are identical in all directions in a single crystal). In the research, with a direct current field mode, an MPI situation has been simulated to measure the estimated volume of magnetic particles around defect sites before and after removing any external current fields. Currently, this new MPI simulation package is limited to solving problems with the single current source from either a solenoid or an axial directional current rod.
Three-dimensional finite element simulations of vertebral body thermal treatment (Invited Paper)
NASA Astrophysics Data System (ADS)
Ryan, Thomas P.; Patel, Samit J.; Morris, Ronit; Hoopes, P. J.; Bergeron, Jeffrey A.; Mahajan, Roop
2005-04-01
Lower back pain affects a large group of people worldwide and when in its early stages, has no viable interventional treatment. In order to avoid the eventuality of an invasive surgical procedure, which is further down the Care Pathway, an interventional treatment that is minimally invasive and arrests the patient's pain would be of tremendous clinical benefit. There is a hypothesis that if the basivertebral nerve in the vertebral body is defunctionalized, lower back pain may be lessened. To further investigate creating a means to provide localized thermal therapy, bench and animal studies were planned, but to help select the applicator configuration and placement, numerical modeling studies were undertaken. A 3D finite element model was utilized to predict the electric field pattern and power deposition pattern of radiofrequency (RF) based electrodes. Three types of tissues were modeled: 1) porcine (ex-vivo), ovine (in-vivo preclinical), and 3) human (ex-vivo, in-vivo). Two types of RF devices were simulated: 1) a pair of converging, hollow electrodes, and 2) an in-line pair of spaced-apart electrodes. Temperature distributions over time were plotted using the electric field results and the bioheat equation. Since the thermal and electrical properties of the vertebral bodies of porcine, ovine, and human tissue were not available, measurements were undertaken to capture these data to input into the model. The measurements of electrical and thermal properties of cancellous and cortical vertebral body were made over a range of temperatures. The simulation temperature results agreed with live animal and human cadaver studies. In addition, the lesion shapes predicted in the simulations matched CT and MRI studies done during the chronic ovine study, as well as histology results. In conclusion, the simulations aided in shaping and sizing the RF electrodes, as well as positioning them in the vertebral body structures to assure that the basivertebral nerve was ablated, but
NASA Astrophysics Data System (ADS)
Xuan, Yue
Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of
NASA Astrophysics Data System (ADS)
Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.
2015-12-01
Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.
Simulation of wind effects on tall structures by finite element method
NASA Astrophysics Data System (ADS)
Ebrahimi, Masood
2015-07-01
In the present study finite element method is used to predict the wind forces on a tall structure. The governing equations of mass and momentum with boundary conditions are solved. The κ-ɛ turbulence model is utilized to calculate the turbulence viscosity. The results are independent from the generated mesh. The numerical results are validated with American Society of Civil Engineering standards.
Simulation of wind effects on tall structures by finite element method
NASA Astrophysics Data System (ADS)
Ebrahimi, Masood
2016-06-01
In the present study finite element method is used to predict the wind forces on a tall structure. The governing equations of mass and momentum with boundary conditions are solved. The κ- ɛ turbulence model is utilized to calculate the turbulence viscosity. The results are independent from the generated mesh. The numerical results are validated with American Society of Civil Engineering standards.
NASA Astrophysics Data System (ADS)
Prévost, Jean H.; Sukumar, N.
2016-01-01
Faults are geological entities with thicknesses several orders of magnitude smaller than the grid blocks typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we consider the strong-coupling of solid displacement and fluid pressure in a three-dimensional poro-mechanical (reservoir-geomechanical) model. We introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). For internal fluid flow conduits, the continuous fluid pressure approximation admits a discontinuity in its normal derivative across the fault, whereas for an impermeable fault, the pressure approximation is discontinuous across the fault. Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.
NASA Astrophysics Data System (ADS)
Hála, Jindřich; Luxa, Martin; Bublík, Ondřej; Prausová, Helena; Vimmr, Jan
2016-03-01
In the present paper, new results of measurements of the compressible viscous fluid flow in narrow channels with parallel walls under the conditions of aerodynamic choking are presented. Investigation was carried out using the improved test section with enhanced capability to accurately set the parallelism of the channel walls. The measurements were performed for the channels of the dimensions: length 100 mm, width 100 mm and for various heights in the range from 0.5 mm to 4 mm. The results in the form of distribution of the static pressure along the channel axis including the detailed study of the influence of the deviation from parallelism of the channel walls are compared with previous measurements and with numerical simulations performed using an in-house code based on Favre averaged system of Navier-Stokes equations completed with turbulence model of Spalart and Allmaras and a modification of production term according to Langtry and Sjolander. The spatial discretization of the governing equations is performed using the discontinuous Galerkin finite element method which ensures high order spatial accuracy of the numerical solution.
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC
2009-06-19
Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.
Large-eddy simulation of turbulent flow using the finite element method
McCallen, R.C.
1995-02-15
The equations of motion describing turbulent flows (in both the low and high Reynolds-number regimes) are well established. However, present day computers cannot meet the enormous computational requirement for numerically solving the governing equations for common engineering flows in the high Reynolds number turbulent regime. The characteristics that make turbulent, high Reynolds number flows difficult to simulate is the extreme range of time and space scales of motion. Most current engineering calculations are performed using semi-empirical equations, developed in terms of the flow mean (average) properties. These turbulence{open_quote} models{close_quote} (semi-empirical/analytical approximations) do not explicitly account for the eddy structures and thus, the temporal and spatial flow fluctuations are not resolved. In these averaging approaches, it is necessary to approximate all the turbulent structures using semi-empirical relations, and as a result, the turbulence models must be tailored for specific flow conditions and geometries with parameters obtained (usually) from physical experiments. The motivation for this research is the development of a finite element turbulence modeling approach which will ultimately be used to predict the wind flow around buildings. Accurate turbulence models of building flow are needed to predict the dispersion of airborne pollutants. The building flow turbulence models used today are not capable of predicting the three-dimensional separating and reattaching flows without the manipulation of many empirical parameters. These empirical parameters must be set by experimental data and they may vary unpredictably with building geometry, building orientation, and upstream flow conditions.
Finite element simulation of cell-substrate decohesion by laser-induced stress waves.
Miller, Phillip; Hu, Lili; Wang, Junlan
2010-04-01
Fundamental to the development and application of biomedical devices is an understanding of the adhesion of cells to substrates. There are many experimental techniques and papers dedicated to the study of cell adhesion. This work aims to elucidate on the cell detachment mechanism in a recently reported cell adhesion measurement experiment by laser-induced stress wave technique. In the experiment the absorption of an Nd:YAG laser pulse generates a stress wave of nanoseconds duration that interacts with and detaches the cell adhered to a Si substrate. Due to the ultra-short timescale involved in the experiment, details of the detachment process were not readily observable. In this work, dynamic finite element method is used to simulate the cell-substrate decohesion process under the laser-induced stress wave loading. The results show that the combined effect of nanosecond stress wave pulse and the specific cell geometry results in a complex stress-strain state along the cell-substrate interface. The principal failure mechanism is large interfacial strains realized from the cell's tendency to spread and elongate on the substrate as a result of substrate acceleration. The cells behave like a soft elastic solid during the detachment process due to the large difference between their characteristic response time and the ultra-short duration of the applied stress wave. Evolution of the cell geometry from hydrophobic to hydrophilic contact results in the same detachment process. PMID:20142111
Valero, C; Javierre, E; García-Aznar, J M; Gómez-Benito, M J
2014-06-01
Wound healing is a process driven by biochemical and mechanical variables in which a new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work, we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Because of the regularity of this morphology, we approximate the evolution of the wound through its cross section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem; while allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction, we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the nonlinear problem, we use the finite element method (FEM) and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds. PMID:24443355
Regional electric field induced by electroconvulsive therapy: a finite element simulation study.
Lee, Won Hee; Deng, Zhi-De; Kim, Tae-Seong; Laine, Andrew F; Lisanby, Sarah H; Peterchev, Angel V
2010-01-01
The goal of this study is to investigate the regional distribution of the electric field (E-field) strength induced by electroconvulsive therapy (ECT), and to contrast clinically relevant electrode configurations through finite element (FE) analysis. An FE human head model incorporating tissue heterogeneity and white matter anisotropy was generated based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI (DT-MRI) data. We simulated the E-field spatial distributions of three standard ECT electrode placements [bilateral (BL), bifrontal (BF), and right unilateral (RUL)] and an investigational electrode configuration [focal electrically administered seizure therapy (FEAST)]. A quantitative comparison of the E-field strength was subsequently carried out in various brain regions of interests (ROIs) that have putative role in the therapeutic action and/or adverse side effects of ECT. This study illustrates how the realistic FE head model provides quantitative insight in the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation paradigms with improved risk/benefit ratio. PMID:21096148
NASA Astrophysics Data System (ADS)
Zhu, JianGuo; Chen, Wei; Xie, HuiMin
2015-03-01
Thermal barrier coating (TBC) systems are widely used in industrial gas-turbine engines. However, premature failures have impaired the use of TBCs and cut down their lifetime, which requires a better understanding of their failure mechanisms. In the present study, experimental studies of isothermal cycling are firstly carried out with the observation and estimation of microstructures. According to the experimental results, a finite element model is established for the analysis of stress perpendicular to the TBC/BC interface. Detailed residual stress distributions in TBC are obtained to reflect the influence of mechanical properties, oxidation, and interfacial roughness. The calculated results show that the maximum tensile stress concentration appears at the peak of TBC and continues to increase with thermal cycles. Because of the microstructural characteristics of plasma-sprayed TBCs, cracks initialize in tensile stress concentration (TSC) regions at the peaks of TBC and propagate along the TBC/BC interface resulting in the spallation of TBC. Also, the inclusion of creep is crucial to failure prediction and is more important than the inclusion of sintering in the simulation.
3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel
NASA Astrophysics Data System (ADS)
Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi
2015-09-01
Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.
MRI-based finite element simulation on radiofrequency ablation of thyroid cancer.
Jin, Chao; He, Zhizhu; Liu, Jing
2014-02-01
In order to provide a quantitative disclosure on the RFA (radiofrequency ablation)-induced thermal ablation effects within thyroid tissues, this paper has developed a three-dimensional finite element simulation strategy based on a MRI (magnetic resonance imaging)-reconstructed model. The thermal lesion's growth was predicted and interpreted under two treatment conditions, i.e. single-cooled-electrode modality and two-cooled-electrode system. The results show that the thermal lesion's growth is significantly affected by two factors including the position of RF electrode and thermal-physiological behavior of the breathing airflow. Additional parametric studies revealed several valuable phenomena, e.g. with the electrode's movement, thermal injury with varying severity would happen to the trachea wall. Besides, the changes in airflow mass produced evident effects on the total heat flux of thyroid surface, while the changes in breathing frequency only generated minor effects that can be ignored. The present study provided a better understanding on the thermal lesions of RFA within thyroid domain, which will help guide future treatment of the thyroid cancer. PMID:24411316
Pomwenger, Werner; Entacher, Karl; Resch, Herbert; Schuller-Götzburg, Peter
2015-09-01
This study investigates the mechanical behaviour of keeled and pegged implant designs used in shoulder arthroplasty for the first time using multiple 3D models. Thus, this study should provide valuable insights into the preferable use of either of these two controversial implant designs. Three-dimensional models of a scapula were derived from the CT scans of five patients, and an inter-patient-specific finite element analysis with special attention to bone density and boundary conditions was carried out. A distinct decrease in the investigated parameters was evident with the pegged implant in all of the patients, specifically for the implant and the bone cement. The relevance of the stress reduction within the bone is minor, whereas the reduction in the stress of the bone cement contributes to an increase in the bone cement survival. The particular construction of the pegged implant provides better stability and therefore supports bone ingrowth. The large variations between the patients show the necessity of patient-specific simulations and the use of multiple models to derive valuable results. In the conducted inter-patient-specific FEA, the pegged glenoid implants were found to exhibit superior behaviour compared with keeled implants. The results confirm the general clinical findings and demonstrate the FEA as a valuable tool in prosthetic and orthopaedic problems. PMID:25850981
Finite element-based force/moment-driven simulation of orthodontic tooth movement.
Geiger, M
2013-01-01
The objectives of this study were to develop a numerically controlled experimental set-up to predict the movement caused by the force systems of orthodontic devices and to experimentally verify this system. The presented experimental set-up incorporated an artificial tooth fixed via a 3D force/moment sensor to a parallel kinematics robot. An algorithm determining the initial movement of the tooth in its elastic embedding controlled the set-up. The initial tooth movement was described by constant compliances. The constants were obtained prior to the experiment in a parameterised finite element (FE) study on the basis of a validated FE model of a human molar. The long-term tooth movement was assembled by adding up a multiple of incremental steps of initial tooth movements. A pure translational movement of the tooth of about 8 mm resulted for a moment to force ratio of - 8.85 mm, corresponding to the distance between the bracket and the centre of resistance. The correct behaviour of this linear elastic model in its symmetry plane allows for simulating single tooth movement induced by orthodontic devices. PMID:22292517
2006-03-08
MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less
Stress Recovery Based h-Adaptive Finite Element Simulation of Sheet Forming Operations
NASA Astrophysics Data System (ADS)
Ahmed, Mohd.; Singh, Devinder
2016-05-01
In the present work, stress recovery techniques based adaptive finite element analysis of sheet forming operations is presented. An adaptive two dimensional finite element computer code allows the analysis of sheet forming operations and results in distribution of adaptively refined mesh, effective strain, and punch load, stress and strain rate tensor in the domain that has been developed. The recovery scheme for determining more accurate stress field is based on the least squares fitting of the computed stresses in an element patch surrounding and including a particular node. The solution error is estimated on the basis of an energy norm. It is shown with the help of an illustrative example of axi-symmetric stretching of a metal blank by a hemispherical punch that the adaptive analysis may be usefully employed to predict accurately deformation process, the seats of large deformations and locations of possible instability.
Stress Recovery Based h-Adaptive Finite Element Simulation of Sheet Forming Operations
NASA Astrophysics Data System (ADS)
Ahmed, Mohd.; Singh, Devinder
2016-07-01
In the present work, stress recovery techniques based adaptive finite element analysis of sheet forming operations is presented. An adaptive two dimensional finite element computer code allows the analysis of sheet forming operations and results in distribution of adaptively refined mesh, effective strain, and punch load, stress and strain rate tensor in the domain that has been developed. The recovery scheme for determining more accurate stress field is based on the least squares fitting of the computed stresses in an element patch surrounding and including a particular node. The solution error is estimated on the basis of an energy norm. It is shown with the help of an illustrative example of axi-symmetric stretching of a metal blank by a hemispherical punch that the adaptive analysis may be usefully employed to predict accurately deformation process, the seats of large deformations and locations of possible instability.
Subramanian, Swetha; Mast, T Douglas
2015-10-01
Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature. PMID:26352462
NASA Astrophysics Data System (ADS)
Subramanian, Swetha; Mast, T. Douglas
2015-09-01
Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.
Finite element methods in numerical relativity.
NASA Astrophysics Data System (ADS)
Mann, P. J.
The finite element method is very successful in Newtonian fluid simulations, and can be extended to relativitstic fluid flows. This paper describes the general method, and then outlines some preliminary results for spherically symmetric geometries. The mixed finite element - finite difference scheme is introduced, and used for the description of spherically symmetric collapse. Baker's (Newtonian) shock modelling method and Miller's moving finite element method are also mentioned. Collapse in double-null coordinates requires non-constant time slicing, so the full finite element method in space and time is described.
Simulating hydroplaning of submarine landslides by quasi 3D depth averaged finite element method
NASA Astrophysics Data System (ADS)
De Blasio, Fabio; Battista Crosta, Giovanni
2014-05-01
G.B. Crosta, H. J. Chen, and F.V. De Blasio Dept. Of Earth and Environmental Sciences, Università degli Studi di Milano Bicocca, Milano, Italy Klohn Crippen Berger, Calgary, Canada Subaqueous debris flows/submarine landslides, both in the open ocean as well as in fresh waters, exhibit extremely high mobility, quantified by a ratio between vertical to horizontal displacement of the order 0.01 or even much less. It is possible to simulate subaqueous debris flows with small-scale experiments along a flume or a pool using a cohesive mixture of clay and sand. The results have shown a strong enhancement of runout and velocity compared to the case in which the same debris flow travels without water, and have indicated hydroplaning as a possible explanation (Mohrig et al. 1998). Hydroplaning is started when the snout of the debris flow travels sufficiently fast. This generates lift forces on the front of the debris flow exceeding the self-weight of the sediment, which so begins to travel detached from the bed, literally hovering instead of flowing. Clearly, the resistance to flow plummets because drag stress against water is much smaller than the shear strength of the material. The consequence is a dramatic increase of the debris flow speed and runout. Does the process occur also for subaqueous landslides and debris flows in the ocean, something twelve orders of magnitude larger than the experimental ones? Obviously, no experiment will ever be capable to replicate this size, one needs to rely on numerical simulations. Results extending a depth-integrated numerical model for debris flows (Imran et al., 2001) indicate that hydroplaning is possible (De Blasio et al., 2004), but more should be done especially with alternative numerical methodologies. In this work, finite element methods are used to simulate hydroplaning using the code MADflow (Chen, 2014) adopting a depth averaged solution. We ran some simulations on the small scale of the laboratory experiments, and secondly
Simulation of natural convection in a rectangular loop using finite elements
Pepper, D W; Hamm, L L; Kehoe, A B
1984-01-01
A two-dimensional finite-element analysis of natural convection in a rectangular loop is presented. A psi-omega formulation of the Boussinesque approximation to the Navier-Stokes equation is solved by the false transient technique. Streamlines and isotherms at Ra = 10/sup 4/ are shown for three different modes of heating. The results indicate that corner effects should be considered when modeling flow patterns in thermosyphons.
The assignment of velocity profiles in finite element simulations of pulsatile flow in arteries.
Redaelli, A; Boschetti, F; Inzoli, F
1997-05-01
In this paper we present a new method for the assignment of pulsatile velocity profiles as input boundary conditions in finite element models of arteries. The method is based on the implementation of the analytical solution for developed pulsatile flow in a rigid straight tube. The analytical solution provides the fluid dynamics of the region upstream from the fluid domain to be investigated by means of the finite element approach. In standard fluid dynamics finite element applications, the inlet developed velocity profiles are achieved assuming velocity boundary conditions to be easily implementable-such as flat or parabolic velocity profiles-applied to a straight tube of appropriate length. The tube is attached to the inflow section of the original fluid domain so that the flow can develop fully. The comparison between the analytical solution and the traditional numerical approach indicates that the analytical solution has some advantages over the numerical one. Moreover, the results suggest that subroutine employment allows a consistent reduction in solving time especially for complex fluid dynamic model, and significantly decreases the storage and memory requirements for computations. PMID:9215485
Tan, L B; Webb, D C; Kormi, K; Al-Hassani, S T
2001-03-01
The proliferation of stent designs poses difficult problems to clinicians, who have to learn the relative merits of all stents to ensure optimal selection for each lesion, and also to regulatory authorities who have the dilemma of preventing the inappropriate marketing of substandard stents while not denying patients the benefits of advanced technology. Of the major factors influencing long-term results, those of patency and restenosis are being actively studied whereas the mechanical characteristics of devices influencing the technical results of stenting remain under-investigated. Each different stent design has its own particular features. A robust method for the independent objective comparison of the mechanical performance of each design is required. To do this by experimental measurement alone may be prohibitively expensive. A less costly option is to combine computer analysis, employing the standard numerical technique of the finite element method (FEM), with targeted experimental measurements of the specific mechanical behaviour of stents. In this paper the FEM technique is used to investigate the structural behaviour of two different stent geometries: Freedom stent geometry and Palmaz-Schatz (P-S) stent geometry. The effects of altering the stent geometry, the stent wire diameter and contact with (and material properties of) a hard eccentric intravascular lesion (simulating a calcified plaque) on stent mechanical performance were investigated. Increasing the wire diameter and the arterial elastic modulus by 150% results in the need to increase the balloon pressure to expand the stent by 10-fold. Increasing the number of circumferential convolutions increases the pressure required to initiate radial expansion of mounted stents. An incompressible plaque impinging on the mid portion of a stent causes a gross distortion of the Freedom stent and an hour-glass deformity in the P-S stent. These findings are of relevance for future comparative studies of the
2005-05-07
CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less
2005-06-26
Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less
NASA Astrophysics Data System (ADS)
Wong, T.; Sun, W.
2012-12-01
Microcomputed tomography can be used to characterize the geometry of the pore space of a sedimentary rock, with resolution that is sufficiently refined for the realistic simulation of physical properties based on the 3D image. Significant advances have been made on the characterization of pore size distribution and connectivity, development of techniques such as lattice Boltzmann method to simulate permeability, and its upscaling. Sun, Andrade and Rudnicki (2011) recently introduced a multiscale method that dynamically links these three aspects, which were often treated separately in previous computational schemes. In this study, we improve the efficiency of this multiscale method by introducing a flood-fill algorithm to determine connectivity of the pores, followed by a multiscale lattice Boltzmann/finite element calculation to obtain homogenized effective anisotropic permeability. The improved multiscale method also includes new capacity to consistently determine electrical conductivity and formation factor from CT images. Furthermore, we also introduce a level set based method that transforms pore geometry to finite element mesh and thus enables direct simulation of pore-scale flow with finite element method. When applied to the microCT data acquired by Lindquist et al. (2000) for four Fontainebleau sandstone samples with porosities ranging from 7.5% to 22%, this multiscale method has proved to be computationally efficient and our simulations has provided new insights into the relation among permeability, pore geometry and connectivity.
NASA Astrophysics Data System (ADS)
Rouhi, S.; Alizadeh, Y.; Ansari, R.; Aryayi, M.
2015-09-01
Molecular dynamics simulations are used to study the mechanical behavior of single-walled carbon nanotube reinforced composites. Polyethylene and polyketone are selected as the polymer matrices. The effects of nanotube atomic structure and diameter on the mechanical properties of polymer matrix nanocomposites are investigated. It is shown that although adding nanotube to the polymer matrix raises the longitudinal elastic modulus significantly, the transverse tensile and shear moduli do not experience important change. As the previous finite element models could not be used for polymer matrices with the atom types other than carbon, molecular dynamics simulations are used to propose a finite element model which can be used for any polymer matrices. It is shown that this model can predict Young’s modulus with an acceptable accuracy.
NASA Technical Reports Server (NTRS)
Tabiei, Al; Lawrence, Charles; Fasanella, Edwin L.
2009-01-01
A series of crash tests were conducted with dummies during simulated Orion crew module landings at the Wright-Patterson Air Force Base. These tests consisted of several crew configurations with and without astronaut suits. Some test results were collected and are presented. In addition, finite element models of the tests were developed and are presented. The finite element models were validated using the experimental data, and the test responses were compared with the computed results. Occupant crash data, such as forces, moments, and accelerations, were collected from the simulations and compared with injury criteria to assess occupant survivability and injury. Some of the injury criteria published in the literature is summarized for completeness. These criteria were used to determine potential injury during crew impact events.
Joun, M.S.; Moon, H.K.; Shivpuri, R.
1998-10-01
A fully automatic forging simulation technique in hot-former forging is presented in this paper. A rigid-thermoviscoplastic finite element method is employed together with automatic simulation techniques. A realistic analysis model of the hot-former forging processes is given with emphasis on thermal analysis and simulation automation. The whole processes including forming, dwelling, ejecting, and transferring are considered in the analysis model and various cooling conditions are embedded in the analysis model. The approach is applied to a sequence of three-stage hot former forging process. Nonisothermal analysis results are compared with isothermal ones and the effect of heat transfer on predicted metal flows is discussed.
Edge-based finite element approach to the simulation of geoelectromagnetic induction in a 3-D sphere
NASA Astrophysics Data System (ADS)
Yoshimura, Ryokei; Oshiman, Naoto
2002-02-01
We present a new simulator based on an edge-based finite element method (FEM) for computing the global-scale electromagnetic (EM) induction responses in a 3-D conducting sphere excited by an external source current for a variety of frequencies. The formulation is in terms of the magnetic vector potential. The edge-element approach assigns the degrees of freedom to the edges rather than to the nodes of the element. This edge-element strictly satisfies the discontinuity of the normal boundary conditions without considering the enforced normal boundary conditions that are usually practiced in a node-based FEM. To verify our simulation code, we compare our results with those of other solvers for two test computations, corresponding to azimuthally symmetric and asymmetric models. The results are in good agreement with one another.
Simulation of Sonic IR Imaging of Cracks in Metals with Finite Element Models
Han Xiaoyan; Islam, Md. Sarwar; Favro, L. D.; Newaz, G. M.; Thomas, R. L.
2006-03-06
It has been previously shown experimentally that the use of chaotic sound, instead of a pure frequency, greatly enhances the heating, and hence the detectability of cracks using sonic infrared imaging (SIR). In this paper we show an example of the enhancement of crack heating through the use of chaotic sound. We also present the results of a finite element calculation, in which chaotic sound occurs spontaneously. This modeling confirms the experimental result that chaotic sound is more efficient than non-chaotic sound excitation for heating the cracks.
Finite Element Simulation of Mechanical Behaviors of Coronary Stent in a Vessel with Plaque
NASA Astrophysics Data System (ADS)
Imani, M.; Hojjati, M. H.; Eshghi, N.; Goudarzi, A. M.
2011-12-01
The paper presents results of the finite element analysis of a coronary stent used in a treatment of blood vessel stenosis. This analysis is an efficient way to modify the design of stent and its performance. The work focuses on the Medtronic AVE Modular stent S7. A nonlinear model that contains balloon, stent, and vessel with plaque was used. A bi-linear elasto-plastic material model for stent and hyper-elastic material models for balloon, artery, and plaque were assumed for material modeling. Stress distribution, outer diameter changes and bending behavior were investigated.
Method and apparatus for connecting finite element meshes and performing simulations therewith
Dohrmann, Clark R.; Key, Samuel W.; Heinstein, Martin W.
2003-05-06
The present invention provides a method of connecting dissimilar finite element meshes. A first mesh, designated the master mesh, and a second mesh, designated the slave mesh, each have interface surfaces proximal the other. Each interface surface has a corresponding interface mesh comprising a plurality of interface nodes. Each slave interface node is assigned new coordinates locating the interface node on the interface surface of the master mesh. The slave interface surface is further redefined to be the projection of the slave interface mesh onto the master interface surface.
NASA Astrophysics Data System (ADS)
Unverzagt, Carsten; Henning, Bernd
2012-05-01
For many applications like level measurement and industry robotics it is of advantage if the directional characteristic of an ultrasonic transducer is changeable or adaptable for the improvement of spatial resolution. Often this goal is reached with the use of ultrasonic transducer arrays, which elements are driven with phase shifted excitation signals. One disadvantage of these solutions is the great effort for building such an array and the multi-channel sensor electronics. In this contribution the directional characteristic of a single air transducer with segmented electrodes is analyzed. Therefore a variable script based finite element model is used to discover the influence of different electrode configurations on the directional characteristic of a single piezoceramic transducer. Especially the influence on the angle of beam and the near field length are evaluated. The used variable model permits an optimization of the configuration with regards to the mentioned criteria. The findings will be used for the development of a level measurement system for bulk solids.
Probabilistic fracture finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-01-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Lu, Benzhuo; Holst, Michael J.; McCammon, J. Andrew; Zhou, Y. C.
2010-01-01
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems. PMID:21709855
Simulations of singularity dynamics in liquid crystal flows: A C finite element approach
Lin Ping . E-mail: matlinp@nus.edu.sg; Liu Chun . E-mail: liu@math.psu.edu
2006-06-10
In this paper, we present a C finite element method for a 2a hydrodynamic liquid crystal model which is simpler than existing C {sup 1} element methods and mixed element formulation. The energy law is formally justified and the energy decay is used as a validation tool for our numerical computation. A splitting method combined with only a few fixed point iteration for the penalty term of the director field is applied to reduce the size of the stiffness matrix and to keep the stiffness matrix time-independent. The latter avoids solving a linear system at every time step and largely reduces the computational time, especially when direct linear system solvers are used. Our approach is verified by comparing its computational results with those obtained by C {sup 1} elements and by mixed formulation. Through numerical experiments of a few other splittings and explicit-implicit strategies, we recommend a fast and reliable algorithm for this model. A number of examples are computed to demonstrate the algorithm.
Shiomi, Masanori; Mori, Kenichiro; Osakada, Kozo
1995-12-31
Non-steady-state metal flow and temperature distribution in twin roll strip casting are simulated by the finite element method. In the present simulation, the viscoplastic finite element method is combined with that for heat conduction to calculate the metal flow and the temperature distribution during the casting process. The solid, mushy and liquid phases are assumed to be viscoplastic materials with individual flow stresses. In the temperature analysis, the latent heat due to solidification of the molten metal is taken into account by using the temperature recovery method. Since the metal flow and temperature distribution do not often attain to steady states, they are simulated by the stepwise calculation. To examine the accuracy of the calculated results, physical simulation of plane-strain twin roll strip casting is carried out by use of paraffin wax as a model material. The calculated profiles of the solid region agree qualitatively well with the experimental ones. Twin roll strip casting processes for stainless steel are also simulated. An optimum roll speed for obtaining a strip without a liquid zone under a minimum rolling load is obtained from the results of the simulation.
Ma, J; Wittek, A; Singh, S; Joldes, G; Washio, T; Chinzei, K; Miller, K
2010-12-01
In this paper, the accuracy of non-linear finite element computations in application to surgical simulation was evaluated by comparing the experiment and modelling of indentation of the human brain phantom. The evaluation was realised by comparing forces acting on the indenter and the deformation of the brain phantom. The deformation of the brain phantom was measured by tracking 3D motions of X-ray opaque markers, placed within the brain phantom using a custom-built bi-plane X-ray image intensifier system. The model was implemented using the ABAQUS(TM) finite element solver. Realistic geometry obtained from magnetic resonance images and specific constitutive properties determined through compression tests were used in the model. The model accurately predicted the indentation force-displacement relations and marker displacements. Good agreement between modelling and experimental results verifies the reliability of the finite element modelling techniques used in this study and confirms the predictive power of these techniques in surgical simulation. PMID:21153973
Studies on the finite element simulation in sheet metal stamping processes
NASA Astrophysics Data System (ADS)
Huang, Ying
The sheet metal stamping process plays an important role in modern industry. With the ever-increasing demand for shape complexity, product quality and new materials, the traditional trial and error method for setting up a sheet metal stamping process is no longer efficient. As a result, the Finite Element Modeling (FEM) method has now been widely used. From a physical point of view, the formability and the quality of a product are influenced by several factors. The design of the product in the initial stage and the motion of the press during the production stage are two of these crucial factors. This thesis focuses on the numerical simulation for these two factors using FEM. Currently, there are a number of commercial FEM software systems available in the market. These software systems are based on an incremental FEM process that models the sheet metal stamping process in small incremental steps. Even though the incremental FEM is accurate, it is not suitable for the initial conceptual design for its needing of detailed design parameters and enormous calculation times. As a result, another type of FEM, called the inverse FEM method or one-step FEM method, has been proposed. While it is less accurate than that of the incremental method, this method requires much less computation and hence, has a great potential. However, it also faces a number of unsolved problems, which limits its application. This motivates the presented research. After the review of the basic theory of the inverse method, a new modified arc-length search method is proposed to find better initial solution. The methods to deal with the vertical walls are also discussed and presented. Then, a generalized multi-step inverse FEM method is proposed. It solves two key obstacles: the first one is to determine the initial solution of the intermediate three-dimensional configurations and the other is to control the movement of nodes so they could only slide on constraint surfaces during the search by
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Horowitz, S. J.
1982-01-01
An iterative finite element integral technique is used to predict the sound field radiated from the JT15D turbofan inlet. The sound field is divided into two regions: the sound field within and near the inlet which is computed using the finite element method and the radiation field beyond the inlet which is calculated using an integral solution technique. The velocity potential formulation of the acoustic wave equation was employed in the program. For some single mode JT15D data, the theory and experiment are in good agreement for the far field radiation pattern as well as suppressor attenuation. Also, the computer program is used to simulate flight effects that cannot be performed on a ground static test stand.
Han Xiaoyan; Islam, Md. Sarwar; Newaz, G. M.; Favro, L. D.; Thomas, R. L.
2007-03-21
Sonic IR imaging, which combines infrared imaging and ultrasound excitation, as a relative new member of the NDE family, has been drawing wider and wider attention due to its fast, wide area inspection capability. In our previous presentations and publications, we have described the application of acoustic chaos to Sonic IR imaging and have provided experimental illustrations as well. In addition, we have described realistic finite-element models that simulate the heating of cracks in metals by both chaotic and non-chaotic sound. These models allow for both friction and plastic deformation as sources of heating. In this paper, we present our further study on the physical mechanisms that are responsible for the advantages of chaotic sound for Sonic IR crack detection. Using finite-element analysis, here we will present theoretical explanations, both for the origin of the chaos, and for the mechanisms responsible for the chaotic enhancement of crack detection.
Ng, K. C. Geoffrey; Lamontagne, Mario; Labrosse, Michel R.; Beaulé, Paul E.
2016-01-01
Background The cam deformity causes the anterosuperior femoral head to obstruct with the acetabulum, resulting in femoroacetabular impingement (FAI) and elevated risks of early osteoarthritis. Several finite element models have simulated adverse loading conditions due to cam FAI, to better understand the relationship between mechanical stresses and cartilage degeneration. Our purpose was to conduct a systematic review and examine the previous finite element models and simulations that examined hip joint stresses due to cam FAI. Methods The systematic review was conducted to identify those finite element studies of cam-type FAI. The review conformed to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and studies that reported hip joint contact pressures or stresses were included in the quantitative synthesis. Results Nine articles studied FAI morphologies using finite element methods and were included in the qualitative synthesis. Four articles specifically examined contact pressures and stresses due to cam FAI and were included in the quantitative synthesis. The studies demonstrated that cam FAI resulted in substantially elevated contact pressures (median = 10.4 MPa, range = 8.5–12.2 MPa) and von Mises stresses (median 15.5 MPa, range = 15.0–16.0 MPa) at the acetabular cartilage; and elevated maximum-shear stress on the bone (median = 15.2 MPa, range = 14.3–16.0 MPa), in comparison with control hips, during large amplitudes of hip motions. Many studies implemented or adapted idealized, ball-and-cup, parametric models to predict stresses, along with homogeneous bone material properties and in vivo instrumented prostheses loading data. Conclusion The formulation of a robust subject-specific FE model, to delineate the pathomechanisms of FAI, remains an ongoing challenge. The available literature provides clear insight into the estimated stresses due to the cam deformity and provides an assessment of its risks leading to early
An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1
NASA Technical Reports Server (NTRS)
Shivarama, Ravishankar; Fahrenthold, Eric P.
2004-01-01
A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.
A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials
NASA Astrophysics Data System (ADS)
Safdari, Masoud; Najafi, Ahmad R.; Sottos, Nancy R.; Geubelle, Philippe H.
2016-08-01
A 3D NURBS-based interface-enriched generalized finite element method (NIGFEM) is introduced to solve problems with complex discontinuous gradient fields observed in the analysis of heterogeneous materials. The method utilizes simple structured meshes of hexahedral elements that do not necessarily conform to the material interfaces in heterogeneous materials. By avoiding the creation of conforming meshes used in conventional FEM, the NIGFEM leads to significant simplification of the mesh generation process. To achieve an accurate solution in elements that are crossed by material interfaces, the NIGFEM utilizes Non-Uniform Rational B-Splines (NURBS) to enrich the solution field locally. The accuracy and convergence of the NIGFEM are tested by solving a benchmark problem. We observe that the NIGFEM preserves an optimal rate of convergence, and provides additional advantages including the accurate capture of the solution fields in the vicinity of material interfaces and the built-in capability for hierarchical mesh refinement. Finally, the use of the NIGFEM in the computational analysis of heterogeneous materials is discussed.
Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S
2016-05-01
The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. PMID:26894840
Zhao, A P; Cvetkovic, S R
1994-08-20
An efficient, accurate, and automated vectorial finite-element software package (named WAVEGIDE), which is implemented within a PDE/Protran problem-solving environment, has been extended to general multilayer anisotropic waveguides. With our system, through an interactive question-and-answer session, the problem can be simply defined with high-level PDE/Protran commands. The problem can then be solved easily and quickly by the main processor within this intelligent environment. In particular, in our system the eigenvalue of waveguide problems may be either a propagation constant (β) or an operated light frequency (F). Furthermore, the cutoff frequencies of propagation modes in waveguides can be calculated. As an application of this approach, numerical results for both scalar and hybrid modes in multilayer anisotropic waveguides are presented and are also compared with results obtained with the domain-integral method. These results clearly illustrate the unique flexibility, accuracy, and the ease of use f the WAVEGIDE program. PMID:20935964
Justification for a 2D versus 3D fingertip finite element model during static contact simulations.
Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan
2016-10-01
The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769
Finite element simulations of thermosolutal convection in vertical solidification of binary alloys
NASA Technical Reports Server (NTRS)
Heinrich, J. C.; Felicelli, S.
1989-01-01
Dendritic vertical solidification of a binary alloy is modeled using the finite element method to assess the effect of thermosolutal convection in macrosegregation. The mathematical model assumes steady-state solidification with a planar, undeformable surface defined by the dendrite tips and the eutectic isotherm. The dendritic region is assumed to advance at a constant solidification velocity v. The stability of the modeled system has been investigated and nonlinear calculations performed that show finger-like convection when the system is unstable. Results for lead-tin alloys show that when the system is unstable, convection is only significant in the uppermost part of the mush and is entirely driven by convection in the bulk fluid.
Evaluation of the criticality of cracks in ice shelves using finite element simulations
NASA Astrophysics Data System (ADS)
Plate, C.; Müller, R.; Humbert, A.; Gross, D.
2012-09-01
The ongoing disintegration of large ice shelf parts in Antarctica raise the need for a better understanding of the physical processes that trigger critical crack growth in ice shelves. Finite elements in combination with configurational forces facilitate the analysis of single surface fractures in ice under various boundary conditions and material parameters. The principles of linear elastic fracture mechanics are applied to show the strong influence of different depth dependent functions for the density and the Young's modulus on the stress intensity factor KI at the crack tip. Ice, for this purpose, is treated as an elastically compressible solid and the consequences of this choice in comparison to the predominant incompressible approaches are discussed. The computed stress intensity factors KI for dry and water filled cracks are compared to critical values KIc from measurements that can be found in literature.
Evaluation of the criticality of cracks in ice shelves using finite element simulations
NASA Astrophysics Data System (ADS)
Plate, C.; Müller, R.; Humbert, A.; Gross, D.
2012-02-01
The ongoing disintegration of large ice shelf parts in Antarctica raise the need for a better understanding of the physical processes that trigger critical crack growth in ice shelves. Finite elements in combination with configurational forces facilitate the analysis of single surface fractures in ice under various boundary conditions and material parameters. The principles of linear elastic fracture mechanics are applied to show the strong influence of different depth dependent functions for the density and the Young's modulus on the stress intensity factor KI at the crack tip. Ice, for this purpose, is treated as a compressible solid and the consequences of this choice in comparison to the predominant incompressible approaches is discussed. The computed stress intensity factors KI for dry and water filled cracks are compared with critical values KIc from measurements that can be found in literature.
Finite Element Simulation Of Magnesium AZ31 Alloy Sheet In Warm Hydroforming
Steffensen, Mikkel; Danckert, Joachim
2007-05-17
Hydroforming of magnesium (Mg) alloy sheet metal offers the possibility to form geometrically complex sheet metal parts that are applicable within automotive and electronic industry etc. However, due to the limited formability of Mg alloy at ambient temperature hydroforming of Mg alloy sheet metal has to be conducted at elevated temperature. In the present study an experimental warm hydroforming process using a low melting point alloy as forming medium is presented and on the basis of this a 2D thermo-mechanical finite element model is setup in order to analyze the temperature distribution in the Mg alloy workpiece during forming. The results show that the temperature in the workpiece is nearly uniform and nearly identical to the temperature of the forming medium.
A Simulation of crustal deformation around sourthwest Japan using 3D Finite Element Method
NASA Astrophysics Data System (ADS)
Oma, T.; Ito, T.; Sasajima, R.
2015-12-01
In southwest Japan, the Philippine Sea plate is subducting beneath the Amurian plate at the Nankai Trough. Megathrust earthquakes have been occurred with recurrence intervals of about 100-150 years. Previous studies have estimated co-seismic slip distribution at the 1944 Tokankai and the 1946 Nankai earthquakes and interplate plate coupling along the Nankai Trough. Many of previous studies employed a homogeneous elastic half space or elastic and viscoelastic layers structure. However, these assumptions as mentioned above are inadequate, since inhomogeneous structure is exceled in the real earth result from subducting plate. Therefore, in order to estimate the effect of inhomogeneous structure on the crustal deformation, we calculate crustal deformation due to Megathrust earthquake using 3-dimensional Finite Element Method (FEM). We use FEM software PyLith v2.1. In this study, we construct a finite element mesh with the region of 3000km(SW) × 2300km(NS) × 400km(depth) cover Japanese Islands, using Cubit 13.0. This mesh is considered topography, the Philippine Sea plate, the Pacific plate, Moho discontinuity, and curvature of the earth. In order to examine differences of surface displacement between inhomogeneous and homogeneous structures, we use co-seismic slip distribution of the 1944 and 1946 earthquakes estimated by Sagiya and Thatcher (1999). In result, surface elastic response under inhomogeneous structure becomes 30% larger than it's homogeneous structure at the Muroto cape. This difference indicates that co-seismic slip or plate coupling distribution estimated from Green's function under an assumption of homogeneous structure is overestimated. Then, we calculate viscoelastic response assuming Maxwell rheology model and viscosity as 1×1019. As a result, predicted horizontal velocity of viscoelastic response due to the events corresponds to 10 % of observed present deformation. It suggest that spatial pattern of plate coupling might be change when we
Souza, W.R.
1987-01-01
This report documents a graphical display program for the U. S. Geological Survey finite-element groundwater flow and solute transport model. Graphic features of the program, SUTRA-PLOT (SUTRA-PLOT = saturated/unsaturated transport), include: (1) plots of the finite-element mesh, (2) velocity vector plots, (3) contour plots of pressure, solute concentration, temperature, or saturation, and (4) a finite-element interpolator for gridding data prior to contouring. SUTRA-PLOT is written in FORTRAN 77 on a PRIME 750 computer system, and requires Version 9.0 or higher of the DISSPLA graphics library. The program requires two input files: the SUTRA input data list and the SUTRA simulation output listing. The program is menu driven and specifications for individual types of plots are entered and may be edited interactively. Installation instruction, a source code listing, and a description of the computer code are given. Six examples of plotting applications are used to demonstrate various features of the plotting program. (Author 's abstract)
A finite element model of the lower limb for simulating automotive impacts.
Untaroiu, Costin D; Yue, Neng; Shin, Jaeho
2013-03-01
A finite element (FE) model of a vehicle occupant's lower limb was developed in this study to improve understanding of injury mechanisms during traffic crashes. The reconstructed geometry of a male volunteer close to the anthropometry of a 50th percentile male was meshed using mostly hexahedral and quadrilateral elements to enhance the computational efficiency of the model. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The models of the femur, tibia, and leg were validated against Post-Mortem Human Surrogate (PMHS) data in various loading conditions which generates the bone fractures observed in traffic accidents. The model was then used to investigate the tolerances of femur and tibia under axial compression and bending. It was shown that the bending moment induced by the axial force reduced the bone tolerance significantly more under posterior-anterior (PA) loading than under anterior-posterior (AP) loading. It is believed that the current lower limb models could be used in defining advanced injury criteria of the lower limb and in various applications as an alternative to physical testing, which may require complex setups and high cost. PMID:23180026
Nakamachi, Eiji; Yoshida, Takashi; Yamaguchi, Toshihiko; Morita, Yusuke; Kuramae, Hiroyuki; Morimoto, Hideo
2014-10-06
We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.
NASA Astrophysics Data System (ADS)
Günay, E.
2016-04-01
In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.
Spanos, P; Elsbernd, P; Ward, B; Koenck, T
2013-06-28
This paper reviews and enhances numerical models for determining thermal, elastic and electrical properties of carbon nanotube-reinforced polymer composites. For the determination of the effective stress-strain curve and thermal conductivity of the composite material, finite-element analysis (FEA), in conjunction with the embedded fibre method (EFM), is used. Variable nanotube geometry, alignment and waviness are taken into account. First, a random morphology of a user-defined volume fraction of nanotubes is generated, and their properties are incorporated into the polymer matrix using the EFM. Next, incremental and iterative FEA approaches are used for the determination of the nonlinear properties of the nanocomposite. For the determination of the electrical properties, a spanning network identification algorithm is used. First, a realistic nanotube morphology is generated from input parameters defined by the user. The spanning network algorithm then determines the connectivity between nanotubes in a representative volume element. Then, interconnected nanotube networks are converted to equivalent resistor circuits. Finally, Kirchhoff's current law is used in conjunction with FEA to solve for the voltages and currents in the system and thus calculate the effective electrical conductivity of the nanocomposite. The model accounts for electrical transport mechanisms such as electron hopping and simultaneously calculates percolation probability, identifies the backbone and determines the effective conductivity. Monte Carlo analysis of 500 random microstructures is performed to capture the stochastic nature of the fibre generation and to derive statistically reliable results. The models are validated by comparison with various experimental datasets reported in the recent literature. PMID:23690646
NASA Astrophysics Data System (ADS)
Joshi, Shrikrishna Nandkishor; Bolar, Gururaj
2016-06-01
Control of part deflection and deformation during machining of low rigidity thin-wall components is an important aspect in the manufacture of desired quality products. This paper presents a comparative study on the effect of geometry constraints on the product quality during machining of thin-wall components made of an aerospace alloy aluminum 2024-T351. Three-dimensional nonlinear finite element (FE) based simulations of machining of thin-wall parts were carried out by considering three variations in the wall constraint viz. free wall, wall constrained at one end, and wall with constraints at both the ends. Lagrangian formulation based transient FE model has been developed to simulate the interaction between the workpiece and helical milling cutter. Johnson-Cook material and damage model were adopted to account for material behavior during machining process; damage initiation and chip separation. A modified Coulomb friction model was employed to define the contact between the cutting tool and the workpiece. The numerical model was validated with experimental results and found to be in good agreement. Based on the simulation results it was noted that deflection and deformation were maximum in the thin-wall constrained at one end in comparison with those obtained in other cases. It was noted that three dimensional finite element simulations help in a better way to predict the product quality during precision manufacturing of thin-wall components.
Hoffseth, Kevin; Randall, Connor; Hansma, Paul; Yang, Henry T Y
2015-02-01
In an attempt to study the mechanical behavior of bone under indentation, methods of analyses and experimental validations have been developed, with a selected test material. The test material chosen is from an equine cortical bone. Stress-strain relationships are first obtained from conventional mechanical property tests. A finite element simulation procedure is developed for indentation analyses. The simulation results are experimentally validated by determining (1) the maximum depth of indentation with a single cycle type of reference point indentation, and (2) the profile and depth of the unloaded, permanent indentation with atomic force microscopy. The advantage of incorporating in the simulation a yield criterion calibrated by tested mechanical properties, with different values in tension and compression, is demonstrated. In addition, the benefit of including damage through a reduction in Young's modulus is shown in predicting the permanent indentation after unloading and recovery. The expected differences in response between two indenter tips with different sharpness are predicted and experimentally observed. Results show predicted indentation depths agree with experimental data. Thus, finite element simulation methods with experimental validation, and with damage approximation by a reduction of Young's modulus, may provide a good approach for analysis of indentation of cortical bone. These methods reveal that multiple factors affect measured indentation depth and that the shape of the permanent indentation contains useful information about bone material properties. Only further work can determine if these methods or extensions to these methods can give useful insights into bone pathology, for example the bone fragility of thoroughbred racehorses. PMID:25528690
NASA Astrophysics Data System (ADS)
Song, Yong; Chu, Yingfang; Zhang, Kai; Kang, Bangzhi; Hao, Qun
2010-11-01
The simulation based on the finite-element (FE) method plays an important role in the investigation of the intra-body communication (IBC). In this paper, the method for modeling the whole human body based on the finite-element method is proposed, while a finite-element model of the whole human body used for the simulations of the waveguide intra-body communication has been developed. Finally, the simulations of the waveguide IBC with different signal transmission paths have been achieved by using the developed finite-element model. Moreover, both the potential distributions and the signal attenuations of the simulation results are discussed in detail, which indicate that the proposed method and model offer the significant advantages in the theoretical analysis and the system design of the waveguide intra-body communication.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
NASA Astrophysics Data System (ADS)
Müller, Kei W.; Meier, Christoph; Wall, Wolfgang A.
2015-12-01
Networks of crosslinked biopolymer filaments such as the cytoskeleton are the subject of intense research. Oftentimes, mechanics on the scale of single monomers (∼ 5 nm) govern the mechanics of the entire network (∼ 10 μm). Until now, one either resolved the small scales and lost the big (network) picture or focused on mechanics above the single-filament scale and neglected the molecular architecture. Therefore, the study of network mechanics influenced by the entire spectrum of relevant length scales has been infeasible so far. We propose a method that reconciles both small and large length scales without the otherwise inevitable loss in either numerical efficiency or geometrical (molecular) detail. Both explicitly modeled species, filaments and their crosslinkers, are discretized with geometrically exact beam finite elements of Simo-Reissner type. Through specific coupling conditions between the elements of the two species, mechanical joints can be established anywhere along a beam's centerline, enabling arbitrary densities of chemical binding sites. These binding sites can be oriented to model the monomeric architecture of polymers. First, we carefully discuss the method and then demonstrate its capabilities by means of a series of numerical examples.
Kheloufi, Karim; Amara, El Hachemi
2008-09-23
We analyze the deformation induced by focusing a CW high power laser beam on stainless steel plate. A non-linear 3D finite element approach is used to simulate the thermo-elastoplastic deformation, the heat conduction, and stresses. Material properties including density, yield stress, Young modulus, specific heat, and thermal expansion coefficient are considered as temperature-dependent. The effect of heating time on transient temperatures, stresses, strains and bending angles during the process is studied, and the process parameters affecting the bending angles were also investigated.
Swanson, G.D.
1981-03-01
As part of an encapsulant evaluation for a high voltage electronic assembly, the linear elastic finite element method computer code SASL was used to calculate the stress distribution in an axisymmetric solder joint under load. A simulated electronic component in the form of a thumb tack was used as a physical model to calculate lead wire loads when encapsulated in 0.6 g/cm/sup 3/ polystyrene bead form. The calculated lead wire loads disagreed with previous experimental data. Reanalysis of those data revealed nonlinear effects which were not adequately modeled in the SASL calculation.
Hoffman, E.L.; Ammerman, D.J.
1993-08-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry.
NASA Astrophysics Data System (ADS)
Rodríguez, J. M.; Jonsén, P.; Svoboda, A.
2016-08-01
Metal cutting is one of the most common metal-shaping processes. In this process, specified geometrical and surface properties are obtained through the break-up of material and removal by a cutting edge into a chip. The chip formation is associated with large strains, high strain rates and locally high temperatures due to adiabatic heating. These phenomena together with numerical complications make modeling of metal cutting difficult. Material models, which are crucial in metal-cutting simulations, are usually calibrated based on data from material testing. Nevertheless, the magnitudes of strains and strain rates involved in metal cutting are several orders of magnitude higher than those generated from conventional material testing. Therefore, a highly desirable feature is a material model that can be extrapolated outside the calibration range. In this study, a physically based plasticity model based on dislocation density and vacancy concentration is used to simulate orthogonal metal cutting of AISI 316L. The material model is implemented into an in-house particle finite-element method software. Numerical simulations are in agreement with experimental results, but also with previous results obtained with the finite-element method.
Finite element simulation of conventional and prestressed cutting of Ti6Al4V
NASA Astrophysics Data System (ADS)
Peng, Ruitao; Tang, Xinzi; Tan, Yuanqiang; Liu, Xiongwei
2013-05-01
Titanium alloys are known as difficult-to-machine materials, chip morphology plays a predominant role in determining machinability and tool wear during the machining of titanium alloys. Based on the finite element analysis and experimental validation, the cutting processes in conventional cutting and prestressed cutting of titanium alloy ring parts were explored respectively. The Johnson-Cook model expressed by equivalent plastic strain flow stress is utilized to describe the constitutive properties. A ductile fracture criterion based on the strain energy is applied to model the crack initiation and evolution during the chip segmentation. Cutting force as well as distributions of stress, temperature and equivalent plastic strain along cutting time were numerically compared. The results indicate that in conventional cutting and prestressed cutting, chips show the similar characteristic of continuous and regular serrated shape. Initial stress distribution of workpiece was changed by prestress, which correspondingly leads to the alteration of stress distribution in the subsurface layer. Prestress hardly influences the distributions of temperature and equivalent plastic strain on workpiece. The cutting force curves share the same average amplitude and analogous undulating rhythm.
Development of a finite element model for the simulation of parabolic impact of sandwich panels
NASA Astrophysics Data System (ADS)
Ram Ramakrishnan, Karthik; Guérard, Sandra; Mahéo, Laurent; Shankar, Krishna; Viot, Philippe
2015-09-01
Sandwich panels are lightweight structures of two thin high strength facesheets bonded to either side of a thick low density core such as foams and honeycombs. It is necessary to study the impact response of sandwich structures in order to ensure the reliability and safety of these structures. The response of sandwich panels to impact loading is usually studied for impact at normal angle of incidence. In real engineering situations, the structures are more frequently loaded at some oblique angle or with a complex trajectory. It is easy to carry out normal impact tests using devices like the drop tower, but impacts at oblique angles are difficult to characterise experimentally. A tri-dimensional impact device called Hexapod has been developed to experimentally study the impact loading of sandwich plates with a parabolic trajectory. The Hexapod is a modified Gough-Stewart platform that can be moved independently in the six degrees of freedom, corresponding to three translation axes and three rotation axes. In this paper, an approach for modelling the parabolic impact of sandwich structures with thin metallic facesheets and polymer foam core using commercial finite element code LS-DYNA software is presented. The results of the FE model of sandwich panels are compared with experimental data in terms of the time history of vertical and horizontal components of force. A comparison of the strain history obtained from Digital Image Correlation and LS-Dyna model are also presented.
Shahmohammadi, Mehrdad; Asgharzadeh Shirazi, Hadi; Karimi, Alireza; Navidbakhsh, Mahdi
2014-10-01
Degeneration of intervertebral disk (IVD) has been increased in recent years. The lumbar herniation can be cured using conservative and surgical procedures. Surgery is considered after failure of conservative treatment. Partial discectomy, fusion, and total disk replacement (TDR) are also common surgical treatments for degenerative disk disease. However, due to limitations and disadvantages of the current treatments, many studies have been carried out to approach the best design of mimicking natural disk. Recently, a new method of TDRs has been introduced using nature deformation of IVD by reinforced fibers of annulus fibrosis. Nonetheless, owing to limitations of experimental works on the human body, numerical studies of IVD may help to understand load transfer and biomechanical properties within the disks with reinforced fibers. In this study, a three-dimensional (3D) finite element model of the L2-L3 disk vertebrae unit with 12 vertical fibers embedded into annulus fibrosis was constructed. The IVD was subjected to compressive force, bending moment, and axial torsion. The most important parameters of disk failures were compared to that of experimental data. The results showed that the addition of reinforced fibers into the disk invokes a significant decrease of stress in the nucleus and annulus. The findings of this study may have implications not only for developing IVDs with reinforced fibers but also for the application of fiber reinforced IVD in orthopedics surgeries as a suitable implant. PMID:24981720
Finite element method-simulation of the human lens during accommodation
NASA Astrophysics Data System (ADS)
Breitenfeld, P.; Ripken, T.; Lubatschowski, H.
2005-08-01
A finite-element-method model with ANSYS 8.0 of a 29 year old human lens during accommodation will be presented. The required data, to draw and calculate a two dimensional, axis-symmetric model of the human lens is inherited from various sources. Furthermore the analysis premises all lens materials to be linear elastic and allows large displacements. A first analysis of a possible method for the treatment of presbyopia by fs-laser induced microcuts is accomplished. Therefore a mechanical analysis of an untreated and a treated lens are compared. As a result an improvement of the flexibility of the lens tissue is found and as its consequence a change of the lens' radii of curvature is established. After a suitable processing of the output data a linear Gaussian ray trace is performed and a minor change in the optical power between the untreated and treaded human lens is perceived. By calculation of the discrete optical power of the anterior and posterior surface on the one hand and the overall optical power on the other hand an interpretation of the effectiveness resulting from the treatment is offered. It is ascertained that the change in optical power of the anterior lens surface is increased while the optical power of the posterior lens surface is decreased, almost compensating each other. A possible explanation for this phenomenon is given and a suggestion of how to increase the effectiveness of the treatment is discussed.
Finite Element Simulation of Solid Rocket Booster Separation Motors During Motor Firing
NASA Technical Reports Server (NTRS)
Yu. Weiping; Crane, Debora J.
2007-01-01
One of the toughest challenges facing Solid Rocket Booster (SRB) engineers is to ensure that any design changes made to the Shuttle-Derived Booster Separation Motors (BSM) for future space exploration vehicles is able to withstand the increasingly hostile motor firing environment without cracking its critical component - the graphite throat. This paper presents a critical analysis methodology and techniques for assessing effects of BSM design changes with great accuracy and precision. For current Space Shuttle operation, the motor firing occurs at SRB separation - approximately 125 seconds after Shuttle launch at an altitude of about 28 miles. The motor operation event lasts about two seconds, however, the surface temperature of the graphite throat increases approximately 3400 F in less than one second with a corresponding increase in surface pressure of approximately 2200 pounds per square inch (psi) in less than one-tenth of a second. To capture this process fully and accurately, a two-phase sequentially coupled thermal-mechanical finite element approach was developed. This method allows the time- and location-dependent pressure fields to interact with the spatial-temporal thermal fields throughout the operation. The material properties of graphite throat are orthotropic and temperature-dependent. The analysis involves preload and multiple body contacts.
Finite Element Simulation of Machining of Ti6Al4V Alloy
Rizzuti, S.; Umbrello, D.
2011-05-04
Titanium and its alloys are an important class of materials, especially for aerospace applications, due to their excellent combination of strength and fracture toughness as well as low density. However, these materials are generally regarded as difficult to machine because of their low thermal conductivity and high chemical reactivity with cutting tool materials. Moreover, the low thermal conductivity of Titanium inhibits dissipation of heat within the workpiece causing an higher temperature at the cutting edge and generating for higher cutting speed a rapid chipping at the cutting edge which leads to catastrophic failure. In addition, chip morphology significantly influences the thermo-mechanical behaviour at the workpiece/tool interface, which also affects the tool life.In this paper a finite element analysis of machining of TiAl6V4 is presented. In particular, cutting force, chip morphology and segmentation are taken into account due to their predominant roles to determine machinability and tool wear during the machining of these alloys. Results in terms of residual stresses are also presented. Moreover, the numerical results are compared with experimental ones.
Finite element simulation of the gating mechanism of mechanosensitive ion channels
NASA Astrophysics Data System (ADS)
Bavi, Navid; Qin, Qinghua; Martinac, Boris
2013-08-01
In order to eliminate limitations of existing experimental or computational methods (such as patch-clamp technique or molecular dynamic analysis) a finite element (FE) model for multi length-scale and time-scale investigation on the gating mechanism of mechanosensitive (MS) ion channels has been established. Gating force value (from typical patch clamping values) needed to activate Prokaryotic MS ion channels was applied as tensional force to the FE model of the lipid bilayer. Making use of the FE results, we have discussed the effects of the geometrical and the material properties of the Escherichia coli MscL mechanosensitive ion channel opening in relation to the membrane's Young's modulus (which will vary depending on the cell type or cholesterol density in an artificial membrane surrounding the MscL ion channel). The FE model has shown that when the cell membrane stiffens the required channel activation force increases considerably. This is in agreement with experimental results taken from the literature. In addition, the present study quantifies the relationship between the membrane stress distribution around a `hole' for modeling purposes and the stress concentration in the place transmembrane proteins attached to the hole by applying an appropriate mesh refinement as well as well defining contact condition in these areas.
NASA Astrophysics Data System (ADS)
Rivera, Christian A.; Heniche, Mourad; Glowinski, Roland; Tanguy, Philippe A.
2010-07-01
A parallel approach to solve three-dimensional viscous incompressible fluid flow problems using discontinuous pressure finite elements and a Lagrange multiplier technique is presented. The strategy is based on non-overlapping domain decomposition methods, and Lagrange multipliers are used to enforce continuity at the boundaries between subdomains. The novelty of the work is the coupled approach for solving the velocity-pressure-Lagrange multiplier algebraic system of the discrete Navier-Stokes equations by a distributed memory parallel ILU (0) preconditioned Krylov method. A penalty function on the interface constraints equations is introduced to avoid the failure of the ILU factorization algorithm. To ensure portability of the code, a message based memory distributed model with MPI is employed. The method has been tested over different benchmark cases such as the lid-driven cavity and pipe flow with unstructured tetrahedral grids. It is found that the partition algorithm and the order of the physical variables are central to parallelization performance. A speed-up in the range of 5-13 is obtained with 16 processors. Finally, the algorithm is tested over an industrial case using up to 128 processors. In considering the literature, the obtained speed-ups on distributed and shared memory computers are found very competitive.
Dual field finite element simulations of piezo-patches on fabrics: a parametric study
NASA Astrophysics Data System (ADS)
Waqar, Sania; McCarthy, Jesse M.; Deivasigamani, Arvind; Wang, Chun H.; Wang, Lijing; Coman, Floreana; John, Sabu
2013-08-01
There is an increasing demand for powering on-person-devices (for communications, health-care purposes, and soldier protection) without the burden of the parasitic weight and toxicity of conventional batteries. This demand calls for an alternative power source from fibre-sized piezoelectric generators that can be integrated into garments. These piezopatches convert human movement induced mechanical strain on the fabric into electrical energy. In this paper, a dualfield computational analysis, combining harmonic and piezoelectric models, has been undertaken using the ANSYS Finite Element package. A Polyvinylidene Fluoride (PVDF) patch bonded to a material representative of a flexible fabric has been modeled in ANSYS. The electrodes are connected to a resistor that is matched to the piezo properties and loading conditions. The parametric variables used in this study include: surface area of the piezo-patches, aspect ratio, input force amplitude and the operational frequency. The complex interaction of these variables to the power output is explored and discussed in the context of the intended application. It is observed that the maximum output occurs at 5Hz for an optimal dimension of 400mm2 which makes it feasible as an energy harvesting system for low energy selfpowered electronics such as portable and wearable medical and communication devices.
NASA Astrophysics Data System (ADS)
El-Hussein, Salisu; Harrigan, John J.; Starkey, Andrew
2015-07-01
Guided waves (GW) are finding more applications for structural health monitoring (SHM) of pipelines and other long, slender structures, particularly in the areas of corrosion and crack detection. Third party impact, both accidental and intentional, is also a major cause of pipeline failure. The use of low frequency (below 10 kHz) GW to detect damage caused by a third-party is investigated. Field test data on a 1 km long pipeline are compared with finite element (FE) predictions to illustrate the potential of low frequency GW to travel long distances along a pipeline. An FE study indicates the type and frequency of GW that can propagate long distances (low attenuation) without significant change in shape (low dispersion). The FE analysis is conducted on a typical 10 in (255 mm) diameter steel pipe with 7.8 mm wall thickness. The effects of pipe diameter and thickness on the GW propagation characteristics are illustrated. It is shown that certain frequencies for certain pipe geometries produce a very dispersive signal and should be avoided for GW SHM and the reasons for this are discussed.
Nightingale, K R; Trahey, G E
2000-01-01
Streaming detection is an ultrasonic technique that can be used to distinguish fluid-filled lesions, or cysts, from solid lesions. With this technique, high intensity ultrasound pulses are used to induce acoustic streaming in cyst fluid, and this motion is detected using Doppler flow estimation methods. Results from a pilot clinical study were recently published in which acoustic streaming was successfully induced and detected in 14 of 15 simple breast cysts and four of 14 sonographically indeterminate breast lesions in vivo. In the study, the detected velocities were found to vary considerably among cysts and for different pulsing regimes. A finite element model of streaming detection is presented. This model is utilized to investigate methods of increasing induced acoustic streaming velocity while minimizing patient exposure to high intensity ultrasound during streaming detection. Parameters studied include intensity, frequency, acoustic beam shape, cyst-diameter, cyst fluid protein concentration, and cyst fluid viscosity. The model, which provides both transient and steady-state solutions, is shown to predict trends in streaming velocity accurately. Experimental results from studies investigating the potential for nonlinear streaming enhancement in cysts are also provided. PMID:18238532
Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; Buchheit, Thomas E.; Battaile, Corbett C.
2016-02-27
In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less
Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur
NASA Astrophysics Data System (ADS)
Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.
2013-07-01
We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual's (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method's development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications - varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient's femur, that strains computed at the multi-scale model's micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.
NASA Astrophysics Data System (ADS)
Singla, M.; Chatterji, S.; Müller, W. F. J.; Kleipa, V.; Heuser, J. M.
2014-01-01
The first three-dimensional simulation study of thin multi-line readout cables using finite element simulation tool RAPHAEL is being reported. The application is the Silicon Tracking System (STS) of the fixed-target heavy-ion experiment Compressed Baryonic Matter (CBM), under design at the forthcoming accelerator center FAIR in Germany. RAPHAEL has been used to design low-mass analog readout cables with minimum possible Equivalent Noise Charge (ENC). Various trace geometries and trace materials have been explored in detail for this optimization study. These cables will bridge the distance between the microstrip detectors and the signal processing electronics placed at the periphery of the silicon tracking stations. SPICE modeling has been implemented in Sentaurus Device to study the transmission loss (dB loss) in cables and simulation has been validated with measurements. An optimized design having minimum possible ENC, material budget and transmission loss for the readout cables has been proposed.
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1980-01-01
A general purpose squeeze-film damper interactive force element was developed, coded into a software package (module) and debugged. This software package was applied to nonliner dynamic analyses of some simple rotor systems. Results for pressure distributions show that the long bearing (end sealed) is a stronger bearing as compared to the short bearing as expected. Results of the nonlinear dynamic analysis, using a four degree of freedom simulation model, showed that the orbit of the rotating shaft increases nonlinearity to fill the bearing clearance as the unbalanced weight increases.
García, José Jaime
2008-06-01
Analyses with a finite element fibril-reinforced hyperelastic model were undertaken in this study to simulate high tensile Poisson's ratios that have been consistently documented in experimental studies of articular cartilage. The solid phase was represented by an isotropic matrix reinforced with four sets of fibrils, two of them aligned in orthogonal directions and two oblique fibrils in a symmetric configuration respect to the orthogonal axes. Two distinct hyperelastic functions were used to represent the matrix and the fibrils. Results of the analyses showed that only by considering non-orthogonal fibrils was it possible to represent Poisson's ratios higher than one. Constrains in the grips and finite deformations played a minor role in the calculated Poisson's ratio. This study also showed that the model with oblique fibrils at 45 degrees was able to represent significant differences in Poisson's ratios near 1 documented in experimental studies. However, even considering constrains in the grips, this model was not capable to simulate Poisson's ratios near 2 that have been reported in other studies. The study also confirmed that only with a high relation between the stiffness of the fibers and that of the matrix was it possible to obtain high Poisson's ratios for the tissue. Results suggest that analytical models with a finite number of fibrils are appropriate to represent main mechanical effects of articular cartilage. PMID:17690001
Finite element simulations of the active stress in the imaginal disc of the Drosophila Melanogaster.
Pettinati, V; Ambrosi, D; Ciarletta, P; Pezzuto, S
2016-09-01
During the larval stages of development, the imaginal disc of Drosphila Melanogaster is composed by a monolayer of epithelial cells, which undergo a strain actively produced by the cells themselves. The well-organized collective contraction produces a stress field that seemingly has a double morphogenetic role: it orchestrates the cellular organization towards the macroscopic shape emergence while simultaneously providing a local information on the organ size. Here we perform numerical simulations of such a mechanical control on morphogenesis at a continuum level, using a three-dimensional finite model that accounts for the active cell contraction. The numerical model is able to reproduce the (few) known qualitative characteristics of the tensional patterns within the imaginal disc of the fruit fly. The computed stress components slightly deviate from planarity, thus confirming the previous theoretical assumptions of a nonlinear elastic analytical model, and enforcing the hypothesis that the spatial variation of the mechanical stress may act as a size regulating signal that locally scales with the global dimension of the domain. PMID:26765274
NASA Astrophysics Data System (ADS)
Bandaru, Vinodh; Boeck, Thomas; Krasnov, Dmitry; Schumacher, Jörg
2016-01-01
A conservative coupled finite difference-boundary element computational procedure for the simulation of turbulent magnetohydrodynamic flow in a straight rectangular duct at finite magnetic Reynolds number is presented. The flow is assumed to be periodic in the streamwise direction and is driven by a mean pressure gradient. The duct walls are considered to be electrically insulated. The co-evolution of the velocity and magnetic fields as described respectively by the Navier-Stokes and the magnetic induction equations, together with the coupling of the magnetic field between the conducting domain and the non-conducting exterior, is solved using the magnetic field formulation. The aim is to simulate localized magnetic fields interacting with turbulent duct flow. Detailed verification of the implementation of the numerical scheme is conducted in the limiting case of low magnetic Reynolds number by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. The rigorous procedure with non-local magnetic boundary conditions is compared with simplified pseudo-vacuum boundary conditions and the differences are quantified. Our first direct numerical simulations of turbulent Hartmann duct flow at moderate magnetic Reynolds numbers and a low flow Reynolds number show significant differences in the duct flow turbulence, even at low interaction level between the flow and magnetic field.
Peridynamic Multiscale Finite Element Methods
Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald
2015-12-01
art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.
NASA Astrophysics Data System (ADS)
Kvíčala, M.; Frydrýšek, K.; Štamborská, M.
2015-03-01
This paper deals with the comparison of experimentally measured temperature gradients and finite-element-method (FEM) simulations of two heating strategies that were used for continuously cast bloom soaking. The temperature gradient between the bloom surface and center was measured by two thermocouples incorporated directly into the bloom. Scanning electron microscopy equipped by energy dispersive X-ray spectroscopy analysis, hot tensile tests, and interdendritic solidification software was used for modeling of steel thermophysical properties with respect to the alloying-elements macrosegregation. The model of the bloom was programmed in the Fortran language. The FEM software MARC/MENTAT 2012 was used for simulation of two heating strategies (plane strain formulation). The first heating model was fitted to the commonly used heating strategy when internal defects grew above the critical limit. The second heating model was a newly proposed strategy that consisted of slower heating up to 1073 K when the first warming-through period occurred. The FEM simulations included determinations of the temperature gradient, the equivalent of stress, the equivalent of elastic strain, the equivalent of plastic strain, and the equivalent of total strain. The simulation results were in good agreement with experimental observations. The new heating strategy based on the FEM simulations led to significantly lower occurrence of internal defects in hot-rolled billets that are used for cylinder production.
Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur
Ascenzi, Maria-Grazia; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.
2013-07-01
We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.
NASA Astrophysics Data System (ADS)
Choi, Young Joon; Hulsen, Martien; Meijer, Han
2009-11-01
We present an eXtended Finite Element Method (XFEM) combined with DEVSS-G/SUPG formulations for the direct numerical simulation of the flow of viscoelastic fluids with suspended rigid particles. In this method, the finite element shape functions are extended through the partition of unity method (PUM) by using virtual degrees of freedom as the enrichment for the description of discontinuities across interface. For the whole computational domain including both the fluid and particles, we use a regular mesh which is not boundary-fitted. Then, the fluid domain and the particle domain are fully decoupled by using the XFEM enrichment procedures. The no-slip boundary condition on the interface between fluid and rigid body is realized by using constraints implemented with Lagrange multipliers. For moving particle problems, we incorporate a temporal arbitrary Lagrangian-Eulerian (ALE) scheme without the need of any re-meshing. Furthermore, local mesh refinements around the interface are achieved using grid deformation methods, in which the number of elements is not increased. We show the motion of a freely moving particle suspended in a Giesekus fluid between two rotating cylinders. We investigate the effect of the Weissenberg number in this problem, and the effects of the mobility parameter and particle size on the migration of particles.
Finite element modeling of the human pelvis
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
NASA Astrophysics Data System (ADS)
White, J. A.; Borja, R. I.
2007-12-01
In fluid-saturated sediments and sedimentary rocks, we recognize that the presence of the pore-fluid can serve to impose an incompressibilty constraint on the solid matrix in the limit of undrained conditions or fast loading rates. While such situations are commonly encountered in practice, they pose a challenge for the numerical analyst. From a finite element point of view, incompressibility constraints will often lead to non-physical oscillations in the pressure field unless special care is taken to use stable combinations of pressure and displacement interpolations. Unfortunately, many seemingly natural combinations of mixed interpolations---e.g. linear interpolations for both displacements and pressure---are unstable. The relatively high computational burden associated with standard stable elements has limited the widespread adoption of fully-coupled geomechanical models, especially for large three-dimensional simulations. In this work we explore a stabilizing modification of the coupled balance equations that allows for the use of low-order mixed elements while avoiding non-physical pressure oscillations. The improved efficiency of this technique is a step toward making large-scale, fully-coupled three-dimensional simulations feasible. We demonstrate the efficacy of the technique for simulating coupled solid deformation and fluid flow in fault zones.
NASA Astrophysics Data System (ADS)
Li, Jingsong; Yang, Qingxin; Niu, Pingjuan; Jin, Liang; Meng, Bo; Li, Yang; Xiao, Zhaoxia; Zhang, Xian
This paper obtained the average integrated heat transfer coefficient for the thermal resistance of a classic of integrated LED light source and its cooling fin-root on the basis of thermal circuit method. Simulation analysis on its steady-state temperature field distribution using COMSOL Multi-physics finite element method was carried out. This method has high precision and intuitive simulation results. The iteration method of the Numerical Analysis is introduced into method for the first time. The results have significant promotion on the LED cast light structure optimization and the affection of reduced heat coupling on the light temperature distribution. The comparison between thermocouple experimental data and calculation results proved the correctness and validity of the proposed method. This experimental study plays a guiding role to thermal analysis and design of other integrated lights.
NASA Astrophysics Data System (ADS)
Zhang, Qian-Jiang; Dai, Shi-Kun; Chen, Long-Wei; Qiang, Jian-Ke; Li, Kun; Zhao, Dong-Dong
2016-06-01
To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.
NASA Astrophysics Data System (ADS)
Cervone, A.; Manservisi, S.; Scardovelli, R.
2010-09-01
A multilevel VOF approach has been coupled to an accurate finite element Navier-Stokes solver in axisymmetric geometry for the simulation of incompressible liquid jets with high density ratios. The representation of the color function over a fine grid has been introduced to reduce the discontinuity of the interface at the cell boundary. In the refined grid the automatic breakup and coalescence occur at a spatial scale much smaller than the coarse grid spacing. To reduce memory requirements, we have implemented on the fine grid a compact storage scheme which memorizes the color function data only in the mixed cells. The capillary force is computed by using the Laplace-Beltrami operator and a volumetric approach for the two principal curvatures. Several simulations of axisymmetric jets have been performed to show the accuracy and robustness of the proposed scheme.
Toward automatic finite element analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Perucchio, Renato; Voelcker, Herbert
1987-01-01
Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.
NASA Astrophysics Data System (ADS)
Liu, T.; Fleck, N. A.; Wadley, H. N. G.; Deshpande, V. S.
2013-08-01
The impact of a slug of dry sand particles against a metallic sandwich beam or circular sandwich plate is analysed in order to aid the design of sandwich panels for shock mitigation. The sand particles interact via a combined linear-spring-and-dashpot law whereas the face sheets and compressible core of the sandwich beam and plate are treated as rate-sensitive, elastic-plastic solids. The majority of the calculations are performed in two dimensions and entail the transverse impact of end-clamped monolithic and sandwich beams, with plane strain conditions imposed. The sand slug is of rectangular shape and comprises a random loose packing of identical, circular cylindrical particles. These calculations reveal that loading due to the sand is primarily inertial in nature with negligible fluid-structure interaction: the momentum transmitted to the beam is approximately equal to that of the incoming sand slug. For a slug of given incoming momentum, the dynamic deflection of the beam increases with decreasing duration of sand-loading until the impulsive limit is attained. Sandwich beams with thick, strong cores significantly outperform monolithic beams of equal areal mass. This performance enhancement is traced to the "sandwich effect" whereby the sandwich beams have a higher bending strength than that of the monolithic beams. Three-dimensional (3D) calculations are also performed such that the sand slug has the shape of a circular cylindrical column of finite height, and contains spherical sand particles. The 3D slug impacts a circular monolithic plate or sandwich plate and we show that sandwich plates with thick strong cores again outperform monolithic plates of equal areal mass. Finally, we demonstrate that impact by sand particles is equivalent to impact by a crushable foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally, yet give predictions to within 5% of the full discrete particle calculations for the
Finite Element Simulations of Micro Turning of Ti-6Al-4V using PCD and Coated Carbide tools
NASA Astrophysics Data System (ADS)
Jagadesh, Thangavel; Samuel, G. L.
2016-07-01
The demand for manufacturing axi-symmetric Ti-6Al-4V implants is increasing in biomedical applications and it involves micro turning process. To understand the micro turning process, in this work, a 3D finite element model has been developed for predicting the tool chip interface temperature, cutting, thrust and axial forces. Strain gradient effect has been included in the Johnson-Cook material model to represent the flow stress of the work material. To verify the simulation results, experiments have been conducted at four different feed rates and at three different cutting speeds. Since titanium alloy has low Young's modulus, spring back effect is predominant for higher edge radius coated carbide tool which leads to the increase in the forces. Whereas, polycrystalline diamond (PCD) tool has smaller edge radius that leads to lesser forces and decrease in tool chip interface temperature due to high thermal conductivity. Tool chip interface temperature increases by increasing the cutting speed, however the increase is less for PCD tool as compared to the coated carbide tool. When uncut chip thickness decreases, there is an increase in specific cutting energy due to material strengthening effects. Surface roughness is higher for coated carbide tool due to ploughing effect when compared with PCD tool. The average prediction error of finite element model for cutting and thrust forces are 11.45 and 14.87 % respectively.
NASA Astrophysics Data System (ADS)
O'Hara, P.; Hollkamp, J.; Duarte, C. A.; Eason, T.
2016-01-01
This paper presents a two-scale extension of the generalized finite element method (GFEM) which allows for static fracture analyses as well as fatigue crack propagation simulations on fixed, coarse hexahedral meshes. The approach is based on the use of specifically-tailored enrichment functions computed on-the-fly through the use of a fine-scale boundary value problem (BVP) defined in the neighborhood of existing mechanically-short cracks. The fine-scale BVP utilizes tetrahedral elements, and thus offers the potential for the use of a highly adapted fine-scale mesh in the regions of crack fronts capable of generating accurate enrichment functions for use in the coarse-scale hexahedral model. In this manner, automated hp-adaptivity which can be used for accurate fracture analyses, is now available for use on coarse, uniform hexahedral meshes without the requirements of irregular meshes and constrained approximations. The two-scale GFEM approach is verified and compared against alternative approaches for static fracture analyses, as well as mixed-mode fatigue crack propagation simulations. The numerical examples demonstrate the ability of the proposed approach to deliver accurate results even in scenarios involving multiple discontinuities or sharp kinks within a single computational element. The proposed approach is also applied to a representative panel model similar in design and complexity to that which may be used in the aerospace community.
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S
2015-12-01
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%. PMID:26572554
NASA Astrophysics Data System (ADS)
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.
2015-12-01
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%.
NASA Astrophysics Data System (ADS)
Li, Lei-Ting; Lin, Y. C.; Li, Ling; Shen, Lu-Ming; Wen, Dong-Xu
2015-03-01
Three-dimensional crystal plasticity finite element (CPFE) method is used to investigate the hot compressive deformation behaviors of 7075 aluminum alloy. Based on the grain morphology and crystallographic texture of 7075 aluminum alloy, the microstructure-based representative volume element (RVE) model was established by the pole figure inversion approach. In order to study the macroscopic stress-strain response and microstructural evolution, the CPFE simulations are performed on the established microstructure-based RVE model. It is found that the simulated stress-strain curves and deformation texture well agree with the measured results of 7075 aluminum alloy. With the increasing deformation degree, the remained initial weak Goss texture component tends to be strong and stable, which may result in the steady flow stress. The grain orientation and grain misorientation have significant effects on the deformation heterogeneity during hot compressive deformation. In the rolling-normal plane, the continuity of strain and misorientation can maintain across the low-angle grain boundaries, while the discontinuity of strain and misorientation is observed at the high-angle grain boundaries. The simulated results demonstrate that the developed CPFE model can well describe the hot compressive deformation behaviors of 7075 aluminum alloy under elevated temperatures.
NASA Astrophysics Data System (ADS)
Gholizadeh Doonechaly, N.; Rahman, S. S.
2012-05-01
Simulation of naturally fractured reservoirs offers significant challenges due to the lack of a methodology that can utilize field data. To date several methods have been proposed by authors to characterize naturally fractured reservoirs. Among them is the unfolding/folding method which offers some degree of accuracy in estimating the probability of the existence of fractures in a reservoir. Also there are statistical approaches which integrate all levels of field data to simulate the fracture network. This approach, however, is dependent on the availability of data sources, such as seismic attributes, core descriptions, well logs, etc. which often make it difficult to obtain field wide. In this study a hybrid tectono-stochastic simulation is proposed to characterize a naturally fractured reservoir. A finite element based model is used to simulate the tectonic event of folding and unfolding of a geological structure. A nested neuro-stochastic technique is used to develop the inter-relationship between the data and at the same time it utilizes the sequential Gaussian approach to analyze field data along with fracture probability data. This approach has the ability to overcome commonly experienced discontinuity of the data in both horizontal and vertical directions. This hybrid technique is used to generate a discrete fracture network of a specific Australian gas reservoir, Palm Valley in the Northern Territory. Results of this study have significant benefit in accurately describing fluid flow simulation and well placement for maximal hydrocarbon recovery.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
NASA Astrophysics Data System (ADS)
Chen, Xi; Tang, Yuye; Cao, Guoxin; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang
2007-03-01
The gating pathways of mechanosensitive channels of large conductance (MscL) are studied using the finite element method. The phenomenological model treats transmembrane helices as elastic rods and the lipid membrane as an elastic sheet of finite thickness. The interactions between various continuum components are derived from atomistic energy calculations. The structural variations along the gating pathway are consistent with previous analyses based on structural models and biased molecular-dynamics simulations. Upon membrane bending, there is notable and nonmonotonic variation in the pore radius. This emphasizes that the gating behavior of MscL depends critically on the form of the mechanical perturbation. Compared to popular all-atom simulations, the MDeFEM framework offers a unique alternative to bridge detailed intermolecular interactions and biological processes occurring at large spatial and timescales. It is envisioned that such a hierarchical multiscale framework will find great value in the study of a variety of biological processes involving complex mechanical deformations such as muscle contraction and mechanotransduction.
NASA Astrophysics Data System (ADS)
Templeton, E. L.; Baudet, A.; Bhat, H. S.; Dmowska, R.; Rice, J. R.; Rosakis, A. J.; Rousseau, C. E.
2005-12-01
The study of dynamically propagating shear cracks along geometrically complex paths is important to understanding the mechanics of earthquakes. Recent laboratory fracture studies of Rousseau and Rosakis examined a branched configuration, analogous to their study of rupture along a bent fault path [Rousseau and Rosakis, JGR, 2003], to enhance understanding of the behavior of a shear rupture approaching the intersection of two paths. Whereas crack motion along a simple bent path is readily explained by means of the energy available to sustain the propagating crack, or through a crack tip stress field criterion, the behavior of multiple paths displays more intricate variations featuring the inability of the crack to extend along secondary paths situated at shallow angles with respect to the initial direction of propagation. Secondary paths located at larger angles, on the extensional side, generally promote simultaneous extension along both paths beyond the junction, in contrast to preferred motion along the straight path, which is favored when secondary paths are situated on the compressional side. The experiments involve impact loading of thin plates of Homalite-100, a photoelastic polymer, which are cut along branched paths and weakly glued back together everywhere except along a starter notch near the impact site. High-speed photography of isochromatic fringe patterns (lines of constant difference between in-plane principal stresses) characterized the transient deformation field associated with the impact and rupture propagation. We adapted the ABAQUS/Explicit dynamic finite element program to analyze the propagation of shear cracks along such branched weakened paths. Two configurations for weakened paths, branches at 35° to the compressional side and the extensional side, were analyzed. We implemented a linear slip-weakening failure model as a user-defined constitutive relation within the ABAQUS program, where weakening could be included in either or both of (1
NASA Astrophysics Data System (ADS)
Chang, You; Kim, Namkeun; Stenfelt, Stefan
2015-12-01
Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.
NASA Astrophysics Data System (ADS)
Ludwig, Thomas; Doreille, Mathias; Merazzi, Silvio; Vescovini, Riccardo; Bisagni, Chiara
2015-10-01
This paper presents a methodology for predicting the damped response and energy dissipation of laminated composite structures, subjected to dynamic loads. Starting from simple coupon tests to characterize the material, the numerical simulation of damping properties is made possible by a novel linear viscoelastic model that has been developed and implemented in the finite element code B2000++. A nonlinear optimization procedure is adopted to fit experimental data and define the exponential Maxwell parameter model. To illustrate the potentialities of the method, the post-buckling analysis of a relatively complex aeronautical panel is presented, accounting not only for geometric nonlinearities, but also for viscoelastic effects. The results illustrate the effects due to material dissipation, their relation to the effects of inertia, and the influence of geometric imperfections on the response of the panel.
NASA Astrophysics Data System (ADS)
Song, Jian; Wen, Weidong; Cui, Haitao; Zhang, Hongjian; Xu, Ying
2016-02-01
In the first part of the work, a new 2.5D woven composites finite element model (2.5D WCFEM) which took into consideration the impact of face structures and can accurately predict the main elastic performances has been established. In this part, the stress-strain behavior and the damage characteristic of this material under uniaxial tension are simulated using nonlinear progressive damage analysis based on damage mechanics. Meanwhile, experimental investigation and fracture analysis are conducted to evaluate the validity of the proposed method. Finally, the influence of woven parameters on the mechanical behavior is discussed. Compared with the test results, a good agreement between the computational and experimental results has been obtained. The progressive damage characteristic and main failure modes are also revealed.
Herrera, Antonio; Rebollo, Sarai; Ibarz, Elena; Mateo, Jesús; Gabarre, Sergio; Gracia, Luis
2014-01-01
This five-year prospective study was designed to investigate periprosthetic bone remodeling associated with two cemented stem models, ABG-II (Stryker) and VerSys (Zimmer), randomly implanted in patients older than 75 years. The sample consisted of 64 cases (32, ABG-II; 32, VerSys). Inclusion criterion was diagnosis of osteoarthritis recommended for cemented total hip arthroplasty. Besides clinical study, Finite Element (FE) simulation was used to analyze biomechanical changes caused by hip arthroplasty. Bone Mineral Density (BMD) measurements showed a progressive increase in bone mass throughout the entire follow-up period for both stems, well correlated with FE results except in Gruen zones 4, 5, 6 for ABG-II and in zones 4, 5 for VerSys, denoting that remodeling in those zones does not depend on mechanical factors but rather on biological or physiological ones. PMID:23725926
2013-01-01
Background The resistance of the bone against damage by repairing itself and adapting to environmental conditions is its most important property. These adaptive changes are regulated by physiological process commonly called the bone remodeling. Better understanding this process requires that we apply the theory of elastic-damage under the hypothesis of small displacements to a bone structure and see its mechanical behavior. Results The purpose of the present study is to simulate a two dimensional model of a proximal femur by taking into consideration elastic-damage and mechanical stimulus. Here, we present a mathematical model based on a system of nonlinear ordinary differential equations and we develop the variational formulation for the mechanical problem. Then, we implement our mathematical model into the finite element method algorithm to investigate the effect of the damage. Conclusion The results are consistent with the existing literature which shows that the bone stiffness drops in damaged bone structure under mechanical loading. PMID:23663260
NASA Astrophysics Data System (ADS)
Bernard, C. A.; Correia, J. P. M.; Bahlouli, N.; Ahzi, S.
2015-09-01
During the last decades, the part of polymeric materials considerably increased in automotive and packaging applications. However, their mechanical behaviour is difficult to predict due to a strong sensitivity to the strain rate and the temperature. Numerous theories and models were developed in order to understand and model their complex mechanical behaviour. The one proposed by Richeton et al. [Int. J. Solids Struct. 44, 7938 (2007)] seems particularly suitable since several material parameters possess a strain rate and temperature sensitivity. The aim of this study is to implement the proposed constitutive model in a commercial finite element software by writing a user material subroutine. The implementation of the model was verified on a compressive test. Next a normal impact test was simulated in order to validate the predictive capabilities of the model. A good agreement is found between the FE predictions and the experimental results taken from the literature.
Documentation of a finite-element two-layer model for simulation of ground-water flow
Mallory, Michael J.
1979-01-01
This report documents a finite-element model for simulation of ground-water flow in a two-aquifer system where the two aquifers are coupled by a leakage term that represents flow through a confining layer separating the two aquifers. The model was developed by Timothy J. Durbin (U.S. Geological Survey) for use in ground-water investigations in southern California. The documentation assumes that the reader is familiar with the physics of ground-water flow, numerical methods of solving partial-differential equations, and the FORTRAN IV computer language. It was prepared as part of the investigations made by the U.S. Geological Survey in cooperation with the San Bernardino Valley Municipal Water District. (Kosco-USGS)
NASA Astrophysics Data System (ADS)
Hazer, D.; Schmidt, E.; Unterhinninghofen, R.; Richter, G. M.; Dillmann, R.
2009-08-01
Abnormal hemodynamics and biomechanics of blood flow and vessel wall conditions in the arteries may result in severe cardiovascular diseases. Cardiovascular diseases result from complex flow pattern and fatigue of the vessel wall and are prevalent causes leading to high mortality each year. Computational Fluid Dynamics (CFD), Computational Structure Mechanics (CSM) and Fluid Structure Interaction (FSI) have become efficient tools in modeling the individual hemodynamics and biomechanics as well as their interaction in the human arteries. The computations allow non-invasively simulating patient-specific physical parameters of the blood flow and the vessel wall needed for an efficient minimally invasive treatment. The numerical simulations are based on the Finite Element Method (FEM) and require exact and individual mesh models to be provided. In the present study, we developed a numerical tool to automatically generate complex patient-specific Finite Element (FE) mesh models from image-based geometries of healthy and diseased vessels. The mesh generation is optimized based on the integration of mesh control functions for curvature, boundary layers and mesh distribution inside the computational domain. The needed mesh parameters are acquired from a computational grid analysis which ensures mesh-independent and stable simulations. Further, the generated models include appropriate FE sets necessary for the definition of individual boundary conditions, required to solve the system of nonlinear partial differential equations governed by the fluid and solid domains. Based on the results, we have performed computational blood flow and vessel wall simulations in patient-specific aortic models providing a physical insight into the pathological vessel parameters. Automatic mesh generation with individual awareness in terms of geometry and conditions is a prerequisite for performing fast, accurate and realistic FEM-based computations of hemodynamics and biomechanics in the
Hakan Ozaltun; Herman Shen; Pavel Madvedev
2010-11-01
This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.
Probabilistic Finite Element: Variational Theory
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.
1985-01-01
The goal of this research is to provide techniques which are cost-effective and enable the engineer to evaluate the effect of uncertainties in complex finite element models. Embedding the probabilistic aspects in a variational formulation is a natural approach. In addition, a variational approach to probabilistic finite elements enables it to be incorporated within standard finite element methodologies. Therefore, once the procedures are developed, they can easily be adapted to existing general purpose programs. Furthermore, the variational basis for these methods enables them to be adapted to a wide variety of structural elements and to provide a consistent basis for incorporating probabilistic features in many aspects of the structural problem. Tasks concluded include the theoretical development of probabilistic variational equations for structural dynamics, the development of efficient numerical algorithms for probabilistic sensitivity displacement and stress analysis, and integration of methodologies into a pilot computer code.
NASA Astrophysics Data System (ADS)
Bian, Xuecheng; Chen, Yunmin; Hu, Ting
2008-06-01
An efficient 2.5D finite element numerical modeling approach was developed to simulate wave motions generated in ground by high-speed train passages. Fourier transform with respect to the coordinate in the track direction was applied to reducing the three-dimensional dynamic problem to a plane strain problem which has been solved in a section perpendicular to the track direction. In this study, the track structure and supporting ballast layer were simplified as a composite Euler beam resting on the ground surface, while the ground with complicated geometry and physical properties was modeled by 2.5D quadrilateral elements. Wave dissipation into the far field was dealt with the transmitting boundary constructed with frequency-dependent dashpots. Three-dimensional responses of track structure and ground were obtained from the wavenumber expansion in the track direction. The simulated wave motions in ground were interpreted for train moving loads traveling at speeds below or above the critical velocity of a specific track-ground system. It is found that, in the soft ground area, the high-speed train operations can enter the transonic range, which can lead to resonances of the track structure and the supporting ground. The strong vibration will endanger the safe operations of high-speed train and accelerate the deterioration of railway structure.
NASA Astrophysics Data System (ADS)
María Gómez Castro, Berta; De Simone, Silvia; Rossi, Riccardo; Larese De Tetto, Antonia; Carrera Ramírez, Jesús
2015-04-01
Coupled thermo-hydro-mechanical modeling is essential for CO2 storage because of (1) large amounts of CO2 will be injected, which will cause large pressure buildups and might compromise the mechanical stability of the caprock seal, (2) the most efficient technique to inject CO2 is the cold injection, which induces thermal stress changes in the reservoir and seal. These stress variations can cause mechanical failure in the caprock and can also trigger induced earthquakes. To properly assess these effects, numerical models that take into account the short and long-term thermo-hydro-mechanical coupling are an important tool. For this purpose, there is a growing need of codes that couple these processes efficiently and accurately. This work involves the development of an open-source, finite element code written in C ++ for correctly modeling the effects of thermo-hydro-mechanical coupling in the field of CO2 storage and in others fields related to these processes (geothermal energy systems, fracking, nuclear waste disposal, etc.), and capable to simulate induced seismicity. In order to be able to simulate earthquakes, a new lower dimensional interface element will be implemented in the code to represent preexisting fractures, where pressure continuity will be imposed across the fractures.
The NESSUS finite element code
NASA Technical Reports Server (NTRS)
Dias, J. B.; Nagiegaal, J. C.; Nakazawa, S.
1987-01-01
The objective of this development is to provide a new analysis tool which integrates the structural modeling versatility of a modern finite element code with the latest advances in the area of probabilistic modeling and structural reliability. Version 2.0 of the NESSUS finite element code was released last February, and is currently being exercised on a set of problems which are representative of typical Space Shuttle Main Engine (SSME) applications. NESSUS 2.0 allows linear elastostatic and eigenvalue analysis of structures with uncertain geometry, material properties and boundary conditions, which are subjected to a random mechanical and thermal loading environment. The NESSUS finite element code is a key component in a broader software system consisting of five major modules. NESSUS/EXPERT is an expert system under development at Southwest Research Institute, with the objective of centralizing all component-specific knowledge useful for conducting probabilistic analysis of typical Space Shuttle Main Engine (SSME) components. NESSUS/FEM contains the finite element code used for the structural analysis and parameter sensitivity evaluation of these components. The task of parametrizing a finite element mesh in terms of the random variables present is facilitated with the use of the probabilistic data preprocessor in NESSUS/PRE. An external database file is used for managing the bulk of the data generated by NESSUS/FEM.
Visualizing higher order finite elements. Final report
Thompson, David C; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.
Finite-element simulation of ground-water flow in the vicinity of Yucca Mountain, Nevada-California
Czarnecki, J.B.; Waddell, R.K.
1984-01-01
A finite-element model of the groundwater flow system in the vicinity of Yucca Mountain at the Nevada Test Site was developed using parameter estimation techniques. The model simulated steady-state ground-water flow occurring in tuffaceous, volcanic , and carbonate rocks, and alluvial aquifers. Hydraulic gradients in the modeled area range from 0.00001 for carbonate aquifers to 0.19 for barriers in tuffaceous rocks. Three model parameters were used in estimating transmissivity in six zones. Simulated hydraulic-head values range from about 1,200 m near Timber Mountain to about 300 m near Furnace Creek Ranch. Model residuals for simulated versus measured hydraulic heads range from -28.6 to 21.4 m; most are less than +/-7 m, indicating an acceptable representation of the hydrologic system by the model. Sensitivity analyses of the model 's flux boundary condition variables were performed to assess the effect of varying boundary fluxes on the calculation of estimated model transmissivities. Varying the flux variables representing discharge at Franklin Lake and Furnace Creek Ranch has greater effect than varying other flux variables. (Author 's abstract)
Micic, Miodrag; Klymyshyn, Nicholas A.; Lu, H PETER.
2004-03-04
Near-field optical enhancement at metal surfaces and methods such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescent quenching and enhancement, and various near-field scanning microscopies (NSOM) all depend on a metals surface properties, mainly on its morphology and SPR resonant frequency. We report on simulations of the influence of different surface morphologies on electromagnetic field enhancements at the rough surfaces of noble metals and also evaluate the optimal conditions for the generation of a surface-enhanced Raman signal of absorbed species on a metallic substrate. All simulations were performed with a classical electrodynamics approach using the full set of Maxwells equations, which were solved with the three-dimensional finite element method (FEM). Two different classes of surfaces where modeled using fractals, representing diffusion limited aggregation growth dendritic structures, such as one on the surface of electrodes, and second one representing the sponge-like structure used to model surfaces of particles with high porosity, such as metal coated catalyst supports. The simulations depict the high inhomogeneity of an enhanced electromagnetic field as both a field enhancement and field attenuation near the surface. While the diffusion limited aggregation dendritical fractals enhanced the near-field electromagnetic field, the sponge fractals significantly reduced the local electromagnetic field intensity. Moreover, the fractal orders of the fractal objects did not significantly alter the total enhancement, and the distribution of a near-field enhancement was essentially invariant to the changes in the angle of an incoming laser beam.
NASA Astrophysics Data System (ADS)
Robbins, Joshua; Voth, Thomas
2011-06-01
Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
Finite element simulation of thunderstorm electrodynamics in the proximity of the storm
NASA Technical Reports Server (NTRS)
Baginski, Michael Edward
1988-01-01
Observations of electric fields, Maxwell current density, and air conductivity over thunderstorms were presented. The measurements were obtained using electric field mils and conductivity probes installed on a U2 aircraft as the aircraft passed approximately directly over an active thunderstorm at an altitude of 18 to 20 km. Accurate electrical observations of this type are rare and provide important information to those involved in numerically modeling a thunderstorm. A preliminary set of computer simulations based on this data were conducted and are described. The simulations show good agreement with measurements and are used to infer the thundercloud's charging current and amount of charge exchanged per flash.
Carnelli, Davide; Lucchini, Riccardo; Ponzoni, Matteo; Contro, Roberto; Vena, Pasquale
2011-07-01
Anisotropy is one of the most peculiar aspects of cortical bone mechanical behaviour, and the numerical approach can be successfully used to investigate aspects of bone tissue mechanics that analytical methods solve in approximate way or do not cover. In this work, nanoindentation experimental tests and finite element simulations were employed to investigate the elastic-inelastic anisotropic mechanical properties of cortical bone. The model allows for anisotropic elastic and post-yield behaviour of the tissue. A tension-compression mismatch and direction-dependent yield stresses are allowed for. Indentation experiments along the axial and transverse directions were simulated with the purpose to predict the indentation moduli and hardnesses along multiple orientations. Results showed that the experimental transverse-to-axial ratio of indentation moduli, equal to 0.74, is predicted with a ∼3% discrepancy regardless the post-yield material behaviour; whereas, the transverse-to-axial hardness ratio, equal to 0.86, can be correctly simulated (discrepancy ∼6% w.r.t. the experimental results) only employing an anisotropic post-elastic constitutive model. Further, direct comparison between the experimental and simulated indentation tests evidenced a good agreement in the loading branch of the indentation curves and in the peak loads for a transverse-to-axial yield stress ratio comparable to the experimentally obtained transverse-to-axial hardness ratio. In perspective, the present work results strongly support the coupling between indentation experiments and FEM simulations to get a deeper knowledge of bone tissue mechanical behaviour at the microstructural level. The present model could be used to assess the effect of variations of constitutive parameters due to age, injury, and/or disease on bone mechanical performance in the context of indentation testing. PMID:21570077
NASA Astrophysics Data System (ADS)
Lisjak, Andrea; Tatone, Bryan S. A.; Mahabadi, Omid K.; Grasselli, Giovanni; Marschall, Paul; Lanyon, George W.; Vaissière, Rémi de la; Shao, Hua; Leung, Helen; Nussbaum, Christophe
2016-05-01
The analysis and prediction of the rock mass disturbance around underground excavations are critical components of the performance and safety assessment of deep geological repositories for nuclear waste. In the short term, an excavation damaged zone (EDZ) tends to develop due to the redistribution of stresses around the underground openings. The EDZ is associated with an increase in hydraulic conductivity of several orders of magnitude. In argillaceous rocks, sealing mechanisms ultimately lead to a partial reduction in the effective hydraulic conductivity of the EDZ with time. The goal of this study is to strengthen the understanding of the phenomena involved in the EDZ formation and sealing in Opalinus Clay, an indurated claystone currently being assessed as a host rock for a geological repository in Switzerland. To achieve this goal, hybrid finite-discrete element method (FDEM) simulations are performed. With its explicit consideration of fracturing processes, FDEM modeling is applied to the HG-A experiment, an in situ test carried out at the Mont Terri underground rock laboratory to investigate the hydro-mechanical response of a backfilled and sealed microtunnel. A quantitative simulation of the EDZ formation process around the microtunnel is first carried out, and the numerical results are compared with field observations. Then, the re-compression of the EDZ under the effect of a purely mechanical loading, capturing the increase of swelling pressure from the backfill onto the rock, is considered. The simulation results highlight distinctive rock failure kinematics due to the bedded structure of the rock mass. Also, fracture termination is simulated at the intersection with a pre-existing discontinuity, representing a fault plane oblique to the bedding orientation. Simulation of the EDZ re-compression indicates an overall reduction of the total fracture area as a function of the applied pressure, with locations of ineffective sealing associated with self
Finite element simulation of sheet metal forming and springback using a crystal plasticity approach
Bertram, A.; Boehlke, T.; Krawietz, A.; Schulze, V.
2007-05-17
In this paper the application of a crystal plasticity model for body-centered cubic crystals in the simulation of a sheet metal forming process is discussed. The material model parameters are identified by a combination of a texture approximation procedure and a conventional parameter identification scheme. In the application of a cup drawing process the model shows an improvement of the strain and earing prediction as well as the qualitative springback results in comparison with a conventional phenomenological model.
Alves, S W; Noble, C R
2006-12-06
Shake table tests were performed on a full-scale 7-story slice of a reinforced concrete building at UC San Diego between October 2005 and January 2006. The tests were performed on the NEES Large High-Performance Outdoor Shake Table (LHPOST) at the Engelkirk Structural Engineering Center of UCSD. The structure was subjected to four uniaxial earthquake ground motions of increasing amplitude. The accelerations measured at the base of the structure and the measured roof displacements have been provided by UCSD. Details of the building construction have also been provided by UCSD. The measured response of this structure was used to assess the capability of the homogenized rebar model in DYNA3D/ParaDyn [1,2] to simulate the seismic response of reinforced concrete structures. The homogenized rebar model is a composite version of the Karagozian & Case concrete model [3]. Work has been done to validate this material model for use in blast simulations, but seismic simulations require longer durations. The UCSD experiment provides full-scale data that can be used to validate seismic modeling capabilities.
Petit, Philippe; Trosseille, Xavier; Baudrit, Pascal; Gopal, Madana
2003-10-01
As more and more active restraint devices are added by vehicle manufacturers for occupant protection, the history of driver frontal airbags illustrates that the design performance of such devices for in-position (IP) occupants often have to be limited in order to reduce their aggressiveness for out-of-position (OOP) situations. As of today, a limited number of publications dealing with FE simulation of airbag deployment for OOP are available. The objective of our study was to evaluate the feasibility of airbag deployment simulations based on an extensive set of well-defined physical test matrix. A driver frontal airbag was chosen (European mid-size car sample) for this study. It was deployed against a force plate (14 tests in a total of 6 configurations), and used with Hybrid III 50(th) percentile dummy (HIII) in OOP tests (6 tests, 4 configurations). Special attention was paid to control the boundary conditions used in experiments in order to improve the modeling process. The initial positioning of the dummy (chin against the top of the steering wheel rim, and back of the torso parallel to the plane of the rim) for both physical and numerical dummies was maintained from 23 targets digitized using a 3D Faro arm. Specific test position/conditions that were deemed important were repeated to understand the sensitivity and variation. The software used for the FEM simulations was Radioss, using uniform pressure method. The bag was meshed and folded using Excel and Matlab routines. The inflator characteristics were adapted from data provided by the inflator manufacturer. The body-block test conducted at 7 mm was used to tune the different model parameters and the remaining body-block, 50(th)%le HIII OOP and plate tests were used for validation. The results show comparison of simulation and tests records. The simulations show a satisfactory matching of the test results within the first 60 ms and capture the key events of the bag deployment in a promising manner. The major
NASA Astrophysics Data System (ADS)
Srivastava, Gaurav; Matous, Karel
2014-03-01
A large strain chemo-thermo-mechanical numerical framework has been developed to model the coupled chemical, thermal and mechanical behavior of solid propellant at the meso-scale. The mechanical behavior is modeled using a hyperelastic material model with viscous damage and J2 plasticity. The model admits a general nonlinear coefficient of thermal expansion to capture the thermo-mechanical behavior. The chemical model considers a system of chemical reactions with the rate kinetics being governed by a modified Arrhenius law. The thermal model considers thermodynamically consistent energy contributions from the inelastic mechanical deformations and the chemical reactions. The finite element method has been employed to discretize the continuum equations. Some simulation results will be presented to demonstrate the use of the developed framework in modeling the behavior of HMX-based solid propellant under thermal loads. The developed framework captures the large volumetric strains that are a characteristic of the β- δ phase transition of the HMX crystals and is able to predict locations of potential cracks in the binder. Such a simulation tool may prove to be useful in determining optimal conditions for the safe storage of such materials. Indian Institute of Technology, Gandhinagar VGEC Complex, Chandkheda, Ahmedabad, Gujarat - 382424.
NASA Astrophysics Data System (ADS)
Morency, C.; Tromp, J.
2008-12-01
The mathematical formulation of wave propagation in porous media developed by Biot is based upon the principle of virtual work, ignoring processes at the microscopic level, and does not explicitly incorporate gradients in porosity. Based on recent studies focusing on averaging techniques, we derive the macroscopic porous medium equations from the microscale, with a particular emphasis on the effects of gradients in porosity. In doing so, we are able to naturally determine two key terms in the momentum equations and constitutive relationships, directly translating the coupling between the solid and fluid phases, namely a drag force and an interfacial strain tensor. In both terms, gradients in porosity arise. One remarkable result is that when we rewrite this set of equations in terms of the well known Biot variables us, w), terms involving gradients in porosity are naturally accommodated by gradients involving w, the fluid motion relative to the solid, and Biot's formulation is recovered, i.e., it remains valid in the presence of porosity gradients We have developed a numerical implementation of the Biot equations for two-dimensional problems based upon the spectral-element method (SEM) in the time domain. The SEM is a high-order variational method, which has the advantage of accommodating complex geometries like a finite-element method, while keeping the exponential convergence rate of (pseudo)spectral methods. As in the elastic and acoustic cases, poroelastic wave propagation based upon the SEM involves a diagonal mass matrix, which leads to explicit time integration schemes that are well-suited to simulations on parallel computers. Effects associated with physical dispersion & attenuation and frequency-dependent viscous resistance are addressed by using a memory variable approach. Various benchmarks involving poroelastic wave propagation in the high- and low-frequency regimes, and acoustic-poroelastic and poroelastic-poroelastic discontinuities have been
Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach.
Auricchio, F; Conti, M; Morganti, S; Reali, A
2014-01-01
Until recently, heart valve failure has been treated adopting open-heart surgical techniques and cardiopulmonary bypass. However, over the last decade, minimally invasive procedures have been developed to avoid high risks associated with conventional open-chest valve replacement techniques. Such a recent and innovative procedure represents an optimal field for conducting investigations through virtual computer-based simulations: in fact, nowadays, computational engineering is widely used to unravel many problems in the biomedical field of cardiovascular mechanics and specifically, minimally invasive procedures. In this study, we investigate a balloon-expandable valve and we propose a novel simulation strategy to reproduce its implantation using computational tools. Focusing on the Edwards SAPIEN valve in particular, we simulate both stent crimping and deployment through balloon inflation. The developed procedure enabled us to obtain the entire prosthetic device virtually implanted in a patient-specific aortic root created by processing medical images; hence, it allows evaluation of postoperative prosthesis performance depending on different factors (e.g. device size and prosthesis placement site). Notably, prosthesis positioning in two different cases (distal and proximal) has been examined in terms of coaptation area, average stress on valve leaflets as well as impact on the aortic root wall. The coaptation area is significantly affected by the positioning strategy (- 24%, moving from the proximal to distal) as well as the stress distribution on both the leaflets (+13.5%, from proximal to distal) and the aortic wall (- 22%, from proximal to distal). No remarkable variations of the stress state on the stent struts have been obtained in the two investigated cases. PMID:23402555
Numerical simulation of evolutionary erodible bedforms using the particle finite element method
NASA Astrophysics Data System (ADS)
Bravo, Rafael; Becker, Pablo; Ortiz, Pablo
2016-07-01
This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.
Finite element simulation on thermal mechanical expansion of the automobile rear axle housing
NASA Astrophysics Data System (ADS)
Liu, Hua-min; Zhao, Yufeng; Zhi, Fuxin
2013-05-01
Mechanical thermal expansion is a new metal processing method, which improved not only the properties of materials and the production efficiency, but also achieves better processing surface quality and comprehensive mechanical properties. Axle housing mechanical thermal expansion is simulated by DEFORM-3D, then by metal flow analysis, explored the deformation characteristics through stress-strain distribution and velocity, predicted possible forming defects types and locations and propose appropriate solutions. Through analysis of the influence of different process parameters on the axle housing mechanical thermal expansion, theoretical guidance for actual production is provided.
Birkholzer, J.; Karasaki, K.
1996-07-01
Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.
Rieben, R N
2004-07-20
The goal of this dissertation is twofold. The first part concerns the development of a numerical method for solving Maxwell's equations on unstructured hexahedral grids that employs both high order spatial and high order temporal discretizations. The second part involves the use of this method as a computational tool to perform high fidelity simulations of various electromagnetic devices such as optical transmission lines and photonic crystal structures to yield a level of accuracy that has previously been computationally cost prohibitive. This work is based on the initial research of Daniel White who developed a provably stable, charge and energy conserving method for solving Maxwell's equations in the time domain that is second order accurate in both space and time. The research presented here has involved the generalization of this procedure to higher order methods. High order methods are capable of yielding far more accurate numerical results for certain problems when compared to corresponding h-refined first order methods , and often times at a significant reduction in total computational cost. The first half of this dissertation presents the method as well as the necessary mathematics required for its derivation. The second half addresses the implementation of the method in a parallel computational environment, its validation using benchmark problems, and finally its use in large scale numerical simulations of electromagnetic transmission devices.
NASA Astrophysics Data System (ADS)
Giovinazzo, G.; Ribas, N.; Cinca, J.; Rosell-Ferrer, J.
2010-04-01
Previous studies have shown that it is possible to evaluate heart graft rejection level using a bioimpedance technique by means of an intracavitary catheter. However, this technique does not present relevant advantages compared to the gold standard for the detection of a heart rejection, which is the biopsy of the endomyocardial tissue. We propose to use a less invasive technique that consists in the use of a transoesophageal catheter and two standard ECG electrodes on the thorax. The aim of this work is to evaluate different parameters affecting the impedance measurement, including: sensitivity to electrical conductivity and permittivity of different organs in the thorax, lung edema and pleural water. From these results, we deduce the best estimator for cardiac rejection detection, and we obtain the tools to identify possible cases of false positive of heart rejection due to other factors. To achieve these objectives we have created a thoracic model and we have simulated, with a FEM program, different situations at the frequencies of 13, 30, 100, 300 and 1000 kHz. Our simulation demonstrates that the phase, at 100 and 300 kHz, has the higher sensitivity to changes in the electrical parameters of the heart muscle.
FEBio: finite elements for biomechanics.
Maas, Steve A; Ellis, Benjamin J; Ateshian, Gerard A; Weiss, Jeffrey A
2012-01-01
In the field of computational biomechanics, investigators have primarily used commercial software that is neither geared toward biological applications nor sufficiently flexible to follow the latest developments in the field. This lack of a tailored software environment has hampered research progress, as well as dissemination of models and results. To address these issues, we developed the FEBio software suite (http://mrl.sci.utah.edu/software/febio), a nonlinear implicit finite element (FE) framework, designed specifically for analysis in computational solid biomechanics. This paper provides an overview of the theoretical basis of FEBio and its main features. FEBio offers modeling scenarios, constitutive models, and boundary conditions, which are relevant to numerous applications in biomechanics. The open-source FEBio software is written in C++, with particular attention to scalar and parallel performance on modern computer architectures. Software verification is a large part of the development and maintenance of FEBio, and to demonstrate the general approach, the description and results of several problems from the FEBio Verification Suite are presented and compared to analytical solutions or results from other established and verified FE codes. An additional simulation is described that illustrates the application of FEBio to a research problem in biomechanics. Together with the pre- and postprocessing software PREVIEW and POSTVIEW, FEBio provides a tailored solution for research and development in computational biomechanics. PMID:22482660
Finite element based simulation on friction stud welding of metal matrix composites to steel
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Tharmaraj, R.; Velu, P. Shenbaga; Kumar, R.
2016-05-01
Friction welding is a solid state joining technique used for joining similar and dissimilar materials with high integrity. This new technique is being successfully applied to the aerospace, automobile, and ship building industries, and is attracting more and more research interest. The quality of Friction Stud Welded joints depends on the frictional heat generated at the interface. Hence, thermal analysis on friction stud welding of stainless steel (AISI 304) and aluminium silicon carbide (AlSiC) combination is carried out in the present work. In this study, numerical simulation is carried out using ANSYS software and the temperature profiles are predicted at various increments of time. The developed numerical model is found to be adequate to predict temperature distribution of friction stud weld aluminium silicon carbide/stainless steel joints.
Finite element modeling of nonisothermal polymer flows
NASA Technical Reports Server (NTRS)
Roylance, D.
1981-01-01
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.
Probabilistic finite element analysis of a craniofacial finite element model.
Berthaume, Michael A; Dechow, Paul C; Iriarte-Diaz, Jose; Ross, Callum F; Strait, David S; Wang, Qian; Grosse, Ian R
2012-05-01
We employed a probabilistic finite element analysis (FEA) method to determine how variability in material property values affects stress and strain values in a finite model of a Macaca fascicularis cranium. The material behavior of cortical bone varied in three ways: isotropic homogeneous, isotropic non-homogeneous, and orthotropic non-homogeneous. The material behavior of the trabecular bone and teeth was always treated as isotropic and homogeneous. All material property values for the cranium were randomized with a Gaussian distribution with either coefficients of variation (CVs) of 0.2 or with CVs calculated from empirical data. Latin hypercube sampling was used to determine the values of the material properties used in the finite element models. In total, four hundred and twenty six separate deterministic FE simulations were executed. We tested four hypotheses in this study: (1) uncertainty in material property values will have an insignificant effect on high stresses and a significant effect on high strains for homogeneous isotropic models; (2) the effect of variability in material property values on the stress state will increase as non-homogeneity and anisotropy increase; (3) variation in the in vivo shear strain values reported by Strait et al. (2005) and Ross et al. (2011) is not only due to variations in muscle forces and cranial morphology, but also due to variation in material property values; (4) the assumption of a uniform coefficient of variation for the material property values will result in the same trend in how moderate-to-high stresses and moderate-to-high strains vary with respect to the degree of non-homogeneity and anisotropy as the trend found when the coefficients of variation for material property values are calculated from empirical data. Our results supported the first three hypotheses and falsified the fourth. When material properties were varied with a constant CV, as non-homogeneity and anisotropy increased the level of variability in
NASA Astrophysics Data System (ADS)
de Mier, M.; Costa, F.; Idelsohn, S.
2008-12-01
Many magmatic and volcanic processes (e.g., magma differentiation, mingling, transport in the volcanic conduit) are controlled by the physical properties and flow styles of high-temperature silicate melts. Such processes can be experimentally investigated using analog systems and scaling methods, but it is difficult to find the suitable material and it is generally not possible to quantitatively extrapolate the results to the natural system. An alternative means of studying fluid dynamics in volcanic systems is with numerical models. We have chosen the Particle Finite Element Method (PFEM), which is based on a Delaunay mesh that moves with the fluid velocity, the Navier-Stokes equations in Lagrangian formulation, and linear elements for velocity, pressure, and temperature. Remeshing is performed when the grid becomes too distorted [E. Oñate et al., 2004. The Particle Finite Element Method: An Overview. Int. J. Comput. Meth. 1, 267-307]. The method is ideal for tracking material interfaces between different fluids or media. Methods based on Eulerian reference frames need special techniques, such as level-set or volume-of-fluid, to capture the interface position, and these techniques add a significant numerical diffusion at the interface. We have performed a series of two-dimensional simulations of a classical problem of fluid dynamics in magmatic and volcanic systems: intrusion of a basaltic melt in a silica-rich magma reservoir. We have used realistic physical properties and equations of state for the silicate melts (e.g., temperature, viscosity, and density) and tracked the changes in the system for geologically relevant time scales (up to 100 years). The problem is modeled by the low-Mach-number equations derived from an asymptotic analysis of the compressible Navier-Stokes equations that removes shock waves from the flow but allows however large variations of density due to temperature variations. Non-constant viscosity and volume changes are taken into account
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
Onishi, Koshiro; Sakamoto, Hidetoshi; Kuramae, Hiroyuki; Morimoto, Hideo; Nakamachi, Eiji
2010-06-15
The purpose of this study is forming a high formability aluminum alloy sheet metal by controlling the microcrystal structure and the texture. So asymmetric rolling is applied to the material process. Analysis method is crystal plasticity multi-scale finite element analysis based on crystallographic homogenization.
Ashtiani, C.N.; Lowther, D.A.
1983-11-01
A direct finite element method for the simulation of the steady state load operating point of a synchronous generator is introduced. The terminal constraints of the generator under load are conveniently expressed in terms of the system state vector. This makes it possible to solve the finite element equations along with the terminal constraints in a single run, hence avoiding unnecessary iterations. The method presented is applicable to both turbo- and waterwheel generators in so far as saliency is concerned. However, since a two dimensional analysis has been adopted, it is expected that the prominent end region effect will be more noticeable in short stack hydro units.
NASA Astrophysics Data System (ADS)
Meng, Fanshun; Zhang, Jie; Yang, Chaoqun; Yu, Weizhe; Chen, Yuxi
2015-08-01
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress's variation and magnetic induction intensity's variation is: Δδ = K* Δ B, K = 8.04×109, which is proved correct by physical experiment.
NASA Astrophysics Data System (ADS)
Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat
2016-06-01
Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.
NASA Astrophysics Data System (ADS)
Porwal, Deeksha; Gupta, A. K.; Pillai, Anju M.; Sharma, Anand Kumar; Mukhopadhyay, Anoop Kumar; Khan, Kallol; Dey, Arjun
2016-07-01
The present work reports the nanomechanical behavior of a pulsed radio frequency (RF) magnetron sputtered vanadium pentoxide (V2O5) film deposited on silicon (Si) substrate using a combination of nanoindentation experiments and a finite element model (FEM). Deposited V2O5 film is characterized by x-ray diffraction (XRD), nanoprofilometry, field emission scanning electron microscopy (FESEM), nanoindentation and FEM. The phase pure 6.16 μm V2O5 film shows a nanocolumnar structure. The film exhibits nanohardness (H) of 0.16 ± 0.013 GPa and Young’s modulus (E) of about 12.05 ± 1.41 GPa. The FEM reproduces experimentally obtained load versus depth (P–h) plot and subsequently give yield stress and strain hardening component data of V2O5 film on Si substrate. Stress–strain behavior and von-Mises stress distribution of the V2O5 film with Si substrate system are also simulated. The FE model confirms the local maximum equivalent stress active underneath the nanoindenters to be nearly twice as high as the yield stress and thereby explains the plastic deformation observed in the V2O5 film.
Sabaeian, Mohammad; Shahzadeh, Mohammadreza
2015-02-01
The authors report the simulation of temperature distribution and thermally induced stresses of human tooth under CO2 pulsed laser beam. A detailed tooth structure comprising enamel, dentin, and pulp with realistic shapes and thicknesses were considered, and a numerical method of finite element was adopted to solve time-dependent bio-heat and stress equations. The realistic boundary conditions of constant temperature for those parts embedded in the gingiva and heat flux condition for those parts out of the gingiva were applied. The results which were achieved as a function of energy density (J/cm(2)) showed when laser beam is irradiated downward (from the top of the tooth), the temperature and thermal stresses decrease quickly as a function of depth that is a result of strong absorption of CO2 beams by enamel. This effect is so influential that one can use CO2 beams to remove micrometer layers while underlying tissues, especially the pulp, are safe from thermal effects. PMID:23868367
NASA Astrophysics Data System (ADS)
Sato, Kenji; Ono, Atsushi; Tomikawa, Yoshiro
2003-05-01
In the present paper, we propose a double-ended tuning-fork quartz resonator for a flatly supported vibratory gyro-sensor in parallel with its rotating plane. The resonator has the advantages of ease of miniaturization and high resistance to external shock, because the height of the proposed resonator is less than that of the conventional vertical-type tuning-fork. In addition, the proposed resonator has two end-support parts. The resonator also has the following features: (1) the vibration energy of the resonator is trapped in the driving part, therefore the resonator is only slightly affected by the support parts and (2) unwanted output signals can be removed by differential connection of the output signals from two symmetric detection electrodes. The resonator was designed using the finite element method (FEM), and its characteristics were also simulated by FEM. The obtained results show that the double-ended tuning-fork quartz resonator is applicable as a vibratory gyro-sensor, and the I/O voltage ratio of the gyro-sensor was found to be proportional to the applied angular velocity. That is, we clarified that the double-ended tuning-fork quartz resonator could be used as a gyro-sensor.
NASA Astrophysics Data System (ADS)
Pfaller, Sebastian; Possart, Gunnar; Steinmann, Paul; Rahimi, Mohammad; Müller-Plathe, Florian; Böhm, Michael C.
2016-05-01
A recently developed hybrid method is employed to study the mechanical behavior of silica-polystyrene nanocomposites (NCs) under uniaxial elongation. The hybrid method couples a particle domain to a continuum domain. The region of physical interest, i.e., the interphase around a nanoparticle (NP), is treated at molecular resolution, while the surrounding elastic continuum is handled with a finite-element approach. In the present paper we analyze the polymer behavior in the neighborhood of one or two nanoparticle(s) at molecular resolution. The coarse-grained hybrid method allows us to simulate a large polymer matrix region surrounding the nanoparticles. We consider NCs with dilute concentration of NPs embedded in an atactic polystyrene matrix formed by 300 chains with 200 monomer beads. The overall orientation of polymer segments relative to the deformation direction is determined in the neighborhood of the nanoparticle to investigate the polymer response to this perturbation. Calculations of strainlike quantities give insight into the deformation behavior of a system with two NPs and show that the applied strain and the nanoparticle distance have significant influence on the deformation behavior. Finally, we investigate to what extent a continuum-based description may account for the specific effects occurring in the interphase between the polymer matrix and the NPs.
Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu
2016-04-01
Although there are some traditional models of the gunshot wounds, there is still a need for more modeling analyses due to the difficulties related to the gunshot wounds to the forehead region of the human skull. In this study, the degree of damage as a consequence of penetrating head injuries due to gunshot wounds was determined using a preliminary finite element (FE) model of the human skull. In addition, the role of polyvinyl alcohol (PVA) sponge, which can be used as an alternative to reinforce the kinetic energy absorption capacity of bulletproof vest and helmet materials, to minimize the amount of skull injury due to penetrating processes was investigated through the FE model. Digital computed tomography along with magnetic resonance imaging data of the human head were employed to launch a three-dimensional (3D) FE model of the skull. Two geometrical shapes of projectiles (steel ball and bullet) were simulated for penetrating with an initial impact velocity of 734 m/s using nonlinear dynamic modeling code, namely LS-DYNA. The role of the damaged/distorted elements were removed during computation when the stress or strain reached their thresholds. The stress distributions in various parts of the forehead and sponge after injury were also computed. The results revealed the same amount of stress for both the steel ball and bullet after hitting the skull. The modeling results also indicated the time that steel ball takes to penetrate into the skull is lower than that of the bullet. In addition, more than 21% of the steel ball's kinetic energy was absorbed by the PVA sponge and, subsequently, injury sternness of the forehead was considerably minimized. The findings advise the application of the PVA sponge as a substitute strengthening material to be able to diminish the energy of impact as well as the load transmitted to the object. PMID:26886822
Yu Maolin; Du, R.
2005-08-05
Sheet metal stamping is one of the most commonly used manufacturing processes, and hence, much research has been carried for economic gain. Searching through the literatures, however, it is found that there are still a lots of problems unsolved. For example, it is well known that for a same press, same workpiece material, and same set of die, the product quality may vary owing to a number of factors, such as the inhomogeneous of the workpice material, the loading error, the lubrication, and etc. Presently, few seem able to predict the quality variation, not to mention what contribute to the quality variation. As a result, trial-and-error is still needed in the shop floor, causing additional cost and time delay. This paper introduces a new approach to predict the product quality variation and identify the sensitive design / process parameters. The new approach is based on a combination of inverse Finite Element Modeling (FEM) and Monte Carlo Simulation (more specifically, the Latin Hypercube Sampling (LHS) approach). With an acceptable accuracy, the inverse FEM (also called one-step FEM) requires much less computation load than that of the usual incremental FEM and hence, can be used to predict the quality variations under various conditions. LHS is a statistical method, through which the sensitivity analysis can be carried out. The result of the sensitivity analysis has clear physical meaning and can be used to optimize the die design and / or the process design. Two simulation examples are presented including drawing a rectangular box and drawing a two-step rectangular box.
NASA Astrophysics Data System (ADS)
Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian
2013-07-01
Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.
Nonlinear, finite deformation, finite element analysis
NASA Astrophysics Data System (ADS)
Nguyen, Nhung; Waas, Anthony M.
2016-06-01
The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated
NASA Astrophysics Data System (ADS)
Raphanel, J.; Bourcier, M.; Dimanov, A.; Héripré, E.; Bornert, M.
2012-04-01
Synthetic halite elaborated with different microstructures ( i.e. grain sizes and grain size distribution) has been deformed by uniaxial compression in a scanning electron microscope, with measure of the grain orientations, surface observation of slip lines, digital image correlation (DIC) to provide full-field estimates of displacements and surface strains (Bourcier et al. 2012). These kinematic data have indicated that the plastic deformation of halite is mostly intragranular for samples with large grains, with a few grain boundaries experiencing glide. In many cases, the slip planes can be identified, with contrasted situations: cross slip, partition of grains into several parts showing different slip lines... DIC shows that intragranular strains are organized by bands which orientation may often be explained in terms of slip plane traces and which become denser as the strain magnitudes increase. In order to complete the analysis, the knowledge of the local stresses is needed. Since they cannot be measured directly, one turns to numerical simulations based on a Crystal Plasticity Finite Element Code (CPFE). The core of such codes is the description of the single crystal behavior. Salt and ionic crystals have been extensively studied in the past (Carter and Heard, 1970) and recently revisited (Picard et al., 2012). It has been established that the glide directions are <110> directions and that the glide planes are {110}, {100} and {111} with strongly temperature dependent initial critical shear stresses (CSS) and hardening behaviors. At room temperature, the {110}<110> systems have the lowest CSS but do not suffice to accommodate a general plastic strain, so there is an initial stress differential build up between a grain well-oriented for easy plastic glide and another "hard" grain until other systems are activated or another deformation mechanism arises. The structure on which these computations are performed is another key element : one has to reconstruct a 3D
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
Finite Element Heat & Mass Transfer Code
1996-10-10
FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less
NASA Astrophysics Data System (ADS)
Brun, G.; Buffat, M.; Jeandel, D.; Schultz, J. L.; Desaulty, M.
A numerical approach able to describe the flow around the combustion chamber of a gas turbine engine is discussed. An axisymmetric method is proposed, based on a finite element method which allows a precise description of complex geometries. A two-equation model of turbulence is used with equilibrium laws in the vicinity of the solid boundaries. The model is based on a semiimplicit time scheme and a discretization of the domain into triangular elements with linear interpolations. An application to a typical annular combustor is presented.
NASA Astrophysics Data System (ADS)
Hasegawa, Kei; Geller, Robert J.; Hirabayashi, Nobuyasu
2016-02-01
We present a theoretical analysis of the error of synthetic seismograms computed by higher-order finite element methods (ho-FEMs). We show the existence of a previously unrecognized type of error due to degenerate coupling between waves with the same frequency but different wavenumbers. These results are confirmed by simple numerical experiments using the spectral element method (SEM) as an example of ho-FEMs. Errors of the type found by this study may occur generally in applications of ho-FEMs.
NASA Astrophysics Data System (ADS)
Lisjak, A.; Liu, Q.; Zhao, Q.; Mahabadi, O. K.; Grasselli, G.
2013-10-01
Stress waves, known as acoustic emissions (AEs), are released by localized inelastic deformation events during the progressive failure of brittle rocks. Although several numerical models have been developed to simulate the deformation and damage processes of rocks, such as non-linear stress-strain behaviour and localization of failure, only a limited number have been capable of providing quantitative information regarding the associated seismicity. Moreover, the majority of these studies have adopted a pseudo-static approach based on elastic strain energy dissipation that completely disregards elastodynamic effects. This paper describes a new AE modelling technique based on the combined finite-discrete element method (FEM/DEM), a numerical tool that simulates material failure by explicitly considering fracture nucleation and propagation in the modelling domain. Given the explicit time integration scheme of the solver, stress wave propagation and the effect of radiated seismic energy can be directly captured. Quasi-dynamic seismic information is extracted from a FEM/DEM model with a newly developed algorithm based on the monitoring of internal variables (e.g. relative displacements and kinetic energy) in proximity to propagating cracks. The AE of a wing crack propagation model based on this algorithm are cross-analysed by traveltime inversion and energy estimation from seismic recordings. Results indicate a good correlation of AE initiation times and locations, and scaling of energies, independently calculated with the two methods. Finally, the modelling technique is validated by simulating a laboratory compression test on a granite sample. The micromechanical parameters of the heterogeneous model are first calibrated to reproduce the macroscopic stress-strain response measured during standard laboratory tests. Subsequently, AE frequency-magnitude statistics, spatial clustering of source locations and the evolution of AE rate are investigated. The distribution of
Qian, Jing-Guang; Li, Zhaoxia; Zhang, Hong; Bian, Rong; Zhang, Songning
2014-06-28
The purpose of the study was to establish a dynamics model and a three-dimensional (3D) finite element model to analyze loading characteristics of femoral neck during walking, squat, single-leg standing, and forward and lateral lunges. One male volunteer performed three trials of the five movements. The 3D kinematic data were captured and imported into the LifeMOD to establish a musculoskeletal dynamics model to obtain joint reaction and muscle forces of iliacus, gluteus medius, gluteus maximus, psoas major and adductor magnus. The loading data LfeMOD were imported and transformed into a hip finite-element model. The results of the finite element femur model showed that stress was localized along the compression arc and the tension arc. In addition, the trabecular bone and tension lines of the Ward's triangle also demonstrated high stress. The compact bone received the greatest peak stress in the forward lunge and the least stress in the squat. However, the spongy bone in the femoral neck region had the greatest stress during the walk and the least stress in the squat. The results from this study indicate that the forward lunge may be an effective method to prevent femoral neck fractures. Walking is another effective and simple method that may improve bone mass of the Ward's triangle and prevent osteoporosis and femoral neck fracture. PMID:25114732
Qian, Jing-Guang; Li, Zhaoxia; Zhang, Hong; Bian, Rong; Zhang, Songning
2014-01-01
The purpose of the study was to establish a dynamics model and a three-dimensional (3D) finite element model to analyze loading characteristics of femoral neck during walking, squat, single-leg standing, and forward and lateral lunges. One male volunteer performed three trials of the five movements. The 3D kinematic data were captured and imported into the LifeMOD to establish a musculoskeletal dynamics model to obtain joint reaction and muscle forces of iliacus, gluteus medius, gluteus maximus, psoas major and adductor magnus. The loading data LfeMOD were imported and transformed into a hip finite-element model. The results of the finite element femur model showed that stress was localized along the compression arc and the tension arc. In addition, the trabecular bone and tension lines of the Ward’s triangle also demonstrated high stress. The compact bone received the greatest peak stress in the forward lunge and the least stress in the squat. However, the spongy bone in the femoral neck region had the greatest stress during the walk and the least stress in the squat. The results from this study indicate that the forward lunge may be an effective method to prevent femoral neck fractures. Walking is another effective and simple method that may improve bone mass of the Ward’s triangle and prevent osteoporosis and femoral neck fracture. PMID:25114732
NASA Astrophysics Data System (ADS)
Salahouelhadj, A.; Abed-Meraim, F.; Chalal, H.; Balan, T.
2011-05-01
In this contribution, the formulation of the SHB8PS continuum shell finite element is extended to anisotropic elastic-plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting element is then implemented into the commercial implicit finite element code Abaqus/Standard via the UEL subroutine. The SHB8PS element is an eight-node, three-dimensional brick with displacements as the only degrees of freedom and a preferential direction called the thickness. A reduced integration scheme is adopted using an arbitrary number of integration points along the thickness direction and only one integration point in the other directions. The hourglass modes due to this reduced integration are controlled using a physical stabilization technique together with an assumed strain method for the elimination of locking. Therefore, the element can be used to model thin structures while providing an accurate description of the various through-thickness phenomena. Its performance is assessed through several applications involving different types of non-linearities: geometric, material and that induced by contact. Particular attention is given to springback prediction for a NUMISHEET benchmark problem.
NASA Technical Reports Server (NTRS)
Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan
1996-01-01
In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.
Finite element model of needle electrode sensitivity
NASA Astrophysics Data System (ADS)
Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.
2010-04-01
We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.
NASA Astrophysics Data System (ADS)
Gorbunova, I.; Khabibullin, R.; Chernyakin, S.; Starinova, O.
2016-04-01
This paper discusses the research of functioning of different construction types for the spacecraft with a solar sail. Two types of the solar sail are considered, such as frame-type and rotary-type. The research is performed by means of application of the computer-assisted design system. The movement simulation of the spacecraft center mass and the forces acting on the solar sail is described. The finite element models of the two solar sail constructions are developed and compared.
Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell
NASA Astrophysics Data System (ADS)
Yousefi, Amin Termeh; Mahmood, Mohamad Rusop; Miyake, Mikio; Ikeda, Shoichiro
2016-07-01
Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell's. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis.
Finite Element Analysis of Honeycomb Impact Attenuator
NASA Astrophysics Data System (ADS)
Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu
To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.
Overcoming element erosion limitations within Lagrangian finite element codes
NASA Astrophysics Data System (ADS)
Vignjevic, Rade; Hughes, Kevin; Walker, Andrew; Taylor, Emma A.
2001-10-01
Lagrangian finite element methods have been used extensively in the past to study the non-linear transient behaviour of materials, ranging from crash test of cars to simulating bird strikes on planes.... However, as this type of space discretization does not allow for motion of the material through the mesh when modelling extremely large deformations, the mesh becomes highly distorted. This paper describes some limitations and applicability of this type of analysis for high velocity impacts. A method for dealing with this problem is by the erosion of elements is proposed where the main issue is the deformation of element failure strains. Results were compared with empirical perforation results and were found to be in good agreement. The results were then used to simulate high velocity impacts upon a multi-layered aluminium target, in order to predict a ballistic limit curve. LS-DYNA3D was used as the FE solver for all simulations. Meshes were generated with Truegrid.
NASA Astrophysics Data System (ADS)
Aminjikarai Vedagiri, Srinivasa Babu
An active field of research that has developed due to the increasing use of computational techniques like finite element simulations for analysis of highly complex structural mechanics problems and the increasing use of composite laminates in varied industries such as aerospace, automotive, bio-medical, etc. is the development of numerical models to capture the behavior of composite materials. One of the big challenges not yet overcome convincingly in this field is the modeling of delamination failure which is one of the primary modes of damage in composite laminates. Hence, the primary aim of this work is to develop two numerical models for finite element simulations of delamination failure in composite laminates and implement them in the explicit finite element software DYNA3D/LS-DYNA. Dynamic fracture mechanics is an example of a complex structural analysis problem for which finite element simulations seem to be the only possible way to extract detailed information on sophisticated physical quantities of the crack-tip at any instant of time along a highly transient history of fracture. However, general purpose, commercial finite element software which have capabilities to do fracture analyses are still limited in their use to stationary cracks and crack propagation along trajectories known a priori. Therefore, an automated dynamic fracture procedure capable of simulating dynamic propagation of through-thickness cracks in arbitrary directions in linear, isotropic materials without user-intervention is first developed and implemented in DYNA3D for its default 8-node solid (brick) element. Dynamic energy release rate and stress intensity factors are computed in the model using integral expressions particularly well-suited for the finite element method. Energy approach is used to check for crack propagation and the maximum circumferential stress criterion is used to determine the direction of crack growth. Since the re-meshing strategy used to model crack growth
Finite element and finite difference methods in electromagnetic scattering
NASA Astrophysics Data System (ADS)
Morgan, Michael A.
Finite-difference and finite-element methods for the computational analysis of EM scattering phenomena are examined in chapters contributed by leading experts. Topics addressed include an FEM for composite scatterers, coupled finite- and boundary-element methods for EM scattering, absorbing boundary conditions for the direct solution PDEs arising in EM scattering problems, application of the control-region approximation to two-dimensional EM scattering, coupled potentials for EM fields in inhomogeneous media, the method of conforming boundary elements for transient electromagnetics, and the finite-difference time-domain method for numerical modeling of EM wave interactions with arbitrary structures. Extensive diagrams and graphs of typical results are provided.
NASA Astrophysics Data System (ADS)
Kütter, Sissy; Franke-Börner, Antje; Börner, Ralph-Uwe; Spitzer, Klaus
2010-05-01
Marine volcanoes are particularly demanding when it comes to applying electric or electromagnetic methods to investigate their interiors. First, the surrounding highly conductive sea water represents a significant difference in conductivity with respect to the volcanic edifice, second, the volcano's topography has great impact on the electromagnetic response, and, third, the surrounding sea bed topography heavily distorts electromagnetic fields in frequency bands that interfere with a certain spatial wavelength and amplitude of the bathymetry. By neglecting these issues severe misinterpretations are the inevitable consequence. We present different approaches to 3D vector finite element simulation on unstructured grids which are able to compute plain-wave magnetotelluric fields for models including arbitrary surface and sea bed topography. As an example, we consider Stromboli volcano. One major issue is the incorporation of the Stromboli topography using a digital terrain model so that nearly all geometric features affecting the electromagnetic response are considered and an electromagnetic view on Stromboli's interior becomes possible. By carrying out a number of different synthetic experiments it has become obvious that not only the topography of Stromboli island itself is influencing the behavior of the fields but, even stronger, the topography of the surrounding sea bed within a radius of several tens of kilometers. The experiment therefore comprises three steps which gradually approach the complex setting of the target and map the entire volcanic environment with increasing accuracy. The first step outlines the volcano as a resistive geometric frustum surrounded by conductive sea water and underlain by a resistive substratum. This model already gives fundamental answers concerning the principal frequency-dependent current flow pattern within the edifice and the surrounding sea. For this purpose, the MT response was calculated at the earth/sea and the earth
Roveri, D S; Sant'Anna, G M; Bertan, H H; Mologni, J F; Alves, M A R; Braga, E S
2016-01-01
This paper presents a 3D computational framework for evaluating electrostatic properties of a single field emitter characterized by the hemisphere-on-post geometry. Numerical simulations employed the finite elements method by using Ansys-Maxwell software. Extensive parametric simulations were focused on the threshold distance from which the emitter field enhancement factor (γ) becomes independent from the anode-substrate gap (G). This investigation allowed demonstrating that the ratio between G and the emitter height (h) is a reliable reference for a broad range of emitter dimensions; furthermore, results permitted establishing G/h ≥ 2.2 as the threshold condition for setting the anode without affecting γ. PMID:26555324
NASA Astrophysics Data System (ADS)
Acevedo, Pedro; Vázquez, Mónica; Durán, Joel; Petrearce, Rodolfo
A simulation case is presented using the Finite Element Method (FEM) to simulate the performance of PVDF arrays to measure temperature gradients through the determination of phase shifts, i.e. time shifts of the waveform of the echo due to a change in the speed of propagation of ultrasound as a result of a change in temperature, they can be interpreted as phase shifts in the frequency domain. Making it possible to determine the change in temperature from the phase shifts; in a medium of propagation previously characterized.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
NASA Astrophysics Data System (ADS)
Karaoglu, H.; Bielak, J.
2014-12-01
Seaquakes and tsunamis are usually coupled in nature. This is especially evident around the subduction zones where most of the top ten strongest earthquakes have been recorded in the last century.Addressing the coupled nature of the two phenomena requires concurrent simulations. Accordingly, this study deals with the simulation of strongly-coupled subduction zone earthquakes, with a focus on the generation of tsunami waves.We present an application to the 2011 Tohoku-Oki earthquake and tsunami employing a multi-system finite element method for the elastoacoustic problem. In the past, we have reported on the simulation capabilities of Hercules, our finite element tool, for earthquake scenarios such as ShakeOut and Chino-Hills using ideal anelastic material models with kinematic faulting. With the latest improvements we have introduced into Hercules, we can now incorporate oceans and the attendant gravity waves into our three-dimensional simulations.We examine the relationship between the fault rupture, the generation of the tsunami, and the ocean's effects on the propagation of seismic waves through the solid and acoustic media. Additionally, we clarify the validity of common assumptions made for the tsunami generation mechanism with classical tsunami simulation methods. While our focus is on the physical interpretation of the results and its comparison with observations, we also report on the current understanding of the geologic structure of the Japan Trench, computing resources, and the numerical method.
Finite Element Analysis of Reverberation Chambers
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.
2003-01-01
Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.
NASA Astrophysics Data System (ADS)
Cabibihan, John-John; Ge, Shuzhi Sam
Synthetic skins with humanlike characteristic would make it possible to address some of the psychosocial requirements of prosthetic hands as well as the safety and acceptance issues in social robotics. This paper describes the development of three-dimensional finite element models of synthetic finger phalanges. With the aim of duplicating the skin compliance of human finger phalanges, the model was used to investigate the effects of (i) introducing open pockets in the internal structure and (ii) combining different materials as external and internal layers. The results show that having pockets in the internal structure of the design can increase the skin compliance of the synthetic phalanges and make it comparable with the human counterpart. Moreover, having different layers can be used to satisfy skin compliance and other design requirements such as wear and tear.
NASA Astrophysics Data System (ADS)
Melis, Matthew E.
2003-01-01
Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.
NASA Astrophysics Data System (ADS)
Kikuchi, Takayuki; Tomikawa, Yoshiro; Soma, Takao
2001-05-01
In this study we deal with a flexural vibrating resonator for flatly supported vibratory gyro-sensors in parallel with the rotating plane. This type of gyro-sensor uses two vibration modes in only one plane of single crystal quartz, and therefore can be constructed to be very stable under operating conditions. The double-T type vibrator that has two T-type resonating arms and two resonant arms is designed for improving the quality factor Q of both driving and detecting vibration modes for this vibratory gyro-sensor. The result of finite element analysis of the double-T type vibrators shows the small influence of its vibration mode with the support at the center of gravity of the vibrator.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.
1979-01-01
Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.
Domain decomposition methods for mortar finite elements
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
NASA Astrophysics Data System (ADS)
Templeton, Elizabeth L.; Baudet, AuréLie; Bhat, Harsha S.; Dmowska, Renata; Rice, James R.; Rosakis, Ares J.; Rousseau, Carl-Ernst
2009-08-01
We analyze the nucleation and propagation of shear cracks along nonplanar, kinked, and branched fault paths corresponding to the configurations used in recent laboratory fracture studies by Rousseau and Rosakis (2003, 2009). The aim is to reproduce numerically those shear rupture experiments and from that provide an insight into processes which are active when a crack, initially propagating in mode II along a straight path, interacts with a bend in the fault or a branching junction. The experiments involved impact loading of thin Homalite-100 (a photoelastic polymer) plates, which had been cut along bent or branched paths and weakly glued back together everywhere except along a starter notch near the impact site. Strain gage recordings and high-speed photography of isochromatic lines provided characterization of the transient deformation fields associated with the impact and fracture propagation. We found that dynamic explicit 2-D plane-stress finite element analyses with a simple linear slip-weakening description of cohesive and frictional strength of the bonded interfaces can reproduce the qualitative rupture behavior past the bend and branch junctions in most cases and reproduce the principal features revealed by the photographs of dynamic isochromatic line patterns. The presence of a kink or branch can cause an abrupt change in rupture propagation velocity. Additionally, the finite element results allow comparison between total slip accumulated along the main and inclined fault segments. We found that slip along inclined faults can be substantially less than slip along the main fault, and the amount depends on the branch angle and kink or branch configuration.
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.
2006-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Algebraic surface design and finite element meshes
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.
1992-01-01
Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.
Finite element methods in probabilistic mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Mani, A.; Belytschko, Ted
1987-01-01
Probabilistic methods, synthesizing the power of finite element methods with second-order perturbation techniques, are formulated for linear and nonlinear problems. Random material, geometric properties and loads can be incorporated in these methods, in terms of their fundamental statistics. By construction, these methods are applicable when the scale of randomness is not too large and when the probabilistic density functions have decaying tails. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. Applications showing the effects of combined random fields and cyclic loading/stress reversal are studied and compared with Monte Carlo simulation results.
NASA Astrophysics Data System (ADS)
Okudur, O. O.; Vanstreels, K.; De Wolf, I.; Hangen, U.
2016-01-01
Continuous scaling of integrated circuits has led to the introduction of highly porous low dielectric constant (low-k) materials, whose inferior mechanical properties raise concerns regarding the reliability of integrated circuits. Nanoindentation is proven to be a straightforward method to study mechanical properties of films. However, in the case of low-k, the measurement and analysis are complex due to the porous nature of the films and reduced film thicknesses which give rise to substrate effects. A methodology that combines nanoindentation experiments with finite-element simulations is proposed and validated in this study to extract the substrate-free elastic modulus of porous ultra-thin low-k films. Furthermore, it is shown that imperfections of the nanoindentation probe significantly affect the finite-element results. An effective analytical method that captures the actual nanoindenter behavior upon indentation is proposed by taking both tip radius and conical imperfections into account. Using this method combined with finite element modeling, the elastic modulus of sub-100 nm thick low-k films is successfully extracted. Standard indentation tests clearly overestimated the actual modulus for such thin films, which emphasizes the importance of the proposed methodology.
Holford, D.J.
1994-01-01
This document is a user`s manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water.
Finite element coiled cochlea model
NASA Astrophysics Data System (ADS)
Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad
2015-12-01
Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.
Finite element modeling of piezoelectric elements with complex electrode configuration
NASA Astrophysics Data System (ADS)
Paradies, R.; Schläpfer, B.
2009-02-01
It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been
NASA Astrophysics Data System (ADS)
Jin, Zhongkun; Yin, Yao; Liu, Bilong
2016-03-01
The finite element method is often used to investigate the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate. Since the anechoic coating contains cavities, the number of grid nodes of a periodic unit cell is usually large. An equivalent modulus method is proposed to reduce the large amount of nodes by calculating an equivalent homogeneous layer. Applications of this method in several models show that the method can well predict the sound absorption coefficient of such structure in a wide frequency range. Based on the simulation results, the sound absorption performance of such structure and the influences of different backings on the first absorption peak are also discussed.
Conde, J. C.; Chiussi, S.; Gontad, F.; Gonzalez, P.; Martin, E.; Serra, C.
2010-07-05
Ultraviolet (UV) Excimer laser assisted processing is an alternative strategy for producing patterned silicon germanium heterostructures. We numerically analyzed the effects caused by pulsed 193 Excimer laser radiation impinging on patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bilayers deposited on a crystalline silicon substrate [Si(100)]. The proposed two dimensional axisymmetric numerical model allowed us to estimate the temperature and concentration gradients caused by the laser induced rapid melting and solidification processes. Energy density dependence of maximum melting depth and melting time evolution as well as three dimensional temperature and element distribution have been simulated and compared with experimentally obtained results.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.
2004-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Graphics for Finite-Element Analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Sawyer, L. M.
1982-01-01
ELPLOT program is a passive computer graphics system that could be utilized for display of models and responses of general finite-element analyses. Program includes: Wide range of view-orientation selections, number of alternative data-input formats, extensive family of finite-element types, and capabilities for both static and dynamic-response displays.
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
Finite-Element Composite-Analysis Program
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.
3-D Finite Element Code Postprocessor
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Manafi-Khanian, Bahram; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas
2016-03-01
Cuff pressure stimulation is applicable for assessing deep-tissue pain sensitivity by exciting a variety of deep-tissue nociceptors. In this study, the relative transfer of biomechanical stresses and strains from the cuff via the skin to the muscle and the somatic tissue layers around bones were investigated. Cuff pressure was applied on the lower leg at three different stimulation intensities (mild pressure to pain). Three-dimensional finite element models including bones and three different layers of deep tissues were developed based on magnetic resonance images (MRI). The skin indentation maps at mild pressure, pain threshold, and intense painful stimulations were extracted from MRI and applied to the model. The mean stress under the cuff position around tibia was 4.6, 4.9 and around fibula 14.8, 16.4 times greater than mean stress of muscle surface in the same section at pain threshold and intense painful stimulations, respectively. At the same stimulation intensities, the mean strains around tibia were 36.4, 42.3 % and around fibula 32.9, 35.0 %, respectively, of mean strain on the muscle surface. Assuming strain as the ideal stimulus for nociceptors the results suggest that cuff algometry is less capable to challenge the nociceptors of tissues around bones as compared to more superficially located muscles. PMID:25916888
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao; Jiang, Bo-Nan; Wu, Jie; Duh, J. C.
1996-01-01
This paper reports a numerical study of the Marangoni-Benard (MB) convection in a planar fluid layer. The least-squares finite element method (LSFEM) is employed to solve the three-dimensional Stokes equations and the energy equation. First, the governing equations are reduced to be first-order by introducing variables such as vorticity and heat fluxes. The resultant first-order system is then cast into a div-curl-grad formulation, and its ellipticity and permissible boundary conditions are readily proved. This numerical approach provides an equal-order discretization for velocity, pressure, vorticity, temperature, and heat conduction fluxes, and therefore can provide high fidelity solutions for the complex flow physics of the MB convection. Numerical results reported include the critical Marangoni numbers (M(sub ac)) for the onset of the convection in containers with various aspect ratios, and the planforms of supercritical MB flows. The numerical solutions compared favorably with the experimental results reported by Koschmieder et al..
NASA Astrophysics Data System (ADS)
An, Yonghao; Jiang, Hanqing
2013-10-01
Lithium-ion batteries have attracted great deal of attention recently. Silicon is one of the most promising anode materials for high-performance lithium-ion batteries, due to its highest theoretical specific capacity. However, the short lifetime confined by mechanical failure in the silicon anode is now considered to be the biggest challenge in desired applications. High stress induced by the huge volume change due to lithium insertion/extraction is the main reason underlying this problem. Some theoretical models have been developed to address this issue. In order to properly implement these models, we develop a finite element based numerical method using a commercial software package, ABAQUS, as a platform at the continuum level to study fully coupled large deformation and mass diffusion problem. Using this method, large deformation, elasticity-plasticity of the electrodes, various spatial and temporal conditions, arbitrary geometry and dimension could be fulfilled. The interaction between anode and other components of the lithium ion batteries can also be studied as an integrated system. Several specific examples are presented to demonstrate the capability of this numerical platform.
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Trudell, Jeffrey J.; Baakilini, George Y.
2006-03-01
Health management development for advanced propulsion systems and ultrasafe engine technologies continues to be among the NASA's aviation safety program goals. Health management attempts to predict, detect, and prevent safety-significant propulsion malfunctions. The primary goal is to minimize the number of propulsion system faults that leads or contribute to civil aircraft accidents. Health monitoring of essential and key components in aircraft engines such as rotors continues to interest engine makers and aviation safety government institutions to improve safety and to lower maintenance costs. Having reliable diagnostic tools for damage detection and health monitoring of rotating components is important to maintain engine safety and reliability. This paper presents finite element analyses as a means to study the durability issues of a propulsion component such as a rotor disk. The analyses are carried out under representative engine loading conditions to further investigate the application, the performance, and the functionality of a crack detection system. Rotational speeds in the range of 2000 to 10000 rpm are used. Several key design parameters such as center of mass shift, induced cracks that ranged in length from a minimum of 0.508 cm (0.2 inches) to a maximum of 5.08 cm (2.0 inches), attachment blades and typical holes within the disk are all being explored to study their influence on the crack detection system performance. Results showing relevant influence of these parameters on the performance of the disk and the crack detection systems are presented.
NASA Astrophysics Data System (ADS)
Feng, Wen; Yang, Dexing; Zhu, Xiangchao; Guo, Yuning; Liao, Wei
2012-01-01
Based on the thermoelastic theory, a numerical model of ultrasonic displacement field induced by a vertical incident pulsed laser in an aluminum film in a diamond anvil cell (DAC) is established by using the finite element method (FEM). After precisely calculating the transient temperature field distributions, the bulk ultrasonic waveforms on the rear surface of the film and the characteristics of ultrasonic displacement field with time are obtained. Then directivity patterns of laser-generated longitudinal and shear ultrasonic waves are analyzed in details. The numerical results indicate that the thermoelastic force source and the characteristics of ultrasonic directivity are strongly affected by the diamond window. The energy of longitudinal wave is concentrated near the laser incident direction, and the one of shear wave is concentrated between 30° and 60° that deflected from the laser incident direction to the excited source. These characteristics in DAC system are different from the results of free surface in thermoelastic effect, while are similar to the results of free surface in ablation effect.
Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy
2016-04-01
The objective of this study was to enhance an existing finite element (FE) head model with composite modeling and a new constitutive law for the skull. The response of the state-of-the-art FE head model was validated in the time domain using data from 15 temporo-parietal impact experiments, conducted with postmortem human surrogates. The new model predicted skull fractures observed in these tests. Further, 70 well-documented head trauma cases were reconstructed. The 15 experiments and 70 real-world head trauma cases were combined to derive skull fracture injury risk curves. The skull internal energy was found to be the best candidate to predict skull failure based on an in depth statistical analysis of different mechanical parameters (force, skull internal energy), head kinematic-based parameter, the head injury criterion (HIC), and skull fracture correlate (SFC). The proposed tolerance limit for 50% risk of skull fracture was associated with 453mJ of internal energy. Statistical analyses were extended for individual impact locations (frontal, occipital and temporo-parietal) and separate injury risk curves were obtained. The 50% risk of skull fracture for each location: frontal: 481mJ, occipital: 457mJ, temporo-parietal: 456mJ of skull internal energy. PMID:26703363
Adaptive Finite Element Methods in Geodynamics
NASA Astrophysics Data System (ADS)
Davies, R.; Davies, H.; Hassan, O.; Morgan, K.; Nithiarasu, P.
2006-12-01
Adaptive finite element methods are presented for improving the quality of solutions to two-dimensional (2D) and three-dimensional (3D) convection dominated problems in geodynamics. The methods demonstrate the application of existing technology in the engineering community to problems within the `solid' Earth sciences. Two-Dimensional `Adaptive Remeshing': The `remeshing' strategy introduced in 2D adapts the mesh automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. The approach requires the coupling of an automatic mesh generator, a finite element flow solver and an error estimator. In this study, the procedure is implemented in conjunction with the well-known geodynamical finite element code `ConMan'. An unstructured quadrilateral mesh generator is utilised, with mesh adaptation accomplished through regeneration. This regeneration employs information provided by an interpolation based local error estimator, obtained from the computed solution on an existing mesh. The technique is validated by solving thermal and thermo-chemical problems with known benchmark solutions. In a purely thermal context, results illustrate that the method is highly successful, improving solution accuracy whilst increasing computational efficiency. For thermo-chemical simulations the same conclusions can be drawn. However, results also demonstrate that the grid based methods employed for simulating the compositional field are not competitive with the other methods (tracer particle and marker chain) currently employed in this field, even at the higher spatial resolutions allowed by the adaptive grid strategies. Three-Dimensional Adaptive Multigrid: We extend the ideas from our 2D work into the 3D realm in the context of a pre-existing 3D-spherical mantle dynamics code, `TERRA'. In its original format, `TERRA' is computationally highly efficient since it employs a multigrid solver that depends upon a grid utilizing a clever
Finite volume hydromechanical simulation in porous media
NASA Astrophysics Data System (ADS)
Nordbotten, Jan Martin
2014-05-01
Cell-centered finite volume methods are prevailing in numerical simulation of flow in porous media. However, due to the lack of cell-centered finite volume methods for mechanics, coupled flow and deformation is usually treated either by coupled finite-volume-finite element discretizations, or within a finite element setting. The former approach is unfavorable as it introduces two separate grid structures, while the latter approach loses the advantages of finite volume methods for the flow equation. Recently, we proposed a cell-centered finite volume method for elasticity. Herein, we explore the applicability of this novel method to provide a compatible finite volume discretization for coupled hydromechanic flows in porous media. We detail in particular the issue of coupling terms, and show how this is naturally handled. Furthermore, we observe how the cell-centered finite volume framework naturally allows for modeling fractured and fracturing porous media through internal boundary conditions. We support the discussion with a set of numerical examples: the convergence properties of the coupled scheme are first investigated; second, we illustrate the practical applicability of the method both for fractured and heterogeneous media.
Finite volume hydromechanical simulation in porous media
Nordbotten, Jan Martin
2014-01-01
Cell-centered finite volume methods are prevailing in numerical simulation of flow in porous media. However, due to the lack of cell-centered finite volume methods for mechanics, coupled flow and deformation is usually treated either by coupled finite-volume-finite element discretizations, or within a finite element setting. The former approach is unfavorable as it introduces two separate grid structures, while the latter approach loses the advantages of finite volume methods for the flow equation. Recently, we proposed a cell-centered finite volume method for elasticity. Herein, we explore the applicability of this novel method to provide a compatible finite volume discretization for coupled hydromechanic flows in porous media. We detail in particular the issue of coupling terms, and show how this is naturally handled. Furthermore, we observe how the cell-centered finite volume framework naturally allows for modeling fractured and fracturing porous media through internal boundary conditions. We support the discussion with a set of numerical examples: the convergence properties of the coupled scheme are first investigated; second, we illustrate the practical applicability of the method both for fractured and heterogeneous media. PMID:25574061
Finite element analysis enhancement of cryogenic testing
NASA Astrophysics Data System (ADS)
Thiem, Clare D.; Norton, Douglas A.
1991-12-01
Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.
NASA Astrophysics Data System (ADS)
Brown, J.; Ahmadia, A.; Knepley, M. G.; Smith, B.
2011-12-01
The cost of memory, especially memory bandwidth, is becoming increasingly expensive on modern high performance computing architectures including GPUs and multi-core systems. In contrast, floating point operations are relatively inexpensive when they can be vectorized (e.g. thread blocks on a GPU or vector registers on a CPU). This relative cost of memory to flops will continue to become even more pronounced due to fundamental issues of power utilization, therefore it is important to rethink algorithms to effectively utilize hardware. Commonly used methods for implicit solves with finite element methods involve assembly of a sparse matrix. Unfortunately, sparse matrix kernels have an arithmetic intensity (ratio of flops to bytes of memory movement) that is orders of magnitude less than that delivered by modern hardware, causing the floating point units to be massively under-utilized. The ``free flops'' can be effectively utilized by higher order methods which deliver improved accuracy for the same number of degrees of freedom. Effective use of high order methods require eschewing assembled data structures for matrix storage in exchange for unassembled representations. The resulting computation reduces to small dense tensor-product operations and indepedent ``physics'' kernels at each quadrature point, both of which are amenable to vectorization and capable of delivering a high fraction of peak performance. To reduce the effort required to implement new physics (e.g. constitutive relations and additional fields), retain code verifiability, and experiment with different vectorization strategies and solver algorithms, we express the continuum equations in Python and use automatic differentiation, symbolic methods, and code generation techniques to create vectorized kernels for residual evaluation, Jacobian storage, Jacobian application, and adjoints for each block of the system. The performance and effectiveness of these methods is demonstrated for free-surface Stokes
Rayfield, Emily J
2011-01-01
Finite element (FE) analysis is becoming a frequently used tool for exploring the craniofacial biomechanics of extant and extinct vertebrates. Crucial to the application of the FE analysis is the knowledge of how well FE results replicate reality. Here I present a study investigating how accurately FE models can predict experimentally derived strain in the mandible of the ostrich Struthio camelus, when both the model and the jaw are subject to identical conditions in an in-vitro loading environment. Three isolated ostrich mandibles were loaded hydraulically at the beak tip with forces similar to those measured during force transducer pecking experiments. Strains were recorded at four gauge sites at the dorsal and ventral dentary, and medial and lateral surangular. Specimen-specific FE models were created from computed tomography scans of each ostrich and loaded in an identical fashion as in the in-vitro test. The results show that the strain magnitudes, orientation, patterns and maximum : minimum principal strain ratios are predicted very closely at the dentary gauge sites, even though the FE models have isotropic and homogeneous material properties and solid internal geometry. Although the strain magnitudes are predicted at the postdentary sites, the strain orientations and ratios are inaccurate. This mismatch between the dentary and postdentary predictions may be due to the presence of intramandibular sutures or the greater amount of cancellous bone present in the postdentary region of the mandible and requires further study. This study highlights the predictive potential of even simple FE models for studies in extant and extinct vertebrates, but also emphasizes the importance of geometry and sutures. It raises the question of whether different parameters are of lesser or greater importance to FE validation for different taxonomic groups. PMID:20846282
Rayfield, Emily J
2011-01-01
Finite element (FE) analysis is becoming a frequently used tool for exploring the craniofacial biomechanics of extant and extinct vertebrates. Crucial to the application of the FE analysis is the knowledge of how well FE results replicate reality. Here I present a study investigating how accurately FE models can predict experimentally derived strain in the mandible of the ostrich Struthio camelus, when both the model and the jaw are subject to identical conditions in an in-vitro loading environment. Three isolated ostrich mandibles were loaded hydraulically at the beak tip with forces similar to those measured during force transducer pecking experiments. Strains were recorded at four gauge sites at the dorsal and ventral dentary, and medial and lateral surangular. Specimen-specific FE models were created from computed tomography scans of each ostrich and loaded in an identical fashion as in the in-vitro test. The results show that the strain magnitudes, orientation, patterns and maximum : minimum principal strain ratios are predicted very closely at the dentary gauge sites, even though the FE models have isotropic and homogeneous material properties and solid internal geometry. Although the strain magnitudes are predicted at the postdentary sites, the strain orientations and ratios are inaccurate. This mismatch between the dentary and postdentary predictions may be due to the presence of intramandibular sutures or the greater amount of cancellous bone present in the postdentary region of the mandible and requires further study. This study highlights the predictive potential of even simple FE models for studies in extant and extinct vertebrates, but also emphasizes the importance of geometry and sutures. It raises the question of whether different parameters are of lesser or greater importance to FE validation for different taxonomic groups. PMID:20846282
Park, S.J.; Song, J.H.
1999-07-01
A two-dimensional elastic-plastic finite element analysis is performed for plane stress conditions with 4-node isoparametric elements to investigate the closure behavior under various variable-amplitude loading, i.e., single overloading, Hi-Lo block loading, and narrow- and wide-band random loading. The closure behavior under single overloading and Hi-Lo block loading can be well simulated by applying the concept of the most appropriate mesh size that will provide numerical results consistent with experimental data under constant-amplitude loading. It is found that the crack opening load under random loading may be predicted approximately by replacing the complicated random load history with the appropriate equivalent, simplified variable load history.
Will Finite Elements Replace Structural Mechanics?
NASA Astrophysics Data System (ADS)
Ojalvo, I. U.
1984-01-01
This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.
The finite element method in thermomechanics
Hsu, T.
1986-01-01
Thermal stress analysis is critical in the design and operation of energy-efficient power plant components and engines as well as in nuclear and aerospace systems. The Finite Element Method in Thermomechanics attempts to embrace a wide range of topics in the nonlinear thermomechanical analysis. The book covers the basic principles of the finite element method: the formulations for the base thermomechanical analysis, including thermoelastic-plastic-creep stress analysis; the use of Fourier series for nonaxisymmetric loadings, and stress waves in solids in thermal environments; and the base finite element code called TEPSAC.
NASA Astrophysics Data System (ADS)
de Vries, Martinus P.; Hamburg, Marc C.; Schutte, Harm K.; Verkerke, Gijsbertus J.; Veldman, Arthur E. P.
2003-04-01
Surgical removal of the larynx results in radically reduced production of voice and speech. To improve voice quality a voice-producing element (VPE) is developed, based on the lip principle, called after the lips of a musician while playing a brass instrument. To optimize the VPE, a numerical model is developed. In this model, the finite element method is used to describe the mechanical behavior of the VPE. The flow is described by two-dimensional incompressible Navier-Stokes equations. The interaction between VPE and airflow is modeled by placing the grid of the VPE model in the grid of the aerodynamical model, and requiring continuity of forces and velocities. By applying and increasing pressure to the numerical model, pulses comparable to glottal volume velocity waveforms are obtained. By variation of geometric parameters their influence can be determined. To validate this numerical model, an in vitro test with a prototype of the VPE is performed. Experimental and numerical results show an acceptable agreement.
Kuniansky, E.L.
1990-01-01
A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.
NASA Astrophysics Data System (ADS)
Zhang, Na; Yao, Jun; Huang, Zhaoqin; Wang, Yueying
2013-06-01
Numerical simulation in naturally fractured media is challenging because of the coexistence of porous media and fractures on multiple scales that need to be coupled. We present a new approach to reservoir simulation that gives accurate resolution of both large-scale and fine-scale flow patterns. Multiscale methods are suitable for this type of modeling, because it enables capturing the large scale behavior of the solution without solving all the small features. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, we use a multiscale finite element method (MsFEM) for two-phase flow in fractured media using the discrete-fracture model. By combining MsFEM with the discrete-fracture model, we aim towards a numerical scheme that facilitates fractured reservoir simulation without upscaling. MsFEM uses a standard Darcy model to approximate the pressure and saturation on a coarse grid, whereas fine scale effects are captured through basis functions constructed by solving local flow problems using the discrete-fracture model. The accuracy and the robustness of MsFEM are shown through several examples. In the first example, we consider several small fractures in a matrix and then compare the results solved by the finite element method. Then, we use the MsFEM in more complex models. The results indicate that the MsFEM is a promising path toward direct simulation of highly resolution geomodels.
NASA Astrophysics Data System (ADS)
Kohout, B.; Pirinen, J.; Ruiter, N. V.
2012-03-01
The established standard screening method to detect breast cancer is X-ray mammography. However X-ray mammography often has low contrast for tumors located within glandular tissue. A new approach is 3D Ultrasound Computer Tomography (USCT), which is expected to detect small tumors at an early stage. This paper describes the development, improvement and the results of Finite Element Method (FEM) simulations of the Transducer Array System (TAS) used in our 3D USCT. The focus of this work is on researching the influence of meshing and material parameters on the electrical impedance curves. Thereafter, these findings are used to optimize the simulation model. The quality of the simulation was evaluated by comparing simulated impedance characteristics with measured data of the real TAS. The resulting FEM simulation model is a powerful tool to analyze and optimize transducer array systems applied for USCT. With this simulation model, the behavior of TAS for different geometry modifications was researched. It provides a means to understand the acoustical performances inside of any ultrasound transducer represented by its electrical impedance characteristic.
Visualization of higher order finite elements.
Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay
2004-04-01
Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Finite-Element Modeling For Structural Analysis
NASA Technical Reports Server (NTRS)
Min, J. B.; Androlake, S. G.
1995-01-01
Report presents study of finite-element mathematical modeling as used in analyzing stresses and strains at joints between thin, shell-like components (e.g., ducts) and thicker components (e.g., flanges or engine blocks). First approach uses global/local model to evaluate system. Provides correct total response and correct representation of stresses away from any discontinuities. Second approach involves development of special transition finite elements to model transitions between shells and thicker structural components.
NASA Astrophysics Data System (ADS)
Paszyński, Maciej; Gurgul, Piotr; Sieniek, Marcin; Pardo, David
2010-06-01
In the first part of the paper we present the multi-scale simulation of the Step-and-Flash Imprint Lithography (SFIL), a modern patterning process. The simulation utilizes the hp adaptive Finite Element Method (hp-FEM) coupled with Molecular Statics (MS) model. Thus, we consider the multi-scale problem, with molecular statics applied in the areas of the mesh where the highest accuracy is required, and the continuous linear elasticity with thermal expansion coefficient applied in the remaining part of the domain. The degrees of freedom from macro-scale element's nodes located on the macro-scale side of the interface have been identified with particles from nano-scale elements located on the nano-scale side of the interface. In the second part of the paper we present Unified Modeling Language (UML) description of the resulting multi-scale application (hp-FEM coupled with MS). We investigated classical, procedural codes from the point of view of the object-oriented (O-O) programming paradigm. The discovered hierarchical structure of classes and algorithms makes the UML project as independent on the spatial dimension of the problem as possible. The O-O UML project was defined at an abstract level, independent on the programming language used.
Finite element analysis: A boon to dentistry
Trivedi, Shilpa
2014-01-01
The finite element analysis (FEA) is an upcoming and significant research tool for biomechanical analyses in biological research. It is an ultimate method for modeling complex structures and analyzing their mechanical properties. In Implantology, FEA has been used to study the stress patterns in various implant components and also in the peri-implant bone. It is also useful for studying the biomechanical properties of implants as well as for predicting the success of implants in clinical condition. FEA of simulated traumatic loads can be used to understand the biomechanics of fracture. FEA has various advantages compared with studies on real models. The experiments are repeatable, there are no ethical considerations and the study designs may be modified and changed as per the requirement. There are certain limitations of FEA too. It is a computerized in vitro study in which clinical condition may not be completely replicated. So, further FEA research should be supplemented with clinical evaluation. PMID:25737944
Optimizing electroslag cladding with finite element modeling
Li, M.V.; Atteridge, D.G.; Meekisho, L.
1996-12-31
Electroslag cladding of nickel alloys onto carbon steel propeller shafts was optimized in terms of interpass temperatures. A two dimensional finite element model was used in this study to analyze the heat transfer induced by multipass electroslag cladding. Changes of interpass temperatures during a cladding experiment with uniform initial temperature distribution on a section of shaft were first simulated. It was concluded that uniform initial temperature distribution would lead to interpass temperatures out of the optimal range if continuous cladding is expected. The difference in the cooling conditions among experimental and full size shafts and its impact on interpass temperatures during the cladding were discussed. Electroslag cladding onto a much longer shaft, virtually an semi infinite long shaft, was analyzed with specific reference to the practical applications of electroslag cladding. Optimal initial preheating temperature distribution was obtained for continuous cladding on full size shafts which would keep the interpass temperatures within the required range.
NASA Astrophysics Data System (ADS)
Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph
2016-09-01
Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.
White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D
2014-11-01
A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact. PMID:25085863
Elbow stress indices using finite element analysis
NASA Astrophysics Data System (ADS)
Yu, Lixin
Section III of the ASME Boiler and Pressure Vessel Code (the Code) specifies rules for the design of nuclear power plant components. NB-3600 of the Code presents a simplified design method using stress indices---Scalar Coefficients used the modify straight pipe stress equations so that they can be applied to elbows, tees and other piping components. The stress indices of piping components are allowed to be determined both analytically and experimentally. This study concentrates on the determination of B2 stress indices for elbow components using finite element analysis (FEA). First, the previous theoretical, numerical and experimental investigations on elbow behavior were comprehensively reviewed, as was the philosophy behind the use of stress indices. The areas of further research was defined. Then, a comprehensive investigation was carried out to determine how the finite element method should be used to correctly simulate an elbow's structural behavior. This investigation included choice of element type, convergence of mesh density, use of boundary restraint and a reconciliation study between FEA and laboratory experiments or other theoretical formulations in both elastic and elasto-plastic domain. Results from different computer programs were also compared. Reasonably good reconciliation was obtained. Appendix II of the Code describes the experimental method to determine B2 stress indices based on load-deflection curves. This procedure was used to compute the B2 stress indices for various loading modes on one particular elbow configuration. The B2 stress indices thus determined were found to be about half of the value calculated from the Code equation. Then the effect on B2 stress indices of those factors such as internal pressure and flange attachments were studied. Finally, the investigation was extended to other configurations of elbow components. A parametric study was conducted on different elbow sizes and schedules. Regression analysis was then used to
James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael
2009-01-01
A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
An enhanced finite element technique for diffuse phase transition
NASA Astrophysics Data System (ADS)
Münch, I.; Krauß, M.
2015-10-01
We propose a finite element technique to enhance phase-field simulations. As adaptive p-method it and can be generally applied to finite element formulations. However, diffuse interfaces have non-linear gradients within regions typically smaller compared to the size of the overall model. Thus, enhanced field interpolation with higher polynomial functions on demand allows for coarser meshing or lower regularization length for the phase transition. Our method preserves continuity of finite elements and is particularly advantageous in the context of parallelized computing. An analytical solution for the evolution of a phase-field variable governed by the Allen-Cahn equation is used to define an error measure and to investigate the proposed method. Several examples demonstrate the capability of this finite element technique.
Generalized multiscale finite element method. Symmetric interior penalty coupling
NASA Astrophysics Data System (ADS)
Efendiev, Y.; Galvis, J.; Lazarov, R.; Moon, M.; Sarkis, M.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the “mass” matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples.
A Viscoelastic Hybrid Shell Finite Element
NASA Technical Reports Server (NTRS)
Johnson, Arthur
1999-01-01
An elastic large displacement thick-shell hybrid finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at he element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses in included in the mixed variational functional. Nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to numerically simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Finite Element Interface to Linear Solvers
Williams, Alan
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.
NASA Astrophysics Data System (ADS)
Genenko, Y. A.; Rauh, H.; Kurdi, S.
2015-06-01
Numerical simulations of hysteretic ac losses in a tubular superconductor/paramagnet heterostructure subject to an oscillating transverse magnetic field are performed within the quasistatic approach, calling upon the COMSOL finite-element software package and exploiting magnetostatic-electrostatic analogues. It is shown that one-sided magnetic shielding of a thin, type-II superconducting tube by a coaxial paramagnetic support results in a slight increase of hysteretic ac losses as compared to those for a vacuum environment, when the support is placed inside; a spectacular shielding effect with a possible reduction of hysteretic ac losses by orders of magnitude, however, ensues, depending on the magnetic permeability and the amplitude of the applied magnetic field, when the support is placed outside.
NASA Astrophysics Data System (ADS)
Suyitno; Kool, W. H.; Katgerman, L.
2004-09-01
In this article, the stresses, strains, sump depth, mushy zone length, and temperature fields are calculated through the simulation of the direct-chill (DC) casting process for a round billet by using a finite-element method (FEM). Focus is put on the mushy zone and solid region close to it. In the center of the billet, circumferential stresses and strains (which play a main role in hot cracking) are tensile close to the solidus temperature, whereas they are compressive near the surface of the billet. The stresses, strains, depth of sump, and length of mushy zone increase with increasing casting speed. They are maximum in the start-up phase and are reduced by applying a ramping procedure in the start-up phase. Stresses, strains, depth of sump, and length of mushy zone are highest in the center of the billet for all casting conditions considered.
NASA Astrophysics Data System (ADS)
Luo, Jiao; Wu, Bin; Li, Miao-Quan
2012-02-01
The physically-based internal state variable (ISV) models were used to describe the changes of dislocation density, grain size, and flow stress in the high temperature deformation of titanium alloys in this study. The constants of the present models could be identified based on experimental results, which were conducted at deformation temperatures ranging from 1093 K to 1303 K, height reductions ranging from 20% to 60%, and the strain rates of 0.001, 0.01, 0.1, 1.0, and 10.0 s-1. The physically-based internal state variable models were implemented into the commercial finite element (FE) code. Then, a three-dimensional (3D) FE simulation system coupling of deformation, heat transfer, and microstructure evolution was developed for the blade forging of Ti-6Al-4V alloy. FE analysis was carried out to simulate the microstructure evolution in the blade forging of Ti-6Al-4V alloy. Finally, the blade forging tests of Ti-6Al-4V alloy were performed to validate the results of FE simulation. According to the tensile tests, it is seen that the mechanical properties, such as tensile strength and elongation, satisfy the application requirements well. The maximum and minimum differences between the calculated and experimental grain size of primary α phase are 11.71% and 4.23%, respectively. Thus, the industrial trials show a good agreement with FE simulation of blade forging.
Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
Finite-element models of continental extension
NASA Technical Reports Server (NTRS)
Lynch, H. David; Morgan, Paul
1990-01-01
Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.
Higher-Order Finite Elements for Computing Thermal Radiation
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2004-01-01
Two variants of the finite-element method have been developed for use in computational simulations of radiative transfers of heat among diffuse gray surfaces. Both variants involve the use of higher-order finite elements, across which temperatures and radiative quantities are assumed to vary according to certain approximations. In this and other applications, higher-order finite elements are used to increase (relative to classical finite elements, which are assumed to be isothermal) the accuracies of final numerical results without having to refine computational meshes excessively and thereby incur excessive computation times. One of the variants is termed the radiation sub-element (RSE) method, which, itself, is subject to a number of variations. This is the simplest and most straightforward approach to representation of spatially variable surface radiation. Any computer code that, heretofore, could model surface-to-surface radiation can incorporate the RSE method without major modifications. In the basic form of the RSE method, each finite element selected for use in computing radiative heat transfer is considered to be a parent element and is divided into sub-elements for the purpose of solving the surface-to-surface radiation-exchange problem. The sub-elements are then treated as classical finite elements; that is, they are assumed to be isothermal, and their view factors and absorbed heat fluxes are calculated accordingly. The heat fluxes absorbed by the sub-elements are then transferred back to the parent element to obtain a radiative heat flux that varies spatially across the parent element. Variants of the RSE method involve the use of polynomials to interpolate and/or extrapolate to approximate spatial variations of physical quantities. The other variant of the finite-element method is termed the integration method (IM). Unlike in the RSE methods, the parent finite elements are not subdivided into smaller elements, and neither isothermality nor other
NASA Technical Reports Server (NTRS)
Simmons, J.; Erlich, D.; Shockey, D.
2009-01-01
A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Gong, Jianming; Zhao, Yanping; Wang, Yanfei
2015-05-01
This study used ABAQUS finite element (FE) software to investigate the residual stress distributions of P92 welded pipes in both the as-weld and post weld heat treated (PWHT) condition. Sequential coupling quasi-static thermo-mechanical in conjunction with moving double ellipsoidal heat source and an element add/remove technique to simulate deposition of new weld material, are combined in the 3D FE analysis. To validate the simulation results, the residual stresses in axial direction at the surface of pipe were measured by X-ray diffraction technique and compared with the results of FE analysis. Detailed characteristic distributions of the residual stresses are discussed. Results show that the FE model can predict the residual stress distributions satisfactorily. Highest residual stresses on the outer surface are found in the last weld bead to be deposited. And the highest tensile residual stress for the full welded section take place in heat affected zone (HAZ) near the middle thickness. Larger residual sstress can be found around the welding start point along the pipe circumference. Comparison of heat treated specimen and untreated specimen illustrates that PWHT has a strong effect on the residual stress field.
Finite Element Method for Capturing Ultra-relativistic Shocks
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2003-01-01
While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.
NASA Technical Reports Server (NTRS)
Jones, Lisa E. (Technical Monitor); Stockwell, Alan E.
2005-01-01
LS-DYNA simulations were conducted to study the influence of model complexity on the response of a typical Reinforced Carbon-Carbon (RCC) panel to a foam impact at a location approximately midway between the ribs. A structural model comprised of Panels 10, 11, and TSeal 11 was chosen as the baseline model for the study. A simulation was conducted with foam striking Panel 10 at Location 4 at an alpha angle of 10 degrees, with an impact velocity of 1000 ft/sec. A second simulation was conducted after removing Panel 11 from the model, and a third simulation was conducted after removing both Panel 11 and T-Seal 11. All three simulations showed approximately the same response for Panel 10, and the simplified simulation model containing only Panel 10 was shown to be significantly less expensive to execute than the other two more complex models.
Finite Element Modelling and Analysis of Conventional Pultrusion Processes
NASA Astrophysics Data System (ADS)
Akishin, P.; Barkanov, E.; Bondarchuk, A.
2015-11-01
Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
NASA Astrophysics Data System (ADS)
Smith, N. A. S.; Rokosz, M. K.; Correia, T. M.
2014-07-01
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Updating finite element dynamic models using an element-by-element sensitivity methodology
NASA Astrophysics Data System (ADS)
Farhat, Charbel; Hemez, Francois M.
1993-09-01
A sensitivity-based methodology for improving the finite element model of a given structure using test modal data and a few sensors is presented. The proposed method searches for both the location and sources of the mass and stiffness errors and does not interfere with the theory behind the finite element model while correcting these errors. The updating algorithm is derived from the unconstrained minimization of the squared L sub 2 norms of the modal dynamic residuals via an iterative two-step staggered procedure. At each iteration, the measured mode shapes are first expanded assuming that the model is error free, then the model parameters are corrected assuming that the expanded mode shapes are exact. The numerical algorithm is implemented in an element-by-element fashion and is capable of 'zooming' on the detected error locations. Several simulation examples which demonstate the potential of the proposed methodology are discussed.
Milind Deo; Chung-Kan Huang; Huabing Wang
2008-08-31
Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore
Dynamical observer for a flexible beam via finite element approximations
NASA Technical Reports Server (NTRS)
Manitius, Andre; Xia, Hong-Xing
1994-01-01
The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.
Gindre, Juliette; Bel-Brunon, Aline; Kaladji, Adrien; Duménil, Aurélien; Rochette, Michel; Lucas, Antoine; Haigron, Pascal; Combescure, Alain
2015-07-01
Deformations of the vascular structure due to the insertion of tools during endovascular treatment of aneurysms of the abdominal aorta, unless properly anticipated during the preoperative planning phase, may be the source of intraoperative or postoperative complications. We propose here an explicit finite element simulation method which enables one to predict such deformations. This method is based on a mechanical model of the vascular structure which takes into account the nonlinear behavior of the arterial wall, the prestressing effect induced by the blood pressure and the mechanical support of the surrounding organs and structures. An analysis of the model sensitivity to the parameters used to represent this environment is done. This allows determining the parameters that have the largest influence on the quality of the prediction and also provides realistic values for each of them as no experimental data are available in the literature. Moreover, for the first time, the results are compared with 3D intraoperative data. This is done for a patient-specific case with a complex anatomy in order to assess the feasibility of the method. Finally, the predictive capability of the simulation is evaluated on a group of nine patients. The error between the final simulated and intraoperatively measured tool positions was 2.1 mm after the calibration phase on one patient. It results in a 4.6 ± 2.5 mm in average error for the blind evaluation on nine patients. PMID:25820933
NASA Astrophysics Data System (ADS)
Koitabashi, Tatsuo; Kudo, Seiichi; Okada, Shigeya; Tomikawa, Yoshiro
2001-09-01
In this study, a new one-chip-style quartz crystal motion sensor which detects one-axis angular velocity and one-axis acceleration is proposed. Some characteristics of the sensor are simulated by the finite element method, along with some simulations of vibrational characteristics. This sensor is aimed to be used as a small wristwatch-type instrumentation unit to monitor some motions of the human body. The dimensions of the prototype sensor are 16 mm in length, 6 mm in width and 0.3 mm in thickness. The sensor consists of two parts with different functions; one part is a flatly supported vibratory gyrosensor using a quartz crystal trident-type tuning fork resonator and the other is a frequency-changeable type acceleration sensor. The results of simulations show, that the gyrosensor part has a good linearity of sensitivity, although it is also sensitive to an angular velocity which could not be detected fundamentally. It also has a good linearity of sensitivity for detection of acceleration.
Verification of Orthogrid Finite Element Modeling Techniques
NASA Technical Reports Server (NTRS)
Steeve, B. E.
1996-01-01
The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Oakley, Emily; Wrazen, Brian; Bellnier, David A; Syed, Yusef; Arshad, Hassan; Shafirstein, Gal
2014-01-01
Background and Objectives: Several clinical studies suggest that interstitial photodynamic therapy (I-PDT) may benefit patients with locally advanced head and neck cancer (LAHNC). For I-PDT, the therapeutic light is delivered through optical fibers inserted into the target tumor. The complex anatomy of the head and neck requires careful planning of fiber insertions. Often the fibers’ location and tumor optical properties may vary from the original plan therefore pretreatment planning needs near real-time updating to account for any changes. The purpose of this work was to develop a finite element analysis (FEA) approach for near real-time simulation of light propagation in LAHNC. Methods: Our previously developed FEA for modeling light propagation in skin tissue was modified to simulate light propagation from interstitial optical fibers. The modified model was validated by comparing the calculations with measurements in a phantom mimicking tumor optical properties. We investigated the impact of mesh element size and growth rate on the computation time, and defined optimal settings for the FEA. We demonstrated how the optimized FEA can be used for simulating light propagation in two cases of LAHNC amenable to I-PDT, as proof-of-concept. Results: The modified FEA was in agreement with the measurements (P=0.0271). The optimal maximum mesh size and growth rate were 0.005-0.02 m and 2-2.5 m/m, respectively. Using these settings the computation time for simulating light propagation in LAHNC was reduced from 25.9 to 3.7 min in one case, and 10.1 to 4 minutes in another case. There were minor differences (1.62%, 1.13%) between the radiant exposures calculated with either mesh in both cases. Conclusions: Our FEA approach can be used to model light propagation from diffused optical fibers in complex heterogeneous geometries representing LAHNC. There is a range of maximum element size (MES) and maximum element growth rate (MEGR) that can be used to minimize the computation
Finite element radiation transport in one dimension
Painter, J.F.
1997-05-09
A new physics package solves radiation transport equations in one space dimension, multiple energy groups and directions. A discontinuous finite element method discretizes radiation intensity with respect to space and angle, and a continuous finite element method discretizes electron temperature `in space. A splitting method solves the resulting linear equations. This is a one-dimensional analog of Kershaw and Harte`s two-dimensional package. This package has been installed in a two-dimensional inertial confinement fusion code, and has given excellent results for both thermal waves and highly directional radiation. In contrast, the traditional discrete ordinate and spherical harmonic methods show less accurate results in both cases.
NASA Astrophysics Data System (ADS)
Keller, Tobias
2014-05-01
Many prominent geodynamic scenarios such as subduction zones, plate collision and orogeny formation, mid-ocean ridges, continental rifting, etc. involve a significant amount of active magmatism. However, many numerical simulations used to address related questions focus on the deformation of the solid rock phase only, sometimes taking into account the magma dynamics in the form of some parameterized weakening mechanism. On the other hand, simulations specifically developed for magma dynamics problems have largely been restricted to the context of mantle dynamics and are not designed to deal with brittle tectonic deformation of the rock matrix as it occurs in the lithosphere and crust. Here, a 2-D finite-element marker-in-cell numerical method is presented capable of simulating thermally and compositionally coupled two-phase flow problems in a realistically deforming mantle, lithosphere and crust. The modeling approach is based on a set of well accepted equations for the conservation of mass, momentum, energy and composition, completed by constitutive laws for visco-elasto-plastic shear and compaction stresses and a much simplified yet thermodynamically consistent melting model depending on temperature, pressure and composition. The simulation code is written in Matlab and is capable of solving up to 500k degrees of freedom (requiring 2m marker particles) within few minutes per time step on a standard desktop computer. Long-term simulations of that size require run times of one to three weeks. The non-linear system of equations is solved using a Picard iterative scheme, where the linearized system of equations is solved directly during each iterative step. Sufficient convergence is usually obtained within less than 10 non-linear iterations. Generally, this numerical method is versatile, accessible and efficient enough for a wide range of 2-D problems.
Studies of finite element analysis of composite material structures
NASA Technical Reports Server (NTRS)
Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.
1975-01-01
Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.
Taffetani, M; Griebel, M; Gastaldi, D; Klisch, S M; Vena, P
2014-04-01
Articular cartilage is a soft hydrated tissue that facilitates proper load transfer in diarthroidal joints. The mechanical properties of articular cartilage derive from its structural and hierarchical organization that, at the micrometric length scale, encompasses three main components: a network of insoluble collagen fibrils, negatively charged macromolecules and a porous extracellular matrix. In this work, a constituent-based constitutive model for the simulation of nanoindentation tests on articular cartilage is presented: it accounts for the multi-constituent, non-linear, porous, and viscous aspects of articular cartilage mechanics. In order to reproduce the articular cartilage response under different loading conditions, the model considers a continuous distribution of collagen fibril orientation, swelling, and depth-dependent mechanical properties. The model's parameters are obtained by fitting published experimental data for the time-dependent response in a stress relaxation unconfined compression test on adult bovine articular cartilage. Then, model validation is obtained by simulating three independent experimental tests: (i) the time-dependent response in a stress relaxation confined compression test, (ii) the drained response of a flat punch indentation test and (iii) the depth-dependence of effective Poisson's ratio in a unconfined compression test. Finally, the validated constitutive model has been used to simulate multiload spherical nanoindentation creep tests. Upon accounting for strain-dependent tissue permeability and intrinsic viscoelastic properties of the collagen network, the model accurately fits the drained and undrained curves and time-dependent creep response. The results show that depth-dependent tissue properties and glycosaminoglycan-induced tissue swelling should be accounted for when simulating indentation experiments. PMID:24389384
FEMFLOW3D; a finite-element program for the simulation of three-dimensional aquifers; version 1.0
Durbin, Timothy J.; Bond, Linda D.
1998-01-01
This document also includes model validation, source code, and example input and output files. Model validation was performed using four test problems. For each test problem, the results of a model simulation with FEMFLOW3D were compared with either an analytic solution or the results of an independent numerical approach. The source code, written in the ANSI x3.9-1978 FORTRAN standard, and the complete input and output of an example problem are listed in the appendixes.
Watanabe, Hiroki; Yamazaki, Nozomu; Kobayashi, Yo; Miyashita, Tomoyuki; Ohdaira, Takeshi; Hashizume, Makoto; Fujie, Masakatsu G
2011-01-01
Radiofrequency ablation is increasingly being used for liver cancer because it is a minimally invasive treatment method. However, it is difficult for the operators to precisely control the formation of coagulation zones because of the cooling effect of capillary vessels. To overcome this limitation, we have proposed a model-based robotic ablation system using a real-time numerical simulation to analyze temperature distributions in the target organ. This robot can determine the adequate amount of electric power supplied to the organ based on real-time temperature information reflecting the cooling effect provided by the simulator. The objective of this study was to develop a method to estimate the intraoperative rate of blood flow in the target organ to determine temperature distribution. In this paper, we propose a simulation-based method to estimate the rate of blood flow. We also performed an in vitro study to validate the proposed method by estimating the rate of blood flow in a hog liver. The experimental results revealed that the proposed method can be used to estimate the rate of blood flow in an organ. PMID:22256059
NASA Astrophysics Data System (ADS)
Watanabe, N.; Wong, L.; Bloecher, G.; Cacace, M.; Kolditz, O.
2012-12-01
We present our recent development of the finite element method (FEM) for simulating coupled thermo-hydro-mechanical (THM) processes in discretely fractured porous media and an application to geothermal reservoir modeling for the research test site Gross Schoenebeck in Germany operated by the GFZ German Research Centre for Geosciences. Numerical analysis of multi-physics problems in fractured rocks is important for various geotechnical applications. In particular for enhanced geothermal reservoirs where induced fractures and possibly natural fault systems dominate the system behavior, explicit modeling of those characteristic fractures (i.e. discrete fracture models) is essential to get more detailed understanding of in-situ processes and reliable estimations of heat extraction from those deep reservoirs. However, as fractures are mechanical discontinuities, it is difficult to solve the problems using continuity based numerical methods such as the FEM. Currently, equivalent porous medium or multiple continuum model approaches are often only the way to model fractured rocks with the FEM. The authors have recently developed lower-dimensional interface elements (LIEs) for modeling mechanics-involved coupled processes with pre-existing fractures (Watanabe et al. 2012 IJNME). The method does not require any double nodes unlike conventional interface elements. Moreover, for coupled problems, the approach allows for the use of a single mesh for both mechanical and other related processes such as flow and transport. All the code developments have been carried out within the scientific open source project OpenGeoSys (www.opengeosys.net) (Kolditz et al. 2012 EES). Using both traditional and new simulation techniques, a geothermal reservoir model for the research test site Gross Schoenebeck has been developed. Unstructured meshing of the complex faulted reservoir including both rock matrix and fracture elements has been conducted using recently developed automatic
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
Wang, Qian; Wood, Sarah A; Grosse, Ian R; Ross, Callum F; Zapata, Uriel; Byron, Craig D; Wright, Barth W; Strait, David S
2012-02-01
The global biomechanical impact of cranial sutures on the face and cranium during dynamic conditions is not well understood. It is hypothesized that sutures act as energy absorbers protecting skulls subjected to dynamic loads. This hypothesis predicts that sutures have a significant impact on global patterns of strain and cranial structural stiffness when analyzed using dynamic simulations; and that this global impact is influenced by suture material properties. In a finite element model developed from a juvenile Rhesus macaque cranium, five different sets of suture material properties for the zygomaticotemporal sutures were tested. The static and dynamic analyses produced similar results in terms of strain patterns and reaction forces, indicating that the zygomaticotemporal sutures have limited impact on global skull mechanics regardless of loading design. Contrary to the functional hypothesis tested in this study, the zygomaticotemporal sutures did not absorb significant amounts of energy during dynamic simulations regardless of loading speed. It is alternatively hypothesized that sutures are mechanically significant only insofar as they are weak points on the cranium that must be shielded from unduly high stresses so as not to disrupt vitally important growth processes. Thus, sutural and overall cranial form in some vertebrates may be optimized to minimize or otherwise modulate sutural stress and strain. PMID:22190334
Oftadeh, R; Karimi, Z; Villa-Camacho, J; Tanck, E; Verdonschot, N; Goebel, R; Snyder, B D; Hashemi, H N; Vaziri, A; Nazarian, A
2016-01-01
In this paper, a CT based structural rigidity analysis (CTRA) method that incorporates bone intrinsic local curvature is introduced to assess the compressive failure load of human femur with simulated lytic defects. The proposed CTRA is based on a three dimensional curved beam theory to obtain critical stresses within the human femur model. To test the proposed method, ten human cadaveric femurs with and without simulated defects were mechanically tested under axial compression to failure. Quantitative computed tomography images were acquired from the samples, and CTRA and finite element analysis were performed to obtain the failure load as well as rigidities in both straight and curved cross sections. Experimental results were compared to the results obtained from FEA and CTRA. The failure loads predicated by curved beam CTRA and FEA are in agreement with experimental results. The results also show that the proposed method is an efficient and reliable method to find both the location and magnitude of failure load. Moreover, the results show that the proposed curved CTRA outperforms the regular straight beam CTRA, which ignores the bone intrinsic curvature and can be used as a useful tool in clinical practices. PMID:27585495
Wang, Qian; Wood, Sarah A.; Grosse, Ian R.; Ross, Callum F.; Zapata, Uriel; Byron, Craig D.; Wright, Barth W.; Strait, David S.
2012-01-01
The global biomechanical impact of cranial sutures on the face and cranium during dynamic conditions is not well understood. It is hypothesized that sutures act as energy absorbers protecting skulls subjected to dynamic loads. This hypothesis predicts that sutures have a significant impact on global patterns of strain and cranial structural stiffness when analyzed using dynamic simulations; and that this global impact is influenced by suture material properties. In a finite element model developed from a juvenile Rhesus macaque cranium, five different sets of suture material properties for the zygomaticotemporal sutures were tested. The static and dynamic analyses produced similar results in terms of strain patterns and reaction forces, indicating that the zygomaticotemporal sutures have limited impact on global skull mechanics regardless of loading design. Contrary to the functional hypothesis tested here, the zygomaticotemporal sutures did not absorb significant amounts of energy during dynamic simulations regardless of loading speed. It is alternatively hypothesized that sutures are mechanically significant only insofar as they are weak points on the cranium that must be shielded from unduly high stresses so as not to disrupt vitally important growth processes. Thus, sutural and overall cranial form in some vertebrates may be optimized to minimize or otherwise modulate sutural stress and strain. PMID:22190334
NASA Astrophysics Data System (ADS)
Sui, Guo-Fa; Li, Jin-Shan; Li, Hong-Wei; Sun, Feng; Zhang, Tie-Bang; Fu, Heng-Zhi
2012-02-01
To solve the difficulty in the explosive welding of corrosion-resistant aluminum and stainless steel tubes, three technologies were proposed after investigating the forming mechanism through experiments. Then, a 3D finite element model was established for systematic simulations in the parameter determination. The results show that the transition-layer approach, the coaxial initial assembly of tubes with the top-center-point the detonation, and the systematic study by numerical modeling are the key technologies to make the explosive welding of LF6 aluminum alloy and 1Cr18Ni9Ti stainless steel tubes feasible. Numerical simulation shows that radial contraction and slope collision through continuous local plastic deformation are necessary for the good bonding of tubes. Stand-off distances between tubes ( D 1 and D 2) and explosives amount ( R) have effect on the plastic deformation, moving velocity, and bonding of tubes. D 1 of 1 mm, D 2 of 2 mm, and R of 2/3 are suitable for the explosive welding of LF6-L2-1Cr18Ni9Ti three-layer tubes. The plastic strain and moving velocity of the flyer tubes increase with the increase of stand-off distance. More explosives ( R>2/3) result in the asymmetrical distribution of plastic strain and non-bonding at the end of detonation on the tubes.
Oftadeh, R.; Karimi, Z.; Villa-Camacho, J.; Tanck, E.; Verdonschot, N.; Goebel, R.; Snyder, B. D.; Hashemi, H. N.; Vaziri, A.; Nazarian, A.
2016-01-01
In this paper, a CT based structural rigidity analysis (CTRA) method that incorporates bone intrinsic local curvature is introduced to assess the compressive failure load of human femur with simulated lytic defects. The proposed CTRA is based on a three dimensional curved beam theory to obtain critical stresses within the human femur model. To test the proposed method, ten human cadaveric femurs with and without simulated defects were mechanically tested under axial compression to failure. Quantitative computed tomography images were acquired from the samples, and CTRA and finite element analysis were performed to obtain the failure load as well as rigidities in both straight and curved cross sections. Experimental results were compared to the results obtained from FEA and CTRA. The failure loads predicated by curved beam CTRA and FEA are in agreement with experimental results. The results also show that the proposed method is an efficient and reliable method to find both the location and magnitude of failure load. Moreover, the results show that the proposed curved CTRA outperforms the regular straight beam CTRA, which ignores the bone intrinsic curvature and can be used as a useful tool in clinical practices. PMID:27585495
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Evolution of assumed stress hybrid finite element
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1984-01-01
Early versions of the assumed stress hybrid finite elements were based on the a priori satisifaction of stress equilibrium conditions. In the new version such conditions are relaxed but are introduced through additional internal displacement functions as Lagrange multipliers. A rational procedure is to choose the displacement terms such that the resulting strains are now of complete polynomials up to the same degree as that of the assumed stresses. Several example problems indicate that optimal element properties are resulted by this method.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
Ruan, Jesse S; El-Jawahri, Raed; Rouhana, Stephen W; Barbat, Saeed; Prasad, Priya
2006-11-01
The biofidelity of the Ford Motor Company human body finite element (FE) model in side impact simulations was analyzed and evaluated following the procedures outlined in ISO technical report TR9790. This FE model, representing a 50th percentile adult male, was used to simulate the biomechanical impact tests described in ISO-TR9790. These laboratory tests were considered as suitable for assessing the lateral impact biofidelity of the head, neck, shoulder, thorax, abdomen, and pelvis of crash test dummies, subcomponent test devices, and math models that are used to represent a 50th percentile adult male. The simulated impact responses of the head, neck, shoulder, thorax, abdomen, and pelvis of the FE model were compared with the PMHS (Post Mortem Human Subject) data upon which the response requirements for side impact surrogates was based. An overall biofidelity rating of the human body FE model was determined using the ISO-TR9790 rating method. The resulting rating for the human body FE model was 8.5 on a 0 to 10 scale with 8.6-10 being excellent biofidelity. In addition, in order to explore whether there is a dependency of the impact responses of the FE model on different analysis codes, three commercially available analysis codes, namely, LS-DYNA, Pamcrash, and Radioss were used to run the human body FE model. Effects of these codes on biofidelity when compared with ISO-TR9790 data are discussed. Model robustness and numerical issues arising with three different code simulations are also discussed. PMID:17311174
Micromagnetic finite element simulation of nanocrystalline α-Fe/Nd2Fe14B/Fe3B magnets
NASA Astrophysics Data System (ADS)
Saiden, N. M.; Schrefl, T.; Davies, H. A.; Hrkac, G.
2014-09-01
Nanocomposite Nd2Fe14B permanent magnets with Fe3B and α-Fe as the soft phase have been simulated using micromagnetic modelling. This paper reviews extensively the results from the simulation point of view. The magnetization configuration along the hysteresis loop is discussed in details. It was clear that the grain size and phase distribution play important roles in determining the magnetic properties. By changing the size of the grain and the volume fraction of the hard and soft phase, the magnetic properties change and the relationship between microstructure and properties is investigated. The remanence, Jr increases with decreasing of grain size, but oppositely for coercivity, Hc. The highest Jr, 1.46 T was obtained with a grain size 10 nm, and volume fraction of α-Fe, 40%. Whereas, the highest Hc with combination Nd2Fe14B 80% and 20% Fe3B, 947 kA/m. On the other hand, if Nd2Fe14B alone, the Hc able to reach up to 1000 kA/m. From this study, micromagnetic modelling contributes to a better understanding how microstructure and phase distribution influences the magnetic properties.
Finite element displacement analysis of a lung.
NASA Technical Reports Server (NTRS)
Matthews, F. L.; West, J. B.
1972-01-01
A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.
Animation of finite element models and results
NASA Technical Reports Server (NTRS)
Lipman, Robert R.
1992-01-01
This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.
Arnela, Marc; Guasch, Oriol; Alías, Francesc
2013-10-01
One of the key effects to model in voice production is that of acoustic radiation of sound waves emanating from the mouth. The use of three-dimensional numerical simulations allows to naturally account for it, as well as to consider all geometrical head details, by extending the computational domain out of the vocal tract. Despite this advantage, many approximations to the head geometry are often performed for simplicity and impedance load models are still used as well to reduce the computational cost. In this work, the impact of some of these simplifications on radiation effects is examined for vowel production in the frequency range 0-10 kHz, by means of comparison with radiation from a realistic head. As a result, recommendations are given on their validity depending on whether high frequency energy (above 5 kHz) should be taken into account or not. PMID:24116430
Finite element models of the space shuttle main engine
NASA Technical Reports Server (NTRS)
Muller, G. R.
1980-01-01
Finite element models were developed as input to dynamic simulations of the high pressure fuel turbopump (HPFTP), the high pressure oxidizer turbopump (HPOTP), and the space shuttle main engine (SSME). Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps). Modal results are presented for the HPFTP rotor, HPFTP case, HPOTP rotor, coupled HPFTP rotor and case, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps). Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey.
NASA Astrophysics Data System (ADS)
Weatherill, Daniel P.; Stefanov, Konstantin D.; Greig, Thomas A.; Holland, Andrew D.
2014-07-01
Pixellated monolithic silicon detectors operated in a photon-counting regime are useful in spectroscopic imaging applications. Since a high energy incident photon may produce many excess free carriers upon absorption, both energy and spatial information can be recovered by resolving each interaction event. The performance of these devices in terms of both the energy and spatial resolution is in large part determined by the amount of diffusion which occurs during the collection of the charge cloud by the pixels. Past efforts to predict the X-ray performance of imaging sensors have used either analytical solutions to the diffusion equation or simplified monte carlo electron transport models. These methods are computationally attractive and highly useful but may be complemented using more physically detailed models based on TCAD simulations of the devices. Here we present initial results from a model which employs a full transient numerical solution of the classical semiconductor equations to model charge collection in device pixels under stimulation from initially Gaussian photogenerated charge clouds, using commercial TCAD software. Realistic device geometries and doping are included. By mapping the pixel response to different initial interaction positions and charge cloud sizes, the charge splitting behaviour of the model sensor under various illuminations and operating conditions is investigated. Experimental validation of the model is presented from an e2v CCD30-11 device under varying substrate bias, illuminated using an Fe-55 source.
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Finite element computation with parallel VLSI
NASA Technical Reports Server (NTRS)
Mcgregor, J.; Salama, M.
1983-01-01
This paper describes a parallel processing computer consisting of a 16-bit microcomputer as a master processor which controls and coordinates the activities of 8086/8087 VLSI chip set slave processors working in parallel. The hardware is inexpensive and can be flexibly configured and programmed to perform various functions. This makes it a useful research tool for the development of, and experimentation with parallel mathematical algorithms. Application of the hardware to computational tasks involved in the finite element analysis method is demonstrated by the generation and assembly of beam finite element stiffness matrices. A number of possible schemes for the implementation of N-elements on N- or n-processors (N is greater than n) are described, and the speedup factors of their time consumption are determined as a function of the number of available parallel processors.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Xu, Wei; Robinson, Kingsley
2008-03-01
The insertion of an implant into a bone leads to stress/strain redistribution, hence bone remodeling occurs adjacent to the implant. The study of the bone remodeling around the osseointegration implants can predict the long-term clinical success of the implant. The clinical medial-lateral X-rays of 11 patients were reviewed. To eliminate geometrical distortion of different X-rays, they were converted into a digital format and geometrical correction was carried out. Furthermore, the finite element (FE) method was used to investigate how the bone remodeling was affected by the stress/strain distribution in the femur. The review of clinical X-rays showed cortical bone growth around the proximal end of the implant and absorbtion at the distal end of the femur. The FE simulation revealed the stress/strain distribution in the femur of a selected patient. This provided a biomechanical interpretation of the bone remodeling. The existing bone remodeling theories such as minimal strain and strain rate theories were unable to offer satisfactory explanation for the cortical bone growth at the implant side of the proximal femur, where the stress/strain level was much lower than the one in the intact side of the femur. The study established the correlation between stress/strain distribution obtained from FE simulations and the bone remodeling of the clinical review. The cortical bone growth was initiated by the stress/strain gradient in the bone. Through the review of clinical X-rays and FE simulations, the study confirmed that the bone remodeling in a femur with an implant was influenced by the stress/strain redistribution. The strain level and stress gradient hypothesis is presented to offer an explanation for the implanted cortical bone remodeling observed in this study. PMID:18197477
Baillie, D; St Aubin, J; Fallone, B; Steciw, S
2014-06-15
Purpose: To design a new compact S-band linac waveguide capable of producing a 10 MV x-ray beam, while maintaining the length (27.5 cm) of current 6 MV waveguides. This will allow higher x-ray energies to be used in our linac-MRI systems with the same footprint. Methods: Finite element software COMSOL Multiphysics was used to design an accelerator cavity matching one published in an experiment breakdown study, to ensure that our modeled cavities do not exceed the threshold electric fields published. This cavity was used as the basis for designing an accelerator waveguide, where each cavity of the full waveguide was tuned to resonate at 2.997 GHz by adjusting the cavity diameter. The RF field solution within the waveguide was calculated, and together with an electron-gun phase space generated using Opera3D/SCALA, were input into electron tracking software PARMELA to compute the electron phase space striking the x-ray target. This target phase space was then used in BEAM Monte Carlo simulations to generate percent depth doses curves for this new linac, which were then used to re-optimize the waveguide geometry. Results: The shunt impedance, Q-factor, and peak-to-mean electric field ratio were matched to those published for the breakdown study to within 0.1% error. After tuning the full waveguide, the peak surface fields are calculated to be 207 MV/m, 13% below the breakdown threshold, and a d-max depth of 2.42 cm, a D10/20 value of 1.59, compared to 2.45 cm and 1.59, respectively, for the simulated Varian 10 MV linac and brehmsstrahlung production efficiency 20% lower than a simulated Varian 10 MV linac. Conclusion: This work demonstrates the design of a functional 27.5 cm waveguide producing 10 MV photons with characteristics similar to a Varian 10 MV linac.
Finite Element Interface to Linear Solvers
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themore » problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.« less
A general algorithm using finite element method for aerodynamic configurations at low speeds
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1975-01-01
A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.
Finite Element Model for Hydrocephalus and Idiopathic Intracranial Hypertension.
Kim, Dong-Joo; Kim, Hakseung; Park, Dae-Hyeon; Lee, Hack-Jin; Czosnyka, Zofia; Sutcliffe, Michael P F; Czosnyka, Marek
2016-01-01
Hydrocephalus and idiopathic intracranial hypertension (IIH) are neuropathies associated with disturbed cerebrospinal fluid dynamics. Several finite element (FE) brain models were suggested to simulate the pathological changes in hydrocephalus, but with overly simplified assumptions regarding the properties of the brain parenchyma. This study proposes a two-dimensional FE brain model, capable of simulating both hydrocephalus and IIH by incorporating poro-hyperelasticity of the brain and detailed structural information (i.e., sulci). PMID:27165898
NASA Astrophysics Data System (ADS)
Greve, Lars; Fehrenbach, Clemens
2012-09-01
A quasi-static mechanical abuse test program on cylindrical Lithium ion battery cells has been performed at a state of charge (SoC) of 0%. The investigated load cases involved radial crushing, local lateral indentation and global three-point bending of the cell. During the tests, the punch load, the punch displacement, the cell voltage and the temperature development of the cell have been monitored using an infrared camera and temperature sensors. After the test, the cells have been analysed using computer tomography. It is indicated that macroscopic jelly roll fracture on a global scale initiates the internal short circuits, revealed by a sudden decrease of the global mechanical load due to the rupture, followed by a drop of the measured voltage and immediate increase in cell temperature. A macro-mechanical finite element crash simulation model has been established for the cell housing and the jelly roll. The classical stress-based criterion after Mohr and Coulomb (MC) has been applied to predict fracture and the initiation of an internal short circuit of the jelly roll. The MC criterion correctly represents the punch displacement to fracture, where the predicted fracture locations correspond to the observed locations of the internal short circuits of the cells.
Zhang, Gong; Yuan, Hai; Chen, Xianshuai; Wang, Weijun; Chen, Jianyu; Liang, Jimin; Zhang, Peng
2016-01-01
Background/Purpose. This three-dimensional finite element study observed the stress distribution characteristics of 12 types of dental implants and their surrounding bone tissues with various structured abutments, implant threads, and healing methods under different amounts of concentrated loading. Materials and Methods. A three-dimensional geometrical model of a dental implant and its surrounding bone tissue was created; the model simulated a screw applied with a preload of 200 N or a torque of 0.2 N·m and a prosthetic crown applied with a vertical or an inclined force of 100 N. The Von Mises stress was evaluated on the 12 types of dental implants and their surrounding bone tissues. Results. Under the same loading force, the stress influence on the implant threads was not significant; however, the stress influence on the cancellous bone was obvious. The stress applied to the abutment, cortical bone, and cancellous bone by the inclined force applied to the crown was larger than the stress applied by the vertical force to the crown, and the abutment stress of the nonsubmerged healing implant system was higher than that of the submerged healing implant system. Conclusion. A dental implant system characterised by a straight abutment, rectangle tooth, and nonsubmerged healing may provide minimum value for the implant-bone interface. PMID:26904121
Huang, Jane; Uchio, Eiichi; Goto, Satoru
2015-01-01
Purpose To determine the biomechanical response of an impacting airbag on eyes with different axial lengths with transsclerally fixated posterior chamber intraocular lens (PC IOL). Materials and methods Simulations in a model human eye were performed with a computer using a finite element analysis program created by Nihon, ESI Group. The airbag was set to be deployed at five different velocities and to impact on eyes with three different axial lengths. These eyes were set to have transsclerally fixated PC IOL by a 10-0 polypropylene possessing a tensile force limit of 0.16 N according to the United States Pharmacopeia XXII. Results The corneoscleral opening was observed at a speed of 40 m/second or more in all model eyes. Eyes with the longest axial length of 25.85 mm had the greatest extent of deformity at any given impact velocity. The impact force exceeded the tensile force of 10-0 polypropylene at an impact velocity of 60 m/second in all eyes, causing breakage of the suture. Conclusion Eyes with transsclerally fixated PC IOL could rupture from airbag impact at high velocities. Eyes with long axial lengths experienced a greater deformity upon airbag impact due to a thinner eye wall. Further basic research on the biomechanical response for assessing eye injuries could help in developing a better airbag and in the further understanding of ocular traumas. PMID:25709387
NASA Astrophysics Data System (ADS)
Abhilash, T.; Balasubrahmaniyam, M.; Kasiviswanathan, S.
2016-03-01
Photochromic transitions in silver nanoparticles (AgNPs) embedded titanium dioxide (TiO2) films under green light illumination are marked by reduction in strength and blue shift in the position of the localized surface plasmon resonance (LSPR) associated with AgNPs. These transitions, which happen in the sub-nanometer length scale, have been analysed using the variations observed in the effective dielectric properties of the Ag-TiO2 nanocomposite films in response to the size reduction of AgNPs and subsequent changes in the surrounding medium due to photo-oxidation. Bergman-Milton formulation based on spectral density approach is used to extract dielectric properties and information about the geometrical distribution of the effective medium. Combined with finite element method simulations, we isolate the effects due to the change in average size of the nanoparticles and those due to the change in the dielectric function of the surrounding medium. By analysing the dynamics of photochromic transitions in the effective medium, we conclude that the observed blue shift in LSPR is mainly because of the change in the dielectric function of surrounding medium, while a shape-preserving effective size reduction of the AgNPs causes decrease in the strength of LSPR.
Zhang, Gong; Yuan, Hai; Chen, Xianshuai; Wang, Weijun; Chen, Jianyu; Liang, Jimin; Zhang, Peng
2016-01-01
Background/Purpose. This three-dimensional finite element study observed the stress distribution characteristics of 12 types of dental implants and their surrounding bone tissues with various structured abutments, implant threads, and healing methods under different amounts of concentrated loading. Materials and Methods. A three-dimensional geometrical model of a dental implant and its surrounding bone tissue was created; the model simulated a screw applied with a preload of 200 N or a torque of 0.2 N·m and a prosthetic crown applied with a vertical or an inclined force of 100 N. The Von Mises stress was evaluated on the 12 types of dental implants and their surrounding bone tissues. Results. Under the same loading force, the stress influence on the implant threads was not significant; however, the stress influence on the cancellous bone was obvious. The stress applied to the abutment, cortical bone, and cancellous bone by the inclined force applied to the crown was larger than the stress applied by the vertical force to the crown, and the abutment stress of the nonsubmerged healing implant system was higher than that of the submerged healing implant system. Conclusion. A dental implant system characterised by a straight abutment, rectangle tooth, and nonsubmerged healing may provide minimum value for the implant-bone interface. PMID:26904121
Diagonal multisoliton matrix elements in finite volume
NASA Astrophysics Data System (ADS)
Pálmai, T.; Takács, G.
2013-02-01
We consider diagonal matrix elements of local operators between multisoliton states in finite volume in the sine-Gordon model and formulate a conjecture regarding their finite size dependence which is valid up to corrections exponential in the volume. This conjecture extends the results of Pozsgay and Takács which were only valid for diagonal scattering. In order to test the conjecture, we implement a numerical renormalization group improved truncated conformal space approach. The numerical comparisons confirm the conjecture, which is expected to be valid for general integrable field theories. The conjectured formula can be used to evaluate finite temperature one-point and two-point functions using recently developed methods.
Ge, Liang; Morrel, William G.; Ward, Alison; Mishra, Rakesh; Zhang, Zhihong; Guccione, Julius M.; Grossi, Eugene A.; Ratcliffe, Mark B.
2014-01-01
Background Recurrent mitral regurgitation after mitral valve (MV) repair for degenerative disease occurs at a rate of 2.6% per year and re-operation rate progressively reaches 20% at 19.5 years. We believe that MV repair durability is related to initial post-operative leaflet and annular geometry with subsequent leaflet remodeling due to stress. We tested the hypothesis that MV leaflet and annular stress is increased after MV repair. Methods Magnetic resonance imaging was performed before and intra-operative 3D trans-esophageal echocardiography was performed before and after repair of posterior leaflet (P2) prolapse in a single patient. The repair consisted of triangular resection and annuloplasty band placement. Images of the heart were manually co-registered. The left ventricle and MV were contoured, surfaced and a 3D finite element (FE) model was created. Elements of the P2 region were removed to model leaflet resection and virtual sutures were used to repair the leaflet defect and attach the annuloplasty ring. Results The principal findings of the current study are 1) FE simulation of MV repair is able to accurately predict changes in MV geometry including changes in annular dimensions and leaflet coaptation, 2) average posterior leaflet stress is increased, and 3) average anterior leaflet and annular stress are reduced after triangular resection and mitral annuloplasty. Conclusions We successfully conducted virtual mitral valve prolapse repair using FE modeling methods. Future studies will examine the effects of leaflet resection type as well as annuloplasty ring size and shape. PMID:24630767
Christen, David; Melton, L. Joseph; Zwahlen, Alexander; Amin, Shreyasee; Khosla, Sundeep; Müller, Ralph
2013-01-01
More accurate techniques to estimate fracture risk could help reduce the burden of fractures in postmenopausal women. Although micro-finite element (µFE) simulations allow a direct assessment of bone mechanical performance, in this first clinical study, we investigated whether the additional information obtained using geometrically and materially nonlinear µFE simulations allows a better discrimination between fracture cases and controls. We used patient data and high-resolution peripheral quantitative computed tomography (HRpQCT) measurements from our previous clinical study on fracture risk which compared 100 postmenopausal women with a distal forearm fracture to 105 controls. Analyzing these data with the nonlinear µFE simulations, the odds ratio (OR) for the factor-of-risk (yield load divided by the expected fall load) was marginally higher (1.99; 95% CI, 1.41–2.77) than for the factor-of-risk computed from linear µFE (1.89; 95% CI, 1.37–2.69). The yield load and the energy absorbed up to the yield point as computed from nonlinear µFE were highly correlated with the initial stiffness (R2, 0.97 and 0.94, respectively) and could therefore be derived from linear simulations with little loss in precision. However, yield deformation was not related to any other measurement performed and was itself a good predictor of fracture risk (OR, 1.89; 95% CI, 1.39–2.63). Moreover, a combined risk score integrating information on relative bone strength (yield load-based factor-of-risk), bone ductility (yield deformation) and the structural integrity of the bone under critical loads (cortical plastic volume) improved the separation of cases and controls by one third (OR, 2.66; 95% CI, 1.84–4.02). We therefore conclude that nonlinear µFE simulations provide important additional information on the risk of distal forearm fractures not accessible from linear µFE nor from other techniques assessing bone microstructure, density or mass. PMID:23703921
2014-01-01
Background Due to the advantages of its bone-conserving nature, hip resurface arthroplasty (HRA) has recently gained the interest of orthopedic surgeons for the treatment of young and active patients who have osteonerosis of the femoral head. However, in long-term follow-up studies after HRA, narrowing of the femoral neck has often been found, which may lead to fracture. This phenomenon has been attributed to the stress alteration (stress shielding). Studies addressing the effects of necrotic size and the orientation of the implant on stress alterations are lacking. Methods Computed tomography images of a standard composite femur were used to create a three-dimensional finite-element (FE) intact femur model. Based on the intact model, FE models simulating four different levels of necrotic regions (0°, 60°, 100°, 115°) and three different implant insertion angles (varus 10°, neutral, valgus 10°) were created. The von Mises stress distributions and the displacement of the stem tip of each model were analyzed and compared for loading conditions that simulated a single-legged stance. Results Stress shielding occurred at the femoral neck after HRA. More severe stress shielding and an increased displacement of the stem tip were found for femoral heads that had a wider necrotic lesion. From a biomechanics perspective, the results were consistent with clinical evidence of femoral neck narrowing after HRA. In addition, a varus orientation of the implant resulted in a larger displacement of the stem tip, which could lead to an increased risk of implant loosening. Conclusions A femoral head with a wide necrotic lesion combined with a varus orientation of the prosthesis increases the risk of femoral neck narrowing and implant loosening following HRA. PMID:25095740
Plasticity - Theory and finite element applications.
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H. S.
1972-01-01
A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.
Finite element analysis of human joints
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
2-d Finite Element Code Postprocessor
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
ExodusII Finite Element Data Model
2005-05-14
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface. (exodus II is based on netcdf)