Science.gov

Sample records for finite impulse response

  1. Optoelectronic signal processing using finite impulse response neural networks

    NASA Astrophysics Data System (ADS)

    H. B. Xavier da Silveira, Paulo Eduardo

    2001-08-01

    This thesis investigates the use of finite impulse response neural network as the computational algorithm for efficient optoelectronic signal processing. The study begins with the analysis and development of different suitable algorithms, followed by the optoelectronic design of single-layer and multi-layer architectures, and it is concluded with the presentation of the results of a successful experimental implementation. First, finite impulse response adaptive filters and neural networks-the algorithmic building blocks-are introduced, followed by a description of finite impulse response neural networks. This introduction is followed by a historical background, describing early optoelectronic implementations of these algorithms. Next, different algorithms capable of temporal back-propagation are derived in detail, including a novel modification to the conventional algorithm, called delayed-feedback back- propagation. Based on these algorithms, different optoelectronic processors making use of adaptive volume holograms and three-dimensional optical processing are developed. Two single-layer architectures are presented: the input delay plane architecture and the output delay plane architecture. By combining them it is possible to implement both forward and backward propagation in two complementary multi-layer architectures: the first making use of the conventional temporal back-propagation and the second making use of delayed feedback back-propagation. Next, emphasis is given to a specific application: the processing of signals from adaptive antenna arrays. This research is initiated by computer simulations of different scenarios with multiple broadband signals and jammers, in planar and circular arrays, studying issues such as the effect of modulator non-linearities to the performance of the array, and the relation between the number of jammers and the final nulling depth. Two sets of simulations are presented: the first set applied to RF antenna arrays and the

  2. Extending the impulse response in order to reduce errors due to impulse noise and signal fading

    NASA Technical Reports Server (NTRS)

    Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.

    1988-01-01

    A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.

  3. Finite-element nonlinear transient response computer programs PLATE 1 and CIVM-PLATE 1 for the analysis of panels subjected to impulse or impact loads

    NASA Technical Reports Server (NTRS)

    Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.

    1980-01-01

    Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.

  4. Anatomy of a SAR impulse response.

    SciTech Connect

    Doerry, Armin Walter

    2007-08-01

    A principal measure of Synthetic Aperture Radar (SAR) image quality is the manifestation in the SAR image of a spatial impulse, that is, the SAR's Impulse Response (IPR). IPR requirements direct certain design decisions in a SAR. Anomalies in the IPR can point to specific anomalous behavior in the radar's hardware and/or software.

  5. Temporal Preparation, Response Inhibition and Impulsivity

    ERIC Educational Resources Information Center

    Correa, Angel; Trivino, Monica; Perez-Duenas, Carolina; Acosta, Alberto; Lupianez, Juan

    2010-01-01

    Temporal preparation and impulsivity involve overlapping neural structures (prefrontal cortex) and cognitive functions (response inhibition and time perception), however, their interrelations had not been investigated. We studied such interrelations by comparing the performance of groups with low vs. high non-clinical trait impulsivity during a…

  6. Optimal Approximation of the Impulse Response of Wireless Channels by Stochastic Differential Equations

    SciTech Connect

    Djouadi, Seddik M; Olama, Mohammed M; Li, Yanyan

    2008-01-01

    Wireless communication networks are characterized by nodes and scatters mobility which make the propagation environment time-varying and subject to fading. These variations are captured by random time-varying impulse responses. The latter are fairly general finite energy functions of both time and space that cannot be specified by a finite number of parameters. In this letter, we show that the impulse responses can be approximated in a mean square sense as close as desired by impulse responses that can be realized by stochastic differential equations (SDEs). The behaviors of the SDEs are characterized by small finite dimensional parameter sets.

  7. SAR impulse response with residual chirps.

    SciTech Connect

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  8. Subjective field study of response to impulsive helicopter noise

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1981-01-01

    Subjects, located outdoors and indoors, judged the noisiness and other subjective noise characteristics of flyovers of two helicopters and a propeller driven airplane as part of a study of the effects of impulsiveness on the subjective response to helicopter noise. In the first experiment, the impulsive characteristics of one helicopter was controlled by varying the main rotor speed while maintaining a constant airspeed in level flight. The second experiment which utilized only the helicopters, included descent and level flight operations. The more impulsive helicopter was consistently judged less noisy than the less impulsive helicopter at equal effective perceived noise levels (EPNL). The ability of EPNL to predict noisiness was not improved by the addition of either of two proposed impulse corrections. A subjective measure of impulsiveness, however, which was not significantly related to the proposed impulse corrections, was found to improve the predictive ability of EPNL.

  9. Demonstration scheme for impulse response of various systems

    NASA Astrophysics Data System (ADS)

    Qadir, Abdul; Ali, Aamir

    2013-03-01

    In linear system theory impulse response of any system is of great significance. It is the impulse response which is helpful in determining the convolution in continuous time system (unit sample response in Digital Signal Processing). The impulse response of simple systems can be calculated from the system differential equation or from the transfer function of the system (by taking the inverse Fourier Transform of transfer function). To the best of author's knowledge there exists no such scheme in the literature so far showing any practical method that can demonstrate the impulse response of a system on the oscilloscope. In this paper the method of demonstrating the impulse response of any linear system to the undergraduate students is presented. The approach is simple and is developed with minimum component count.

  10. Estimating the impulse response of buried objects from ground-penetrating radar signals

    NASA Astrophysics Data System (ADS)

    van der Lijn, Fedde; Roth, Friedrich; Verhaegen, Michel

    2003-09-01

    This paper presents a novel deconvolution algorithm designed to estimate the impulse response of buried objects based on ground penetrating radar (GPR) signals. The impulse response is a rich source of information about the buried object and therefore very useful for intelligent signal processing of GPR data. For example, it can be used in a target classification scheme to reduce the false alarm rate in demining operations. Estimating the target impulse response from the incident and scattered radar signals is a basic deconvolution problem. However, noise sensitivity and ground dispersion prevent the use of simple deconvolution methods like linear least squares deconvolution. Instead, a new deconvolution algorithm has been developed that computes estimates adhering to a physical impulse response model and that can be characterized by a limited number of parameters. It is shown that the new algorithm is robust with respect to noise and that it can deal with ground dispersion. The general performance of the algorithm has been tested on data generated by finite-difference time-domain (FDTD) simulations. The results demonstrate that the algorithm can distinguish between different dielectric and metal targets, making it very suitable for use in a classification scheme. Moreover, since the estimated impulse responses have physical meaning they can be related to target characteristics such as size and material properties. A direct application of this is the estimation of the permittivity of a dielectric target from its impulse response and that of a calibration target.

  11. Response of electroexplosive devices to impulsive waveforms.

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.; Menichelli, V. J.

    1971-01-01

    The firing characteristics of insensitive electroexplosive devices to certain impulsive waveforms have been investigated. For these waveforms, energy is delivered in a time short compared to the thermal time constant and therefore cooling plays a negligible role. One waveform is a terminated capacitor discharge wherein the regular discharge of a capacitor is terminated at a preset point. Another is a half-sine wave pulse. The theory, design, and application of both impulsive waveform generators are presented together with certain limited experimental observations.

  12. Understanding the impulse response method applied to concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Clem, D. J.; Popovics, J. S.; Schumacher, T.; Oh, T.; Ham, S.; Wu, D.

    2013-01-01

    The Impulse Response (IR) method is a well-established form of non-destructive testing (NDT) where the dynamic response of an element resulting from an impact event (hammer blow) is measured with a geophone to make conclusions about the element's integrity, stiffness, and/or support conditions. The existing ASTM Standard C1740-10 prescribes a set of parameters that can be used to evaluate the conditions above. These parameters are computed from the so-called `mobility' spectrum which is obtained by dividing the measured bridge deck response by the measured impact force in the frequency domain. While applying the test method in the laboratory as well as on an actual in-service concrete bridge deck, the authors of this paper observed several limitations that are presented and discussed in this paper. In order to better understand the underlying physics of the IR method, a Finite Element (FE) model was created. Parameters prescribed in the Standard were then computed from the FE data and are discussed. One main limitation appears to be the use of a fixed upper frequency of 800 Hz. Test data from the real bridge deck as well as the FE model both show that most energy is found above that limit. This paper presents and discusses limitations of the ASTM Standard found by the authors and suggests ways for improving it.

  13. Response inhibition and its relation to multidimensional impulsivity.

    PubMed

    Wilbertz, Tilmann; Deserno, Lorenz; Horstmann, Annette; Neumann, Jane; Villringer, Arno; Heinze, Hans-Jochen; Boehler, Carsten N; Schlagenhauf, Florian

    2014-12-01

    Impulsivity is a multidimensional construct that has been suggested as a vulnerability factor for several psychiatric disorders, especially addiction disorders. Poor response inhibition may constitute one facet of impulsivity. Trait impulsivity can be assessed by self-report questionnaires such as the widely used Barratt Impulsiveness Scale (BIS-11). However, regarding the multidimensionality of impulsivity different concepts have been proposed, in particular the UPPS self-report questionnaire ('Urgency', 'Lack of Premeditation', 'Lack of Perseverance', 'Sensation Seeking') that is based on a factor analytic approach. The question as to which aspects of trait impulsivity map on individual differences of the behavioral and neural correlates of response inhibition so far remains unclear. In the present study, we investigated 52 healthy individuals that scored either very high or low on the BIS-11 and underwent a reward-modulated Stop-signal task during fMRI. Neither behavioral nor neural differences were observed with respect to high- and low-BIS groups. In contrast, UPPS subdomain Urgency best explained inter-individual variability in SSRT scores and was further negatively correlated to right IFG/aI activation in 'Stop>Go' trials - a key region for response inhibition. Successful response inhibition in rewarded compared to nonrewarded stop trials yielded ventral striatal (VS) activation which might represent a feedback signal. Interestingly, only participants with low Urgency scores were able to use this VS feedback signal for better response inhibition. Our findings indicate that the relationship of impulsivity and response inhibition has to be treated carefully. We propose Urgency as an important subdomain that might be linked to response inhibition as well as to the use of reward-based neural signals. Based on the present results, further studies examining the influence of impulsivity on psychiatric disorders should take into account Urgency as an important

  14. Impulse source versus dodecahedral loudspeaker for measuring parameters derived from the impulse response in room acoustics.

    PubMed

    San Martín, Ricardo; Arana, Miguel; Machín, Jorge; Arregui, Abel

    2013-07-01

    This study investigates the performance of dodecahedral and impulse sources when measuring acoustic parameters in enclosures according to ISO 3382-1 [Acoustics-Measurement of room acoustic parameters. Part 1: Performance spaces (International Organization for Standardization, Geneva, Switzerland, 2009)]. In general, methods using speakers as a sound source are limited by their frequency response and directivity. On the other hand, getting impulse responses from impulse sources typically involves a lack of repeatability, and it is usually necessary to average several measurements for each position. Through experiments in different auditoriums that recreate typical situations in which the measurement standard is applied, it is found that using impulse sources leads to greater variation in the results, especially at low frequencies. However, this prevents subsequent dispersions due to variables that this technique does not require, such as the orientation of the emitting source. These dispersions may be relevant at high frequencies exceeding the established tolerance criteria for certain parameters. Finally, a new descriptor for dodecahedral sources reflecting the influence their lack of omnidirectionality produces on measuring acoustic parameters is proposed.

  15. Open-loop dereverberation of multichannel room impulse responses

    NASA Astrophysics Data System (ADS)

    Lee, Bowon; Hasegawa-Johnson, Mark A.; Goudeseune, Camille

    2003-04-01

    We are developing the audio display for a CAVE-type virtual reality theater, a 3-m cube with displays covering all six rigid faces. The user's headgear continuously reports ear positions so headphones would be possible, but we nevertheless prefer loudspeakers because this enhances the sense of total immersion. Because sounds produced at the loudspeakers are distorted by the room impulse responses, we therefore face the problem of controlling the sound at the listener's two ears. Our proposed solution consists of open-loop acoustic point control, i.e., dereverberation. The room impulse responses from each loudspeaker to each ear of the listener are inverted using multichannel inversion methods, to create exactly the desired sound field at the listener's ears. Because the actual room impulse responses cannot be measured in real time (as the listener walks around), instead the impulse responses simulated by the image-source method is used. A new evaluation criterion is proposed to quantitatively evaluate both the simulation and the open-loop dereverberation. The actual impulse responses used for this evaluation are measured with a starter pistol, since this best approximates the point source assumed by the image-source method.

  16. Can an "impulse response" really be defined for a photoreceiver?

    NASA Astrophysics Data System (ADS)

    Fraile-Pelaez, F. Javier

    2015-11-01

    In this paper we examine the validity of the concept of impulse response employed to characterize the time response and the signal-to-noise ratio of p-i-n and similar photodetecting devices. We analyze critically the way in which the formalism of analog linear systems has been extrapolated, by employing results from macroscopic electromagnetic theory such as the Shockley-Ramo theorem or any equivalent approach, to the extreme case of a single-photon detection. We argue that the concept of "response to an optical impulse" is ill-defined in the customary terms it is envisioned in the literature, this is, as an output current pulse having a certain predictable, calculated temporal shape, in response to the detection of an optical "Dirac delta" impulse, conceived in turn as the absorption of a single photon.

  17. Self-reported impulsivity, but not behavioral choice or response impulsivity, partially mediates the effect of stress on drinking behavior.

    PubMed

    Hamilton, Kristen R; Ansell, Emily B; Reynolds, Brady; Potenza, Marc N; Sinha, Rajita

    2013-01-01

    Stress and impulsivity contribute to alcohol use, and stress may also act via impulsivity to increase drinking behavior. Impulsivity represents a multi-faceted construct and self-report and behavioral assessments may effectively capture distinct clinically relevant factors. The present research investigated whether aspects of impulsivity mediate the effect of stress on alcohol use. A community-based sample of 192 men and women was assessed on measures of cumulative stress, alcohol use, self-reported impulsivity, and behavioral choice and response impulsivity. Data were analyzed using regression and bootstrapping techniques to estimate indirect effects of stress on drinking via impulsivity. Cumulative adversity exhibited both direct effects and indirect effects (via self-reported impulsivity) on drinking behavior. Additional models examining specific types of stress indicated direct and indirect effects of trauma and recent life events, and indirect effects of major life events and chronic stressors on drinking behavior. Overall, cumulative stress was associated with increased drinking behavior, and this effect was partially mediated by self-reported impulsivity. Self-reported impulsivity also mediated the effects of different types of stress on drinking behavior. These findings highlight the value of mediation models to examine the pathways through which different types of stress increase drinking behavior. Treatment and prevention strategies should focus on enhancing stress management and self-control.

  18. Dynamic response of graphene to thermal impulse

    NASA Astrophysics Data System (ADS)

    Zhang, Jingchao; Huang, Xiaopeng; Yue, Yanan; Wang, Jianmei; Wang, Xinwei

    2011-12-01

    A transient molecular dynamics technique is developed to characterize the thermophysical properties of two-dimensional graphene nanoribbons (GNRs). By directly tracking the thermal-relaxation history of a GNR that is heated by a thermal impulse, we are able to determine its thermal diffusivity quickly and accurately. We study the dynamic thermal conductivity of various length GNRs of 1.99 nm width. Quantum correction is applied in all of the temperature calculations and is found to have a critical role in the thermal-transport study of graphene. The calculated specific heat of GNRs agrees well with that of graphite at 300.6 and 692.3 K, showing little effect of the unique graphene structure on its ability to store thermal energy. A strong size effect on GNR's thermal conductivity is observed and its theoretical values for an infinite-length limit are evaluated by data fitting and extrapolation. With infinite length, the 1.99-nm-wide GNR has a thermal conductivity of 149 W m-1 K-1 at 692.3 K, and 317 W m-1 K-1 at 300.6 K. Our study of the temperature distribution and evolution suggests that diffusive transport is dominant in the studied GNRs. Non-Fourier heat conduction is observed at the beginning of the thermal-relaxation procedure. Thermal waves in GNR's in-plane direction are observed only for phonons in the flexural direction (ZA mode). The observed propagation speed (c = 4.6 km s-1) of the thermal wave follows the relation of c=vg/2 (vg is the ZA phonon group velocity). Our thermal-wave study reveals that in graphene, the ZA phonons transfer thermal energy much faster than longitudinal (LA) and transverse (TA) modes. Also, ZA↔ZA energy transfer is much faster than the ZA↔LA/TA phonon energy transfer.

  19. Understanding Computation of Impulse Response in Microwave Software Tools

    ERIC Educational Resources Information Center

    Potrebic, Milka M.; Tosic, Dejan V.; Pejovic, Predrag V.

    2010-01-01

    In modern microwave engineering curricula, the introduction of the many new topics in microwave industrial development, or of software tools for design and simulation, sometimes results in students having an inadequate understanding of the fundamental theory. The terminology for and the explanation of algorithms for calculating impulse response in…

  20. Neural response to reward anticipation is modulated by Gray's impulsivity.

    PubMed

    Hahn, Tim; Dresler, Thomas; Ehlis, Ann-Christine; Plichta, Michael M; Heinzel, Sebastian; Polak, Thomas; Lesch, Klaus-Peter; Breuer, Felix; Jakob, Peter M; Fallgatter, Andreas J

    2009-07-15

    According to the Reinforcement Sensitivity Theory (RST), Gray's dimension of impulsivity, reflecting human trait reward sensitivity, determines the extent to which stimuli activate the Behavioural Approach System (BAS). The potential neural underpinnings of the BAS, however, remain poorly understood. In the present study, we examined the association between Gray's impulsivity as defined by the RST and event-related fMRI BOLD-response to anticipation of reward in twenty healthy human subjects in brain regions previously associated with reward processing. Anticipation of reward during a Monetary Incentive Delay Task elicited activation in key components of the human reward circuitry such as the ventral striatum, the amygdala and the orbitofrontal cortex. Interindividual differences in Gray's impulsivity accounted for a significant amount of variance of the reward-related BOLD-response in the ventral striatum and the orbitofrontal cortex. Specifically, higher trait reward sensitivity was associated with increased activation in response to cues indicating potential reward. Extending previous evidence, here we show that variance in functional brain activation during anticipation of reward is attributed to interindividual differences regarding Gray's dimension of impulsivity. Thus, trait reward sensitivity contributes to the modulation of responsiveness in major components of the human reward system which thereby display a core property of the BAS. Generally, fostering our understanding of the neural underpinnings of the association of reward-related interindividual differences in affective traits might aid researchers in quest for custom-tailored treatments of psychiatric disorders, further disentangling the complex relationship between personality traits, emotion, and health.

  1. Impulse and Frequency Response of a Moving Coil Galvanometer.

    ERIC Educational Resources Information Center

    McNeill, D. J.

    1985-01-01

    Describes an undergraduate laboratory experiment in which a moving coil galvanometer is studied and the electromotive force generated by the swinging coil provides the impulse response information in a form suitable for digitizing and inputing to a microcomputer. Background information and analysis of typical data are included. (JN)

  2. A finite element study of the EIDI system. [Electro-Impulse De-Icing System

    NASA Technical Reports Server (NTRS)

    Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.

    1988-01-01

    This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.

  3. Volterra network modeling of the nonlinear finite-impulse reponse of the radiation belt flux

    SciTech Connect

    Taylor, M.; Daglis, I. A.; Anastasiadis, A.; Vassiliadis, D.

    2011-01-04

    We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks) can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts. We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential features of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.

  4. Volterra network modeling of the nonlinear finite-impulse reponse of the radiation belt flux

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Daglis, I. A.; Anastasiadis, A.; Vassiliadis, D.

    2011-01-01

    We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks) can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts. We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential features of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.

  5. Rapid-response impulsivity: definitions, measurement issues, and clinical implications.

    PubMed

    Hamilton, Kristen R; Littlefield, Andrew K; Anastasio, Noelle C; Cunningham, Kathryn A; Fink, Latham H L; Wing, Victoria C; Mathias, Charles W; Lane, Scott D; Schütz, Christian G; Swann, Alan C; Lejuez, C W; Clark, Luke; Moeller, F Gerard; Potenza, Marc N

    2015-04-01

    Impulsivity is a multifaceted construct that is a core feature of multiple psychiatric conditions and personality disorders. However, progress in understanding and treating impulsivity is limited by a lack of precision and consistency in its definition and assessment. Rapid-response impulsivity (RRI) represents a tendency toward immediate action that occurs with diminished forethought and is out of context with the present demands of the environment. Experts from the International Society for Research on Impulsivity (InSRI) met to discuss and evaluate RRI measures in terms of reliability, sensitivity, and validity, with the goal of helping researchers and clinicians make informed decisions about the use and interpretation of findings from RRI measures. Their recommendations are described in this article. Commonly used clinical and preclinical RRI tasks are described, and considerations are provided to guide task selection. Tasks measuring two conceptually and neurobiologically distinct types of RRI, "refraining from action initiation" (RAI) and "stopping an ongoing action" (SOA) are described. RAI and SOA tasks capture distinct aspects of RRI that may relate to distinct clinical outcomes. The InSRI group recommends that (a) selection of RRI measures should be informed by careful consideration of the strengths, limitations, and practical considerations of the available measures; (b) researchers use both RAI and SOA tasks in RRI studies to allow for direct comparison of RRI types and examination of their associations with clinically relevant measures; and (c) similar considerations be made for human and nonhuman studies in an effort to harmonize and integrate preclinical and clinical research.

  6. Without thinking: impulsive aggression and criminal responsibility.

    PubMed

    Shuman, Daniel W; Gold, Liza H

    2008-01-01

    In the U.S. the decision to impose criminal responsibility rests on an assumption about the defendant's decision to engage in proscribed conduct. We punish only those who we believe had the capacity to make a choice. In an increasingly violent world, the criminal law and the assumptions upon which it rests are relentlessly tested. A new generation of neuro-imaging technologies offers to provide insights into structural and functional abnormalities in the brain that may limit the autonomy of many dangerous offenders and unravel the fabric of the criminal justice system. How will the results of these technologies be received by the courts--are they relevant to existing formulations of the prima facie case, the insanity defense, or mitigation of sentence; will changes in the science or the law be required to accommodate this knowledge? The new generation of technologies may appropriately play a role in assessing culpable mental states only if they are also reliable. This short article takes on these and a host of other related questions at the intersection between science, law, and science fiction.

  7. Identification of physiological systems: a robust method for non-parametric impulse response estimation.

    PubMed

    Westwick, D T; Kearney, R E

    1997-03-01

    The identification of non-parametric impulse response functions (IRFs) from noisy finite-length data records is analysed using the techniques of matrix perturbation theory. Based on these findings, a method for IRF estimation is developed that is more robust than existing techniques, particularly when the input is non-white. Furthermore, methods are developed for computing confidence bounds on the resulting IRF estimates. Monte Carlo simulations are used to assess the capabilities of this new method and to demonstrate its superiority over classical techniques. An application to the identification of dynamic ankle stiffness in humans is presented. PMID:9136198

  8. Impulse control and criminal responsibility: lessons from neuroscience.

    PubMed

    Penney, Steven

    2012-01-01

    Almost all of the world's legal systems recognize the "M'Naghten" exception to criminal responsibility: the inability to appreciate the wrongfulness of action. This exception rests on the assumption that punishment is morally justified only if the defendant was able to choose whether to do wrong. Jurists and jurisdictions differ, however, on whether to extend M'Naghten's logic to cases where the defendant understood the wrongfulness of an act but was incapable of resisting an impulse to commit it. In this article I ask whether contemporary neuroscience can help lawmakers to decide whether to adopt or retain this defense, known variously as the "irresistible impulse" defense or the "control" or "volitional" test for insanity. More specifically, I ask firstly, whether it is empirically true that a person can understand the wrongfulness of an act yet be powerless to refrain from committing it; and second (assuming an affirmative answer to the first), whether the law of criminal responsibility can practically accommodate this phenomenon? After canvassing the relevant neuroscientific literature, I conclude that the answer to the first question is "yes." After examining the varied treatment of the defense in the United States and other nations, I also give an affirmative answer to the second question, but only in limited circumstances. In short, the defense of irresistible impulse should be recognized, but only when it can be shown that the defendant experienced a total incapacity to control his or her conduct in the circumstances.

  9. Impulse control and criminal responsibility: lessons from neuroscience.

    PubMed

    Penney, Steven

    2012-01-01

    Almost all of the world's legal systems recognize the "M'Naghten" exception to criminal responsibility: the inability to appreciate the wrongfulness of action. This exception rests on the assumption that punishment is morally justified only if the defendant was able to choose whether to do wrong. Jurists and jurisdictions differ, however, on whether to extend M'Naghten's logic to cases where the defendant understood the wrongfulness of an act but was incapable of resisting an impulse to commit it. In this article I ask whether contemporary neuroscience can help lawmakers to decide whether to adopt or retain this defense, known variously as the "irresistible impulse" defense or the "control" or "volitional" test for insanity. More specifically, I ask firstly, whether it is empirically true that a person can understand the wrongfulness of an act yet be powerless to refrain from committing it; and second (assuming an affirmative answer to the first), whether the law of criminal responsibility can practically accommodate this phenomenon? After canvassing the relevant neuroscientific literature, I conclude that the answer to the first question is "yes." After examining the varied treatment of the defense in the United States and other nations, I also give an affirmative answer to the second question, but only in limited circumstances. In short, the defense of irresistible impulse should be recognized, but only when it can be shown that the defendant experienced a total incapacity to control his or her conduct in the circumstances. PMID:22261322

  10. The Temporal Impulse Response Function in Infantile Nystagmus

    PubMed Central

    Bedell, Harold E.; Ramamurthy, Mahalakshmi; Patel, Saumil S.; Subramaniam, Shobana; Vu-Yu, Lan-Phuong; Tong, Jianliang

    2008-01-01

    Despite rapid to-and-fro motion of the retinal image that results from their incessant involuntary eye movements, persons with infantile nystagmus (IN) rarely report the perception of motion smear. We performed two experiments to determine if the reduction of perceived motion smear in persons with IN is associated with an increase in the speed of the temporal impulse response. In Experiment 1, increment thresholds were determined for pairs of successively presented flashes of a long horizontal line, presented on a 65 cd/m2 background field. The stimulus-onset asynchrony (SOA) between the first and second flash varied from 5.9 to 234 ms. In experiment 2, temporal contrast sensitivity functions were determined for a 3 cpd horizontal square wave grating that underwent counterphase flicker at temporal frequencies between 1 and 40 Hz. Data were obtained for 2 subjects with predominantly pendular IN and 8 normal observers in Experiment 1 and for 3 subjects with IN and 4 normal observers in Experiment 2. Temporal impulse response functions (TIRFs) were estimated as the impulse response of a linear second-order system that provided the best fit to the increment threshold data in Experiment 1 and to the temporal contrast sensitivity functions in Experiment 2. Estimated TIRFs of the subjects with pendular IN have natural temporal frequencies that are significantly faster than those of normal observers (ca. 13 vs. 9 Hz), indicating an accelerated temporal response to visual stimuli. This increase in response speed is too small to account by itself for the virtual absence of perceived motion smear in subjects with IN, and additional neural mechanisms are considered. PMID:18550143

  11. Rapid-response impulsivity: definitions, measurement issues, and clinical implications.

    PubMed

    Hamilton, Kristen R; Littlefield, Andrew K; Anastasio, Noelle C; Cunningham, Kathryn A; Fink, Latham H L; Wing, Victoria C; Mathias, Charles W; Lane, Scott D; Schütz, Christian G; Swann, Alan C; Lejuez, C W; Clark, Luke; Moeller, F Gerard; Potenza, Marc N

    2015-04-01

    Impulsivity is a multifaceted construct that is a core feature of multiple psychiatric conditions and personality disorders. However, progress in understanding and treating impulsivity is limited by a lack of precision and consistency in its definition and assessment. Rapid-response impulsivity (RRI) represents a tendency toward immediate action that occurs with diminished forethought and is out of context with the present demands of the environment. Experts from the International Society for Research on Impulsivity (InSRI) met to discuss and evaluate RRI measures in terms of reliability, sensitivity, and validity, with the goal of helping researchers and clinicians make informed decisions about the use and interpretation of findings from RRI measures. Their recommendations are described in this article. Commonly used clinical and preclinical RRI tasks are described, and considerations are provided to guide task selection. Tasks measuring two conceptually and neurobiologically distinct types of RRI, "refraining from action initiation" (RAI) and "stopping an ongoing action" (SOA) are described. RAI and SOA tasks capture distinct aspects of RRI that may relate to distinct clinical outcomes. The InSRI group recommends that (a) selection of RRI measures should be informed by careful consideration of the strengths, limitations, and practical considerations of the available measures; (b) researchers use both RAI and SOA tasks in RRI studies to allow for direct comparison of RRI types and examination of their associations with clinically relevant measures; and (c) similar considerations be made for human and nonhuman studies in an effort to harmonize and integrate preclinical and clinical research. PMID:25867840

  12. Rapid-Response Impulsivity: Definitions, Measurement Issues, and Clinical Implications

    PubMed Central

    Hamilton, Kristen R.; Littlefield, Andrew K.; Anastasio, Noelle C.; Cunningham, Kathryn A.; Fink, Latham H.; Wing, Victoria C.; Mathias, Charles W.; Lane, Scott D.; Schutz, Christian; Swann, Alan C.; Lejuez, C.W.; Clark, Luke; Moeller, F. Gerard; Potenza, Marc N.

    2015-01-01

    Impulsivity is a multi-faceted construct that is a core feature of multiple psychiatric conditions and personality disorders. However, progress in understanding and treating impulsivity in the context of these conditions is limited by a lack of precision and consistency in its definition and assessment. Rapid-response-impulsivity (RRI) represents a tendency toward immediate action that occurs with diminished forethought and is out of context with the present demands of the environment. Experts from the International Society for Research on Impulsivity (InSRI) met to discuss and evaluate RRI-measures in terms of reliability, sensitivity, and validity with the goal of helping researchers and clinicians make informed decisions about the use and interpretation of findings from RRI-measures. Their recommendations are described in this manuscript. Commonly-used clinical and preclinical RRI-tasks are described, and considerations are provided to guide task selection. Tasks measuring two conceptually and neurobiologically distinct types of RRI, “refraining from action initiation” (RAI) and “stopping an ongoing action” (SOA) are described. RAI and SOA-tasks capture distinct aspects of RRI that may relate to distinct clinical outcomes. The InSRI group recommends that: 1) selection of RRI-measures should be informed by careful consideration of the strengths, limitations, and practical considerations of the available measures; 2) researchers use both RAI and SOA tasks in RRI studies to allow for direct comparison of RRI types and examination of their associations with clinically relevant measures; and, 3) similar considerations should be made for human and non-human studies in an effort to harmonize and integrate pre-clinical and clinical research. PMID:25867840

  13. Simultaneous identification of residual unbalances and bearing dynamic parameters from impulse responses of rotor bearing systems

    NASA Astrophysics Data System (ADS)

    Tiwari, R.; Chakravarthy, V.

    2006-10-01

    An identification algorithm for simultaneous estimation of residual unbalances and bearing dynamic parameters by using impulse response measurements is presented for multi-degree-of-freedom ( mdofs) flexible rotor-bearing systems. The algorithm identifies speed-dependent bearing dynamic parameters for each bearing and residual unbalances at predefined balancing planes. Bearing dynamic parameters consist of four stiffness and four damping coefficients and residual unbalances contain the magnitude and phase information. Timoshenko beam with gyroscopic effects are included in the system finite element modelling. To overcome the practical difficulty of number of responses that can be measured, the standard condensation is used to reduce the number of degrees of freedom ( dofs) of the model. For illustration, responses in time domain are simulated due to impulse forces in the presence of residual unbalances from a rotor-bearing model and transformed to frequency domain. The identification algorithm uses these responses to estimate bearing dynamic parameters along with residual unbalances. The proposed algorithm has the flexibility to incorporate any type and any number of bearings including seals. The identification algorithm has been tested with the measurement noise in the simulated response. Identified parameters match quite well with assumed parameters used for the simulation of responses. The response reproduction capability of identified parameters has been found to be excellent.

  14. Infinite impulse response modal filtering in visible adaptive optics

    NASA Astrophysics Data System (ADS)

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  15. Tomographic reconstruction of the pulse-echo spatiotemporal impulse response

    NASA Astrophysics Data System (ADS)

    Nguyen, Nghia Q.; Abbey, Craig K.; Yapp, Rebecca D.; Insana, Michael F.

    2010-03-01

    Virtually every area of ultrasonic imaging research requires accurate estimation of the spatiotemporal impulse response of the instrument, and yet accurate measurements are difficult to achieve. The impulse response can also be difficult to predict numerically for a specific device because small unknown perturbations in array properties can generate significant changes in predicted pulse-echo field patterns. A typical measurement for a 1-D array transducer employs a line scatterer oriented perpendicular to the scan plane. Echoes from line scatterers located throughout the field of view constitute estimates of shift-varying line response functions. We propose an inverse-problem approach to the reconstruction of point-spread functions from line-spread functions. A collection of echoes recorded for a range of line-scatterer rotation angles are treated as projections of sound pressure onto the transducer array surface. Although the reconstruction is mathematically equivalent to filtered backprojection, it provides significant advantages with respect to interpolation that confound straightforward implementations. Field II predictions used to model measurements made on commercial systems suggest the reconstruction accuracy is with 0.32% for noiseless echo data. Application of the method to data acquired from a commercial system are evaluated from the perspective of deconvolution.

  16. Impulse Response from Seismic Interferometry and Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Juarez, A.; Ramirez-Guzman, L.

    2014-12-01

    We study the Green´s function (GF) retrieval based on the cross-correlation of numerically generated signals and its application to tomographic studies in central Mexico. The GF between two receivers is typically obtained based on the cross-correlation of noise recorded in two stations. Nevertheless, in this research we use large-scale earthquake numerical simulations to construct appropriate signals and optimal linear combinations of the displacements at two stations due to a small number of double-couple sources in a layered media to retrieve the Green´s function between receivers. The impulse response is obtained successfully by applying the cross-correlation, following standard interferometry theory. Additionally, the azimuthal dependence on the cross-correlations as an estimate of the impulse response is discussed using specific source locations. The main objective of our research is to elucidate the applicability of seismic interferometry in order to extend the frequency range and quality of tomographic studies based on observed regional earthquake records and dispersion maps. Thus, we show the results of the GF obtained using the aforementioned procedure in a realistic three-dimensional model of central Mexico, and quantify the discrepancies against the exact numerically computed GF. We conclude that a fair recovery is achieved by inverting velocity profiles at selected stations.

  17. A unified impulse response model for DCE-MRI.

    PubMed

    Schabel, Matthias C

    2012-11-01

    We describe the gamma capillary transit time model, a generalized impulse response model for DCE-MRI that mathematically unifies the Tofts-Kety, extended Tofts-Kety, adiabatic tissue homogeneity, and two-compartment exchange models. By including a parameter (α⁻¹) representing the width of the distribution of capillary transit times within a tissue voxel, the GCTT model discriminates tissues having relatively monodisperse transit time distributions from those having a large degree of heterogeneity. All five models were compared using in vivo data acquired in three brain tumors (one glioblastoma multiforme, one pleomorphic xanthoastrocytoma, and one anaplastic meningioma) and Monte Carlo simulations. Our principal findings are : (1) The four most commonly used models for dynamic contrast-enhanced magnetic resonance imaging can be unified within a single formalism. (2) Application of the GCTT model to in vivo data incurs only modest penalties in parameter uncertainty and computational cost. (3) Measured nonparametric impulse response functions in human brain tumors are well described by the GCTT model. (4) Estimation of α⁻¹ is feasible but achieving statistical significance requires higher SNR than is typically obtained in single voxel dynamic contrast-enhanced magnetic resonance imaging data. These results suggest that the GCTT model may be useful for extraction of information about tumor physiology beyond what is obtained using current modeling methodologies.

  18. Acoustic radiation force impulse imaging of vulnerable plaques: a finite element method parametric analysis

    PubMed Central

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.; Palmeri, Mark L.

    2012-01-01

    Plaque rupture is the most common cause of complications such as stroke and coronary heart failure. Recent histopathological evidence suggests that several plaque features, including a large lipid core and a thin fibrous cap, are associated with plaques most at risk for rupture. Acoustic Radiation Force Impulse (ARFI) imaging, a recently developed ultrasound-based elasticity imaging technique, shows promise for imaging these features noninvasively. Clinically, this could be used to distinguish vulnerable plaques, for which surgical intervention may be required, from those less prone to rupture. In this study, a parametric analysis using Finite-Element Method (FEM) models was performed to simulate ARFI imaging of five different carotid artery plaques across a wide range of material properties. It was demonstrated that ARFI could resolve the softer lipid pool from the surrounding, stiffer media and fibrous cap and was most dependent upon the stiffness of the lipid pool component. Stress concentrations due to an ARFI excitation were located in the media and fibrous cap components. In all cases, the maximum Von Mises stress was < 1.2 kPa. In comparing these results with others investigating plaque rupture, it is concluded that while the mechanisms may be different, the Von Mises stresses imposed by ARFI are orders of magnitude lower than the stresses associated with blood pressure. PMID:23122224

  19. Impulse response method for characterization of echogenic liposomes.

    PubMed

    Raymond, Jason L; Luan, Ying; van Rooij, Tom; Kooiman, Klazina; Huang, Shao-Ling; McPherson, David D; Versluis, Michel; de Jong, Nico; Holland, Christy K

    2015-04-01

    An optical characterization method is presented based on the use of the impulse response to characterize the damping imparted by the shell of an air-filled ultrasound contrast agent (UCA). The interfacial shell viscosity was estimated based on the unforced decaying response of individual echogenic liposomes (ELIP) exposed to a broadband acoustic impulse excitation. Radius versus time response was measured optically based on recordings acquired using an ultra-high-speed camera. The method provided an efficient approach that enabled statistical measurements on 106 individual ELIP. A decrease in shell viscosity, from 2.1 × 10(-8) to 2.5 × 10(-9) kg/s, was observed with increasing dilatation rate, from 0.5 × 10(6) to 1 × 10(7) s(-1). This nonlinear behavior has been reported in other studies of lipid-shelled UCAs and is consistent with rheological shear-thinning. The measured shell viscosity for the ELIP formulation used in this study [κs = (2.1 ± 1.0) × 10(-8) kg/s] was in quantitative agreement with previously reported values on a population of ELIP and is consistent with other lipid-shelled UCAs. The acoustic response of ELIP therefore is similar to other lipid-shelled UCAs despite loading with air instead of perfluorocarbon gas. The methods described here can provide an accurate estimate of the shell viscosity and damping for individual UCA microbubbles.

  20. A microwave photonic filter based on multi-wavelength fiber laser and infinite impulse response

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Cao, Ye; Zhao, Ai-hong; Tong, Zheng-rong

    2016-09-01

    A microwave photonic filter (MPF) based on multi-wavelength fiber laser and infinite impulse response (IIR) is proposed. The filter uses a multi-wavelength fiber laser as the light source, two sections of polarization maintaining fiber (PMF) and three polarization controllers (PCs) as the laser frequency selection device. By adjusting the PC to change the effective length of the PMF, the laser can obtain three wavelength spacings, which are 0.44 nm, 0.78 nm and 1.08 nm, respectively. And the corresponding free spectral ranges ( FSRs) are 8.46 GHz, 4.66 GHz and 3.44 GHz, respectively. Thus changing the wavelength spacing of the laser can make the FSR variable. An IIR filter is introduced based on a finite impulse response (FIR) filter. Then the 3-dB bandwidth of the MPF is reduced, and the main side-lobe suppression ratio ( MSSR) is increased. By adjusting the gain of the radio frequency (RF) signal amplifier, the frequency response of the filter can be enhanced.

  1. Loss Factor Estimation Using the Impulse Response Decay Method on a Stiffened Structure

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; Schiller, Noah; Allen, Albert; Moeller, Mark

    2009-01-01

    High-frequency vibroacoustic modeling is typically performed using energy-based techniques such as Statistical Energy Analysis (SEA). Energy models require an estimate of the internal damping loss factor. Unfortunately, the loss factor is difficult to estimate analytically, and experimental methods such as the power injection method can require extensive measurements over the structure of interest. This paper discusses the implications of estimating damping loss factors using the impulse response decay method (IRDM) from a limited set of response measurements. An automated procedure for implementing IRDM is described and then evaluated using data from a finite element model of a stiffened, curved panel. Estimated loss factors are compared with loss factors computed using a power injection method and a manual curve fit. The paper discusses the sensitivity of the IRDM loss factor estimates to damping of connected subsystems and the number and location of points in the measurement ensemble.

  2. Deriving a dosage-response relationship for community response to high-energy impulsive noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-01-01

    The inability to systematically predict community response to exposure to sonic booms (and other high energy impulsive sounds) is a major impediment to credible analyses of the environmental effects of supersonic flight operations. Efforts to assess community response to high energy impulsive sounds are limited in at least two important ways. First, a paucity of appropriate empirical data makes it difficult to infer a dosage-response relationship by means similar to those used in the case of general transportation noise. Second, it is unclear how well the 'equal energy hypothesis' (the notion that duration, number, and level of individual events are directly interchangeable determinants of annoyance) applies to some forms of impulsive noise exposure. Some of the issues currently under consideration by a CHABA working group addressing these problems are discussed. These include means for applying information gained in controlled exposure studies about different rates of growth of annoyance with impulsive and non-impulsive sound exposure levels, and strategies for developing a dosage-response relationship in a data-poor area.

  3. Influence of "omnidirectional" loudspeaker directivity on measured room impulse responses.

    PubMed

    Knüttel, Tobias; Witew, Ingo B; Vorländer, Michael

    2013-11-01

    Measured room impulse responses (RIR) strongly depend on the directivity of the sound source used for the measurement. An analysis method is presented that is capable of pinpointing the influence of the loudspeaker's directivity on a set of RIRs. Taking into account the rotational symmetries of a dodecahedron loudspeaker, it detects the effects that the changing directional pattern induces in the RIR. The analysis of RIRs measured in completely different acoustical environments reveals that the influence of the loudspeaker's directivity can still be observed in the very late part of the RIR-even in very reverberant rooms. These results are presented and the consistency with general room acoustical theory is revised and discussed.

  4. Impulsive choice and response in dopamine agonist-related impulse control behaviors

    PubMed Central

    Voon, Valerie; Reynolds, Brady; Brezing, Christina; Gallea, Cecile; Skaljic, Meliha; Ekanayake, Vindhya; Fernandez, Hubert; Potenza, Marc N; Dolan, Raymond J; Hallett, Mark

    2013-01-01

    Rationale Dopaminergic medication-related Impulse Control Disorders (ICDs) such as pathological gambling and compulsive shopping have been reported in Parkinson disease (PD). Hypothesis We hypothesized that dopamine agonists (DAs) would be associated with greater impulsive choice, or greater discounting of delayed rewards, in PD patients with ICDs (PDI). Methods Fourteen PDI patients, 14 PD controls without ICDs and 16 medication-free matched normal controls were tested on (i) the Experiential Discounting Task (EDT), a feedback-based intertemporal choice task, (ii) spatial working memory and (iii) attentional set shifting. The EDT was used to assess impulsivity choice (hyperbolic K-value), reaction time (RT) and decision conflict RT (the RT difference between high conflict and low conflict choices). PDI patients and PD controls were tested on and off DA. Results On the EDT, there was a group by medication interaction effect [F(1,26)=5.62; p=0.03] with pairwise analyses demonstrating that DA status was associated with increased impulsive choice in PDI patients (p=0.02) but not in PD controls (p=0.37). PDI patients also had faster RT compared to PD controls F(1,26)=7.51 p=0.01]. DA status was associated with shorter RT [F(3,24)=8.39, p=0.001] and decision conflict RT [F(1,26)=6.16, p=0.02] in PDI patients but not in PD controls. There were no correlations between different measures of impulsivity. PDI patients on DA had greater spatial working memory impairments compared to PD controls on DA (t=2.13, df=26, p=0.04). Conclusion Greater impulsive choice, faster RT, faster decision conflict RT and executive dysfunction may contribute to ICDs in PD. PMID:19838863

  5. Speckle reduction in optical coherence tomography images via dynamic infinite-impulse-response filtering

    NASA Astrophysics Data System (ADS)

    Lee, Jun; Park, Sangshik; Chung, Jung-Ho

    2014-03-01

    A temporal filtering method based on an infinite-impulse-response filter is presented to reduce speckle in optical coherence tomography (OCT) images. This method works in a recursive way, linearly combining the current B-scan image frame with a previously filtered one to generate a newly filtered image. Thus, it performs with less computational complexity and time, compared to the finite-impulse-response filter based approach that typically averages multiple stored frames. To achieve speckle noise reduction while avoiding image blurring caused by sample motion, the filter coefficient is dynamically determined, depending on the parameters related to motion detection and image quality. We used the mean-squared error (MSE) between two successive frames as a criterion to detect sample motion and changed the filter coefficient when the MSE exceeded a certain threshold to prevent image blurring. The optimal coefficient and motion detection threshold were chosen for achieving robust and unblurred images in our testbed configuration. In this study, we analyzed the algorithm with OCT images acquired by a swept-source OCT system we built and also examined that the method operated in real-time even via CPU processing. Results in our and conventional schemes are compared by using various image quality metrics and by observing images. We found that the performance of speckle reduction was quite promising and simultaneously the fine details of sample structures were preserved even with sample motion.

  6. Spatial organization of the impulse response in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Delbart, C.; Valdés, D.; Barbecot, F.; Tognelli, A.; Couchoux, L.

    2016-06-01

    Karst aquifers are characterized by a strong heterogeneity in their physical properties. The purpose of the study is the spatial variability of water transfers in a carbonated karstic aquifer. To this end, a high spatial density of information about the water transfer is needed. The characteristics of the site, a topographic hill of 13 km2 with eight boreholes, which was monitored hourly over four years, allows the study of the spatial variability of water transfers. The variability of the impulse response of the system is studied using autocorrelation and cross-correlation analysis between the rainfall and piezometric level time series. The shapes of the autocorrelation and cross-correlation functions vary according to the geographical location of the boreholes, that proves a spatial organization of the groundwater transfer. The response time varies depending on the thickness of the unsaturated zone by an unusual inverse correlation. In this case, the water level signal spatially integrates the signal transfer of the unsaturated zone and the signal transfer of the saturated part of the aquifer. Consequently, inertia and response time increased with the distance between the borehole and the top of piezometric dome. This description supports highly organized fast transfers in this karst aquifer and a highly connected fracture network.

  7. Two-meter laser material response impulse measurements

    NASA Astrophysics Data System (ADS)

    Robertson, Karin; Cates, Michael C.

    1988-02-01

    Impulse generated by Excimer Laser Target interactions has been extensively studied at Maxwell Labs. Inc. Results are presented of impulse measurements on aluminum targets using the SDIO/MLI Two Meter Laser operating with KrF as the lasing media. The results of previous MLI impulse measurements using XeF laser media are summarized. The work presented was motivated by earlier impulse measurements also taken on the Two Meter Laser. The data showed much higher impulse to energy ratios than predicted. Additionally, work done elsewhere gave lower I/E values than those found at MLI. The initial MLI impulse studies used a Fotonic gauge as a velocity sensor. As a check on its accuracy, impulse was measured using a simple pendulum; the results agreed with the Fotonic gauge data. A careful investigation of the pendulum experimental technique followed; no problem were found. The S-Cubed ZOOS code was also examined. It is a 1 and 1/2-D code, and only accounts for impulse delivered under the Laser footprint. Additional momentum, however, is provided outside the laser spot via the plasma cloud that results from the laser target interaction.

  8. Response of end tidal CO2 pressure to impulse exercise.

    PubMed

    Yano, T; Afroundeh, R; Yamanak, R; Arimitsu, T; Lian, C-S; Shirkawa, K; Yunoki, T

    2014-03-01

    The purpose of the present study was to examine how end tidal CO(2) pressure (PETCO(2)) is controlled in impulse exercise. After pre-exercise at 25 watts for 5 min, impulse exercise for 10 sec with 200 watts followed by post exercise at 25 watts was performed. Ventilation (VE) significantly increased until the end of impulse exercise and significantly re-increased after a sudden decrease. Heart rate (HR) significantly increased until the end of impulse exercise and then decreased to the pre-exercise level. PETCO(2) remained constant during impulse exercise. PETCO(2) significantly increased momentarily after impulse exercise and then significantly decreased to the pre-exercise level. PETCO(2) showed oscillation. The average peak frequency of power spectral density in PETCO(2) appeared at 0.0078 Hz. Cross correlations were obtained after impulse exercise. The peak cross correlations between VE and PETCO(2), HR and PETCO(2), and VE and HR were 0.834 with a time delay of -7 sec, 0.813 with a time delay of 7 sec and 0.701 with a time delay of -15 sec, respectively. We demonstrated that PETCO(2) homeodynamics was interactively maintained by PETCO(2) itself, CO(2) transportation (product of cardiac output and mixed venous CO(2) content) into the lungs by heart pumping and CO(2) elimination by ventilation, and it oscillates as a result of their interactions.

  9. Adults with a family history of alcohol related problems are more impulsive on measures of response initiation and response inhibition

    PubMed Central

    Acheson, Ashley; Richard, Dawn M.; Mathias, Charles W.; Dougherty, Donald M.

    2011-01-01

    Background Previous studies have found individuals with family histories of alcohol use disorders are more impulsive on some but not all laboratory behavioral measures, suggesting deficits on specific forms of impulse control. However, drawing conclusions is tenuous because these different measures have not been administered together in the same group of participants. Methods In the present study, we compared healthy 21–35 year old adults with family histories of alcohol related problems (FHAP+) or without such histories (FHAP−) on behavioral measures of response inhibition, response initiation, and consequence sensitivity impulsivity. FHAP+ (n=36) and FHAP− (n=36) participants were compared on performance on the Immediate Memory Task (IMT, response initiation), GoStop Impulsivity Paradigm (GoStop, response inhibition), Two Choice Impulsivity Paradigm (TCIP, consequence sensitivity) and Single Key Impulsivity Paradigm (SKIP, consequence sensitivity). Results FHAP+ individuals were more impulsive on the IMT and GoStop but not on the TCIP or SKIP. Conclusions These results suggest that response initiation and response inhibition impulsivity are increased in individuals with family histories of alcohol related problems despite not having alcohol or drug use disorders themselves. In contrast, increased consequence sensitivity impulsivity may be associated with additional risk factors such as more severe family histories of alcohol use disorders, or it may be increased as a consequence of heavy drug or alcohol use. PMID:21376480

  10. Subjective diffuseness of music signals convolved with binaural impulse responses

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Tronchin, Lamberto; Cocchi, Alessandro; Soeta, Yoshiharu

    2011-07-01

    The spatial impression of sound in a hall can be quantified using sound field factors such as the interaural cross-correlation coefficient (IACC) calculated from binaural impulse response (BIR), henceforth denoted by IACC IR. The subjective diffuseness for the listener is a spatial attribute which depends on factors associated both with the source signal and with the actual sound field, and is quantified using the IACC of the signal received by the listener, henceforth denoted by IACC SR. Therefore, the subjective diffuseness in a given hall may change with the music. The aims of this study are to estimate the IACC SR from the IACC IR and the factors, which is obtained from autocorrelation function (ACF) of music signal, and to evaluate the subjective diffuseness by these factors. First, the relationship between the IACC IR and IACC SR was investigated. Second, subjective diffuseness was measured by a psycho-acoustical experiment. As a result, the IACC SR could be estimated from the IACC IR of the BIR and the effective duration ( τe) from the ACF of music signal. It was found that the effects of BIRs on subjective diffuseness could be evaluated by IACC IR for almost all subjects, while the effects of music signals could be evaluated by the τe and the width of the peak at τ=0 ( Wϕ(0) ) of the ACF.

  11. Impulse Response Measurements Over Space-Earth Paths Using the GPS Coarse/Acquisition Codes

    NASA Technical Reports Server (NTRS)

    Lemmon, J. J.; Papazian, P. B.

    1995-01-01

    The impulse responses of radio transmission channels over space-earth paths were measured using the course/acquisition code signals from the Global Positioning System of satellites. The data acquisition system and signal processing techniques used to develop the impulse responses are described. Examples of impulse response measurements are presented. The results indicate that this measurement approach enables detection of multipath signals that are 20 dB or more below the power of the direct arrival. Channel characteristics that could be investigated with additional measurements and analyses are discussed.

  12. Effect of polyurea on dynamic response and fracture resistance of steel plates under impulsive loads

    NASA Astrophysics Data System (ADS)

    Amini, Mahmoud Reza

    Enhancing the dynamic performance and fracture resistance of steel plates under impulsive loads has always been of great interest to the researchers and scientists. A convenient technique to enhance the energy absorption capability of steel plates is to spray-cast a layer of polyurea onto the plates. Since polyurea readily adheres to metallic surfaces and has a short curing time, the technique may be used to retrofit existing metallic structures to improve their blast resistance. We have examined the effectiveness of this approach, focusing on the question of the significance of the relative position of the polyurea layer with respect to the loading direction; i.e. , we have explored whether the polyurea layer cast on the front face (the impulse-receiving face) or on the back face of the steel plate would provide a more effective blast mitigating composite. In addition we have studied the effects of the thickness of the polyurea layer and the steel-polyurea interface bonding strength. The experimental results suggest that the polyurea layer can have a significant effect on the response of the steel plate to dynamic impulsive loads, both in terms of failure mitigation and energy absorption, if it is deposited on the back face of the plate. And, remarkably, when polyurea is placed on the front face of the plate, it may actually enhance the destructive effect of the blast, promoting the failure of the steel plate, depending on the interface bonding strength between the polyurea and steel layers and the polyurea layer thickness. These experimental results are supported by our computational simulations of the entire experiments. In addition, SEM and optical microscopy is performed to examine the microstructure of the failed samples, and also understand the fracture and necking patterns, and the underpinning mechanisms of failure. Based on the micrographs, finite-element models are developed that are capable of predicting the fracture process of the steel plates. An

  13. Finite element simulation of pipe dynamic response

    SciTech Connect

    Slagis, G.C.; Litton, R.W.

    1996-12-01

    Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.

  14. Dynamic Response of Intact Piles to Impulse Loads

    NASA Astrophysics Data System (ADS)

    Liao, Shutao T.; Roesset, Jose M.

    1997-04-01

    The objective of this work was to evaluate the theoretical capabilities of the non-destructive impact-response method in estimating the length and cross-sectional area of intact piles. Three-dimensional (3-D) axisymmetric finite element models were developed to simulate the testing. The results obtained were compared to one-dimensional solutions to evaluate the importance of 3-D effects. Extensive parametric studies were then performed on piles without defects. In each parametric study, the results from the direct use of time histories of displacements or velocities, the mobility function and the Fourier transform of the recorded displacements (impact-echo method) were compared in order to assess their relative advantages and disadvantages. The effects of the relative stiffness of the surrounding soil to that of the pile and of the embedment depth were also investigated for all three methods. In a companion paper the use of these procedures to detect defects such as bulbs (increases in the cross-sectional area of the pile) or necks (decreases in area) is studied. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 255-275 (1997)

  15. Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity

    PubMed Central

    Babbs, R. Keith; Sun, Xue; Felsted, Jennifer; Chouinard-Decorte, Francois; Veldhuizen, Maria G.; Small, Dana

    2013-01-01

    Previous investigations consistently report a negative association between body mass index (BMI) and response in the caudate nucleus during the consumption of palatable and energy dense food. Since this response has also been linked to weight gain, we sought to replicate this finding and determine if the reduced response is associated with measures of impulsivity or food reward. Two studies were conducted in which fMRI was used to measure brain response to milkshake and a tasteless control solution. In study 1 (n = 25) we also assessed self-reported impulsivity, willingness to work for food, and subjective experiences of the pleasantness of milkshake taste and aroma. Replicating prior work, we report a negative association between BMI and brain response to milkshake vs. tasteless in the caudate nucleus. The opposite pattern was observed in the ventral putamen, with greater response observed in the 13 overweight compared to the 12 healthy weight subjects. Regression of brain response against impulsivity and food reward measures revealed one significant association: in the overweight but not healthy weight group self-reported impulsivity was negatively associated with caudate response to milkshake. In study 2 (n = 14), in addition to assessing brain response to milkshake and tasteless solutions subjects completed a go/no-go task outside the scanner. As predicted, we identified an inverse relationship between caudate response to milkshake vs. tasteless and failure to inhibit responses on the no go trials. We conclude that the inverse correlation between BMI and caudate response to milkshake is associated with impulsivity but not food reward. These findings suggest that response to milkshake in the dorsal striatum may be related to weight gain by promoting impulsive eating behavior. PMID:23562867

  16. Growth function for human response to large-amplitude impulse noise.

    PubMed

    Schomer, P D

    1978-12-01

    The U. S. Environmental Protection Agency has proposed the use of C-weighted day/night level for the assessment of impulse noise such as the noise resulting from sonic boom, blast noise (artillery, armor, demolition, etc.) and other large-amplitude impulse sources. One remaining question pertaining to the use of C-weighting has been the growth function for human response to impulse noise. This question arises because work by Kryter and by Young using peak values and/or small amplitudes exhibited growth functions of 6--7dB for a doubling of annoyance, while the growth function for human response to common sources (planes, vehicles, etc.) increases by about 10 dB for a doubling of annoyance. Kyter's and Young's data are reanalyzed herein by using C-weighting and by including only large-amplitude data. This reanalysis results in a growth function for human response to impulse noise which increases by about 10 dB for a doubling of annoyance. This equality of growth function between common A-weighted noise and C-weighted impulse noise further supports the use of C-weighted day/night level for assessment of sonic boom, blast noise, or other large-amplitude impulse noises having similar spectral content. PMID:739098

  17. A theoretical and experimental investigation of the linear and nonlinear impulse responses from a magnetoplasma column

    NASA Technical Reports Server (NTRS)

    Grody, N. C.

    1973-01-01

    Linear and nonlinear responses of a magnetoplasma resulting from inhomogeneity in the background plasma density are studied. The plasma response to an impulse electric field was measured and the results are compared with the theory of an inhomogeneous cold plasma. Impulse responses were recorded for the different plasma densities, static magnetic fields, and neutral pressures and generally appeared as modulated, damped oscillations. The frequency spectra of the waveforms consisted of two separated resonance peaks. For weak excitation, the results correlate with the linear theory of a cold, inhomogeneous, cylindrical magnetoplasma. The damping mechanism is identified with that of phase mixing due to inhomogeneity in plasma density. With increasing excitation voltage, the nonlinear impulse responses display stronger damping and a small increase in the frequency of oscillation.

  18. Spatio-Temporal Dynamics of Impulse Responses to Figure Motion in Optic Flow Neurons

    PubMed Central

    Lee, Yu-Jen; Jönsson, H. Olof; Nordström, Karin

    2015-01-01

    White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response. PMID:25955416

  19. Attending at a Low Intensity Increases Impulsivity in an Auditory Sustained Attention to Response Task.

    PubMed

    Roebuck, Hettie; Guo, Kun; Bourke, Patrick

    2015-12-01

    Why attention lapses during prolonged tasks is debated, specifically whether errors are a consequence of under-arousal or exerted effort. To explore this, we investigated whether increased impulsivity is associated with effortful processing by modifying the demand of a task by presenting it at a quiet intensity. Here, we consider whether attending at low but detectable levels affects impulsivity in a population with intact hearing. A modification of the Sustained Attention to Response Task was used with auditory stimuli at two levels: the participants' personal "lowest detectable" level and a "normal speaking" level. At the quiet intensity, we found that more impulsive responses were made compared with listening at a normal speaking level. These errors were not due to a failure in discrimination. The findings suggest an increase in processing time for auditory stimuli at low levels that exceeds the time needed to interrupt a planned habitual motor response. This leads to a more impulsive and erroneous response style. These findings have important implications for understanding the nature of impulsivity in relation to effortful processing. They may explain why a high proportion of individuals with hearing loss are also diagnosed with Attention Deficit Hyperactivity Disorder.

  20. Kurtosis of room impulse responses as a diffuseness measure for reverberation chambers.

    PubMed

    Jeong, Cheol-Ho

    2016-05-01

    This study presents a kurtosis analysis of room impulse responses as a potential room diffuseness measure. The early part of an impulse response contains a direct sound and strong reflections. As these reflections are sparse and strong, the sound field is unlikely to be diffuse. Such deterministic reflections are extreme events, which prevent the pressure samples from being distributed Gaussianly, leading to a high kurtosis. This indicates that the kurtosis can be used as a diffuseness measure. Two rooms are analyzed. A non-uniform surface absorption distribution tends to increase the kurtosis significantly in a small room. A full scale reverberation chamber is tested with different diffuser settings, which shows that the kurtosis calculated from broadband impulse responses from 125 Hz to 4 kHz has a good correlation with the Sabine absorption coefficient according to ISO 354 (International Organization for Standardization, Geneva, Switzerland, 2003). PMID:27250175

  1. Multifractal analysis of visualized room impulse response for detecting early reflections.

    PubMed

    Pavlović, Milan; Ristić, Dragan M; Reljin, Irini; Mijić, Miomir

    2016-05-01

    This paper describes an improved method for detecting early reflections in the initial part of the room impulse response using multifractals. The proposed method uses the two-dimensional multifractal analysis. The room impulse response is visualized as a spectrogram image which is then subjected to the multifractal analysis. The algorithm is based on describing local regularity in the image using distribution of Hölder exponents. The time positions of the selected Hölder exponents in the image are utilized in detecting early reflections. The obtained results show better efficiency of the proposed algorithm compared to the previous one-dimensional multifractal analysis based algorithm. PMID:27250194

  2. Analysis of an impulse response measured at the basilar membrane of the chinchilla.

    PubMed

    Wit, Hero P; Bell, Andrew

    2015-07-01

    In a recent paper [J. Acoust. Soc. Am. 133, 2224-2239 (2013)], Shera and Cooper report on the impulse response of the basilar membrane (BM) of a chinchilla, a waveform which shows repetitive bursts. They explain the bursts in terms of repeated coherent reflection at BM discontinuities and partial reflection at the stapes ("coherent reflection filtering"). Here the same waveform is examined in detail, highlighting features which indicate that the coherent reflection model, with calls for the same repetitive process to act on each successive burst, does not fully account for the shape of the measured impulse response. PMID:26233010

  3. Does impulsiveness moderate response to financial incentives for smoking cessation among pregnant and newly postpartum women?

    PubMed

    Lopez, Alexa A; Skelly, Joan M; White, Thomas J; Higgins, Stephen T

    2015-04-01

    We examined whether impulsiveness moderates response to financial incentives for cessation among pregnant smokers. Participants were randomized to receive financial incentives delivered contingent on smoking abstinence or to a control condition wherein incentives were delivered independent of smoking status. The study was conducted in two steps: First, we examined associations between baseline impulsiveness and abstinence at late pregnancy and 24-weeks-postpartum as part of a planned prospective study of this topic using data from a recently completed, randomized controlled clinical trial (N = 118). Next, to increase statistical power, we conducted a second analysis collapsing results across that recent trial and two prior trials involving the same study conditions (N = 236). Impulsivity was assessed using a delay discounting (DD) of hypothetical monetary rewards task in all three trials and Barratt Impulsiveness Scale (BIS) in the most recent trial. Neither DD nor BIS predicted smoking status in the single or combined trials. Receiving abstinence-contingent incentives, lower baseline smoking rate, and a history of quit attempts prepregnancy predicted greater odds of antepartum abstinence across the single and combined trials. No variable predicted postpartum abstinence across the single and combined trials, although a history of antepartum quit attempts and receiving abstinence-contingent incentives predicted in the single and combined trials, respectively. Overall, this study provides no evidence that impulsiveness as assessed by DD or BIS moderates response to this treatment approach while underscoring a substantial association of smoking rate and prior quit attempts with abstinence across the contingent incentives and control treatment conditions.

  4. Does impulsiveness moderate response to financial incentives for smoking cessation among pregnant and newly postpartum women?

    PubMed

    Lopez, Alexa A; Skelly, Joan M; White, Thomas J; Higgins, Stephen T

    2015-04-01

    We examined whether impulsiveness moderates response to financial incentives for cessation among pregnant smokers. Participants were randomized to receive financial incentives delivered contingent on smoking abstinence or to a control condition wherein incentives were delivered independent of smoking status. The study was conducted in two steps: First, we examined associations between baseline impulsiveness and abstinence at late pregnancy and 24-weeks-postpartum as part of a planned prospective study of this topic using data from a recently completed, randomized controlled clinical trial (N = 118). Next, to increase statistical power, we conducted a second analysis collapsing results across that recent trial and two prior trials involving the same study conditions (N = 236). Impulsivity was assessed using a delay discounting (DD) of hypothetical monetary rewards task in all three trials and Barratt Impulsiveness Scale (BIS) in the most recent trial. Neither DD nor BIS predicted smoking status in the single or combined trials. Receiving abstinence-contingent incentives, lower baseline smoking rate, and a history of quit attempts prepregnancy predicted greater odds of antepartum abstinence across the single and combined trials. No variable predicted postpartum abstinence across the single and combined trials, although a history of antepartum quit attempts and receiving abstinence-contingent incentives predicted in the single and combined trials, respectively. Overall, this study provides no evidence that impulsiveness as assessed by DD or BIS moderates response to this treatment approach while underscoring a substantial association of smoking rate and prior quit attempts with abstinence across the contingent incentives and control treatment conditions. PMID:25730417

  5. Scaled impulse loading for liquid hydraulic response in IFE thick-liquid chamber experiments

    NASA Astrophysics Data System (ADS)

    Jantzen, C.; Peterson, P. F.

    2001-05-01

    In an inertial fusion energy (IFE) target chamber using thick-liquid protection, placing liquid surfaces close to the fusion target helps to reduce pumping cost and final-focus stand-off distance. The impulse loading generated by the target on the adjacent jet surfaces provides the most important boundary condition for the subsequent liquid hydraulic response, pocket disruption, droplet generation, and pocket clearing and regeneration. However, liquid jets are difficult to use in current X-ray facilities that can simulate the X-ray ablation process. Instead, it is desirable to study liquid hydraulic response using water jets, employing scaled impulse loads delivered by chemical detonations or shock tubes. Because the pressure load generated by IFE targets is extremely short compared to the time required for significant liquid motion, only the time integrated impulse load is important to the liquid motion, not the detailed pressure history from ablation and venting. In this work, this impulse loading is determined using the 2-D gas dynamic code, TSUNAMI, and a comparison made between the impulse loads generated by IFE targets and by scaled chemical detonations.

  6. Where the ocean influences the impulse response and its effect on synchronous changes of acoustic travel time.

    PubMed

    Spiesberger, John L

    2011-12-01

    In 1983, sounds at 133 Hz, 0.06 s resolution were transmitted in the Pacific for five days at 2 min intervals over 3709 km between bottom-mounted instruments maintained with atomic clocks. In 1989, a technique was developed to measure changes in acoustic travel time with an accuracy of 135 microseconds at 2 min intervals for selected windows of travel time within the impulse response. The data have short-lived 1 to 10 ms oscillations of travel time with periods less than a few days. Excluding tidal effects, different windows exhibited significant synchronized changes in travel time for periods shorter than 10 h. In the 1980s, this phenomenon was not understood because internal waves have correlation lengths of a few kilometers which are smaller than the way sound was thought to sample the ocean along well-separated and distinct rays corresponding to different windows. The paradox's resolution comes from modern theories that replace the ray-picture with finite wavelength representations that predict sound can be influenced in the upper ocean over horizontal scales such as 20 km or more. Thus, different windows are influenced by the same short-scale fluctuations of sound speed. This conclusion is supported by the data and numerical simulations of the impulse response.

  7. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  8. Reverberation time measurement using integrated impulse response and sweep sine excitation

    NASA Astrophysics Data System (ADS)

    Nabuco, Marco; Brando, Paulo

    2002-11-01

    As the capacity and speed of digital processing systems becomes much higher, the integrated impulsive response for reverberation time measurements by the indirect method also becomes more feasible and faster. The MLS technique to obtain the impulse response for LTI has been developed during the last several years and it is very well reported by the bibliography. Some frequency analyzers available in the market are capable to generate and process MLS to get the impulse responses very easily. Sometimes, when the room to be tested is very reverberant, sequences of higher order and a certain number of average are necessary to assure acceptable signal-to-noise ratio. The sweep sine technique or the deconvolution method to obtain impulsive responses presents many new advantages, most of them still reported in various technical documents. This paper presents the results of application of this technique to measure the reverberation time in two different reverberation rooms. Comparisons with MLS, ensemble, and reverberation time averages are presented. The sweep sine technique repeatability was verified in a reverberation chamber for a polyurethane foam sample and showed smaller standard deviations when compared with other techniques. (To be presented in Portuguese.)

  9. Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Teng, Zhidong; Chen, Lansun

    2006-08-01

    According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator-prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.

  10. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity

    PubMed Central

    Yamamuro, Kazuhiko; Kimoto, Sohei; Iida, Junzo; Kishimoto, Naoko; Nakanishi, Yoko; Tanaka, Shohei; Ota, Toyosaku; Makinodan, Manabu; Kishimoto, Toshifumi

    2016-01-01

    Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS) is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP). Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11) to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP. PMID:27050450

  11. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  12. Derivation of a new parametric impulse response matrix utilized for nodal wind load identification by response measurement

    NASA Astrophysics Data System (ADS)

    Kazemi Amiri, A.; Bucher, C.

    2015-05-01

    This paper provides new formulations to derive the impulse response matrix, which is then used in the problem of load identification with application to wind induced vibration. The applied loads are inversely identified based on the measured structural responses by solving the associated discrete ill-posed problem. To this end - based on an existing parametric structural model - the impulse response functions of acceleration, velocity and displacement have been computed. Time discretization of convolution integral has been implemented according to an existing and a newly proposed procedure, which differ in the numerical integration methods. The former was evaluated based on a constant rectangular approximation of the sampled data and impulse response function in a number of steps corresponding to the sampling rate, while the latter interpolates the sampled data in an arbitrary number of sub-steps and then integrates over the sub-steps and steps. The identification procedure was implemented for a simulation example as well as an experimental laboratory case. The ill-conditioning of the impulse response matrix made it necessary to use Tikhonov regularization to recover the applied force from noise polluted measured response. The optimal regularization parameter has been obtained by L-curve and GCV method. The results of simulation represent good agreement between identified and measured force. In the experiments the identification results based on the measured displacement as well as acceleration are provided. Further it is shown that the accuracy of experimentally identified load depends on the sensitivity of measurement instruments over the different frequency ranges.

  13. Comparison of New Methods for Assessing Community Response to High Energy Impulsive Sounds

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1996-01-01

    The latest CHABA Working Group to have reviewed published information about the effects of high energy impulsive sounds (such as sonic booms) on communities has recommended abandonment of the dosage-response relationship identified by its predecessor in favor of two alternate prediction method. Both of the new assessment methods continue to rely on C-weighted measurements of impulsive sounds One of the two assessment methods retains the standard assumptions of the 'equal energy hypothesis' (the notion that annoyance is governed simply by the product of level, duration, and number noise events), and further assumes that the rate of growth of the prevalence of annoyance is proportional to the rate of growth of loudness with level. The other assessment method, however, assumes a level dependent (non-equal energy) summation of the C-weighted sound exposure levels of individual impulsive events. Since predictions of the second method are distribution-dependent, they are not readily represents graphically in the form of a single dosage-response function. The effects on annoyance predictions of variance in distributions of CSEL values of impulsive sounds are explored in this presentation.

  14. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats.

    PubMed

    Lazzaretti, Camilla; Kincheski, Grasielle Clotildes; Pandolfo, Pablo; Krolow, Rachel; Toniazzo, Ana Paula; Arcego, Danusa Mar; Couto-Pereira, Natividade de Sá; Zeidán-Chuliá, Fares; Galvalisi, Martin; Costa, Gustavo; Scorza, Cecilia; Souza, Tadeu Mello E; Dalmaz, Carla

    2016-03-01

    Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood.

  15. Finite Post Synaptic Potentials Cause a Fast Neuronal Response

    PubMed Central

    Helias, Moritz; Deger, Moritz; Rotter, Stefan; Diesmann, Markus

    2011-01-01

    A generic property of the communication between neurons is the exchange of pulses at discrete time points, the action potentials. However, the prevalent theory of spiking neuronal networks of integrate-and-fire model neurons relies on two assumptions: the superposition of many afferent synaptic impulses is approximated by Gaussian white noise, equivalent to a vanishing magnitude of the synaptic impulses, and the transfer of time varying signals by neurons is assessable by linearization. Going beyond both approximations, we find that in the presence of synaptic impulses the response to transient inputs differs qualitatively from previous predictions. It is instantaneous rather than exhibiting low-pass characteristics, depends non-linearly on the amplitude of the impulse, is asymmetric for excitation and inhibition and is promoted by a characteristic level of synaptic background noise. These findings resolve contradictions between the earlier theory and experimental observations. Here we review the recent theoretical progress that enabled these insights. We explain why the membrane potential near threshold is sensitive to properties of the afferent noise and show how this shapes the neural response. A further extension of the theory to time evolution in discrete steps quantifies simulation artifacts and yields improved methods to cross check results. PMID:21427776

  16. Does Impulsiveness Moderate Response to Financial Incentives for Smoking Cessation Among Pregnant and Newly Postpartum Women?

    PubMed Central

    Lopez, Alexa A.; Skelly, Joan M.; White, Thomas J.; Higgins, Stephen T.

    2015-01-01

    We examined whether impulsiveness moderates response to financial incentives for cessation among pregnant smokers. All participants were randomized to either a condition wherein financial incentives were delivered contingent on smoking abstinence or to a control condition wherein incentives were delivered independent of smoking status. The study was conducted in two steps: First, we examined associations between baseline impulsiveness scores and abstinence at late pregnancy and 24-weeks postpartum as part of a planned prospective study of this topic using data from a recently completed, randomized controlled clinical trial (N = 118). Next, to increase statistical power, we conducted a second analysis collapsing results across that recent trial and two prior trials involving the same contingent incentive and control conditions (N = 236). Impulsivity was assessed using a delay discounting (DD) of hypothetical monetary rewards task in all three trials and Barratt Impulsiveness Scale (BIS) in the most recent trial. Neither DD nor BIS predicted antepartum or postpartum smoking status in the single or combined trials. Receiving abstinence-contingent incentives, lower baseline smoking rate (cigs/day), and a history of quit attempts pre-pregnancy predicted greater odds of antepartum abstinence across the single and combined trials. No variable predicted postpartum abstinence across the single and combined trials, although a history of antepartum quit attempts and receiving abstinence-contingent incentives predicted in the single and combined trials, respectively. Overall, this study provides no evidence that impulsiveness as assessed by DD or BIS moderates response to this treatment approach while underscoring a substantial association of smoking rate and prior quit attempts with abstinence across the contingent incentives and control treatment conditions. PMID:25730417

  17. Impulse responses of automaticity in the Purkinje fiber.

    PubMed Central

    Chay, T R; Lee, Y S

    1984-01-01

    We examined the effects of brief current pulses on the pacemaker oscillations of the Purkinje fiber using the model of McAllister , Noble, and Tsien (1975. J. Physiol. [Lond.]. 251:1-57). This model was used to construct phase-response curves for brief electric stimuli to find "black holes," where rhythmic activity of the Purkinje fiber ceases. In our computer simulation, a brief current stimulus of the right magnitude and timing annihilated oscillations in membrane potential. The model also revealed a sequence of alternating periodic and chaotic regimes as the strength of a steady bias current is varied. We compared the results of our computer simulations with experimental work on Purkinje fibers and pointed out the importance of modeling results of this kind for understanding cardiac arrhythmias. PMID:6722270

  18. Tomographic reconstruction of indoor spatial temperature distributions using room impulse responses

    NASA Astrophysics Data System (ADS)

    Bleisteiner, M.; Barth, M.; Raabe, A.

    2016-03-01

    Temperature can be estimated by acoustic travel time measurements along known sound paths. By using a multitude of known sound paths in combination with a tomographic reconstruction technique a spatial and temporal resolution of the temperature field can be achieved. Based on it, this article focuses on an experimental method in order to determine the spatially differentiated development of room temperature with only one loudspeaker and one microphone. The theory of geometrical room acoustics is being used to identify sound paths under consideration of reflections. The travel time along a specific sound path is derived from the room impulse response. Temporal variances in room impulse response can be attributed primarily to a change in air temperature and airflow. It is shown that in the absence of airflow a 3D acoustic monitoring of the room temperature can be realized with a fairly limited use of hardware.

  19. Impulse Response Estimation for Spatial Resolution Enhancement in Ultrasonic NDE Imaging

    SciTech Connect

    Clark, G A

    2004-06-25

    This report describes a signal processing algorithm and MATLAB software for improving spatial resolution in ultrasonic nondestructive evaluation (NDE) imaging of materials. Given a measured reflection signal and an associated reference signal, the algorithm produces an optimal least-squares estimate of the impulse response of the material under test. This estimated impulse response, when used in place of the raw reflection signal, enhances the spatial resolution of the ultrasonic measurements by removing distortion caused by the limited-bandwidth transducers and the materials under test. The theory behind the processing algorithms is briefly presented, while the reader is referred to the bibliography for details. The main focus of the report is to describe how to use the MATLAB software. Two processing examples using actual ultrasonic measurements are provided for tutorial purposes.

  20. Free segmentation in rendered 3D images through synthetic impulse response in integral imaging

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.

    2016-06-01

    Integral Imaging is a technique that has the capability of providing not only the spatial, but also the angular information of three-dimensional (3D) scenes. Some important applications are the 3D display and digital post-processing as for example, depth-reconstruction from integral images. In this contribution we propose a new reconstruction method that takes into account the integral image and a simplified version of the impulse response function (IRF) of the integral imaging (InI) system to perform a two-dimensional (2D) deconvolution. The IRF of an InI system has a periodic structure that depends directly on the axial position of the object. Considering different periods of the IRFs we recover by deconvolution the depth information of the 3D scene. An advantage of our method is that it is possible to obtain nonconventional reconstructions by considering alternative synthetic impulse responses. Our experiments show the feasibility of the proposed method.

  1. Multi-input Multi-output System Identification Using Impulse Responses

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Isao; Kasai, Tokio; Igawa, Hirotaka

    This paper presents a new algorithm for multi-input multi-output (MIMO) system identification in the time domain using impulse responses. The algorithm is suitable for the on-orbit system identification of spacecraft using the responses to thruster impulse inputs measured by typical satellite on-board sensors. The Eigensystem Realization Algorithm (ERA) realizes a multi-input multi-output (MIMO) system using asynchronous impulse responses in the time domain. Our new method identifies the input and output matrices of a MIMO collocated system by applying a recursive least-squares iteration scheme to refine the matrices obtained from conventional ERA. In this manner, the input matrix is considered to be constructed by the mode shape vectors and the actuator sensitivity matrix. A numerical simulation of an actual spacecraft, the Engineering Test Satellite-VI (ETS-VI), is performed to verify the algorithm. The nominal dynamics model of ETS-VI, which has six rigid body modes and fourteen elastic modes due to large flexible solar panels, is excited by six body-mounted thrusters, and the translational velocities and attitude rates are measured simultaneously. Our method successfully identifies all of the fourteen natural frequencies, damping ratios and mode shape vectors, confirming its validity.

  2. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  3. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  4. Comparison of methods of predicting community response to impulsive and nonimpulsive noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-01-01

    Several scientific, regulatory, and policy-coordinating bodies have developed methods for predicting community response to sonic booms. The best known of these is the dosage-response relationship of Working Group 84 of the National Academy of Science's Committee on Hearing, Bioacoustics and Biomechanics. This dosage-response relationship between C-weighted DayNight Average Sound Level and the prevalence of annoyance with high energy impulsive sounds was derived from limited amounts of information about community response to regular, prolonged, and expected exposure to artillery and sonic booms. U.S. Army Regulation 201 adapts this approach to predictions of the acceptability of impulsive noise exposure in communities. This regulation infers equivalent degrees of effect with respect to a well known dosage-response relationship for general (nonimpulsive) transportation noise. Differences in prevalence of annoyance predicted by various relationships lead to different predictions of the compatibility of land uses with sonic boom exposure. An examination of these differences makes apparent several unresolved issues in current practice for predicting and interpreting the prevalence of annoyance due to sonic boom exposure.

  5. Comparison of methods of predicting community response to impulsive and nonimpulsive noise

    NASA Astrophysics Data System (ADS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-02-01

    Several scientific, regulatory, and policy-coordinating bodies have developed methods for predicting community response to sonic booms. The best known of these is the dosage-response relationship of Working Group 84 of the National Academy of Science's Committee on Hearing, Bioacoustics and Biomechanics. This dosage-response relationship between C-weighted DayNight Average Sound Level and the prevalence of annoyance with high energy impulsive sounds was derived from limited amounts of information about community response to regular, prolonged, and expected exposure to artillery and sonic booms. U.S. Army Regulation 201 adapts this approach to predictions of the acceptability of impulsive noise exposure in communities. This regulation infers equivalent degrees of effect with respect to a well known dosage-response relationship for general (nonimpulsive) transportation noise. Differences in prevalence of annoyance predicted by various relationships lead to different predictions of the compatibility of land uses with sonic boom exposure. An examination of these differences makes apparent several unresolved issues in current practice for predicting and interpreting the prevalence of annoyance due to sonic boom exposure.

  6. Identification of feedback loops embedded in cellular circuits by investigating non-causal impulse response components.

    PubMed

    Dong, Chao-Yi; Yoon, Tae-Woong; Bates, Declan G; Cho, Kwang-Hyun

    2010-02-01

    Feedback circuits are crucial dynamic motifs which occur in many biomolecular regulatory networks. They play a pivotal role in the regulation and control of many important cellular processes such as gene transcription, signal transduction, and metabolism. In this study, we develop a novel computationally efficient method to identify feedback loops embedded in intracellular networks, which uses only time-series experimental data and requires no knowledge of the network structure. In the proposed approach, a non-parametric system identification technique, as well as a spectral factor analysis, is applied to derive a graphical criterion based on non-causal components of the system's impulse response. The appearance of non-causal components in the impulse response sequences arising from stochastic output perturbations is shown to imply the presence of underlying feedback connections within a linear network. In order to extend the approach to nonlinear networks, we linearize the intracellular networks about an equilibrium point, and then choose the magnitude of the output perturbations sufficiently small so that the resulting time-series responses remain close to the chosen equilibrium point. In this way, the impulse response sequences of the linearized system can be used to determine the presence or absence of feedback loops in the corresponding nonlinear network. The proposed method utilizes the time profile data from intracellular perturbation experiments and only requires the perturbability of output nodes. Most importantly, the method does not require any a priori knowledge of the system structure. For these reasons, the proposed approach is very well suited to identifying feedback loops in large-scale biomolecular networks. The effectiveness of the proposed method is illustrated via two examples: a synthetic network model with a negative feedback loop and a nonlinear caspase function model of apoptosis with a positive feedback loop. PMID:19333603

  7. Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  8. Reduced-Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  9. Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2011-06-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  10. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    PubMed

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized. PMID:24316188

  11. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    PubMed

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized.

  12. A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS)

    NASA Astrophysics Data System (ADS)

    Hooss, G.; Voss, R.; Hasselmann, K.; Maier-Reimer, E.; Joos, F.

    Impulse-response-function (IRF) models are designed for applications requiring a large number of climate change simulations, such as multi-scenario climate impact studies or cost-benefit integrated-assessment studies. The models apply linear response theory to reproduce the characteristics of the climate response to external forcing computed with sophisticated state-of-the-art climate models like general circulation models of the physical ocean-atmosphere system and three-dimensional oceanic-plus-terrestrial carbon cycle models. Although highly computer efficient, IRF models are nonetheless capable of reproducing the full set of climate-change information generated by the complex models against which they are calibrated. While limited in principle to the linear response regime (less than about 3∘C global-mean temperature change), the applicability of the IRF model presented has been extended into the nonlinear domain through explicit treatment of the climate system's dominant nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and sublinear radiative forcing. The resultant nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) computes the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level. The space-time response characteristics of the model are derived from an EOF analysis of a transient 850-year greenhouse warming simulation with the Hamburg atmosphere-ocean general circulation model ECHAM3-LSG and a similar response experiment with the Hamburg carbon cycle model HAMOCC. The model is applied to two long-term CO2 emission scenarios, demonstrating that the use of all currently estimated fossil fuel resources would carry the Earth's climate far beyond the range of climate change for which reliable quantitative predictions are possible today, and that even a

  13. Impulse responses of visible phototubes used in National Ignition Facility neutron time of flight diagnostics

    NASA Astrophysics Data System (ADS)

    Datte, P. S.; Eckart, M.; Moore, A. S.; Thompson, W.; Vergel de Dios, G.

    2016-11-01

    Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 × 1015 these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Ω load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and ˜2% rms for the square root of the second central moment with ˜500 ps value. Detailed results are presented for three different diode configurations.

  14. Application of damage detection methods using passive reconstruction of impulse response functions.

    PubMed

    Tippmann, J D; Zhu, X; Lanza di Scalea, F

    2015-02-28

    In structural health monitoring (SHM), using only the existing noise has long been an attractive goal. The advances in understanding cross-correlations in ambient noise in the past decade, as well as new understanding in damage indication and other advanced signal processing methods, have continued to drive new research into passive SHM systems. Because passive systems take advantage of the existing noise mechanisms in a structure, offshore wind turbines are a particularly attractive application due to the noise created from the various aerodynamic and wave loading conditions. Two damage detection methods using a passively reconstructed impulse response function, or Green's function, are presented. Damage detection is first studied using the reciprocity of the impulse response functions, where damage introduces new nonlinearities that break down the similarity in the causal and anticausal wave components. Damage detection and localization are then studied using a matched-field processing technique that aims to spatially locate sources that identify a change in the structure. Results from experiments conducted on an aluminium plate and wind turbine blade with simulated damage are also presented. PMID:25583863

  15. Application of damage detection methods using passive reconstruction of impulse response functions.

    PubMed

    Tippmann, J D; Zhu, X; Lanza di Scalea, F

    2015-02-28

    In structural health monitoring (SHM), using only the existing noise has long been an attractive goal. The advances in understanding cross-correlations in ambient noise in the past decade, as well as new understanding in damage indication and other advanced signal processing methods, have continued to drive new research into passive SHM systems. Because passive systems take advantage of the existing noise mechanisms in a structure, offshore wind turbines are a particularly attractive application due to the noise created from the various aerodynamic and wave loading conditions. Two damage detection methods using a passively reconstructed impulse response function, or Green's function, are presented. Damage detection is first studied using the reciprocity of the impulse response functions, where damage introduces new nonlinearities that break down the similarity in the causal and anticausal wave components. Damage detection and localization are then studied using a matched-field processing technique that aims to spatially locate sources that identify a change in the structure. Results from experiments conducted on an aluminium plate and wind turbine blade with simulated damage are also presented.

  16. Repeated exposure reduces the response to impulsive noise in European seabass.

    PubMed

    Radford, Andrew N; Lèbre, Laurie; Lecaillon, Gilles; Nedelec, Sophie L; Simpson, Stephen D

    2016-10-01

    Human activities have changed the acoustic environment of many terrestrial and aquatic ecosystems around the globe. Mounting evidence indicates that the resulting anthropogenic noise can impact the behaviour and physiology of at least some species in a range of taxa. However, the majority of experimental studies have considered only immediate responses to single, relatively short-term noise events. Repeated exposure to noise could lead to a heightened or lessened response. Here, we conduct two long-term (12 week), laboratory-based exposure experiments with European seabass (Dicentrarchus labrax) to examine how an initial impact of different sound types potentially changes over time. Naïve fish showed elevated ventilation rates, indicating heightened stress, in response to impulsive additional noise (playbacks of recordings of pile-driving and seismic surveys), but not to a more continuous additional noise source (playbacks of recordings of ship passes). However, fish exposed to playbacks of pile-driving or seismic noise for 12 weeks no longer responded with an elevated ventilation rate to the same noise type. Fish exposed long-term to playback of pile-driving noise also no longer responded to short-term playback of seismic noise. The lessened response after repeated exposure, likely driven by increased tolerance or a change in hearing threshold, helps explain why fish that experienced 12 weeks of impulsive noise showed no differences in stress, growth or mortality compared to those reared with exposure to ambient-noise playback. Considering how responses to anthropogenic noise change with repeated exposure is important both when assessing likely fitness consequences and the need for mitigation measures. PMID:27282635

  17. Frequency-modulated impulse response photothermal detection through optical reflectance. 2: Experimental.

    PubMed

    Power, J F; Mandelis, A

    1988-08-15

    A fast thermoreflectance impulse response photothermal imager was assembled and tested with several solid materials [quartz, stainless steel, and polyvinylidene difluoride (PVDF)I. The instrument was found to yield quantitative data in agreement with Green's function theoretical models of time domain heat conduction. The FM chirp laser intensity modulation technique used in these experiments gave wide bandwidth photothermal signals and was found to be only limited by the FFT instrumentation frequency response (100 kHz). Thermal diffusivities were calculated, while thermal lensing and thermoelastic effects were further observed. The imager was thus shown to be capable of replacing pulsed laser devices for truly nondestructive applications with materials with low damage threshold to optical pulses.

  18. Frequency-modulated impulse response photothermal detection through optical reflectance. 2: Experimental.

    PubMed

    Power, J F; Mandelis, A

    1988-08-15

    A fast thermoreflectance impulse response photothermal imager was assembled and tested with several solid materials [quartz, stainless steel, and polyvinylidene difluoride (PVDF)I. The instrument was found to yield quantitative data in agreement with Green's function theoretical models of time domain heat conduction. The FM chirp laser intensity modulation technique used in these experiments gave wide bandwidth photothermal signals and was found to be only limited by the FFT instrumentation frequency response (100 kHz). Thermal diffusivities were calculated, while thermal lensing and thermoelastic effects were further observed. The imager was thus shown to be capable of replacing pulsed laser devices for truly nondestructive applications with materials with low damage threshold to optical pulses. PMID:20539390

  19. fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents

    PubMed Central

    Brown, Matthew R. G.; Benoit, James R. A.; Juhás, Michal; Dametto, Ericson; Tse, Tiffanie T.; MacKay, Marnie; Sen, Bhaskar; Carroll, Alan M.; Hodlevskyy, Oleksandr; Silverstone, Peter H.; Dolcos, Florin; Dursun, Serdar M.; Greenshaw, Andrew J.

    2015-01-01

    High-risk behavior in adolescents is associated with injury, mental health problems, and poor outcomes in later life. Improved understanding of the neurobiology of high-risk behavior and impulsivity shows promise for informing clinical treatment and prevention as well as policy to better address high-risk behavior. We recruited 21 adolescents (age 14–17) with a wide range of high-risk behavior tendencies, including medically high-risk participants recruited from psychiatric clinics. Risk tendencies were assessed using the Adolescent Risk Behavior Screen (ARBS). ARBS risk scores correlated highly (0.78) with impulsivity scores from the Barratt Impulsivity scale (BIS). Participants underwent 4.7 Tesla functional magnetic resonance imaging (fMRI) while performing an emotional Go/NoGo task. This task presented an aversive or neutral distractor image simultaneously with each Go or NoGo stimulus. Risk behavior and impulsivity tendencies exhibited similar but not identical associations with fMRI activation patterns in prefrontal brain regions. We interpret these results as reflecting differences in response inhibition, emotional stimulus processing, and emotion regulation in relation to participant risk behavior tendencies and impulsivity levels. The results are consistent with high impulsivity playing an important role in determining high risk tendencies in this sample containing clinically high-risk adolescents. PMID:26483645

  20. Attenuation and impulse response for multiple scattering of light in atmospheric clouds and aerosols.

    PubMed

    Selden, Adrian C

    2006-05-01

    Model phase functions for atmospheric clouds and aerosols typically comprise a narrow forward lobe (corona), a broad diffuse background, and a narrow backscattering peak (glory), which can reach relatively high values, especially for polyhedral scattering particles, such as hexagonal ice columns and plates. The influence of these three major components on the asymptotic and transient attenuation of the scattered light is compared for several analytic phase functions to assess the dependence of radiative transfer in clouds and aerosols on the choice of phase function. The impulse response (temporal evolution of the angular intensity distribution) is sensitive to the higher moments of the phase function and could prove to be a useful technique for inferring the optical scattering parameters of clouds and aerosols.

  1. Correction method for averaging slowly time-variant room impulse response measurements.

    PubMed

    Postma, Barteld N J; Katz, Brian F G

    2016-07-01

    Various methods exist for room acoustic measurements. To increase the signal-to-noise-ratio (SNR), averaging of repeated room impulse responses (RIR) can be performed under the assumption of time-invariant systems. Associated with a study of the Paris Notre Dame cathedral, time-variances due to minute temperature changes were observed which confounded results of averaged RIRs, producing significantly shorter reverberation times. A correction method for such time-variance of the acoustic system is proposed, based on time-stretching. Following correction, reverberation times of averaged RIRs were comparable to expected tolerance ranges for measurements, well within one just noticeable difference, while also exhibiting a mid-frequency SNR gain of 8 dB. PMID:27475209

  2. The relation between the waveguide invariant, multipath impulse response, and ray cycles.

    PubMed

    Harrison, Chris H

    2011-05-01

    The waveguide invariant, β, that manifests itself as interference fringes or "striations" in a plot of frequency vs source-receiver separation, is usually thought of as a modal phenomenon. This paper shows that striations can be explained simply through the variation of the eigenray arrival times with range, in short, the variation of the multipath impulse response. It is possible to calculate β for a number of sound speed profiles analytically and to find what β depends on, why it switches from one value to another, how it depends on source-receiver depth, how it depends on variable bathymetry, and how smooth the sound speed profile needs to be for clear fringes. The analytical findings are confirmed by calculating striation patterns numerically starting from eigenray travel times in various stratified environments. Most importantly the approach throws some light on what can be deduced from β alone and the likelihood and utility of striations in reverberation. PMID:21568390

  3. Closed-form impulse response model of non-line-of-sight single-scatter propagation.

    PubMed

    Sun, Yu; Zhan, Yafeng

    2016-04-01

    For optical scattering communication, a closed-form expression of channel impulse response (CIR) is favorable for further system design and channel capacity analysis. Combining the mean value theorem of integrals and L'Hôpital's rule, the exact non-line-of-sight (NLOS) single-scatter propagation model is simplified to a closed-form CIR model for a laser source with a narrow beam. Based on this model, by joint geometrical and empirical approaches, a piecewise CIR expression is presented under certain system NLOS geometries. Through numerical results on CIR for various NLOS geometries, the proposed model is verified with the exact NLOS single-scatter propagation model and the previous Gamma fitting model, showing that our model agrees better with the former than the latter. PMID:27140787

  4. Closed-form impulse response model of non-line-of-sight single-scatter propagation.

    PubMed

    Sun, Yu; Zhan, Yafeng

    2016-04-01

    For optical scattering communication, a closed-form expression of channel impulse response (CIR) is favorable for further system design and channel capacity analysis. Combining the mean value theorem of integrals and L'Hôpital's rule, the exact non-line-of-sight (NLOS) single-scatter propagation model is simplified to a closed-form CIR model for a laser source with a narrow beam. Based on this model, by joint geometrical and empirical approaches, a piecewise CIR expression is presented under certain system NLOS geometries. Through numerical results on CIR for various NLOS geometries, the proposed model is verified with the exact NLOS single-scatter propagation model and the previous Gamma fitting model, showing that our model agrees better with the former than the latter.

  5. The generation of shared cryptographic keys through channel impulse response estimation at 60 GHz.

    SciTech Connect

    Young, Derek P.; Forman, Michael A.; Dowdle, Donald Ryan

    2010-09-01

    Methods to generate private keys based on wireless channel characteristics have been proposed as an alternative to standard key-management schemes. In this work, we discuss past work in the field and offer a generalized scheme for the generation of private keys using uncorrelated channels in multiple domains. Proposed cognitive enhancements measure channel characteristics, to dynamically change transmission and reception parameters as well as estimate private key randomness and expiration times. Finally, results are presented on the implementation of a system for the generation of private keys for cryptographic communications using channel impulse-response estimation at 60 GHz. The testbed is composed of commercial millimeter-wave VubIQ transceivers, laboratory equipment, and software implemented in MATLAB. Novel cognitive enhancements are demonstrated, using channel estimation to dynamically change system parameters and estimate cryptographic key strength. We show for a complex channel that secret key generation can be accomplished on the order of 100 kb/s.

  6. Correction method for averaging slowly time-variant room impulse response measurements.

    PubMed

    Postma, Barteld N J; Katz, Brian F G

    2016-07-01

    Various methods exist for room acoustic measurements. To increase the signal-to-noise-ratio (SNR), averaging of repeated room impulse responses (RIR) can be performed under the assumption of time-invariant systems. Associated with a study of the Paris Notre Dame cathedral, time-variances due to minute temperature changes were observed which confounded results of averaged RIRs, producing significantly shorter reverberation times. A correction method for such time-variance of the acoustic system is proposed, based on time-stretching. Following correction, reverberation times of averaged RIRs were comparable to expected tolerance ranges for measurements, well within one just noticeable difference, while also exhibiting a mid-frequency SNR gain of 8 dB.

  7. Responses of free-living coastal pelagic fish to impulsive sounds.

    PubMed

    Hawkins, Anthony D; Roberts, Louise; Cheesman, Samuel

    2014-05-01

    The behavior of wild, pelagic fish in response to sound playback was observed with a sonar/echo sounder. Schools of sprat Sprattus sprattus and mackerel Scomber scombrus were examined at a quiet coastal location. The fish were exposed to a short sequence of repeated impulsive sounds, simulating the strikes from a pile driver, at different sound pressure levels. The incidence of behavioral responses increased with increasing sound level. Sprat schools were more likely to disperse and mackerel schools more likely to change depth. The sound pressure levels to which the fish schools responded on 50% of presentations were 163.2 and 163.3 dB re 1 μPa peak-to-peak, and the single strike sound exposure levels were 135.0 and 142.0 dB re 1 μPa(2) s, for sprat and mackerel, respectively, estimated from dose response curves. For sounds leading to mackerel responses, particle velocity levels were also estimated. The method of observation by means of a sonar/echo sounder proved successful in examining the behavior of unrestrained fish exposed to different sound levels. The technique may allow further testing of the relationship between responsiveness, sound level, and sound characteristics for different types of man-made sound, for a variety of fish species under varied conditions. PMID:24926505

  8. Responses of free-living coastal pelagic fish to impulsive sounds.

    PubMed

    Hawkins, Anthony D; Roberts, Louise; Cheesman, Samuel

    2014-05-01

    The behavior of wild, pelagic fish in response to sound playback was observed with a sonar/echo sounder. Schools of sprat Sprattus sprattus and mackerel Scomber scombrus were examined at a quiet coastal location. The fish were exposed to a short sequence of repeated impulsive sounds, simulating the strikes from a pile driver, at different sound pressure levels. The incidence of behavioral responses increased with increasing sound level. Sprat schools were more likely to disperse and mackerel schools more likely to change depth. The sound pressure levels to which the fish schools responded on 50% of presentations were 163.2 and 163.3 dB re 1 μPa peak-to-peak, and the single strike sound exposure levels were 135.0 and 142.0 dB re 1 μPa(2) s, for sprat and mackerel, respectively, estimated from dose response curves. For sounds leading to mackerel responses, particle velocity levels were also estimated. The method of observation by means of a sonar/echo sounder proved successful in examining the behavior of unrestrained fish exposed to different sound levels. The technique may allow further testing of the relationship between responsiveness, sound level, and sound characteristics for different types of man-made sound, for a variety of fish species under varied conditions.

  9. Detection of internal cracks in Manchego cheese using the acoustic impulse-response technique and ultrasounds.

    PubMed

    Conde, T; Mulet, A; Clemente, G; Benedito, J

    2008-03-01

    Nowadays, due to the more global nature of markets, the commercialization of cheese relies on the high quality of the product. Internal defects such as cracks or flaws may affect quality. Two different nondestructive inspection techniques (ultrasonic and acoustic experiments) were used to detect cracks in Manchego cheese. The existence of small eyes in this type of cheese limited the use of ultrasonic pulse-echo experiments due to high scattering, and only cracks close to the surface of the cheese could be detected. The acoustic impulse-response technique, however, allowed us to study wheel pieces with cracks located elsewhere in the cheese. Two different impact probes (A and B) were assayed. The energy content of the acoustic spectrum was higher for cracked wheel pieces (7,116 and 17,520 V Hz(1/2) for probes A and B, respectively) than for normal ones (6,841 and 16,821 V Hz(1/2)). The differences were mainly found for frequencies higher than 150 Hz, which made the centroid for cracked pieces higher (162 and 170 Hz for probes A and B, respectively) than that for normal cheeses (132 and 148 Hz for probes A and B, respectively). Discriminant functions were developed to classify wheel pieces, and the input variables used were the acoustic parameters from the spectrum and the principal components extracted from the whole spectrum. The best classification procedure used the principal components from the principal components analysis of the spectrum for probe B. In this case, the 50 wheel pieces used in this study were correctly classified. These results showed that a simple and low-cost acoustic impulse-response technique could be used to detect cheese cracks, formed at different moments of Manchego cheese maturation. PMID:18292247

  10. Impulsivity in the supermarket. Responses to calorie taxes and subsidies in healthy weight undergraduates.

    PubMed

    Giesen, Janneke C A H; Havermans, Remco C; Nederkoorn, Chantal; Jansen, Anita

    2012-02-01

    The present study investigated the effect of taxing high-energy dense products and subsidizing low-energy dense products on changes in calorie consumption. More specifically, we hypothesized that 'more impulsive' individuals were less influenced by such pricing strategies compared to 'less impulsive' individuals. Contrary to our hypothesis, results showed that 'more impulsive' individuals adjusted their calorie consumption with regard to price changes whereas 'less impulsive' participants were less influenced by price changes. Furthermore, taxing high-energy dense products was more successful in reducing calorie consumption than subsidizing low-energy dense products. PMID:22019544

  11. Vaporization response of evaporating drops with finite thermal conductivity

    NASA Technical Reports Server (NTRS)

    Agosta, V. D.; Hammer, S. S.

    1975-01-01

    A numerical computing procedure was developed for calculating vaporization histories of evaporating drops in a combustor in which travelling transverse oscillations occurred. The liquid drop was assumed to have a finite thermal conductivity. The system of equations was solved by using a finite difference method programmed for solution on a high speed digital computer. Oscillations in the ratio of vaporization of an array of repetitivity injected drops in the combustor were obtained from summation of individual drop histories. A nonlinear in-phase frequency response factor for the entire vaporization process to oscillations in pressure was evaluated. A nonlinear out-of-phase response factor, in-phase and out-of-phase harmonic response factors, and a Princeton type 'n' and 'tau' were determined. The resulting data was correlated and is presented in graphical format. Qualitative agreement with the open literature is obtained in the behavior of the in-phase response factor. Quantitatively the results of the present finite conductivity spray analysis do not correlate with the results of a single drop model.

  12. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  13. Differentiating Tower of Hanoi performance: interactive effects of psychopathic tendencies, impulsive response styles, and modality.

    PubMed

    Salnaitis, Christina L; Baker, Crystal A; Holland, James; Welsh, Marilyn

    2011-01-01

    Previous research has demonstrated that performance on the computerized Tower of Hanoi is lower than performance on the manual Tower of Hanoi. The present study was conducted to elucidate potential factors that contribute to performance differences across modalities. Personality characteristics related to psychopathy and impulsive response styles were hypothesized to be correlates of poor performance on the computerized version of the Tower of Hanoi, which is a problem-solving task that requires working memory, planning, and inhibition. Eighty-four college students from a mid-sized university participated. Participants were grouped as low, middle, or high psychopathy based on their total scores on the Psychopathic Personality Inventory. A 2 (Modality) × 3 (Psychopathy) analysis of covariance, controlling for visuospatial working memory, yielded a significant interaction, in which the high psychopathy group did not differ in performance across modality, whereas the low and middle psychopathy groups performed more poorly on the computerized version. Subsequent analyses on reaction time and accuracy for the computerized modality indicated that a reflective, methodical approach to the computerized task was more productively utilized in the low psychopathy group, whereas the fast and accurate approach was more productively utilized in the high psychopathy group. These results suggest that individuals with elevated psychopathic tendencies within a normal population are not necessarily deficient in problem-solving performance on the Tower of Hanoi. Impulsive responding is associated with poor performance in the computerized version of the Tower of Hanoi, irrespective of psychopathic tendencies. Caution should be exercised in interpreting scores on the computerized Tower of Hanoi because the psychometric properties required for comparability with the manual version have not been sufficiently demonstrated. PMID:21390899

  14. Increased impulsivity in response to food cues after sleep loss in healthy young men

    PubMed Central

    Cedernaes, Jonathan; Brandell, Jon; Ros, Olof; Broman, Jan-Erik; Hogenkamp, Pleunie S; Schiöth, Helgi B; Benedict, Christian

    2014-01-01

    Objective To investigate whether acute total sleep deprivation (TSD) leads to decreased cognitive control when food cues are presented during a task requiring active attention, by assessing the ability to cognitively inhibit prepotent responses. Methods Fourteen males participated in the study on two separate occasions in a randomized, crossover within-subject design: one night of TSD versus normal sleep (8.5 hours). Following each nighttime intervention, hunger ratings and morning fasting plasma glucose concentrations were assessed before performing a go/no-go task. Results Following TSD, participants made significantly more commission errors when they were presented “no-go” food words in the go/no-go task, as compared with their performance following sleep (+56%; P<0.05). In contrast, response time and omission errors to “go” non-food words did not differ between the conditions. Self-reported hunger after TSD was increased without changes in fasting plasma glucose. The increase in hunger did not correlate with the TSD-induced commission errors. Conclusions Our results suggest that TSD impairs cognitive control also in response to food stimuli in healthy young men. Whether such loss of inhibition or impulsiveness is food cue-specific as seen in obesity—thus providing a mechanism through which sleep disturbances may promote obesity development—warrants further investigation. PMID:24839251

  15. Current impulse response of thin InP p+-i-n+ diodes using full band structure Monte Carlo method

    NASA Astrophysics Data System (ADS)

    You, A. H.; Cheang, P. L.

    2007-02-01

    A random response time model to compute the statistics of the avalanche buildup time of double-carrier multiplication in avalanche photodiodes (APDs) using full band structure Monte Carlo (FBMC) method is discussed. The effect of feedback impact ionization process and the dead-space effect on random response time are included in order to simulate the speed of APD. The time response of InP p+-i-n+ diodes with the multiplication region of 0.2μm is presented. Finally, the FBMC model is used to calculate the current impulse response of the thin InP p+-i-n+ diodes with multiplication lengths of 0.05 and 0.2μm using Ramo's theorem [Proc. IRE 27, 584 (1939)]. The simulated current impulse response of the FBMC model is compared to the results simulated from a simple Monte Carlo model.

  16. Digital high-pass filter deconvolution by means of an infinite impulse response filter

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Wohsmann, J.; Lange, B.; Schönherr, J.; Enghardt, W.; Kaever, P.

    2016-09-01

    In the application of semiconductor detectors, the charge-sensitive amplifier is widely used in front-end electronics. The output signal is shaped by a typical exponential decay. Depending on the feedback network, this type of front-end electronics suffers from the ballistic deficit problem, or an increased rate of pulse pile-ups. Moreover, spectroscopy applications require a correction of the pulse-height, while a shortened pulse-width is desirable for high-throughput applications. For both objectives, digital deconvolution of the exponential decay is convenient. With a general method and the signals of our custom charge-sensitive amplifier for cadmium zinc telluride detectors, we show how the transfer function of an amplifier is adapted to an infinite impulse response (IIR) filter. This paper investigates different design methods for an IIR filter in the discrete-time domain and verifies the obtained filter coefficients with respect to the equivalent continuous-time frequency response. Finally, the exponential decay is shaped to a step-like output signal that is exploited by a forward-looking pulse processing.

  17. On the consideration of motion effects in the computation of impulse response for underwater acoustics inversion.

    PubMed

    Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric; Stéphan, Yann

    2009-10-01

    The estimation of the impulse response (IR) of a propagation channel may be of great interest for a large number of underwater applications: underwater communications, sonar detection and localization, marine mammal monitoring, etc. It quantifies the distortions of the transmitted signal in the underwater channel and enables geoacoustic inversion. The propagating signal is usually subject to additional and undesirable distortions due to the motion of the transmitter-channel-receiver configuration. This paper shows the effects of the motion while estimating the IR by matched filtering between the transmitted and the received signals. A methodology to compare IR estimation with and without motion is presented. Based on this comparison, a method for motion effect compensation is proposed in order to reduce motion-induced distortions. The proposed methodology is applied to real data sets collected in 2007 by the Service Hydrographique et Océanographique de la Marine in a shallow water environment, proving its interest for motion effect analysis. Motion compensated estimation of IRs is computed from sources transmitting broadband linear frequency modulations moving at up to 12 knots in the shallow water environment of the Malta plateau, South of Sicilia.

  18. Infinite-impulse-response models of the head-related transfer function

    NASA Astrophysics Data System (ADS)

    Kulkarni, Abhijit; Colburn, H. Steven

    2004-04-01

    Head-related transfer functions (HRTFs) measured from human subjects were approximated using infinite-impulse-response (IIR) filter models. Models were restricted to rational transfer functions (plus simple delays) so that specific models are characterized by the locations of poles and zeros in the complex plane. The all-pole case (with no nontrivial zeros) is treated first using the theory of linear prediction. Then the general pole-zero model is derived using a weighted-least-squares (WLS) formulation of the modified least-squares problem proposed by Kalman (1958). Both estimation algorithms are based on solutions of sets of linear equations and result in efficient computational schemes to find low-order model HRTFs. The validity of each of these two low-order models was assessed in psychophysical experiments. Specifically, a four-interval, two-alternative, forced-choice paradigm was used to test the discriminability of virtual stimuli constructed from empirical and model HRTFs for corresponding locations. For these experiments, the stimuli were 80 ms, noise tokens generated from a wideband noise generator. Results show that sounds synthesized through model HRTFs were indistinguishable from sounds synthesized from original HRTF measurements for the majority of positions tested. The advantages of the techniques described here are the computational efficiencies achieved for low-order IIR models. Properties of the all-pole and pole-zero estimators are discussed in the context of low-order HRTF representations, and implications for basic and applied contexts are considered.

  19. Extracting the frequencies of the pinna spectral notches in measured head related impulse responses

    NASA Astrophysics Data System (ADS)

    Raykar, Vikas C.; Duraiswami, Ramani; Yegnanarayana, B.

    2005-07-01

    The head related impulse response (HRIR) characterizes the auditory cues created by scattering of sound off a person's anatomy. The experimentally measured HRIR depends on several factors such as reflections from body parts (torso, shoulder, and knees), head diffraction, and reflection/diffraction effects due to the pinna. Structural models (Algazi et al., 2002; Brown and Duda, 1998) seek to establish direct relationships between the features in the HRIR and the anatomy. While there is evidence that particular features in the HRIR can be explained by anthropometry, the creation of such models from experimental data is hampered by the fact that the extraction of the features in the HRIR is not automatic. One of the prominent features observed in the HRIR, and one that has been shown to be important for elevation perception, are the deep spectral notches attributed to the pinna. In this paper we propose a method to robustly extract the frequencies of the pinna spectral notches from the measured HRIR, distinguishing them from other confounding features. The method also extracts the resonances described by Shaw (1997). The techniques are applied to the publicly available CIPIC HRIR database (Algazi et al., 2001c). The extracted notch frequencies are related to the physical dimensions and shape of the pinna.

  20. Localizing nearby sound sources in a classroom: binaural room impulse responses.

    PubMed

    Shinn-Cunningham, Barbara G; Kopco, Norbert; Martin, Tara J

    2005-05-01

    Binaural room impulse responses (BRIRs) were measured in a classroom for sources at different azimuths and distances (up to 1 m) relative to a manikin located in four positions in a classroom. When the listener is far from all walls, reverberant energy distorts signal magnitude and phase independently at each frequency, altering monaural spectral cues, interaural phase differences, and interaural level differences. For the tested conditions, systematic distortion (comb-filtering) from an early intense reflection is only evident when a listener is very close to a wall, and then only in the ear facing the wall. Especially for a nearby source, interaural cues grow less reliable with increasing source laterality and monaural spectral cues are less reliable in the ear farther from the sound source. Reverberation reduces the magnitude of interaural level differences at all frequencies; however, the direct-sound interaural time difference can still be recovered from the BRIRs measured in these experiments. Results suggest that bias and variability in sound localization behavior may vary systematically with listener location in a room as well as source location relative to the listener, even for nearby sources where there is relatively little reverberant energy.

  1. Enhanced Vertical Perception through Head-Related Impulse Response Customization Based on Pinna Response Tuning in the Median Plane

    NASA Astrophysics Data System (ADS)

    Shin, Ki Hoon; Park, Youngjin

    Human's ability to perceive elevation of a sound and distinguish whether a sound is coming from the front or rear strongly depends on the monaural spectral features of the pinnae. In order to realize an effective virtual auditory display by HRTF (head-related transfer function) customization, the pinna responses were isolated from the median HRIRs (head-related impulse responses) of 45 individual HRIRs in the CIPIC HRTF database and modeled as linear combinations of 4 or 5 basic temporal shapes (basis functions) per each elevation on the median plane by PCA (principal components analysis) in the time domain. By tuning the weight of each basis function computed for a specific height to replace the pinna response in the KEMAR HRIR at the same height with the resulting customized pinna response and listening to the filtered stimuli over headphones, 4 individuals with normal hearing sensitivity were able to create a set of HRIRs that outperformed the KEMAR HRIRs in producing vertical effects with reduced front/back ambiguity in the median plane. Since the monaural spectral features of the pinnae are almost independent of azimuthal variation of the source direction, similar vertical effects could also be generated at different azimuthal directions simply by varying the ITD (interaural time difference) according to the direction as well as the size of each individual's own head.

  2. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  3. The application of finite impulse response filters to the detection of fetal electrocardiogram signals.

    PubMed

    Phoenix, R G; Crowe, J A; Gibson, N M; Peasgood, W; Woolfson, M S; Faulkner, T R

    1993-01-01

    An investigation is made into the potential application of linear phase digital filters to the detection of fetal electrocardiogram signals buried in noise. Such an assessment is made by applying both matched and linear phase filters to six computer simulated fetal signals and also to experimental data. The number of times that the R-wave locations are correctly located (N), the RMS error in R-wave location (RMS) and the correlation coefficient between the averaged and clean signals are computed. It is found that the averaged fetal complexes computed using these two types of filter are almost identical. However, for three of the signals, the values for N and RMS obtained using the linear phase filter are inferior to the corresponding results obtained with the matched filter. It is suggested that the averaged complex obtained using the linear phase filter could be used as an approximation to the matched filter template; it is found that this procedure results in an effectiveness of detecting R-waves that is, for the most part, comparable with the performance of a matched filter based on the QRS complex. PMID:8107669

  4. Instantaneous Impulses.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    2000-01-01

    Describes an experiment that extends Newton's instantaneous-impulse method of orbital analysis to a graphical method of orbit determination. Discusses the experiment's usefulness for teaching both horizontal projectile motion and instantaneous impulse. (WRM)

  5. Measurement of the responses of polyurethane and CONFOR(TM) foams and the development of a system identification technique to estimate polyurethane foam parameters from experimental impulse responses

    NASA Astrophysics Data System (ADS)

    Sundaram, Vaidyanadan

    Flexible polyurethane foam is the main cushioning element used in car seats. Optimization of an occupied seat's static and dynamic behavior requires models of foam that are accurate over a wide range of excitation and pre-compression conditions. Experiments were conducted to measure the response of foam over a wide range of excitation which include slowly varying uniaxial compression tests on a 3 inch cube foam sample, base excitation and impulse excitation test on a foam-mass system. The foam used was the same in all of the experiments, thus obtaining all the responses on the same foam sample which helps eliminate the sample to sample variation. Similar efforts were taken to conduct impulse and base excitation tests on CONFOR(TM) foam to help in future modeling efforts of CONFOR(TM) foam. All the experimental protocols and data pre-processing protocols along with results are presented. Previous researcher developed a linear model for a single-degree of freedom foam-mass system subjected to an impulsive excitation. Free response data from impulse tests on a foam-mass system with different masses was used to identify model parameters at various pre-compression levels (settling points). The free response of the system was modeled as a Prony series (sum of exponentials) whose parameters can be related to the parameters in the foam-mass system model. Models identified from tests at one settling point performed poorly when used to predict the response at other settling points. In this research, a method is described to estimate the parameters of a global model of the foam behavior from data gathered in a series of impulse tests at different settling points. The global model structure includes a nonlinear elastic term and a hereditary viscoelastic term. The model can be used to predict the settling point for each mass used and, by expanding the model about that settling point, local linear models of the response to impulsive excitation can be derived. From this analysis

  6. Groundwater recharge and time lag measurement through Vertosols using impulse response functions

    NASA Astrophysics Data System (ADS)

    Hocking, Mark; Kelly, Bryce F. J.

    2016-04-01

    Throughout the world there are many stressed aquifers used to support irrigated agriculture. The Condamine River catchment (southern Queensland, Australia) is one example of a globally significant agricultural region where groundwater use has exceeded recharge over the last 50 years. There is a high dependence on groundwater in this catchment, because yearly rainfall is highly variable, and actual evapotranspiration often exceeds rainfall. To better manage the aquifer there is a need to correctly conceptualise the primary inputs and outputs of the system, and characterise the lags in system response to all forcings. In catchment models it is particularly important to correctly proportion diffuse (areal) rainfall recharge and to account for the lag between rainfall and recharge at the water table. Throughout large portions of the Condamine Catchment, groundwater levels are now 20 or more metres below the ground surface. This study aimed to better quantify the lag between rainfall and recharge at the water table using the predefined impulse response function in continuous time method (PIRFICT; von Asmuth et al., 2002; von Asmuth, 2012). The PIRFICT method was applied to 255 multi-decadal groundwater level data sets throughout the catchment. Inputs into the modelling include rainfall, irrigation deep drainage, stream water level, evapotranspiration, and groundwater extractions. As an independent check the PIRFICT model derived diffuse recharge estimates are compared to point lysimeter and geochemical recharge estimates in the Vertosol soils within this catchment. It is estimated using the PIRFICT method that in the Condamine Catchment between 1990 and 2012, the mean rain-derived groundwater recharge is 4.4 mm/year. Mean groundwater response from rainfall was determined to be 5.3 years: range 188 days to 48 years. The recharge estimates are consistent with both geochemical and lysimeter point measurements of recharge. It is concluded that where extensive groundwater

  7. Examination of trait impulsivity on the response to a brief mindfulness intervention among college student drinkers.

    PubMed

    Vinci, Christine; Peltier, MacKenzie; Waldo, Krystal; Kinsaul, Jessica; Shah, Sonia; Coffey, Scott F; Copeland, Amy L

    2016-08-30

    Mindfulness-based strategies show promise for targeting the construct of impulsivity and associated variables among problematic alcohol users. This study examined the moderating role of intervention (mindfulness vs relaxation vs control) on trait impulsivity and three outcomes examined post-intervention (negative affect, positive affect, and urge to drink) among 207 college students with levels of at-risk drinking. Moderation analyses revealed that the relationship between baseline impulsivity and the primary outcomes significantly differed for participants who underwent the mindfulness versus relaxation interventions. Notably, simple slope analyses revealed that negative urgency was positively associated with urge to drink following the mindfulness intervention. Among participants who underwent the relaxation intervention, analysis of simple slopes revealed that negative urgency was negatively associated with urge to drink, while positive urgency was positively associated with positive affect following the relaxation intervention. Findings suggest that level (low vs high) and subscale of impulsivity matter with regard to how a participant will respond to a mindfulness versus relaxation intervention. PMID:27344030

  8. See it, grab it, or STOP! Relationships between trait impulsivity, attentional bias for pictorial food cues and associated response inhibition following in-vivo food cue exposure.

    PubMed

    Lattimore, Paul; Mead, Bethan R

    2015-07-01

    Impulsivity is associated with appetitive behaviour such as heightened sensitivity to cues of reward. Impulsivity may thus confer a vulnerability to weight gain by virtue of over-responsiveness to rewarding appetitive cues. This vulnerability should be detectable as heightened cognitive and behavioural responsiveness to food cues, namely, an attentional bias to food-stimuli, subjective wanting, and loss of inhibitory control. We examined this proposition by measuring reactions to acute, in-vivo, food-cue exposure in low-impulsive and high-impulsive individuals. We expected that high-impulsive individuals would: (1) show a greater attentional bias towards pictorial food cues presented after in-vivo food cue exposure; (2) show a greater appetitive reaction to high-calorie snack foods; and (3) show poorer inhibitory control after in vivo exposure compared to control. Fifty female participants (25 yr ± 1.1; 24 kg/m2 ± 0.6) randomly allocated to either a high-calorie food-cue exposure or food-neutral control condition subsequently completed a food-cue visual probe reaction time task, subjective ratings of appetitive state and the Stop-Signal task. A significant Group-by-Duration interaction indicated that high-impulsives show slowed disengagement (longer RTs for 2000 ms duration) of pictorial food stimuli compared to their low-impulsive counterparts. Conversely, the low impulsive group show greater attentional bias than the high impulsive group (faster RTs) at the 500 ms duration, indicating speeded detection of pictorial food cues. High-impulsives showed poorer response inhibition compared to low-impulsives following in-vivo food-cue exposure. Impulsivity did not significantly moderate the effect of in-vivo cue-exposure on desire-to-eat ratings. The evidence we obtained regarding inhibitory control following in vivo food cue exposure suggests that high-impulsive individuals may be prone to overeat when their reward systems are activated, a hypothesis

  9. See it, grab it, or STOP! Relationships between trait impulsivity, attentional bias for pictorial food cues and associated response inhibition following in-vivo food cue exposure.

    PubMed

    Lattimore, Paul; Mead, Bethan R

    2015-07-01

    Impulsivity is associated with appetitive behaviour such as heightened sensitivity to cues of reward. Impulsivity may thus confer a vulnerability to weight gain by virtue of over-responsiveness to rewarding appetitive cues. This vulnerability should be detectable as heightened cognitive and behavioural responsiveness to food cues, namely, an attentional bias to food-stimuli, subjective wanting, and loss of inhibitory control. We examined this proposition by measuring reactions to acute, in-vivo, food-cue exposure in low-impulsive and high-impulsive individuals. We expected that high-impulsive individuals would: (1) show a greater attentional bias towards pictorial food cues presented after in-vivo food cue exposure; (2) show a greater appetitive reaction to high-calorie snack foods; and (3) show poorer inhibitory control after in vivo exposure compared to control. Fifty female participants (25 yr ± 1.1; 24 kg/m2 ± 0.6) randomly allocated to either a high-calorie food-cue exposure or food-neutral control condition subsequently completed a food-cue visual probe reaction time task, subjective ratings of appetitive state and the Stop-Signal task. A significant Group-by-Duration interaction indicated that high-impulsives show slowed disengagement (longer RTs for 2000 ms duration) of pictorial food stimuli compared to their low-impulsive counterparts. Conversely, the low impulsive group show greater attentional bias than the high impulsive group (faster RTs) at the 500 ms duration, indicating speeded detection of pictorial food cues. High-impulsives showed poorer response inhibition compared to low-impulsives following in-vivo food-cue exposure. Impulsivity did not significantly moderate the effect of in-vivo cue-exposure on desire-to-eat ratings. The evidence we obtained regarding inhibitory control following in vivo food cue exposure suggests that high-impulsive individuals may be prone to overeat when their reward systems are activated, a hypothesis

  10. Irresistible impulse: psychiatric viewpoint.

    PubMed

    Weil, F

    1989-01-01

    The responses of the psychiatric profession to the legal criteria applied to irresistible impulse in cases of psychotic offenders are examined. An illustrative case, and its legal consequences, support the desirability of the psychiatric approach.

  11. Finite-strain large-deflection elastic-viscoplastic finite-element transient response analysis of structures

    NASA Technical Reports Server (NTRS)

    Rodal, J. J. A.; Witmer, E. A.

    1979-01-01

    A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.

  12. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  13. Robust and low complexity localization algorithm based on head-related impulse responses and interaural time difference.

    PubMed

    Wan, Xinwang; Liang, Juan

    2013-01-01

    This article introduces a biologically inspired localization algorithm using two microphones, for a mobile robot. The proposed algorithm has two steps. First, the coarse azimuth angle of the sound source is estimated by cross-correlation algorithm based on interaural time difference. Then, the accurate azimuth angle is obtained by cross-channel algorithm based on head-related impulse responses. The proposed algorithm has lower computational complexity compared to the cross-channel algorithm. Experimental results illustrate that the localization performance of the proposed algorithm is better than those of the cross-correlation and cross-channel algorithms. PMID:23298016

  14. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  15. Impulse generation by detonation tubes

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding

  16. Vibration Response of Multi Storey Building Using Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  17. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    SciTech Connect

    Berk, H.L.; Ye, Huanchun . Inst. for Fusion Studies); Breizman, B.N. . Inst. Yadernoj Fiziki)

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width {triangle}{sub b} is much larger than the mode thickness {triangle}{sub m}, we obtain a new compact expression for the linear power transfer. When {triangle}{sub m}/{triangle}{sub b} {much lt} 1, the banana orbit effect reduces the power transfer by a factor of {triangle}{sub m}/{triangle}{sub b} from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances ({vert bar}{upsilon}{sub {parallel}}{vert bar} = {upsilon}{sub A} is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands ({vert bar}{upsilon}{sub {parallel}}{vert bar}) = {upsilon}{sub A}/(2{ell} {minus} 1) with {ell} {ge} 2) is substantially reduced. 10 refs.

  18. Experimental investigation on the dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loadings

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team

    2015-06-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).

  19. Millennial scale system impulse response of polar climates - deconvolution results between δ 18O records from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Reischmann, E.; Yang, X.; Rial, J. A.

    2013-12-01

    Deconvolution has long been used in science to recover real input given a system's impulse response and output. In this study, we applied spectral division deconvolution to select, polar, δ 18O time series to investigate the possible relationship between the climates of the Polar Regions, i.e. the equivalent to a climate system's ';impulse response.' While the records may be the result of nonlinear processes, deconvolution remains an appropriate tool because the two polar climates are synchronized, forming a Hilbert transform pair. In order to compare records, the age models of three Greenland and four Antarctica records have been matched via a Monte Carlo method using the methane-matched pair GRIP and BYRD as a basis for the calculations. For all twelve polar pairs, various deconvolution schemes (Wiener, Damped Least Squares, Tikhonov, Kalman filter) give consistent, quasi-periodic, impulse responses of the system. Multitaper analysis reveals strong, millennia scale, quasi-periodic oscillations in these system responses with a range of 2,500 to 1,000 years. These are not symmetric, as the transfer function from north to south differs from that of south to north. However, the difference is systematic and occurs in the predominant period of the deconvolved signals. Specifically, the north to south transfer function is generally of longer period than the south to north transfer function. High amplitude power peaks at 5.0ky to 1.7ky characterize the former, while the latter contains peaks at mostly short periods, with a range of 2.5ky to 1.0ky. Consistent with many observations, the deconvolved, quasi-periodic, transfer functions share the predominant periodicities found in the data, some of which are likely related to solar forcing (2.5-1.0ky), while some are probably indicative of the internal oscillations of the climate system (1.6-1.4ky). The approximately 1.5 ky transfer function may represent the internal periodicity of the system, perhaps even related to the

  20. Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator--Monte Carlo method.

    PubMed

    Zhai, Peng-Wang; Kattawar, George W; Yang, Ping

    2008-03-10

    A hybrid method is developed to solve the vector radiative transfer equation (VRTE) in a three-dimensional atmosphere-ocean system (AOS). The system is divided into three parts: the atmosphere, the dielectric interface, and the ocean. The Monte Carlo method is employed to calculate the impulse response functions (Green functions) for the atmosphere and ocean. The impulse response function of the dielectric interface is calculated by the Fresnel formulas. The matrix operator method is then used to couple these impulse response functions to obtain the vector radiation field for the AOS. The primary advantage of this hybrid method is that it solves the VRTE efficiently in an AOS with different dielectric interfaces while keeping the same atmospheric and oceanic conditions. For the first time, we present the downward radiance field in an ocean with a sinusoidal ocean wave.

  1. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  2. The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure.

    NASA Astrophysics Data System (ADS)

    Leonovich, Ludmila; Leonovich, Vitaly; Tashchilin, Anatoly

    The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure was revealed at mid-latitudes. The paper presents the study results of the dependence of the observed emissions intensity from the sudden variations in the solar wind and the geomagnetic field. These results show a relationship of the emissions disturbance amplitude with the solar wind speed, as well as with the geomagnetic field variations. We used the zenith photometer optical data, the geomagnetic field and the total electron content variations obtained for the Eastern Siberia region (52(°) N, 103(°) E). The investigation was supported by the RFFI grants № 12-05-00024-а, № 13-05-00733.

  3. Methodology to determine skull bone and brain responses from ballistic helmet-to-head contact loading using experiments and finite element analysis.

    PubMed

    Pintar, Frank A; Philippens, Mat M G M; Zhang, JiangYue; Yoganandan, Narayan

    2013-11-01

    The objective of the study was to obtain helmet-to-head contact forces from experiments, use a human head finite element model to determine regional responses, and compare outputs to skull fracture and brain injury thresholds. Tests were conducted using two types of helmets (A and B) fitted to a head-form. Seven load cells were used on the head-form back face to measure helmet-to-head contact forces. Projectiles were fired in frontal, left, right, and rear directions. Three tests were conducted with each helmet in each direction. Individual and summated force- and impulse-histories were obtained. Force-histories were inputted to the human head-helmet finite element model. Pulse durations were approximately 4 ms. One-third force and impulse were from the central load cell. 0.2% strain and 40 MPa stress limits were not exceeded for helmet-A. For helmet-B, strains exceeded in left, right, and rear; pressures exceeded in bilateral directions; volume of elements exceeding 0.2% strains correlated with the central load cell forces. For helmet-A, volumes exceeding brain pressure threshold were: 5-93%. All elements crossed the pressure limit for helmet-B. For both helmets, no brain elements exceeded peak principal strain limit. These findings advance our understanding of skull and brain biomechanics from helmet-head contact forces.

  4. Methodology to determine skull bone and brain responses from ballistic helmet-to-head contact loading using experiments and finite element analysis.

    PubMed

    Pintar, Frank A; Philippens, Mat M G M; Zhang, JiangYue; Yoganandan, Narayan

    2013-11-01

    The objective of the study was to obtain helmet-to-head contact forces from experiments, use a human head finite element model to determine regional responses, and compare outputs to skull fracture and brain injury thresholds. Tests were conducted using two types of helmets (A and B) fitted to a head-form. Seven load cells were used on the head-form back face to measure helmet-to-head contact forces. Projectiles were fired in frontal, left, right, and rear directions. Three tests were conducted with each helmet in each direction. Individual and summated force- and impulse-histories were obtained. Force-histories were inputted to the human head-helmet finite element model. Pulse durations were approximately 4 ms. One-third force and impulse were from the central load cell. 0.2% strain and 40 MPa stress limits were not exceeded for helmet-A. For helmet-B, strains exceeded in left, right, and rear; pressures exceeded in bilateral directions; volume of elements exceeding 0.2% strains correlated with the central load cell forces. For helmet-A, volumes exceeding brain pressure threshold were: 5-93%. All elements crossed the pressure limit for helmet-B. For both helmets, no brain elements exceeded peak principal strain limit. These findings advance our understanding of skull and brain biomechanics from helmet-head contact forces. PMID:23791942

  5. In Situ Investigation of the Dynamic Response of Energetic Materials using IMPULSE at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Ramos, Kyle

    2013-06-01

    The mechanical and chemical response of energetic materials is controlled by spatial heterogeneity and crystalline mechanics that evolve during impact. Traditional methods use continuum measurements to infer the microstructure response whereas advances in synchrotron capabilities and diagnostics are providing new, unique opportunities to interrogate materials in real time and in situ. Recently the IMPULSE team has performed experiments on a gas-gun system (IMPact system for Ultrafast Synchrotron Experiments) using single X-ray bunch phase contrast imaging (PCI) and Laue diffraction at the Advanced Photon Source (APS) to examine shock-induced phenomena in energetic materials and other inert, molecular analogues. The low absorption of molecular materials maximizes x-ray beam penetration, allowing measurements in transmission using the brilliance currently available at APS Sector 32. The transmission geometry enables exciting possibilities for observing both average lattice response and spatially heterogeneous, continuum response (2 um spatial resolution, 60 ps exposure, 153 ns frame-rate) in energetic materials ranging from single crystals to plastic bonded composites. This capability provides a means for linking mechanics with detonation initiation by resolving deformation mechanisms such as compaction, void collapse and jetting, cracking, dislocation-mediated plasticity and phase transformation. Representative data will be presented and discussed to illustrate current progress and future directions for this new technology.

  6. In situ investigation of the dynamic response of energetic materials using IMPULSE at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Ramos, K. J.; Jensen, B. J.; Iverson, A. J.; Yeager, J. D.; Carlson, C. A.; Montgomery, D. S.; Thompson, D. G.; Fezzaa, K.; Hooks, D. E.

    2014-05-01

    The mechanical and chemical response of energetic materials is controlled by a convolution of deformation mechanisms that span length scales and evolve during impact. Traditional methods use continuum measurements to infer the microstructural response whereas advances in synchrotron capabilities and diagnostics are providing new, unique opportunities to interrogate materials in real time and in situ. Experiments have been performed on a new gas-gun system (IMPact system for Ultrafast Synchrotron Experiments) using single X-ray bunch phase contrast imaging (PCI) and Laue diffraction at the Advanced Photon Source (APS). The low absorption of molecular materials maximizes x-ray beam penetration, allowing measurements in transmission using the brilliance currently available at APS Sector 32. The transmission geometry makes it possible to observe both average lattice response and spatially heterogeneous, continuum response (1-4 um spatial resolution over ~2 × 2 mm area, 80 ps exposure, 153 ns frame-rate) in energetic materials ranging from single crystals to plastic-bonded composites. The current work describes our progress developing and using these diagnostics to observe deformation mechanisms relevant to explosives and the first experiments performed with explosives on IMPULSE at APS.

  7. Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method.

    PubMed

    Zhai, Peng-Wang; Kattawar, George W; Yang, Ping

    2008-03-10

    We have developed a powerful 3D Monte Carlo code, as part of the Radiance in a Dynamic Ocean (RaDyO) project, which can compute the complete effective Mueller matrix at any detector position in a completely inhomogeneous turbid medium, in particular, a coupled atmosphere-ocean system. The light source can be either passive or active. If the light source is a beam of light, the effective Mueller matrix can be viewed as the complete impulse response Green matrix for the turbid medium. The impulse response Green matrix gives us an insightful way to see how each region of a turbid medium affects every other region. The present code is validated with the multicomponent approach for a plane-parallel system and the spherical harmonic discrete ordinate method for the 3D scalar radiative transfer system. Furthermore, the impulse response relation for a box-type cloud model is studied. This 3D Monte Carlo code will be used to generate impulse response Green matrices for the atmosphere and ocean, which act as inputs to a hybrid matrix operator-Monte Carlo method. The hybrid matrix operator-Monte Carlo method will be presented in part II of this paper.

  8. A touch screen based Stop Signal Response Task in rhesus monkeys for studying impulsivity associated with chronic cocaine self-administration.

    PubMed

    Liu, Shijing; Heitz, Richard P; Bradberry, Charles W

    2009-02-15

    Among a range of cognitive deficits, human cocaine addicts display increased impulsivity and decreased performance monitoring. In order to establish an animal model that can be used to study the underlying neurobiology of these deficits associated with addiction, we have developed a touch screen based Stop Signal Response Task for rhesus monkeys. This task is essentially identical to the clinically used Stop Signal Task employed for diagnostic and research purposes. In this task, impulsivity is reflected in the amount of time needed to inhibit a response after it has been initiated, the Stop Signal Response Time (SSRT). Performance monitoring is reflected by the slowing of response times following Stop trials (Post-Stop Slowing, PSS). Herein we report on the task structure, the staged methods for training animals to perform the task, and a comparison of performance values for control and cocaine experienced animals. Relative to controls, monkeys that had self-administered cocaine, followed by 18 months abstinence, displayed increased impulsivity (increased SSRT values), and decreased performance monitoring (decreased PSS values). Our results are consistent with human data, and thereby establish an ideal animal model for studying the etiology and underlying neurobiology of cocaine-induced impulse control and performance monitoring deficits. PMID:18948136

  9. Low Pretreatment Acoustic Radiation Force Impulse Imaging (ARFI) Values Predict Sustained Virological Response in Antiviral Hepatitis C Virus (HCV) Therapy

    PubMed Central

    Zopf, Steffen; Rösch, Lara; Konturek, Peter C.; Goertz, Ruediger S.; Neurath, Markus F.; Strobel, Deike

    2016-01-01

    Background Non-invasive procedures such as acoustic radiation force impulse imaging (ARFI) shear-wave elastography are currently used for the assessment of liver fibrosis. In the course of chronic hepatitis C, significant liver fibrosis or cirrhosis develops in approximately 25% of patients, which is a negative predictor of antiviral treatment response. Cirrhosis can be prevented by successful virus elimination. In this prospective study, a pretreatment ARFI cutoff value of 1.5 m/s was evaluated in relation to sustained virological response to anti-HCV therapy. Material/Methods In 23 patients with chronic hepatitis C, liver stiffness was examined with ARFI at defined times before and under antiviral triple therapy (peginterferon, ribavirin in combination with a first-generation protease inhibitor, and telaprevir or boceprevir). Patients were stratified into 2 groups based on pretreatment ARFI values (<1.5 m/s and ≥1.5 m/s) for the assessment of virological response. Results The liver stiffness at baseline for all patients was 1.57±0.79 m/s (ARFI median ± standard deviation; margin: 0.81 m/s to 3.45 m/s). At week 4 of triple therapy, patients with low pretreatment ARFI values had higher rates of HCV-RNA negativity (69% vs. 43%), reflecting an early rapid virological response (eRVR). Sustained virological response (SVR) was found in 75% (12/16) of patients with an ARFI value <1.5 m/s and only 57% (4/7) of patients with ARFI value ≥1.5 m/s. Conclusions Patients with chronic hepatitis C and pretreatment ARFI <1.5 m/s showed earlier virus elimination and better response to treatment. PMID:27690214

  10. Finite-element impact response of debonded composite turbine blades

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  11. Preventing (impulsive) errors: Electrophysiological evidence for online inhibitory control over incorrect responses

    PubMed Central

    van den Wildenberg, Wery P. M.; Spieser, Laure; Ridderinkhof, K. Richard

    2016-01-01

    Abstract In a rich environment, with multiple action affordances, selective action inhibition is critical in preventing the execution of inappropriate responses. Here, we studied the origin and the dynamics of incorrect response inhibition and how it can be modulated by task demands. We used EEG in a conflict task where the probability of compatible and incompatible trials was varied. This allowed us to modulate the strength of the prepotent response, and hence to increase the risk of errors, while keeping the probability of the two responses equal. The correct response activation and execution was not affected by compatibility or by probability. In contrast, incorrect response inhibition in the primary motor cortex ipsilateral to the correct response was more pronounced on incompatible trials, especially in the condition where most of the trials were compatible, indicating a modulation of inhibitory strength within the course of the action. Two prefrontal activities, one medial and one lateral, were also observed before the response, and their potential links with the observed inhibitory pattern observed are discussed. PMID:27005956

  12. A TEM-horn antenna with dielectric lens for fast impulse response

    SciTech Connect

    Aurand, J.F.

    1995-12-31

    We designed and constructed a pair of TEM-horn antennas specifically for the very fast time-domain boresight response. Two physical topologies were made. A printed-board configuration has much slower transient response, which we think is due to pulse-smearing of the antenna currents in the dielectric substrate of the printed wiring boards. The solid state version has a 20 ps transition duration response in the main beam endfire (boresight) direction, which is the fastest we have seen to date. And since the antenna has a round trip antenna current propagation time of 6 ns, it offers clean radiated electromagnetic field measurement capability with a clear time of several nanoseconds. The printed board version has resistive loading at the aperture end of the conductors, which should offer better low- frequency performance. The dielectric lens certainly does improve the transient performance of the TEM horn, and was simple to design.

  13. Adolescent Impulsivity: Findings from a Community Sample

    ERIC Educational Resources Information Center

    d'Acremont, Mathieu; Van der Linden, Martial

    2005-01-01

    Impulsivity is central to several psychopathological states in adolescence. However, there is little consensus concerning the definition of impulsivity and its core dimensions. In response to this lack of consensus, Whiteside and Lynam (2001, "Pers. Individ. Differ." 30, 669-689) have developed the UPPS Impulsive Behavior Scale, which is able to…

  14. Equalization of TDMA links using in-service impulse response measurement

    NASA Astrophysics Data System (ADS)

    Mazur, B.; Lyons, R.

    1984-06-01

    This paper describes a method of measuring the frequency response of a digital radio link given the received (modulated) message signal, suitable for the incremental commissioning and in-service monitoring of links in a QPSK/TDMA system. The method applied least squares estimation techniques to samples of the I and Q baseband components in order to derive a linear equivalent model for the channel. Results obtained by computer simulation of an INTELSAT V channel demonstrate that the method can provide a better basis for linear equalization of a non-linear channel than the frequency response measurements provided by conventional techniques. A mathematical formulation and an implementation overview are also given.

  15. Uncertainty quantification of a containment vessel dynamic response subjected to high-explosive detonation impulse loading

    SciTech Connect

    Rodriguez, E. A.; Pepin, J. E.; Thacker, B. H.; Riha, D. S.

    2002-01-01

    Los Alamos National Laboratory (LANL), in cooperation with Southwest Research Institute, has been developing capabilities to provide reliability-based structural evaluation techniques for performing weapon component and system reliability assessments. The development and applications of Probabilistic Structural Analysis Methods (PSAM) is an important ingredient in the overall weapon reliability assessments. Focus, herein, is placed on the uncertainty quantification associated with the structural response of a containment vessel for high-explosive (HE) experiments. The probabilistic dynamic response of the vessel is evaluated through the coupling of the probabilistic code NESSUS with the non-linear structural dynamics code, DYNA-3D. The probabilistic model includes variations in geometry and mechanical properties, such as Young's Modulus, yield strength, and material flow characteristics. Finally, the probability of exceeding a specified strain limit, which is related to vessel failure, is determined.

  16. The Effect of Temporal Impulse Response on Experimental Reduction of Photon Scatter in Time-Resolved Diffuse Optical Tomography

    PubMed Central

    Valim, Niksa; Brock, James; Leeser, Miriam; Niedre, Mark

    2013-01-01

    New fast detector technology has driven significant renewed interest in time-resolved measurement of early photons in improving imaging resolution in diffuse optical tomography and fluorescence mediated tomography in recent years. In practice, selection of early photons results in significantly narrower instrument photon density sensitivity functions (PDSFs) than the continuous wave case, resulting in a better conditioned reconstruction problem. In this work, we studied the quantitative impact of instrument temporal impulse response function (TIRF) on experimental PDSFs in tissue mimicking optical phantoms. We used a multi-mode fiber dispersion method to vary the system TIRF over a range of representative literature values. Substantial disagreement in PDSF width – by up to 40% - was observed between experimental measurements and Monte Carlo (MC) models of photon propagation over the range of TIRFs studied. On average, PDSFs were broadened by about 0.3 mm at the center plane of the 2 cm wide imaging chamber per 100 ps of instrument TIRF at early times. Further, this broadening was comparable on both the source and detector sides. Results were confirmed by convolution of instrument TIRFs with MC simulations. These data also underscore the importance of correcting imaging PDSFs for instrument TIRF when performing tomographic image reconstruction to ensure accurate data-model agreement. PMID:23257349

  17. Cultural Consensus Theory: Aggregating Continuous Responses in a Finite Interval

    NASA Astrophysics Data System (ADS)

    Batchelder, William H.; Strashny, Alex; Romney, A. Kimball

    Cultural consensus theory (CCT) consists of cognitive models for aggregating responses of "informants" to test items about some domain of their shared cultural knowledge. This paper develops a CCT model for items requiring bounded numerical responses, e.g. probability estimates, confidence judgments, or similarity judgments. The model assumes that each item generates a latent random representation in each informant, with mean equal to the consensus answer and variance depending jointly on the informant and the location of the consensus answer. The manifest responses may reflect biases of the informants. Markov Chain Monte Carlo (MCMC) methods were used to estimate the model, and simulation studies validated the approach. The model was applied to an existing cross-cultural dataset involving native Japanese and English speakers judging the similarity of emotion terms. The results sharpened earlier studies that showed that both cultures appear to have very similar cognitive representations of emotion terms.

  18. Upper limb dynamic responses to impulsive forces for selected assembly workers.

    PubMed

    Sesto, Mary E; Radwin, Robert G; Block, Walter F; Best, Thomas M

    2006-02-01

    This study evaluated the upper limb, dynamic, mechanical response parameters for 14 male assembly workers recruited from selected jobs based on power tool use. It was hypothesized that the type of power tool operation would affect stiffness, effective mass, and damping of the upper extremity; and workers with symptoms and positive physical examination findings would have different mechanical responses than asymptomatic workers without physical examination findings. Participants included operators who regularly used torque reaction power hand tools, such as nutrunners and screwdrivers, and nontorque reaction power hand tools, such as riveters. The mechanical parameters of the upper limb were characterized from the loading response of an apparatus having known dynamic properties while worker grasps an oscillating handle in free vibration. In addition, all workers underwent a physical examination, magnetic resonance imaging, and completed a symptom survey. Workers were categorized as controls or cases based on reported forearm symptoms and physical exam findings. A total of seven workers were categorized as cases and had less average mechanical stiffness (46%, p > 0.01), damping (74%, p > 0.01), and effective mass (59%, p > 0.05) than the seven workers categorized as controls. Magnetic resonance imaging (MRI) findings suggestive of muscle edema were observed for two workers classified as cases and who regularly used torque reaction power tools. No MRI enhancement was observed in the seven subjects who did not regularly use torque reaction power tools. The ergonomic consequences of less stiffness, effective mass, and damping in symptomatic workers may include reduced capacity to react against rapidly building torque reaction forces encountered when operating power hand tools. PMID:16361220

  19. Conformal scanning laser Doppler vibrometer measurement of tenor steelpan response to impulse excitation.

    PubMed

    Ryan, Teresa; O'Malley, Patrick; Glean, Aldo; Vignola, Joseph; Judge, John

    2012-11-01

    A conformal scanning laser Doppler vibrometer system is used in conjunction with a mechanical pannist to measure the surface normal vibration of the entire playing surface of a C-lead tenor steelpan. The mechanical pannist is a device designed to deliver controlled, repeatable strikes that mimic a mallet during authentic use. A description of the measurement system is followed by select examples of behavior common to the results from three different excitation notes. A summary of observed response shapes and associated frequencies demonstrates the concerted placement of note overtones by the craftsmen who manufacture and tune the instruments. The measurements provide a rich mechanical snapshot of the complex motion that generates the distinctive sound of a steelpan.

  20. Use of the acoustic impulse-response technique for the nondestructive assessment of Manchego cheese texture.

    PubMed

    Benedito, J; Conde, T; Clemente, G; Mulet, A

    2006-12-01

    Manchego cheese pieces were hit with an impact probe and the acoustic response was recorded, analyzed, and used to assess the textural characteristics of the cheese pieces. The textural parameters measured by traditional instrumental methods increased during ripening, although the pattern of the increase was different for different batches. For the 2 acoustic impact probes used in this study, a change in the frequency spectrum took place as cheese matured, increasing higher frequencies and the energy content. Multiple linear regression (MLR) and partial least square regression (PLSR), considering the acoustical variables extracted from the spectrum, allowed for a good estimation of cheese texture. The textural characteristics of the cheese surface and in particular the maximum force in compression experiments (R(2) > 0.937 for MLR and R(2) > 0.852 for PLSR) were accurately predicted by the acoustic method; however, the texture of the central layers of the cheese are poorly assessed (R(2) < 0.720). The results obtained show the feasibility of using acoustic systems to assess Manchego cheese texture, aiding its classification. PMID:17106079

  1. Retrieving the impulse response of the Earth due to random electromagnetic forcing

    NASA Astrophysics Data System (ADS)

    Shamsalsadati, S.; Weiss, C. J.

    2009-12-01

    The subject presented here focuses on the adoption of recently-developed ideas in the field of passive seismic interferometry (also known as “passive Green’s function estimation”) to electromagnetics. A derivation is presented of exact magnetic field Green’s function in an arbitrary, heterogeneous conductive medium subject to random, ambient, uncorrelated noise sources. Our approach for extracting Green’s function uses the correlation of time series of parallel magnetic field components at two independent locations. As in similarly-derived Green’s function of electric field where the volume distribution of noise sources must be spatially correlated with the heterogeneous conductivity distribution, Green’s function for magnetic field requires noise sources to be spatially correlated with the volume distribution of magnetic permeability. For shallow-Earth investigations in cluttered and culturally-overprinted areas where conductivity dominates the EM response, rather than permeability, this restriction on the correlation of sources is approximately satisfied. Hence, in the low-frequency limit, magnetic Green’s functions derived here may, themselves, be useful for passive electromagnetic subsurface imaging. The attraction of such an approach is clear: sources of noise, whose effects previously required heuristic filtering to isolate the Earth signal from a known source, could now be embraced in their full complexity, and furthermore, exploited for improved subsurface resolution. Details of the derivation will be presented, along with preliminary 3D modeling results.

  2. An automatic damage detection algorithm based on the Short Time Impulse Response Function

    NASA Astrophysics Data System (ADS)

    Auletta, Gianluca; Carlo Ponzo, Felice; Ditommaso, Rocco; Iacovino, Chiara

    2016-04-01

    Structural Health Monitoring together with all the dynamic identification techniques and damage detection techniques are increasing in popularity in both scientific and civil community in last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Damage detection techniques traditionally consist in visual inspection and/or non-destructive testing. A different approach consists in vibration based methods detecting changes of feature related to damage. Structural damage exhibits its main effects in terms of stiffness and damping variation. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. We focused the attention on the structural damage localization and detection after an earthquake, from the evaluation of the mode curvature difference. The methodology is based on the acquisition of the structural dynamic response through a three-directional accelerometer installed on the top floor of the structure. It is able to assess the presence of any damage on the structure providing also information about the related position and severity of the damage. The procedure is based on a Band-Variable Filter, (Ditommaso et al., 2012), used to extract the dynamic characteristics of systems that evolve over time by acting simultaneously in both time and frequency domain. In this paper using a combined approach based on the Fourier Transform and on the seismic interferometric analysis, an useful tool for the automatic fundamental frequency evaluation of nonlinear structures has been proposed. Moreover, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results

  3. Response to Cognitive impulsivity and the behavioral addiction model of obsessive-compulsive disorder: Abramovitch and McKay (2016).

    PubMed

    Grassi, Giacomo; Figee, Martjin; Stratta, Paolo; Rossi, Alessandro; Pallanti, Stefano

    2016-09-01

    In our recently published article, we investigated the behavioral addiction model of obsessive-compulsive disorder (OCD), by assessing three core dimensions of addiction in patients with OCD healthy participants. Similar to the common findings in addiction, OCD patients demonstrated increased impulsivity, risky decision-making, and biased probabilistic reasoning compared to healthy controls. Thus, we concluded that these results support the conceptualization of OCD as a disorder of behavioral addiction. Here, we answer to Abramovitch and McKay (2016) commentary on our paper and we support our conclusions by explaining how cognitive impulsivity is also a typical feature of addiction and how our results on decision-making and probabilistic reasoning tasks reflect cognitive impulsivity facets that are consistently replicated in OCD and addiction. PMID:27677325

  4. Experimental measurement of tympanic membrane response for finite element model validation of a human middle ear.

    PubMed

    Ahn, Tae-Soo; Baek, Moo-Jin; Lee, Dooho

    2013-01-01

    The middle ear consists of a tympanic membrane, ligaments, tendons, and three ossicles. An important function of the tympanic membrane is to deliver exterior sound stimulus to the ossicles and inner ear. In this study, the responses of the tympanic membrane in a human ear were measured and compared with those of a finite element model of the middle ear. A laser Doppler vibrometer (LDV) was used to measure the dynamic responses of the tympanic membrane, which had the measurement point on the cone of light of the tympanic membrane. The measured subjects were five Korean male adults and a cadaver. The tympanic membranes were stimulated using pure-tone sine waves at 18 center frequencies of one-third octave band over a frequency range of 200 Hz ~10 kHz with 60 and 80 dB sound pressure levels. The measured responses were converted into the umbo displacement transfer function (UDTF) with a linearity assumption. The measured UDTFs were compared with the calculated UDTFs using a finite element model for the Korean human middle ear. The finite element model of the middle ear consists of three ossicles, a tympanic membrane, ligaments, and tendons. In the finite element model, the umbo displacements were calculated under a unit sound pressure on the tympanic membrane. The UDTF of the finite element model exhibited good agreement with that of the experimental one in low frequency range, whereas in higher frequency band, the two response functions deviated from each other, which demonstrates that the finite element model should be updated with more accurate material properties and/or a frequency dependent material model.

  5. Impulsivity and comorbid traits: a multi-step approach for finding putative responsible microRNAs in the amygdala

    PubMed Central

    Pietrzykowski, Andrzej Z.; Spijker, Sabine

    2014-01-01

    Malfunction of synaptic plasticity in different brain regions, including the amygdala plays a role in impulse control deficits that are characteristics of several psychiatric disorders, such as ADHD, schizophrenia, depression and addiction. Previously, we discovered a locus for impulsivity (Impu1) containing the neuregulin 3 (Nrg3) gene, of which the level of expression determines levels of inhibitory control. MicroRNAs (miRNAs) are potent regulators of gene expression, and have recently emerged as important factors contributing to the development of psychiatric disorders. However, their role in impulsivity, as well as control of Nrg3 expression or malfunction of the amygdala, is not well established. Here, we used the GeneNetwork database of BXD mice to search for correlated traits with impulsivity using an overrepresentation analysis to filter for biologically meaningful traits. We determined that inhibitory control was significantly correlated with expression of miR-190b, -28a, -340, -219a, and -491 in the amygdala, and that the overrepresented correlated traits showed a specific pattern of coregulation with these miRNAs. A bioinformatics analysis identified that miR-190b, by targeting an Nrg3-related network, could affect synaptic plasticity in the amygdala, targeting bot impulsive and compulsive traits. Moreover, miR-28a, -340, -219a, and possibly -491 could act on synaptic function by determining the balance between neuronal outgrowth and differentiation. We propose that these miRNAs are attractive candidates of regulation of amygdala synaptic plasticity, possibly during development but also in maintaining the impulsive phenotype. These results can help us to better understand mechanisms of synaptic dysregulation in psychiatric disorders. PMID:25561905

  6. Stimulus-Response Theory of Finite Automata, Technical Report No. 133.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    The central aim of this paper and its projected successors is to prove in detail that stimulus-response theory, or at least a mathematically precise version, can give an account of the learning of many phrase-structure grammars. Section 2 is concerned with standard notions of finite and probabilistic automata. An automaton is defined as a device…

  7. Finite element simulation of rate-dependent magneto-active polymer response

    NASA Astrophysics Data System (ADS)

    Haldar, K.; Kiefer, B.; Menzel, A.

    2016-10-01

    This contribution is concerned with the embedding of constitutive relations for magneto-active polymers (MAP) into finite element simulations. To this end, a recently suggested, calibrated, and validated material model for magneto-mechanically coupled and rate-dependent MAP response is briefly summarized in its continuous and algorithmic settings. Moreover, the strongly coupled field equations of finite deformation magneto-mechanics are reviewed. For the purpose of numerical simulation, a finite element model is then established based on the usual steps of weak form representation, discretization and consistent linearization. Two verifying inhomogeneous numerical examples are presented in which a classical ‘plate with a hole’ geometry is equipped with MAP properties and subjected to different types of time-varying mechanical and magnetic loading.

  8. Nuclear response functions with finite-range Gogny force: Tensor terms and instabilities

    NASA Astrophysics Data System (ADS)

    De Pace, A.; Martini, M.

    2016-08-01

    A fully antisymmetrized random phase approximation calculation employing the continued fraction technique is performed to study nuclear matter response functions with the finite-range Gogny force. The most commonly used parameter sets of this force, as well as some recent generalizations that include the tensor terms, are considered and the corresponding response functions are shown. The calculations are performed at first and second order in the continued fraction expansion and the explicit expressions for the second-order tensor contributions are given. Comparisons between first- and second-order continued fraction expansion results are provided. The differences between the responses obtained at the two orders turn out to be more pronounced for the forces including tensor terms than for the standard Gogny ones. In the vector channels the responses calculated with Gogny forces including tensor terms are characterized by a large heterogeneity, reflecting the different choices for the tensor part of the interaction. For the sake of comparison the response functions obtained considering a G -matrix-based nuclear interaction are also shown. As a first application of the present calculation, the possible existence of spurious finite-size instabilities of the Gogny forces with or without tensor terms has been investigated. The positive conclusion is that all the Gogny forces but the GT2 one are free of spurious finite-size instabilities. In perspective, the tool developed in the present paper can be inserted in the fitting procedure to construct new Gogny-type forces.

  9. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  10. Optimizing work output for finite-sized heat reservoirs: Beyond linear response.

    PubMed

    Wang, Yan

    2016-01-01

    We uncover an optimization principle for the finite-time heat-work conversion process performed between two finite-sized heat reservoirs in the nonlinear response regime that is characterized by rather generic flux-force relations. We solve the problem of maximizing work output in a given time interval by means of the variational method. Moreover, in the limiting case that the cold reservoir is infinite, we find the corresponding optimized process can be determined by a single quantity, which plays the role similar to that of the Hamiltonian in classical mechanics. Some theoretical implications are discussed consequently, under the generalized tight-coupling condition which applies to both linear and nonlinear response cases. Our results can hopefully help design and control realistic thermodynamical processes. PMID:26871037

  11. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.

  12. An extended finite element formulation for modeling the response of polycrystalline materials to shock loading

    NASA Astrophysics Data System (ADS)

    Robbins, Joshua; Voth, Thomas

    2007-06-01

    The eXtended Finite Element Method (X-FEM) is a finite element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static mesoscale material failure to dendrite growth. Here we adapt the recent advances of Benson et al. [2] and Belytchko et al. [3] to model shock loading of polycrystalline material. Through several demonstration problems we evaluate the method for modeling the shock response of polycrystalline materials at the mesoscale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries. ([1] N. Moes, J. Dolbow, J and T. Belytschko, 1999,``A finite element method for crack growth without remeshing,'' International Journal for Numerical Methods in Engineering, 46, 131-150. [2] E. Vitali, and D. J. Benson, 2006, ``An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations,'' International Journal for Numerical Methods in Engineering, 67, 1420-1444. [3] J-H Song, P. M. A. Areias and T. Belytschko, 2006, ``A method for dynamic crack and shear band propagation with phantom nodes,'' International Journal for Numerical Methods in Engineering, 67, 868-893.)

  13. Laboratory behavioral measures of impulsivity.

    PubMed

    Dougherty, Donald M; Mathias, Charles W; Marsh, Dawn M; Jagar, Ashley A

    2005-02-01

    Previous research and theory have conceptualized impulsivity as a multifaceted construct that requires multiple modes of measurement for accurate assessment. This article describes a software package that includes four paradigms for measuring multiple and unique aspects of impulsivity. Specifically, four tasks are described: (1) the two choice impulsivity paradigm, (2) the single key impulsivity paradigm, (3) the GoStop impulsivity paradigm, and (4) the time paradigm. These tasks measure processes related to the capacity to tolerate delay for reward, to inhibit an already initiated response, and to estimate the passage of time. These processes have been found to be important to the understanding of impulsive behaviors. The programs are flexible and allow the experimenter to manipulate a number of parameters related to delay-reward contingencies, timing, performance feedback/payment, and data output variables. Manipulation of these parameters makes the paradigms scalable to a wide range of ability levels and appropriate for samples ranging from children to adults. The four paradigms in this software package are available at no cost and can be obtained by contacting the corresponding author.

  14. Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method

    SciTech Connect

    Felice, Maria V.; Velichko, Alexander; Wilcox, Paul D.; Barden, Tim J.; Dunhill, Tony K.

    2014-02-18

    A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

  15. Impaired Decisional Impulsivity in Pathological Videogamers

    PubMed Central

    Irvine, Michael A.; Worbe, Yulia; Bolton, Sorcha; Harrison, Neil A.; Bullmore, Edward T.; Voon, Valerie

    2013-01-01

    Background Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort. Methods Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment. Results In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time. Conclusions We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management. PMID:24146789

  16. Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators

    NASA Astrophysics Data System (ADS)

    Vohar, B.; Kegl, M.; Ren, Z.

    2008-12-01

    Theoretical and practical aspects of an absolute nodal coordinate formulation (ANCF) beam finite element implementation are considered in the context of dynamic transient response optimization of elastic manipulators. The proposed implementation is based on the introduction of new nodal degrees of freedom, which is achieved by an adequate nonlinear mapping between the original and new degrees of freedom. This approach preserves the mechanical properties of the ANCF beam, but converts it into a conventional finite element so that its nodal degrees of freedom are initially always equal to zero and never depend explicitly on the design variables. Consequently, the sensitivity analysis formulas can be derived in the usual manner, except that the introduced nonlinear mapping has to be taken into account. Moreover, the adjusted element can also be incorporated into general finite element analysis and optimization software in the conventional way. The introduced design variables are related to the cross-section of the beam, to the shape of the (possibly) skeletal structure of the manipulator and to the drive functions. The layered cross-section approach and the design element technique are utilized to parameterize the shape of individual elements and the whole structure. A family of implicit time integration methods is adopted for the response and sensitivity analysis. Based on this assumption, the corresponding sensitivity formulas are derived. Two numerical examples illustrate the performance of the proposed element implementation.

  17. Linear response, fluctuation-dissipation, and finite-system-size effects in superdiffusion.

    PubMed

    Godec, Aljaž; Metzler, Ralf

    2013-07-01

    Lévy walks (LWs) are a popular stochastic tool to model anomalous diffusion and have recently been used to describe a variety of phenomena. We study the linear response behavior of this generic model of superdiffusive LWs in finite systems to an external force field under both stationary and nonstationary conditions. These finite-size LWs are based on power-law waiting time distributions with a finite-time regularization at τ(c), such that the physical requirements are met to apply linear response theory and derive the power spectrum with the correct short frequency limit, without the introduction of artificial cutoffs. We obtain the generalized Einstein relation for both ensemble and time averages over the entire process time and determine the turnover to normal Brownian motion when the full system is explored. In particular, we obtain an exact expression for the long time diffusion constant as a function of the scaling exponent of the waiting time density and the characteristic time scale τ(c).

  18. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    PubMed

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.

  19. An Extended Finite Element Method Formulation for Modeling the Response of Polycrystalline Materials to Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Robbins, Joshua; Voth, Thomas E.

    2007-12-01

    The eXtended Finite Element Method (X-FEM) is a finite-element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static meso-scale material failure to dendrite growth. Here we adapt the recent advances of Vitali and Benson [2] and Song et al. [3] to model dynamic loading of a polycrystalline material. We use demonstration problems to examine the method's efficacy for modeling the dynamic response of polycrystalline materials at the meso-scale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries.

  20. Three-Dimensional Finite Element Ablative Thermal Response and Thermostructural Design of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2011-01-01

    A finite element ablation and thermal response program is presented for simulation of three-dimensional transient thermostructural analysis. The three-dimensional governing differential equations and finite element formulation are summarized. A novel probabilistic design methodology for thermal protection systems is presented. The design methodology is an eight step process beginning with a parameter sensitivity study and is followed by a deterministic analysis whereby an optimum design can determined. The design process concludes with a Monte Carlo simulation where the probabilities of exceeding design specifications are estimated. The design methodology is demonstrated by applying the methodology to the carbon phenolic compression pads of the Crew Exploration Vehicle. The maximum allowed values of bondline temperature and tensile stress are used as the design specifications in this study.

  1. Active muscle response using feedback control of a finite element human arm model.

    PubMed

    Östh, Jonas; Brolin, Karin; Happee, Riender

    2012-01-01

    Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.

  2. Lyapunov Control of Quantum Systems with Impulsive Control Fields

    PubMed Central

    Yang, Wei; Sun, Jitao

    2013-01-01

    We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method. PMID:23766712

  3. Finite-element/progressive-lattice-sampling response surface methodology and application to benchmark probability quantification problems

    SciTech Connect

    Romero, V.J.; Bankston, S.D.

    1998-03-01

    Optimal response surface construction is being investigated as part of Sandia discretionary (LDRD) research into Analytic Nondeterministic Methods. The goal is to achieve an adequate representation of system behavior over the relevant parameter space of a problem with a minimum of computational and user effort. This is important in global optimization and in estimation of system probabilistic response, which are both made more viable by replacing large complex computer models with fast-running accurate and noiseless approximations. A Finite Element/Lattice Sampling (FE/LS) methodology for constructing progressively refined finite element response surfaces that reuse previous generations of samples is described here. Similar finite element implementations can be extended to N-dimensional problems and/or random fields and applied to other types of structured sampling paradigms, such as classical experimental design and Gauss, Lobatto, and Patterson sampling. Here the FE/LS model is applied in a ``decoupled`` Monte Carlo analysis of two sets of probability quantification test problems. The analytic test problems, spanning a large range of probabilities and very demanding failure region geometries, constitute a good testbed for comparing the performance of various nondeterministic analysis methods. In results here, FE/LS decoupled Monte Carlo analysis required orders of magnitude less computer time than direct Monte Carlo analysis, with no appreciable loss of accuracy. Thus, when arriving at probabilities or distributions by Monte Carlo, it appears to be more efficient to expend computer-model function evaluations on building a FE/LS response surface than to expend them in direct Monte Carlo sampling.

  4. Impulsivity and Psychoeducational Intervention in Hyperactive Children.

    ERIC Educational Resources Information Center

    Brown, Ronald T.

    1980-01-01

    Two psychoeducational procedures were investigated for their effects on impulsivity in 120 hyperactive children in two groups: those receiving stimulant drug therapy and those not receiving stimulant drug therapy. Results indicated that the use of psychoeducational treatment approaches are of value in altering the impulsive responses of…

  5. Linear optical response of finite systems using multishift linear system solvers

    SciTech Connect

    Hübener, Hannes; Giustino, Feliciano

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  6. Linear optical response of finite systems using multishift linear system solvers.

    PubMed

    Hübener, Hannes; Giustino, Feliciano

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  7. Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Laub, Bernard; Braun, Robert D.

    2011-01-01

    The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.

  8. Dynamic response of concrete beams externally reinforced with carbon fiber reinforced plastic (CFRP) subjected to impulsive loads

    SciTech Connect

    Jerome, D.M.; Ross, C.A.

    1996-12-31

    A series of 54 laboratory scale concrete beams 3 x 3 x 30 in. in size were impulsively loaded to failure in a drop weight impact machine. The beams had no internal reinforcement, but instead were externally reinforced on the bottom or tension side of the beams with 1, 2, and 3 ply AS4C/1919 graphite epoxy panels. In addition, several of the beams were also reinforced on the sides with 3 ply CFRP. The beams were simply supported in a drop weight machine and subjected to impact loads with amplitudes up to 10 kips, and durations less than 1 ms, at beam midspan. Measurements made during the loading event included beam total load, midspan displacement, as well as midspan strain at 3 locations in the beam`s cross-section. A high speed framing camera was also used to record the beam`s displacement-time behavior as well as to gain insight into the failure mechanisms. Beam midspan accelerations were determined by double differentiation of the displacement versus time data, and in turn, the beam`s inertial loads were calculated using the beam`s equivalent mass. Beam dynamic bending loads versus time were determined from the difference between the total load versus time and the inertial load versus time data. Bending loads versus displacements were also determined along with fracture energies. Failure to correct the loads for inertia will result in incorrect conclusions being drawn from the data, especially for bending resistance of brittle concrete test specimens. A comparison with quasistatic bending (fracture) energy data showed that the dynamic failure energy absorbed by the beams was always less than the static fracture energy, due to the brittle nature of concrete when impulsively loaded.

  9. Low-field diamagnetic response of granular superconductors at finite temperatures

    SciTech Connect

    Auletta, C.; Raiconi, G. ); De Luca, R.; Pace, S. )

    1994-05-01

    We study the low-field diamagnetic response of granular superconductors at finite temperatures by means of a simple two-dimensional Josephson-junction array. The temperature effects are taken into account by inserting white-noise current sources in parallel to the resistively shunted junction circuit models of the Josephson junctions of the network. By this analysis we argue that a simplified one-dimensional description of the equivalent circuit, proposed by the authors for cylindrical granular superconductors, is still valid even in the presence of thermally activated flux jumps. A flux-creep picture for intergranular flux motion follows.

  10. Estimation of finite population parameters with auxiliary information and response error.

    PubMed

    González, L M; Singer, J M; Stanek, E J

    2014-10-01

    We use a finite population mixed model that accommodates response error in the survey variable of interest and auxiliary information to obtain optimal estimators of population parameters from data collected via simple random sampling. We illustrate the method with the estimation of a regression coefficient and conduct a simulation study to compare the performance of the empirical version of the proposed estimator (obtained by replacing variance components with estimates) with that of the least squares estimator usually employed in such settings. The results suggest that when the auxiliary variable distribution is skewed, the proposed estimator has a smaller mean squared error.

  11. Fast quasi-explicit finite difference simulation of electrochemical responses initiated by a discontinuous perturbation

    SciTech Connect

    Feldberg, S.W.

    1991-01-01

    Commencing in the early 60s the application of explicit finite difference (EFD) methods to the analysis of electrochemical problems paralleled the development and availability of fast, main-frame, digital computers. The appeal of the EFD method has been its simplicity of principle and of application. EFD algorithms, however, are notoriously inefficient for solving certain types of stiff problems (e.g., problems involving a wide dynamic range of time constants). In this presentation the author discusses the principles and some applications of a fast quasi-explicit finite difference (FQEFD) method in which the computational speed is enhanced, by many orders of magnitude in some cases, without compromising the user friendliness which has popularized the EFD method. The method is designed to treat electrochemical responses to a discontinuous (e.g, chronoamperometric) perturbation and utilizes the DuFort-Frankel algorithm (1) with exponentially expanding space (2) and exponentially expanding time grids. (A previously published version of the FQEFD method (3,4) was designed to treat electrochemical responses to a continuous (e.g., cyclic voltammetric) perturbation and utilizes the DuFort-Frankel (3) algorithm in conjunction with an exponentially expanding space grid and a uniform time grid. The development of the basic FQEFD equations was presented there). The protocol for introducing the expanding time grid is straightforward and is discussed. 7 refs., 1 fig. 1 tab.

  12. Electronic chemical response indexes at finite temperature in the canonical ensemble.

    PubMed

    Franco-Pérez, Marco; Gázquez, José L; Vela, Alberto

    2015-07-14

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  13. Electronic chemical response indexes at finite temperature in the canonical ensemble

    SciTech Connect

    Franco-Pérez, Marco E-mail: jlgm@xanum.uam.mx Gázquez, José L. E-mail: jlgm@xanum.uam.mx; Vela, Alberto E-mail: jlgm@xanum.uam.mx

    2015-07-14

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  14. Blast response of curved carbon/epoxy composite panels: Experimental study and finite-element analysis

    NASA Astrophysics Data System (ADS)

    Phadnis, V. A.; Kumar, P.; Shukla, A.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    Experimental and numerical studies were conducted to understand the effect of plate curvature on blast response of carbon/epoxy composite panels. A shock-tube system was utilized to impart controlled shock loading to quasi-isotropic composite panels with differing range of radii of curvatures. A 3D Digital Image Correlation (DIC) technique coupled with high-speed photography was used to obtain out-of-plane deflection and velocity, as well as in-plane strain on the back face of the panels. Macroscopic post-mortem analysis was performed to compare yielding and deformation in these panels. A dynamic computational simulation that integrates fluid-structure interaction was conducted to evaluate the panel response in general purpose finite-element software ABAQUS/Explicit. The obtained numerical results were compared to the experimental data and showed a good correlation.

  15. [Affective disorders and impulsivity].

    PubMed

    Belzeaux, R; Correard, N; Mazzola-Pomietto, P; Adida, M; Cermolacce, M; Azorin, J-M

    2014-12-01

    Impulsivity is a complex and important phenomenon in mood disorders. Impulse control disorders, as defined in DSM, are more frequent in mood disorders especially in Bipolar Disorder type I, and are associated with a more severe course of illness. Dimensional studies demonstrate that impulsivity is a core manifestation of bipolar disorder both as state- and trait-dependent markers in patients. Comorbid substance use disorders are often associated with a higher level of impulsivity whereas the relation between suicidal behaviors and higher impulsivity remains uncertain. Moreover, neuropsychological tests were used to study correlation between clinical impulsivity and laboratory measurements of impulsivity. Level of correlation remains weak and several explanations are proposed in the literature.

  16. Genetics of impulsive behaviour

    PubMed Central

    Bevilacqua, Laura; Goldman, David

    2013-01-01

    Impulsivity, defined as the tendency to act without foresight, comprises a multitude of constructs and is associated with a variety of psychiatric disorders. Dissecting different aspects of impulsive behaviour and relating these to specific neurobiological circuits would improve our understanding of the etiology of complex behaviours for which impulsivity is key, and advance genetic studies in this behavioural domain. In this review, we will discuss the heritability of some impulsivity constructs and their possible use as endophenotypes (heritable, disease-associated intermediate phenotypes). Several functional genetic variants associated with impulsive behaviour have been identified by the candidate gene approach and re-sequencing, and whole genome strategies can be implemented for discovery of novel rare and common alleles influencing impulsivity. Via deep sequencing an uncommon HTR2B stop codon, common in one population, was discovered, with implications for understanding impulsive behaviour in both humans and rodents and for future gene discovery. PMID:23440466

  17. Digital angiographic impulse response analysis of regional myocardial perfusion: linearity, reproducibility, accuracy, and comparison with conventional indicator dilution curve parameters in phantom and canine models.

    PubMed

    Eigler, N L; Pfaff, J M; Zeiher, A; Whiting, J S; Forrester, J S

    1989-05-01

    The system mean transit time (Tsys) of the impulse response function describing contrast material transit through the coronary circulation was determined from serial digital angiographic images. The linearity, reproducibility, and relations with regional myocardial perfusion and conventional time-density curve parameters, time to peak concentration (TPC), and exponential washout rate (k) were assessed in a dynamic flow x-ray phantom (n = 46) and in six open-chest dogs (n = 102) while coronary flow was altered by stenosis and/or hyperemic stimuli. In the phantom studies, the inverse of the system mean transit time (Tsys-1) closely predicted flow/volume (r = 0.99, slope = 0.99). In dogs, Tsys-1 was independent of the shape of the contrast bolus injection (single or double-peaked), class of contrast agent (ionic or nonionic), the type of hyperemic stimulus (dipyridamole, dipyridamole plus norepinephrine, transient total occlusion, or ionic contrast media), and was highly reproducible between adjacent myocardial regions served by the same artery (r = 0.98 +/- 0.01). There was a strong correlation between Tsys-1 and regional coronary flow for stenotic and/or hyperemic vessels (r = 0.94, distribution volume = 14.9 ml/100 g) over a wide range (0-514 ml/min/100 g). Tsys-1 performed better than conventional time-density curve parameters TPC-1 and k for predicting phantom flow/volume ratios and regional myocardial blood flow in the dog. These data suggest that both digital coronary angiography and coronary contrast transit can be modeled as linear systems and that impulse response analysis may provide accurate and reproducible estimates of regional myocardial blood flow.

  18. Bright and dark sides of impulsivity: performance of women with high and low trait impulsivity on neuropsychological tasks.

    PubMed

    Perales, Jose C; Verdejo-Garcia, Antonio; Moya, Maribel; Lozano, Oscar; Perez-Garcia, Miguel

    2009-11-01

    We administered a multidimensional measure of trait impulsivity (the UPPS-P impulsivity scale; Cyders et al., 2007) to a nonclinical sample of 155 individuals and selected 32 participants at the two ends of the trait impulsivity continuum: high (HI, n = 15) and low (LI, n = 17) impulsive women. We further tested these extreme groups on neuropsychological measures of motor impulsivity (go/no-go, d2), delay discounting (Now or Later Questionnaire), reflection impulsivity (Matching Familiar Figures Test), self-regulation (Revised-Strategy Application Test), and decision making (Iowa Gambling Task). High-trait-impulsivity women were found to commit more commission errors in the initial stage of the go/no-go task but also to make fewer omission errors in the d2 test than did low-trait-impulsivity women. Both effects can be accounted for by a lower response criterion in impulsive women. On the other hand, measures of delay discounting, reflection impulsivity, self-regulation, and decision making did not yield significant differences between the two groups. This pattern of results supports the idea that trait impulsivity in healthy women is linked to neurocognitive mechanisms involved in response monitoring and inhibition, but not to mechanisms involved in self-regulation or decision making. These findings temper the assumption that impulsivity is the core cause of dysfunctional risky and/or impulsive behavior in psychopathological or neuropsychological profiles. PMID:19358009

  19. An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation

    NASA Astrophysics Data System (ADS)

    Rajagopal, K. R.; Srinivasa, A. R.

    2016-08-01

    The aim of this paper is to develop a new unified class of 3D nonlinear anisotropic finite deformation inelasticity model that (1) exhibits rate-independent or dependent hysteretic response (i.e., response wherein reversal of the external stimuli does not cause reversal of the path in state space) with or without yield surfaces. The hysteresis persists with quasistatic loading. (2) Encompasses a wide range of different types of inelasticity models (such as Mullins effect in rubber, rock and soil mechanics, traditional metal plasticity, hysteretic behavior of shape memory materials) into a simple unified framework that is relatively easy to implement in computational schemes and (3) does not require any a priori particular notion of plastic strain or yield function. The core idea behind the approach is the development of an system of implicit rate equations that allow for the continuity of the response but with different rates along different directions. The theory, which is in purely mechanical setting, subsumes and generalizes many commonly used approaches for hypoelasticity and rate-independent plasticity. We illustrate its capability by modeling the Mullins effect which is the inelastic behavior of certain rubbery materials. We are able to simulate the entire cyclic response without the use of additional internal variables, i.e., the entire response is modeled by using an implicit function of stress and strain measures and their rates.

  20. Impulsive action: emotional impulses and their control

    PubMed Central

    Frijda, Nico H.; Ridderinkhof, K. Richard; Rietveld, Erik

    2014-01-01

    This paper presents a novel theoretical view on impulsive action, integrating thus far separate perspectives on non-reflective action, motivation, emotion regulation, and impulse control. We frame impulsive action in terms of directedness of the individual organism toward, away, or against other givens – toward future states and away from one’s present state. First, appraisal of a perceived or thought-of event or object on occasion, rapidly and without premonition or conscious deliberation, triggers a motive to modify one’s relation to that event or object. Situational specifics of the event as perceived and appraised motivate and guide selection of readiness for a particular kind of purposive action. Second, perception of complex situations can give rise to multiple appraisals, multiple motives, and multiple simultaneous changes in action readiness. Multiple states of action readiness may interact in generating action, by reinforcing or attenuating each other, thereby yielding impulse control. We show how emotion control can itself result from a motive state or state of action readiness. Our view links impulsive action mechanistically to states of action readiness, which is the central feature of what distinguishes one kind of emotion from another. It thus provides a novel theoretical perspective to the somewhat fragmented literature on impulsive action. PMID:24917835

  1. Application of finite element, global polynomial, and kriging response surfaces in Progressive Lattice Sampling designs

    SciTech Connect

    ROMERO,VICENTE J.; SWILER,LAURA PAINTON; GIUNTA,ANTHONY A.

    2000-04-25

    This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regression used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incrementally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter space. When combined with suitable interpolation methods, PLS is a formulation for progressive construction of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the problem. The three interpolation methods tried here are examined for performance in replicating an analytic test function as measured by several different indicators. The process described here provides a framework for future studies using other interpolation schemes, test functions, and measures of approximation quality.

  2. Nonlinear sediment response during the 1994 Northridge earthquake: Observations and finite source simulations

    SciTech Connect

    Field, E.H.; Zeng, Y.; Johnson, P.A.; Beresnev, I.A.

    1998-11-01

    We have addressed the long-standing question regarding nonlinear sediment response in the Los Angeles region by testing whether sediment amplification was similar between the Northridge earthquake and its aftershocks. Comparing the weak- and strong-motion site response at 15 sediment sites, we find that amplification factors were significantly less for the main shock implying systematic nonlinearity. The difference is largest between 2 and 4 Hz (a factor of 2), and is significant at the 99{percent} confidence level between 0.8 and 5.5 Hz. The inference of nonlinearity is robust with respect to the removal of possibly anomalous sediment sites and how the reference-site motion is defined. Furthermore, theoretical ground-motion simulations show no evidence of any bias from finite source effects during the main shock. Nonlinearity is also suggested by the fact that the four sediment sites that contain a clear fundamental resonance for the weak motion exhibit a conspicuous absence of the peak in the strong motion. Although we have taken the first step of establishing the presence of nonlinearity, it remains to define the physics of nonlinear response and to test the methodologies presently applied routinely in engineering practice. The inference of nonlinearity implies that care must be exercised in using sediment site data to study large earthquakes or predict strong ground motion. {copyright} 1998 American Geophysical Union

  3. Unruh-DeWitt detector response across a Rindler firewall is finite

    NASA Astrophysics Data System (ADS)

    Louko, Jorma

    2014-09-01

    We investigate a two-level Unruh-DeWitt detector coupled to a massless scalar field or its proper time derivative in (1 + 1)-dimensional Minkowski spacetime, in a quantum state whose correlation structure across the Rindler horizon mimics the stationary aspects of a firewall that Almheiri et al. have argued to ensue in an evaporating black hole spacetime. Within first-order perturbation theory, we show that the detector's response on falling through the horizon is sudden but finite. The difference from the Minkowski vacuum response is proportional to ω -2 ln(| ω|) for the non-derivative detector and to ln(| ω|) for the derivative-coupling detector, both in the limit of a large energy gap ω and in the limit of adiabatic switching. Adding to the quantum state high Rindler temperature excitations behind the horizon increases the detector's response proportionally to the temperature; this situation has been suggested to model the energetic curtain proposal of Braunstein et al. We speculate that the (1 + 1)-dimensional derivative-coupling detector may be a good model for a non-derivative detector that crosses a firewall in 3 + 1 dimensions.

  4. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  5. NIKE3D: an implicit, finite-deformation, finite element code for analyzing the static and dynamic response of three-dimensional solids

    SciTech Connect

    Hallquist, J.O.

    1981-01-01

    A user's manual is provided for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the large deformation static and dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node constant pressure solid elements. Bandwidth minimization is optional. Post-processors for NIKE3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories.

  6. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    PubMed

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz. PMID:17471715

  7. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    PubMed

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.

  8. Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.

    PubMed

    Maftoon, Nima; Funnell, W Robert J; Daniel, Sam J; Decraemer, Willem F

    2015-10-01

    We present a finite-element model of the gerbil middle ear that, using a set of baseline parameters based primarily on a priori estimates from the literature, generates responses that are comparable with responses we measured in vivo using multi-point vibrometry and with those measured by other groups. We investigated the similarity of numerous features (umbo, pars-flaccida and pars-tensa displacement magnitudes, the resonance frequency and break-up frequency, etc.) in the experimental responses with corresponding ones in the model responses, as opposed to simply computing frequency-by-frequency differences between experimental and model responses. The umbo response of the model is within the range of variability seen in the experimental data in terms of the low-frequency (i.e., well below the middle-ear resonance) magnitude and phase, the main resonance frequency and magnitude, and the roll-off slope and irregularities in the response above the resonance frequency, but is somewhat high for frequencies above the resonance frequency. At low frequencies, the ossicular axis of rotation of the model appears to correspond to the anatomical axis but the behaviour is more complex at high frequencies (i.e., above the pars-tensa break-up). The behaviour of the pars tensa in the model is similar to what is observed experimentally in terms of magnitudes, phases, the break-up frequency of the spatial vibration pattern, and the bandwidths of the high-frequency response features. A sensitivity analysis showed that the parameters that have the strongest effects on the model results are the Young's modulus, thickness and density of the pars tensa; the Young's modulus of the stapedial annular ligament; and the Young's modulus and density of the malleus. Displacements of the tympanic membrane and manubrium and the low-frequency displacement of the stapes did not show large changes when the material properties of the incus, stapes, incudomallear joint, incudostapedial joint, and

  9. Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head.

    PubMed

    Ji, Songbai; Ghadyani, Hamidreza; Bolander, Richard P; Beckwith, Jonathan G; Ford, James C; McAllister, Thomas W; Flashman, Laura A; Paulsen, Keith D; Ernstrom, Karin; Jain, Sonia; Raman, Rema; Zhang, Liying; Greenwald, Richard M

    2014-01-01

    A number of human head finite element (FE) models have been developed from different research groups over the years to study the mechanisms of traumatic brain injury. These models can vary substantially in model features and parameters, making it important to evaluate whether simulation results from one model are readily comparable with another, and whether response-based injury thresholds established from a specific model can be generalized when a different model is employed. The purpose of this study is to parametrically compare regional brain mechanical responses from three validated head FE models to test the hypothesis that regional brain responses are dependent on the specific head model employed as well as the region of interest (ROI). The Dartmouth Scaled and Normalized Model (DSNM), the Simulated Injury Monitor (SIMon), and the Wayne State University Head Injury Model (WSUHIM) were selected for comparisons. For model input, 144 unique kinematic conditions were created to represent the range of head impacts sustained by male collegiate hockey players during play. These impacts encompass the 50th, 95th, and 99th percentile peak linear and rotational accelerations at 16 impact locations around the head. Five mechanical variables (strain, strain rate, strain × strain rate, stress, and pressure) in seven ROIs reported from the FE models were compared using Generalized Estimating Equation statistical models. Highly significant differences existed among FE models for nearly all output variables and ROIs. The WSUHIM produced substantially higher peak values for almost all output variables regardless of the ROI compared to the DSNM and SIMon models (p < 0.05). DSNM also produced significantly different stress and pressure compared with SIMon for all ROIs (p < 0.05), but such differences were not consistent across ROIs for other variables. Regardless of FE model, most output variables were highly correlated with linear and rotational peak accelerations. The

  10. Parametric Comparisons of Intracranial Mechanical Responses from Three Validated Finite Element Models of the Human Head

    PubMed Central

    Ji, Songbai; Ghadyani, Hamidreza; Bolander, Richard P.; Beckwith, Jonathan G.; Ford, James C.; Mcallister, Thomas W.; Flashman, Laura A.; Paulsen, Keith D.; Ernstrom, Karin; Jain, Sonia; Raman, Rema; Zhang, Liying; Greenwald, Richard M.

    2015-01-01

    A number of human head finite element (FE) models have been developed from different research groups over the years to study the mechanisms of traumatic brain injury. These models can vary substantially in model features and parameters, making it important to evaluate whether simulation results from one model are readily comparable with another, and whether response-based injury thresholds established from a specific model can be generalized when a different model is employed. The purpose of this study is to parametrically compare regional brain mechanical responses from three validated head FE models to test the hypothesis that regional brain responses are dependent on the specific head model employed as well as the region of interest (ROI). The Dartmouth Scaled and Normalized Model (DSNM), the Simulated Injury Monitor (SIMon), and the Wayne State University Head Injury Model (WSUHIM) were selected for comparisons. For model input, 144 unique kinematic conditions were created to represent the range of head impacts sustained by male collegiate hockey players during play. These impacts encompass the 50th, 95th, and 99th percentile peak linear and rotational accelerations at 16 impact locations around the head. Five mechanical variables (strain, strain rate, strain × strain rate, stress, and pressure) in seven ROIs reported from the FE models were compared using Generalized Estimating Equation statistical models. Highly significant differences existed among FE models for nearly all output variables and ROIs. The WSUHIM produced substantially higher peak values for almost all output variables regardless of the ROI compared to the DSNM and SIMon models (p < 0.05). DSNM also produced significantly different stress and pressure compared with SIMon for all ROIs (p < 0.05), but such differences were not consistent across ROIs for other variables. Regardless of FE model, most output variables were highly correlated with linear and rotational peak accelerations. The

  11. An Analysis on 3d Marine Csem Responses Based on a Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Han, N.; Nam, M.; Kim, H.

    2010-12-01

    Three-dimensional (3D) marine controlled-source electromagnetic (CSEM) data are analyzed using a modeling algorithm based on a finite difference method. The algorithm employs the secondary-field formulation of a vector Helmholtz equation for electric fields to avoid singularity problems. Primary fields are calculated analytically using a numerical filter for the Hankel transform for a three-layered 1D background model, that consists of air, sea and sub-seafloor; the model includes the air layer to consider air waves. Several numerical filters for the Hankel transform are compared in terms of their accuracy and computation time. Using the analytically-calculated primary fields, we compute secondary fields using a finite difference method with a staggered grid. The grid defines electric fields along cell edges while magnetic fields at cell faces. We verified the developed modeling algorithm using not only 1D analytic solutions but also responses for a 3D model, that are computed by other algorithms. Using disk models, this study analyzes marine CSEM data for horizontal and vertical electric and magnetic dipole sources to determine the most effective source-receiver configuration for the exploration of 3D thin and resistive hydrocarbon targets. Numerical results show that marine CSEM has exciting potential for oilfield characterization. Further, air waves should be properly considered in modeling and interpretation of marine CSEM data because they have great effects on marine CSEM data. For an analysis on bathymetry effects, a stepwise-bathymetry model was constructed. Bathymetry causes significant effects on marine CSEM data because transmitter and receivers are located very far each other. We propose a bathymetry correction method for a proper interpretation of marine CSEM data distorted by bathymetry.

  12. Rats with different profiles of impulsive choice behavior exhibit differences in responses to caffeine and d-amphetamine and in medial prefrontal cortex 5-HT utilization.

    PubMed

    Barbelivien, Alexandra; Billy, Erwan; Lazarus, Christine; Kelche, Christian; Majchrzak, Monique

    2008-03-01

    This study investigated if sub-populations of rats characterized by their basal level of impulsivity (BLI) in a delayed-reinforcement task, displayed differences in the functioning of neurotransmitter systems modulating impulsive choice behavior. For this, the effects of various doses of caffeine and d-amphetamine were investigated in three sub-populations of rats displaying pronounced differences in their impulsive choice behavior and their post-mortem serotonergic and dopaminergic functions were assessed. Caffeine and d-amphetamine reduce impulsive choice behavior only in the Medium BLI sub-population. Dopamine utilization was similar in the three sub-populations, but serotonin utilization was lower in the prefrontal cortex of the Medium and Very high BLI sub-populations as compared to the low BLI one. These results suggest that anti-impulsive effects of caffeine and d-amphetamine are dependent on the BLI of rats and that a low serotonergic function in the prefrontal cortex may be a trait marker of impulsivity evaluated by impulsive choice behavior.

  13. Advantage of impulse oscillometry over spirometry to diagnose chronic obstructive pulmonary disease and monitor pulmonary responses to bronchodilators: An observational study

    PubMed Central

    Saadeh, Charles; Cross, Blake; Gaylor, Michael; Griffith, Melissa

    2015-01-01

    Objectives: This retrospective study was a comparative analysis of sensitivity of impulse oscillometry and spirometry techniques for use in a mixed chronic obstructive pulmonary disease group for assessing disease severity and inhalation therapy. Methods: A total of 30 patients with mild-to-moderate chronic obstructive pulmonary disease were monitored by impulse oscillometry, followed by spirometry. Lung function was measured at baseline after bronchodilation and at follow-up (3–18 months). The impulse oscillometry parameters were resistance in the small and large airways at 5 Hz (R5), resistance in the large airways at 15 Hz (R15), and lung reactance (area under the curve X; AX). Results: After the bronchodilator therapy, forced expiratory volume in 1 second (FEV1) readings evaluated by spirometry were unaffected at baseline and at follow-up, while impulse oscillometry detected an immediate improvement in lung function, in terms of AX (p = 0.043). All impulse oscillometry parameters significantly improved at follow-up, with a decrease in AX by 37% (p = 0.0008), R5 by 20% (p = 0.0011), and R15 by 12% (p = 0.0097). Discussion: Impulse oscillometry parameters demonstrated greater sensitivity compared with spirometry for monitoring reversibility of airway obstruction and the effect of maintenance therapy. Impulse oscillometry may facilitate early treatment dose optimization and personalized medicine for chronic obstructive pulmonary disease patients. PMID:26770777

  14. Forensic GPR: finite-difference simulations of responses from buried human remains

    NASA Astrophysics Data System (ADS)

    Hammon, William S.; McMechan, George A.; Zeng, Xiaoxian

    2000-10-01

    Time domain 2.5-D finite-difference simulations of ground-penetrating radar (GPR) responses from models of buried human remains suggest the potential of GPR for detailed non-destructive forensic site investigation. Extraction of information beyond simple detection of cadavers in forensic investigations should be possible with current GPR technology. GPR responses are simulated for various body cross-sections with different depths of burial, soil types, soil moisture contents, survey frequencies and antenna separations. Biological tissues have high electrical conductivity so diagnostic features for the imaging of human bodies are restricted to the soil/skin interface and shallow tissue interfaces. A low amplitude reflection shadow zone occurs beneath a body because of high GPR attenuation within the body. Resolution of diagnostic features of a human target requires a survey frequency of 900 MHz or greater and an increment between recording stations of 10 cm or less. Depth migration focuses field GPR data into an image that reveals accurate information on the number, dimensions, locations and orientations of body elements. The main limitation on image quality is attenuation in the surrounding soil and within the body. 3-D imaging is also feasible.

  15. Finite element modeling of human brain response to football helmet impacts.

    PubMed

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions. PMID:26867124

  16. Finite element modeling of human brain response to football helmet impacts.

    PubMed

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions.

  17. Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study.

    PubMed

    Li, Zuoping; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Alonso, Jorge E; Eberhardt, Alan W

    2007-01-01

    Automotive side impacts are a leading cause of injuries to the pubic symphysis, yet the mechanisms of those injuries have not been clearly established. Previous mechanical testing of isolated symphyses revealed increased joint laxity following drop tower lateral impacts to isolated pelvic bone structures, which suggested that the joints were damaged by excessive stresses and/or deformations during the impact tests. In the present study, a finite element (FE) model of a female pelvis including a previously validated symphysis sub-model was developed from computed tomography data. The full pelvis model was validated against measured force-time impact responses from drop tower experiments and then used to study the biomechanical response of the symphysis during the experimental impacts. The FE models predicted that the joint underwent a combination of lateral compression, posterior bending, anterior/posterior and superior/inferior shear that exceeded normal physiological levels prior to the onset of bony fractures. Large strains occurred concurrently within the pubic ligaments. Removal of the contralateral constraints to better approximate the boundary conditions of a seated motor vehicle occupant reduced cortical stresses and deformations of the pubic symphysis; however, ligament strains, compressive and shear stresses in the interpubic disc, as well as posterior bending of the joint structure remained as potential sources of joint damage during automotive side impacts. PMID:17399721

  18. Impulsivity and Academic Cheating

    ERIC Educational Resources Information Center

    Anderman, Eric M.; Cupp, Pamela K.; Lane, Derek

    2009-01-01

    The authors examined the relations between academic cheating and impulsivity in a large sample of adolescents enrolled in high school health education classes. Results indicated that impulsivity predicts academic cheating for students who report extensive involvement in cheating. However, students who engage in extensive cheating are less likely…

  19. Rethinking Impulsivity in Suicide

    ERIC Educational Resources Information Center

    Klonsky, E. David; May, Alexis

    2010-01-01

    Elevated impulsivity is thought to facilitate the transition from suicidal thoughts to suicidal behavior. Therefore, impulsivity should distinguish those who have attempted suicide (attempters) from those who have only considered suicide (ideators-only). This hypothesis was examined in three large nonclinical samples: (1) 2,011 military recruits,…

  20. Rethinking impulsivity in suicide.

    PubMed

    Klonsky, E David; May, Alexis

    2010-12-01

    Elevated impulsivity is thought to facilitate the transition from suicidal thoughts to suicidal behavior. Therefore, impulsivity should distinguish those who have attempted suicide (attempters) from those who have only considered suicide (ideators-only). This hypothesis was examined in three large nonclinical samples: (1) 2,011 military recruits, (2) 1,296 college students, and (3) 399 high school students. In sample 1, contrary to traditional models of suicide risk, a unidimensional measure of impulsivity failed to distinguish attempters from ideators-only. In samples 2 and 3, which were administered a multidimensional measure of impulsivity (i.e., the UPPS impulsive behavior scale; Whiteside & Lynam, 2001), different impulsivity-related traits characterized attempters and ideators-only. Whereas both attempters and ideators-only exhibited high urgency (the tendency to act impulsive in the face of negative emotions), only attempters exhibited poor premeditation (a diminished ability to think through the consequences of one's actions). Neither attempters nor ideators-only exhibited high sensation seeking or lack of perseverance. Future research should continue to distinguish impulsivity-related traits that predict suicide ideation from those that predict suicide attempts, and models of suicide risk should be revised accordingly. PMID:21198330

  1. Impulsiveness in professional fighters.

    PubMed

    Banks, Sarah J; Mayer, Brittany; Obuchowski, Nancy; Shin, Wanyong; Lowe, Mark; Phillips, Michael; Modic, Michael; Bernick, Charles

    2014-01-01

    Sports involving repeated head trauma are associated with risk of neurodegenerative disorders such as chronic traumatic encephalopathy (CTE). Among the behavioral manifestations of CTE is increased impulsiveness. Here, the authors investigate the relationship between impulsiveness and exposure to head trauma in a large group of active professional fighters. Fighters tended to report less impulsiveness than did non-fighting control respondents. Overall, greater fight exposure was associated with higher levels of a specific form of impulsiveness, although there were differences between mixed martial arts fighters and boxers. Fight exposure was associated with reduction in volume of certain brain structures, and these changes were also associated with impulsiveness patterns. Longitudinal studies of professional fighters are important to understand the risk for neuropsychiatric problems. PMID:24515676

  2. Barratt Impulsivity and Neural Regulation of Physiological Arousal

    PubMed Central

    Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H.; Li, Chiang-shan R.

    2015-01-01

    Background Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. Methods We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Results Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Conclusions Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control. PMID:26079873

  3. Specific Impulse and Mass Flow Rate Error

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2005-01-01

    Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.

  4. Impact-echo and impulse response stress-wave methods: advantages and limitations for the evaluation of highway pavement concrete overlays

    NASA Astrophysics Data System (ADS)

    Davis, Allen G.; Hertlein, Bernhard H.; Lim, Malcolm K.; Michols, Kevin

    1996-11-01

    Concrete overlays with thickness ranging between 25 mm and 300 mm are frequently used to restore and strengthen existing concrete pavements and bridge approach slabs. Differences in the strengths and elastic moduli of the overlay and the substrate, as well as the cleanliness and roughness of the interface between the two layers affect the medium and long term performance of these structures. Debonding at the interface, excessive tensile stresses at the base of the overlay and delamination within the upper layer are commonly occurring problems. If these defects are not detected and corrected in god time, the deterioration of the overlay under the action of heavy axle loads is rapid and becomes expensive to fix. Nondestructive methods are required to identify the budding problems of the type described above, by surveying overlay systems quickly and economically. Stress wave methods for flaw detection in concrete structures and foundations have shown great promise in recent years. The Impact-Echo test has been applied successfully to many diverse concrete material problems. The Impulse Response test is proven in the detection of flaws in deep concrete foundations, as well as the location of poor support conditions beneath and delaminations within concrete slabs on grade. This paper presents a case study where both methods were used to examine a stepped concrete overlay on approach slabs to bridge decks on a heavily trafficked interstate highway. The two test methods are briefly described, and a comparison is drawn emphasizing the advantages and disadvantages of both techniques.

  5. Aperture size, materiality of the secondary room and listener location: Impact on the simulated impulse response of a coupled-volume concert hall

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Johnson, Marty E.; Harrison, Byron W.

    2003-04-01

    By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume concert hall based on an existing performing arts center is conceived and computer-modeled. It has a fixed geometric volume, form and primary-room sound absorption. Ray-tracing software simulates impulse responses, varying both aperture size and secondary-room sound absorption level, across a grid of receiver (listener) locations. The results are compared with statistical analysis that suggests a highly sensitive relationship between the double-sloped condition and the architecture of the space. This line of study aims to quantitatively and spatially correlate the double-sloped condition with (1) aperture size exposing the chamber, (2) sound absorptance in the coupled volume, and (3) listener location.

  6. Aperture size, materiality of the secondary room, and listener location: Impact on the simulated impulse response of a coupled-volume concert hall

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Johnson, Marty E.; Harrison, Byron W.

    2002-11-01

    By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume concert hall based on an existing performing arts center is conceived and computer modeled. It has a fixed geometric volume, form, and primary-room sound absorption. Ray-tracing software simulates impulse responses, varying both aperture size and secondary-room sound-absorption level, across a grid of receiver (listener) locations. The results are compared with statistical analysis that suggests a highly sensitive relationship between the double-sloped condition and the architecture of the space. This line of study aims to quantitatively and spatially correlate the double-sloped condition with (1) aperture size exposing the chamber, (2) sound absorptance in the coupled volume, and (3) listener location.

  7. Finite element prediction of seismic response modification of monumental structures utilizing base isolation

    NASA Astrophysics Data System (ADS)

    Spanos, Konstantinos; Anifantis, Nikolaos; Kakavas, Panayiotis

    2015-05-01

    The analysis of the mechanical behavior of ancient structures is an essential engineering task concerning the preservation of architectural heritage. As many monuments of classical antiquity are located in regions of earthquake activity, the safety assessment of these structures, as well as the selection of possible restoration interventions, requires numerical models capable of correctly representing their seismic response. The work presented herein was part of a research project in which a better understanding of the dynamics of classical column-architrave structures was sought by means of numerical techniques. In this paper, the seismic behavior of ancient monumental structures with multi-drum classical columns is investigated. In particular, the column-architrave classical structure under strong ground excitations was represented by a finite element method. This approach simulates the individual rock blocks as distinct rigid blocks interconnected with slidelines and incorporates seismic isolation dampers under the basement of the structure. Sliding and rocking motions of individual stone blocks and drums are modeled utilizing non-linear frictional contact conditions. The seismic isolation is modeled through the application of pad bearings under the basement of the structure. These pads are interpreted by appropriate rubber and steel layers. Time domain analyses were performed, considering the geometric and material non-linear behavior at the joints and the characteristics of pad bearings. The deformation and failure modes of drum columns subject to seismic excitations of various types and intensities were analyzed. The adverse influence of drum imperfections on structural safety was also examined.

  8. [Response of a finite element model of the pelvis to different side impact loads].

    PubMed

    Ruan, Shijie; Zheng, Huijing; Li, Haiyan; Zhao, Wei

    2013-08-01

    The pelvis is one of the most likely affected areas of the human body in case of side impact, especially while people suffer from motor vehicle crashes. With the investigation of pelvis injury on side impact, the injury biomechanical behavior of pelvis can be found, and the data can help design the vehicle security devices to keep the safety of the occupants. In this study, a finite element (FE) model of an isolated human pelvis was used to study the pelvic dynamic response under different side impact conditions. Fracture threshold was established by applying lateral loads of 1000, 2000, 3000, 4000 and 5000 N, respectively, to the articular surface of the right acetabulum. It was observed that the smaller the lateral loads were, the smaller the von Mises stress and the displacement in the direction of impact were. It was also found that the failure threshold load was near 3000 N, based on the fact that the peak stress would not exceed the average compressive strength of the cortical bone. It could well be concluded that with better design of car-door and hip-pad so that the side impact force was brought down to 3000 N or lower, the pelvis would not be injured.

  9. Nonlinear random response of large-scale sparse finite element plate bending problems

    NASA Astrophysics Data System (ADS)

    Chokshi, Swati

    Acoustic fatigue is one of the major design considerations for skin panels exposed to high levels of random pressure at subsonic/supersonic/hypersonic speeds. The nonlinear large deflection random response of the single-bay panels aerospace structures subjected to random excitations at various sound pressure levels (SPLs) is investigated. The nonlinear responses of plate analyses are limited to determine the root-mean-square displacement under uniformly distributed pressure random loads. Efficient computational technologies like sparse storage schemes and parallel computation are proposed and incorporated to solve large-scale, nonlinear large deflection random vibration problems for both types of loading cases: (1) synchronized in time and (2) unsynchronized and statistically uncorrelated in time. For the first time, large scale plate bending problems subjected to unsynchronized load are solved using parallel computing capabilities to account for computational burden due to the simulation of the unsynchronized random pressure fluctuations. The main focus of the research work is placed upon computational issues involved in the nonlinear modal methodologies. A nonlinear FEM method in time domain is incorporated with the Monte Carlo simulation and sparse computational technologies, including the efficient sparse Subspace Eigen-solutions are presented and applied to accurately determine the random response with a refined, large finite element mesh for the first time. Sparse equation solver and sparse matrix operations embedded inside the subspace Eigen-solution algorithms are also exploited. The approach uses the von-Karman nonlinear strain-displacement relations and the classical plate theory. In the proposed methodologies, the solution for a small number (say less than 100) of lowest linear, sparse Eigen-pairs need to be solved for only once, in order to transform nonlinear large displacements from the conventional structural degree-of-freedom (dof) into the modal

  10. NIKE2D: a vectorized, implicit, finite-deformation, finite-element code for analyzing the static and dynamic response of 2-D solids

    SciTech Connect

    Hallquist, J.O.

    1983-02-01

    This report provides a user's manual for NIKE2D and a brief description of the implicit algorithm. Sample applications are presented including a simulation of the necking of a uniaxial tension specimen, a static analysis of an O-ring seal, and a cylindrical bar impacting a rigid wall. NIKE2D is a fully vectorized, implicit, finite-deformation, large-strain, finite-element code for analyzing the response of two-dimensional axisymmetric and plane-strain solids. A variety of loading conditions can be handled including traction boundary conditions, displacement boundary conditions, concentrated nodal point laods, body force loads due to base accelerations, and body-force loads due to spinning. Slide-lines with interface friction are available. Elastic, orthotropic-elastic-plastic, thermo-elastic-plactic, soil and crushable foam, linear viscoelastic, thermo-orthotropic elastic, and elastic-creep materials models are implemented. Nearly incompressible behavior that arises in plasticity problems and elasticity problems with Poisson's ratio approaching 0.5 is accounted for in the element formulation to preclude mesh lock-ups and associated anomalous stress states. Four-node isoparametric elements are used for the spatial discretization, and profile (bandwidth) minimization is optional.

  11. Finite Element Analysis of the Random Response Suppression of Composite Panels at Elevated Temperatures using Shape Memory Alloy Fibers

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Zhong, Z. W.; Mei, Chuh

    1994-01-01

    A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.

  12. Short Time Impulse Response Function (STIRF) for automatic evaluation of the variation of the dynamic parameters of reinforced concrete framed structures during strong earthquakes.

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco

    2015-04-01

    This study presents an innovative strategy for automatic evaluation of the variable fundamental frequency and related damping factor of nonlinear structures during strong motion phases. Most of methods for damage detection are based on the assessment of the variations of the dynamic parameters characterizing the monitored structure. A crucial aspect of these methods is the automatic and accurate estimation of both structural eigen-frequencies and related damping factors also during the nonlinear behaviour. A new method, named STIRF (Short-Time Impulse Response Function - STIRF), based on the nonlinear interferometric analysis combined with the Fourier Transform (FT) here is proposed in order to allow scientists and engineers to characterize frequencies and damping variations of a monitored structure. The STIRF approach helps to overcome some limitation derived from the use of techniques based on simple Fourier Transform. These latter techniques provide good results when the response of the monitored system is stationary, but fails when the system exhibits a non-stationary, time-varying behaviour: even non-stationary input, soil-foundation and/or adjacent structures interaction phenomena can show the inadequacy of classic techniques to analysing the nonlinear and/or non-stationary behaviour of structures. In fact, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results also during the strong motion phase. Results are consistent with those expected if compared with other techniques. The main advantage derived from the use of the proposed approach (STIRF) for Structural Health Monitoring is based on the simplicity of the interpretation of the nonlinear variations of the fundamental frequency and the related equivalent viscous damping factor. The proposed methodology has been tested on both numerical and experimental models also using data retrieved from shaking table tests. Based on

  13. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    SciTech Connect

    Shin, Taeho; Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A.; Kandyla, Maria

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  14. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation.

    PubMed

    Shin, Taeho; Teitelbaum, Samuel W; Wolfson, Johanna; Kandyla, Maria; Nelson, Keith A

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  15. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation.

    PubMed

    Shin, Taeho; Teitelbaum, Samuel W; Wolfson, Johanna; Kandyla, Maria; Nelson, Keith A

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation. PMID:26590551

  16. Different subtypes of impulsivity differentiate uncontrolled eating and dietary restraint.

    PubMed

    Leitch, Margaret A; Morgan, Michael J; Yeomans, Martin R

    2013-10-01

    The current study explored the relationship between three subtypes of impulsivity (Reflection Impulsivity, Impulsive Choice, and Impulsive Action) and measures of uncontrolled eating (TFEQ-D) and restraint (TFEQ-R). Eighty women classified as scoring higher or lower on TFEQ-D and TFEQ-R completed the Matching Familiar Figures Test (MFFT20), Delay Discounting Task (DDT), a Go No Go task, Balloon Analogue Risk Task (BART), and the Barrett Impulsivity Scale-11 (BIS-11). To test whether these relationships were affected by enforced controls overeating, half of the participants fasted the night before and ate breakfast in the laboratory before testing and half had no such control. Women scoring higher on the TFEQ-D were significantly more impulsive on the MFFT20 and BIS-11 overall but not on DDT, Go No Go or BART. Women scoring higher on TFEQ-R were significantly less impulsive on the Go No Go task but did not differ on other measures. The eating manipulation modulated responses on the BART and BIS-11 non-planning scale depending on TFEQ-D classification. These results confirm recent data that high scores on TFEQ-D are related to impulsivity, but imply this relates more to Reflection Impulsivity rather than Impulsive Choice or Action. In contrast restrained eating was associated with better inhibitory control. Taken together, these results suggest that subtypes of impulsivity further differentiate uncontrolled eating and restraint, and suggest that a poor ability to reflect on decisions may underlie some aspects of overeating.

  17. Quantifying crustal response to deep active intrusions with geodesy-based finite element modeling

    NASA Astrophysics Data System (ADS)

    Henderson, S. T.; Pritchard, M. E.; Elliott, J.

    2013-12-01

    The Altiplano-Puna Volcanic Complex (APVC, 21-24 S, 66-69 W) is a first order feature of the Central Andes Volcanic Arc. The APVC consists of over 10,000 km^3 of dacitic ignimbrites deposited in the late Miocene, making it one of the largest concentrations of silicic volcanism in the world. The persistent and intense magmatic flux in this region has likely contributed to the thickened crust (50-70 km), elevated geotherm (>50 C/km) and extensive partial melt (<20 %) inferred under the APVC in modern times. Furthermore, satellite geodetic measurements show surface deformation centered on Uturuncu Volcano (22.27 S, 67.22 W) that is consistent with an ongoing magmatic intrusion in the middle to lower crust. The unique geologic setting and availability of multiple geophysical datasets provide an exceptional opportunity to locate fluid accumulation depths and model the resulting crustal mechanical response. InSAR data between 05/1992 and 01/2011 show that the deformation anomaly is characterized by axis-symmetric constant vertical uplift of 1-10 mm/yr over a radius of 35 km, which is surrounded by 1-4 mm/yr subsidence out to 75 km. One possible explanation for such a signal is diapiric rise of melt from the middle crust. We seek to determine if observed deformation can be alternatively explained by vertical ascent of magma from the lower (~70 km) to middle crust (~20 km). Such a model would be consistent with the short duration of deformation from geomorphic studies (less than 2200 years) and the potential abrupt cessation of uplift seen in a single continuous GPS station starting in 04/2010 near the center of deformation. We therefore test multiple finite element models that match spatial and temporal surface deformation, achieve mass balance between source and sink reservoirs, and require physically realistic rheological parameters of the crust. Modeling is performed with Pylith finite element software on a cylindrical three dimensional domain with a radius of 300 km

  18. Time-fixed rendezvous by impulse factoring with an intermediate timing constraint. [for transfer orbits

    NASA Technical Reports Server (NTRS)

    Green, R. N.; Kibler, J. F.; Young, G. R.

    1974-01-01

    A method is presented for factoring a two-impulse orbital transfer into a three- or four-impulse transfer which solves the rendezvous problem and satisfies an intermediate timing constraint. Both the time of rendezvous and the intermediate time of a alinement are formulated as any element of a finite sequence of times. These times are integer multiples of a constant plus an additive constant. The rendezvous condition is an equality constraint, whereas the intermediate alinement is an inequality constraint. The two timing constraints are satisfied by factoring the impulses into collinear parts that vectorially sum to the original impulse and by varying the resultant period differences and the number of revolutions in each orbit. Five different types of solutions arise by considering factoring either or both of the two impulses into two or three parts with a limit for four total impulses. The impulse-factoring technique may be applied to any two-impulse transfer which has distinct orbital periods.

  19. Maternal overreactive sympathetic nervous system responses to repeated infant crying predicts risk for impulsive harsh discipline of infants.

    PubMed

    Joosen, Katharina J; Mesman, Judi; Bakermans-Kranenburg, Marian J; van Ijzendoorn, Marinus H

    2013-11-01

    Physiological reactivity to repeated infant crying was examined as a predictor of risk for harsh discipline use with 12-month-olds in a longitudinal study with 48 low-income mother-infant dyads. Physiological reactivity was measured while mothers listened to three blocks of infant cry sounds in a standard cry paradigm when their infants were 3 months old. Signs of harsh discipline use were observed during two tasks during a home visit when the infants were 12 months old. Mothers showing signs of harsh discipline (n = 10) with their 12-month-olds were compared to mothers who did not (n = 38) on their sympathetic (skin conductance levels [SCL]) and parasympathetic (respiratory sinus arrhythmia) reactivity to the cry sounds. Results showed a significant interaction effect for sympathetic reactivity only. Mean SCL of harsh-risk mothers showed a significant different response pattern from baseline to crying and onward into the recovery, suggesting that mean SCL of mothers who showed signs of harsh discipline continued to rise across the repeated bouts of cry sounds while, after an initial increase, mean SCL level of the other mothers showed a steady decline. We suggest that harsh parenting is reflected in physiological overreactivity to negative infant signals and discuss our findings from a polyvagal perspective. PMID:23836807

  20. Maternal overreactive sympathetic nervous system responses to repeated infant crying predicts risk for impulsive harsh discipline of infants.

    PubMed

    Joosen, Katharina J; Mesman, Judi; Bakermans-Kranenburg, Marian J; van Ijzendoorn, Marinus H

    2013-11-01

    Physiological reactivity to repeated infant crying was examined as a predictor of risk for harsh discipline use with 12-month-olds in a longitudinal study with 48 low-income mother-infant dyads. Physiological reactivity was measured while mothers listened to three blocks of infant cry sounds in a standard cry paradigm when their infants were 3 months old. Signs of harsh discipline use were observed during two tasks during a home visit when the infants were 12 months old. Mothers showing signs of harsh discipline (n = 10) with their 12-month-olds were compared to mothers who did not (n = 38) on their sympathetic (skin conductance levels [SCL]) and parasympathetic (respiratory sinus arrhythmia) reactivity to the cry sounds. Results showed a significant interaction effect for sympathetic reactivity only. Mean SCL of harsh-risk mothers showed a significant different response pattern from baseline to crying and onward into the recovery, suggesting that mean SCL of mothers who showed signs of harsh discipline continued to rise across the repeated bouts of cry sounds while, after an initial increase, mean SCL level of the other mothers showed a steady decline. We suggest that harsh parenting is reflected in physiological overreactivity to negative infant signals and discuss our findings from a polyvagal perspective.

  1. Impulsivity and methamphetamine use.

    PubMed

    Semple, Shirley J; Zians, Jim; Grant, Igor; Patterson, Thomas L

    2005-09-01

    The purpose of this study was to explore the relationship between methamphetamine (meth) use and impulsivity in a sample of 385 HIV-negative heterosexually identified meth users. Participants who scored highest on a self-report measure of impulsivity were compared with those who scored lower in terms of background characteristics, meth use patterns, use of alcohol and other illicit drugs, sexual risk behavior, and psychiatric health variables. Methamphetamine users in the high impulsivity group were younger, less educated, used larger quantities of meth, were more likely to be binge users, had a larger number of sexual partners, engaged in more unprotected vaginal and oral sex, and scored higher on the Beck Depression Inventory as compared with those in the low impulsivity group. In a logistic regression analysis, Beck depression was the factor that best distinguished between meth users who scored high and those who scored low on impulsivity. Neurophysiological pathways that may underlie the relationship between impulsivity and meth use are discussed. PMID:16135337

  2. The role of retardation in the structure and linear response of finite nuclei

    SciTech Connect

    Crecca, M.A.

    1989-01-01

    Conventional random phase approximation (RPA) and Tamm-Dancoff approximation (TDA) calculations of nuclear structure and the linear response employ interactions between nucleons that are instantaneous. However, N-N interactions derived from the exchange of mesons between nucleons must depend on the space-time separation of the nucleons since the mesons travel at finite speeds. Furthermore, a quantum field theory that contains interacting meson and nucleon degrees of freedom employ the Feynman propagator, i{Delta}{sub F}(x - x{prime}), to connect the nucleon-meson vertices of Feynman diagrams. This raises the question of whether calculations done with space-time dependent interactions differ significantly from the conventional calculations that employ instantaneous forces, and what are the qualitative features of the difference. The inquiry into this question begins by generalizing the traditional RPA and TDA equations into the domain of retarded (space-time dependant) interactions. This entails establishing an integral equation (the Bethe-Salpeter equation) for the polarization propagator with the appropriate RPA or TDA kernel such that the integral equation reduces to the usual RPA or TDA matrix equation for the polarization propagator as the interaction becomes instantaneous. After establishing this generalization of the RPA and TDA, a TDA calculation is performed for an interaction arising from the exchange of a scalar meson. The results are compared with those obtained from the conventional instantaneous reduction of the scalar meson exchange interaction, the Yukawa potential. Upon comparing these results one finds that in general the nuclear structure obtained from scalar meson exchange differ little less than 10%.

  3. Finite element comparison of human and Hybrid III responses in a frontal impact.

    PubMed

    Danelson, Kerry A; Golman, Adam J; Kemper, Andrew R; Gayzik, F Scott; Clay Gabler, H; Duma, Stefan M; Stitzel, Joel D

    2015-12-01

    The improvement of finite element (FE) Human Body Models (HBMs) has made them valuable tools for investigating restraint interactions compared to anthropomorphic test devices (ATDs). The objective of this study was to evaluate the effect of various combinations of safety restraint systems on the sensitivity of thoracic injury criteria using matched ATD and Human Body Model (HBM) simulations at two crash severities. A total of seven (7) variables were investigated: 3-point belt with two (2) load limits, frontal airbag, knee bolster airbag, a buckle pretensioner, and two (2) delta-v's - 40kph and 50kph. Twenty four (24) simulations were conducted for the Hybrid III ATD FE model and repeated with a validated HBM for 48 total simulations. Metrics tested in these conditions included sternum deflection, chest acceleration, chest excursion, Viscous Criteria (V*C) criteria, pelvis acceleration, pelvis excursion, and femur forces. Additionally, chest band deflection and rib strain distribution were measured in the HBM for additional restraint condition discrimination. The addition of a frontal airbag had the largest effect on the occupant chest metrics with an increase in chest compression and acceleration but a decrease in excursion. While the THUMS and Hybrid III occupants demonstrated the same trend in the chest compression measurements, there were conflicting results in the V*C, acceleration, and displacement metrics. Similarly, the knee bolster airbag had the largest effect on the pelvis with a decrease in acceleration and excursion. With a knee bolster airbag the simulated occupants gave conflicting results, the THUMS had a decrease in femur force and the ATD had an increase. Preferential use of dummies or HBM's is not debated; however, this study highlights the ability of HBM metrics to capture additional chest response metrics. PMID:26432065

  4. Impulse noise generator--design and operation.

    PubMed

    Brinkmann, H

    1991-01-01

    In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far.

  5. Impulse noise generator--design and operation.

    PubMed

    Brinkmann, H

    1991-01-01

    In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far. PMID:1842469

  6. The electromagnetic response of a relativistic Fermi gas at finite temperatures: Applications to condensed-matter systems

    NASA Astrophysics Data System (ADS)

    Reyes-Gómez, E.; Oliveira, L. E.; de Carvalho, C. A. A.

    2016-04-01

    We investigate the electromagnetic response of a relativistic Fermi gas at finite temperatures. Our theoretical results are first-order in the fine-structure constant. The electromagnetic permittivity and permeability are introduced via general constitutive relations in reciprocal space, and computed for different values of the gas density and temperature. As expected, the electric permittivity of the relativistic Fermi gas is found in good agreement with the Lindhard dielectric function in the low-temperature limit. Applications to condensed-matter physics are briefly discussed. In particular, theoretical results are in good agreement with experimental measurements of the plasmon energy in graphite and tin oxide, as functions of both the temperature and wave vector. We stress that the present electromagnetic response of a relativistic Fermi gas at finite temperatures could be of potential interest in future plasmonic and photonic investigations.

  7. Optimal impulsive trajectories for orbital rendezvous between elliptic orbits

    NASA Astrophysics Data System (ADS)

    Cheng, Ching-Wei

    1992-01-01

    This study uses and extends primer vector theory to obtain a minimum-fuel two or multiple impulse solution for co-planar and non co-planar elliptic-to-elliptic, time-fixed rendezvous. Lawden's conditions for an optimal impulsive trajectory and three additional methods to improve the non-optimal multiple impulse are introduced. To extend a 3-Impulse differential cost function provided by Jezewski and Rozendaal, the general differential cost function for an N-Impulse trajectory is developed. This approach defines the gradient vector for any set of boundary conditions. To determine the number of impulses, times, and locations for multiple-impulse optimal trajectories automatically, a computer program is developed. This software has been thoroughly tested in a wide variety of rendezvous situations. The singularity for a transfer angle of 180 degrees and the singular case of sin I = 0 are also accounted for in the program. Part of this work was accomplished using the Generalized Reduced Gradient method using its associated GRG2 computer code. The effects of inclination between the vehicle and target orbits, the initial positions of the vehicle and target, and the direction of the major axes are considered. Numerical results for several different orbit configurations are produced and discussed. The results are compared with the Hohmann/Hohmann type transfer and/or the optimal, finite, three-impulse transfer.

  8. The Use of Direct Solver in Vector Finite Element Modeling for Calculating 3-D Magnetotelluric Responses

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2016-08-01

    In this work, we seek numerical solution of 3-D Magnetotelluric (MT) using edge- based finite element method. This approach is a variant of standard finite element method and commonly referred as vector finite-element (VFE) method. Nonphysical solutions usually occurred when the solution is sought using standard finite element which is a node based element. Vector finite element attempt to overcome those nonphysical solutions by using the edges of the element as vector basis. The proposed approach on solving second order Maxwell differential equation of 3-D MT is using direct solver rather than iterative method. Therefore, divergence correction to accelerate the rate of convergence for its iterative solution is no longer needed. The utilization of direct solver has been verified previously for correctness by comparing the resulting solution to those given by analytical solution, as well as the solution come from the other numerical methods, for earth layered model, 2-D models and COMMEMI 3D-2 model. In this work, further verification resulted from recent comparison model of Dublin Test Model 1 (DTM1) is presented.

  9. Genetic association of impulsivity in young adults: a multivariate study

    PubMed Central

    Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D

    2014-01-01

    Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255

  10. Biomechanical Dynamics of Cranial Sutures during Simulated Impulsive Loading

    PubMed Central

    Zhang, Z. Q.; Yang, J. L.

    2015-01-01

    Background. Cranial sutures are deformable joints between the bones of the skull, bridged by collagen fibres. They function to hold the bones of the skull together while allowing for mechanical stress transmission and deformation. Objective. The aim of this study is to investigate how cranial suture morphology, suture material property, and the arrangement of sutural collagen fibres influence the dynamic responses of the suture and surrounding bone under impulsive loads. Methods. An idealized bone-suture-bone complex was analyzed using a two-dimensional finite element model. A uniform impulsive loading was applied to the complex. Outcome variables of von Mises stress and strain energy were evaluated to characterize the sutures' biomechanical behavior. Results. Parametric studies revealed that the suture strain energy and the patterns of Mises stress in both the suture and surrounding bone were strongly dependent on the suture morphologies. Conclusions. It was concluded that the higher order hierarchical suture morphology, lower suture elastic modulus, and the better collagen fiber orientation must benefit the stress attenuation and energy absorption. PMID:27019589

  11. International comparison of HV impulse measuring systems

    SciTech Connect

    McComb, T.R.; Hughes, R.C.; Lightfoot, H.A.; Schon, K.; Schulte, R.; McKnight, R.; Zhang, Y.X.

    1989-04-01

    Present standards for qualifying HV impulse measuring systems by unit-step-response parameters are complex and difficult to apply and some systems, which have response parameters within the limits of the standards, have unacceptable errors. This paper takes the first step in providing a simplified method based on simultaneous measurements of an HV impulse by a reference system and the system under test. Comparative measurements have been made in four National Laboratories and the relative differences are reported. The results are discussed and the further work which is required is outlined.

  12. Optically measured explosive impulse

    NASA Astrophysics Data System (ADS)

    Biss, Matthew M.; McNesby, Kevin L.

    2014-06-01

    An experimental technique is investigated to optically measure the explosive impulse produced by laboratory-scale spherical charges detonated in air. Explosive impulse has historically been calculated from temporal pressure measurements obtained via piezoelectric transducers. The presented technique instead combines schlieren flow visualization and high-speed digital imaging to optically measure explosive impulse. Prior to an explosive event, schlieren system calibration is performed using known light-ray refractions and resulting digital image intensities. Explosive charges are detonated in the test section of a schlieren system and imaged by a high-speed digital camera in pseudo-streak mode. Spatiotemporal schlieren intensity maps are converted using an Abel deconvolution, Rankine-Hugoniot jump equations, ideal gas law, triangular temperature decay profile, and Schardin's standard photometric technique to yield spatiotemporal pressure maps. Temporal integration of individual pixel pressure profiles over the positive pressure duration of the shock wave yields the explosive impulse generated for a given radial standoff. Calculated explosive impulses are shown to exhibit good agreement between optically derived values and pencil gage pressure transducers.

  13. [Impulsivity and compulsivity in cocaine dependent individuals].

    PubMed

    Fernández-Serrano, María José; Cesar Peraleslópez, José; Moreno-López, Laura; Santos-Ruiz, Ana; Pérez-García, Miguel; Verdejogarcía, Antonio

    2012-01-01

    A recent theoretical approach describes addiction as a dynamic behavioural change process on the impulsivity-compulsivity axis. However, on the basis of current evidence, it is still difficult to establish a selective association between the course of addiction and individual transition along this axis. The aim of this study is to categorize each of the individuals in a sample of cocaine-dependent patients (CDI) as mainly impulsive or mainly compulsive, on the basis of their performance in neuropsychological inhibition and perseveration tests, and to test the association between the assigned category and their scores in trait impulsivity, and severity of cocaine addiction (measured by means of self-report assessment tools). A total of 42 CDI and 65 healthy control individuals (HCI) were assessed using the UPPS-P Scale (to explore trait impulsivity), the Stroop and Go/No Go (to assess response inhibition), and Revised-Strategy Application and Probabilistic Reversal tests (to assess response perseveration). Forty-five per cent of the CDIs were classified as compulsive, and this subgroup scored significantly higher than the impulsive group on the UPPS-P dimensions of lack of perseverance and lack of premeditation. A substantial proportion of CDIs can be classified as compulsive. No differences between compulsive and impulsive CDIs were found with regard to severity of exposure to cocaine; however, patients classified as compulsive by means of neuropsychological tasks are less perseverative in the pursuit of long-term objectives and more prone to make under-meditated decisions, as shown by trait impulsivity assessment questionnaires. PMID:22648313

  14. Finite-time Lyapunov exponents and metabolic control coefficients for threshold detection of stimulus-response curves.

    PubMed

    Duc, Luu Hoang; Chávez, Joseph Páez; Son, Doan Thai; Siegmund, Stefan

    2016-01-01

    In biochemical networks transient dynamics plays a fundamental role, since the activation of signalling pathways is determined by thresholds encountered during the transition from an initial state (e.g. an initial concentration of a certain protein) to a steady-state. These thresholds can be defined in terms of the inflection points of the stimulus-response curves associated to the activation processes in the biochemical network. In the present work, we present a rigorous discussion as to the suitability of finite-time Lyapunov exponents and metabolic control coefficients for the detection of inflection points of stimulus-response curves with sigmoidal shape. PMID:27416142

  15. Impulse-Momentum Diagrams

    NASA Astrophysics Data System (ADS)

    Rosengrant, David

    2011-01-01

    Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists.2 These representations include: pictures, free-body diagrams,3 energy bar charts,4 electrical circuits, and, more recently, computer simulations and animations.5 However, instructors have limited choices when they want to help their students understand impulse and momentum. One of the only available options is the impulse-momentum bar chart.6 The bar charts can effectively show the magnitude of the momentum as well as help students understand conservation of momentum, but they do not easily show the actual direction. This paper highlights a new representation instructors can use to help their students with momentum and impulse—the impulse-momentum diagram (IMD).

  16. Finite Mixture Dynamic Regression Modeling of Panel Data with Implications for Dynamic Response Analysis

    ERIC Educational Resources Information Center

    Kaplan, David

    2005-01-01

    This article considers the problem of estimating dynamic linear regression models when the data are generated from finite mixture probability density function where the mixture components are characterized by different dynamic regression model parameters. Specifically, conventional linear models assume that the data are generated by a single…

  17. Dynamic and thermal response finite element models of multi-body space structural configurations

    NASA Technical Reports Server (NTRS)

    Edighoffer, Harold H.

    1987-01-01

    Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.

  18. Ballistic impulse gauge

    DOEpatents

    Ault, S.K.

    1993-12-21

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring. 4 figures.

  19. Ballistic impulse gauge

    DOEpatents

    Ault, Stanley K.

    1993-01-01

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.

  20. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    SciTech Connect

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  1. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  2. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  3. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  4. [Obsession-impulsion infanticide].

    PubMed

    Gourévitch, Michel

    2006-01-01

    In 1836, the case-history of a young mother, the victim of a phobia of the impulsion to murder her infant. Esquirol considers her case as one of homocidial monomania, and classifies her among psychotic patients who have actually killed.

  5. Irresistible impulse: legal viewpoint.

    PubMed

    Borichansky, L

    1989-01-01

    The legal point of view concerning irresistible impulse as an exemption from criminal liability is discussed. A defendant who pleads that at the time of committing an illegal act he was suffering from a mental disease must prove to the court that his version is the most possible one.

  6. Impulsivity, Frontal Lobes and Risk for Addiction

    PubMed Central

    Crews, Fulton Timm; Boettiger, Charlotte Ann

    2009-01-01

    Alcohol and substance abuse disorders involve continued use of substances despite negative consequences, i.e. loss of behavioral control of drug use. The frontal cortical areas of brain oversee behavioral control through executive functions. Executive functions include abstract thinking, motivation, planning, attention to tasks and inhibition of impulsive responses. Impulsiveness generally refers to premature, unduly risky, poorly conceived actions. Dysfunctional impulsivity includes deficits in attention, lack of reflection and/or insensitivity to consequences, all of which occur in addiction (Evenden, 1999; (de Wit, 2009). Binge drinking models indicate chronic alcohol damages corticolimbic brain regions (Crews et al., 2000) causing reversal learning deficits indicative of loss of executive function (Obernier et al., 2002b). Genetics and adolescent age are risk factors for alcoholism that coincide with sensitivity to alcohol induced neurotoxicity. Cortical degeneration from alcohol abuse may increase impulsivity contributing to the development, persistence and severity of alcohol use disorders. Interestingly, abstinence results in bursts of neurogenesis and brain regrowth (Crews and Nixon, 2009). Treatments for alcoholism, including naltrexone pharmacotherapy and psychotherapy may work through improving executive functions. This review will examine the relationships between impulsivity and executive function behaviors to changes in cortical structure during alcohol dependence and recovery. PMID:19410598

  7. Sensitivity Analysis of Flutter Response of a Wing Incorporating Finite-Span Corrections

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian; Kapania, Rakesh K.; Barthelemy, Jean-Francois M.

    1994-01-01

    Flutter analysis of a wing is performed in compressible flow using state-space representation of the unsteady aerodynamic behavior. Three different expressions are used to incorporate corrections due to the finite-span effects of the wing in estimating the lift-curve slope. The structural formulation is based on a Rayleigh-Pitz technique with Chebyshev polynomials used for the wing deflections. The aeroelastic equations are solved as an eigen-value problem to determine the flutter speed of the wing. The flutter speeds are found to be higher in these cases, when compared to that obtained without accounting for the finite-span effects. The derivatives of the flutter speed with respect to the shape parameters, namely: aspect ratio, area, taper ratio and sweep angle, are calculated analytically. The shape sensitivity derivatives give a linear approximation to the flutter speed curves over a range of values of the shape parameter which is perturbed. Flutter and sensitivity calculations are performed on a wing using a lifting-surface unsteady aerodynamic theory using modules from a system of programs called FAST.

  8. Steep front short duration low voltage impulse performance of distribution transformers

    SciTech Connect

    Burrage, L.M.; Veverka, E.F.; McConnell, B.W.

    1987-01-01

    An extensive literature search of steep front short duration (SFSD) impulse sources, their characteristics and effect on power system equipment has led to the specification of a test program to evaluate key apparatus and insulations. Distribution transformers, although not overly susceptible to impulse damage, have been selected as one of the candidate apparatus for low and high voltage SFSD impulse tests. This paper covers the low voltage SFSD impulse response of conventional oil insulated shell form and core form distribution transformers.

  9. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    NASA Astrophysics Data System (ADS)

    Çelebi, E.; Göktepe, F.; Karahan, N.

    2012-11-01

    The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D) finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI) system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  10. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  11. Neural mechanisms of response inhibition and impulsivity in 22q11.2 deletion carriers and idiopathic attention deficit hyperactivity disorder.

    PubMed

    Montojo, C A; Congdon, E; Hwang, L; Jalbrzikowski, M; Kushan, L; Vesagas, T K; Jonas, R K; Ventura, J; Bilder, R M; Bearden, C E

    2015-01-01

    •22q11DS offers a compelling model to understand the neural substrates of attentional dysfunction.•First study directly comparing neural function in 22q11DS vs. ADHD patients•22q11DS and ADHD patients show a shared deficit in RI-related activation.•ADHD patients showed greater activity in the middle frontal gyrus than 22q11DS during RI.•Neural activity is inversely correlated with self-reported Cognitive Impulsivity in 22q11DS. PMID:26509118

  12. Waiting Impulsivity: The Influence of Acute Methylphenidate and Feedback

    PubMed Central

    Chang-Webb, Yee Chien; Morris, Laurel S.; Cooper, Ella; Sethi, Arjun; Baek, Kwangyeol; Grant, Jon; Robbins, Trevor W.; Harrison, Neil A

    2016-01-01

    Background: The ability to wait and to weigh evidence is critical to behavioral regulation. These behaviors are known as waiting and reflection impulsivity. In Study 1, we examined the effects of methylphenidate, a dopamine and norepinephrine reuptake inhibitor, on waiting and reflection impulsivity in healthy young individuals. In study 2, we assessed the role of learning from feedback in disorders of addiction. Methods: We used the recently developed 4-Choice Serial Reaction Time task and the Beads task. Twenty-eight healthy volunteers were tested twice in a randomized, double-blind, placebo-controlled cross-over trial with 20mg methylphenidate. In the second study, we analyzed premature responses as a function of prior feedback in disorders of addiction. Results: Study 1: Methylphenidate was associated with greater waiting impulsivity to a cue predicting reward along with faster responding to target onset without a generalized effect on reaction time or attention. Methylphenidate influenced reflection impulsivity based on baseline impulsivity. Study 2: More premature responses occurred after premature responses in stimulant-dependent subjects. Conclusions: We show that methylphenidate has dissociable effects on waiting and reflection impulsivity. Chronic stimulant exposure impairs learning from prior premature responses, suggesting a failure to learn that premature responding is suboptimal. These findings provide a greater mechanistic understanding of waiting impulsivity. PMID:26136351

  13. A finite element model technique to determine the mechanical response of a lumbar spine segment under complex loads.

    PubMed

    Tsouknidas, Alexander; Michailidis, Nikoalos; Savvakis, Savvas; Anagnostidis, Kleovoulos; Bouzakis, Konstantinos-Dionysios; Kapetanos, Georgios

    2012-08-01

    This study presents a CT-based finite element model of the lumbar spine taking into account all function-related boundary conditions, such as anisotropy of mechanical properties, ligaments, contact elements, mesh size, etc. Through advanced mesh generation and employment of compound elements, the developed model is capable of assessing the mechanical response of the examined spine segment for complex loading conditions, thus providing valuable insight on stress development within the model and allowing the prediction of critical loading scenarios. The model was validated through a comparison of the calculated force-induced inclination/deformation and a correlation of these data to experimental values. The mechanical response of the examined functional spine segment was evaluated, and the effect of the loading scenario determined for both vertebral bodies as well as the connecting intervertebral disc. PMID:22086145

  14. A finite element model technique to determine the mechanical response of a lumbar spine segment under complex loads.

    PubMed

    Tsouknidas, Alexander; Michailidis, Nikoalos; Savvakis, Savvas; Anagnostidis, Kleovoulos; Bouzakis, Konstantinos-Dionysios; Kapetanos, Georgios

    2012-08-01

    This study presents a CT-based finite element model of the lumbar spine taking into account all function-related boundary conditions, such as anisotropy of mechanical properties, ligaments, contact elements, mesh size, etc. Through advanced mesh generation and employment of compound elements, the developed model is capable of assessing the mechanical response of the examined spine segment for complex loading conditions, thus providing valuable insight on stress development within the model and allowing the prediction of critical loading scenarios. The model was validated through a comparison of the calculated force-induced inclination/deformation and a correlation of these data to experimental values. The mechanical response of the examined functional spine segment was evaluated, and the effect of the loading scenario determined for both vertebral bodies as well as the connecting intervertebral disc.

  15. Dielectric Response and Born Dynamic Charge of BN Nanotubes from Ab Initio Finite Electric Field Calculations

    NASA Astrophysics Data System (ADS)

    Guo, Guang-Yu; Ishibashi, Shoji; Tamura, Tomoyuki; Terakura, Kiyoyuki

    2007-03-01

    Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima, carbon and other nanotubes have attracted considerable interest worldwide because of their unusual properties and also great potentials for technological applications. Though CNTs continue to attract great interest, other nanotubes such as BN nanotubes (BN-NTs) may offer different opportunities that CNTs cannot provide. In this contribution, we present the results of our recent systematic ab initio calculations of the static dielectric constant, electric polarizability, Born dynamical charge, electrostriction coefficient and piezoelectric constant of BN-NTs using the latest crystalline finite electric field theory [1]. [1] I. Souza, J. Iniguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002); P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002).

  16. Heroin and amphetamine users display opposite relationships between trait and neurobehavioral dimensions of impulsivity

    PubMed Central

    Vassileva, Jasmin; Paxton, Jessica; Moeller, F. Gerard; Wilson, Michael; Bozgunov, Kiril; Martin, Eileen; Gonzalez, Raul; Vasilev, Georgi

    2014-01-01

    The multidimensional construct of impulsivity is implicated in all phases of the addiction cycle. Substance dependent individuals (SDIs) demonstrate elevated impulsivity on both trait and laboratory tests of neurobehavioral impulsivity; however our understanding of the relationship between these different aspects of impulsivity in users of different classes of drugs remains rudimentary. The goal of this study was to assess for commonalities and differences in the relationships between trait and neurobehavioral impulsivity in heroin and amphetamine addicts. Participants included 58 amphetamine dependent (ADI) and 74 heroin dependent individuals (HDI) in protracted abstinence. We conducted principal components analyses (PCA) on two self-report trait and six neurobehavioral measures of impulsivity, which resulted in two trait impulsivity (action, planning) and four neurobehavioral impulsivity composites (discriminability, response inhibition efficiency, decision-making efficiency, quality of decision-making). Multiple regression analyses were used to determine whether neurobehavioral impulsivity is predicted by trait impulsivity and drug type. The analyses revealed a significant interaction between drug type and trait action impulsivity on response inhibition efficiency, which showed opposite relationships for ADIs and HDIs. Specifically, increased trait action impulsivity was associated with worse response inhibition efficiency in ADIs, but with better efficiency in HDIs. These results challenge the unitary account of drug addiction and contribute to a growing body of literature that reveals important behavioral, cognitive, and neurobiological differences between users of different classes of drugs. PMID:24342174

  17. Different subtypes of impulsivity differentiate uncontrolled eating and dietary restraint.

    PubMed

    Leitch, Margaret A; Morgan, Michael J; Yeomans, Martin R

    2013-10-01

    The current study explored the relationship between three subtypes of impulsivity (Reflection Impulsivity, Impulsive Choice, and Impulsive Action) and measures of uncontrolled eating (TFEQ-D) and restraint (TFEQ-R). Eighty women classified as scoring higher or lower on TFEQ-D and TFEQ-R completed the Matching Familiar Figures Test (MFFT20), Delay Discounting Task (DDT), a Go No Go task, Balloon Analogue Risk Task (BART), and the Barrett Impulsivity Scale-11 (BIS-11). To test whether these relationships were affected by enforced controls overeating, half of the participants fasted the night before and ate breakfast in the laboratory before testing and half had no such control. Women scoring higher on the TFEQ-D were significantly more impulsive on the MFFT20 and BIS-11 overall but not on DDT, Go No Go or BART. Women scoring higher on TFEQ-R were significantly less impulsive on the Go No Go task but did not differ on other measures. The eating manipulation modulated responses on the BART and BIS-11 non-planning scale depending on TFEQ-D classification. These results confirm recent data that high scores on TFEQ-D are related to impulsivity, but imply this relates more to Reflection Impulsivity rather than Impulsive Choice or Action. In contrast restrained eating was associated with better inhibitory control. Taken together, these results suggest that subtypes of impulsivity further differentiate uncontrolled eating and restraint, and suggest that a poor ability to reflect on decisions may underlie some aspects of overeating. PMID:23702263

  18. Functional impulsivity and reinforcement sensitivity theory.

    PubMed

    Smillie, Luke D; Jackson, Chris J

    2006-02-01

    In this article, we attempt to integrate Dickman's (1990) descriptive concept of Functional Impulsivity (FI) with Gray's (1970, 1991) Reinforcement Sensitivity Theory (RST). Specifically, we consider that FI bears great conceptual similarity to Gray's concept of reward-reactivity, which is thought to be caused by the combined effects of a Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS). In our first study, we examine the construct validity and structural correlates of FI. Results indicate that FI is related positively to measures of BAS and Extraversion, negatively to measures of BIS and Neuroticism, and is separate from Psychoticism and typical trait Impulsivity, which Dickman calls Dysfunctional Impulsivity (DI). In our second study, we use a go/no-go discrimination task to examine the relationship between FI and response bias under conditions of rewarding and punishing feedback. Results indicate that FI, along with two measures of BAS, predicted the development of a response bias for the rewarded alternative. In comparison, high DI appeared to reflect indifference toward either reward or punishment. We consider how these findings might reconcile the perspectives of Gray and Dickman and help clarify the broader understanding of Impulsivity.

  19. Impulse Testing of Corporate-Fed Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F.

    2011-01-01

    This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies

  20. The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Soo; Kyum Kim, Moon

    2012-08-01

    In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.

  1. Active control of the forced and transient response of a finite beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John T.

    1990-01-01

    Structural vibrations from a point force are modelled on a finite beam. This research explores the theoretical limit on controlling beam vibrations utilizing another point source as an active controller. Three different types of excitation are considered, harmonic, random, and transient. For harmonic excitation, control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam. Control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, integrating the expected value of the displacement squared over the required interval, is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. The form of the controller is specified as either one or two delayed pulses, thus constraining the controller to be casual. The best possible control is examined while varying the region of control and the controller location. It is found that control is always possible using either one or two control pulses.

  2. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    SciTech Connect

    Franco-Pérez, Marco E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Ayers, Paul W. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Gázquez, José L. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Vela, Alberto E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  3. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  4. Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence?

    PubMed

    Grant, Jon E; Chamberlain, Samuel R

    2014-11-01

    Substance use disorders are prevalent and debilitating. Certain behavioral syndromes ('behavioral addictions') characterized by repetitive habits, such as gambling disorder, stealing, shopping, and compulsive internet use, may share clinical, co-morbid, and neurobiological parallels with substance addictions. This review considers overlap between substance and behavioral addictions with a particular focus on impulsive action (inability to inhibit motor responses), and impulsive choice (preference for immediate smaller rewards to the detriment of long-term outcomes). We find that acute consumption of drugs with abuse potential is capable of modulating impulsive choice and action, although magnitude and direction of effect appear contingent on baseline function. Many lines of evidence, including findings from meta-analyses, show an association between chronic drug use and elevated impulsive choice and action. In some instances, elevated impulsive choice and action have been found to predate the development of substance use disorders, perhaps signifying their candidacy as objective vulnerability markers. Research in behavioral addictions is preliminary, and has mostly focused on impulsive action, finding this to be elevated versus controls, similar to that seen in chronic substance use disorders. Only a handful of imaging studies has explored the neural correlates of impulsive action and choice across these disorders. Key areas for future research are highlighted along with potential implications in terms of neurobiological models and treatment. In particular, future work should further explore whether the cognitive deficits identified are state or trait in nature: i.e. are evident before addiction perhaps signaling risk; or are a consequence of repetitive engagement in habitual behavior; and effects of novel agents known to modulate these cognitive abilities on various addictive disorders.

  5. Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures.

    PubMed

    Tu, Wenqiong; Pindera, Marek-Jerzy

    2013-12-01

    The Particle Swarm Optimization algorithm driven by a homogenized-based model is employed to target the response of three types of heart-valve chordae tendineae with different stiffening characteristics due to different degrees of waviness of collagen fibril/fiber bundles. First, geometric and material parameters are identified through an extensive parametric study that produce excellent agreement of the simulated response based on simplified unit cell architectures with the actual response of the complex biological tissue. These include amplitude and wavelength of the crimped chordae microstructure, elastic moduli of the constituent phases, and degree of microstructural refinement of the stiff phase at fixed volume fraction whose role in the stiffening response is elucidated. The study also reveals potential non-uniqueness of bio-inspired wavy microstructures in attaining the targeted response of certain chordae tendineae crimp configurations. The homogenization-based Particle Swarm Optimization algorithm, whose predictions are validated through the parametric study, is then shown to be an excellent tool in identifying optimal unit cell architectures in the design space that exhibits very steep gradients. Finally, defect criticality of optimal unit cell architectures is investigated in order to assess their feasibility in replacing actual biological tendons with stiffening characteristics. PMID:24018396

  6. Development of a Finite Element Model of the Human Shoulder to Investigate the Mechanical Responses and Injuries in Side Impact

    NASA Astrophysics Data System (ADS)

    Iwamoto, Masami; Miki, Kazuo; Yang, King H.

    Previous studies in both fields of automotive safety and orthopedic surgery have hypothesized that immobilization of the shoulder caused by the shoulder injury could be related to multiple rib fractures, which are frequently life threatening. Therefore, for more effective occupant protection, it is important to understand the relationship between shoulder injury and multiple rib fractures in side impact. The purpose of this study is to develop a finite element model of the human shoulder in order to understand this relationship. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder. The model also included approaches to represent bone fractures and joint dislocations. The relationships between shoulder injury and immobilization of the shoulder are discussed using model responses for lateral shoulder impact. It is also discussed how the injury can be related to multiple rib fractures.

  7. Impulsivity in disorders of food and drug misuse

    PubMed Central

    Mole, Tom B.; Irvine, Michael A.; Worbe, Yulia; Collins, Phoebe; Mitchell, Simon P.; Bolton, Sorcha; Harrison, Neil A.; Robbins, Trevor W.; Voon, Valerie

    2016-01-01

    Background Evidence suggests some overlap between the pathological use of food and drugs, yet how impulsivity compares across these different clinical disorders remains unclear. Substance use disorders are commonly characterized by elevated impulsivity, and impulsivity subtypes may show commonalities and differences in various conditions. We hypothesized that obese subjects with binge eating disorder (BED) and abstinent alcohol-dependent cohorts would have relatively more impulsive profiles compared to obese subjects without BED. We also predicted decision impulsivity impairment in obesity with and without BED. Methods Thirty obese subjects with BED, 30 without BED and 30 abstinent alcohol-dependent subjects and age- and gender-matched controls were tested on delay discounting (preference for a smaller immediate reward over a larger delayed reward), reflection impulsivity (rapid decision making prior to evidence accumulation) and motor response inhibition (action cancellation of a prepotent response). Results All three groups had greater delay discounting relative to healthy volunteers. Both Obese subjects without BED and alcohol dependent subjects had impaired motor response inhibition. Only Obese subjects without BED had impaired integration of available information to optimize outcomes over later trials with a cost condition. Conclusions Delay discounting appears to be a common core impairment across disorders of food and drug intake. Unexpectedly, obese subjects without BED showed greater impulsivity than obese subjects with BED. We highlight the dissociability and heterogeneity of impulsivity subtypes and add to the understanding of neurocognitive profiles across disorders involving food and drugs. Our results have therapeutic implications suggesting that disorder-specific patterns of impulsivity could be targeted. PMID:25118940

  8. Testing the SH1D Assumption for Geotechnical Site and Basin Response Using 3D Finite Difference Modeling

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Pitarka, A.

    2015-12-01

    Current state-of-practice of geotechnical site response and soil-structure analyses generally assume a vertically propagating horizontally polarized plane wave is incident on a plane-layered (one-dimensional) soil column. Ground motions representing the wavefield incident to the bedrock base of the soil column are developed from observed and sometimes scaled time-histories or synthesized by various methods. The site-specific ground motion at the surface is then computed from the response of the soil column to the bedrock incident wavefield, possibly including non-linear response of the geotechnical near-surface. This is the so-called SH1D assumption. While this approach is widely used, it ignores important complexities of the incident wavefield. Specifically, the standard approach assumes: 1) the incident wavefield is only composed of vertically propagating body waves; 2) ignores oblique incidence; and 3) neglects the three-component nature of the wavefield that includes surface waves and rotational motions. Surface waves often carry much of the seismic energy and can excite all three components of motion. Therefore, it seems most appropriate to include the most representative characterization of the incident wavefield in site-specific analyses. We are performing parametric studies with three-dimensional (3D) elastic finite difference simulations to compare the near-surface response of sedimentary basins to horizontally polarized planes (arbitrary incident) and point source (double couple) earthquakes. Simulations involve simple, parametric representations of basin geometries and layered material properties of the sedimentary basin and surrounding hard rock. We compare the frequency-dependent site response for different excitations and attempt to quantify the differences between the plane-wave and fully 3D basin response.

  9. Impulsive phase transport

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Bely-Dubau, Francoise; Brown, John C.; Dulk, George A.; Emslie, A. Gordon; Enome, Shinzo; Gabriel, Alan H.; Kundu, Mukul R.; Melrose, Donald; Neidig, Donald F.

    1986-01-01

    The transport of nonthermal electrons is explored. The thick-target electron beam model, in which electrons are presumed to be accelerated in the corona and typically thermalized primarily in the chromosphere and photosphere, is supported by observations throughout the electromagnetic spectrum. At the highest energies, the anisotropy of gamma-ray emission above 10 MeV clearly indicates that these photons are emitted by anisotropically-directed particles. The timing of this high-energy gamma-radiation with respect to lower-energy hard X-radiation implies that the energetic particles have short life-times. For collisional energy loss, this means that they are stopped in the chromosphere or below. Stereoscopic (two-spacecraft) observations at hard X-ray energies (up to 350 keV) imply that these lower-energy (but certainly nonthermal) electrons are also stopped deep in the chromosphere. Hard X-ray images show that, in spatially resolved flares whose radiation consists of impulsive bursts, the impulsive phase starts with X-radiation that comes mostly from the foot-points of coronal loops whose coronal component is outlined by microwaves.

  10. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    NASA Astrophysics Data System (ADS)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka

  11. Active Control of the Forced and Transient Response of a Finite Beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John Theodore

    1989-01-01

    When studying structural vibrations resulting from a concentrated source, many structures may be modelled as a finite beam excited by a point source. The theoretical limit on cancelling the resulting beam vibrations by utilizing another point source as an active controller is explored. Three different types of excitation are considered, harmonic, random, and transient. In each case, a cost function is defined and minimized for numerous parameter variations. For the case of harmonic excitation, the cost function is obtained by integrating the mean squared displacement over a region of the beam in which control is desired. A controller is then found to minimize this cost function in the control interval. The control interval and controller location are continuously varied for several frequencies of excitation. The results show that control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam, but control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, the cost function is realized by integrating the expected value of the displacement squared over the interval of the beam in which control is desired. This is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. A cost function representative of the beam vibration is obtained by integrating the transient displacement squared over a region of the beam and over all time. The form of the controller is chosen a priori as either one or two delayed pulses. Delays

  12. Validation of Shoulder Response of Human Body Finite-Element Model (GHBMC) Under Whole Body Lateral Impact Condition.

    PubMed

    Park, Gwansik; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R

    2016-08-01

    In previous shoulder impact studies, the 50th-percentile male GHBMC human body finite-element model was shown to have good biofidelity regarding impact force, but under-predicted shoulder deflection by 80% compared to those observed in the experiment. The goal of this study was to validate the response of the GHBMC M50 model by focusing on three-dimensional shoulder kinematics under a whole-body lateral impact condition. Five modifications, focused on material properties and modeling techniques, were introduced into the model and a supplementary sensitivity analysis was done to determine the influence of each modification to the biomechanical response of the body. The modified model predicted substantially improved shoulder response and peak shoulder deflection within 10% of the observed experimental data, and showed good correlation in the scapula kinematics on sagittal and transverse planes. The improvement in the biofidelity of the shoulder region was mainly due to the modifications of material properties of muscle, the acromioclavicular joint, and the attachment region between the pectoralis major and ribs. Predictions of rib fracture and chest deflection were also improved because of these modifications.

  13. The rate dependent response of a bistable chain at finite temperature

    NASA Astrophysics Data System (ADS)

    Benichou, Itamar; Zhang, Yaojun; Dudko, Olga K.; Givli, Sefi

    2016-10-01

    We study the rate dependent response of a bistable chain subjected to thermal fluctuations. The study is motivated by the fact that the behavior of this model system is prototypical to a wide range of nonlinear processes in materials physics, biology and chemistry. To account for the stochastic nature of the system response, we formulate a set of governing equations for the evolution of the probability density of meta-stable configurations. Based on this approach, we calculate the behavior for a wide range of parametric values, such as rate, temperature, overall stiffness, and number of elements in the chain. Our results suggest that fundamental characteristics of the response, such as average transition stress and hysteresis, can be captured by a simple law which folds the influence of all these factors into a single non-dimensional quantity. We also show that the applicability of analytical results previously obtained for single-well systems can be extended to systems having multiple wells by proper definition of rate and of the transition stress.

  14. Hoarding and the multi-faceted construct of impulsivity: a cross-cultural investigation.

    PubMed

    Timpano, Kiara R; Rasmussen, Jessica; Exner, Cornelia; Rief, Winfried; Schmidt, Norman B; Wilhelm, Sabine

    2013-03-01

    The proposed hoarding disorder represents a serious psychiatric condition and considerable public health burden. Although tremendous strides have been made in understanding the phenomenology and treatment of this condition, many features regarding the etiology and nosology remain unclear. In particular, the association between impulsivity and hoarding, as well as the differential role of impulsivity versus compulsivity has yet to be fully considered. The current investigation sought to fill this gap in the literature by examining the relationship between hoarding and impulsivity across two independent, cross-cultural investigations. Two separate conceptualizations of the impulsivity construct were considered, including the Barratt Impulsivity Scale and the UPPS Impulsive Behavior Scale. Across Study 1 (US young adult sample; N = 372) and Study 2 (German young adult sample; N = 160) results revealed that hoarding was associated with greater rates of impulsivity, despite controlling for theoretically relevant covariates. More fined-grained analyses revealed a differential relationship with respect to the various facets of impulsivity, such that hoarding was most strongly linked with attentional and motor impulsivity, as well as urgency (i.e., impulsive behaviors in response to negative affect) and lack of perseverance. When considered simultaneously, both impulsivity and non-hoarding OCD symptoms explained unique variance in hoarding. The implications of impulsivity for hoarding are discussed from a classification perspective, as well as from a vulnerability standpoint. PMID:23168138

  15. Impulsive Loading of Cellular Media in Sandwich Construction

    NASA Astrophysics Data System (ADS)

    Main, Joseph A.; Gazonas, George A.

    2006-07-01

    Motivated by recent efforts to mitigate blast loading using energy-absorbing materials, this paper investigates the uniaxial crushing of cellular media in sandwich construction under impulsive pressure loading. The cellular core is modeled using a rigid, perfectly-plastic, locking idealization, as in previous studies, and the front and back faces are modeled as rigid, with pressure loading applied to the front face and the back face unrestrained. Predictions of this analytical model show excellent agreement with explicit finite element computations, and the model is used to investigate the influence of the mass distribution between the core and the faces. Increasing the mass fraction in the front face is found to increase the impulse required for complete crushing of the cellular core but also to produce undesirable increases in back-face accelerations. Optimal mass distributions are investigated by maximizing the impulse capacity while limiting the back-face accelerations to a specified level.

  16. Teaching about Impulse and Momentum

    ERIC Educational Resources Information Center

    Franklin, Bill

    2004-01-01

    This American Association of Physics Teachers/Physics Teaching Resource Agents (APPT/PTRA) spiral-bound manual features labs and demos physics teachers can use to give students hands-on opportunities to learn about impulse and momentum. "Make-and-take activities" include AAPT Apparatus Contest winners "An Air Impulse Rocket," "A Fan Driven…

  17. Deformation and fracture of impulsively loaded sandwich panels

    NASA Astrophysics Data System (ADS)

    Wadley, H. N. G.; Børvik, T.; Olovsson, L.; Wetzel, J. J.; Dharmasena, K. P.; Hopperstad, O. S.; Deshpande, V. S.; Hutchinson, J. W.

    2013-02-01

    Light metal sandwich panel structures with cellular cores have attracted interest for multifunctional applications which exploit their high bend strength and impact energy absorption. This concept has been explored here using a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility in the welds and a narrow heat affected zone on either side of the weld by approximately 30%. Square, edge clamped sandwich panels and solid plates of equal mass per unit area were subjected to localized impulsive loading by the impact of explosively accelerated, water saturated, sand shells. The hydrodynamic load and impulse applied by the sand were gradually increased by reducing the stand-off distance between the test charge and panel surfaces. The sandwich panels suffered global bending and stretching, and localized core crushing. As the pressure applied by the sand increased, face sheet fracture by a combination of tensile stretching and shear-off occurred first at the two clamped edges of the panels that were parallel with the corrugation and weld direction. The plane of these fractures always lay within the heat affected zone of the longitudinal welds. For the most intensively loaded panels additional cracks occurred at the other clamped boundaries and in the center of the panel. To investigate the dynamic deformation and fracture processes, a particle-based method has been used to simulate the impulsive loading of the panels. This has been combined with a finite element analysis utilizing a modified Johnson-Cook constitutive relation and a Cockcroft-Latham fracture criterion that accounted for local variation in material properties. The fully coupled simulation approach enabled the relationships between the soil-explosive test charge design, panel geometry, spatially varying

  18. Head and brain response to blast using sagittal and transverse finite element models.

    PubMed

    Singh, Dilaver; Cronin, Duane S; Haladuick, Tyler N

    2014-04-01

    Mild traumatic brain injury caused by blast exposure from Improvised Explosive Devices has become increasingly prevalent in modern conflicts. To investigate head kinematics and brain tissue response in blast scenarios, two solid hexahedral blast-head models were developed in the sagittal and transverse planes. The models were coupled to an Arbitrary Lagrangian-Eulerian model of the surrounding air to model blast-head interaction, for three blast load cases (5 kg C4 at 3, 3.5 and 4 m). The models were validated using experimental kinematic data, where predicted accelerations were in good agreement with experimental tests, and intracranial pressure traces at four locations in the brain, where the models provided good predictions for frontal, temporal and parietal, but underpredicted pressures at the occipital location. Brain tissue response was investigated for the wide range of constitutive properties available. The models predicted relatively low peak principal brain tissue strains from 0.035 to 0.087; however, strain rates ranged from 225 to 571 s-1. Importantly, these models have allowed us to quantify expected strains and strain rates experienced in brain tissue, which can be used to guide future material characterization. These computationally efficient and predictive models can be used to evaluate protection and mitigation strategies in future analysis.

  19. Calculating linear-response functions for finite temperatures on the basis of the alloy analogy model

    NASA Astrophysics Data System (ADS)

    Ebert, H.; Mankovsky, S.; Chadova, K.; Polesya, S.; Minár, J.; Ködderitzsch, D.

    2015-04-01

    A scheme is presented that is based on the alloy analogy model and allows one to account for thermal lattice vibrations as well as spin fluctuations when calculating response quantities in solids. Various models to deal with spin fluctuations are discussed concerning their impact on the resulting temperature-dependent magnetic moment, longitudinal conductivity, and Gilbert damping parameter. It is demonstrated that, by using the Monte Carlo (MC) spin configuration as input, the alloy analogy model is capable of reproducing the results of MC simulations on the average magnetic moment within all spin fluctuation models under discussion. On the other hand, the response quantities are much more sensitive to the spin fluctuation model. Separate calculations accounting for the thermal effect due to either lattice vibrations or spin fluctuations show that they give comparable contributions to the electrical conductivity and Gilbert damping. However, comparison to results accounting for both thermal effects demonstrates violation of Matthiessen's rule, showing the nonadditive effect of lattice vibrations and spin fluctuations. The results obtained for bcc Fe and fcc Ni are compared with the experimental data, showing rather good agreement for the temperature-dependent electrical conductivity and the Gilbert damping parameter.

  20. Impulse control in pigeons.

    PubMed

    Ainslie, G W

    1974-05-01

    Pigeons were given a small, immediate food reinforcement for pecking a key, and a larger, delayed reinforcement for not pecking this key. Most subjects pecked the key on more than 95% of trials. However, when pecking a differently colored key at an earlier time prevented this option from becoming available, three of 10 subjects consistently pecked it, thereby forcing themselves to wait for the larger reward. They did not peck the earlier key when it did not prevent this option. This is an experimental example of psychological impulse and a learnable device to control it. Although only a minority of the subjects learned it, the fact that such learning is possible at all argues for a theory of delayed reward that can predict change of preference as a function of elapsing time.

  1. Recent Insights into the Neurobiology of Impulsivity

    PubMed Central

    Mitchell, Marci R.; Potenza, Marc N.

    2014-01-01

    Impulsivity is associated with various psychopathologies, and elevated impulsivity is typically disadvantageous. This manuscript reviews recent investigations into the neurobiology of impulsivity using human imaging techniques and animal models. Both human imaging and preclinical pharmacological manipulations have yielded important insights into the neurobiological underpinnings of impulsivity. A more thorough understanding of the complex neurobiology underlying aspects of impulsivity may provide insight into new treatment options that target elevated impulsivity and psychopathologies such as addictions. PMID:25431750

  2. Wave spectral response to sudden changes in wind direction in finite-depth waters

    NASA Astrophysics Data System (ADS)

    Aijaz, Saima; Rogers, W. Erick; Babanin, Alexander V.

    2016-07-01

    The response of a wind-sea spectrum to sudden changes in wind directions of 180° and 90° is investigated. Numerical simulations using the third-generation wave spectral model SWAN have been undertaken at micro timescales of 30 s and fine spatial resolution of less than 10 m. The results have been validated against the wave data collected during the field campaign at Lake George, Australia. The newly implemented 'ST6' physics in the SWAN model has been evaluated using a selection of bottom-friction terms and the two available functions for the nonlinear energy transfer: (1) exact solution of the nonlinear term (XNL), and (2) discrete interactions approximation (DIA) that parameterizes the nonlinear term. Good agreement of the modelled data is demonstrated directly with the field data and through the known experimental growth curves obtained from the extensive Lake George data set. The modelling results show that of the various combinations of models tested, the ST6/XNL model provides the most reliable computations of integral and spectral wave parameters. When the winds and waves are opposing (180° wind turn), the XNL is nearly twice as fast in the aligning the young wind-sea with the new wind direction than the DIA. In this case, the young wind-sea gradually decouples from the old waves and forms a new secondary peak. Unlike the 180° wind turn, there is no decoupling in the 90° wind turn and the entire spectrum rotates smoothly in the new direction. In both cases, the young wind-sea starts developing in the new wind direction within 10 min of the wind turn for the ST6 while the directional response of the default physics lags behind with a response time that is nearly double of ST6. The modelling results highlight the differences in source term balance among the different models in SWAN. During high wind speeds, the default settings provide a larger contribution from the bottom-friction dissipation than the whitecapping. In contrast, the whitecapping

  3. Emergence of nanoscale inhomogeneity and finite frequency superfluid response in disordered superconductors

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, Pratap

    2015-03-01

    The notion of spontaneous formation of an inhomogeneous superconducting state is at the heart of most theories attempting to understand the superconducting state in the presence of strong disorder. Using a combination of low-temperature scanning tunneling spectroscopy and high resolution scanning transmission electron microscopy, we experimentally demonstrate that under the competing effects of strong homogeneous disorder and superconducting correlations, the superconducting state of a conventional superconductor, NbN, spontaneously segregates into domains. Tracking the superconducting state as a function of temperature we show that these superconducting domains persist across the bulk superconducting transition, Tc, and disappear close to the pseudogap temperature, T*, where signatures of superconducting correlations disappear from the tunneling spectrum and the superfluid response of the system. These results along with complementary measurements of the superfluid stiffness at microwave frequencies underpins the importance of phase fluctuations in strongly disordered s-wave superconductors.

  4. Negative emotion-driven impulsivity predicts substance dependence problems.

    PubMed

    Verdejo-García, Antonio; Bechara, Antoine; Recknor, Emily C; Pérez-García, Miguel

    2007-12-01

    Impulsivity is predominant among users of several drugs of abuse including alcohol, cocaine, and amphetamines, and it is considered a risk factor for later development of alcohol and substance abuse and dependence. However, there is little consensus on how impulsivity should be defined and measured, and there are few studies on the relationship between separate dimensions of impulsivity and substance dependence. We used a multidimensional measure of impulsivity (the UPPS scale) to examine differences between 36 individuals with substance dependence (ISD) and 36 drug-free controls on the dimensions of urgency, lack of premeditation, lack of perseverance, and sensation seeking. In addition, we examined which dimensions of impulsivity better predicted addiction-related problems as measured with the addiction severity index. Results revealed that ISD show high scores on dimensions of urgency, lack of perseverance, and lack of premeditation (effect sizes ranging from 1.10 to 1.96), but not on sensation seeking. Among the different impulsivity dimensions, urgency was the best predictor of severity of medical, employment, alcohol, drug, family/social, legal and psychiatric problems in ISD, explaining 13-48% of the total variance of these indices. Furthermore, urgency scores alone correctly classified 83% of the participants in the ISD group. Urgency is characterized by a tendency to act impulsively in response to negative emotional states. Thus, our results could have important implications for novel treatment approaches for substance dependence focused on emotional regulation. PMID:17629632

  5. Impulsivity and rapid decision-making for reward.

    PubMed

    Burnett Heyes, Stephanie; Adam, Robert J; Urner, Maren; van der Leer, Leslie; Bahrami, Bahador; Bays, Paul M; Husain, Masud

    2012-01-01

    Impulsivity is a feature of many brain disorders. Although often defined as the predisposition to act with an inadequate degree of deliberation, forethought, or control, it has proven difficult to measure. This may in part be due to the fact that it is a multifaceted construct, with impulsive decisions potentially arising as a result of a number of underlying mechanisms. Indeed, a "functional" degree of impulsivity may even promote effective behavior in healthy participants in a way that can be advantageous under certain circumstances. Although many tasks have been developed to study impulsivity, few examine decisions made rapidly, for time-sensitive rewards. In the current study we examine behavior in 59 adults on a manual "Traffic Light" task which requires participants to take risks under time pressure, if they are to maximize reward. We show that behavioral variables that index rapid anticipatory responding in this paradigm are correlated with one, specific self-report measure of impulsivity: "lack of premeditation" on the UPPS Impulsive Behavior Scale. Participants who scored more highly on this subscale performed better on the task. Moreover, anticipatory behavior reduced significantly with age (18-79 years), an effect that continued to be upheld after correction for potential age differences in the ability to judge the timing of responses. Based on these findings, we argue that the Traffic Light task provides a parametric method to study one aspect of impulsivity in health and disease: namely, rapid decision-making in pursuit of risky, time-sensitive rewards. PMID:22661960

  6. A cell-centered Lagrangian finite volume approach for computing elasto-plastic response of solids in cylindrical axisymmetric geometries

    NASA Astrophysics Data System (ADS)

    Sambasivan, Shiv Kumar; Shashkov, Mikhail J.; Burton, Donald E.

    2013-03-01

    A finite volume cell-centered Lagrangian formulation is presented for solving large deformation problems in cylindrical axisymmetric geometries. Since solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum and energy conservation laws. The total strain-rate realized in the material is split into an elastic and plastic response. The elastic and plastic components in turn are modeled using hypo-elastic theory. In accordance with the hypo-elastic model, a predictor-corrector algorithm is employed for evolving the deviatoric component of the stress tensor. A trial elastic deviatoric stress state is obtained by integrating a rate equation, cast in the form of an objective (Jaumann) derivative, based on Hooke's law. The dilatational response of the material is modeled using an equation of state of the Mie-Grüneisen form. The plastic deformation is accounted for via an iterative radial return algorithm constructed from the J2 von Mises yield condition. Several benchmark example problems with non-linear strain hardening and thermal softening yield models are presented. Extensive comparisons with representative Eulerian and Lagrangian hydrocodes in addition to analytical and experimental results are made to validate the current approach.

  7. Qualifying an impulse digitizer for measurements in HV impulse tests

    SciTech Connect

    McComb, T.R. ); Kuffel, J. . Research Div.); Malewski, R. ); Schon, K. )

    1990-07-01

    Working groups are presently engaged in preparing a standard on digital recorders for measurement in HV impulse tests. This paper shows how the main tests described in the proposed standard can be applied towards qualifying an impulse digitizer for HV Impulse measurements. Experimental results from the application of these techniques to different digitizers are presented. A major problem in using digital recorders in HV laboratories is electromagnetic interference. Previous low frequency measurements have indicated that high frequencies can be a problem and this paper reports some measurements at high frequencies. The consequences of these measurements for electromagnetic compatibility are discussed.

  8. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    PubMed

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists. PMID:26942320

  9. Eyes Wide Shopped: Shopping Situations Trigger Arousal in Impulsive Buyers

    PubMed Central

    Serfas, Benjamin G.; Büttner, Oliver B.; Florack, Arnd

    2014-01-01

    The present study proposes arousal as an important mechanism driving buying impulsiveness. We examined the effect of buying impulsiveness on arousal in non-shopping and shopping contexts. In an eye-tracking experiment, we measured pupil dilation while participants viewed and rated pictures of shopping scenes and non-shopping scenes. The results demonstrated that buying impulsiveness is closely associated with arousal as response to viewing pictures of shopping scenes. This pertained for hedonic shopping situations as well as for utilitarian shopping situations. Importantly, the effect did not emerge for non-shopping scenes. Furthermore, we demonstrated that arousal of impulsive buyers is independent from cognitive evaluation of scenes in the pictures. PMID:25489955

  10. Does impulsivity predict outcome in treatment for binge eating disorder? A multimodal investigation.

    PubMed

    Manasse, Stephanie M; Espel, Hallie M; Schumacher, Leah M; Kerrigan, Stephanie G; Zhang, Fengqing; Forman, Evan M; Juarascio, Adrienne S

    2016-10-01

    Multiple dimensions of impulsivity (e.g., affect-driven impulsivity, impulsive inhibition - both general and food-specific, and impulsive decision-making) are associated with binge eating pathology cross-sectionally, yet the literature on whether impulsivity predicts treatment outcome is limited. The present pilot study explored impulsivity-related predictors of 20-week outcome in a small open trial (n = 17) of a novel treatment for binge eating disorder. Overall, dimensions of impulsivity related to emotions (i.e., negative urgency) and food cues emerged as predictors of treatment outcomes (i.e., binge eating frequency and global eating pathology as measured by the Eating Disorders Examination), while more general measures of impulsivity were statistically unrelated to global eating pathology or binge frequency. Specifically, those with higher levels of negative urgency at baseline experienced slower and less pronounced benefit from treatment, and those with higher food-specific impulsivity had more severe global eating pathology at baseline that was consistent at post-treatment and follow-up. These preliminary findings suggest that patients high in negative urgency and with poor response inhibition to food cues may benefit from augmentation of existing treatments to achieve optimal outcomes. Future research will benefit from replication with a larger sample, parsing out the role of different dimensions of impulsivity in treatment outcome for eating disorders, and identifying how treatment can be improved to accommodate higher levels of baseline impulsivity. PMID:27230611

  11. Does impulsivity predict outcome in treatment for binge eating disorder? A multimodal investigation.

    PubMed

    Manasse, Stephanie M; Espel, Hallie M; Schumacher, Leah M; Kerrigan, Stephanie G; Zhang, Fengqing; Forman, Evan M; Juarascio, Adrienne S

    2016-10-01

    Multiple dimensions of impulsivity (e.g., affect-driven impulsivity, impulsive inhibition - both general and food-specific, and impulsive decision-making) are associated with binge eating pathology cross-sectionally, yet the literature on whether impulsivity predicts treatment outcome is limited. The present pilot study explored impulsivity-related predictors of 20-week outcome in a small open trial (n = 17) of a novel treatment for binge eating disorder. Overall, dimensions of impulsivity related to emotions (i.e., negative urgency) and food cues emerged as predictors of treatment outcomes (i.e., binge eating frequency and global eating pathology as measured by the Eating Disorders Examination), while more general measures of impulsivity were statistically unrelated to global eating pathology or binge frequency. Specifically, those with higher levels of negative urgency at baseline experienced slower and less pronounced benefit from treatment, and those with higher food-specific impulsivity had more severe global eating pathology at baseline that was consistent at post-treatment and follow-up. These preliminary findings suggest that patients high in negative urgency and with poor response inhibition to food cues may benefit from augmentation of existing treatments to achieve optimal outcomes. Future research will benefit from replication with a larger sample, parsing out the role of different dimensions of impulsivity in treatment outcome for eating disorders, and identifying how treatment can be improved to accommodate higher levels of baseline impulsivity.

  12. FINITE ELEMENT SIMULATION FOR STRUCTURAL RESPONSE OF U7MO DISPERSION FUEL PLATES VIA FLUID-THERMAL-STRUCTURAL INTERACTION

    SciTech Connect

    Hakan Ozaltun; Herman Shen; Pavel Madvedev

    2010-11-01

    This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.

  13. Executive (Dys)Functioning and Impulsivity as Possible Vulnerability Factors for Aggression in Forensic Patients.

    PubMed

    Tonnaer, Franca; Cima, Maaike; Arntz, Arnoud

    2016-04-01

    This study investigated whether executive dysfunction and impulsivity are both predictors of reactive aggression and is the first to use behavioral assessment of aggression in response to provocation by means of a personalized boxing body opponent bag giving harassing feedback. Aggressive behavior, self-reported aggression, executive functioning (ie, working memory, flexibility, and divided attention), and impulsivity dimensions (i.e., Sensation Seeking, Impulsive Decision Making, and [inadequate] Response Inhibition) were measured in 44 incarcerated psychiatric patients. Results show that both executive functioning (working memory) and impulsivity (Impulsive Decision Making) predicted self-reported reactive aggression, whereas Response Inhibition was the only predictor for reactive aggressive behavioral responses. The study suggests that Response Inhibition is a stronger predictor of reactive aggressive behavior than executive capacities of working memory, flexibility, and divided attention. Therefore, future research should investigate whether (inadequate) Response Inhibition could also be a valuable predictor for violent recidivism. PMID:26894312

  14. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    PubMed Central

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen

  15. Impulsivity and overeating in children in the absence and presence of hunger.

    PubMed

    Nederkoorn, Chantal; Dassen, Fania C M; Franken, Loes; Resch, Christine; Houben, Katrijn

    2015-10-01

    Overweight children appear to be more responsive to environmental, hedonic cues and easily overeat in the current obesogenic environment. They are also found to overeat in the absence of hunger, and this overeating seems related to impulsivity: impulsive participants are more prone to external eating. However, some studies showed that impulsive adults are also more prone to hunger cues: impulsive participants overate especially when feeling hungry. This would mean impulsive people are more reactive to both external and internal cues. The overeating was limited to palatable high energy-dense foods: hunger made them fancy a snack. In the current study, we wanted to test the interaction between impulsivity, hunger and consumption of food type in children. Impulsivity was measured in 88 children between the ages of 7 and 9. Next, half of the participants performed a taste test before their own regular lunch and half of the participants immediately after their lunch. During the taste test, low, medium and high energy-dense food items were presented. Results showed that impulsive children ate more high energy-dense foods than low impulsive children, both before and after their lunch. No differences were found on low or medium energy-dense foods. Impulsive children therefore showed normal sensitivity for internal hunger and satiety cues, but abnormal response to high energy-dense foods. This might render them vulnerable to tasty temptation in the environment and to weight gain in their future.

  16. Impulsivity, Risk Taking, and Timing

    PubMed Central

    Baumann, Ana A.; Odum, Amy. L.

    2012-01-01

    This study examined the relations among measures of impulsivity and timing. Impulsivity was assessed using delay and probability discounting, and self-report impulsivity (as measured by the Barratt Impulsiveness Scale; BIS-11). Timing was assessed using temporal perception as measured on a temporal bisection task and time perspective (as measured by the Zimbardo Time Perspective Inventory). One hundred and forty three college students completed these measures in a computer laboratory. The degree of delay discounting was positively correlated with the mean and range of the temporal bisection procedure. The degree of delay and probability discounting were also positively correlated. Self-reported Motor impulsiveness on the BIS-11 was positively correlated with Present Hedonism and negatively correlated with Future orientation on the ZTPI. Self-reported Non-Planning on the BIS-11 was positively correlated with Fatalism on the ZTPI. These results show that people who overestimate the passage of time (perceive time as passing more quickly) hold less value in delayed rewards. They also confirm previous results regarding the relation between delay and probability discounting, as well as highlight similarities in self-report measures of impulsivity and time perspective. PMID:22542458

  17. Impulsivity, risk taking, and timing.

    PubMed

    Baumann, Ana A; Odum, Amy L

    2012-07-01

    This study examined the relations among measures of impulsivity and timing. Impulsivity was assessed using delay and probability discounting, and self-report impulsivity (as measured by the Barratt Impulsiveness Scale; BIS-11). Timing was assessed using temporal perception as measured on a temporal bisection task and time perspective (as measured by the Zimbardo Time Perspective Inventory). One hundred and forty three college students completed these measures in a computer laboratory. The degree of delay discounting was positively correlated with the mean and range of the temporal bisection procedure. The degree of delay and probability discounting were also positively correlated. Self-reported motor impulsiveness on the BIS-11 was positively correlated with present hedonism and negatively correlated with future orientation on the ZTPI. Self-reported non-planning on the BIS-11 was positively correlated with fatalism on the ZTPI. These results show that people who overestimate the passage of time (perceive time as passing more quickly) hold less value in delayed rewards. They also confirm previous results regarding the relation between delay and probability discounting, as well as highlight similarities in self-report measures of impulsivity and time perspective.

  18. Cognitive impulsivity in specific learning disabilities.

    PubMed

    Donfrancesco, Renato; Mugnaini, Daniele; Dell'Uomo, Andrea

    2005-08-01

    Many studies on cognitive impulsivity in learning disabled children have been criticized for their methodological limitations, and they have not dealt with the different types of learning disability. The aim of this study was to overcome these limitations and to assess if there was a significant cognitive impulsivity in reading disorder and/or spelling disorder by using the 20-item Matching Familiar Figures Test (MFF20). A total of 110 children (second through eighth grades) were recruited from a cohort of children assessed for the first time in a National Health clinic specialized in the study of specific learning disabilities. In all, 30 dyslexic children and 25 children with spelling disorder (all children without an ADHD comorbidity) were compared with 55 children of a control group on the MMF20 (accuracy and time latency). Results showed that the children with reading disorder were less accurate than the children with spelling disability (p<0.05). Both these groups performed less accurately than the control group. Subjects with dyslexia were faster than both the other groups in response time (p<0.05), clearly showing a significantly higher cognitive impulsivity than the other groups. Hence, data seem to confirm the idea that, similar to ADHD children, dyslexic children have impaired frontal/prefrontal functions. Clinical and treatment implications are discussed. PMID:15981139

  19. Braking and propulsive impulses increase with speed during accelerated and decelerated walking.

    PubMed

    Peterson, Carrie L; Kautz, Steven A; Neptune, Richard R

    2011-04-01

    The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from 10 healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0-1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects' preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking.

  20. Cigarette Cravings, Impulsivity, and the Brain

    PubMed Central

    Potvin, Stéphane; Tikàsz, Andràs; Dinh-Williams, Laurence Lê-Anh; Bourque, Josiane; Mendrek, Adrianna

    2015-01-01

    Craving is a core feature of tobacco use disorder as well as a significant predictor of smoking relapse. Studies have shown that appetitive smoking-related stimuli (e.g., someone smoking) trigger significant cravings in smokers impede their self-control capacities and promote drug seeking behavior. In this review, we begin by an overview of functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of smokers to appetitive smoking cues. The literature reveals a complex and vastly distributed neuronal network underlying smokers’ craving response that recruits regions involved in self-referential processing, planning/regulatory processes, emotional responding, attentional biases, and automatic conducts. We then selectively review important factors contributing to the heterogeneity of results that significantly limit the implications of these findings, namely between- (abstinence, smoking expectancies, and self-regulation) and within-studies factors (severity of smoking dependence, sex-differences, motivation to quit, and genetic factors). Remarkably, we found that little to no attention has been devoted to examine the influence of personality traits on the neural correlates of cigarette cravings in fMRI studies. Impulsivity has been linked with craving and relapse in substance and tobacco use, which prompted our research team to examine the influence of impulsivity on cigarette cravings in an fMRI study. We found that the influence of impulsivity on cigarette cravings was mediated by fronto-cingulate mechanisms. Given the high prevalence of cigarette smoking in several psychiatric disorders that are characterized by significant levels of impulsivity, we conclude by identifying psychiatric patients as a target population whose tobacco-smoking habits deserve further behavioral and neuro-imaging investigation. PMID:26441686

  1. Dopamine-Agonists and Impulsivity in Parkinson’s Disease: Impulsive Choices vs. Impulsive Actions

    PubMed Central

    Antonelli, Francesca; Ko, Ji Hyun; Miyasaki, Janis; Lang, Anthony E.; Houle, Sylvain; Valzania, Franco; Ray, Nicola J.; Strafella, Antonio P.

    2014-01-01

    The control of impulse behavior is a multidimensional concept subdivided into separate subcomponents, which are thought to represent different underlying mechanisms due to either disinhibitory processes or poor decision-making. In patients with Parkinson’s disease (PD), dopamine-agonist (DA) therapy has been associated with increased impulsive behavior. However, the relationship among these different components in the disease and the role of DA is not well understood. In this imaging study, we investigated in PD patients the effects of DA medication on patterns of brain activation during tasks testing impulsive choices and actions. Following overnight withdrawal of antiparkinsonian medication, PD patients were studied with a H2 (15)O PET before and after administration of DA (1 mg of pramipexole), while they were performing the delay discounting task (DDT) and the GoNoGo Task (GNG). We observed that pramipexole augmented impulsivity during DDT, depending on reward magnitude and activated the medial prefrontal cortex and posterior cingulate cortex and deactivated ventral striatum. In contrast, the effect of pramipexole during the GNG task was not significant on behavioral performance and involved different areas (i.e., lateral prefrontal cortex). A voxel-based correlation analysis revealed a significant negative correlation between the discounting value (k) and the activation of medial prefrontal cortex and posterior cingulate suggesting that more impulsive patients had less activation in those cortical areas. Here we report how these different subcomponents of inhibition/impulsivity are differentially sensitive to DA treatment with pramipexole influencing mainly the neural network underlying impulsive choices but not impulsive action. PMID:24038587

  2. Use of instant messaging predicts self-report but not performance measures of inattention, impulsiveness, and distractibility.

    PubMed

    Levine, Laura E; Waite, Bradley M; Bowman, Laura L

    2013-12-01

    We examined how young adults' use of instant messaging, text messaging, and traditional reading related to their self-reported experience of distractibility and impulsiveness and to their performance on computerized tasks designed to assess inattention and impulsive responses to visual stimuli. Participants reported their media use and completed self-report measures of impulsiveness (i.e., the Barratt Impulsiveness Scale) and distractibility for academic reading. They also completed performance based measures of inattention and impulsiveness using the Tests of Variables of Attention (T.O.V.A.(®)). Results demonstrated that instant message use was significantly related to higher levels of attentional impulsiveness and distractibility on the self-report measures, while traditional reading consistently predicted lower levels of impulsiveness and distractibility. However, media use was not significantly related to the performance measures of inattention and behavioral impulsiveness.

  3. Determination of acoustical transfer functions using an impulse method

    NASA Astrophysics Data System (ADS)

    MacPherson, J.

    1985-02-01

    The Transfer Function of a system may be defined as the relationship of the output response to the input of a system. Whilst recent advances in digital processing systems have enabled Impulse Transfer Functions to be determined by computation of the Fast Fourier Transform, there has been little work done in applying these techniques to room acoustics. Acoustical Transfer Functions have been determined for auditoria, using an impulse method. The technique is based on the computation of the Fast Fourier Transform (FFT) of a non-ideal impulsive source, both at the source and at the receiver point. The Impulse Transfer Function (ITF) is obtained by dividing the FFT at the receiver position by the FFT of the source. This quantity is presented both as linear frequency scale plots and also as synthesized one-third octave band data. The technique enables a considerable quantity of data to be obtained from a small number of impulsive signals recorded in the field, thereby minimizing the time and effort required on site. As the characteristics of the source are taken into account in the calculation, the choice of impulsive source is non-critical. The digital analysis equipment required for the analysis is readily available commercially.

  4. On the Feasibility of Quantifying Fibrous Cap Thickness With Acoustic Radiation Force Impulse (ARFI) Ultrasound.

    PubMed

    Czernuszewicz, Tomasz J; Gallippi, Caterina M

    2016-09-01

    Acute cerebrovascular accidents are associated with the rupture of vulnerable atherosclerotic plaques in the carotid arteries. Fibrous cap (FC) thickness has been shown to be an important predictor of plaque rupture but has been challenging to measure accurately with clinical noninvasive imaging modalities. The goals of this investigation were first, to evaluate the feasibility of using transcutaneous acoustic radiation force impulse (ARFI) ultrasound to quantify FC thickness and second, to optimize both imaging and motion-tracking parameters to support such measurements. FCs with varying thickness (0.1-1.0 mm) were simulated using a simple-layered geometry, and their mechanical response to an impulse of radiation force was solved using finite-element method (FEM) modeling. Ultrasound tracking of FEM displacements was performed in Field II utilizing three center frequencies (6, 9, and 12 MHz) and eight motion-tracking kernel lengths ( 0.5λ-4λ). Additionally, FC thickness in two carotid plaques imaged in vivo was measured with ARFI and compared to matched histology. The results of this study demonstrate that 1) tracking pulse frequencies around 12 MHz are necessary to resolve caps around 0.2 mm; 2) large motion-tracking kernel sizes introduce bias into thickness measurements and overestimate the true cap thickness; and 3) color saturation settings on ARFI peak displacement images can impact thickness measurement accuracy substantially. PMID:26955026

  5. Dopamine Agonists and the Suppression of Impulsive Motor Actions in Parkinson’s Disease

    PubMed Central

    Wylie, S.A.; Claassen, D.O.; Huizenga, H.M.; Schewel, K.D.; Ridderinkhof, K.R.; Bashore, T.R.; van den Wildenberg, W.P.M.

    2012-01-01

    The suppression of spontaneous motor impulses is an essential facet of cognitive control that is linked to frontal-basal ganglia circuitry. Basal ganglia dysfunction caused by Parkinson’s disease (PD) disrupts the proficiency of action suppression, but how pharmacotherapy for PD impacts impulsive motor control is poorly understood. Dopamine agonists improve motor symptoms of PD, but can also provoke impulsive-compulsive behaviors (ICB). We investigated whether dopamine agonist medication has a beneficial or detrimental effect on impulsive action control in thirty-eight PD patients, half of whom had current ICB. Participants performed the Simon conflict task, which measures susceptibility to acting on spontaneous action impulses as well as the proficiency of suppressing these impulses. Compared to an off agonist state, patients on their agonist were no more susceptible to reacting impulsively, but were less proficient at suppressing the interference from the activation of impulsive actions. Importantly, agonist effects depended on baseline performance in the off agonist state; more proficient suppressors off agonist experienced a reduction in suppression on agonist, whereas less proficient suppressors off agonist showed improved suppression on agonist. Patients with active ICB were actually less susceptible to making fast, impulsive response errors than patients without ICB, suggesting that behavioral problems in this subset of patients may be less related to impulsivity in motor control. Our findings provide further evidence that dopamine agonist medication impacts specific cognitive control processes and that the direction of its effects depends on individual differences in performance off medication. PMID:22571461

  6. Minimum impulse trajectories for Mars round trip missions

    NASA Technical Reports Server (NTRS)

    Horvat, Glen M.; Alexander, Stephen W.

    1992-01-01

    Data are presented for minimum-impulse earth-Mars round-trip trajectories for the 2010 to 2027 Mars launch opportunities. Round-trip mission times from 120 to 600 days, including a 30-day rendezvous at Mars, for direct trajectories and trajectories utilizing a Venus gravitational assist are considered. Optimal planetary launch and arrival dates and total impulse requirements are based on all maneuvers being performed propulsively with no finite burn or other losses. Direct trajectories have the lowest impulse requirements for shorter mission times and Venus gravitational assist trajectories have the lowest impulse requirements for longer mission times. It is shown that one can depart on trajectories to Mars, beginning with lower energy trajectories to the moon. The fuel savings varies, depending on the final energy level required and on the swingby procedure used. Procedures discussed include single lunar swingbys, double-powered or unpowered lunar swingbys, third lunar flybys a year later, and gravity assists by Venus and earth after the final lunar swingby.

  7. The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—A simple explicit approximation for finite-concentration suspensions

    NASA Astrophysics Data System (ADS)

    Lopez-Pamies, Oscar; Goudarzi, Taha; Danas, Kostas

    2013-01-01

    In Part I, an exact solution was determined for the problem of the overall nonlinear elastic response of Gaussian (or Neo-Hookean) rubber reinforced by a dilute isotropic distribution of rigid particles. Here, this fundamental result is utilized to construct an approximate solution for non-Gaussian rubber reinforced by an isotropic distribution of rigid particles at finite concentration. This is accomplished by means of two different techniques in two successive steps. First, the dilute solution is utilized together with a differential scheme in finite elasticity to generate a solution for Neo-Hookean rubber filled with an isotropic distribution of rigid particles of polydisperse sizes and finite concentration. This non-dilute result is then employed within the context of a new comparison medium method — derived as an extension of Talbot-Willis (1985) variational framework to the non-convex realm of finite elasticity — to generate in turn a corresponding solution for filled non-Gaussian rubber wherein the underlying elastomeric matrix is characterized by any I1-based stored-energy function Ψ(I1) of choice. The solution is fully explicit and remarkably simple. Its key theoretical and practical merits are discussed in detail. Additionally, the constructed analytical solution is confronted to 3D finite-element simulations of the large-deformation response of Neo-Hookean and non-Gaussian rubber reinforced by isotropic distributions of rigid spherical particles with the same size, as well as with different sizes. Good agreement is found among all three sets of results. The implications of this agreement are discussed.

  8. Do different facets of impulsivity predict different types of aggression?

    PubMed

    Derefinko, Karen; DeWall, C Nathan; Metze, Amanda V; Walsh, Erin C; Lynam, Donald R

    2011-01-01

    This study examined the relations between impulsivity-related traits (as assessed by the UPPS-P Impulsive Behavior Scale) and aggressive behaviors. Results indicated that UPPS-P Lack of Premeditation and Sensation Seeking were important in predicting general violence. In contrast, UPPS-P Urgency was most useful in predicting intimate partner violence. To further explore relations between intimate partner violence and Urgency, a measure of autonomic response to pleasant and aversive stimuli and facets of Neuroticism from the NEO PI-R were used as control variables. Autonomic responsivity was correlated with intimate partner violence at the zero-order level, and predicted significant variance in intimate partner violence in regression equations. However, UPPS-P Urgency was able to account for unique variance in intimate partner violence, above and beyond measures of Neuroticism and arousal. Implications regarding the use of a multifaceted conceptualization of impulsivity in the prediction of different types of violent behavior are discussed. PMID:21259270

  9. Ionospheric current contribution to the main impulse of a negative sudden impulse

    NASA Astrophysics Data System (ADS)

    Vichare, Geeta; Rawat, Rahul; Bhaskar, Ankush; Pathan, Bashir M.

    2014-12-01

    The geomagnetic field response to a moderate-amplitude negative sudden impulse (SI-) that occurred on 14 May 2009 at 10:30 UT was examined at 97 geomagnetic observatories situated all over the globe. The response signature contains a contribution from magnetospheric as well as ionospheric currents. The main impulse (MI) is defined as the maximum depression in the observed geomagnetic field. It is observed that for low-to-high latitudes, the amplitude of the MI is larger in the afternoon to post-dusk sector than in the dawn-noon sector, indicating asymmetry in the MI amplitude. We estimated the contribution at various observatories due to the Chapman-Ferraro magnetopause currents using the Tsyganenko model (T01) and subtracted this from the observed MI amplitude to obtain the contribution due to ionospheric currents. It is found that the ionospheric currents contribute significantly to the MI amplitude of moderate SI- even at low-to-mid latitudes and that the contribution is in the same direction as that from the magnetopause currents near dusk and in the opposite direction near dawn. The equivalent current vectors reveal a clockwise (anticlockwise) ionospheric current loop in the afternoon (morning) sector during the MI of the negative pressure impulse. This evidences an ionospheric twin-cell-vortex current system (DP2) due to field-aligned currents (FACs) associated with the dusk-to-dawn convection electric field during the MI of an SI-. We also estimated the magnetic field variation due to prompt penetration electric fields, which is found to be very small at low latitudes in the present case. The studied SI- is not associated with shock, and hence no preliminary reverse impulse was evident. In addition, the summer hemisphere reveals larger MI amplitudes than the winter hemisphere, indicating once again the role of ionospheric currents.

  10. Effects of Acute Tryptophan Depletion on Three Different Types of Behavioral Impulsivity

    PubMed Central

    Dougherty, Donald M.; Richard, Dawn M.; James, Lisa M.; Mathias, Charles W.

    2010-01-01

    Introduction: While central nervous system serotonin has been implicated in a variety of problematic impulsive behaviors, biological manipulation of brain serotonin using acute tryptophan depletion for studying changes in impulsive behavior has received little attention. Methods: Using identical treatment conditions, we examined the effects of reduced serotonin synthesis for each of three matched groups using acute tryptophan depletion. Thirty healthy men and women (ages 18–45) were assigned to perform one of three tasks assessing different types of behavioral impulsivity: response initiation, response inhibition, and consequence sensitivity (N = 90). Participants completed two experimental days during which each consumed either a tryptophan-depletion or balanced-placebo amino-acid formulation and completed 5 sessions of their respective tasks at 0.25 h before and 1.5, 4.0, 5.0, and 6.0 h after beverage consumption. Results: During peak effectiveness (5.0 h to 6.0 h following amino-acid consumption), depletion produced selective differences dependent on the type of impulsivity being tested. Specifically, relative to baseline testing (pre-depletion), response initiation impulsivity was significantly increased during the peak effects of depletion. And, when compared to placebo control, both response initiation and consequence sensitivity impulsivity were increased during the peak effects of depletion. Conclusion: Though response initiation and consequence sensitivity impulsivity were affected by tryptophan depletion, response inhibition impulsivity was not, suggesting that other biological processes may underlie this specific component of impulsivity. Future research in other populations or using different pharmacological agents is warranted to further examine the biological processes underlying these components of impulsivity. PMID:22084592

  11. Commentary on Hyperkinetic Impulse Disorder

    ERIC Educational Resources Information Center

    Barkley, Russell A.

    2011-01-01

    Dr. Goldstein continues the laudable practice of reprinting articles of historical significance in the history of ADHD with this selective reprinting of material from the original article by Maurice Laufer, Eric Denhoff, and Gerald Solomons on hyperkinetic impulsive disorder (HID) in children. This article on HID is among the first articles to…

  12. Demonstrating Sound Impulses in Pipes.

    ERIC Educational Resources Information Center

    Raymer, M. G.; Micklavzina, Stan

    1995-01-01

    Describes a simple, direct method to demonstrate the effects of the boundary conditions on sound impulse reflections in pipes. A graphical display of the results can be made using a pipe, cork, small hammer, microphone, and fast recording electronics. Explains the principles involved. (LZ)

  13. Stimulation of the Subthalamic Nucleus and Impulsivity

    PubMed Central

    Ballanger, Benedicte; van Eimeren, Thilo; Moro, Elena; Lozano, Andres M.; Hamani, Clement; Boulinguez, Philippe; Pellecchia, Giovanna; Houle, Sylvain; Poon, Yu Yan; Lang, Anthony E.; Strafella, Antonio P.

    2010-01-01

    Objective In Parkinson disease (PD) patients, deep brain stimulation (DBS) of the subthalamic nucleus (STN) may contribute to certain impulsive behavior during high-conflict decisions. A neurocomputational model of the basal ganglia has recently been proposed that suggests this behavioral aspect may be related to the role played by the STN in relaying a “hold your horses” signal intended to allow more time to settle on the best option. The aim of the present study was 2-fold: 1) to extend these observations by providing evidence that the STN may influence and prevent the execution of any response even during low-conflict decisions; and 2) to identify the neural correlates of this effect. Methods We measured regional cerebral blood flow during a Go/NoGo and a control (Go) task to study the motor improvement and response inhibition deficits associated with STN-DBS in patients with PD. Results Although it improved Unified Parkinson Disease Rating Scale motor ratings and induced a global decrease in reaction time during task performance, STN-DBS impaired response inhibition, as revealed by an increase in commission errors in NoGo trials. These behavioral effects were accompanied by changes in synaptic activity consisting of a reduced activation in the cortical networks responsible for reactive and proactive response inhibition. Interpretation The present results suggest that although it improves motor functions in PD patients, modulation of STN hyperactivity with DBS may tend at the same time to favor the appearance of impulsive behavior by acting on the gating mechanism involved in response initiation. PMID:20035509

  14. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  15. Responses to applied forces and the Jarzynski equality in classical oscillator systems coupled to finite baths: an exactly solvable nondissipative nonergodic model.

    PubMed

    Hasegawa, Hideo

    2011-07-01

    Responses of small open oscillator systems to applied external forces have been studied with the use of an exactly solvable classical Caldeira-Leggett model in which a harmonic oscillator (system) is coupled to finite N-body oscillators (bath) with an identical frequency (ω(n) = ω(o) for n = 1 to N). We have derived exact expressions for positions, momenta, and energy of the system in nonequilibrium states and for work performed by applied forces. A detailed study has been made on an analytical method for canonical averages of physical quantities over the initial equilibrium state, which is much superior to numerical averages commonly adopted in simulations of small systems. The calculated energy of the system which is strongly coupled to a finite bath is fluctuating but nondissipative. It has been shown that the Jarzynski equality is valid in nondissipative nonergodic open oscillator systems regardless of the rate of applied ramp force. PMID:21867150

  16. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study

    PubMed Central

    2014-01-01

    Background Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Methods Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. Results There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Conclusions Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process. PMID:24885073

  17. Characteristics of Impulsive Suicide Attempts and Attempters.

    ERIC Educational Resources Information Center

    Simon, Thomas R.; Swann, Alan C.; Powell, Kenneth E.; Potter, Lloyd B.; Kresnow, Marcie-jo; O'Carroll, Patrick W.

    2002-01-01

    Examined impulsive suicide attempts within a population-based, case-control study of nearly lethal suicide attempts among adolescents and young adults. Impulsive attempts were more likely among those who had been in a physical fight and less likely among those who were depressed. Findings suggest inadequate control of aggressive impulses as a…

  18. Impulsive-aggressive traits and suicidal adolescents and young adults with alcoholism.

    PubMed

    Carballo, Juan J; Oquendo, Maria A; Giner, Lucas; Zalsman, Gil; Roche, Ansley M; Sher, Leo

    2006-01-01

    Suicidal behavior and alcohol use disorders among adolescents and young adults are serious public health problems. In the study of suicidal behavior among young people with alcoholism, it has been shown that aggression and impulsivity are higher among those who attempted suicide. Impulsivity has been related to suicidal and self-destructive behaviors within different psychiatric conditions, i.e. alcohol and substance use disorders, mood disorders, conduct disorder, impulse control disorders, antisocial personality disorder, and borderline personality disorder. The term impulsivity has been used to define different constructs such as (1) personality trait or cognitive style in which disinhibition is the core characteristic, (2) a tendency to act immediately in response to external or internal stimuli, and (3) a group of psychiatric disorders with behavioral dyscontrol. Among adolescents suicidal behavior is transmitted in families independently of psychiatric conditions, but not independently of impulsivity/aggression. Two causal links between impulsiveness and alcoholism have been proposed: (1) adolescents who develop alcoholism possess higher premorbid levels of impulsiveness than those who do not develop alcoholism, and (2) levels of impulsiveness differentiate both populations only after the development of alcoholism, with higher levels of impulsiveness among those adolescents who developed alcoholism. Cognitive behavioral techniques have shown promising results in the treatment of adolescents with alcohol and substance use disorder and suicidality. The relative frequency of suicidal behavior among adolescents and young adults suffering from alcoholism and its subsequent devastating effects on individuals, families and society merits further research and development of prevention strategies.

  19. Psychedelic symptoms of cannabis and cocaine use as a function of trait impulsivity.

    PubMed

    van Wel, J H P; Spronk, D B; Kuypers, K P C; Theunissen, E L; Toennes, S W; Verkes, R J; Ramaekers, J G

    2015-03-01

    Trait impulsivity has been linked to addiction in humans. It has been suggested that drug users with high trait impulsivity levels are more sensitive to subjective drug intoxication. This study assessed whether subjective response to drugs differs between drug users with normal or high levels of trait impulsivity. Regular drug users (N = 122) received doses of cocaine HCl, cannabis, and placebo in a three-way crossover study. Their mood, dissociative state, and psychedelic symptoms were measured with subjective rating scales (CADDS, Bowdle, POMS). Trait impulsivity was assessed with the Barratt Impulsiveness Scale. Cannabis increased dissociation and psychedelic state, as well as fatigue, confusion, depression and anxiety, and decreased arousal, positive mood, vigor, friendliness, and elation. Cocaine increased dissociation, psychedelic state, vigor, friendliness, elation, positive mood, anxiety and arousal, while decreasing fatigue. Only a few subjective items revealed a drug × trait impulsivity interaction, suggesting that psychedelic symptoms were most intense in high impulsivity subjects. Trait impulsiveness ratings were negatively correlated with ratings of vigor (r = -.197) and positively correlated with ratings of loss of thought control (r = .237) during cannabis intoxication. It is concluded that a broad association between trait impulsivity and psychedelic subjective drug experience appears to be absent.

  20. Psychedelic symptoms of cannabis and cocaine use as a function of trait impulsivity.

    PubMed

    van Wel, J H P; Spronk, D B; Kuypers, K P C; Theunissen, E L; Toennes, S W; Verkes, R J; Ramaekers, J G

    2015-03-01

    Trait impulsivity has been linked to addiction in humans. It has been suggested that drug users with high trait impulsivity levels are more sensitive to subjective drug intoxication. This study assessed whether subjective response to drugs differs between drug users with normal or high levels of trait impulsivity. Regular drug users (N = 122) received doses of cocaine HCl, cannabis, and placebo in a three-way crossover study. Their mood, dissociative state, and psychedelic symptoms were measured with subjective rating scales (CADDS, Bowdle, POMS). Trait impulsivity was assessed with the Barratt Impulsiveness Scale. Cannabis increased dissociation and psychedelic state, as well as fatigue, confusion, depression and anxiety, and decreased arousal, positive mood, vigor, friendliness, and elation. Cocaine increased dissociation, psychedelic state, vigor, friendliness, elation, positive mood, anxiety and arousal, while decreasing fatigue. Only a few subjective items revealed a drug × trait impulsivity interaction, suggesting that psychedelic symptoms were most intense in high impulsivity subjects. Trait impulsiveness ratings were negatively correlated with ratings of vigor (r = -.197) and positively correlated with ratings of loss of thought control (r = .237) during cannabis intoxication. It is concluded that a broad association between trait impulsivity and psychedelic subjective drug experience appears to be absent. PMID:25572345

  1. Impulsivity and apathy in Parkinson’s disease

    PubMed Central

    Sinha, Nihal; Manohar, Sanjay; Husain, Masud

    2013-01-01

    Impulse control disorders (ICDs) and apathy are recognized as two important neuropsychiatric syndromes associated with Parkinson’s disease (PD), but as yet we understand very little about the cognitive mechanisms underlying them. Here, we review emerging findings, from both human and animal studies, that suggest that impulsivity and apathy are opposite extremes of a dopamine-dependent spectrum of motivated decision making. We first argue that there is strong support for a hypodopaminergic state in PD patients with apathy, as well as for an association between dopamine therapy and development of ICDs. However, there is little evidence for a clear dose-response relationship, and great heterogeneity of findings. We argue that dopaminergic state on its own is an insufficient explanation, and suggest instead that there is now substantial evidence that both apathy and impulsivity are in fact multi-dimensional syndromes, with separate, dissociable mechanisms underlying their ‘surface’ manifestations. Some of these mechanisms might be dopamine-dependent. According to this view, individuals diagnosed as impulsive or apathetic may have very different mechanisms underlying their clinical states. We propose that impulsivity and apathy can arise from dissociable deficits in option generation, option selection, action initiation or inhibition and learning. Review of the behavioural and neurobiological evidence leads us to a new conceptual framework that might help understand the variety of functional deficits seen in PD. PMID:23621377

  2. Impulsivity and risk taking in bipolar disorder and schizophrenia.

    PubMed

    Reddy, L Felice; Lee, Junghee; Davis, Michael C; Altshuler, Lori; Glahn, David C; Miklowitz, David J; Green, Michael F

    2014-01-01

    Impulsive risk taking contributes to deleterious outcomes among clinical populations. Indeed, pathological impulsivity and risk taking are common in patients with serious mental illness, and have severe clinical repercussions including novelty seeking, response disinhibition, aggression, and substance abuse. Thus, the current study seeks to examine self-reported impulsivity (Barratt Impulsivity Scale) and performance-based behavioral risk taking (Balloon Analogue Risk Task) in bipolar disorder and schizophrenia. Participants included 68 individuals with bipolar disorder, 38 with schizophrenia, and 36 healthy controls. Self-reported impulsivity was elevated in the bipolar group compared with schizophrenia patients and healthy controls, who did not differ from each other. On the risk-taking task, schizophrenia patients were significantly more risk averse than the bipolar patients and controls. Aside from the diagnostic group differences, there was a significant effect of antipsychotic (AP) medication within the bipolar group: bipolar patients taking AP medications were more risk averse than those not taking AP medications. This difference in risk taking because of AP medications was not explained by history of psychosis. Similarly, the differences in risk taking between schizophrenia and bipolar disorder were not fully explained by AP effects. Implications for clinical practice and future research are discussed. PMID:23963117

  3. Relations Between Trait Impulsivity, Behavioral Impulsivity, Physiological Arousal, and Risky Sexual Behavior among Young Men

    PubMed Central

    Derefinko, Karen J.; Peters, Jessica R.; Eisenlohr-Moul, Tory A.; Walsh, Erin C.; Adams, Zachary W.; Lynam, Donald R.

    2014-01-01

    The current study examined how impulsivity-related traits (negative urgency, sensation seeking, and positive urgency), behavioral measures of risk taking and reward seeking, and physiological reactivity related to three different risky sexual behaviors in sexually active undergraduate men (N = 135). Regression analyses indicated that sensation seeking and behavioral risk-taking predicted unique variance in number of sexual partners. These findings suggest that, for young men, acquisition of new partners is associated with need for excitement and reward and willingness to take risks to meet those needs. Sensation seeking, behavioral risk-taking, and skin conductance reactivity to arousing stimuli was related to ever having engaged in sex with a stranger, indicating that, for men, willingness to have sex with a stranger is related not only to the need for excitement and risk-taking but also with innate responsiveness to arousing environmental triggers. In contrast, regression analyses indicated that young men who were impulsive in the context of negative emotions were less likely to use condoms, suggesting that emotion-based impulsivity may be an important factor in negligent prophylactic use. This study adds to the current understanding of the divergence between the correlates of risky sexual behaviors and may lend utility to the development of individualized HIV prevention programming. PMID:24958252

  4. Three-dimensional, Impulsive Magnetic Reconnection in a Laboratory Plasma

    SciTech Connect

    S Dorfman, et al

    2013-05-03

    Impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The events observed in the Magnetic Reconnection Experiment (MRX) are characterized by large local gradients in the third direction and cannot be explained by 2-D models. Detailed measurements show that the ejection of flux rope structures from the current sheet plays a key role in these events. By contrast, even though electromagnetic fluctuations in the lower hybrid frequency range are also observed concurrently with the impulsive behavior, they are not the key physics responsible. A qualitative, 3-D, two-fluid model is proposed to explain the observations. The experimental results may be particularly applicable to space and astrophysical plasmas where impulsive reconnection occurs.

  5. THz impulse radar for biomedical sensing: nonlinear system behavior

    NASA Astrophysics Data System (ADS)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  6. Neural mechanisms of impulse control in sexually risky adolescents

    PubMed Central

    Goldenberg, Diane; Telzer, Eva H.; Lieberman, Matthew D.; Fuligni, Andrew; Galván, Adriana

    2014-01-01

    The consequences of risky sexual behavior are of public concern. Adolescents contribute disproportionately to negative consequences of risky sexual behavior. However, no research has examined the neural correlates of impulse control and real-world engagement in risky sexual behavior in this population. The aim of the present study was to examine this question. Twenty sexually active adolescents performed an impulse control task during a functional magnetic resonance imaging (fMRI) scan and risky sexual behaviors were assessed through self-report. Sexual riskiness ratings were negatively associated with activation in the prefrontal cortex during response inhibition. These results suggest that diminished engagement of impulse control circuitry may contribute to sexual riskiness in adolescents. PMID:23835204

  7. Impulsivity and Concussion in Juvenile Rats: Examining Molecular and Structural Aspects of the Frontostriatal Pathway.

    PubMed

    Hehar, Harleen; Yeates, Keith; Kolb, Bryan; Esser, Michael J; Mychasiuk, Richelle

    2015-01-01

    Impulsivity and poor executive control have been implicated in the pathogenesis of many developmental and neuropsychiatric disorders. Similarly, concussions/mild traumatic brain injuries (mTBI) have been associated with increased risk for neuropsychiatric disorders and the development of impulsivity and inattention. Researchers and epidemiologists have therefore considered whether or not concussions induce symptoms of attention-deficit/hyperactivity disorder (ADHD), or merely unmask impulsive tendencies that were already present. The purpose of this study was to determine if a single concussion in adolescence could induce ADHD-like impulsivity and impaired response inhibition, and subsequently determine if inherent impulsivity prior to a pediatric mTBI would exacerbate post-concussion symptomology with a specific emphasis on impulsive and inattentive behaviours. As these behaviours are believed to be associated with the frontostriatal circuit involving the nucleus accumbens (NAc) and the prefrontal cortex (PFC), the expression patterns of 8 genes (Comt, Drd2, Drd3, Drd4, Maoa, Sert, Tph1, and Tph2) from these two regions were examined. In addition, Golgi-Cox staining of medium spiny neurons in the NAc provided a neuroanatomical examination of mTBI-induced structural changes. The study found that a single early brain injury could induce impulsivity and impairments in response inhibition that were more pronounced in males. Interestingly, when animals with inherent impulsivity experienced mTBI, injury-related deficits were exacerbated in female animals. The single concussion increased dendritic branching, but reduced synaptic density in the NAc, and these changes were likely associated with the increase in impulsivity. Finally, mTBI-induced impulsivity was associated with modifications to gene expression that differed dramatically from the gene expression pattern associated with inherent impulsivity, despite very similar behavioural phenotypes. Our findings suggest

  8. Impulse-based methods for fluid flow

    SciTech Connect

    Cortez, R.

    1995-05-01

    A Lagrangian numerical method based on impulse variables is analyzed. A relation between impulse vectors and vortex dipoles with a prescribed dipole moment is presented. This relation is used to adapt the high-accuracy cutoff functions of vortex methods for use in impulse-based methods. A source of error in the long-time implementation of the impulse method is explained and two techniques for avoiding this error are presented. An application of impulse methods to the motion of a fluid surrounded by an elastic membrane is presented.

  9. Progesterone attenuates impulsive action in a Go/No-Go task for sucrose pellets in female and male rats.

    PubMed

    Swalve, Natashia; Smethells, John R; Carroll, Marilyn E

    2016-09-01

    Impulsivity, or a tendency to act without anticipation of future consequences, is associated with drug abuse. Impulsivity is typically separated into two main measures, impulsive action and impulsive choice. Given the association of impulsivity and drug abuse, treatments that reduce impulsivity have been proposed as an effective method for countering drug addiction. Progesterone has emerged as a promising treatment, as it is associated with decreased addiction-related behaviors and impulsive action. The goal of the present study was to determine the effects of progesterone (PRO) on impulsive action for food: a Go/No-Go task. Female and male rats responded for sucrose pellets during a Go component when lever pressing was reinforced on a variable-interval 30-s schedule. During the alternate No-Go component, withholding a lever press was reinforced on a differential reinforcement of other (DRO) behavior 30-s schedule, where a lever press reset the DRO timer. Impulsive action was operationally defined as the inability to withhold a response during the No-Go component (i.e. the number of DRO resets). Once Go/No-Go behavior was stable, responding between rats treated with PRO (0.5mg/kg) or vehicle was examined. Progesterone significantly decreased the total number of DRO resets in both males and females, but it did not affect VI responding for sucrose pellets. This suggests that PRO decreases motor impulsivity for sucrose pellets without affecting motivation for food. Thus, PRO may reduce motor impulsivity, a behavior underlying drug addiction. PMID:27497836

  10. Emotion Regulation and Impulsivity in Young Adults

    PubMed Central

    Schreiber, Liana R.N.; Grant, Jon E.; Odlaug, Brian L.

    2012-01-01

    Past research has linked both emotion regulation and impulsivity with the development and maintenance of addictions. However, no research has investigated the relationship between emotion regulation and impulsivity within young adults. In the present study, we analyzed 194 young adults (27.8% female; 21.3 ± 3.32 years old; 91.8% single; 85.1% Caucasian), grouping them as low, average, or high emotionally dysregulated, and compared self-reported impulsivity, impulsive behaviors (such as alcohol and substance use and gambling) and cognitive impulsivity. We hypothesized that those with high levels of emotion dysregulation would score higher on self-reported and cognitive impulsivity, and report more impulsive behaviors. Analysis indicated that compared to low, the high emotion dysregulation group scored significantly higher on two self-report measures of impulsivity, harm avoidance, and cognitive reasoning. No significant differences were found between groups in impulsive behaviors and cognitive impulsivity. Overall, this study highlights the relationship between emotion dysregulation and impulsivity, suggesting that emotion regulation may be an important factor to consider when assessing individuals at a higher risk for developing an addiction. PMID:22385661

  11. Neurophysiological markers of multiple facets of impulsivity.

    PubMed

    Neal, Lauren B; Gable, Philip A

    2016-03-01

    Human behavior is influenced by three core personality systems: approach, avoidance, and supervisory control. The supervisory control system is inversely related to impulsivity. Although past research has related some aspects of impulsivity to frontal hemispheric asymmetry, impulsivity as a multi-faceted construct has not been studied in relation with frontal asymmetry. In addition, past work has potentially confounded impulsivity with approach-motivation. In the current study, greater relative left frontal activity was related to multiple facets of impulsivity: negative urgency, lack of premeditation, lack of perseverance, and positive urgency. Regressing both positive and negative urgency on frontal asymmetry revealed that approach-related positive urgency related to greater left frontal activity, but withdrawal-related negative urgency marginally related to greater right frontal activity. These results suggest that impulsivity, independent of affective valence, relates to greater left frontal activity. When controlling for trait approach motivation, the relationship between impulsivity and left frontal activity is unchanged.

  12. A neurogenetic approach to impulsivity.

    PubMed

    Congdon, Eliza; Canli, Turhan

    2008-12-01

    Impulsivity is a complex and multidimensional trait that is of interest to both personality psychologists and to clinicians. For investigators seeking the biological basis of personality traits, the use of neuroimaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) revolutionized personality psychology in less than a decade. Now, another revolution is under way, and it originates from molecular biology. Specifically, new findings in molecular genetics, the detailed mapping and the study of the function of genes, have shown that individual differences in personality traits can be related to individual differences within specific genes. In this article, we will review the current state of the field with respect to the neural and genetic basis of trait impulsivity.

  13. A Neurogenetic Approach to Impulsivity

    PubMed Central

    Congdon, Eliza; Canli, Turhan

    2008-01-01

    Impulsivity is a complex and multidimensional trait that is of interest to both personality psychologists and to clinicians. For investigators seeking the biological basis of personality traits, the use of neuroimaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) revolutionized personality psychology in less than a decade. Now, another revolution is under way, and it originates from molecular biology. Specifically, new findings in molecular genetics, the detailed mapping and the study of the function of genes, have shown that individual differences in personality traits can be related to individual differences within specific genes. In this article, we will review the current state of the field with respect to the neural and genetic basis of trait impulsivity. PMID:19012655

  14. System evaluation from impulse response fragments

    NASA Technical Reports Server (NTRS)

    Baumeister, J. K.; Hopper, E. H.

    1972-01-01

    By use of rational approximation, a procedure was found which allows calculation of the z-transfer function from a restricted number of time sequence values. The order of the system need not be known. Transformation to the s-domain is easily provided.

  15. Double trouble. Trait food craving and impulsivity interactively predict food-cue affected behavioral inhibition.

    PubMed

    Meule, Adrian; Kübler, Andrea

    2014-08-01

    Impulsivity and food craving have both been implicated in overeating. Recent results suggest that both processes may interactively predict increased food intake. In the present study, female participants performed a Go/No-go task with pictures of high- and low-calorie foods. They were instructed to press a button in response to the respective target category, but withhold responses to the other category. Target category was switched after every other block, thereby creating blocks in which stimulus-response mapping was the same as in the previous block (nonshift blocks) and blocks in which it was reversed (shift blocks). The Food Cravings Questionnaires and the Barratt Impulsiveness Scale were used to assess trait and state food craving and attentional, motor, and nonplanning impulsivity. Participants had slower reaction times and more omission errors (OE) in high-calorie than in low-calorie blocks. Number of commission errors (CE) and OE was higher in shift blocks than in nonshift blocks. Trait impulsivity was positively correlated with CE in shift blocks while trait food craving was positively correlated with CE in high-calorie blocks. Importantly, CE in high-calorie-shift blocks were predicted by an interaction of food craving × impulsivity such that the relationship between food craving and CE was particularly strong at high levels of impulsivity, but vanished at low levels of impulsivity. Thus, impulsive reactions to high-calorie food-cues are particularly pronounced when both trait impulsivity and food craving is high, but low levels of impulsivity can compensate for high levels of trait food craving. Results support models of self-regulation which assume that interactive effects of low top-down control and strong reward sensitive, bottom-up mechanisms may determine eating-related disinhibition, ultimately leading to increased food intake.

  16. Periodic components of hand acceleration/deceleration impulses during telemanipulation

    SciTech Connect

    Draper, J.V.; Handel, S.

    1994-01-01

    Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF`s) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25 Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition.

  17. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.

    PubMed

    Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin

    2014-12-01

    Material properties of the plantar soft tissue have not been well quantified in vivo (i.e., from life subjects) nor for areas other than the heel pad. This study explored an in vivo investigation of the plantar soft tissue material behavior under the metatarsal head (MTH). We used a novel device collecting indentation data at controlled metatarsophalangeal joint angles. Combined with inverse analysis, tissues׳ joint-angle dependent material properties were identified. The results showed that the soft tissue under MTH exhibited joint-angle dependent material responses, and the computed parameters using the Ogden material model were 51.3% and 30.9% larger in the dorsiflexed than in the neutral positions, respectively. Using derived parameters in subject-specific foot finite element models revealed only those models that used tissues׳ joint-dependent responses could reproduce the known plantar pressure pattern under the MTH. It is suggested that, to further improve specificity of the personalized foot finite element models, quantitative mechanical properties of the tissue inclusive of the effects of metatarsophalangeal joint dorsiflexion are needed.

  18. Development of structural and material clavicle response corridors under axial compression and three point bending loading for clavicle finite element model validation.

    PubMed

    Zhang, Qi; Kindig, Matthew; Li, Zuoping; Crandall, Jeff R; Kerrigan, Jason R

    2014-08-22

    Clavicle injuries were frequently observed in automotive side and frontal crashes. Finite element (FE) models have been developed to understand the injury mechanism, although no clavicle loading response corridors yet exist in the literature to ensure the model response biofidelity. Moreover, the typically developed structural level (e.g., force-deflection) response corridors were shown to be insufficient for verifying the injury prediction capacity of FE model, which usually is based on strain related injury criteria. Therefore, the purpose of this study is to develop both the structural (force vs deflection) and material level (strain vs force) clavicle response corridors for validating FE models for injury risk modeling. 20 Clavicles were loaded to failure under loading conditions representative of side and frontal crashes respectively, half of which in axial compression, and the other half in three point bending. Both structural and material response corridors were developed for each loading condition. FE model that can accurately predict structural response and strain level provides a more useful tool in injury risk modeling and prediction. The corridor development method in this study could also be extended to develop corridors for other components of the human body. PMID:24975696

  19. Cued to Act on Impulse: More Impulsive Choice and Risky Decision Making by Women Susceptible to Overeating after Exposure to Food Stimuli

    PubMed Central

    Yeomans, Martin R.; Brace, Aaron

    2015-01-01

    There is increasing evidence that individual differences in tendency to overeat relate to impulsivity, possibly by increasing reactivity to food-related cues in the environment. This study tested whether acute exposure to food cues enhanced impulsive and risky responses in women classified on tendency to overeat, indexed by scores on the three factor eating questionnaire disinhibition (TFEQ-D), restraint (TFEQ-R) and hunger scales. Ninety six healthy women completed two measures of impulsive responding (delayed discounting, DDT and a Go No-Go, GNG, task) and a measure of risky decision making (the balloon analogue risk task, BART) as well as questionnaire measures of impulsive behaviour either after looking at a series of pictures of food or visually matched controls. Impulsivity (DDT) and risk-taking (BART) were both positively associated with TFEQ-D scores, but in both cases this effect was exacerbated by prior exposure to food cues. No effects of restraint were found. TFEQ-D scores were also related to more commission errors on the GNG, while restrained women were slower on the GNG, but neither effect was modified by cue exposure. Overall these data suggest that exposure to food cues act to enhance general impulsive responding in women at risk of overeating and tentatively suggest an important interaction between tendency for impulsive decision making and food cues that may help explain a key underlying risk factor for overeating. PMID:26378459

  20. Cued to Act on Impulse: More Impulsive Choice and Risky Decision Making by Women Susceptible to Overeating after Exposure to Food Stimuli.

    PubMed

    Yeomans, Martin R; Brace, Aaron

    2015-01-01

    There is increasing evidence that individual differences in tendency to overeat relate to impulsivity, possibly by increasing reactivity to food-related cues in the environment. This study tested whether acute exposure to food cues enhanced impulsive and risky responses in women classified on tendency to overeat, indexed by scores on the three factor eating questionnaire disinhibition (TFEQ-D), restraint (TFEQ-R) and hunger scales. Ninety six healthy women completed two measures of impulsive responding (delayed discounting, DDT and a Go No-Go, GNG, task) and a measure of risky decision making (the balloon analogue risk task, BART) as well as questionnaire measures of impulsive behaviour either after looking at a series of pictures of food or visually matched controls. Impulsivity (DDT) and risk-taking (BART) were both positively associated with TFEQ-D scores, but in both cases this effect was exacerbated by prior exposure to food cues. No effects of restraint were found. TFEQ-D scores were also related to more commission errors on the GNG, while restrained women were slower on the GNG, but neither effect was modified by cue exposure. Overall these data suggest that exposure to food cues act to enhance general impulsive responding in women at risk of overeating and tentatively suggest an important interaction between tendency for impulsive decision making and food cues that may help explain a key underlying risk factor for overeating. PMID:26378459

  1. Impulse oscillometry: interpretation and practical applications.

    PubMed

    Bickel, Scott; Popler, Jonathan; Lesnick, Burton; Eid, Nemr

    2014-09-01

    Simple spirometry and body plethysmography have been routinely used in children aged > 5 years. New techniques based on physiologic concepts that were first described almost 50 years ago are emerging in research and in clinical practice for measuring pulmonary function in children. These techniques have led to an increased understanding of the pediatric lung and respiratory mechanics. Impulse oscillometry (IOS), a simple, noninvasive method using the forced oscillation technique, requires minimal patient cooperation and is suitable for use in both children and adults. This method can be used to assess obstruction in the large and small peripheral airways and has been used to measure bronchodilator response and bronchoprovocation testing. New data suggest that IOS may be useful in predicting loss of asthma control in the pediatric population. This article reviews the clinical applications of IOS, with an emphasis on the pediatric setting, and discusses appropriate coding practices for the clinician. PMID:25180727

  2. An Abbreviated Impulsiveness Scale (ABIS) Constructed through Confirmatory Factor Analysis of the BIS-11

    PubMed Central

    Coutlee, Christopher G.; Politzer, Cary S.; Hoyle, Rick H.; Huettel, Scott A.

    2015-01-01

    Impulsiveness is a personality trait that reflects an urge to act spontaneously, without thinking or planning ahead for the consequences of your actions. High impulsiveness is characteristic of a variety of problematic behaviors including attention deficit disorder, hyperactivity, excessive gambling, risk-taking, drug use, and alcoholism. Researchers studying attention and self-control often assess impulsiveness using personality questionnaires, notably the common Barratt Impulsiveness Scale version 11 (BIS-11; last revised in 1995). Advances in techniques for producing personality questionnaires over the last 20 years prompted us to revise and improve the BIS-11. We sought to make the revised scale shorter – so that it would be quicker to administer – and better matched to current behaviors. We analyzed responses from 1549 adults who took the BIS-11 questionnaire. Using a statistical technique called factor analysis, we eliminated 17 questions that did a poor job of measuring the three major types of impulsiveness identified by the scale: inattention, spontaneous action, and lack of planning. We constructed our ABbreviated Impulsiveness Scale (ABIS) using the remaining 13 questions. We showed that the ABIS performed well when administered to additional groups of 657 and 285 adults. Finally, we showed expected relationships between the ABIS and other personality measurements related to impulsiveness, and showed that the ABIS can help predict alcohol consumption. We present the ABIS as a useful and efficient tool for researchers interested in measuring impulsive personality. PMID:26258000

  3. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    NASA Astrophysics Data System (ADS)

    Aman, A.; Majcherek, S.; Hirsch, S.; Schmidt, B.

    2015-10-01

    This paper focuses on microwave emission from Lead zirconate titanate Pb [ZrxTi1-x] O3 (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  4. Finite Element Modeling of the Muscle Effects on Kinematic Responses of Head-Neck Complex in Frontal Impact at High Speed

    NASA Astrophysics Data System (ADS)

    Wittek, Adam; Kajzer, Janusz; Haug, Eberhard; Ono, Koshiro

    In the present study, a previously developed finite-element model of the neck was modified by adding the Hill-type muscle elements. The modified model was utilized to investigate the muscle effects on the kinematic responses of the head-neck complex in a frontal impact at a speed of around 60 km/h. The behavior of this model was consistent with the literature data describing kinematic responses of volunteers and cadavers subjected to such an impact. The present results suggest the following: 1) It is likely that, when the neck muscles are activated at around 25-50 ms after the start of the impact acceleration, they can significantly reduce the peak values of the head-gravity center displacements and angular acceleration in a high-speed frontal impact; and 2) When the activation of neck muscles starts at around 100 ms or later, their effects can be disregarded.

  5. A Galerkin finite-element flow model to predict the transient response of a radially symmetric aquifer

    USGS Publications Warehouse

    Reilly, Thomas E.

    1984-01-01

    A computer program developed to evaluate radial flow of ground water, such as at a pumping well, recharge basin, or injection well, is capable of simulating anisotropic, inhomogenous, confined, or pseudo-unconfined (constant saturated thickness) conditions. Results compare well with those calculated from published analytical and model solutions. The program is based on the Galerkin finite-element technique. A sample model run is presented to illustrate the use of the program; supplementary material provides the program listing as well as a sample problem data set and output. From the text and other material presented, one can use the program to predict drawdowns from pumping and ground-water buildups from recharge in a radially symmetric ground-water system.

  6. Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings

    NASA Astrophysics Data System (ADS)

    Depine, Ricardo A.; Skigin, Diana C.

    2000-04-01

    The resonant frequencies of a one-dimensional bottle-shaped cavity embedded in a ground plane are calculated using a modal approach for s and p polarizations. The same formalism is used to solve the problem of scattering from a surface with a finite number of cavities and from an infinite periodic grating. We show numerical results where the resonant behavior is evidenced as dips in the curve of intensity specularly reflected from a surface with one or several bottle-shaped grooves. The surface shape resonances of a single cavity are also shown to have a great influence on the efficiency distribution of the diffracted orders from infinite gratings made of bottle-shaped cavities. The excitation of even and odd modes is analyzed for both polarizations.

  7. Maximization of the effective impulse delivered by a high-frequency/low-frequency planetary drill tool.

    PubMed

    Harkness, Patrick; Lucas, Margaret; Cardoni, Andrea

    2011-11-01

    Ultrasonic tools are used for a variety of cutting applications in surgery and the food industry, but when they are applied to harder materials, such as rock, their cutting performance declines because of the low effective impulse delivered by each vibration cycle. To overcome this problem, a technique known as high-frequency/low-frequency (or alternatively, ultrasonic/sonic) drilling is employed. In this approach, an ultrasonic step-horn is used to deliver an impulse to a free mass which subsequently moves toward a drilling bit, delivering the impulse on contact. The free mass then rebounds to complete the cycle. The horn has time between impacts to build significant vibration amplitude and thus delivers a much larger impulse to the free mass than could be delivered if it were applied directly to the target. To maximize the impulse delivered to the target by the cutting bit, both the momentum transfer from the ultrasonic horn to the free mass and the dynamics of the horn/free mass/cutting bit stack must be optimized. This paper uses finite element techniques to optimize the ultrasonic horns and numerical propagation of the stack dynamics to maximize the delivered effective impulse, validated in both cases by extensive experimental analysis.

  8. Analytical Solutions to the Unsteady Response of an Isolated Finite Span Swept Airfoil to an Incident Gust and Unsteady Response of a Rectilinear Swept Cascade to an Incident Gust Problems

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2000-01-01

    The solution to the problem of unsteady response of an isolated finite span swept airfoil to an incident gust is most conveniently obtained by introducing an acoustic velocity potential and eliminating all primitive variables from the governing equations. The end result is the convected wave equation for the acoustic velocity potential, phi. For the unsteady response of a rectilinear swept cascade to an incident gust problem, the governing equation and the imposed boundary conditions are the same as those for the isolated airfoil problem.

  9. Robust stochastic resonance: Signal detection and adaptation in impulsive noise

    NASA Astrophysics Data System (ADS)

    Kosko, Bart; Mitaim, Sanya

    2001-11-01

    Stochastic resonance (SR) occurs when noise improves a system performance measure such as a spectral signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more impulsive. We study this fading effect on the family of symmetric α-stable bell curves that includes the Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter α falls from 2 (the Gaussian case) to 1 (the Cauchy case) to even lower values. Thicker tails create more frequent and more violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure against the dispersion of the α-stable noise. Linear regression shows that an exponential law γopt(α)=cAα describes this relation between the impulsive index α and the SR-optimal noise dispersion γopt. The results show that SR is robust against noise ``outliers.'' So SR may be more widespread in nature than previously believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive system can learn the optimal noise dispersion for two standard SR models (the quartic bistable model and the FitzHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological systems.

  10. Impulsivity and sexual assault in college men.

    PubMed

    Mouilso, Emily R; Calhoun, Karen S; Rosenbloom, Thomas G

    2013-01-01

    Although impulsivity has been consistently linked to perpetration of sexual aggression, results lack clarity because they do not account for the substantial heterogeneity associated with the construct. The UPPS-P model (Lynam, Smith, Whiteside, & Cyders, 2006), which was proposed to clarify the multidimensional nature of impulsivity, has yet to be applied to sexual aggression. We measured UPPS-P Impulsivity in a sample of male college students who also self-reported on perpetration of sexual aggression. As predicted, impulsivity distinguished perpetrators from nonperpetrators. Perpetrators scored higher than non-perpetrators on Negative Urgency, Positive Urgency, and lack of Premeditation. Results suggest that the impulsivity traits most relevant to sexual aggression are the tendency to act impulsively when experiencing intense emotions (Positive and Negative Urgency) and lack of forethought and planning (lack of Premeditation). PMID:23862308

  11. Teens Impulsively React Rather than Retreat from Threat

    PubMed Central

    Dreyfuss, Michael; Caudle, Kristina; Drysdale, Andrew T.; Johnston, Natalie E.; Cohen, Alexandra O.; Somerville, Leah H.; Galván, Adriana; Tottenham, Nim; Hare, Todd A.; Casey, BJ

    2014-01-01

    There is a significant inflection in risk taking and criminal behavior during adolescence, but the basis for this increase remains largely unknown. An increased sensitivity to rewards has been suggested to explain these behaviors. Yet juvenile offenses often occur in emotionally charged situations of negative valence. How behavior is altered by changes in negative emotional processes during adolescence has received less attention than changes in positive emotional processes. The current study uses a measure of impulsivity in combination with cues that signal threat or safety to assess developmental changes in emotional responses to threat cues. We show that adolescents, especially males, impulsively react to threat cues relative to neutral ones, more than adults or children, even when instructed not to respond. This adolescent specific behavioral pattern is paralleled by enhanced activity in limbic cortical regions implicated in detection and assignment of emotional value to inputs and in the subsequent regulation of responses to them when successfully suppressing impulsive responses to threat cues. In contrast, prefrontal control regions implicated in detecting and resolving competing responses show an adolescent emergent pattern (i.e., greater activity in adolescents and adults relative to children) during successful suppression of a response regardless of emotion. Our findings suggest that adolescence is a period of heightened sensitivity to social and emotional cues that results in diminished regulation of behavior in their presence. PMID:24821576

  12. Cotton buds, momentum, and impulse

    NASA Astrophysics Data System (ADS)

    van den Berg, Ed; Nuñez, Jover; Guirit, Alfredo; van Huis, Cor

    2000-01-01

    Here is a simple experiment demonstrating impulse and momentum that was picked up from a Japanese presenter at a physics teacher conference held in Cebu City. We have not been able to trace the experiment farther and have never seen it in print. After student-author Nuñez demonstrated it during an exam on conducting demonstrations, we converted the qualitative idea into a quanitative experiment and even discovered some possibilities for student research. The lab is also suitable as homework, since it uses universally available "equipment" — cotton buds (swabs), drinking straws, and a ruler.

  13. Motor inhibition, reflection impulsivity, and trait impulsivity in pathological skin picking.

    PubMed

    Snorrason, Ívar; Smári, Jakob; Ólafsson, Ragnar P

    2011-09-01

    Pathological skin picking (PSP) is often recognized as an impulse control disorder. The current study sought to investigate the relationship between PSP and different forms of impulsivity. University students that met criteria for PSP (n = 55) and university students without history of PSP (n = 55) answered a multidimensional impulsivity questionnaire (the UPPS Impulsive Behavior Scale) and completed 2 neurocognitive tasks that assess impulsivity (the Stop Signal Task and the Information Sampling Task). The PSP group scored significantly higher than the control group on the negative and positive urgency subscales of the UPPS, but the groups did not differ on other subscales or the neurocognitive tasks. Logistic regression demonstrated that the urgency scales added to the prediction of PSP after negative affect and other forms of impulsivity were adjusted for. The results indicate that PSP sufferers are characterized by emotion-based impulsivity and do not appear to be impulsive in other ways. PMID:21658533

  14. Approximate controllability of nonlinear impulsive differential systems

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Mahmudov, N. I.; Kim, J. H.

    2007-08-01

    Many practical systems in physical and biological sciences have impulsive dynamical be- haviours during the evolution process which can be modeled by impulsive differential equations. This paper studies the approximate controllability issue for nonlinear impulsive differential and neutral functional differential equations in Hilbert spaces. Based on the semigroup theory and fixed point approach, sufficient conditions for approximate controllability of impulsive differential and neutral functional differential equations are established. Finally, two examples are presented to illustrate the utility of the proposed result. The results improve some recent results.

  15. Effects of mood state on impulsivity in pathological buying.

    PubMed

    Nicolai, Jennifer; Darancó, Stefaniá; Moshagen, Morten

    2016-10-30

    Pathological buying is characterized by irrepressible buying behaviour and its negative consequences. A possible mechanism contributing to its development and maintenance is that buying episodes act as a maladaptive strategy to cope with negative emotions. Accordingly, pathological buying has been repeatedly associated with impulsivity, in particular with the tendency to experience strong reactions under negative affect. Relying on an experimental mood induction procedure, the present study tested in a sample of 100 individuals (a) whether individuals with pathological buying symptoms respond more impulsively in the Go/No-Go Task (as a measure of the behavioural inhibition aspect of impulsivity) and (b) whether this association is more pronounced in a negative mood. While controlling for comorbidities, the results show that pathological buying is associated with faster responses and a larger number of commission errors. Moreover, a significant interaction indicated that the association between pathological buying and performance the Go/No-Go Task was stronger in the negative mood condition. The present study thus shows that pathological buying is associated with deficits in the behavioural inhibition component of impulsivity. These deficits are most pronounced when mood is negative; in turn, this provides an explanation for the occurrence of excessive buying episodes following negative affect. PMID:27521976

  16. Impulsivity moderates the association between racial discrimination and alcohol problems.

    PubMed

    Latzman, Robert D; Chan, Wing Yi; Shishido, Yuri

    2013-12-01

    Alcohol use among university students is a serious public health concern, particularly among minority students who may use alcohol to cope with experiences of racial discrimination. Although the impact of racial discrimination on alcohol use has been well-established, individual differences in factors that may act to either attenuate or exacerbate the negative effects of racial discrimination are largely unknown. One potentially fruitful individual differences trait that has repeatedly been found to predict alcohol problems is the multidimensional personality trait of impulsivity. Nonetheless, the ways in which various aspects of impulsivity interact with racial discrimination is yet unknown. The current study, therefore, examined the joint and interactive contribution of racial discrimination and impulsivity in the prediction of alcohol consumption among racial minority university students. Participants included 336 Black/African-American and Asian/Asian-American university students. Results revealed both racial discrimination and impulsivity to be significantly associated with alcohol problems. Further, individuals' responses to racial discrimination were not uniform. Specifically, the association between racial discrimination and alcohol problems was moderated by lack of Premeditation; racial discrimination was most strongly predictive of alcohol problems for those who reported low level of premeditation. Findings from the present study highlight the importance of investigating risk factors for alcohol problems across multiple levels of the ecology as individual personality traits appear to relate to how one might respond to the experience of racial discrimination.

  17. Effects of mood state on impulsivity in pathological buying.

    PubMed

    Nicolai, Jennifer; Darancó, Stefaniá; Moshagen, Morten

    2016-10-30

    Pathological buying is characterized by irrepressible buying behaviour and its negative consequences. A possible mechanism contributing to its development and maintenance is that buying episodes act as a maladaptive strategy to cope with negative emotions. Accordingly, pathological buying has been repeatedly associated with impulsivity, in particular with the tendency to experience strong reactions under negative affect. Relying on an experimental mood induction procedure, the present study tested in a sample of 100 individuals (a) whether individuals with pathological buying symptoms respond more impulsively in the Go/No-Go Task (as a measure of the behavioural inhibition aspect of impulsivity) and (b) whether this association is more pronounced in a negative mood. While controlling for comorbidities, the results show that pathological buying is associated with faster responses and a larger number of commission errors. Moreover, a significant interaction indicated that the association between pathological buying and performance the Go/No-Go Task was stronger in the negative mood condition. The present study thus shows that pathological buying is associated with deficits in the behavioural inhibition component of impulsivity. These deficits are most pronounced when mood is negative; in turn, this provides an explanation for the occurrence of excessive buying episodes following negative affect.

  18. Brain structure correlates of emotion-based rash impulsivity

    PubMed Central

    Muhlert, N.; Lawrence, A.D.

    2015-01-01

    Negative urgency (the tendency to engage in rash, ill-considered action in response to intense negative emotions), is a personality trait that has been linked to problematic involvement in several risky and impulsive behaviours, and to various forms of disinhibitory psychopathology, but its neurobiological correlates are poorly understood. Here, we explored whether inter-individual variation in levels of trait negative urgency was associated with inter-individual variation in regional grey matter volumes. Using voxel-based morphometry (VBM) in a sample (n = 152) of healthy participants, we found that smaller volumes of the dorsomedial prefrontal cortex and right temporal pole, regions previously linked to emotion appraisal, emotion regulation and emotion-based decision-making, were associated with higher levels of trait negative urgency. When controlling for other impulsivity linked personality traits (sensation seeking, lack of planning/perseverance) and negative emotionality per se (neuroticism), these associations remained, and an additional relationship was found between higher levels of trait negative urgency and smaller volumes of the left ventral striatum. This latter finding mirrors recent VBM findings in an animal model of impulsivity. Our findings offer novel insight into the brain structure correlates of one key source of inter-individual differences in impulsivity. PMID:25957991

  19. The video head impulse test during post-rotatory nystagmus: physiology and clinical implications.

    PubMed

    Mantokoudis, Georgios; Tehrani, Ali S Saber; Xie, Li; Eibenberger, Karin; Eibenberger, Bernhard; Roberts, Dale; Newman-Toker, David E; Zee, David S

    2016-01-01

    The aim of this study was to test the effects of a sustained nystagmus on the head impulse response of the vestibulo-ocular reflex (VOR) in healthy subjects. VOR gain (slow-phase eye velocity/head velocity) was measured using video head impulse test goggles. Acting as a surrogate for a spontaneous nystagmus (SN), a post-rotatory nystagmus (PRN) was elicited after a sustained, constant-velocity rotation, and then head impulses were applied. 'Raw' VOR gain, uncorrected for PRN, in healthy subjects in response to head impulses with peak velocities in the range of 150°/s-250°/s was significantly increased (as reflected in an increase in the slope of the gain versus head velocity relationship) after inducing PRN with slow phases of nystagmus of high intensity (>30°/s) in the same but not in the opposite direction as the slow-phase response induced by the head impulses. The values of VOR gain themselves, however, remained in the normal range with slow-phase velocities of PRN < 30°/s. Finally, quick phases of PRN were suppressed during the first 20-160 ms of a head impulse; the time frame of suppression depended on the direction of PRN but not on the duration of the head impulse. Our results in normal subjects suggest that VOR gains measured using head impulses may have to be corrected for any superimposed SN when the slow-phase velocity of nystagmus is relatively high and the peak velocity of the head movements is relatively low. The suppression of quick phases during head impulses may help to improve steady fixation during rapid head movements. PMID:26449967

  20. Impulsivity and the Sexes: Measurement and Structural Invariance of the UPPS-P Impulsive Behavior Scale

    ERIC Educational Resources Information Center

    Cyders, Melissa A.

    2013-01-01

    Before it is possible to test whether men and women differ in impulsivity, it is necessary to evaluate whether impulsivity measures are invariant across sex. The UPPS-P Impulsive Behavior Scale (negative urgency, lack of premeditation, lack of perseverance, and sensation seeking, with added subscale of positive urgency) is one measure of five…

  1. Frontal Dysfunctions of Impulse Control – A Systematic Review in Borderline Personality Disorder and Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Sebastian, Alexandra; Jung, Patrick; Krause-Utz, Annegret; Lieb, Klaus; Schmahl, Christian; Tüscher, Oliver

    2014-01-01

    Disorders such as borderline personality disorder (BPD) or attention-deficit/hyperactivity disorder (ADHD) are characterized by impulsive behaviors. Impulsivity as used in clinical terms is very broadly defined and entails different categories including personality traits as well as different cognitive functions such as emotion regulation or interference resolution and impulse control. Impulse control as an executive function, however, is neither cognitively nor neurobehaviorally a unitary function. Recent findings from behavioral and cognitive neuroscience studies suggest related but dissociable components of impulse control along functional domains like selective attention, response selection, motivational control, and behavioral inhibition. In addition, behavioral and neural dissociations are seen for proactive vs. reactive inhibitory motor control. The prefrontal cortex with its sub-regions is the central structure in executing these impulse control functions. Based on these concepts of impulse control, neurobehavioral findings of studies in BPD and ADHD were reviewed and systematically compared. Overall, patients with BPD exhibited prefrontal dysfunctions across impulse control components rather in orbitofrontal, dorsomedial, and dorsolateral prefrontal regions, whereas patients with ADHD displayed disturbed activity mainly in ventrolateral and medial prefrontal regions. Prefrontal dysfunctions, however, varied depending on the impulse control component and from disorder to disorder. This suggests a dissociation of impulse control related frontal dysfunctions in BPD and ADHD, although only few studies are hitherto available to assess frontal dysfunctions along different impulse control components in direct comparison of these disorders. Yet, these findings might serve as a hypothesis for the future systematic assessment of impulse control components to understand differences and commonalities of prefrontal cortex dysfunction in impulsive disorders. PMID

  2. Impulsive model for reactive collisions

    NASA Technical Reports Server (NTRS)

    Marron, M. T.; Bernstein, R. B.

    1972-01-01

    A simple classical mechanical model of the reactive scattering of a structureless atom A and a quasi-diatomic BC is developed which takes full advantage of energy, linear and angular momentum conservation relations but introduces a minimum of further assumptions. These are as follows: (1) the vibrational degree of freedom of the reactant (BC) and product (AB) molecules is suppressed, so the change in vibrational energy is simply a parameter; (2) straight-line trajectories are assumed outside of a reaction shell; (3) within this zone, momentum transfer occurs impulsively (essentially instantaneously) following mass transfer; (4) the impulse, which may be either positive or negative, is directed along the BC axis, which may, however, assume all orientations with respect to the incident relative velocity. The model yields differential and total cross sections and product rotational energy distributions for a given collision exoergicity Q, or for any known distribution over Q. Numerical results are presented for several prototype reactions whose dynamics have been well-studied.

  3. Head and neck response of a finite element anthropomorphic test device and human body model during a simulated rotary-wing aircraft impact.

    PubMed

    White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D

    2014-11-01

    A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact.

  4. On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series

    NASA Astrophysics Data System (ADS)

    Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen

    2016-09-01

    Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.

  5. Impulse gage development for the 100-200 ktap range

    SciTech Connect

    Rose, P.C.; Naumann, W.J. . Advanced Technologies Div.)

    1990-07-31

    Special effects underground test (UGT) material response and source diagnostics data require impulse gages that can be used in the 50--150 ktap range and have equilibrated from electrical and mechanical noise sources within 0.001 s. Such gages were designed, analyzed, and tested under this program. One- and two-dimensional stress propagation calculations were performed and predictions were developed for deformation of the gage specimen cup. These predictions were conservative when compared to gas gun test results. The response of the gage will equilibrate within 5% to its final value within 300 {mu}sec. The impulse delivered to the gages for these tests exceeded 250 ktap. The code and experimental results provides a basis for confidence in the operability of the gage in an actual UGT environment.

  6. Integration of a Finite Element Model with the DAP Bone Remodeling Model to Characterize Bone Response to Skeletal Loading

    NASA Technical Reports Server (NTRS)

    Werner, Christopher R.; Mulugeta, Lealem; Myers, J. G.; Pennline, J. A.

    2015-01-01

    NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone in the absence of mechanical loading. The model was recently updated to include skeletal loading from exercise and free living activities to maintain healthy bone using a new daily load stimulus (DLS). This new formula was developed based on an extensive review of existing DLS formulas, as discussed in the abstract by Pennline et al. The DLS formula incorporated into the bone remodeling model utilizes strains and stress calculated from finite element model (FEM) of the bone region of interest. The proximal femur was selected for the initial application of the DLS formula, with a specific focus on the femoral neck. METHODS: The FEM was generated from CAD geometry of a femur using de-identified CT data. The femur was meshed using linear tetrahedral elements Figure (1) with higher mesh densities in the femoral neck region, which is the primary region of interest for the initial application of the DLS formula in concert with the DAP bone remodeling model. Nodal loads were applied to the femoral head and the greater trochanter and the base of the femur was held fixed. An L2 norm study was conducted to reduce the length of the femoral shaft without significantly impacting the stresses in the femoral neck. The material properties of the FEM of the proximal femur were separated between cortical and trabecular regions to work with the bone remodeling model. Determining the elements with cortical material properties in the FEM was based off of publicly available CT hip scans [4] that were segmented, cleaned, and overlaid onto the FEM.

  7. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response.

    PubMed

    Carnelli, Davide; Lucchini, Riccardo; Ponzoni, Matteo; Contro, Roberto; Vena, Pasquale

    2011-07-01

    Anisotropy is one of the most peculiar aspects of cortical bone mechanical behaviour, and the numerical approach can be successfully used to investigate aspects of bone tissue mechanics that analytical methods solve in approximate way or do not cover. In this work, nanoindentation experimental tests and finite element simulations were employed to investigate the elastic-inelastic anisotropic mechanical properties of cortical bone. The model allows for anisotropic elastic and post-yield behaviour of the tissue. A tension-compression mismatch and direction-dependent yield stresses are allowed for. Indentation experiments along the axial and transverse directions were simulated with the purpose to predict the indentation moduli and hardnesses along multiple orientations. Results showed that the experimental transverse-to-axial ratio of indentation moduli, equal to 0.74, is predicted with a ∼3% discrepancy regardless the post-yield material behaviour; whereas, the transverse-to-axial hardness ratio, equal to 0.86, can be correctly simulated (discrepancy ∼6% w.r.t. the experimental results) only employing an anisotropic post-elastic constitutive model. Further, direct comparison between the experimental and simulated indentation tests evidenced a good agreement in the loading branch of the indentation curves and in the peak loads for a transverse-to-axial yield stress ratio comparable to the experimentally obtained transverse-to-axial hardness ratio. In perspective, the present work results strongly support the coupling between indentation experiments and FEM simulations to get a deeper knowledge of bone tissue mechanical behaviour at the microstructural level. The present model could be used to assess the effect of variations of constitutive parameters due to age, injury, and/or disease on bone mechanical performance in the context of indentation testing. PMID:21570077

  8. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.

    PubMed

    Varghese, Bino; Short, David; Penmetsa, Ravi; Goswami, Tarun; Hangartner, Thomas

    2011-04-29

    Finite element (FE) models of long bones constructed from computed-tomography (CT) data are emerging as an invaluable tool in the field of bone biomechanics. However, the performance of such FE models is highly dependent on the accurate capture of geometry and appropriate assignment of material properties. In this study, a combined numerical-experimental study is performed comparing FE-predicted surface strains with strain-gauge measurements. Thirty-six major, cadaveric, long bones (humerus, radius, femur and tibia), which cover a wide range of bone sizes, were tested under three-point bending and torsion. The FE models were constructed from trans-axial volumetric CT scans, and the segmented bone images were corrected for partial-volume effects. The material properties (Young's modulus for cortex, density-modulus relationship for trabecular bone and Poisson's ratio) were calibrated by minimizing the error between experiments and simulations among all bones. The R(2) values of the measured strains versus load under three-point bending and torsion were 0.96-0.99 and 0.61-0.99, respectively, for all bones in our dataset. The errors of the calculated FE strains in comparison to those measured using strain gauges in the mechanical tests ranged from -6% to 7% under bending and from -37% to 19% under torsion. The observation of comparatively low errors and high correlations between the FE-predicted strains and the experimental strains, across the various types of bones and loading conditions (bending and torsion), validates our approach to bone segmentation and our choice of material properties.

  9. Reliability and Validity of Measures of Impulsive Choice and Impulsive Action in Smokers Trying to Quit

    PubMed Central

    McCarthy, Danielle E.; Bold, Krysten W.; Minami, Haruka; Yeh, Vivian M.; Rutten, Emily; Nadkarni, Shruti G.; Chapman, Gretchen B.

    2016-01-01

    Cross-sectional research suggests that smokers are more impulsive than are non-smokers, but few studies have examined relations between impulsiveness and later success in quitting smoking. The purpose of this study was to investigate the reliability and predictive validity of facets of impulsiveness in adult smokers trying to quit. Baseline behavioral measures of impulsive choice (assessed with a delay discounting task) and impulsive action (assessed with a measure of behavioral disinhibition) were used as predictors of smoking cessation success over 12 weeks. The sample included 116 adult (18 years old or older) daily smokers from central New Jersey. Impulsive choice, impulsive action, and self-reported impulsiveness were not significantly related to one another at baseline. Impulsive choice had high test-retest reliability from pre- to post-quit, whereas impulsive action was less stable. Test-retest reliability from pre-quit to three weeks post-quit was moderated by achievement of seven-day abstinence. Baseline impulsive action was significantly negatively related to quitting for at least one day in the first two weeks of a quit attempt and of prolonged abstinence (no relapse over the next 10 weeks). Baseline impulsive choice was robustly associated with biochemically verified seven-day point-prevalence abstinence 12 weeks post-quit, such that those with lower delay discounting were more likely to achieve abstinence. Facets of impulsiveness appear to function largely independently in adult smokers, as indicated by their lack of inter-correlation, differential stability, and differential relations with abstinence. Impulsive action may impede initial quitting, whereas impulsive choice may be an obstacle to maintaining lasting abstinence. PMID:26751623

  10. Variable delay-to-signal: a fast paradigm for assessment of aspects of impulsivity in rats

    PubMed Central

    Leite-Almeida, Hugo; Melo, António; Pêgo, José M.; Bernardo, Sara; Milhazes, Nuno; Borges, Fernanda; Sousa, Nuno; Almeida, Armando; Cerqueira, João J.

    2013-01-01

    Testing impulsive behavior in rodents is challenging and labor-intensive. We developed a new behavioral paradigm—the Variable Delay-to-Signal (VDS) test—that provides rapid and simultaneous assessment of response and decision impulsivity in rodents. Presentation of a light at variable delays signals the permission for action (nose poke) contingent with a reward. 2 blocks of 25 trials at 3 s delay flank a block of 70 trials in which light is presented with randomly selected 6 or 12 s delays. Exposure to such large delays boosts the rate of premature responses when the delay drops to 3 s in the final block, an effect that is blunted by an acute methamphetamine challenge and that correlates with the delay-discounting (DD) paradigm (choice impulsivity). Finally, as expected, treatment with the NMDA antagonist MK-801 caused a generalized response increase in all VDS blocks. The pharmacological validation, particularly with methamphetamine which has a well established dual effect on response and decision impulsivity, and the correlations between the impulsive behavior in the DD and VDS paradigms, suggests that the later is able to provide, in a single session, a multi-dimensional assessment of impulsive behavior. PMID:24167478

  11. Reflection-Impulsivity and Wholist-Analytic: Two Fledglings...or is R-I a cuckoo?

    ERIC Educational Resources Information Center

    Jones, Anne Elizabeth

    1997-01-01

    Considers the theoretical validity of two approaches to cognitive style. Wholist-Analytic maintains that cognitive processes depend on the interaction of two opposing forces, destructive and constructive. Reflection-Impulsivity characterizes learners according to their reflective or impulsive responses to solution hypotheses. Evaluates these…

  12. Impact response and biomechanical analysis of the knee-thigh-hip complex in frontal impacts with a full human body finite element model.

    PubMed

    Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Rouhana, Stephen W; Prasad, Priya

    2008-11-01

    Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts. It was further validated with cadaver knee-thigh-hip impact tests in the current study. The effects of impactor configuration and flexion angle of the knee on biomechanical impact responses of the knee-thigh-hip complex were studied using the validated human body finite element model. This study showed that the knee flexion angle and the impact direction and shape of the impactors affected the injury outcomes of the knee-thigh-hip complex significantly. The 60 degrees flexed knee impact showed the least impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress but largest relative displacements of the Posterior Cruciate Ligament (PCL) and Anterior Cruciate Ligament (ACL). The 90 degrees flexed knee impact resulted in a higher impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress; but smaller PCL and ACL displacements. Stress distributions of the patella, femur, and pelvis were also given for all the simulated conditions.

  13. Hyperkinetic Impulse Disorder in Children's Behavior Problems

    ERIC Educational Resources Information Center

    Laufer, Maurice W.; Denhoff, Eric; Solomons, Gerald

    2011-01-01

    A very common cause of children's behavior disorder disturbance is an entity described as the hyperkinetic impulse disorder. This is characterized by hyperactivity, short attention span and poor powers of concentration, irritability, impulsiveness, variability, and poor schoolwork. The existence of this complexity may lead to many psychological…

  14. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2016-07-12

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  15. Semicontinuity of attractors for impulsive dynamical systems

    NASA Astrophysics Data System (ADS)

    Bonotto, E. M.; Bortolan, M. C.; Collegari, R.; Czaja, R.

    2016-10-01

    In this paper we introduce the concept of collective tube conditions which assures a suitable behaviour for a family of dynamical systems close to impulsive sets. Using the collective tube conditions, we develop the theory of upper and lower semicontinuity of global attractors for a family of impulsive dynamical systems.

  16. Covert Suicidal Impulses in Maternally Deprived Children.

    ERIC Educational Resources Information Center

    Kliman, Gilbert; Lubin, Harriet

    This paper discusses the development of suicidal impulses in children who have lost their mothers due to abandonment or death. The paper is based on two psychoanalytic case studies, in which the children were in therapy when the first suicidal impulses emerged. A pattern is described in which bereaved children's intense wishes to have their…

  17. Impulsivity, School Context, and School Misconduct

    ERIC Educational Resources Information Center

    Vogel, Matt; Barton, Michael S.

    2013-01-01

    Impulsivity holds a central place in the explanations of adolescent delinquency. Recent research suggests that neighborhood characteristics, particularly SES (socioeconomic status), perceived supervision, and collective efficacy, moderate the association between impulsivity and delinquency. However, findings to date have been equivocal, and the…

  18. Impulsivity: Self-Report and Performance Measure

    ERIC Educational Resources Information Center

    Cairns, E.; Harbison, J. I.

    1975-01-01

    The present study assessed the relationship between impulsivity as measured by the Matching Familiar Figures test (MFF) and by the impulsivity (IMP) factor derived from the Junior Eysenck Personality Inventory (JEPI) items identified by S. N. Bennet in 1973. (Author/RK)

  19. Assessing impulsivity changes in Alzheimer disease.

    PubMed

    Rochat, Lucien; Delbeuck, Xavier; Billieux, Joël; d'Acremont, Mathieu; Van der Linden, Anne-Claude Juillerat; Van der Linden, Martial

    2008-01-01

    Impulsive behaviors are common in brain-damaged patients including those with neurodegenerative diseases such as Alzheimer disease (AD). The objective of this study was to develop and validate a short version of the UPPS Impulsive Behavior Scale assessing changes on 4 different dimensions of impulsivity, namely urgency, (lack of) premeditation, (lack of) perseverance, and sensation seeking, arising in the course of a neurodegenerative disease. To this end, caregivers of 83 probable AD patients completed a short questionnaire adapted from the UPPS Impulsive Behavior Scale. Exploratory and confirmatory factor analyses of the data were performed and revealed that a model with 4 distinct but related latent variables corresponding to 4 different dimensions of impulsivity fit the data best. Furthermore, the results showed that lack of perseverance, followed by lack of premeditation and urgency, increased after the onset of the disease, whereas sensation seeking decreased. Overall, the multifaceted nature of impulsivity was confirmed in a sample of AD patients, whose caregivers reported significant changes regarding each facet of impulsivity. Consequently, the short version of the UPPS Impulsive Behavior Scale opens up interesting prospects for a better comprehension of behavioral symptoms of dementia. PMID:18580596

  20. Solar Impulse's Solar-Powered Plane

    SciTech Connect

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  1. Impulsive phenomena, the impulsive character (der Triebhafte Charakter) and DSM personality disorders.

    PubMed

    Perry, J Christopher; Körner, Annett C

    2011-10-01

    Impulsive phenomena have frequently been associated with personality disorders, beginning with Reich's description of the impulsive-character (Reich, 1925/1975). However, questions remain regarding the cooccurrence of a wide variety of impulsive phenomena and whether an underlying structure influences the differential association of impulses to individual personality disorders. Adults entering residential treatment for treatment-refractory disorders were interviewed about their lifetime histories of 33 impulse items, following independent diagnostic interviews. Factor analysis suggested 12 underlying dimensions of impulsive phenomena, explaining 68% of the variance. Borderline and antisocial PDs had the highest impulse scores, followed by self-defeating, narcissistic, depressive, and passive-aggressive PDs. Schizoid, avoidant, obsessive-compulsive, and dependent types were negatively associated with impulsive phenomena. Individuals with the highest impulse scores showed higher levels of borderline, antisocial and either self-defeating or passive-aggressive personality pathology, and were characterized by high Neuroticism and Openness and low Agreeableness on the NEO-FFI. Personality disorders and the NEO-FFI personality traits both predicted unique variance in impulsive phenomena, with the former predominating. Our findings bear striking similarities to Reich's (1925/1975) descriptions of the impulsive character.

  2. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.

    PubMed

    Chen, Wu-Hua; Lu, Xiaomei; Zheng, Wei Xing

    2015-04-01

    This paper investigates the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs). Two types of DDNNs with stabilizing impulses are studied. By introducing the time-varying Lyapunov functional to capture the dynamical characteristics of discrete-time impulsive delayed neural networks (DIDNNs) and by using a convex combination technique, new exponential stability criteria are derived in terms of linear matrix inequalities. The stability criteria for DIDNNs are independent of the size of time delay but rely on the lengths of impulsive intervals. With the newly obtained stability results, sufficient conditions on the existence of linear-state feedback impulsive controllers are derived. Moreover, a novel impulsive synchronization scheme for two identical DDNNs is proposed. The novel impulsive synchronization scheme allows synchronizing two identical DDNNs with unknown delays. Simulation results are given to validate the effectiveness of the proposed criteria of impulsive stabilization and impulsive synchronization of DDNNs. Finally, an application of the obtained impulsive synchronization result for two identical chaotic DDNNs to a secure communication scheme is presented.

  3. Impulse position control algorithms for nonlinear systems

    SciTech Connect

    Sesekin, A. N.; Nepp, A. N.

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  4. Helicopter impulsive noise - Theoretical and experimental status

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Yu, Y. H.

    1986-01-01

    The theoretical and experimental status of helicopter impulsive noise is reviewed. The two major source mechanisms of helicopter impulsive noise are addressed: high-speed impulsive noise and blade-vortex interaction impulsive noise. A thorough physical explanation of both generating mechanism is presented together with model and full-scale measurements of the phenomena. Current theoretical prediction methods are compared with experimental findings of isolated rotor tests. The noise generating mechanism of high speed impulsive noise are fairly well understood - theory and experiment compare nicely over Mach number ranges typical of today's helicopters. For the case of blade-vortex interaction noise, understanding of noise generating mechanisms and theoretical comparison with experiment are less satisfactory. Several methods for improving theory-experiment are suggested.

  5. Helicopter impulsive noise: Theoretical and experimental status

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Yu, Y. H.

    1983-01-01

    The theoretical and experimental status of helicopter impulsive noise is reviewed. The two major source mechanisms of helicopter impulsive noise are addressed: high-speed impulsive noise and blade-vortex interaction impulsive noise. A thorough physical explanation of both generating mechanism is presented together with model and full-scale measurements of the phenomena. Current theoretical prediction methods are compared with experimental findings of isolated rotor tests. The noise generating mechanism of high speed impulsive noise are fairly well understood - theory and experiment compare nicely over Mach number ranges typical of today's helicopters. For the case of blade-vortex interaction noise, understanding of noise generating mechanisms and theoretical comparison with experiment are less satisfactory. Several methods for improving theory-experiment are suggested.

  6. Helicopter impulsive noise - Theoretical and experimental status

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Yu, Y. H.

    1986-01-01

    The theoretical and experimental status of helicopter impulsive noise is reviewed. The two major source mechanisms of helicopter impulsive noise are addressed: high-speed impulsive noise and blade-vortex interaction impulsive noise. A thorough physical explanation of both generating mechanisms is presented together with model and full-scale measurements of the phenomena. Current theoretical prediction methods are compared with experimental findings of isolated rotor tests. The noise generating mechanisms of high speed impulsive noise are fairly well understood - theory and experiment compare nicely over Mach number ranges typical of today's helicopters. For the case of blade-vortex interaction noise, understanding of noise generating mechanisms and theoretical comparison with experiment are less satisfactory. Several methods for improving theory/experiment are suggested.

  7. Successful restrained eating and trait impulsiveness.

    PubMed

    van Koningsbruggen, Guido M; Stroebe, Wolfgang; Aarts, Henk

    2013-01-01

    Restrained eaters with high scores on the Perceived Self-Regulatory Success in Dieting Scale (PSRS) are more successful than low scorers in regulating their food intake. According to the theory of temptation-elicited goal activation (Fishbach, Friedman, & Kruglanski, 2003), they have become successful because, due to earlier repeated instances of successful self-control, they formed an associative link between temptations and thoughts of dieting. It is unclear, however, why they should have been more successful in earlier attempts at self-control than their unsuccessful counterparts. We examined whether trait impulsiveness plays a role by investigating the associations between dietary restraint, trait impulsiveness, and PSRS. Results showed that the interaction between dietary restraint and impulsiveness predicted dieting success: A lower level of impulsiveness was associated with greater dieting success among restrained eaters. These results suggest that restrained eaters who are less impulsive are more likely to become successful restrained eaters as identified with the PSRS.

  8. Acoustic Radiation Force Impulse (ARFI) Imaging: a Review

    PubMed Central

    Nightingale, Kathy

    2012-01-01

    Acoustic radiation force based elasticity imaging methods are under investigation by many groups. These methods differ from traditional ultrasonic elasticity imaging methods in that they do not require compression of the transducer, and are thus expected to be less operator dependent. Methods have been developed that utilize impulsive (i.e. < 1 ms), harmonic (pulsed), and steady state radiation force excitations. The work discussed herein utilizes impulsive methods, for which two imaging approaches have been pursued: 1) monitoring the tissue response within the radiation force region of excitation (ROE) and generating images of relative differences in tissue stiffness (Acoustic Radiation Force Impulse (ARFI) imaging); and 2) monitoring the speed of shear wave propagation away from the ROE to quantify tissue stiffness (Shear Wave Elasticity Imaging (SWEI)). For these methods, a single ultrasound transducer on a commercial ultrasound system can be used to both generate acoustic radiation force in tissue, and to monitor the tissue displacement response. The response of tissue to this transient excitation is complicated and depends upon tissue geometry, radiation force field geometry, and tissue mechanical and acoustic properties. Higher shear wave speeds and smaller displacements are associated with stiffer tissues, and slower shear wave speeds and larger displacements occur with more compliant tissues. ARFI images have spatial resolution comparable to that of B-mode, often with greater contrast, providing matched, adjunctive information. SWEI images provide quantitative information about the tissue stiffness, typically with lower spatial resolution. A review these methods and examples of clinical applications are presented herein. PMID:22545033

  9. Conversion of Impulse Voltage Generator Into Steep Wave Impulse Test-Equipment

    NASA Astrophysics Data System (ADS)

    Khan, Mohammed Zaid; Tanwar, Surender Singh; Dayama, Ravindra; Choudhary, Rahul Raj; Mangal, Ravindra

    This paper demonstrates the alternative measures to generate the Steep wave impulse by using Impulse Voltage Generator (IVG) for high voltage testing of porcelain insulators. The modification of IVG by incorporating compensation of resistor, inductor, and capacitor has been achieved and further performance of the modified system has been analyzed by applying the generated lightning impulse and analyzing the electrical characteristics of impulse waves under standard lightning and fast rise multiple lightning waveform to determine the effect to improve rise time. The advantageous results have been received and being reported such as increase in overshoot compensation, increase in capacitive and inductive load ranges. Such further reduces the duration of oscillations of standard impulse voltages. The reduction in oscillation duration of steep front impulse voltages may be utilized in up gradation of Impulse Voltage Generator System. Stray capacitance could further be added in order to get the minimized difference of measurement between simulation and the field establishment.

  10. Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    PubMed Central

    Janssen, Mieke C. W.; Schepers, Inga; González-Cuevas, Gustavo; de Vries, Taco J.; Schoffelmeer, Anton N. M.

    2007-01-01

    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid system in impulsivity, the present study aimed at further elucidating the role of cannabinoid CB1 receptor activation in distinct measures of impulsive behavior. Materials and methods The effects of the selective cannabinoid CB1 receptor antagonist, rimonabant (SR141716A) and agonist WIN55,212-2 were tested in various measures of impulsive behavior, namely, inhibitory control in a five-choice serial reaction time task (5-CSRTT), impulsive choice in a delayed reward paradigm, and response inhibition in a stop-signal paradigm. Results In the 5-CSRTT, SR141716A dose-dependently improved inhibitory control by decreasing the number of premature responses. Furthermore, SR141716A slightly improved attentional function, increased correct response latency, but did not affect other parameters. The CB1 receptor agonist WIN55,212-2 did not change inhibitory control in the 5-CSRTT and only increased response latencies and errors of omissions. Coadministration of WIN55,212-2 prevented the effects of SR141716A on inhibitory control in the 5-CSRTT. Impulsive choice and response inhibition were not affected by SR141716A at any dose, whereas WIN55,212-2 slightly impaired response inhibition but did not change impulsive choice. Conclusions The present data suggest that particularly the endocannabinoid system seems involved in some measures of impulsivity and provides further evidence for the existence of distinct forms of impulsivity that can be pharmacologically dissociated. PMID:17387457

  11. The Influence of Model Complexity on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E. (Technical Monitor); Stockwell, Alan E.

    2005-01-01

    LS-DYNA simulations were conducted to study the influence of model complexity on the response of a typical Reinforced Carbon-Carbon (RCC) panel to a foam impact at a location approximately midway between the ribs. A structural model comprised of Panels 10, 11, and TSeal 11 was chosen as the baseline model for the study. A simulation was conducted with foam striking Panel 10 at Location 4 at an alpha angle of 10 degrees, with an impact velocity of 1000 ft/sec. A second simulation was conducted after removing Panel 11 from the model, and a third simulation was conducted after removing both Panel 11 and T-Seal 11. All three simulations showed approximately the same response for Panel 10, and the simplified simulation model containing only Panel 10 was shown to be significantly less expensive to execute than the other two more complex models.

  12. Effects of smoking abstinence on impulsive behavior among smokers high and low in ADHD-like symptoms

    PubMed Central

    Hawk, Larry W.

    2011-01-01

    Rationale Impulsivity, a multifaceted construct that includes inhibitory control and heightened preference for immediate reward, is central to models of drug use and abuse. Within a self-medication framework, abstinence from smoking may lead to an increase in impulsive behavior and the likelihood of relapse, particularly among persons with disorders (e.g., attention-deficit/hyperactivity disorder, ADHD) and personality traits (e.g., impulsivity) linked to impulsive behavior. Objectives This study aimed to examine the effects of smoking abstinence on multiple measures of impulsivity among a non-clinical sample of adult smokers selected for high and low levels of ADHD symptoms. Methods In a within-subjects design, participants selected for high or low levels of self-reported ADHD symptoms (N=56) completed sessions following overnight abstinence and when smoking as usual (order counterbalanced). Measures of impulsive behavior included response inhibition (i.e., stop signal task), interference control (i.e., attentional modification of prepulse inhibition (PPI) of startle), and impulsive choice (i.e., hypothetical delay discounting). Results As hypothesized, abstinence decreased response inhibition and PPI. Although ADHD symptoms moderated abstinence effects on impulsive choice and response inhibition, the pattern was opposite to our predictions: the low-ADHD group responded more impulsively when abstinent, whereas the high-ADHD group was relatively unaffected by abstinence. Conclusions These findings highlight the importance of utilizing multiple laboratory measures to examine a multifactorial construct such as impulsive behavior and raise questions about how best to assess symptoms of ADHD and impulsivity among non-abstinent smokers. PMID:21559802

  13. Solar impulsive energetic electron events

    NASA Astrophysics Data System (ADS)

    Wang, Linghua

    The Sun is capable of accelerating ions from ~ tens of keV up to tens of GeV and electrons from ~ tens of eV up to hundreds of MeVs in transient events such as flares and fast coronal mass ejections (CMEs). The energized particles escaping into the interplanetary medium are referred to as Solar Energetic Particle (SEP) events. The great majority of SEP events are impulsive SEP events that are dominated by ~1-100 keV electrons and ~MeV/nucleon ion emissions, with enhanced 3 He/ 4 He ratios up to 10 4 times the coronal values (also called electron/ 3 He-rich SEP events). This thesis is focused on solar impulsive energetic electron events, the electron part of impulsive SEP events, using electron observations from the 3-D Plasma and Energetic Particle instrument (3DP) on the WIND spacecraft near the Earth. First, I present the first comprehensive statistical study of solar energetic electron events over almost one solar cycle. I find that the occurrence rate of solar electron events shows a strong solar-cycle variation; after correction for the background effect, the estimated occurrence frequency exhibits a good power-law distribution, and the estimated occurrence rate near the Earth is ~1000/year at solar maximum and ~30/year at solar minimum for the instrumental sensitivity (~2.9×10^-4 (cm 2 s str eV) -1 for the 40 keV channel) of WIND/3DP, about one order of magnitude larger than the observed occurrence rate. Solar energetic electron events have a one-to-one association with type III radio bursts and a poor association with flares, but a close association with 3 He- rich ion emissions. These 3 He-rich electron events also have a poor association with flares but a close (~ 60%) association with west-limb CMEs. Then I present two case studies: one investigating the temporal relationship between solar impulsive electrons and type III radio emissions, and the second studying the temporal relationship between solar impulsive electrons and 3 He- rich ions. For both

  14. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  15. The Video Head Impulse Test in a Case of Suspected Bilateral Loss of Vestibular Function

    PubMed Central

    Albernaz, Pedro L. Mangabeira; Cusin, Flavia Salvaterra

    2014-01-01

    Introduction A patient who had no symptoms suggestive of bilateral loss of vestibular function presented no responses in rotational and caloric tests. Objectives To demonstrate the importance of the video head impulse test in neuro-otologic diagnosis. Resumed Report This patient had a neuro-otologic evaluation and presented no responses in torsion swing tests, caloric tests, and rotational tests in a Bárány chair. The video head impulse test elicited responses in four of the six semicircular canals. Conclusion Absent responses in caloric and rotatory tests alone are not sufficient to diagnose bilateral loss of vestibular function. PMID:26722351

  16. On the macroscopic response, microstructure evolution, and macroscopic stability of short-fibre-reinforced elastomers at finite strains: I - Analytical results

    NASA Astrophysics Data System (ADS)

    Avazmohammadi, Reza; Ponte Castañeda, Pedro

    2014-04-01

    This paper presents a homogenization-based constitutive model for the mechanical behaviour of particle-reinforced elastomers with random microstructures subjected to finite deformations. The model is based on a recently improved version of the tangent second-order (TSO) method (Avazmohammadi and Ponte Castañeda, J. Elasticity 112 (2013) p.139-183) for two-phase, hyperelastic composites and is able to directly account for the shape, orientation, and concentration of the particles. After a brief summary of the TSO homogenization method, we describe its application to composites consisting of an incompressible rubber reinforced by aligned, spheroidal, rigid particles, undergoing generally non-aligned, three-dimensional loadings. While the results are valid for finite particle concentrations, in the dilute limit they can be viewed as providing a generalization of Eshelby's results in linear elasticity. In particular, we provide analytical estimates for the overall response and microstructure evolution of the particle-reinforced composites with generalized neo-Hookean matrix phases under non-aligned loadings. For the special case of aligned pure shear and axisymmetric shear loadings, we give closed-form expressions for the effective stored-energy function of the composites with neo-Hookean matrix behaviour. Moreover, we investigate the possible development of "macroscopic" (shear band-type) instabilities in the homogenized behaviour of the composite at sufficiently large deformations. These instabilities whose wavelengths are much larger than the typical size of the microstructure are detected by making use of the loss of strong ellipticity condition for the effective stored-energy function of the composites. The analytical results presented in this paper will be complemented in Part II (Avazmohammadi and Ponte Castaneda, Phil. Mag. (2014)) of this work by specific applications for several representative microstructures and loading configurations.

  17. Behavioral Impulsivity in Obsessive-Compulsive Disorder.

    PubMed

    Abramovitch, Amitai; McKay, Dean

    2016-09-01

    Background Grassi et al. (2015) collected data to examine impulsivity in individuals with obsessive-compulsive disorder (OCD) compared to nonpsychiatric controls. Their aim was to examine whether OCD may be fully captured by the behavioral addiction model, using the prototypical mechanism underlying drug addiction as their framework. Based on their findings, Grassi et al. concluded that OCD shares behavioral components with addictions, particularly behavioral impulsivity and risky decision making. Furthermore, the authors suggested that this model may be superior to the prevailing psychological model of OCD. Findings We argue that based on the nature of their data as well as the current dominant conceptualization of OCD in the literature, this conclusion is untenable. The authors inferred behavioral impulsivity, whereas their main finding was concerning cognitive impulsivity or difficulties in planning. Such items on the Barratt impulsiveness scale have been shown in other research to overpredict behavioral impulsive tendencies in OCD, where the nature of the condition involves doubting of action and a conservative estimate of how one's cognitions may impact behavior. Conclusions We conclude that similar to drug addiction, compulsive rituals in OCD may be governed by a negative reinforcement mechanism; the available data indicate that OCD does not share the two main components seen in addiction, namely, behavioral impulsivity and risky decision making. PMID:27156379

  18. Impulsive and non-impulsive suicide attempts in patients treated for alcohol dependence

    PubMed Central

    Wojnar, Marcin; Ilgen, Mark A.; Czyz, Ewa; Strobbe, Stephen; Klimkiewicz, Anna; Jakubczyk, Andrzej; Glass, Jennifer; Brower, Kirk J.

    2009-01-01

    Background Suicidal behavior has been recognized as an increasing problem among alcohol-dependent subjects. The aim of the study was to identify correlates of impulsive and non-impulsive suicide attempts among a treated population of alcohol-dependent patients. Methods A total of 154 patients with alcohol dependence consecutively admitted for addiction treatment participated in the study. Suicidal behavior was assessed together with severity of alcohol dependence, childhood abuse, impulsivity, and family history. A stop-signal procedure was used as a behavioral measure of impulsivity. Results and conclusions Lifetime suicide attempts were reported by 43% of patients in alcohol treatment; of which 62% were impulsive. Compared to patients without a suicide attempt, those with a non-impulsive attempt were more likely to have a history of sexual abuse (OR = 7.17), a family history of suicide (OR = 4.09), and higher scores on a personality measure of impulsiveness (OR = 2.27). The only significant factor that distinguished patients with impulsive suicide attempts from patients without a suicide attempt and from patients with a non-impulsive suicide attempt was a higher level of behavioral impulsivity (OR = 1.84 – 2.42). Limitations Retrospective self-report of suicide attempts and family history. Lack of diagnostic measure. PMID:18835498

  19. Individual differences in impulsive choice and timing in rats.

    PubMed

    Galtress, Tiffany; Garcia, Ana; Kirkpatrick, Kimberly

    2012-07-01

    Individual differences in impulsive choice behavior have been linked to a variety of behavioral problems including substance abuse, smoking, gambling, and poor financial decision-making. Given the potential importance of individual differences in impulsive choice as a predictor of behavioral problems, the present study sought to measure the extent of individual differences in a normal sample of hooded Lister rats. Three experiments utilized variations of a delay discounting task to measure the degree of variation in impulsive choice behavior across individual rats. The individual differences accounted for 22-55% of the variance in choice behavior across the three experiments. In Experiments 2 and 3, the individual differences were still apparent when behavior was measured across multiple choice points. Large individual differences in the rate of responding, and modest individual differences in timing of responding were also observed during occasional peak trials. The individual differences in timing and rate, however, did not correlate consistently with individual differences in choice behavior. This suggests that a variety of factors may affect choice behavior, response rate, and response timing.

  20. Anti-periodic solutions of Liénard equations with state dependent impulses

    NASA Astrophysics Data System (ADS)

    Belley, J.-M.; Bondo, É.

    2016-10-01

    Subject to a priori bounds, Liénard equations with state dependent impulsive forcing are shown to admit a unique absolutely continuous anti-periodic solution with first derivative of bounded variation on finite intervals. The point-wise convergence of a sequence of iterates to the solution is obtained, along with a bound for the rate of convergence. The results are applied to Josephson's and van der Pol's equations.

  1. Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films

    PubMed Central

    Mondal, Mintu; Kamlapure, Anand; Ganguli, Somesh Chandra; Jesudasan, John; Bagwe, Vivas; Benfatto, Lara; Raychaudhuri, Pratap

    2013-01-01

    The persistence of a soft gap in the density of states above the superconducting transition temperature Tc, the pseudogap, has long been thought to be a hallmark of unconventional high-temperature superconductors. However, in the last few years this paradigm has been strongly revised by increasing experimental evidence for the emergence of a pseudogap state in strongly-disordered conventional superconductors. Nonetheless, the nature of this state, probed primarily through scanning tunneling spectroscopy (STS) measurements, remains partly elusive. Here we show that the dynamic response above Tc, obtained from the complex ac conductivity, is highly modified in the pseudogap regime of strongly disordered NbN films. Below the pseudogap temperature, T*, the superfluid stiffness acquires a strong frequency dependence associated with a marked slowing down of critical fluctuations. When translated into the length-scale of fluctuations, our results suggest a scenario of thermal phase fluctuations between superconducting domains in a strongly disordered s-wave superconductor. PMID:23446946

  2. Psychosocial predictors of impulsivity in alcohol-dependent patients

    PubMed Central

    Jakubczyk, Andrzej; Klimkiewicz, Anna; Mika, Katarzyna; Bugaj, Marcin; Konopa, Aleksandra; Podgórska, Anna; Brower, Kirk J.; Wojnar, Marcin

    2012-01-01

    Impulsivity is an important risk factor of severe course of alcohol dependence. However, the significance of environmental determinants of impulsivity has been underestimated. The aim of the study was to identify psychosocial factors increasing the level of impulsivity in alcoholics. Levels of impulsivity were measured in 304 alcohol-dependent patients. Stop-signal task was used to assess behavioral impulsivity, and Barratt Impulsiveness Scale to measure global and cognitive impulsivity. Correlations between impulsivity and psychosocial variables were examined. A significant association between level of impulsivity and severity of psychopathological symptoms were observed. Patients who reported childhood sexual or physical abuse, lower social support, more severe course of alcohol dependence were more impulsive, especially in cognitive domain. When entered into a linear regression analysis model, severity of alcohol dependence, psychopathology and childhood physical abuse remained significant. These results suggest that psychosocial variables are important factors associated with high levels of impulsivity in alcohol-dependent patients. PMID:23274294

  3. Psychosocial predictors of impulsivity in alcohol-dependent patients.

    PubMed

    Jakubczyk, Andrzej; Klimkiewicz, Anna; Mika, Katarzyna; Bugaj, Marcin; Konopa, Aleksandra; Podgórska, Anna; Brower, Kirk J; Wojnar, Marcin

    2013-01-01

    Impulsivity is an important risk factor of severe course of alcohol dependence. However, the significance of environmental determinants of impulsivity has been underestimated. The aim of this study was to identify psychosocial factors increasing the level of impulsivity in alcoholics. Levels of impulsivity were measured in 304 alcohol-dependent patients. The stop-signal task was used to assess behavioral impulsivity, and the Barratt Impulsiveness Scale, to measure global and cognitive impulsivity. Correlations between impulsivity and psychosocial variables were examined. A significant association between level of impulsivity and severity of psychopathological symptoms was observed. Patients who reported childhood sexual or physical abuse, lower social support, and more severe course of alcohol dependence were more impulsive, especially in the cognitive domain. When entered into a linear regression analysis model, severity of alcohol dependence, psychopathology, and childhood physical abuse remained significant. These results suggest that psychosocial variables are important factors associated with high levels of impulsivity in alcohol-dependent patients.

  4. Psychosocial predictors of impulsivity in alcohol-dependent patients.

    PubMed

    Jakubczyk, Andrzej; Klimkiewicz, Anna; Mika, Katarzyna; Bugaj, Marcin; Konopa, Aleksandra; Podgórska, Anna; Brower, Kirk J; Wojnar, Marcin

    2013-01-01

    Impulsivity is an important risk factor of severe course of alcohol dependence. However, the significance of environmental determinants of impulsivity has been underestimated. The aim of this study was to identify psychosocial factors increasing the level of impulsivity in alcoholics. Levels of impulsivity were measured in 304 alcohol-dependent patients. The stop-signal task was used to assess behavioral impulsivity, and the Barratt Impulsiveness Scale, to measure global and cognitive impulsivity. Correlations between impulsivity and psychosocial variables were examined. A significant association between level of impulsivity and severity of psychopathological symptoms was observed. Patients who reported childhood sexual or physical abuse, lower social support, and more severe course of alcohol dependence were more impulsive, especially in the cognitive domain. When entered into a linear regression analysis model, severity of alcohol dependence, psychopathology, and childhood physical abuse remained significant. These results suggest that psychosocial variables are important factors associated with high levels of impulsivity in alcohol-dependent patients. PMID:23274294

  5. Robustness analysis of elastoplastic structure subjected to double impulse

    NASA Astrophysics Data System (ADS)

    Kanno, Yoshihiro; Takewaki, Izuru

    2016-11-01

    The double impulse has extensively been used to evaluate the critical response of an elastoplastic structure against a pulse-type input, including near-fault earthquake ground motions. In this paper, we propose a robustness assessment method for elastoplastic single-degree-of-freedom structures subjected to the double impulse input. Uncertainties in the initial velocity of the input, as well as the natural frequency and the strength of the structure, are considered. As fundamental properties of the structural robustness, we show monotonicity of the robustness measure with respect to the natural frequency. In contrast, we show that robustness is not necessarily improved even if the structural strength is increased. Moreover, the robustness preference between two structures with different values of structural strength can possibly reverse when the performance requirement is changed.

  6. The reflection of impulses from a nonlinear random sea

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    A model of the reflection of radar impulses from the sea at near-vertical incidence is used to account for non-Gaussian ocean waves statistics. The joint probability density function (pdf), of wave height and slope, is calculated according to the theory of Longuet-Higgins (1963) on the distribution of variables in a 'weakly nonlinear' random era. The long-crested approximation is made, a Phillips wave spectrum is assumed, and the Gram-Charlier series is truncated after skewness terms. It is found that the height and height-slope skewness coefficients bear the ratio 1:2 and that the derived impulse response and conditional cross section versus wave height are in excellent agreement with previous observations. Finally, it is suggested that the empirically determined and theoretically predicted sea state bias be corrected for in the routine processing of satellite radar altimeter data.

  7. Spin Stabilized Impulsively Controlled Missile (SSICM)

    NASA Astrophysics Data System (ADS)

    Crawford, J. I.; Howell, W. M.

    1985-12-01

    This patent is for the Spin Stabilized Impulsively Controlled Missile (SSICM). SSICM is a missile configuration which employs spin stabilization, nutational motion, and impulsive thrusting, and a body mounted passive or semiactive sensor to achieve very small miss distances against a high speed moving target. SSICM does not contain an autopilot, control surfaces, a control actuation system, nor sensor stabilization gimbals. SSICM spins at a rate sufficient to provide frequency separation between body motions and inertial target motion. Its impulsive thrusters provide near instantaneous changes in lateral velocity, whereas conventional missiles require a significant time delay to achieve lateral acceleration.

  8. [Impulse control disorders in Parkinson's disease].

    PubMed

    Joutsa, Juho; Kaasinen, Valtteri

    2013-01-01

    Of the patients having Parkinson's disease, up to third encounters some degree of impulse control problems and one out of seven suffers from true impulse control disorders such as pathological gambling, hypersexuality, compulsive shopping and binge eating. Dopaminergic drugs used in anti-Parkinson therapy, especially dopamine agonists, increase the risk of these disorders. Impulse control disorders are associated with a relatively more active dopamine-mediated neurotransmission of the mesolimbic and mesocortical system. Discontinuation of dopamine agonist medication can thus be considered as the first line treatment of these disorders. PMID:24397147

  9. The Influence of Mesh Density on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2004-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.

  10. Be quick about it. Endogenous estradiol level, menstrual cycle phase and trait impulsiveness predict impulsive choice in the context of reward acquisition.

    PubMed

    Diekhof, Esther K

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". Variations in the steroid hormone 17ß-estradiol (E2) may promote intra-individual differences in reward seeking behavior and temporal decision-making (Reimers et al., 2014; Front. Neurosci. 8: 401). Yet, in humans the exact role of E2 in impulsive choice still needs to be determined. The present study assessed the effect of a cycle-dependent rise in endogenous E2 on temporal response adaptation across the follicular phase (FP). For this purpose a reward acquisition paradigm was employed that is sensitive to hormone-induced changes in central dopamine (DA) level. The present data show that women acted more impulsively in the early as opposed to the late FP. Early follicular E2 further correlated with an increased capacity to speed up for reward maximization, while simultaneously the ability to wait for higher reward was compromised. This correlation was most pronounced in women with low trait impulsiveness. In contrast, E2 and optimized response speed failed to correlate in women with high trait impulsiveness and in the late FP, despite a generally higher E2 level. Collectively, these findings support the theory that E2 may act as an endogenous DA agonist. The fact that the hormone-behavior relationship was restricted to women with low trait impulsiveness and thus supposedly lower central DA level provides indirect support for this idea. Yet, choices became relatively less impulsive in the state of heightened E2 (i.e., in the late FP), suggesting that the relationship between E2 and impulsive choice may not be linear, but might resemble an inverted U-function. PMID:26092059

  11. Be quick about it. Endogenous estradiol level, menstrual cycle phase and trait impulsiveness predict impulsive choice in the context of reward acquisition.

    PubMed

    Diekhof, Esther K

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". Variations in the steroid hormone 17ß-estradiol (E2) may promote intra-individual differences in reward seeking behavior and temporal decision-making (Reimers et al., 2014; Front. Neurosci. 8: 401). Yet, in humans the exact role of E2 in impulsive choice still needs to be determined. The present study assessed the effect of a cycle-dependent rise in endogenous E2 on temporal response adaptation across the follicular phase (FP). For this purpose a reward acquisition paradigm was employed that is sensitive to hormone-induced changes in central dopamine (DA) level. The present data show that women acted more impulsively in the early as opposed to the late FP. Early follicular E2 further correlated with an increased capacity to speed up for reward maximization, while simultaneously the ability to wait for higher reward was compromised. This correlation was most pronounced in women with low trait impulsiveness. In contrast, E2 and optimized response speed failed to correlate in women with high trait impulsiveness and in the late FP, despite a generally higher E2 level. Collectively, these findings support the theory that E2 may act as an endogenous DA agonist. The fact that the hormone-behavior relationship was restricted to women with low trait impulsiveness and thus supposedly lower central DA level provides indirect support for this idea. Yet, choices became relatively less impulsive in the state of heightened E2 (i.e., in the late FP), suggesting that the relationship between E2 and impulsive choice may not be linear, but might resemble an inverted U-function.

  12. Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom

    PubMed Central

    Bouchard, Richard R.; Palmeri, Mark L.; Pinton, Gianmarco F.; Trahey, Gregg E.; Streeter, Jason E.; Dayton, Paul A.

    2009-01-01

    Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-μm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-μm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom’s proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings. PMID:19894849

  13. Reward drive and rash impulsiveness as dimensions of impulsivity: implications for substance misuse.

    PubMed

    Dawe, Sharon; Gullo, Matthew J; Loxton, Natalie J

    2004-09-01

    One of the primary personality dimensions or traits that has consistently been linked to substance abuse is impulsivity. However, impulsivity is not a homogenous construct and although many of the measures of impulsivity are correlated, the most recent review of published factor analytic studies has proposed two independent dimensions of impulsivity: reward sensitivity, reflecting one of the primary dimension of J. A. Gray's personality theory, and rash impulsiveness. These two facets of impulsivity derived from the field of personality research parallel recent developments in the neurosciences where changes in the incentive value of rewarding substances has been linked to alterations in neural substrates involved in reward seeking and with a diminished capacity to inhibit behavior due to chronic drug exposure. In this paper, we propose a model that integrates the findings from research into individual differences with recent models of neural substrates implicated in the development of substance misuse.

  14. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.

    2006-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.

  15. An impulsive fishery model with environmental stochasticity. Feasibility.

    PubMed

    Castro-Santis, Ricardo; Córdova-Lepe, Fernando; Chambio, Walter

    2016-07-01

    An environmental random-effect over a deterministic population model of a resource (e.g., a fish stock) is introduced. It is assumed that the harvest activity is concentrated at a non-predetermined sequence of instants, at which the abundance reaches a certain predetermined level, then falls abruptly by a constant capture quota (pulse harvesting). So, the abundance is modeled by a stochastic impulsive type differential equation, incorporating a standard Brownian motion in the per capita rate of growth. With this random effect, the pulse times are "stopping times" of the stochastic process. The proof of the finite expectation of the next access time, i.e., the feasibility of regulation, is the main result. PMID:27105865

  16. An impulsive fishery model with environmental stochasticity. Feasibility.

    PubMed

    Castro-Santis, Ricardo; Córdova-Lepe, Fernando; Chambio, Walter

    2016-07-01

    An environmental random-effect over a deterministic population model of a resource (e.g., a fish stock) is introduced. It is assumed that the harvest activity is concentrated at a non-predetermined sequence of instants, at which the abundance reaches a certain predetermined level, then falls abruptly by a constant capture quota (pulse harvesting). So, the abundance is modeled by a stochastic impulsive type differential equation, incorporating a standard Brownian motion in the per capita rate of growth. With this random effect, the pulse times are "stopping times" of the stochastic process. The proof of the finite expectation of the next access time, i.e., the feasibility of regulation, is the main result.

  17. A Discretized Method for Deriving Vortex Impulse from Volumetric Datasets

    NASA Astrophysics Data System (ADS)

    Buckman, Noam; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    Many biological and mechanical systems transfer momentum through a fluid by creating vortical structures. To study this mechanism, we derive a method for extracting impulse and its time derivative from flow fields observed in experiments and simulations. We begin by discretizing a thin-cored vortex filament, and extend the model to account for finite vortex core thickness and asymmetric distributions of vorticity. By solely using velocity fields to extract vortex cores and calculate circulation, this method is applicable to 3D PIV datasets, even with low spatial resolution flow fields and measurement noise. To assess the performance of this analysis method, we simulate vortex rings and arbitrary vortex structures using OpenFOAM computational fluid dynamics software and analyze the wake momentum using this model in order to validate this method. We further examine a piston-vortex experiment, using 3D synthetic particle image velocimetry (SAPIV) to capture velocity fields. Strengths, limitations, and improvements to the framework are discussed.

  18. Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking

    PubMed Central

    Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.

    2015-01-01

    Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376

  19. Impulsively generated fast coronal pulsations

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1986-01-01

    Rapid oscillations in the corona are discussed from a theoretical standpoint, developing some previous work on ducted, fast magnetoacoustic waves in an inhomogeneous medium. In the theory, impulsively (e.g., flare) generated mhd (magnetohydrodynamic) waves are ducted by regions of low Alfven speed (high density) such as coronal loops. Wave propagation in such ducts is strongly dispersive and closely akin to the behavior of Love waves in seismology, Pekeris waves in oceanography and guided waves in fiber optics. Such flare-generated magnetoacoustic waves possess distinctive temporal signatures consisting of periodic, quasi-periodic and decay phases. The quasi-periodic phase possesses the strongest amplitudes and the shortest time scales. Time scales are typically of the order of a second for inhomogeneities (coronal loop width) of 1000 km and Alfven speeds of 1000/kms, and pulse duration times are of tens of seconds. Quasi-periodic signatures have been observed in radio wavelengths for over a decade and more recently by SMM. It is hoped that the theoretical ideas outlined may be successfully related to these observations and thus aid the interpretation of oscillatory signatures recorded by SMM. Such signatures may also provide a diagnostic of coronal conditions. New aspects of the ducted mhd waves, for example their behavior in smoothly varying as opposed to tube-like inhomogeneities, are currently under investigation. The theory is not restricted to loops but applied equally to open field regions.

  20. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Herren, Kenneth A.

    2005-04-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period. This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered. The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  1. Behavioral Measures of Impulsivity and the Law

    PubMed Central

    Mathias, Charles W.; Marsh-Richard, Dawn M.; Dougherty, Donald M.

    2012-01-01

    The General Theory of Crime proposes that crime is explained by the combination of situational opportunity and lack of self-control. Impulsivity is one of the important components of self-control. Because behavioral measures of impulsivity are becoming more commonly utilized to assess forensic populations, this manuscript provides an overview of three current behavioral measures. In doing so, an example of their application is provided using a group of individuals likely to come into contact with the legal system: adolescents with Conduct Disorder. Earlier age of onset of Conduct Disorder symptoms has been shown to be an important predictor of the persistence of poor outcomes into adulthood including participation in criminal activities. This study found differential behavioral profiles across distinct measures of impulsivity by those with childhood- versus adolescent-onset Conduct Disorder. Legal implications for defining behavioral deficits using behavioral measures of impulsivity and their current limitations are discussed. PMID:19039792

  2. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  3. Impulsive Social Influence Increases Impulsive Choices on a Temporal Discounting Task in Young Adults

    PubMed Central

    Gilman, Jodi M.; Curran, Max T.; Calderon, Vanessa; Stoeckel, Luke E.; Evins, A. Eden

    2014-01-01

    Adolescents and young adults who affiliate with friends who engage in impulsive behavior are more likely to engage in impulsive behaviors themselves, and those who associate with prosocial (i.e. more prudent, future oriented) peers are more likely to engage in prosocial behavior. However, it is difficult to disentangle the contribution of peer influence vs. peer selection (i.e., whether individuals choose friends with similar traits) when interpreting social behaviors. In this study, we combined a novel social manipulation with a well-validated delay discounting task assessing impulsive behavior to create a social influence delay discounting task, in which participants were exposed to both impulsive (smaller, sooner or SS payment) and non-impulsive (larger, later or LL payment) choices from their peers. Young adults in this sample, n = 51, aged 18–25 had a higher rate of SS choices after exposure to impulsive peer influence than after exposure to non-impulsive peer influence. Interestingly, in highly susceptible individuals, the rate of non-impulsive choices did not increase after exposure to non-impulsive influence. There was a positive correlation between self-reported suggestibility and degree of peer influence on SS choices. These results suggest that, in young adults, SS choices appear to be influenced by the choices of same-aged peers, especially for individuals who are highly susceptible to influence. PMID:24988440

  4. Numerical vorticity creation based on impulse conservation.

    PubMed Central

    Summers, D M; Chorin, A J

    1996-01-01

    The problem of creating solenoidal vortex elements to satisfy no-slip boundary conditions in Lagrangian numerical vortex methods is solved through the use of impulse elements at walls and their subsequent conversion to vortex loops. The algorithm is not uniquely defined, due to the gauge freedom in the definition of impulse; the numerically optimal choice of gauge remains to be determined. Two different choices are discussed, and an application to flow past a sphere is sketched. PMID:11607636

  5. Adolescent aggression and social cognition in the context of personality: impulsivity as a moderator of predictions from social information processing.

    PubMed

    Fite, Jennifer E; Goodnight, Jackson A; Bates, John E; Dodge, Kenneth A; Pettit, Gregory S

    2008-01-01

    This study asked how individual differences in social cognition and personality interact in predicting later aggressive behavior. It was hypothesized that the relationship between immediate response evaluations in social information processing (SIP) and later aggressive behavior would be moderated by impulsivity. In particular, the immediate positive evaluations of aggressive responses would be more strongly related to later aggressive behavior for high-impulsive than for low-impulsive individuals, because high-impulsive children would be less likely to integrate peripheral information and consider long-term future consequences of their actions. Participants were 585 adolescents (52% male) and their mothers and teachers from the longitudinal Child Development Project. Structural equation modeling indicated that teacher-reported impulsivity at ages 11-13 moderated the association between adolescents' endorsement of aggressive responses in hypothetical, ambiguous situations and subsequent mother-reported aggressive behavior. Specifically, positive endorsement of aggressive responses at age 13 was significantly related to later aggressive behavior (age 14-17) for participants with high and medium levels of impulsivity, but this association was not significant for participants with low levels of impulsivity. This study provides evidence of personality variables as potential moderators of the link between SIP and behavior. PMID:18459110

  6. Impulsivity and Concussion in Juvenile Rats: Examining Molecular and Structural Aspects of the Frontostriatal Pathway

    PubMed Central

    Hehar, Harleen; Yeates, Keith; Kolb, Bryan; Esser, Michael J.; Mychasiuk, Richelle

    2015-01-01

    Impulsivity and poor executive control have been implicated in the pathogenesis of many developmental and neuropsychiatric disorders. Similarly, concussions/mild traumatic brain injuries (mTBI) have been associated with increased risk for neuropsychiatric disorders and the development of impulsivity and inattention. Researchers and epidemiologists have therefore considered whether or not concussions induce symptoms of attention-deficit/hyperactivity disorder (ADHD), or merely unmask impulsive tendencies that were already present. The purpose of this study was to determine if a single concussion in adolescence could induce ADHD-like impulsivity and impaired response inhibition, and subsequently determine if inherent impulsivity prior to a pediatric mTBI would exacerbate post-concussion symptomology with a specific emphasis on impulsive and inattentive behaviours. As these behaviours are believed to be associated with the frontostriatal circuit involving the nucleus accumbens (NAc) and the prefrontal cortex (PFC), the expression patterns of 8 genes (Comt, Drd2, Drd3, Drd4, Maoa, Sert, Tph1, and Tph2) from these two regions were examined. In addition, Golgi-Cox staining of medium spiny neurons in the NAc provided a neuroanatomical examination of mTBI-induced structural changes. The study found that a single early brain injury could induce impulsivity and impairments in response inhibition that were more pronounced in males. Interestingly, when animals with inherent impulsivity experienced mTBI, injury-related deficits were exacerbated in female animals. The single concussion increased dendritic branching, but reduced synaptic density in the NAc, and these changes were likely associated with the increase in impulsivity. Finally, mTBI-induced impulsivity was associated with modifications to gene expression that differed dramatically from the gene expression pattern associated with inherent impulsivity, despite very similar behavioural phenotypes. Our findings suggest

  7. Generalized transfers and the nonoptimality of purely radial impulses

    NASA Astrophysics Data System (ADS)

    Lashkin, V. I.

    1985-07-01

    A system of variables is proposed that is convenient for the precise formulation of the problem of optimal multiple-impulse transfer between arbitrary nonrectilinear Kepler orbits. The existence of a universal two-impulse transfer with transverse impulses is demonstrated for such orbits. Calculation formulas for these impulses are obtained which generalize the corresponding formulas of two-impulse Hohmann transfer between circular orbits. In addition, a lower-bound estimate is obtained for the characteristic velocity of a one-impulse transfer between orbits having a common point, and the nonoptimality of an arbitrary radial impulse is demonstrated.

  8. Enhanced awakening probability of repetitive impulse sounds.

    PubMed

    Vos, Joos; Houben, Mark M J

    2013-09-01

    In the present study relations between the level of impulse sounds and the observed proportion of behaviorally confirmed awakening reactions were determined. The sounds (shooting sounds, bangs produced by door slamming or by container transshipment, aircraft landings) were presented by means of loudspeakers in the bedrooms of 50 volunteers. The fragments for the impulse sounds consisted of single or multiple events. The sounds were presented during a 6-h period that started 75 min after the subjects wanted to sleep. In order to take account of habituation, each subject participated during 18 nights. At equal indoor A-weighted sound exposure levels, the proportion of awakening for the single impulse sounds was equal to that for the aircraft sounds. The proportion of awakening induced by the multiple impulse sounds, however, was significantly higher. For obtaining the same rate of awakening, the sound level of each of the successive impulses in a fragment had to be about 15-25 dB lower than the level of one single impulse. This level difference was largely independent of the degree of habituation. Various explanations for the enhanced awakening probability are discussed. PMID:23967934

  9. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  10. Transition Region and Chromospheric Signatures of Impulsive Heating Events

    NASA Astrophysics Data System (ADS)

    Warren, Harry; Reep, Jeffrey; Crump, Nicholas

    2016-05-01

    We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph (IRIS) to investigate the response of the transition region and chromosphere to energy deposition during several small flares. We find that during the impulsive phase of these events the intensities of the C II 1334.535 and Si IV 1402.770 A emission lines are characterized by numerous, small-scale impulsive bursts typically lasting 60 s or less followed by a slower decay over several minutes. These variations in intensity are usually accompanied by impulsive redshifts of 20-40 km/s, although some blueshifted profiles are also observed. For one particularly well observed event we combine the IRIS observations with co-temporal measurements of hard X-ray emission from RHESSSI, transition region density from EIS, and high-temperature coronal loops with XRT and AIA to constrain 1D hydrodynamic models of loop evolution. Many aspects of the observations can be explained with simple heating scenarios, but some cannot. The simulated Doppler shifts, for example, show very short-duration redshifts during the initial phase of the heating while the observed redshifts persist over several minutes.

  11. Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry

    PubMed Central

    Archer, Trevor; Oscar-Berman, Marlene; Blum, Kenneth; Gold, Mark

    2012-01-01

    Adverse, unfavourable life conditions, particularly during early life stages and infancy, can lead to epigenetic regulation of genes involved in stress-response, behavioral disinhibition, and cognitive-emotional systems. Over time, the ultimate final outcome can be expressed through behaviors bedeviled by problems with impulse control, such as eating disorders, alcoholism, and indiscriminate social behavior. While many reward gene polymorphisms are involved in impulsive behaviors, a polymorphism by itself may not translate to the development of a particular behavioral disorder unless it is impacted by epigenetic effects. Brain-derived neurotrophic factor (BDNF) affects the development and integrity of the noradrenergic, dopaminergic, serotonergic, glutamatergic, and cholinergic neurotransmitter systems, and plasma levels of the neurotrophin are associated with both cognitive and aggressive impulsiveness. Epigenetic mechanisms associated with a multitude of environmental factors, including premature birth, low birth weight, prenatal tobacco exposure, non-intact family, young maternal age at birth of the target child, paternal history of antisocial behavior, and maternal depression, alter the developmental trajectories for several neuropsychiatric disorders. These mechanisms affect brain development and integrity at several levels that determine structure and function in resolving the final behavioral expressions. PMID:23264884

  12. Divergent responses of the amygdala and ventral striatum predict stress-related problem drinking in young adults: Possible differential markers of affective and impulsive pathways of risk for alcohol use disorder

    PubMed Central

    Nikolova, Yuliya S.; Knodt, Annchen R.; Radtke, Spenser R.; Hariri, Ahmad R.

    2015-01-01

    Prior work suggests there may be two distinct pathways of alcohol use disorder (AUD) risk: one associated with positive emotion enhancement and behavioral impulsivity, and one associated with negative emotion relief and coping. We sought to map these two pathways onto individual differences in neural reward and threat processing assessed using BOLD fMRI in a sample of 759 undergraduate students (426 women, mean age 19.65±1.24) participating in the Duke Neurogenetics Study. We demonstrate that problem drinking is highest in the context of stress and in those with one of two distinct neural phenotypes: 1) a combination of relatively low reward-related activity of the ventral striatum (VS) and high threat-related reactivity of the amygdala; or 2) a combination of relatively high VS activity and low amygdala reactivity. In addition, we demonstrate that the relationship between stress and problem alcohol use is mediated by impulsivity, as reflected in monetary delay discounting rates, for those with high VS-low amygdala reactivity, and by anxious/depressive symptomatology for those with the opposite neural risk phenotype. Across both neural phenotypes, we found that greater divergence between VS and amygdala reactivity predicted greater risk for problem drinking. Finally, for those individuals with the low VS-high amygdala risk phenotype we found that stress not only predicted the presence of a DSM-IV diagnosed AUD at the time of neuroimaging, but also subsequent problem drinking reported three months following study completion. These results offer new insight into the neural basis of AUD risk and suggest novel biological targets for early individualized treatment or prevention. PMID:26122584

  13. Effects of R-Phase on Mechanical Responses of a Nickel-Titanium Endodontic Instrument: Structural Characterization and Finite Element Analysis.

    PubMed

    Santos, Leandro de Arruda; Resende, Pedro Damas; Bahia, Maria Guiomar de Azevedo; Buono, Vicente Tadeu Lopes

    2016-01-01

    The effects of the presence of the R-phase in a near-equiatomic NiTi alloy on the mechanical responses of an endodontic instrument were studied by using finite element analysis. The input data for the constitutive model in the simulation were obtained by tensile testing of three NiTi wires: superelastic austenite NiTi, austenite + R-phase NiTi, and fully R-phased NiTi. The wires were also characterized by X-ray diffraction and differential scanning calorimetry. A commercially available endodontic instrument was scanned using microcomputed tomography, and the resulting images were used to build the geometrical model. The numerical analyses were performed in ABAQUS using load and boundary conditions based on the ISO 3630-1 specification for the bending and torsion of endodontic instruments. The modeled instrument containing only R-phase demanded the lowest moment to be bent, followed by the one with mixed austenite + R-phase. The superelastic instrument, containing essentially austenite, required the highest bending moment. During bending, the fully R-phased instrument reached the lowest stress values; however, it also experienced the highest angular deflection when subjected to torsion. In summary, this simulation showed that NiTi endodontic instruments containing only R-phase in their microstructure would show higher flexibility without compromising their performance under torsion. PMID:27314059

  14. Effects of R-Phase on Mechanical Responses of a Nickel-Titanium Endodontic Instrument: Structural Characterization and Finite Element Analysis

    PubMed Central

    Santos, Leandro de Arruda; Resende, Pedro Damas; Bahia, Maria Guiomar de Azevedo; Buono, Vicente Tadeu Lopes

    2016-01-01

    The effects of the presence of the R-phase in a near-equiatomic NiTi alloy on the mechanical responses of an endodontic instrument were studied by using finite element analysis. The input data for the constitutive model in the simulation were obtained by tensile testing of three NiTi wires: superelastic austenite NiTi, austenite + R-phase NiTi, and fully R-phased NiTi. The wires were also characterized by X-ray diffraction and differential scanning calorimetry. A commercially available endodontic instrument was scanned using microcomputed tomography, and the resulting images were used to build the geometrical model. The numerical analyses were performed in ABAQUS using load and boundary conditions based on the ISO 3630-1 specification for the bending and torsion of endodontic instruments. The modeled instrument containing only R-phase demanded the lowest moment to be bent, followed by the one with mixed austenite + R-phase. The superelastic instrument, containing essentially austenite, required the highest bending moment. During bending, the fully R-phased instrument reached the lowest stress values; however, it also experienced the highest angular deflection when subjected to torsion. In summary, this simulation showed that NiTi endodontic instruments containing only R-phase in their microstructure would show higher flexibility without compromising their performance under torsion. PMID:27314059

  15. Signaling When (and When Not) to Be Cautious and Self-Protective: Impulsive and Reflective Trust in Close Relationships

    PubMed Central

    Murray, Sandra L.; Pinkus, Rebecca T.; Holmes, John G.; Harris, Brianna; Gomillion, Sarah; Aloni, Maya; Derrick, Jaye L.; Leder, Sadie

    2011-01-01

    A dual process model is proposed to explain how automatic evaluative associations to the partner (i.e., impulsive trust) and deliberative expectations of partner caring (i.e., reflective trust) interact to govern self-protection in romantic relationships. Experimental and correlational studies of dating and marital relationships supported the model. Subliminally conditioning more positive evaluative associations to the partner increased confidence in the partner’s caring, suggesting that trust has an impulsive basis. Being high on impulsive trust (i.e., more positive evaluative associations to the partner on the IAT) also reduced the automatic inclination to distance in response to doubts about the partner’s trustworthiness. It similarly reduced self-protective behavioral reactions to these reflective trust concerns. The studies further revealed that the effects of impulsive trust depend on working memory capacity: Being high on impulsive trust inoculated against reflective trust concerns for people low on working memory capacity. PMID:21443370

  16. Development of a human body finite element model with multiple muscles and their controller for estimating occupant motions and impact responses in frontal crash situations.

    PubMed

    Iwamoto, Masami; Nakahira, Yuko; Kimpara, Hideyuki; Sugiyama, Takahiko; Min, Kyuengbo

    2012-10-01

    A few reports suggest differences in injury outcomes between cadaver tests and real-world accidents under almost similar conditions. This study hypothesized that muscle activity could primarily cause the differences, and then developed a human body finite element (FE) model with individual muscles. Each muscle was modeled as a hybrid model of bar elements with active properties and solid elements with passive properties. The model without muscle activation was firstly validated against five series of cadaver test data on impact responses in the anterior-posterior direction. The model with muscle activation levels estimated based on electromyography (EMG) data was secondly validated against four series of volunteer test data on bracing effects for stiffness and thickness of an upper arm muscle, and braced driver's responses under a static environment and a brake deceleration. A muscle controller using reinforcement learning (RL), which is a mathematical model of learning process in the basal ganglia associated with human postural controls, were newly proposed to estimate muscle activity in various occupant conditions including inattentive and attentive conditions. Control of individual muscles predicted by RL reproduced more human like head-neck motions than conventional control of two groups of agonist and antagonist muscles. The model and the controller demonstrated that head-neck motions of an occupant under an impact deceleration of frontal crash were different in between a bracing condition with maximal braking force and an occupant condition predicted by RL. The model and the controller have the potential to investigate muscular effects in various occupant conditions during frontal crashes.

  17. Oscillatory Activity in the Medial Prefrontal Cortex and Nucleus Accumbens Correlates with Impulsivity and Reward Outcome

    PubMed Central

    Rich, P. Dylan; Nevado-Holgado, Alejo J.; Fernando, Anushka B. P.; Van Dijck, Gert; Holzhammer, Tobias; Paul, Oliver; Ruther, Patrick; Paulsen, Ole; Robbins, Trevor W.; Dalley, Jeffrey W.

    2014-01-01

    Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50–60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7–9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour. PMID:25333512

  18. BMI predicts emotion-driven impulsivity and cognitive inflexibility in adolescents with excess weight.

    PubMed

    Delgado-Rico, Elena; Río-Valle, Jacqueline S; González-Jiménez, Emilio; Campoy, Cristina; Verdejo-García, Antonio

    2012-08-01

    Adolescent obesity is increasingly viewed as a brain-related dysfunction, whereby reward-driven urges for pleasurable foods "hijack" response selection systems, such that behavioral control progressively shifts from impulsivity to compulsivity. In this study, we aimed to examine the link between personality factors (sensitivity to reward (SR) and punishment (SP), BMI, and outcome measures of impulsivity vs. flexibility in--otherwise healthy--excessive weight adolescents. Sixty-three adolescents (aged 12-17) classified as obese (n = 26), overweight (n = 16), or normal weight (n = 21) participated in the study. We used psychometric assessments of the SR and SP motivational systems, impulsivity (using the UPPS-P scale), and neurocognitive measures with discriminant validity to dissociate inhibition vs. flexibility deficits (using the process-approach version of the Stroop test). We tested the relative contribution of age, SR/SP, and BMI on estimates of impulsivity and inhibition vs. switching performance using multistep hierarchical regression models. BMI significantly predicted elevations in emotion-driven impulsivity (positive and negative urgency) and inferior flexibility performance in adolescents with excess weight--exceeding the predictive capacity of SR and SP. SR was the main predictor of elevations in sensation seeking and lack of premeditation. These findings demonstrate that increases in BMI are specifically associated with elevations in emotion-driven impulsivity and cognitive inflexibility, supporting a dimensional path in which adolescents with excess weight increase their proneness to overindulge when under strong affective states, and their difficulties to switch or reverse habitual behavioral patterns.

  19. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models

    PubMed Central

    Jupp, B; Dalley, J W

    2014-01-01

    Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24866553

  20. Impulsivity and aggression in schizophrenia: a neural circuitry perspective with implications for treatment.

    PubMed

    Hoptman, Matthew J

    2015-06-01

    Elevations of impulsive behavior have been observed in a number of serious mental illnesses. These phenomena can lead to harmful behaviors, including violence, and thus represent a serious public health concern. Such violence is often a reason for psychiatric hospitalization, and it often leads to prolonged hospital stays, suffering by patients and their victims, and increased stigmatization. Despite the attention paid to violence, little is understood about its neural basis in schizophrenia. On a psychological level, aggression in schizophrenia has been primarily attributed to psychotic symptoms, desires for instrumental gain, or impulsive responses to perceived personal slights. Often, multiple attributions can coexist during a single aggressive incident. In this review, I discuss the neural circuitry associated with impulsivity and aggression in schizophrenia, with an emphasis on implications for treatment. Impulsivity appears to account for a great deal of aggression in schizophrenia, especially in inpatient settings. Urgency, defined as impulsivity in the context of strong emotion, is the primary focus of this article. It is elevated in several psychiatric disorders, and in schizophrenia, it has been related to aggression. Many studies have implicated dysfunctional frontotemporal circuitry in impulsivity and aggression in schizophrenia, and pharmacological treatments may act via that circuitry to reduce urgency and aggressive behaviors; however, more mechanistic studies are critically needed. Recent studies point toward manipulable neurobehavioral targets and suggest that cognitive, pharmacological, neuromodulatory, and neurofeedback treatment approaches can be developed to ameliorate urgency and aggression in schizophrenia. It is hoped that these approaches will improve treatment efficacy.

  1. Impulsivity and Aggression in Schizophrenia: A Neural Circuitry Perspective with Implications for Treatment

    PubMed Central

    Hoptman, Matthew J.

    2015-01-01

    Elevations of impulsive behavior have been observed in a number of serious mental illnesses. These phenomena can lead to harmful behaviors, including violence, and thus represent a serious public health concern. Such violence is often a reason for psychiatric hospitalization, and it often leads to prolonged hospital stays, suffering by patients and their victims, and increased stigmatization. Despite the attention paid to violence, little is understood about its neural basis in schizophrenia. On a psychological level, aggression in schizophrenia has been primarily attributed to psychotic symptoms, desires for instrumental gain, or impulsive responses to perceived personal slights. Often multiple attributions can coexist during a single aggressive incident. In this review, I will discuss the neural circuitry associated with impulsivity and aggression in schizophrenia, with an emphasis on implications for treatment. Impulsivity appears to account for a great deal of aggression in schizophrenia, especially in inpatient settings. Urgency, defined as impulsivity in the context of strong emotion, is the primary focus of this article. It is elevated in several psychiatric disorders, and in schizophrenia, it has been related to aggression. Many studies have implicated dysfunctional frontotemporal circuitry in impulsivity and aggression in schizophrenia, and pharmacological treatments may act via that circuitry to reduce urgency and aggressive behaviors, but more mechanistic studies are critically needed. Recent studies point toward manipulable neurobehavioral targets and suggest that cognitive, pharmacological, neuromodulatory, and neurofeedback treatment approaches can be developed to ameliorate urgency and aggression in schizophrenia. It is hoped that these approaches will improve treatment efficacy. PMID:25900066

  2. BMI predicts emotion-driven impulsivity and cognitive inflexibility in adolescents with excess weight.

    PubMed

    Delgado-Rico, Elena; Río-Valle, Jacqueline S; González-Jiménez, Emilio; Campoy, Cristina; Verdejo-García, Antonio

    2012-08-01

    Adolescent obesity is increasingly viewed as a brain-related dysfunction, whereby reward-driven urges for pleasurable foods "hijack" response selection systems, such that behavioral control progressively shifts from impulsivity to compulsivity. In this study, we aimed to examine the link between personality factors (sensitivity to reward (SR) and punishment (SP), BMI, and outcome measures of impulsivity vs. flexibility in--otherwise healthy--excessive weight adolescents. Sixty-three adolescents (aged 12-17) classified as obese (n = 26), overweight (n = 16), or normal weight (n = 21) participated in the study. We used psychometric assessments of the SR and SP motivational systems, impulsivity (using the UPPS-P scale), and neurocognitive measures with discriminant validity to dissociate inhibition vs. flexibility deficits (using the process-approach version of the Stroop test). We tested the relative contribution of age, SR/SP, and BMI on estimates of impulsivity and inhibition vs. switching performance using multistep hierarchical regression models. BMI significantly predicted elevations in emotion-driven impulsivity (positive and negative urgency) and inferior flexibility performance in adolescents with excess weight--exceeding the predictive capacity of SR and SP. SR was the main predictor of elevations in sensation seeking and lack of premeditation. These findings demonstrate that increases in BMI are specifically associated with elevations in emotion-driven impulsivity and cognitive inflexibility, supporting a dimensional path in which adolescents with excess weight increase their proneness to overindulge when under strong affective states, and their difficulties to switch or reverse habitual behavioral patterns. PMID:22421897

  3. Stability of Reflective-Impulsive Style in Coincidence-Anticipation Motor Tasks

    ERIC Educational Resources Information Center

    Keller, Jean; Ripoll, Hubert

    2004-01-01

    The relationships between response latencies and accuracy on the matching familiar figures test (MFFT) and two gross motor tasks (batting or catching a ball) were studied in twenty-nine 9-year-old boys. Children were classified into four groups using a double dichotomy of response latencies and errors on the MFFT: reflective, impulsive,…

  4. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    SciTech Connect

    Aman, A.; Majcherek, S.; Hirsch, S.; Schmidt, B.

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  5. Increased Impulsivity Retards the Transition to Dorsolateral Striatal Dopamine Control of Cocaine Seeking

    PubMed Central

    Murray, Jennifer E.; Dilleen, Ruth; Pelloux, Yann; Economidou, Daina; Dalley, Jeffrey W.; Belin, David; Everitt, Barry J.

    2014-01-01

    Background Development of maladaptive drug-seeking habits occurs in conjunction with a ventral-to-dorsal striatal shift in dopaminergic control over behavior. Although these habits readily develop as drug use continues, high impulsivity predicts loss of control over drug seeking and taking. However, whether impulsivity facilitates the transition to dorsolateral striatum (DLS) dopamine-dependent cocaine-seeking habits or whether impulsivity and cocaine-induced intrastriatal shifts are additive processes is unknown. Methods High- and low-impulsive rats identified in the five-choice serial reaction-time task were trained to self-administer cocaine (.25 mg/infusion) with infusions occurring in the presence of a cue-light conditioned stimulus. Dopamine transmission was blocked in the DLS after three stages of training: early, transition, and late-stage, by bilateral intracranial infusions of α-flupenthixol (0, 5, 10, or 15 μg/side) during 15-min cocaine-seeking test sessions in which each response was reinforced by a cocaine-associated conditioned stimulus presentation. Results In early-stage tests, neither group was affected by DLS dopamine receptor blockade. In transition-stage tests, low-impulsive rats showed a significant dose-dependent reduction in cocaine seeking, whereas high-impulsive rats were still unaffected by α-flupenthixol infusions. In the final, late-stage seeking test, both groups showed dose-dependent sensitivity to dopamine receptor blockade. Conclusions The results demonstrate that high impulsivity is associated with a delayed transition to DLS-dopamine-dependent control over cocaine seeking. This suggests that, if impulsivity confers an increased propensity to addiction, it is not simply through a more rapid development of habits but instead through interacting corticostriatal and striato-striatal processes that result ultimately in maladaptive drug-seeking habits. PMID:24157338

  6. Neural substrates of time perception and impulsivity

    PubMed Central

    Wittmann, Marc; Simmons, Alan N.; Flagan, Taru; Lane, Scott D.; Wackermann, Jiří; Paulus, Martin P.

    2011-01-01

    Several studies provide empirical evidence for the association between impulsivity and time perception. However, little is known about the neural substrates underlying this function. This investigation examined the influence of impulsivity on neural activation patterns during the encoding and reproduction of intervals with durations of 3, 9 and 18 seconds using event-related functional magnetic resonance imaging (fMRI). Twenty-seven subjects participated in this study, including 15 high impulsive subjects that were classified based on their self-rating. FMRI activation during the duration reproduction task was correlated with measures of two self-report questionnaires related to the concept of impulsivity (Barratt Impulsiveness Scale, BIS; Zimbardo Time Perspective Inventory, ZTPI). Behaviorally, those individuals who under-reproduced temporal intervals also showed lower scores on the ZTPI future perspective subscale and higher scores on the BIS. FMRI activation revealed an accumulating pattern of neural activity peaking at the end of the 9- and 18-s interval within right posterior insula. Activations of brain regions during the reproduction phase of the timing task, such as those related to motor execution as well as to the ‘core control network’ – encompassing the inferior frontal and medial frontal cortex, the anterior insula as well as the inferior parietal cortex – were significantly correlated with reproduced duration, as well as with BIS and ZTPI subscales. In particular, the greater activation in these regions the shorter were the reproduced intervals, the more impulsive was an individual and the less pronounced the future perspective. Activation in the core control network, thus, may form a biological marker for cognitive time management and for impulsiveness. PMID:21763642

  7. Neural substrates of time perception and impulsivity.

    PubMed

    Wittmann, Marc; Simmons, Alan N; Flagan, Taru; Lane, Scott D; Wackermann, Jiří; Paulus, Martin P

    2011-08-11

    Several studies provide empirical evidence for the association between impulsivity and time perception. However, little is known about the neural substrates underlying this function. This investigation examined the influence of impulsivity on neural activation patterns during the encoding and reproduction of intervals with durations of 3, 9 and 18s using event-related functional magnetic resonance imaging (fMRI). Twenty-seven subjects participated in this study, including 15 high impulsive subjects that were classified based on their self-rating. FMRI activation during the duration reproduction task was correlated with measures of two self-report questionnaires related to the concept of impulsivity (Barratt Impulsiveness Scale, BIS; Zimbardo Time Perspective Inventory, ZTPI). Behaviorally, those individuals who under-reproduced temporal intervals also showed lower scores on the ZTPI future perspective subscale and higher scores on the BIS. FMRI activation revealed an accumulating pattern of neural activity peaking at the end of the 9- and 18-s intervals within right posterior insula. Activations of brain regions during the reproduction phase of the timing task, such as those related to motor execution as well as to the 'core control network' - encompassing the inferior frontal and medial frontal cortices, the anterior insula as well as the inferior parietal cortex - were significantly correlated with reproduced duration, as well as with BIS and ZTPI subscales. In particular, the greater activation in these regions the shorter were the reproduced intervals, the more impulsive was an individual and the less pronounced the future perspective. Activation in the core control network, thus, may form a biological marker for cognitive time management and for impulsiveness.

  8. Conjugate gradient determination of optimal plane changes for a class of three-impulse transfers between noncoplanar circular orbits

    NASA Technical Reports Server (NTRS)

    Burrows, R. R.

    1972-01-01

    A particular type of three-impulse transfer between two circular orbits is analyzed. The possibility of three plane changes is recognized, and the problem is to optimally distribute these plane changes to minimize the sum of the individual impulses. Numerical difficulties and their solution are discussed. Numerical results obtained from a conjugate gradient technique are presented for both the case where the individual plane changes are unconstrained and for the case where they are constrained. Possibly not unexpectedly, multiple minima are found. The techniques presented could be extended to the finite burn case, but primarily the contents are addressed to preliminary mission design and vehicle sizing.

  9. Impulsivity and risk-taking behavior in focal frontal lobe lesions.

    PubMed

    Floden, D; Alexander, M P; Kubu, C S; Katz, D; Stuss, D T

    2008-01-15

    Frontal lobe dysfunction may underlie excessively impulsive and risky behavior observed in a range of neurological disorders. We devised a gambling task to examine these behavior tendencies in a sample of patients who had sustained focal damage to the frontal lobes or nonfrontal cortical regions as well as in a matched sample of healthy control subjects. The main objectives of the study were: (1) to behaviorally dissociate impulsivity and risk-taking; (2) to examine potential associations between specific frontal lesion sites and impulsivity or risk-taking; (3) to investigate the influence of reinforcement and trial timing on both behaviors. Our results indicated that patients and controls were equally likely to perform impulsively. Risk-taking performance strategies, however, were related to left ventrolateral and orbital lesion sites. Moreover, risk-taking was also associated with blunted response alteration following a nonrewarded trial. Patients and control subjects showed identical responses to reward-timing manipulations consistent with formal decision-making theory. These findings suggest that ventrolateral and orbital lesions are related to the reward-based aspects of decision-making (risk-taking) rather than to simple response disinhibition (impulsivity). Reduced reaction to the negative consequences of one's actions may underlie this behavior pattern.

  10. Effects of acoustic impulses on hearing

    NASA Astrophysics Data System (ADS)

    Fleischer, Gerald; Müller, Reinhard; Heppelmann, Guido; Bache, Thomas

    2002-05-01

    It is well known that acoustic impulses are especially dangerous to the ear. In order to understand the damaging mechanisms involved, cases of acute acoustic trauma in man were systematically collected and documented for many years. When possible, the damaging impulses were recreated and measured, to correlate the impulses with the auditory damage they caused. Detailed pure-tone audiometry up to 16 kHz was used to determine the effects on hearing. Together with epidemiological studies on various occupations, three different damaging mechanisms can be discerned. Relatively long and massive impulses (some explosions, some airbags) often lead to damage at low frequencies, from about 0.5 to 1.5 kHz. The typical notch at about 4 to 6 kHz typically is the result of strong peaks, lasting several milliseconds, or longer. There is another notch at 12 to 14 kHz, characteristic of very short, needle-like impulses that are caused by many hand weapons, toy pistols, and firecrackers. Probable mechanisms are discussed.

  11. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.

    PubMed

    Venäläinen, Mikko S; Mononen, Mika E; Jurvelin, Jukka S; Töyräs, Juha; Virén, Tuomas; Korhonen, Rami K

    2014-12-01

    Mechanical behavior of bone is determined by the structure and intrinsic, local material properties of the tissue. However, previously presented knee joint models for evaluation of stresses and strains in joints generally consider bones as rigid bodies or linearly elastic solid materials. The aim of this study was to estimate how different structural and mechanical properties of bone affect the mechanical response of articular cartilage within a knee joint. Based on a cadaver knee joint, a two-dimensional (2D) finite element (FE) model of a knee joint including bone, cartilage, and meniscus geometries was constructed. Six different computational models with varying properties for cortical, trabecular, and subchondral bone were created, while the biphasic fibril-reinforced properties of cartilage and menisci were kept unaltered. The simplest model included rigid bones, while the most complex model included specific mechanical properties for different bone structures and anatomically accurate trabecular structure. Models with different porosities of trabecular bone were also constructed. All models were exposed to axial loading of 1.9 times body weight within 0.2 s (mimicking typical maximum knee joint forces during gait) while free varus-valgus rotation was allowed and all other rotations and translations were fixed. As compared to results obtained with the rigid bone model, stresses, strains, and pore pressures observed in cartilage decreased depending on the implemented properties of trabecular bone. Greatest changes in these parameters (up to -51% in maximum principal stresses) were observed when the lowest modulus for trabecular bone (measured at the structural level) was used. By increasing the trabecular bone porosity, stresses and strains were reduced substantially in the lateral tibial cartilage, while they remained relatively constant in the medial tibial plateau. The present results highlight the importance of long bones, in particular, their mechanical

  12. Role of implant configurations supporting three-unit fixed partial denture on mandibular bone response: biological-data-based finite element study.

    PubMed

    Yoda, N; Liao, Z; Chen, J; Sasaki, K; Swain, M; Li, Q

    2016-09-01

    Implant-supported fixed partial denture with cantilever extension can transfer the excessive load to the bone around implants and stress/strain concentration potentially leading to bone resorption. This study investigated the effects of implant configurations supporting three-unit fixed partial denture (FPD) on the stress and strain distribution in the peri-implant bone by combining clinically measured time-dependent loading data and finite element (FE) analysis. A 3-dimensional mandibular model was constructed based on computed tomography (CT) images. Four different configurations of implants supporting 3-unit FPDs, namely three implant-supported FPD, conventional three-unit bridge FPD, distal cantilever FPD and mesial cantilever FPD, were modelled. The FPDs were virtually inserted to the molar area in the mandibular FE models. The FPDs were loaded according to time-dependent in vivo-measured 3-dimensional loading data during chewing. The von Mises stress (VMS) and equivalent strain (EQS) in peri-implant bone regions were evaluated as mechanical stimuli. During the chewing cycles, the regions near implant necks and bottom apexes experienced high VMS and EQS than the middle regions in all implant-supported FPD configurations. Higher VMS and EQS values were also observed at the implant neck region adjacent to the cantilever extension in the cantilevered configurations. The patient-specific dynamic loading data and CT-based reconstruction of full 3D mandibular allowed us to model the biomechanical responses more realistically. The results provided data for clinical assessment of implant configuration to improve longevity and reliability of the implant-supported FPD restoration. PMID:27224022

  13. Auto-programmable impulse neural circuits

    NASA Technical Reports Server (NTRS)

    Watula, D.; Meador, J.

    1990-01-01

    Impulse neural networks use pulse trains to communicate neuron activation levels. Impulse neural circuits emulate natural neurons at a more detailed level than that typically employed by contemporary neural network implementation methods. An impulse neural circuit which realizes short term memory dynamics is presented. The operation of that circuit is then characterized in terms of pulse frequency modulated signals. Both fixed and programmable synapse circuits for realizing long term memory are also described. The implementation of a simple and useful unsupervised learning law is then presented. The implementation of a differential Hebbian learning rule for a specific mean-frequency signal interpretation is shown to have a straightforward implementation using digital combinational logic with a variation of a previously developed programmable synapse circuit. This circuit is expected to be exploited for simple and straightforward implementation of future auto-adaptive neural circuits.

  14. Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.

    PubMed

    Leshem, Rotem

    2016-01-01

    The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement. PMID:27186976

  15. Firmness evaluation of melon using its vibration characteristic and finite element analysis.

    PubMed

    Nourain, Jamal; Ying, Yi-bin; Wang, Jian-ping; Rao, Xiu-qin; Yu, Chao-gang

    2005-06-01

    The "Huang gua" melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.

  16. Finite dynamic deformations of smart structures

    NASA Astrophysics Data System (ADS)

    Batra, R. C.; Liang, X. Q.

    We study transient finite deformations of a neoHookean beam or plate with piezoelectric (PZT) patches bonded to its upper and lower surfaces. The constitutive relations for the PZTs are taken to be linear in the Green-Lagrange strain tensor but quadratic in the driving voltage. A finite element code using 8-noded brick elements has been developed and validated by comparing computed results with either analytical solutions or experimental observations. For flexural waves propagating through a cantilever beam, the sensor output is influenced a little by the presence of a defect placed symmetrically about the centroidal axis. A simple feedback control algorithm is shown to control the motion of a neoHookean plate subjected to an impulsive load.

  17. Disentangling impulsiveness, aggressiveness and impulsive aggression: an empirical approach using self-report measures.

    PubMed

    García-Forero, Carlos; Gallardo-Pujol, David; Maydeu-Olivares, Alberto; Andrés-Pueyo, Antonio

    2009-06-30

    There is confusion in the literature concerning the concept of impulsive aggression. Based on previous research, we hypothesize that impulsivity and aggression may be related, though not as closely as to consider them the same construct. So, our aim was to provide empirical evidence of the relationship between the impulsivity and aggressiveness constructs when considered as traits. Two widely used questionnaires [Barratt's Impulsiveness Scale (BIS) and Aggression Questionnaire-Refined (AQ-R)] were administered to 768 healthy respondents. Product-moment and canonical correlations were then calculated. In addition, a principal components analysis was conducted to explore whether impulsive aggression can be defined phenotypically as the expression of a single trait. The common variance between impulsivity and aggressiveness was never higher than 42%. The principal components analysis reveals that one component is not enough to represent all the variables. In conclusion, our results show that impulsivity and aggressiveness are two separate, although related constructs. This is particularly important in view of the misconceptions in the literature.

  18. Out of control: Evidence for anterior insula involvement in motor impulsivity and reactive aggression

    PubMed Central

    Sack, Alexander T.; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Schuhmann, Teresa

    2015-01-01

    Inhibiting impulsive reactions while still defending one’s vital resources is paramount to functional self-control and successful development in a social environment. However, this ability of successfully inhibiting, and thus controlling one’s impulsivity, often fails, leading to consequences ranging from motor impulsivity to aggressive reactions following provocation. Although inhibitory failure represents the underlying mechanism, the neurocognition of social aggression and motor response inhibition have traditionally been investigated in separation. Here, we aimed to directly investigate and compare the neural mechanisms underlying the failure of inhibition across those different modalities of self-control. We used functional imaging to reveal the overlap in neural correlates between failed motor response inhibition (measured by a go/no-go task) and reactive aggression (measured by the Taylor aggression paradigm) in healthy males. The core overlap of neural correlates was located in the anterior insula, suggesting common anterior insula involvement in motor impulsivity as well as reactive aggression. This evidence regarding an overarching role of the anterior insula across different modalities of self-control enables an integrative perspective on insula function and a better integration of cognitive, social and emotional factors into a comprehensive model of impulsivity. Furthermore, it can eventually lead to a better understanding of clinical syndromes involving inhibitory deficits. PMID:24837479

  19. Reaction of communities to impulse noise

    NASA Astrophysics Data System (ADS)

    Seshagiri, B. V.

    1981-01-01

    In order to assess the reaction of communities to impulse noise, a sociological survey was conducted in three communities in Ontario, Canada. The dominant industrial noise in these locations is due to drop forging operations. Nearly 600 completed interviews were recorded. Detailed sound level measurements were carried out in the areas surveyed. The results clearly indicate the extent of adverse reaction to the forging noise. This research has been compared with the reaction of the respondents to traffic noise prevailing in their communities. Regression lines are presented showing the relationship between the percent of people disturbed by the forging noise and the sound level of the impulses.

  20. Impulsive nonconformity in female chat room users.

    PubMed

    Fullwood, Chris; Galbraith, Niall; Morris, Neil

    2006-10-01

    Heavy chat room use has been associated with social isolation, introversion, impulse control problems, and risk taking. Such characteristics form part of the cluster of traits associated with schizotypy. This study used multiple regression to examine the relationship between age, sex, four dimensions of schizotypy, and frequency of reported chat room use. The only significant association with schizotypy was between frequency of chat room use and impulsive nonconformity (IN) in females. These findings may be explained by the increased risk associated with female chat room use.

  1. Optimal noncoplanar interorbital single-impulse flight

    NASA Astrophysics Data System (ADS)

    Kirpichnikov, S. N.

    1990-04-01

    The paper is concerned with the problem of finding minimum-fuel orbits for single-impulse transfers between specified noncoplanar boundary Keplerian orbits. In transfers between noncoplanar circular orbits, the Hohmann single-impulse transfer in the initial orbit plane is shown to be globally optimal from the energy standpoint. Approximate optimal solutions are obtained in the practically important case of weakly elliptical boundary orbits with a small angle between the planes. The optimal solutions obtained here can be used as initial approximations when determining real orbits for interorbital and interplanetary flights.

  2. [Impulsive behaviors in opiate-dependent subjects treated with naltrexone].

    PubMed

    Pérez de los Cobos, J; Pinet, C; Ribalta, E; Trujols, J; Casas, M

    1994-01-01

    Thirty three heroin dependents (DSM-III-R) attending a naltrexone clinic were assessed to see if their histories of bulimic and non-suicidal self-aggressive behaviours would allow to predict the therapeutic response of the opioid antagonist. Neither these impulsive behaviours non previous suicide attempts or over-doses could predict such a response, which was evaluated according to the time spent under treatment with naltrexone. Before the administration of naltrexone, one or more of the studied impulsive conducts were detected in 87.8% of the sample (n = 29). None of the patients combined enough criteria to be diagnosed of bulimia (DSM-III-R). In 32 patients the occurrence of changes in the impulsive behaviours studied during the treatment period with the opioid antagonist were determined. These variations were not related to the determinations of abuse drugs in urine or with intake of psychoactive drugs. During the treatment with naltrexone, 15 patients ceased to present self-injuries without suicidal purposes and none of the patients began these behaviours for the first time. However, some patients without a previous history of bulimic behaviour developed this condition during the administration of the opioid antagonist. In this sense, four subgroups of patients can be differentiated according to the moment in which the bulimic behaviour appeared: subgroup A includes 7 individuals (21.7%) who discontinued this behaviour upon receiving the antagonist, while subgroup B (n = 3; 9.3%) is made up of those who presented this behaviour during both heroin consumption and the administration of naltrexone.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Test-retest reliability of behavioral measures of impulsive choice, impulsive action, and inattention.

    PubMed

    Weafer, Jessica; Baggott, Matthew J; de Wit, Harriet

    2013-12-01

    Behavioral measures of impulsivity are widely used in substance abuse research, yet relatively little attention has been devoted to establishing their psychometric properties, especially their reliability over repeated administration. The current study examined the test-retest reliability of a battery of standardized behavioral impulsivity tasks, including measures of impulsive choice (i.e., delay discounting, probability discounting, and the Balloon Analogue Risk Task), impulsive action (i.e., the stop signal task, the go/no-go task, and commission errors on the continuous performance task), and inattention (i.e., attention lapses on a simple reaction time task and omission errors on the continuous performance task). Healthy adults (n = 128) performed the battery on two separate occasions. Reliability estimates for the individual tasks ranged from moderate to high, with Pearson correlations within the specific impulsivity domains as follows: impulsive choice (r range: .76-.89, ps < .001); impulsive action (r range: .65-.73, ps < .001); and inattention (r range: .38-.42, ps < .001). Additionally, the influence of day-to-day fluctuations in mood, as measured by the Profile of Mood States, was assessed in relation to variability in performance on each of the behavioral tasks. Change in performance on the delay discounting task was significantly associated with change in positive mood and arousal. No other behavioral measures were significantly associated with mood. In sum, the current analysis demonstrates that behavioral measures of impulsivity are reliable measures and thus can be confidently used to assess various facets of impulsivity as intermediate phenotypes for drug abuse. PMID:24099351

  4. Effects of nerve impulses on threshold of frog sciatic nerve fibres.

    PubMed Central

    Raymond, S A

    1979-01-01

    persists for at least as long as an absolute superexcitability (with threshold below the resting level) can be measured in the same fibre at rest. 7. The duration of the superexcitable phase interpreted as a relative change in excitability was roughly the same regardless of the level of depression. 8. The magnitude of the oscillation in threshold was give to ten times larger than the grey region (the range of stimuli for which response is probabilistic). It is concluded that at regions of low conduction safety such as axonal branches, where weak forces can influence whether an impulse will pass, such pronounced and long-lasting after-effects of firing can be expected to modulate conduction of nerve impulses. PMID:313985

  5. A Statistical Study of the Sudden Impulses of Geomagnetic Field at Mid and Low Latitudes

    NASA Astrophysics Data System (ADS)

    Shi, C.

    2015-12-01

    Sudden impulses (SI) of geomagnetic field are associated with the sudden increases of the solar wind dynamic pressure, which is typically caused by the interplanetary shocks. In the mid and low latitudes at the ground, the SIs are the sudden increases of the northward magnetic field. Using a set of 447 SI cases and the SMR index (local Dst index provided by SuperMAG), we find that the responses of the geomagnetic field to the jump of the square root of solar wind dynamic pressure show a strong local time dependence with the strongest responses located in the midnight and the weakest responses located in the dawn side. We also find that geomagnetic responses, especially the noon and midnight responses, have quite different amplitudes under north and south interplanetary magnetic field. By calculating the normalized sudden impulses, we find that there is a seasonal variation with the peak around summer and the valley around winter. We also find that the shock normal orientation affects the amplitude of the sudden impulses: the more parallel the shock normal orientation is to the sun-earth line, the stronger the sudden impulses will be.

  6. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors.

    PubMed

    Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir

    2016-04-21

    Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.

  7. Infinite horizon optimal impulsive control with applications to Internet congestion control

    NASA Astrophysics Data System (ADS)

    Avrachenkov, Konstantin; Habachi, Oussama; Piunovskiy, Alexey; Zhang, Yi

    2015-04-01

    We investigate infinite-horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long-run time-average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.

  8. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors.

    PubMed

    Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir

    2016-01-01

    Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated. PMID:27110783

  9. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors

    PubMed Central

    Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir

    2016-01-01

    Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated. PMID:27110783

  10. A model-based analysis of impulsivity using a slot-machine gambling paradigm.

    PubMed

    Paliwal, Saee; Petzschner, Frederike H; Schmitz, Anna Katharina; Tittgemeyer, Marc; Stephan, Klaas E

    2014-01-01

    Impulsivity plays a key role in decision-making under uncertainty. It is a significant contributor to problem and pathological gambling (PG). Standard assessments of impulsivity by questionnaires, however, have various limitations, partly because impulsivity is a broad, multi-faceted concept. What remains unclear is which of these facets contribute to shaping gambling behavior. In the present study, we investigated impulsivity as expressed in a gambling setting by applying computational modeling to data from 47 healthy male volunteers who played a realistic, virtual slot-machine gambling task. Behaviorally, we found that impulsivity, as measured independently by the 11th revision of the Barratt Impulsiveness Scale (BIS-11), correlated significantly with an aggregate read-out of the following gambling responses: bet increases (BIs), machines switches (MS), casino switches (CS), and double-ups (DUs). Using model comparison, we compared a set of hierarchical Bayesian belief-updating models, i.e., the Hierarchical Gaussian Filter (HGF) and Rescorla-Wagner reinforcement learning (RL) models, with regard to how well they explained different aspects of the behavioral data. We then examined the construct validity of our winning models with multiple regression, relating subject-specific model parameter estimates to the individual BIS-11 total scores. In the most predictive model (a three-level HGF), the two free parameters encoded uncertainty-dependent mechanisms of belief updates and significantly explained BIS-11 variance across subjects. Furthermore, in this model, decision noise was a function of trial-wise uncertainty about winning probability. Collectively, our results provide a proof of concept that hierarchical Bayesian models can characterize the decision-making mechanisms linked to the impulsive traits of an individual. These novel indices of gambling mechanisms unmasked during actual play may be useful for online prevention measures for at-risk players and future

  11. A model-based analysis of impulsivity using a slot-machine gambling paradigm

    PubMed Central

    Paliwal, Saee; Petzschner, Frederike H.; Schmitz, Anna Katharina; Tittgemeyer, Marc; Stephan, Klaas E.

    2014-01-01

    Impulsivity plays a key role in decision-making under uncertainty. It is a significant contributor to problem and pathological gambling (PG). Standard assessments of impulsivity by questionnaires, however, have various limitations, partly because impulsivity is a broad, multi-faceted concept. What remains unclear is which of these facets contribute to shaping gambling behavior. In the present study, we investigated impulsivity as expressed in a gambling setting by applying computational modeling to data from 47 healthy male volunteers who played a realistic, virtual slot-machine gambling task. Behaviorally, we found that impulsivity, as measured independently by the 11th revision of the Barratt Impulsiveness Scale (BIS-11), correlated significantly with an aggregate read-out of the following gambling responses: bet increases (BIs), machines switches (MS), casino switches (CS), and double-ups (DUs). Using model comparison, we compared a set of hierarchical Bayesian belief-updating models, i.e., the Hierarchical Gaussian Filter (HGF) and Rescorla–Wagner reinforcement learning (RL) models, with regard to how well they explained different aspects of the behavioral data. We then examined the construct validity of our winning models with multiple regression, relating subject-specific model parameter estimates to the individual BIS-11 total scores. In the most predictive model (a three-level HGF), the two free parameters encoded uncertainty-dependent mechanisms of belief updates and significantly explained BIS-11 variance across subjects. Furthermore, in this model, decision noise was a function of trial-wise uncertainty about winning probability. Collectively, our results provide a proof of concept that hierarchical Bayesian models can characterize the decision-making mechanisms linked to the impulsive traits of an individual. These novel indices of gambling mechanisms unmasked during actual play may be useful for online prevention measures for at-risk players and

  12. A model-based analysis of impulsivity using a slot-machine gambling paradigm.

    PubMed

    Paliwal, Saee; Petzschner, Frederike H; Schmitz, Anna Katharina; Tittgemeyer, Marc; Stephan, Klaas E

    2014-01-01

    Impulsivity plays a key role in decision-making under uncertainty. It is a significant contributor to problem and pathological gambling (PG). Standard assessments of impulsivity by questionnaires, however, have various limitations, partly because impulsivity is a broad, multi-faceted concept. What remains unclear is which of these facets contribute to shaping gambling behavior. In the present study, we investigated impulsivity as expressed in a gambling setting by applying computational modeling to data from 47 healthy male volunteers who played a realistic, virtual slot-machine gambling task. Behaviorally, we found that impulsivity, as measured independently by the 11th revision of the Barratt Impulsiveness Scale (BIS-11), correlated significantly with an aggregate read-out of the following gambling responses: bet increases (BIs), machines switches (MS), casino switches (CS), and double-ups (DUs). Using model comparison, we compared a set of hierarchical Bayesian belief-updating models, i.e., the Hierarchical Gaussian Filter (HGF) and Rescorla-Wagner reinforcement learning (RL) models, with regard to how well they explained different aspects of the behavioral data. We then examined the construct validity of our winning models with multiple regression, relating subject-specific model parameter estimates to the individual BIS-11 total scores. In the most predictive model (a three-level HGF), the two free parameters encoded uncertainty-dependent mechanisms of belief updates and significantly explained BIS-11 variance across subjects. Furthermore, in this model, decision noise was a function of trial-wise uncertainty about winning probability. Collectively, our results provide a proof of concept that hierarchical Bayesian models can characterize the decision-making mechanisms linked to the impulsive traits of an individual. These novel indices of gambling mechanisms unmasked during actual play may be useful for online prevention measures for at-risk players and future

  13. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    SciTech Connect

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  14. Impulse noise trauma during army weapon firing.

    PubMed

    Munjal, K R; Singh, V P

    1997-04-01

    A 100 infanty personnel firing modern weapons such as the Anti Tank Guided Missile, 106mm Recoiless Gun (RCL), 84mm Rocket Launcher (RL) and 81mm Mortar were studied for the effect of impulse noise on the ear and the evolution of the Temporary Threshold Shift (TTS), Recovery Time (RT) and Permanent Threshold Shift (PTS) was traced. PMID:23119288

  15. How Many Impulsivities? A Discounting Perspective

    ERIC Educational Resources Information Center

    Green, Leonard; Myerson, Joel

    2013-01-01

    People discount the value of delayed and uncertain outcomes, and how steeply individuals discount is thought to reflect how impulsive they are. From this perspective, steep discounting of delayed outcomes (which fails to maximize long-term welfare) and shallow discounting of probabilistic outcomes (which fails to adequately take risk into account)…

  16. Impulsive Behaviors in Patients With Pathological Buying.

    PubMed

    Zander, Heike; Claes, Laurence; Voth, Eva M; de Zwaan, Martina; Müller, Astrid

    2016-09-01

    Aim To investigate impulsive behaviors in pathological buying (PB). Methods The study included three groups matched for age and gender: treatment seeking outpatients with PB (PB+), treatment seeking psychiatric inpatients without PB (PB-), and a healthy control group (HC). PB was assessed by means of the Compulsive Buying Scale and by the impulse control disorder (ICD) module of the research version of the Structured Clinical Interview for DSM-IV (SCID-ICD). All participants answered questionnaires concerning symptoms of borderline personality disorder, self-harming behaviors, binge eating and symptoms of attention deficit and hyperactivity disorder (ADHD). In addition, comorbid ICDs were assessed using the SCID-ICD. Results The PB+ and PB- groups did not differ with regard to borderline personality disorder or ADHD symptoms, but both groups reported significantly more symptoms than the HC group. Frequencies of self-harming behaviors did not differ between the three groups. Patients with PB were more often diagnosed with any current ICD (excluding PB) compared to those without PB and the HC group (38.7% vs. 12.9% vs. 12.9%, respectively, p=.017). Discussion Our findings confirm prior research suggesting more impulsive behaviors in patients with and without PB compared to healthy controls. The results of the questionnaire-based assessment indicate that outpatients with PB perceive themselves equally impulsive and self-harm as frequently as inpatients without PB; but they seem to suffer more often from an ICD as assessed by means of an interview.

  17. Arbitration between controlled and impulsive choices.

    PubMed

    Economides, M; Guitart-Masip, M; Kurth-Nelson, Z; Dolan, R J

    2015-04-01

    The impulse to act for immediate reward often conflicts with more deliberate evaluations that support long-term benefit. The neural architecture that negotiates this conflict remains unclear. One account proposes a single neural circuit that evaluates both immediate and delayed outcomes, while another outlines separate impulsive and patient systems that compete for behavioral control. Here we designed a task in which a complex payout structure divorces the immediate value of acting from the overall long-term value, within the same outcome modality. Using model-based fMRI in humans, we demonstrate separate neural representations of immediate and long-term values, with the former tracked in the anterior caudate (AC) and the latter in the ventromedial prefrontal cortex (vmPFC). Crucially, when subjects' choices were compatible with long-run consequences, value signals in AC were down-weighted and those in vmPFC were enhanced, while the opposite occurred when choice was impulsive. Thus, our data implicate a trade-off in value representation between AC and vmPFC as underlying controlled versus impulsive choice.

  18. Impulsive Behaviors in Patients With Pathological Buying.

    PubMed

    Zander, Heike; Claes, Laurence; Voth, Eva M; de Zwaan, Martina; Müller, Astrid

    2016-09-01

    Aim To investigate impulsive behaviors in pathological buying (PB). Methods The study included three groups matched for age and gender: treatment seeking outpatients with PB (PB+), treatment seeking psychiatric inpatients without PB (PB-), and a healthy control group (HC). PB was assessed by means of the Compulsive Buying Scale and by the impulse control disorder (ICD) module of the research version of the Structured Clinical Interview for DSM-IV (SCID-ICD). All participants answered questionnaires concerning symptoms of borderline personality disorder, self-harming behaviors, binge eating and symptoms of attention deficit and hyperactivity disorder (ADHD). In addition, comorbid ICDs were assessed using the SCID-ICD. Results The PB+ and PB- groups did not differ with regard to borderline personality disorder or ADHD symptoms, but both groups reported significantly more symptoms than the HC group. Frequencies of self-harming behaviors did not differ between the three groups. Patients with PB were more often diagnosed with any current ICD (excluding PB) compared to those without PB and the HC group (38.7% vs. 12.9% vs. 12.9%, respectively, p=.017). Discussion Our findings confirm prior research suggesting more impulsive behaviors in patients with and without PB compared to healthy controls. The results of the questionnaire-based assessment indicate that outpatients with PB perceive themselves equally impulsive and self-harm as frequently as inpatients without PB; but they seem to suffer more often from an ICD as assessed by means of an interview. PMID:27415604

  19. Designing a Stochastic Adaptive Impulsive Observer for Stochastic Linear and Nonlinear Impulsive Systems

    SciTech Connect

    Ayati, Moosa; Alwan, Mohamad; Liu Xinzhi; Khaloozadeh, Hamid

    2011-11-30

    State observation (estimation) is a very important issue in system analysis and control. This paper develops a new observer called Stochastic Adaptive Impulsive Observer (SAIO) for the state estimation of impulsive systems. The proposed observer is applicable to linear and nonlinear stochastic impulsive systems. In addition, the effect of parametric uncertainty is considered and unknown parameters of the system are estimated by suitable adaptation laws. Impulsive system theory, particularly stochastic Lyapunov-like function, is used to analyze the stability and convergence of the state estimations. The main advantages of the proposed observer are: 1) it gives continuous estimation from discrete time measurements of the system output, and 2) it is useful for state estimation when continuous measurements are impossible or expensive. Simulation results show the effectiveness of the proposed observer and we believe that it has many applications in control and estimation theories.

  20. The flare kernel in the impulsive phase

    NASA Technical Reports Server (NTRS)

    Dejager, C.

    1986-01-01

    The impulsive phase of a flare is characterized by impulsive bursts of X-ray and microwave radiation, related to impulsive footpoint heating up to 50 or 60 MK, by upward gas velocities (150 to 400 km/sec) and by a gradual increase of the flare's thermal energy content. These phenomena, as well as non-thermal effects, are all related to the impulsive energy injection into the flare. The available observations are also quantitatively consistent with a model in which energy is injected into the flare by beams of energetic electrons, causing ablation of chromospheric gas, followed by convective rise of gas. Thus, a hole is burned into the chromosphere; at the end of impulsive phase of an average flare the lower part of that hole is situated about 1800 km above the photosphere. H alpha and other optical and UV line emission is radiated by a thin layer (approx. 20 km) at the bottom of the flare kernel. The upward rising and outward streaming gas cools down by conduction in about 45 s. The non-thermal effects in the initial phase are due to curtailing of the energy distribution function by escape of energetic electrons. The single flux tube model of a flare does not fit with these observations; instead we propose the spaghetti-bundle model. Microwave and gamma-ray observations suggest the occurrence of dense flare knots of approx. 800 km diameter, and of high temperature. Future observations should concentrate on locating the microwave/gamma-ray sources, and on determining the kernel's fine structure and the related multi-loop structure of the flaring area.