Science.gov

Sample records for finite impulse response

  1. Recursive Inversion By Finite-Impulse-Response Filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1991-01-01

    Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.

  2. A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force

    PubMed Central

    Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R

    2010-01-01

    Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621

  3. Vibration suppression of structures with densely spaced modes using maximally robust minimum delay digital finite impulse response filters

    NASA Astrophysics Data System (ADS)

    Glossiotis, G. N.; Antoniadis, I. A.

    2007-03-01

    Due to the inherent flexibility of engineering structures, transient and residual vibrations occur when a motion command is applied, thus raising several practical restrictions concerning their fast, accurate and safe motion. Although various command-preconditioning techniques have been proposed for the effective suppression of the excited vibrations, their application has been limited only to structures with a few distinct and well-separated modes. This paper further considers the applicability of motion preconditioning methods for a large class of lightweight flexible structures, which present multiple densely spaced natural modes, existing even at relatively low frequencies. Properly designed finite impulse response (FIR) filters can lead to an effective motion preconditioning method, suppressing drastically the excited vibrations over the entire excited frequency band. Compared to other alternative preconditioning methods, such as input shapers or infinite impulse response (IIR) filters, FIR filters present the most efficient behavior in terms of vibration suppression efficiency, or in terms of the delay introduced in the motion command, as verified by numerical simulations and experimental results involving multibay trusses, with tenths of densely spaced modes in a range from 0.4 Hz up to 75 Hz.

  4. A Methodology for Rapid Prototyping Peak-Constrained Least-Squares Bit-Serial Finite Impulse Response Filters in FPGAs

    NASA Astrophysics Data System (ADS)

    Carreira, Alex; Fox, Trevor W.; Turner, Laurence E.

    2003-12-01

    Area-efficient peak-constrained least-squares (PCLS) bit-serial finite impulse response (FIR) filter implementations can be rapidly prototyped in field programmable gate arrays (FPGA) with the methodology presented in this paper. Faster generation of the FPGA configuration bitstream is possible with a new application-specific mapping and placement method that uses JBits to avoid conventional general-purpose mapping and placement tools. JBits is a set of Java classes that provide an interface into the Xilinx Virtex FPGA configuration bitstream, allowing the user to generate new configuration bitstreams. PCLS coefficient generation allows passband-to-stopband energy ratio (PSR) performance to be traded for a reduction in the filter's hardware cost without altering the minimum stopband attenuation. Fixed-point coefficients that meet the frequency response and hardware cost specifications can be generated with the PCLS method. It is not possible to meet these specifications solely by the quantization of floating-point coefficients generated in other methods.

  5. Detecting Structural Failures Via Acoustic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Joshi, Sanjay S.

    1995-01-01

    Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.

  6. Identification of Experimental Unsteady Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Piatak, David J.; Scott, Robert C.

    2003-01-01

    The identification of experimental unsteady aerodynamic impulse responses using the Oscillating Turntable (OTT) at NASA Langley's Transonic Dynamics Tunnel (TDT) is described. Results are presented for two configurations: a Rigid Semispan Model (RSM) and a rectangular wing with a supercritical airfoil section. Both models were used to acquire unsteady pressure data due to pitching oscillations on the OTT. A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the pressure impulse responses. The identified impulse responses are then used to predict the pressure response due to pitching oscillations at several frequencies. Comparisons with the experimental data are presented.

  7. Finite-element nonlinear transient response computer programs PLATE 1 and CIVM-PLATE 1 for the analysis of panels subjected to impulse or impact loads

    NASA Technical Reports Server (NTRS)

    Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.

    1980-01-01

    Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.

  8. Anatomy of a SAR impulse response.

    SciTech Connect

    Doerry, Armin Walter

    2007-08-01

    A principal measure of Synthetic Aperture Radar (SAR) image quality is the manifestation in the SAR image of a spatial impulse, that is, the SAR's Impulse Response (IPR). IPR requirements direct certain design decisions in a SAR. Anomalies in the IPR can point to specific anomalous behavior in the radar's hardware and/or software.

  9. Temporal Preparation, Response Inhibition and Impulsivity

    ERIC Educational Resources Information Center

    Correa, Angel; Trivino, Monica; Perez-Duenas, Carolina; Acosta, Alberto; Lupianez, Juan

    2010-01-01

    Temporal preparation and impulsivity involve overlapping neural structures (prefrontal cortex) and cognitive functions (response inhibition and time perception), however, their interrelations had not been investigated. We studied such interrelations by comparing the performance of groups with low vs. high non-clinical trait impulsivity during a…

  10. Temporal preparation, response inhibition and impulsivity.

    PubMed

    Correa, Angel; Triviño, Mónica; Pérez-Dueñas, Carolina; Acosta, Alberto; Lupiáñez, Juan

    2010-08-01

    Temporal preparation and impulsivity involve overlapping neural structures (prefrontal cortex) and cognitive functions (response inhibition and time perception), however, their interrelations had not been investigated. We studied such interrelations by comparing the performance of groups with low vs. high non-clinical trait impulsivity during a temporal preparation go no-go task. This task measured, in less than 10 min, how response inhibition was influenced both by temporal orienting of attention (guided by predictive temporal cues) and by sequential effects (produced by repetition/alternation of the duration of preparatory intervals in consecutive trials). The results showed that sequential effects produced dissociable patterns of temporal preparation as a function of impulsivity. Sequential effects facilitated both response speed (reaction times - RTs - to the go condition) and response inhibition (false alarms to the no-go condition) selectively in the low impulsivity group. In the high impulsivity group, in contrast, sequential effects only improved RTs but not response inhibition. We concluded that both excitatory and inhibitory processing may be enhanced concurrently by sequential effects, which enables the temporal preparation of fast and controlled responses. Impulsivity could hence be related to less efficient temporal preparation of that inhibitory processing.

  11. The thermal impulse response of Escherichia coli

    PubMed Central

    Paster, Eli; Ryu, William S.

    2008-01-01

    Swimming Escherichia coli responds to changes in temperature by modifying its motor behavior. Previous studies using populations of cells have shown that E. coli accumulate in spatial thermal gradients, but these experiments did not cleanly separate thermal responses from chemotactic responses. Here we have isolated the thermal response by studying the behavior of single, tethered cells. The motor output of cells grown at 33°C was measured at constant temperature, from 10° to 40°C, and in response to small, impulsive increases in temperature, from 23° to 43°C. The thermal impulse response at temperatures < 31°C is similar to the chemotactic impulse response: Both follow a similar time course, share the same directionality, and show biphasic characteristics. At temperatures > 31°C, some cells show an inverted response, switching from warm- to cold-seeking behavior. The fraction of inverted responses increases nonlinearly with temperature, switching steeply at the preferred temperature of 37°C. PMID:18385380

  12. Controller reduction by preserving impulse response energy

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Su, Tzu-Jeng

    1989-01-01

    A model order reduction algorithm based on a Krylov recurrence formulation is developed to reduce order of controllers. The reduced-order controller is obtained by projecting the full-order LQG controller onto a Krylov subspace in which either the controllability or the observability grammian is equal to the identity matrix. The reduced-order controller preserves the impulse response energy of the full-order controller and has a parameter-matching property. Two numerical examples drawn from other controller reduction literature are used to illustrate the efficacy of the proposed reduction algorithm.

  13. Subjective field study of response to impulsive helicopter noise

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1981-01-01

    Subjects, located outdoors and indoors, judged the noisiness and other subjective noise characteristics of flyovers of two helicopters and a propeller driven airplane as part of a study of the effects of impulsiveness on the subjective response to helicopter noise. In the first experiment, the impulsive characteristics of one helicopter was controlled by varying the main rotor speed while maintaining a constant airspeed in level flight. The second experiment which utilized only the helicopters, included descent and level flight operations. The more impulsive helicopter was consistently judged less noisy than the less impulsive helicopter at equal effective perceived noise levels (EPNL). The ability of EPNL to predict noisiness was not improved by the addition of either of two proposed impulse corrections. A subjective measure of impulsiveness, however, which was not significantly related to the proposed impulse corrections, was found to improve the predictive ability of EPNL.

  14. SAR impulse response with residual chirps.

    SciTech Connect

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  15. Causal impulse response for circular sources in viscous media

    PubMed Central

    Kelly, James F.; McGough, Robert J.

    2008-01-01

    The causal impulse response of the velocity potential for the Stokes wave equation is derived for calculations of transient velocity potential fields generated by circular pistons in viscous media. The causal Green’s function is numerically verified using the material impulse response function approach. The causal, lossy impulse response for a baffled circular piston is then calculated within the near field and the far field regions using expressions previously derived for the fast near field method. Transient velocity potential fields in viscous media are computed with the causal, lossy impulse response and compared to results obtained with the lossless impulse response. The numerical error in the computed velocity potential field is quantitatively analyzed for a range of viscous relaxation times and piston radii. Results show that the largest errors are generated in locations near the piston face and for large relaxation times, and errors are relatively small otherwise. Unlike previous frequency-domain methods that require numerical inverse Fourier transforms for the evaluation of the lossy impulse response, the present approach calculates the lossy impulse response directly in the time domain. The results indicate that this causal impulse response is ideal for time-domain calculations that simultaneously account for diffraction and quadratic frequency-dependent attenuation in viscous media. PMID:18397018

  16. Associations between trait impulsivity and prepotent response inhibition.

    PubMed

    Aichert, Désirée S; Wöstmann, Nicola M; Costa, Anna; Macare, Christine; Wenig, Johanna R; Möller, Hans-Jürgen; Rubia, Katya; Ettinger, Ulrich

    2012-01-01

    This study addresses the relationship between trait impulsivity and inhibitory control, two features known to be impaired in a number of psychiatric conditions. While impulsivity is often measured using psychometric self-report questionnaires, the inhibition of inappropriate, impulsive motor responses is typically measured using experimental laboratory tasks. It remains unclear, however, whether psychometrically assessed impulsivity and experimentally operationalized inhibitory performance are related to each other. Therefore, we investigated the relationship between these two traits in a large sample using correlative and latent variable analysis. A total of 504 healthy individuals completed the Barratt Impulsiveness Scale (BIS-11) and a battery of four prepotent response inhibition paradigms: the antisaccade, Stroop, stop-signal, and go/no-go tasks. We found significant associations of BIS impulsivity with commission errors on the go/no-go task and directional errors on the antisaccade task, over and above effects of age, gender, and intelligence. Latent variable analysis (a) supported the idea that all four inhibitory measures load on the same underlying construct termed "prepotent response inhibition" and (b) revealed that 12% of variance of the prepotent response inhibition construct could be explained by BIS impulsivity. Overall, the magnitude of associations observed was small, indicating that while a portion of variance in prepotent response inhibition can be explained by psychometric trait impulsivity, the majority of variance remains unexplained. Thus, these findings suggest that prepotent response inhibition paradigms can account for psychometric trait impulsivity only to a limited extent. Implications for studies of patient populations with symptoms of impulsivity are discussed.

  17. Response inhibition and its relation to multidimensional impulsivity.

    PubMed

    Wilbertz, Tilmann; Deserno, Lorenz; Horstmann, Annette; Neumann, Jane; Villringer, Arno; Heinze, Hans-Jochen; Boehler, Carsten N; Schlagenhauf, Florian

    2014-12-01

    Impulsivity is a multidimensional construct that has been suggested as a vulnerability factor for several psychiatric disorders, especially addiction disorders. Poor response inhibition may constitute one facet of impulsivity. Trait impulsivity can be assessed by self-report questionnaires such as the widely used Barratt Impulsiveness Scale (BIS-11). However, regarding the multidimensionality of impulsivity different concepts have been proposed, in particular the UPPS self-report questionnaire ('Urgency', 'Lack of Premeditation', 'Lack of Perseverance', 'Sensation Seeking') that is based on a factor analytic approach. The question as to which aspects of trait impulsivity map on individual differences of the behavioral and neural correlates of response inhibition so far remains unclear. In the present study, we investigated 52 healthy individuals that scored either very high or low on the BIS-11 and underwent a reward-modulated Stop-signal task during fMRI. Neither behavioral nor neural differences were observed with respect to high- and low-BIS groups. In contrast, UPPS subdomain Urgency best explained inter-individual variability in SSRT scores and was further negatively correlated to right IFG/aI activation in 'Stop>Go' trials - a key region for response inhibition. Successful response inhibition in rewarded compared to nonrewarded stop trials yielded ventral striatal (VS) activation which might represent a feedback signal. Interestingly, only participants with low Urgency scores were able to use this VS feedback signal for better response inhibition. Our findings indicate that the relationship of impulsivity and response inhibition has to be treated carefully. We propose Urgency as an important subdomain that might be linked to response inhibition as well as to the use of reward-based neural signals. Based on the present results, further studies examining the influence of impulsivity on psychiatric disorders should take into account Urgency as an important

  18. Impulse source versus dodecahedral loudspeaker for measuring parameters derived from the impulse response in room acoustics.

    PubMed

    San Martín, Ricardo; Arana, Miguel; Machín, Jorge; Arregui, Abel

    2013-07-01

    This study investigates the performance of dodecahedral and impulse sources when measuring acoustic parameters in enclosures according to ISO 3382-1 [Acoustics-Measurement of room acoustic parameters. Part 1: Performance spaces (International Organization for Standardization, Geneva, Switzerland, 2009)]. In general, methods using speakers as a sound source are limited by their frequency response and directivity. On the other hand, getting impulse responses from impulse sources typically involves a lack of repeatability, and it is usually necessary to average several measurements for each position. Through experiments in different auditoriums that recreate typical situations in which the measurement standard is applied, it is found that using impulse sources leads to greater variation in the results, especially at low frequencies. However, this prevents subsequent dispersions due to variables that this technique does not require, such as the orientation of the emitting source. These dispersions may be relevant at high frequencies exceeding the established tolerance criteria for certain parameters. Finally, a new descriptor for dodecahedral sources reflecting the influence their lack of omnidirectionality produces on measuring acoustic parameters is proposed.

  19. Self-reported impulsivity, but not behavioral choice or response impulsivity, partially mediates the effect of stress on drinking behavior.

    PubMed

    Hamilton, Kristen R; Ansell, Emily B; Reynolds, Brady; Potenza, Marc N; Sinha, Rajita

    2013-01-01

    Stress and impulsivity contribute to alcohol use, and stress may also act via impulsivity to increase drinking behavior. Impulsivity represents a multi-faceted construct and self-report and behavioral assessments may effectively capture distinct clinically relevant factors. The present research investigated whether aspects of impulsivity mediate the effect of stress on alcohol use. A community-based sample of 192 men and women was assessed on measures of cumulative stress, alcohol use, self-reported impulsivity, and behavioral choice and response impulsivity. Data were analyzed using regression and bootstrapping techniques to estimate indirect effects of stress on drinking via impulsivity. Cumulative adversity exhibited both direct effects and indirect effects (via self-reported impulsivity) on drinking behavior. Additional models examining specific types of stress indicated direct and indirect effects of trauma and recent life events, and indirect effects of major life events and chronic stressors on drinking behavior. Overall, cumulative stress was associated with increased drinking behavior, and this effect was partially mediated by self-reported impulsivity. Self-reported impulsivity also mediated the effects of different types of stress on drinking behavior. These findings highlight the value of mediation models to examine the pathways through which different types of stress increase drinking behavior. Treatment and prevention strategies should focus on enhancing stress management and self-control.

  20. Impulse and Frequency Response of a Moving Coil Galvanometer.

    ERIC Educational Resources Information Center

    McNeill, D. J.

    1985-01-01

    Describes an undergraduate laboratory experiment in which a moving coil galvanometer is studied and the electromotive force generated by the swinging coil provides the impulse response information in a form suitable for digitizing and inputing to a microcomputer. Background information and analysis of typical data are included. (JN)

  1. Understanding Computation of Impulse Response in Microwave Software Tools

    ERIC Educational Resources Information Center

    Potrebic, Milka M.; Tosic, Dejan V.; Pejovic, Predrag V.

    2010-01-01

    In modern microwave engineering curricula, the introduction of the many new topics in microwave industrial development, or of software tools for design and simulation, sometimes results in students having an inadequate understanding of the fundamental theory. The terminology for and the explanation of algorithms for calculating impulse response in…

  2. Neural response to reward anticipation is modulated by Gray's impulsivity.

    PubMed

    Hahn, Tim; Dresler, Thomas; Ehlis, Ann-Christine; Plichta, Michael M; Heinzel, Sebastian; Polak, Thomas; Lesch, Klaus-Peter; Breuer, Felix; Jakob, Peter M; Fallgatter, Andreas J

    2009-07-15

    According to the Reinforcement Sensitivity Theory (RST), Gray's dimension of impulsivity, reflecting human trait reward sensitivity, determines the extent to which stimuli activate the Behavioural Approach System (BAS). The potential neural underpinnings of the BAS, however, remain poorly understood. In the present study, we examined the association between Gray's impulsivity as defined by the RST and event-related fMRI BOLD-response to anticipation of reward in twenty healthy human subjects in brain regions previously associated with reward processing. Anticipation of reward during a Monetary Incentive Delay Task elicited activation in key components of the human reward circuitry such as the ventral striatum, the amygdala and the orbitofrontal cortex. Interindividual differences in Gray's impulsivity accounted for a significant amount of variance of the reward-related BOLD-response in the ventral striatum and the orbitofrontal cortex. Specifically, higher trait reward sensitivity was associated with increased activation in response to cues indicating potential reward. Extending previous evidence, here we show that variance in functional brain activation during anticipation of reward is attributed to interindividual differences regarding Gray's dimension of impulsivity. Thus, trait reward sensitivity contributes to the modulation of responsiveness in major components of the human reward system which thereby display a core property of the BAS. Generally, fostering our understanding of the neural underpinnings of the association of reward-related interindividual differences in affective traits might aid researchers in quest for custom-tailored treatments of psychiatric disorders, further disentangling the complex relationship between personality traits, emotion, and health.

  3. A finite element study of the EIDI system. [Electro-Impulse De-Icing System

    NASA Technical Reports Server (NTRS)

    Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.

    1988-01-01

    This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.

  4. Volterra network modeling of the nonlinear finite-impulse reponse of the radiation belt flux

    SciTech Connect

    Taylor, M.; Daglis, I. A.; Anastasiadis, A.; Vassiliadis, D.

    2011-01-04

    We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks) can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts. We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential features of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.

  5. Auditorium acoustics evaluation based on simulated impulse response

    NASA Astrophysics Data System (ADS)

    Wu, Shuoxian; Wang, Hongwei; Zhao, Yuezhe

    2001-05-01

    The impulse responses and other acoustical parameters of Huangpu Teenager Palace in Guangzhou were measured. Meanwhile, the acoustical simulation and auralization based on software ODEON were also made. The comparison between the parameters based on computer simulation and measuring is given. This case study shows that auralization technique based on computer simulation can be used for predicting the acoustical quality of a hall at its design stage.

  6. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium.

    PubMed

    Rouze, Ned C; Wang, Michael H; Palmeri, Mark L; Nightingale, Kathy R

    2013-11-15

    Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material.

  7. Rapid-Response Impulsivity: Definitions, Measurement Issues, and Clinical Implications

    PubMed Central

    Hamilton, Kristen R.; Littlefield, Andrew K.; Anastasio, Noelle C.; Cunningham, Kathryn A.; Fink, Latham H.; Wing, Victoria C.; Mathias, Charles W.; Lane, Scott D.; Schutz, Christian; Swann, Alan C.; Lejuez, C.W.; Clark, Luke; Moeller, F. Gerard; Potenza, Marc N.

    2015-01-01

    Impulsivity is a multi-faceted construct that is a core feature of multiple psychiatric conditions and personality disorders. However, progress in understanding and treating impulsivity in the context of these conditions is limited by a lack of precision and consistency in its definition and assessment. Rapid-response-impulsivity (RRI) represents a tendency toward immediate action that occurs with diminished forethought and is out of context with the present demands of the environment. Experts from the International Society for Research on Impulsivity (InSRI) met to discuss and evaluate RRI-measures in terms of reliability, sensitivity, and validity with the goal of helping researchers and clinicians make informed decisions about the use and interpretation of findings from RRI-measures. Their recommendations are described in this manuscript. Commonly-used clinical and preclinical RRI-tasks are described, and considerations are provided to guide task selection. Tasks measuring two conceptually and neurobiologically distinct types of RRI, “refraining from action initiation” (RAI) and “stopping an ongoing action” (SOA) are described. RAI and SOA-tasks capture distinct aspects of RRI that may relate to distinct clinical outcomes. The InSRI group recommends that: 1) selection of RRI-measures should be informed by careful consideration of the strengths, limitations, and practical considerations of the available measures; 2) researchers use both RAI and SOA tasks in RRI studies to allow for direct comparison of RRI types and examination of their associations with clinically relevant measures; and, 3) similar considerations should be made for human and non-human studies in an effort to harmonize and integrate pre-clinical and clinical research. PMID:25867840

  8. Direction Finding Using an Antenna with Direction Dependent Impulse Response

    NASA Technical Reports Server (NTRS)

    Foltz, Heinrich; Kegege, Obadiah

    2016-01-01

    Wideband antennas may be designed to have an impulse response that is direction dependent, not only in amplitude but also in waveform shape. This property can be used to perform direction finding using a single fixed antenna, without the need for an array or antenna rotation. In this paper direction finding is demonstrated using a simple candelabra-shaped monopole operating in the 1-3 GHz range. The method requires a known transmitted pulse shape and high signal-to-noise ratio, and is not as accurate or robust as conventional methods. However, it can add direction finding capability to a wideband communication system without the addition of any hardware.

  9. Impulse response method for characterization of echogenic liposomesa)

    PubMed Central

    Raymond, Jason L.; Luan, Ying; van Rooij, Tom; Kooiman, Klazina; Huang, Shao-Ling; McPherson, David D.; Versluis, Michel; de Jong, Nico; Holland, Christy K.

    2015-01-01

    An optical characterization method is presented based on the use of the impulse response to characterize the damping imparted by the shell of an air-filled ultrasound contrast agent (UCA). The interfacial shell viscosity was estimated based on the unforced decaying response of individual echogenic liposomes (ELIP) exposed to a broadband acoustic impulse excitation. Radius versus time response was measured optically based on recordings acquired using an ultra-high-speed camera. The method provided an efficient approach that enabled statistical measurements on 106 individual ELIP. A decrease in shell viscosity, from 2.1 × 10−8 to 2.5 × 10−9 kg/s, was observed with increasing dilatation rate, from 0.5 × 106 to 1 × 107 s−1. This nonlinear behavior has been reported in other studies of lipid-shelled UCAs and is consistent with rheological shear-thinning. The measured shell viscosity for the ELIP formulation used in this study [κs = (2.1 ± 1.0) × 10−8 kg/s] was in quantitative agreement with previously reported values on a population of ELIP and is consistent with other lipid-shelled UCAs. The acoustic response of ELIP therefore is similar to other lipid-shelled UCAs despite loading with air instead of perfluorocarbon gas. The methods described here can provide an accurate estimate of the shell viscosity and damping for individual UCA microbubbles. PMID:25920822

  10. Loss Factor Estimation Using the Impulse Response Decay Method on a Stiffened Structure

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; Schiller, Noah; Allen, Albert; Moeller, Mark

    2009-01-01

    High-frequency vibroacoustic modeling is typically performed using energy-based techniques such as Statistical Energy Analysis (SEA). Energy models require an estimate of the internal damping loss factor. Unfortunately, the loss factor is difficult to estimate analytically, and experimental methods such as the power injection method can require extensive measurements over the structure of interest. This paper discusses the implications of estimating damping loss factors using the impulse response decay method (IRDM) from a limited set of response measurements. An automated procedure for implementing IRDM is described and then evaluated using data from a finite element model of a stiffened, curved panel. Estimated loss factors are compared with loss factors computed using a power injection method and a manual curve fit. The paper discusses the sensitivity of the IRDM loss factor estimates to damping of connected subsystems and the number and location of points in the measurement ensemble.

  11. Deriving a dosage-response relationship for community response to high-energy impulsive noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-01-01

    The inability to systematically predict community response to exposure to sonic booms (and other high energy impulsive sounds) is a major impediment to credible analyses of the environmental effects of supersonic flight operations. Efforts to assess community response to high energy impulsive sounds are limited in at least two important ways. First, a paucity of appropriate empirical data makes it difficult to infer a dosage-response relationship by means similar to those used in the case of general transportation noise. Second, it is unclear how well the 'equal energy hypothesis' (the notion that duration, number, and level of individual events are directly interchangeable determinants of annoyance) applies to some forms of impulsive noise exposure. Some of the issues currently under consideration by a CHABA working group addressing these problems are discussed. These include means for applying information gained in controlled exposure studies about different rates of growth of annoyance with impulsive and non-impulsive sound exposure levels, and strategies for developing a dosage-response relationship in a data-poor area.

  12. Influence of "omnidirectional" loudspeaker directivity on measured room impulse responses.

    PubMed

    Knüttel, Tobias; Witew, Ingo B; Vorländer, Michael

    2013-11-01

    Measured room impulse responses (RIR) strongly depend on the directivity of the sound source used for the measurement. An analysis method is presented that is capable of pinpointing the influence of the loudspeaker's directivity on a set of RIRs. Taking into account the rotational symmetries of a dodecahedron loudspeaker, it detects the effects that the changing directional pattern induces in the RIR. The analysis of RIRs measured in completely different acoustical environments reveals that the influence of the loudspeaker's directivity can still be observed in the very late part of the RIR-even in very reverberant rooms. These results are presented and the consistency with general room acoustical theory is revised and discussed.

  13. A useful approximation for the flat surface impulse response

    NASA Technical Reports Server (NTRS)

    Brown, Gary S.

    1989-01-01

    The flat surface impulse response (FSIR) is a very useful quantity in computing the mean return power for near-nadir-oriented short-pulse radar altimeters. However, for very small antenna beamwidths and relatively large pointing angles, previous analytical descriptions become very difficult to compute accurately. An asymptotic approximation is developed to overcome these computational problems. Since accuracy is of key importance, a condition is developed under which this solution is within 2 percent of the exact answer. The asymptotic solution is shown to be in functional agreement with a conventional clutter power result and gives a 1.25-dB correction to this formula to account properly for the antenna-pattern variation over the illuminated area.

  14. Response of the night aurora to a negative sudden impulse

    NASA Astrophysics Data System (ADS)

    Belakhovsky, V. B.; Vorobjev, V. G.

    2016-11-01

    Data from the meridian scanning photometers of the NORSTAR network and all-sky cameras of the THEMIS network were used for a detailed study of the response of night auroras to the sharp decrease of the solar wind dynamic pressure on September 28, 2009. The decrease in dynamic pressure was accompanied by a corresponding depression of the magnetic field in the SYM-H index and the origin of a negative sudden impulse ( SI) with a duration of 5-8 min and amplitude of 150-200 nT in the horizontal component of the magnetic field at stations of the night sector of the auroral zone. The magnetic impulse was preceded by a long calm magnetic period, although the IMF Bz-component was negative for 1.5 hour before the SI -. The commencement of the SI -, which was determined by variations in the magnetic field at 0650 UT, was accompanied by a sharp increase in the intensity of discrete forms of polar auroras in the midnight sector of the auroral zone and their fast propagation to the pole. Approximately 6-8 min after the SI -, the auroral intensity in the emissions, which were excited by the fluxes of precipitated electrons and protons, quickly began to decrease in the night sector. Analysis of the optical observations showed the two-stage character of the response of the night auroras to the SI - in the considered event: first, fast movement of the discrete aurora forms to the pole with a significant increase in their intensity, and a further fast decrease in auroral intensity with a delay of 6-8 min relative to the SI -. The possible reasons for such aurora behavior are discussed.

  15. Using crosscorrelation techniques to determine the impulse response of linear systems

    NASA Technical Reports Server (NTRS)

    Dallabetta, Michael J.; Li, Harry W.; Demuth, Howard B.

    1993-01-01

    A crosscorrelation method of measuring the impulse response of linear systems is presented. The technique, implementation, and limitations of this method are discussed. A simple system is designed and built using discrete components and the impulse response of a linear circuit is measured. Theoretical and software simulation results are presented.

  16. Responsibility and impulsivity and their interaction in relation to obsessive-compulsive symptoms.

    PubMed

    Smári, Jakob; Bouranel, Guethrún; Thornóra Eiethsdóttir, Sigríethur

    2008-09-01

    In the present study, the role of responsibility and impulsivity and their interaction in obsessive-compulsive symptoms was investigated. The obsessive-compulsive inventory-revised (OCI-R), an attention deficit and hyperactivity/impulsivity self-report scale (AD/HD-SR), the responsibility attitudes scale (RAS), Eysenck's impulsiveness/venturesomeness/empathy questionnaire (IVE), the community epidemiological survey-depression (CES-D) and the Penn State worry questionnaire (PSWQ) were administered to a sample of 405 Icelandic university students. Responsibility attitudes (RAS) and impulsivity measures were significantly related to scores on the OCI-R total scale, even when depression had been taken into consideration. The interaction between responsibility and hyperactivity/impulsivity added to the prediction of OCI-R scores over and above simple effects.

  17. Response of end tidal CO2 pressure to impulse exercise.

    PubMed

    Yano, T; Afroundeh, R; Yamanak, R; Arimitsu, T; Lian, C-S; Shirkawa, K; Yunoki, T

    2014-03-01

    The purpose of the present study was to examine how end tidal CO(2) pressure (PETCO(2)) is controlled in impulse exercise. After pre-exercise at 25 watts for 5 min, impulse exercise for 10 sec with 200 watts followed by post exercise at 25 watts was performed. Ventilation (VE) significantly increased until the end of impulse exercise and significantly re-increased after a sudden decrease. Heart rate (HR) significantly increased until the end of impulse exercise and then decreased to the pre-exercise level. PETCO(2) remained constant during impulse exercise. PETCO(2) significantly increased momentarily after impulse exercise and then significantly decreased to the pre-exercise level. PETCO(2) showed oscillation. The average peak frequency of power spectral density in PETCO(2) appeared at 0.0078 Hz. Cross correlations were obtained after impulse exercise. The peak cross correlations between VE and PETCO(2), HR and PETCO(2), and VE and HR were 0.834 with a time delay of -7 sec, 0.813 with a time delay of 7 sec and 0.701 with a time delay of -15 sec, respectively. We demonstrated that PETCO(2) homeodynamics was interactively maintained by PETCO(2) itself, CO(2) transportation (product of cardiac output and mixed venous CO(2) content) into the lungs by heart pumping and CO(2) elimination by ventilation, and it oscillates as a result of their interactions.

  18. An Item Response Theory Analysis of the Impulsive Behaviors Checklist for Adolescents

    ERIC Educational Resources Information Center

    You, Jianing; Leung, Freedom; Lai, Ching-man; Fu, Kei

    2011-01-01

    This study used item response theory (IRT) to examine the Impulsive Behaviors Checklist for Adolescents (IBCL-A) among 6,276 (67.7% girls) Chinese secondary school students. The IBCL-A included 15 maladaptive impulsive behaviors adapted from the Revised Diagnostic Interview for Borderlines. The authors obtained the severity and discrimination…

  19. Subjective diffuseness of music signals convolved with binaural impulse responses

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Tronchin, Lamberto; Cocchi, Alessandro; Soeta, Yoshiharu

    2011-07-01

    The spatial impression of sound in a hall can be quantified using sound field factors such as the interaural cross-correlation coefficient (IACC) calculated from binaural impulse response (BIR), henceforth denoted by IACC IR. The subjective diffuseness for the listener is a spatial attribute which depends on factors associated both with the source signal and with the actual sound field, and is quantified using the IACC of the signal received by the listener, henceforth denoted by IACC SR. Therefore, the subjective diffuseness in a given hall may change with the music. The aims of this study are to estimate the IACC SR from the IACC IR and the factors, which is obtained from autocorrelation function (ACF) of music signal, and to evaluate the subjective diffuseness by these factors. First, the relationship between the IACC IR and IACC SR was investigated. Second, subjective diffuseness was measured by a psycho-acoustical experiment. As a result, the IACC SR could be estimated from the IACC IR of the BIR and the effective duration ( τe) from the ACF of music signal. It was found that the effects of BIRs on subjective diffuseness could be evaluated by IACC IR for almost all subjects, while the effects of music signals could be evaluated by the τe and the width of the peak at τ=0 ( Wϕ(0) ) of the ACF.

  20. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder.

    PubMed

    Herbort, Maike C; Soch, Joram; Wüstenberg, Torsten; Krauel, Kerstin; Pujara, Maia; Koenigs, Michael; Gallinat, Jürgen; Walter, Henrik; Roepke, Stefan; Schott, Björn H

    2016-01-01

    Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BPD patients and 23 age-matched female healthy controls using functional magnetic resonance imaging (fMRI). Participants performed a delayed monetary incentive task in which three categories of objects predicted a potential gain, loss, or neutral outcome. Impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11). Compared to healthy controls, BPD patients exhibited significantly reduced fMRI responses of the ventral striatum/nucleus accumbens (VS/NAcc) to both reward-predicting and loss-predicting cues. BIS-11 scores showed a significant positive correlation with the VS/NAcc reward anticipation responses in healthy controls, and this correlation, while also nominally positive, failed to reach significance in BPD patients. BPD patients, on the other hand, exhibited a significantly negative correlation between ventral striatal loss anticipation responses and BIS-11 scores, whereas this correlation was significantly positive in healthy controls. Our results suggest that patients with BPD show attenuated anticipation responses in the VS/NAcc and, furthermore, that higher impulsivity in BPD patients might be related to impaired prediction of aversive outcomes.

  1. Approximation of the impulse response of an ultra-wide band antenna

    NASA Astrophysics Data System (ADS)

    Tamas, R.; Chilo, J.; Saguet, P.

    2007-08-01

    Ultra-wide band antennas can be characterized by the time-domain impulse response. This paper introduces an approximate form of the impulse response that can be calculated by applying the method of moments to the Freedholm integral equation of convolution. Numerical results are compared to those obtained using the traditional frequency-domain approach. The validity of the approximate impulse response and the application constraints are also discussed. It is shown that the time-domain approach is faster than the frequency-domain approach while the accuracy is preserved.

  2. Impulse Response Measurements Over Space-Earth Paths Using the GPS Coarse/Acquisition Codes

    NASA Technical Reports Server (NTRS)

    Lemmon, J. J.; Papazian, P. B.

    1995-01-01

    The impulse responses of radio transmission channels over space-earth paths were measured using the course/acquisition code signals from the Global Positioning System of satellites. The data acquisition system and signal processing techniques used to develop the impulse responses are described. Examples of impulse response measurements are presented. The results indicate that this measurement approach enables detection of multipath signals that are 20 dB or more below the power of the direct arrival. Channel characteristics that could be investigated with additional measurements and analyses are discussed.

  3. Response of structural concrete elements to severe impulsive loads

    NASA Astrophysics Data System (ADS)

    Krauthammer, T.; Shanaa, H. M.; Assadi, A.

    1994-10-01

    The behavior and response of structural concrete elements under severe short duration dynamic loads was investigated numerically. The analytical approach utilized the Timoshenko beam theory for the analysis of reinforced concrete beams and one-way slabs. Nonlinear material models were used to derive the flexural and shear resistances, and the differential equations of the Timoshenko beam theory were solved numerically by applying the finite difference technique. A simplified approach was developed for estimating the strain rate in structural concrete members, and the corresponding strain rate effects on the strength of the steel and concrete were incorporated into the analysis. Detailed failure criteria were established for predicting the collapse of structural concrete members. Five cases subjected to localized impact loads and eleven cases subjected to distributed explosive loads were analyzed, and the results were compared to experimental data obtained by other investigators.

  4. Response Due To Impulsive Force In Generalized Thermomicrostretch Elastic Solid

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, R.

    2015-08-01

    A two dimensional Cartesian model of a generalized thermo-microstretch elastic solid subjected to impulsive force has been studied. The eigen value approach is employed after applying the Laplace and Fourier transforms on the field equations for L-S and G-L model of the plain strain problem. The integral transforms have been inverted into physical domain numerically and components of normal displacement, normal force stress, couple stress and microstress have been illustrated graphically.

  5. Impulsivity and aggression mediate regional brain responses in Borderline Personality Disorder: An fMRI study.

    PubMed

    Soloff, Paul H; Abraham, Kristy; Burgess, Ashley; Ramaseshan, Karthik; Chowdury, Asadur; Diwadkar, Vaibhav A

    2017-02-28

    Fronto-limbic brain networks involved in regulation of impulsivity and aggression are abnormal in Borderline Personality Disorder (BPD). However, it is unclear whether, or to what extent, these personality traits actually modulate brain responses during cognitive processing. Using fMRI, we examined the effects of trait impulsivity, aggression, and depressed mood on regional brain responses in 31 female BPD and 25 control subjects during a Go No-Go task using Ekman faces as targets. First-level contrasts modeled effects of negative emotional context. Second-level regression models used trait impulsivity, aggression and depressed mood as predictor variables of regional brain activations. In BPD, trait impulsivity was positively correlated with activation in the dorsal anterior cingulate cortex, orbital frontal cortex (OFC), basal ganglia (BG), and dorsolateral prefrontal cortex, with no areas of negative correlation. In contrast, aggression was negatively correlated with activation in OFC, hippocampus, and BG, with no areas of positive correlation. Depressed mood had a generally dampening effect on activations. Effects of trait impulsivity on healthy controls differed from effects in BPD, suggesting a disorder-specific response. Negative emotional context and trait impulsivity, but not aggression or depression, diminished task performance across both groups. Negative emotional context may interfere with cognitive functioning in BPD through interaction with the neurobiology of personality traits.

  6. Impulsivity and Stress Response in Pathological Gamblers During the Trier Social Stress Test.

    PubMed

    Maniaci, G; Goudriaan, A E; Cannizzaro, C; van Holst, R J

    2017-03-18

    Gambling has been associated with increased sympathetic nervous system output and stimulation of the hypothalamic-pituitary-adrenal axis. However it is unclear how these systems are affected in pathological gambling. This study aimed to investigate the effect of the Trier Social Stress Test (TSST) on cortisol and on cardiac interbeat intervals in relation to impulsivity, in a sample of male pathological gamblers compared to healthy controls. In addition, we investigated the correlation between the TSST, duration of the disorder and impulsivity. A total of 35 pathological gamblers and 30 healthy controls, ranging from 19 to 58 years old and all male, participated in this study. Stress response was measured during and after the TSST by salivary cortisol and cardiac interbeat intervals; impulsivity was assessed with the Barratt Impulsiveness Scale (BIS-11). Exposure to the TSST produced a significant increase in salivary cortisol and interbeat intervals in both groups, without differences between groups. We found a negative correlation between baseline cortisol and duration of pathological gambling indicating that the longer the duration of the disorder the lower the baseline cortisol levels. Additionally, we found a main effect of impulsivity across groups on interbeat interval during the TSST, indicating an association between impulsivity and the intensity of the neurovegetative stress response during the TSST. Involvement of the hypothalamic-pituitary-adrenal axis in pathological gambling was confirmed together with evidence of a correlation between length of the disorder and diminished baseline cortisol levels. Impulsivity emerged as a personality trait expressed by pathological gamblers; however the neurovegetative response to the TSST, although associated with impulsivity, appeared to be independent of the presence of pathological gambling.

  7. Viscoelastic damped response of cross-ply laminated shallow spherical shells subjected to various impulsive loads

    NASA Astrophysics Data System (ADS)

    Şahan, Mehmet Fatih

    2017-02-01

    In this paper, the viscoelastic damped response of cross-ply laminated shallow spherical shells is investigated numerically in a transformed Laplace space. In the proposed approach, the governing differential equations of cross-ply laminated shallow spherical shell are derived using the dynamic version of the principle of virtual displacements. Following this, the Laplace transform is employed in the transient analysis of viscoelastic laminated shell problem. Also, damping can be incorporated with ease in the transformed domain. The transformed time-independent equations in spatial coordinate are solved numerically by Gauss elimination. Numerical inverse transformation of the results into the real domain are operated by the modified Durbin transform method. Verification of the presented method is carried out by comparing the results with those obtained by the Newmark method and ANSYS finite element software. Furthermore, the developed solution approach is applied to problems with several impulsive loads. The novelty of the present study lies in the fact that a combination of the Navier method and Laplace transform is employed in the analysis of cross-ply laminated shallow spherical viscoelastic shells. The numerical sample results have proved that the presented method constitutes a highly accurate and efficient solution, which can be easily applied to the laminated viscoelastic shell problems.

  8. A theoretical and experimental investigation of the linear and nonlinear impulse responses from a magnetoplasma column

    NASA Technical Reports Server (NTRS)

    Grody, N. C.

    1973-01-01

    Linear and nonlinear responses of a magnetoplasma resulting from inhomogeneity in the background plasma density are studied. The plasma response to an impulse electric field was measured and the results are compared with the theory of an inhomogeneous cold plasma. Impulse responses were recorded for the different plasma densities, static magnetic fields, and neutral pressures and generally appeared as modulated, damped oscillations. The frequency spectra of the waveforms consisted of two separated resonance peaks. For weak excitation, the results correlate with the linear theory of a cold, inhomogeneous, cylindrical magnetoplasma. The damping mechanism is identified with that of phase mixing due to inhomogeneity in plasma density. With increasing excitation voltage, the nonlinear impulse responses display stronger damping and a small increase in the frequency of oscillation.

  9. Spatio-Temporal Dynamics of Impulse Responses to Figure Motion in Optic Flow Neurons

    PubMed Central

    Lee, Yu-Jen; Jönsson, H. Olof; Nordström, Karin

    2015-01-01

    White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response. PMID:25955416

  10. Anomalous signed passive fathometer impulse response when using adaptive beam forming (L).

    PubMed

    Harrison, Chris H

    2009-06-01

    The impulse response of the seabed can be extracted from sea surface ambient noise by cross-correlating the time series from an upward and a downward steered beam. When the steering for each beam is standard minimum variance adaptive beam forming it has been found that the impulse response for significant echoes appears to have the same amplitude but opposite sign. A mathematical explanation is offered for this strange phenomenon. Crucial contributing factors are that the cross-spectral density matrix for the vertical array typically consists of the sum of a Toeplitz matrix and a much weaker Hankel matrix and that it is ill-conditioned.

  11. A Conditioned Response as a Measure of Impulsive-Compulsive Behaviours in Parkinson's Disease

    PubMed Central

    McGregor, Sarah; Kotschet, Katya; Griffiths, Robert I.; Horne, Malcolm

    2014-01-01

    Objectives Parkinson's Disease patients wore a device on the wrist that gave reminders to take levodopa and also measured bradykinesia and dyskinesia. Consumption of medications was acknowledged by placing the thumb on the device. Some patients performed this acknowledgement repeatedly and unconsciously. This study examines whether this behaviour reflected increased impulsivity. Methods and Results Twenty five participants were selected because they had i) excess acknowledgements described above or ii) Impulsive-Compulsive Behaviours or iii) neither of these. A blinded assessor applied clinical scales to measure Impulsive-Compulsive Behaviours, cognition, depression, anxiety and apathy. A Response Ratio, representing the number of acknowledgements/number of doses (expressed as a percentage) was tightly correlated with ratings of Impulsive-Compulsive Behaviours (r2 = 0.79) in 19/25 subjects. Some of these patients had dyskinesia, which was higher with extraneous responses than with response indicating medication consumption. Six of the 25 subjects had high Impulsive-Compulsive Behaviour Scores, higher apathy scores, low levels of dyskinesia and normal Response Ratios. Patients without ICB (low RR) also had low dyskinesia levels regardless of the relevance of the response. Conclusion An elevated Response Ratio is a specific measure of a type of ICB where increased incentive salience is attributed to cues by the presence of high striatal dopamine levels, manifested by high levels of dyskinesia. This study also points to a second form of ICBs which occur in the absence of dyskinesia, has normal Response Ratios and higher apathy scores, and may represent prefrontal pathology. PMID:24586685

  12. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  13. Dynamic response of mechanical systems to impulse process stochastic excitations: Markov approach

    NASA Astrophysics Data System (ADS)

    Iwankiewicz, R.

    2016-05-01

    Methods for determination of the response of mechanical dynamic systems to Poisson and non-Poisson impulse process stochastic excitations are presented. Stochastic differential and integro-differential equations of motion are introduced. For systems driven by Poisson impulse process the tools of the theory of non-diffusive Markov processes are used. These are: the generalized Itô’s differential rule which allows to derive the differential equations for response moments and the forward integro-differential Chapman-Kolmogorov equation from which the equation governing the probability density of the response is obtained. The relation of Poisson impulse process problems to the theory of diffusive Markov processes is given. For systems driven by a class of non-Poisson (Erlang renewal) impulse processes an exact conversion of the original non-Markov problem into a Markov one is based on the appended Markov chain corresponding to the introduced auxiliary pure jump stochastic process. The derivation of the set of integro-differential equations for response probability density and also a moment equations technique are based on the forward integro-differential Chapman-Kolmogorov equation. An illustrating numerical example is also included.

  14. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  15. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity

    PubMed Central

    Yamamuro, Kazuhiko; Kimoto, Sohei; Iida, Junzo; Kishimoto, Naoko; Nakanishi, Yoko; Tanaka, Shohei; Ota, Toyosaku; Makinodan, Manabu; Kishimoto, Toshifumi

    2016-01-01

    Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS) is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP). Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11) to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP. PMID:27050450

  16. Derivation of a new parametric impulse response matrix utilized for nodal wind load identification by response measurement.

    PubMed

    Kazemi Amiri, A; Bucher, C

    2015-05-26

    This paper provides new formulations to derive the impulse response matrix, which is then used in the problem of load identification with application to wind induced vibration. The applied loads are inversely identified based on the measured structural responses by solving the associated discrete ill-posed problem. To this end - based on an existing parametric structural model - the impulse response functions of acceleration, velocity and displacement have been computed. Time discretization of convolution integral has been implemented according to an existing and a newly proposed procedure, which differ in the numerical integration methods. The former was evaluated based on a constant rectangular approximation of the sampled data and impulse response function in a number of steps corresponding to the sampling rate, while the latter interpolates the sampled data in an arbitrary number of sub-steps and then integrates over the sub-steps and steps. The identification procedure was implemented for a simulation example as well as an experimental laboratory case. The ill-conditioning of the impulse response matrix made it necessary to use Tikhonov regularization to recover the applied force from noise polluted measured response. The optimal regularization parameter has been obtained by L-curve and GCV method. The results of simulation represent good agreement between identified and measured force. In the experiments the identification results based on the measured displacement as well as acceleration are provided. Further it is shown that the accuracy of experimentally identified load depends on the sensitivity of measurement instruments over the different frequency ranges.

  17. Comparison of New Methods for Assessing Community Response to High Energy Impulsive Sounds

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1996-01-01

    The latest CHABA Working Group to have reviewed published information about the effects of high energy impulsive sounds (such as sonic booms) on communities has recommended abandonment of the dosage-response relationship identified by its predecessor in favor of two alternate prediction method. Both of the new assessment methods continue to rely on C-weighted measurements of impulsive sounds One of the two assessment methods retains the standard assumptions of the 'equal energy hypothesis' (the notion that annoyance is governed simply by the product of level, duration, and number noise events), and further assumes that the rate of growth of the prevalence of annoyance is proportional to the rate of growth of loudness with level. The other assessment method, however, assumes a level dependent (non-equal energy) summation of the C-weighted sound exposure levels of individual impulsive events. Since predictions of the second method are distribution-dependent, they are not readily represents graphically in the form of a single dosage-response function. The effects on annoyance predictions of variance in distributions of CSEL values of impulsive sounds are explored in this presentation.

  18. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats.

    PubMed

    Lazzaretti, Camilla; Kincheski, Grasielle Clotildes; Pandolfo, Pablo; Krolow, Rachel; Toniazzo, Ana Paula; Arcego, Danusa Mar; Couto-Pereira, Natividade de Sá; Zeidán-Chuliá, Fares; Galvalisi, Martin; Costa, Gustavo; Scorza, Cecilia; Souza, Tadeu Mello E; Dalmaz, Carla

    2016-03-01

    Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood.

  19. Discrete-time linear and nonlinear aerodynamic impulse responses for efficient CFD analyses

    NASA Astrophysics Data System (ADS)

    Silva, Walter Arturo

    This dissertation discusses the mathematical existence and the numerical identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This will establish the aerodynamic discrete-time impulse response function as the most fundamental and computationally efficient aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this dissertation help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. Nonlinear aerodynamic impulse responses are identified using the Volterra theory of nonlinear systems. The theory is described and a discrete-time kernel identification technique is presented. The kernel identification technique is applied to a simple nonlinear circuit for illustrative purposes. The method is then applied to the nonlinear viscous Burger's equation as an example of an application to a simple CFD model. Finally, the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear

  20. Finite Post Synaptic Potentials Cause a Fast Neuronal Response

    PubMed Central

    Helias, Moritz; Deger, Moritz; Rotter, Stefan; Diesmann, Markus

    2011-01-01

    A generic property of the communication between neurons is the exchange of pulses at discrete time points, the action potentials. However, the prevalent theory of spiking neuronal networks of integrate-and-fire model neurons relies on two assumptions: the superposition of many afferent synaptic impulses is approximated by Gaussian white noise, equivalent to a vanishing magnitude of the synaptic impulses, and the transfer of time varying signals by neurons is assessable by linearization. Going beyond both approximations, we find that in the presence of synaptic impulses the response to transient inputs differs qualitatively from previous predictions. It is instantaneous rather than exhibiting low-pass characteristics, depends non-linearly on the amplitude of the impulse, is asymmetric for excitation and inhibition and is promoted by a characteristic level of synaptic background noise. These findings resolve contradictions between the earlier theory and experimental observations. Here we review the recent theoretical progress that enabled these insights. We explain why the membrane potential near threshold is sensitive to properties of the afferent noise and show how this shapes the neural response. A further extension of the theory to time evolution in discrete steps quantifies simulation artifacts and yields improved methods to cross check results. PMID:21427776

  1. Does Impulsiveness Moderate Response to Financial Incentives for Smoking Cessation Among Pregnant and Newly Postpartum Women?

    PubMed Central

    Lopez, Alexa A.; Skelly, Joan M.; White, Thomas J.; Higgins, Stephen T.

    2015-01-01

    We examined whether impulsiveness moderates response to financial incentives for cessation among pregnant smokers. All participants were randomized to either a condition wherein financial incentives were delivered contingent on smoking abstinence or to a control condition wherein incentives were delivered independent of smoking status. The study was conducted in two steps: First, we examined associations between baseline impulsiveness scores and abstinence at late pregnancy and 24-weeks postpartum as part of a planned prospective study of this topic using data from a recently completed, randomized controlled clinical trial (N = 118). Next, to increase statistical power, we conducted a second analysis collapsing results across that recent trial and two prior trials involving the same contingent incentive and control conditions (N = 236). Impulsivity was assessed using a delay discounting (DD) of hypothetical monetary rewards task in all three trials and Barratt Impulsiveness Scale (BIS) in the most recent trial. Neither DD nor BIS predicted antepartum or postpartum smoking status in the single or combined trials. Receiving abstinence-contingent incentives, lower baseline smoking rate (cigs/day), and a history of quit attempts pre-pregnancy predicted greater odds of antepartum abstinence across the single and combined trials. No variable predicted postpartum abstinence across the single and combined trials, although a history of antepartum quit attempts and receiving abstinence-contingent incentives predicted in the single and combined trials, respectively. Overall, this study provides no evidence that impulsiveness as assessed by DD or BIS moderates response to this treatment approach while underscoring a substantial association of smoking rate and prior quit attempts with abstinence across the contingent incentives and control treatment conditions. PMID:25730417

  2. Association of COMT and SLC6A3 polymorphisms with impulsivity, response inhibition and brain function.

    PubMed

    Kasparbauer, Anna-Maria; Merten, Natascha; Aichert, Désirée S; Wöstmann, Nicola; Meindl, Thomas; Rujescu, Dan; Ettinger, Ulrich

    2015-10-01

    Evidence of the genetic correlates of inhibitory control is scant. Two previously studied dopamine-related polymorphisms, COMT rs4680 and the SLC6A3 3' UTR 40-base-pair VNTR (rs28363170), have been associated with response inhibition, however with inconsistent findings. Here, we investigated the influence of these two polymorphisms in a large healthy adult sample (N = 515) on a response inhibition battery including the antisaccade, stop-signal, go/no-go and Stroop tasks as well as a psychometric measure of impulsivity (Barratt Impulsiveness Scale) (Experiment 1). Additionally, a subsample (N = 144) was studied while performing the go/no-go, stop-signal and antisaccade tasks in 3T fMRI (Experiment 2). In Experiment 1, we did not find any significant associations of COMT or SLC6A3 with inhibitory performance or impulsivity. In Experiment 2, no association of COMT with BOLD was found. However, there were consistent main effects of SLC6A3 genotype in all inhibitory contrasts: Homozygosity of the 10R allele was associated with greater fronto-striatal BOLD response than genotypes with at least one 9R allele. These findings are consistent with meta-analyses showing that the 10R allele is associated with reduced striatal dopamine transporter expression, which in animal studies has been found to lead to increased extracellular dopamine levels. Our study thus supports the involvement of striatal dopamine in the neural mechanisms of cognitive control, in particular response inhibition.

  3. Relationships between trait impulsivity and cognitive control: the effect of attention switching on response inhibition and conflict resolution.

    PubMed

    Leshem, Rotem

    2016-02-01

    This study examined the relationship between trait impulsivity and cognitive control, as measured by the Barratt Impulsiveness Scale (BIS) and a focused attention dichotic listening to words task, respectively. In the task, attention was manipulated in two attention conditions differing in their cognitive control demands: one in which attention was directed to one ear at a time for a whole block of trials (blocked condition) and another in which attention was switched pseudo-randomly between the two ears from trial to trial (mixed condition). Results showed that high impulsivity participants exhibited more false alarm and intrusion errors as well as a lesser ability to distinguish between stimuli in the mixed condition, as compared to low impulsivity participants. In the blocked condition, the performance levels of the two groups were comparable with respect to these measures. In addition, total BIS scores were correlated with intrusions and laterality index in the mixed but not the blocked condition. The findings suggest that high impulsivity individuals may be less prone to attentional difficulties when cognitive load is relatively low. In contrast, when attention switching is involved, high impulsivity is associated with greater difficulty in inhibiting responses and resolving cognitive conflict than is low impulsivity, as reflected in error-prone information processing. The conclusion is that trait impulsivity in a non-clinical population is manifested more strongly when attention switching is required than during maintained attention. This may have important implications for the conceptualization and treatment of impulsivity in both non-clinical and clinical populations.

  4. Impulse responses of automaticity in the Purkinje fiber.

    PubMed

    Chay, T R; Lee, Y S

    1984-04-01

    We examined the effects of brief current pulses on the pacemaker oscillations of the Purkinje fiber using the model of McAllister , Noble, and Tsien (1975. J. Physiol. [Lond.]. 251:1-57). This model was used to construct phase-response curves for brief electric stimuli to find "black holes," where rhythmic activity of the Purkinje fiber ceases. In our computer simulation, a brief current stimulus of the right magnitude and timing annihilated oscillations in membrane potential. The model also revealed a sequence of alternating periodic and chaotic regimes as the strength of a steady bias current is varied. We compared the results of our computer simulations with experimental work on Purkinje fibers and pointed out the importance of modeling results of this kind for understanding cardiac arrhythmias.

  5. Tomographic reconstruction of indoor spatial temperature distributions using room impulse responses

    NASA Astrophysics Data System (ADS)

    Bleisteiner, M.; Barth, M.; Raabe, A.

    2016-03-01

    Temperature can be estimated by acoustic travel time measurements along known sound paths. By using a multitude of known sound paths in combination with a tomographic reconstruction technique a spatial and temporal resolution of the temperature field can be achieved. Based on it, this article focuses on an experimental method in order to determine the spatially differentiated development of room temperature with only one loudspeaker and one microphone. The theory of geometrical room acoustics is being used to identify sound paths under consideration of reflections. The travel time along a specific sound path is derived from the room impulse response. Temporal variances in room impulse response can be attributed primarily to a change in air temperature and airflow. It is shown that in the absence of airflow a 3D acoustic monitoring of the room temperature can be realized with a fairly limited use of hardware.

  6. Quality of sound in large rooms: Alteration of room impulse responses

    NASA Astrophysics Data System (ADS)

    Linusson, Per

    1993-02-01

    Psychoacoustic testing of Room Impulse Responses (RIR), using editing techniques and listening tests with help of auralization is considered. Using these techniques the question of when the reverberation tail is subjectively diffuse was studied. This question is of great interest, for example for auralization techniques. Binaural Room Impulse Responses (BRIR's) were measured in two positions in a concert hall. Their respective reverberation tails were substituted by editing. Listening tests indicated that even with a connection time of 400 ms, some test persons could consistently detect differences with speech as source signal. With music (piano) as source signal the 'limit' of the diffuse part was somewhere between 200 to 400 ms. In the second listening test an individual reflection was substituted with a diffuse one by editing. Three types of diffuse reflections were used. The results indicated that it is possible to improve the subjective quality with a diffuse reflection. Furthermore the character of the diffuse reflection is significant.

  7. Impulse Response Estimation for Spatial Resolution Enhancement in Ultrasonic NDE Imaging

    SciTech Connect

    Clark, G A

    2004-06-25

    This report describes a signal processing algorithm and MATLAB software for improving spatial resolution in ultrasonic nondestructive evaluation (NDE) imaging of materials. Given a measured reflection signal and an associated reference signal, the algorithm produces an optimal least-squares estimate of the impulse response of the material under test. This estimated impulse response, when used in place of the raw reflection signal, enhances the spatial resolution of the ultrasonic measurements by removing distortion caused by the limited-bandwidth transducers and the materials under test. The theory behind the processing algorithms is briefly presented, while the reader is referred to the bibliography for details. The main focus of the report is to describe how to use the MATLAB software. Two processing examples using actual ultrasonic measurements are provided for tutorial purposes.

  8. Free segmentation in rendered 3D images through synthetic impulse response in integral imaging

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.

    2016-06-01

    Integral Imaging is a technique that has the capability of providing not only the spatial, but also the angular information of three-dimensional (3D) scenes. Some important applications are the 3D display and digital post-processing as for example, depth-reconstruction from integral images. In this contribution we propose a new reconstruction method that takes into account the integral image and a simplified version of the impulse response function (IRF) of the integral imaging (InI) system to perform a two-dimensional (2D) deconvolution. The IRF of an InI system has a periodic structure that depends directly on the axial position of the object. Considering different periods of the IRFs we recover by deconvolution the depth information of the 3D scene. An advantage of our method is that it is possible to obtain nonconventional reconstructions by considering alternative synthetic impulse responses. Our experiments show the feasibility of the proposed method.

  9. Scattering Impulse Response Synthesis Using Random Noise Illumination: Initial Concept Evaluation.

    DTIC Science & Technology

    1988-03-01

    CONCEPT . 2 C. OVERVIEWV OF THESIS.....................................5 11. TEORY OF NOIS.ESOLRtCE IMP1ULSIE RLS1IONSE MIE--ASURL.NIEN F .7 A...INTRODUCTION A. OVERVIEW The objective of this research is to demonstrate the viability of performing high- resolution impulse response scattering... marketing of this technology. The second advan- taue is related to the use of noise-source illunlination for tactical and strategic radar applications

  10. The Right Superior Frontal Gyrus and Individual Variation in Proactive Control of Impulsive Response.

    PubMed

    Hu, Sien; Ide, Jaime S; Zhang, Sheng; Li, Chiang-Shan R

    2016-12-14

    A hallmark of cognitive control is the ability to rein in impulsive responses. Previously, we used a Bayesian model to describe trial-by-trial likelihood of the stop signal or p(Stop) and related regional activations to p(Stop) to response slowing in a stop signal task. Here, we characterized the regional processes of conflict anticipation in association with intersubject variation in impulse control in 114 young adults. We computed the stop signal reaction time (SSRT) and a measure of motor urgency, indexed by the reaction time (RT) difference between go and stop error trials or "GoRT - SERT," where GoRT is the go trial RT and SERT is the stop error RT. Motor urgency and SSRT were positively correlated across subjects. A linear regression identified regional activations to p(Stop), each in correlation with SSRT and motor urgency. We hypothesized that shared neural activities mediate the correlation between motor urgency and SSRT in proactive control of impulsivity. Activation of the ventromedial prefrontal cortex, posterior cingulate cortex and right superior frontal gyrus (SFG) during conflict anticipation correlated negatively with the SSRT. Activation of the right SFG also correlated negatively with GoRT - SERT. Therefore, activation of the right SFG was associated with more efficient response inhibition and less motor urgency. A mediation analysis showed that right SFG activation to conflict anticipation mediates the correlation between SSRT and motor urgency bidirectionally. The current results highlight a specific role of the right SFG in translating conflict anticipation to the control of impulsive response, which is consistent with earlier studies suggesting its function in action restraint.

  11. Rod-cone interactions and the temporal impulse response of the cone pathway

    PubMed Central

    Zele, Andrew J.; Cao, Dingcai; Pokorny, Joel

    2008-01-01

    Dark-adapted rods suppress cone-mediated flicker detection. This study evaluates the effect that rod activity has on cone temporal processing by investigating whether rod mediated suppression changes the cone pathway impulse response function, regardless of the form of the temporal signal. Stimuli were generated with a 2-channel photostimulator that has four primaries for the central field and four primaries for the surround. Cone pathway temporal impulse response functions were derived from temporal contrast sensitivity data with periodic stimuli, and from two-pulse discrimination data in which pairs of briefly pulsed stimuli were presented successively at a series of stimulus onset asynchronies. Dark-adapted rods altered the amplitude and timing of cone pathway temporal impulse response functions, irrespective of whether they were derived from measurements with temporally periodic stimuli or in a brief presentation temporal resolution task with pulsed stimuli. Rod-cone interactions are a fundamental operation in visual temporal processing under mesopic light levels, acting to decrease the temporal bandwidth of the visual system. PMID:18486960

  12. A new algorithm for spatial impulse response of rectangular planar transducers.

    PubMed

    Cheng, Jiqi; Lu, Jian-Yu; Lin, Wei; Qin, Yi-Xian

    2011-02-01

    Previous solutions for spatial impulse responses of rectangular planar transducers require either approximations or complex geometrical considerations. This paper describes a new, simplified and exact solution using only trigonometric functions and simple set operations. This solution, which can be numerically implemented with a straightforward algorithm, is an exact implementation of the Rayleigh integral without any far field or paraxial approximation. Additionally, a nonlinear relationship was also established for spatial impulse responses from two field points which share the same projection point on the transducer surface plane. By incorporating this relationship in the algorithm, the computational efficiency of spatial impulse responses and continuous fields is improved about 20-folds and 14-folds, respectively. This algorithm has practical applications in designing l-D linear/phased arrays, 1.5-D arrays and 2-D arrays, as demonstrated through numerical simulations with array transducers. Experiments were also conducted to verify the new solution and results show that the algorithm is both accurate and efficient. The application of this method may include development of ultrasound imaging system for hard and soft tissue nondestructive assessment.

  13. Multi-input Multi-output System Identification Using Impulse Responses

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Isao; Kasai, Tokio; Igawa, Hirotaka

    This paper presents a new algorithm for multi-input multi-output (MIMO) system identification in the time domain using impulse responses. The algorithm is suitable for the on-orbit system identification of spacecraft using the responses to thruster impulse inputs measured by typical satellite on-board sensors. The Eigensystem Realization Algorithm (ERA) realizes a multi-input multi-output (MIMO) system using asynchronous impulse responses in the time domain. Our new method identifies the input and output matrices of a MIMO collocated system by applying a recursive least-squares iteration scheme to refine the matrices obtained from conventional ERA. In this manner, the input matrix is considered to be constructed by the mode shape vectors and the actuator sensitivity matrix. A numerical simulation of an actual spacecraft, the Engineering Test Satellite-VI (ETS-VI), is performed to verify the algorithm. The nominal dynamics model of ETS-VI, which has six rigid body modes and fourteen elastic modes due to large flexible solar panels, is excited by six body-mounted thrusters, and the translational velocities and attitude rates are measured simultaneously. Our method successfully identifies all of the fourteen natural frequencies, damping ratios and mode shape vectors, confirming its validity.

  14. A new algorithm for spatial impulse response of rectangular planar transducers

    PubMed Central

    Cheng, Jiqi; Lu, Jian-yu; Lin, Wei; Qin, Yi-Xian

    2010-01-01

    Previous solutions for spatial impulse responses of rectangular planar transducers require either approximations or complex geometrical considerations. This paper describes a new, simplified and exact solution using only trigonometric functions and simple set operations. This solution, which can be numerically implemented with a straightforward algorithm, is an exact implementation of the Rayleigh integral without any far field or paraxial approximation. Additionally, a nonlinear relationship was also established for spatial impulse responses from two field points which share the same projection point on the transducer surface plane. By incorporating this relationship in the algorithm, the computational efficiency of spatial impulse responses and continuous fields is improved about 20 folds and 14 folds, respectively. This algorithm has practical applications in designing 1-D linear/phased arrays, 1.5-D arrays and 2-D arrays, as demonstrated through numerical simulations with array transducers. Experiments were also conducted to verify the new solution and results show that the algorithm is both accurate and efficient. The application of this method may include development of ultrasound imaging system for hard and soft tissue nondestructive assessment. PMID:20863543

  15. Epithelial transport pathways of rat colon determined in vivo by impulse response analysis.

    PubMed

    Edmonds, C J; Smith, T

    1979-11-01

    1. A method is described for studying transepithelial pathways for the movement of different solutes and water. Using the blood and the secretory curves of changing tracer activity following an intravenous bolus, the rate of transit of molecules together with their impulse response functions, which reflect the transfer processes can be examined. 2. Movements of Na, Cl, I, urea and water from blood to lumen across rat colonic epithelium were all consistent with simple diffusion through a paracellular route. Most of the secreted K, however, passed through a K selective route associated with a significant K epithelial pool. 3. Adding cyanide to the luminal solution caused a reversible fall of transepithelial potential difference associated with changes in the impulse response functions of water, urea and K indicating reduction of the restriction on diffusion. Cellular K content was unaffected. 4. K entered the bulk of the epithelial cellular K almost exclusively from the blood side. A small epithelial K pool, identified by studies with a miniature GM counter, had kinetic characteristics like those of the K selective pathway observed in the studies of impulse response functions.

  16. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners.

    PubMed

    Manzi, Vincenzo; Castagna, Carlo; Padua, Elvira; Lombardo, Mauro; D'Ottavio, Stefano; Massaro, Michele; Volterrani, Maurizio; Iellamo, Ferdinando

    2009-06-01

    In athletes, exercise training induces autonomic nervous system (ANS) adaptations that could be used to monitor training status. However, the relationship between training and ANS in athletes has been investigated without regard for individual training loads. We tested the hypothesis that in long-distance athletes, changes in ANS parameters are dose-response related to individual volume/intensity training load and could predict athletic performance. A spectral analysis of heart rate (HR), systolic arterial pressure variability, and baroreflex sensitivity by the sequences technique was investigated in eight recreational athletes during a 6-mo training period culminating with a marathon. Individualized training load responses were monitored by a modified training impulse (TRIMP(i)) method, which was determined in each athlete using the individual HR and lactate profiling determined during a treadmill test. Monthly TRIMP(i) steadily increased during the training period. All the ANS parameters were significantly and very highly correlated to the dose of exercise with a second-order regression model (r(2) ranged from 0.90 to 0.99; P < 0.001). Variance, high-frequency oscillations of HR variability (HRV), and baroreflex sensitivity resembled a bell-shaped curve with a minimum at the highest TRIMP(i), whereas low-frequency oscillations of HR and systolic arterial pressure variability and the low frequency (LF)-to-high frequency ratio resembled an U-shaped curve with a maximum at the highest TRIMP(i). The LF component of HRV assessed at the last recording session was significantly and inversely correlated to the time needed to complete the nearing marathon. These results suggest that in recreational athletes, ANS adaptations to exercise training are dose related on an individual basis, showing a progressive shift toward a sympathetic predominance, and that LF oscillations in HRV at peak training load could predict athletic achievement in this athlete population.

  17. Quantifying viscoelasticity of gelatin phantoms by measuring impulse response using compact optical sensors.

    PubMed

    Qiang, Bo; Greenleaf, James; Zhang, Xiaoming

    2010-07-01

    Tissue elastography measures tissue mechanical properties, which contain important physiological information and help medical diagnosis. Instead of tracking shear wave propagation inside tissue as do magnetic resonance elastography and ultrasound based techniques, this study focuses on monitoring the propagation of surface Raleigh waves stimulated by short impulses. The method is noncontact, noninvasive, and low cost and has a potential for clinical applications. A customized device designed to measure surface wave propagation is constructed based on a laser displacement sensor (LDS). Experiments are carried out on two porcine skin gelatin phantoms of different concentrations. For each phantom, the phase velocities of specific frequencies are extracted using a cross-spectrum method and then the material elasticity and viscosity are found by fitting the phase velocities with the Voigt's model. The results suggest that measuring viscoelasticity by monitoring the response to a surface impulse is an efficient method because of the richness of frequency content of impulse responses. The results are validated with a standard continuous wave (CW) method.

  18. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  19. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  20. Comparison of methods of predicting community response to impulsive and nonimpulsive noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-01-01

    Several scientific, regulatory, and policy-coordinating bodies have developed methods for predicting community response to sonic booms. The best known of these is the dosage-response relationship of Working Group 84 of the National Academy of Science's Committee on Hearing, Bioacoustics and Biomechanics. This dosage-response relationship between C-weighted DayNight Average Sound Level and the prevalence of annoyance with high energy impulsive sounds was derived from limited amounts of information about community response to regular, prolonged, and expected exposure to artillery and sonic booms. U.S. Army Regulation 201 adapts this approach to predictions of the acceptability of impulsive noise exposure in communities. This regulation infers equivalent degrees of effect with respect to a well known dosage-response relationship for general (nonimpulsive) transportation noise. Differences in prevalence of annoyance predicted by various relationships lead to different predictions of the compatibility of land uses with sonic boom exposure. An examination of these differences makes apparent several unresolved issues in current practice for predicting and interpreting the prevalence of annoyance due to sonic boom exposure.

  1. Convergence of finite difference transient response computations for thin shells.

    NASA Technical Reports Server (NTRS)

    Sobel, L. H.; Geers, T. L.

    1973-01-01

    Numerical studies pertaining to the limits of applicability of the finite difference method in the solution of linear transient shell response problems are performed, and a computational procedure for the use of the method is recommended. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. This is not a serious limitation in view of natural constraints imposed by the extension of Saint Venant's principle to transient response problems. It is also found that the short wavelength limitations of thin shell (Bernoulli-Euler) theory create significant convergence difficulties in computed response to certain types of transverse excitations. These difficulties may be overcome, however, through proper selection of finite difference mesh dimensions and temporal smoothing of the excitation.

  2. Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2011-06-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  3. Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  4. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    PubMed

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized.

  5. Auditory Responses in the Barn Owl's Nucleus Laminaris to Clicks: Impulse Response and Signal Analysis of Neurophonic Potential

    PubMed Central

    Wagner, Hermann; Brill, Sandra; Kempter, Richard; Carr, Catherine E.

    2009-01-01

    We used acoustic clicks to study the impulse response of the neurophonic potential in the barn owl's nucleus laminaris. Clicks evoked a complex oscillatory neural response with a component that reflected the best frequency measured with tonal stimuli. The envelope of this component was obtained from the analytic signal created using the Hilbert transform. The time courses of the envelope and carrier waveforms were characterized by fitting them with filters. The envelope was better fitted with a Gaussian than with the envelope of a gamma-tone function. The carrier was better fitted with a frequency glide than with a constant instantaneous frequency. The change of the instantaneous frequency with time was better fitted with a linear fit than with a saturating nonlinearity. Frequency glides had not been observed in the bird's auditory system before. The glides were similar to those observed in the mammalian auditory nerve. Response amplitude, group delay, frequency, and phase depended in a systematic way on click level. In most cases, response amplitude decreased linearly as stimulus level decreased, while group delay, phase, and frequency increased linearly as level decreased. Thus the impulse response of the neurophonic potential in the nucleus laminaris of barn owls reflects many characteristics also observed in responses of the basilar membrane and auditory nerve in mammals. PMID:19535487

  6. Impulse responses of visible phototubes used in National Ignition Facility neutron time of flight diagnostics

    NASA Astrophysics Data System (ADS)

    Datte, P. S.; Eckart, M.; Moore, A. S.; Thompson, W.; Vergel de Dios, G.

    2016-11-01

    Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 × 1015 these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Ω load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and ˜2% rms for the square root of the second central moment with ˜500 ps value. Detailed results are presented for three different diode configurations.

  7. Application of damage detection methods using passive reconstruction of impulse response functions.

    PubMed

    Tippmann, J D; Zhu, X; Lanza di Scalea, F

    2015-02-28

    In structural health monitoring (SHM), using only the existing noise has long been an attractive goal. The advances in understanding cross-correlations in ambient noise in the past decade, as well as new understanding in damage indication and other advanced signal processing methods, have continued to drive new research into passive SHM systems. Because passive systems take advantage of the existing noise mechanisms in a structure, offshore wind turbines are a particularly attractive application due to the noise created from the various aerodynamic and wave loading conditions. Two damage detection methods using a passively reconstructed impulse response function, or Green's function, are presented. Damage detection is first studied using the reciprocity of the impulse response functions, where damage introduces new nonlinearities that break down the similarity in the causal and anticausal wave components. Damage detection and localization are then studied using a matched-field processing technique that aims to spatially locate sources that identify a change in the structure. Results from experiments conducted on an aluminium plate and wind turbine blade with simulated damage are also presented.

  8. Impulse responses of visible phototubes used in National Ignition Facility neutron time of flight diagnostics.

    PubMed

    Datte, P S; Eckart, M; Moore, A S; Thompson, W; Vergel de Dios, G

    2016-11-01

    Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 × 10(15) these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Ω load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and ∼2% rms for the square root of the second central moment with ∼500 ps value. Detailed results are presented for three different diode configurations.

  9. Repeated exposure reduces the response to impulsive noise in European seabass.

    PubMed

    Radford, Andrew N; Lèbre, Laurie; Lecaillon, Gilles; Nedelec, Sophie L; Simpson, Stephen D

    2016-10-01

    Human activities have changed the acoustic environment of many terrestrial and aquatic ecosystems around the globe. Mounting evidence indicates that the resulting anthropogenic noise can impact the behaviour and physiology of at least some species in a range of taxa. However, the majority of experimental studies have considered only immediate responses to single, relatively short-term noise events. Repeated exposure to noise could lead to a heightened or lessened response. Here, we conduct two long-term (12 week), laboratory-based exposure experiments with European seabass (Dicentrarchus labrax) to examine how an initial impact of different sound types potentially changes over time. Naïve fish showed elevated ventilation rates, indicating heightened stress, in response to impulsive additional noise (playbacks of recordings of pile-driving and seismic surveys), but not to a more continuous additional noise source (playbacks of recordings of ship passes). However, fish exposed to playbacks of pile-driving or seismic noise for 12 weeks no longer responded with an elevated ventilation rate to the same noise type. Fish exposed long-term to playback of pile-driving noise also no longer responded to short-term playback of seismic noise. The lessened response after repeated exposure, likely driven by increased tolerance or a change in hearing threshold, helps explain why fish that experienced 12 weeks of impulsive noise showed no differences in stress, growth or mortality compared to those reared with exposure to ambient-noise playback. Considering how responses to anthropogenic noise change with repeated exposure is important both when assessing likely fitness consequences and the need for mitigation measures.

  10. fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents

    PubMed Central

    Brown, Matthew R. G.; Benoit, James R. A.; Juhás, Michal; Dametto, Ericson; Tse, Tiffanie T.; MacKay, Marnie; Sen, Bhaskar; Carroll, Alan M.; Hodlevskyy, Oleksandr; Silverstone, Peter H.; Dolcos, Florin; Dursun, Serdar M.; Greenshaw, Andrew J.

    2015-01-01

    High-risk behavior in adolescents is associated with injury, mental health problems, and poor outcomes in later life. Improved understanding of the neurobiology of high-risk behavior and impulsivity shows promise for informing clinical treatment and prevention as well as policy to better address high-risk behavior. We recruited 21 adolescents (age 14–17) with a wide range of high-risk behavior tendencies, including medically high-risk participants recruited from psychiatric clinics. Risk tendencies were assessed using the Adolescent Risk Behavior Screen (ARBS). ARBS risk scores correlated highly (0.78) with impulsivity scores from the Barratt Impulsivity scale (BIS). Participants underwent 4.7 Tesla functional magnetic resonance imaging (fMRI) while performing an emotional Go/NoGo task. This task presented an aversive or neutral distractor image simultaneously with each Go or NoGo stimulus. Risk behavior and impulsivity tendencies exhibited similar but not identical associations with fMRI activation patterns in prefrontal brain regions. We interpret these results as reflecting differences in response inhibition, emotional stimulus processing, and emotion regulation in relation to participant risk behavior tendencies and impulsivity levels. The results are consistent with high impulsivity playing an important role in determining high risk tendencies in this sample containing clinically high-risk adolescents. PMID:26483645

  11. Response inhibition in the parametric go/no-go task and its relation to impulsivity and subclinical psychopathy.

    PubMed

    Weidacker, Kathrin; Whiteford, Seb; Boy, Frederic; Johnston, Stephen J

    2017-03-01

    The current study utilizes the parametric go/no-go task (PGNG), a task that examines changes in inhibitory performance as executive function load increases, to examine the link between psychopathic traits, impulsivity, and response inhibition in a cohort of healthy participants. The results show that as executive function load increased, inhibitory ability decreased. High scores on the Cognitive Complexity subscale of the Barratt Impulsivity Scale (BIS-11) predict poor inhibitory ability in the PGNG. Similarly, high scores on the Psychopathy Personality Inventory-Revised (PPI-R) Blame Externalization subscale predict response inhibition deficits in the PGNG, which loads more on the executive functions than the standard go/no-go task. The remaining BIS-11 as well as PPI-R subscales did not interact with inhibitory performance in the PGNG highlighting the specificity of associations between aspects of personality and impulsivity with inhibitory performance as cognitive load is increased. These data point towards the sensitivity of the PGNG in studying response inhibition in the context of highly impulsive populations and its utility as a measure of impulsivity.

  12. Estimating and removing colorations from the deconvolved impulse response of an underwater acoustic channel.

    PubMed

    Gemba, Kay L; Nosal, Eva-Marie; Reed, Todd R

    2017-01-01

    The impulse response (IR) of an acoustic channel can be obtained by cross-correlating the received signal with the broadband excitation signal in unfavorable noise conditions. However, the deconvolved IR is colored by the IRs of the combined electrical equipment. This letter presents a time domain approach using pre-computed filters to whiten the unknown coloration in order to obtain the channel's time domain waveform. The method is validated with an image-source model and the IR of the channel is recovered with spectral root mean square error of -27 dB. Data results obtained from a pool experiment with non-calibrated equipment yield a whitened IR with standard deviation of 0.9 dB (30-68 kHz band).

  13. The generation of shared cryptographic keys through channel impulse response estimation at 60 GHz.

    SciTech Connect

    Young, Derek P.; Forman, Michael A.; Dowdle, Donald Ryan

    2010-09-01

    Methods to generate private keys based on wireless channel characteristics have been proposed as an alternative to standard key-management schemes. In this work, we discuss past work in the field and offer a generalized scheme for the generation of private keys using uncorrelated channels in multiple domains. Proposed cognitive enhancements measure channel characteristics, to dynamically change transmission and reception parameters as well as estimate private key randomness and expiration times. Finally, results are presented on the implementation of a system for the generation of private keys for cryptographic communications using channel impulse-response estimation at 60 GHz. The testbed is composed of commercial millimeter-wave VubIQ transceivers, laboratory equipment, and software implemented in MATLAB. Novel cognitive enhancements are demonstrated, using channel estimation to dynamically change system parameters and estimate cryptographic key strength. We show for a complex channel that secret key generation can be accomplished on the order of 100 kb/s.

  14. Responses of free-living coastal pelagic fish to impulsive sounds.

    PubMed

    Hawkins, Anthony D; Roberts, Louise; Cheesman, Samuel

    2014-05-01

    The behavior of wild, pelagic fish in response to sound playback was observed with a sonar/echo sounder. Schools of sprat Sprattus sprattus and mackerel Scomber scombrus were examined at a quiet coastal location. The fish were exposed to a short sequence of repeated impulsive sounds, simulating the strikes from a pile driver, at different sound pressure levels. The incidence of behavioral responses increased with increasing sound level. Sprat schools were more likely to disperse and mackerel schools more likely to change depth. The sound pressure levels to which the fish schools responded on 50% of presentations were 163.2 and 163.3 dB re 1 μPa peak-to-peak, and the single strike sound exposure levels were 135.0 and 142.0 dB re 1 μPa(2) s, for sprat and mackerel, respectively, estimated from dose response curves. For sounds leading to mackerel responses, particle velocity levels were also estimated. The method of observation by means of a sonar/echo sounder proved successful in examining the behavior of unrestrained fish exposed to different sound levels. The technique may allow further testing of the relationship between responsiveness, sound level, and sound characteristics for different types of man-made sound, for a variety of fish species under varied conditions.

  15. Development of a fast sampling system for estimation of impulse responses of mobile radio channels

    NASA Astrophysics Data System (ADS)

    Melancon, Pierre

    1994-07-01

    This paper describes the features of measurement equipment developed to measure impulse response estimates of mobile radio channels in less than a ms per measurement. The development of such equipment was required to measure mobile radio channels in realistic operating scenarios, in a normal sized vehicle moving at typical speeds in different environments. Up to speeds of 70 km/hr, the measurement period is short enough to assume the equipment is measuring the same channel during the whole sampling interval. AT the transmitter end of the measurement system, a wideband signal (10 MHz) is produced by modulating a carrier frequency with a 511 bit pseudo random sequence at 5 Mb/s and transmitted through the radio channel. The received signal is down-converted to 70 MHz and demodulated by a complex demodulator. The quadrature baseband signals at the demodulator outputs are then filtered and sampled at high speed by two fast digitizers. During this process, the data are stored in large memory banks to allow a fast sampling rate during a long period of time. Data are transferred to laser disks for further processing in the laboratory. Impulse response of radio channels are estimated by performing a software correlation between a measurement system back to back reference and real time measurements. A minivan was modified to hold the receiver, digitizers, memory banks and the computer. A shaft encoder was attached to its rear left wheel to trigger measurements while moving. Features of the system are discussed along with the effects of data block length, signal to noise ratio, sampling rate, memory size and phase stability on the design of the measurement equipment. Finally, some measurement results are presented and discussed.

  16. Vaporization response of evaporating drops with finite thermal conductivity

    NASA Technical Reports Server (NTRS)

    Agosta, V. D.; Hammer, S. S.

    1975-01-01

    A numerical computing procedure was developed for calculating vaporization histories of evaporating drops in a combustor in which travelling transverse oscillations occurred. The liquid drop was assumed to have a finite thermal conductivity. The system of equations was solved by using a finite difference method programmed for solution on a high speed digital computer. Oscillations in the ratio of vaporization of an array of repetitivity injected drops in the combustor were obtained from summation of individual drop histories. A nonlinear in-phase frequency response factor for the entire vaporization process to oscillations in pressure was evaluated. A nonlinear out-of-phase response factor, in-phase and out-of-phase harmonic response factors, and a Princeton type 'n' and 'tau' were determined. The resulting data was correlated and is presented in graphical format. Qualitative agreement with the open literature is obtained in the behavior of the in-phase response factor. Quantitatively the results of the present finite conductivity spray analysis do not correlate with the results of a single drop model.

  17. Impulsivity in the supermarket. Responses to calorie taxes and subsidies in healthy weight undergraduates.

    PubMed

    Giesen, Janneke C A H; Havermans, Remco C; Nederkoorn, Chantal; Jansen, Anita

    2012-02-01

    The present study investigated the effect of taxing high-energy dense products and subsidizing low-energy dense products on changes in calorie consumption. More specifically, we hypothesized that 'more impulsive' individuals were less influenced by such pricing strategies compared to 'less impulsive' individuals. Contrary to our hypothesis, results showed that 'more impulsive' individuals adjusted their calorie consumption with regard to price changes whereas 'less impulsive' participants were less influenced by price changes. Furthermore, taxing high-energy dense products was more successful in reducing calorie consumption than subsidizing low-energy dense products.

  18. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  19. Differentiating Tower of Hanoi performance: interactive effects of psychopathic tendencies, impulsive response styles, and modality.

    PubMed

    Salnaitis, Christina L; Baker, Crystal A; Holland, James; Welsh, Marilyn

    2011-01-01

    Previous research has demonstrated that performance on the computerized Tower of Hanoi is lower than performance on the manual Tower of Hanoi. The present study was conducted to elucidate potential factors that contribute to performance differences across modalities. Personality characteristics related to psychopathy and impulsive response styles were hypothesized to be correlates of poor performance on the computerized version of the Tower of Hanoi, which is a problem-solving task that requires working memory, planning, and inhibition. Eighty-four college students from a mid-sized university participated. Participants were grouped as low, middle, or high psychopathy based on their total scores on the Psychopathic Personality Inventory. A 2 (Modality) × 3 (Psychopathy) analysis of covariance, controlling for visuospatial working memory, yielded a significant interaction, in which the high psychopathy group did not differ in performance across modality, whereas the low and middle psychopathy groups performed more poorly on the computerized version. Subsequent analyses on reaction time and accuracy for the computerized modality indicated that a reflective, methodical approach to the computerized task was more productively utilized in the low psychopathy group, whereas the fast and accurate approach was more productively utilized in the high psychopathy group. These results suggest that individuals with elevated psychopathic tendencies within a normal population are not necessarily deficient in problem-solving performance on the Tower of Hanoi. Impulsive responding is associated with poor performance in the computerized version of the Tower of Hanoi, irrespective of psychopathic tendencies. Caution should be exercised in interpreting scores on the computerized Tower of Hanoi because the psychometric properties required for comparability with the manual version have not been sufficiently demonstrated.

  20. Current impulse response of thin InP p+-i-n+ diodes using full band structure Monte Carlo method

    NASA Astrophysics Data System (ADS)

    You, A. H.; Cheang, P. L.

    2007-02-01

    A random response time model to compute the statistics of the avalanche buildup time of double-carrier multiplication in avalanche photodiodes (APDs) using full band structure Monte Carlo (FBMC) method is discussed. The effect of feedback impact ionization process and the dead-space effect on random response time are included in order to simulate the speed of APD. The time response of InP p+-i-n+ diodes with the multiplication region of 0.2μm is presented. Finally, the FBMC model is used to calculate the current impulse response of the thin InP p+-i-n+ diodes with multiplication lengths of 0.05 and 0.2μm using Ramo's theorem [Proc. IRE 27, 584 (1939)]. The simulated current impulse response of the FBMC model is compared to the results simulated from a simple Monte Carlo model.

  1. Increased impulsivity in response to food cues after sleep loss in healthy young men

    PubMed Central

    Cedernaes, Jonathan; Brandell, Jon; Ros, Olof; Broman, Jan-Erik; Hogenkamp, Pleunie S; Schiöth, Helgi B; Benedict, Christian

    2014-01-01

    Objective To investigate whether acute total sleep deprivation (TSD) leads to decreased cognitive control when food cues are presented during a task requiring active attention, by assessing the ability to cognitively inhibit prepotent responses. Methods Fourteen males participated in the study on two separate occasions in a randomized, crossover within-subject design: one night of TSD versus normal sleep (8.5 hours). Following each nighttime intervention, hunger ratings and morning fasting plasma glucose concentrations were assessed before performing a go/no-go task. Results Following TSD, participants made significantly more commission errors when they were presented “no-go” food words in the go/no-go task, as compared with their performance following sleep (+56%; P<0.05). In contrast, response time and omission errors to “go” non-food words did not differ between the conditions. Self-reported hunger after TSD was increased without changes in fasting plasma glucose. The increase in hunger did not correlate with the TSD-induced commission errors. Conclusions Our results suggest that TSD impairs cognitive control also in response to food stimuli in healthy young men. Whether such loss of inhibition or impulsiveness is food cue-specific as seen in obesity—thus providing a mechanism through which sleep disturbances may promote obesity development—warrants further investigation. PMID:24839251

  2. Effects of body position on the ventilatory response following an impulse exercise in humans.

    PubMed

    Haouzi, Philippe; Chenuel, Bruno; Chalon, Bernard

    2002-04-01

    The aim of this study was to identify some of the mechanisms that could be involved in blunted ventilatory response (VE) to exercise in the supine (S) position. The contribution of the recruitment of different muscle groups, the activity of the cardiac mechanoreceptors, the level of arterial baroreceptor stimulation, and the hemodynamic effects of gravity on the exercising muscles was analyzed during upright (U) and S exercise. Delayed rise in VE and pulmonary gas exchange following an impulselike change in work rate (supramaximal leg cycling at 240 W for 12 s) was measured in seven healthy subjects and six heart transplant patients both in U and S positions. This approach allows study of the relationship between the rise in VE and O2 uptake (VO2) without the confounding effects of contractions of different muscle groups. These responses were compared with those triggered by an impulselike change in work rate produced by the arms, which were positioned at the same level as the heart in S and U positions to separate effects of gravity on postexercising muscles from those on the rest of the body. Despite superimposable VO2 and CO2 output responses, the delayed VE response after leg exercise was significantly lower in the S posture than in the U position for each control subject and cardiac-transplant patient (-2.58 +/- 0.44 l and -3.52 +/- 1.11 l/min, respectively). In contrast, when impulse exercise was performed with the arms, reduction of ventilatory response in the S posture reached, at best, one-third of the deficit after leg exercise and was always associated with a reduction in VO2 of a similar magnitude. We concluded that reduction in VE response to exercise in the S position is independent of the types (groups) of muscles recruited and is not critically dependent on afferent signals originating from the heart but seems to rely on some of the effects of gravity on postexercising muscles.

  3. Neurophysiological correlates of altered response inhibition in internet gaming disorder and obsessive-compulsive disorder: Perspectives from impulsivity and compulsivity.

    PubMed

    Kim, Minah; Lee, Tak Hyung; Choi, Jung-Seok; Kwak, Yoo Bin; Hwang, Wu Jeong; Kim, Taekwan; Lee, Ji Yoon; Lim, Jae-A; Park, Minkyung; Kim, Yeon Jin; Kim, Sung Nyun; Kim, Dai Jin; Kwon, Jun Soo

    2017-01-30

    Although internet gaming disorder (IGD) and obsessive-compulsive disorder (OCD) represent opposite ends of the impulsivity and compulsivity dimensions, the two disorders share common neurocognitive deficits in response inhibition. However, the similarities and differences in neurophysiological features of altered response inhibition between IGD and OCD have not been investigated sufficiently. In total, 27 patients with IGD, 24 patients with OCD, and 26 healthy control (HC) subjects participated in a Go/NoGo task with electroencephalographic recordings. N2-P3 complexes elicited during Go and NoGo condition were analyzed separately and compared among conditions and groups. NoGo-N2 latency at the central electrode site was delayed in IGD group versus the HC group and correlated positively with the severity of internet game addiction and impulsivity. NoGo-N2 amplitude at the frontal electrode site was smaller in OCD patients than in IGD patients. These findings suggest that prolonged NoGo-N2 latency may serve as a marker of trait impulsivity in IGD and reduced NoGo-N2 amplitude may be a differential neurophysiological feature between OCD from IGD with regard to compulsivity. We report the first differential neurophysiological correlate of the altered response inhibition in IGD and OCD, which may be a candidate biomarker for impulsivity and compulsivity.

  4. Neurophysiological correlates of altered response inhibition in internet gaming disorder and obsessive-compulsive disorder: Perspectives from impulsivity and compulsivity

    PubMed Central

    Kim, Minah; Lee, Tak Hyung; Choi, Jung-Seok; Kwak, Yoo Bin; Hwang, Wu Jeong; Kim, Taekwan; Lee, Ji Yoon; Lim, Jae-A; Park, Minkyung; Kim, Yeon Jin; Kim, Sung Nyun; Kim, Dai Jin; Kwon, Jun Soo

    2017-01-01

    Although internet gaming disorder (IGD) and obsessive-compulsive disorder (OCD) represent opposite ends of the impulsivity and compulsivity dimensions, the two disorders share common neurocognitive deficits in response inhibition. However, the similarities and differences in neurophysiological features of altered response inhibition between IGD and OCD have not been investigated sufficiently. In total, 27 patients with IGD, 24 patients with OCD, and 26 healthy control (HC) subjects participated in a Go/NoGo task with electroencephalographic recordings. N2-P3 complexes elicited during Go and NoGo condition were analyzed separately and compared among conditions and groups. NoGo-N2 latency at the central electrode site was delayed in IGD group versus the HC group and correlated positively with the severity of internet game addiction and impulsivity. NoGo-N2 amplitude at the frontal electrode site was smaller in OCD patients than in IGD patients. These findings suggest that prolonged NoGo-N2 latency may serve as a marker of trait impulsivity in IGD and reduced NoGo-N2 amplitude may be a differential neurophysiological feature between OCD from IGD with regard to compulsivity. We report the first differential neurophysiological correlate of the altered response inhibition in IGD and OCD, which may be a candidate biomarker for impulsivity and compulsivity. PMID:28134318

  5. Subthalamic deep brain stimulation restores automatic response activation and increases susceptibility to impulsive behavior in patients with Parkinson's disease.

    PubMed

    Plessow, Franziska; Fischer, Rico; Volkmann, Jens; Schubert, Torsten

    2014-06-01

    Repeatedly reported deficits of patients with Parkinson's disease (PD) in selecting an appropriate action in the face of competing response alternatives has led to the conclusion of a basal ganglia (BG) involvement in response selection and impulse control. Despite capacious research, it remains elusive how BG dysfunction affects processes subserving goal-directed behavior. Even more problematically, since PD pathology transcends a BG dysfunction due to dopamine depletion in the nigrostriatal DA system (by also comprising alterations in extrastriatal dopamine availability and other neurotransmitter systems), it is not yet clear which aspects of these deficits are actually caused by BG dysfunction. To address this question, the present study investigated 13 off-medication PD patients with bilateral therapeutic subthalamic deep brain stimulation (DBS) both with and without stimulation (DBSON and DBSOFF, respectively) and 26 healthy controls. All participants performed a task that tests the relation between automatic response impulses and goal-directed action selection. Results show an improvement of automatic response activation under DBSON, increasing the susceptibility to impulsive responses, and a reduced impact of automatic response activation under DBSOFF. We argue that the BG determine the efficiency of the regulation and transmission of stimulus-driven bottom-up response activation required for efficient response selection.

  6. Digital high-pass filter deconvolution by means of an infinite impulse response filter

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Wohsmann, J.; Lange, B.; Schönherr, J.; Enghardt, W.; Kaever, P.

    2016-09-01

    In the application of semiconductor detectors, the charge-sensitive amplifier is widely used in front-end electronics. The output signal is shaped by a typical exponential decay. Depending on the feedback network, this type of front-end electronics suffers from the ballistic deficit problem, or an increased rate of pulse pile-ups. Moreover, spectroscopy applications require a correction of the pulse-height, while a shortened pulse-width is desirable for high-throughput applications. For both objectives, digital deconvolution of the exponential decay is convenient. With a general method and the signals of our custom charge-sensitive amplifier for cadmium zinc telluride detectors, we show how the transfer function of an amplifier is adapted to an infinite impulse response (IIR) filter. This paper investigates different design methods for an IIR filter in the discrete-time domain and verifies the obtained filter coefficients with respect to the equivalent continuous-time frequency response. Finally, the exponential decay is shaped to a step-like output signal that is exploited by a forward-looking pulse processing.

  7. Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels

    PubMed Central

    Al-Samman, A. M.; Azmi, M. H.; Rahman, T. A.; Khan, I.; Hindia, M. N.; Fattouh, A.

    2016-01-01

    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk−1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method. PMID:27992445

  8. Extracting the frequencies of the pinna spectral notches in measured head related impulse responses

    NASA Astrophysics Data System (ADS)

    Raykar, Vikas C.; Duraiswami, Ramani; Yegnanarayana, B.

    2005-07-01

    The head related impulse response (HRIR) characterizes the auditory cues created by scattering of sound off a person's anatomy. The experimentally measured HRIR depends on several factors such as reflections from body parts (torso, shoulder, and knees), head diffraction, and reflection/diffraction effects due to the pinna. Structural models (Algazi et al., 2002; Brown and Duda, 1998) seek to establish direct relationships between the features in the HRIR and the anatomy. While there is evidence that particular features in the HRIR can be explained by anthropometry, the creation of such models from experimental data is hampered by the fact that the extraction of the features in the HRIR is not automatic. One of the prominent features observed in the HRIR, and one that has been shown to be important for elevation perception, are the deep spectral notches attributed to the pinna. In this paper we propose a method to robustly extract the frequencies of the pinna spectral notches from the measured HRIR, distinguishing them from other confounding features. The method also extracts the resonances described by Shaw (1997). The techniques are applied to the publicly available CIPIC HRIR database (Algazi et al., 2001c). The extracted notch frequencies are related to the physical dimensions and shape of the pinna.

  9. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  10. Dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loads

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Ye, Nan; Li, Dacheng

    2017-01-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick 3003 H18 aluminum corrugated core and 5A06 face sheets subjected to underwater impulsive loadings are studied experimentally in this paper. The dynamic deformations of plates are captured with the the 3D digital imaging correlation method (DIC). The results affirm the peak deflection during the processes of dynamic deformation and the residual maximum deflection for post-mortem plates show a linear trend with the impulses per areal mass, and show sensitivity to the change of impulses. Inhomogeneous deformation for corrugated sandwich plates are show uneven rather than the perfect parabolic shapes reported in previous studies. With the increasing of intensities for impulsive loadings, the failure modes can be observed more complicated from the initial plastic deformation to debonding and crack. This paper provides valid data to quantify the peak deflection, residual deflection and failure modes as functions of impulses and geometric parameters in the future work.

  11. Optical implementation of a single-layer finite impulse response neural network

    NASA Astrophysics Data System (ADS)

    Silveira, Paulo E. X.; Pati, G. S.; Wagner, Kelvin H.

    2000-05-01

    This paper demonstrates a space integrating optical implementation of a single-layer FIRNN. A scrolling spatial light modulator is used for representing the spatio-temporal input plane, while the weights are implemented by the adaptive grating formation in a photorefractive crystal. Differential heterodyning is used for low-noise bipolar output detection and an active stabilization technique using a lock-in amplifier and a piezo-electric actuator is adopted for long term interferometric stability. Simulations and initial experimental results for adaptive sonar broadband beamforming are presented.

  12. Computer Algorithms for the Design and Implementation of Linear Phase Finite Impulse Response Digital Filters

    DTIC Science & Technology

    1981-07-01

    341—1 * U. 4 4 « * 4 4 « 4 4 4 4 4 4 4 n^jr^oc^ TDh - X)in 4^mru—•o-^x>^- (n^on^O!Vf^JM■\\l’^J’M’^i^u(\\J^M—•—>-< r r r X X X c X r r r X...3310 Willett Drive Laramie, WY 82070 CALSPAN Corp. ATTN: E. Fisher P. 0. Box 400 Buffalo, NY 14225 SSD Dynamics , Inc. ATTN: Dr. M. Soifer 755

  13. Lagrangian and energy forms for retrieving the impulse response of the Earth due to random electromagnetic forcing.

    PubMed

    Slob, Evert; Weiss, Chester J

    2011-08-01

    We distinguish between trivial and nontrivial differences in retrieving the real or imaginary parts of the Green's function. Trivial differences come from different Green's function definitions. The energy and lagrangian forms constitute nontrivial differences. Magnetic noise sources suffice to extract the quasistatic electromagnetic-field Earth impulse response in the lagrangian form. This is of interest for Earth subsurface imaging. A numerical example demonstrates that all source vector components are necessary to extract a single-field vector component.

  14. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers.

    PubMed

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang

    2016-11-08

    A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems.

  15. Database of Multichannel In-Ear and Behind-the-Ear Head-Related and Binaural Room Impulse Responses

    NASA Astrophysics Data System (ADS)

    Kayser, H.; Ewert, S. D.; Anemüller, J.; Rohdenburg, T.; Hohmann, V.; Kollmeier, B.

    2009-12-01

    An eight-channel database of head-related impulse responses (HRIRs) and binaural room impulse responses (BRIRs) is introduced. The impulse responses (IRs) were measured with three-channel behind-the-ear (BTEs) hearing aids and an in-ear microphone at both ears of a human head and torso simulator. The database aims at providing a tool for the evaluation of multichannel hearing aid algorithms in hearing aid research. In addition to the HRIRs derived from measurements in an anechoic chamber, sets of BRIRs for multiple, realistic head and sound-source positions in four natural environments reflecting daily-life communication situations with different reverberation times are provided. For comparison, analytically derived IRs for a rigid acoustic sphere were computed at the multichannel microphone positions of the BTEs and differences to real HRIRs were examined. The scenes' natural acoustic background was also recorded in each of the real-world environments for all eight channels. Overall, the present database allows for a realistic construction of simulated sound fields for hearing instrument research and, consequently, for a realistic evaluation of hearing instrument algorithms.

  16. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers

    PubMed Central

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang

    2016-01-01

    A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799

  17. Measurement of the responses of polyurethane and CONFOR(TM) foams and the development of a system identification technique to estimate polyurethane foam parameters from experimental impulse responses

    NASA Astrophysics Data System (ADS)

    Sundaram, Vaidyanadan

    Flexible polyurethane foam is the main cushioning element used in car seats. Optimization of an occupied seat's static and dynamic behavior requires models of foam that are accurate over a wide range of excitation and pre-compression conditions. Experiments were conducted to measure the response of foam over a wide range of excitation which include slowly varying uniaxial compression tests on a 3 inch cube foam sample, base excitation and impulse excitation test on a foam-mass system. The foam used was the same in all of the experiments, thus obtaining all the responses on the same foam sample which helps eliminate the sample to sample variation. Similar efforts were taken to conduct impulse and base excitation tests on CONFOR(TM) foam to help in future modeling efforts of CONFOR(TM) foam. All the experimental protocols and data pre-processing protocols along with results are presented. Previous researcher developed a linear model for a single-degree of freedom foam-mass system subjected to an impulsive excitation. Free response data from impulse tests on a foam-mass system with different masses was used to identify model parameters at various pre-compression levels (settling points). The free response of the system was modeled as a Prony series (sum of exponentials) whose parameters can be related to the parameters in the foam-mass system model. Models identified from tests at one settling point performed poorly when used to predict the response at other settling points. In this research, a method is described to estimate the parameters of a global model of the foam behavior from data gathered in a series of impulse tests at different settling points. The global model structure includes a nonlinear elastic term and a hereditary viscoelastic term. The model can be used to predict the settling point for each mass used and, by expanding the model about that settling point, local linear models of the response to impulsive excitation can be derived. From this analysis

  18. Instantaneous Impulses.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    2000-01-01

    Describes an experiment that extends Newton's instantaneous-impulse method of orbital analysis to a graphical method of orbit determination. Discusses the experiment's usefulness for teaching both horizontal projectile motion and instantaneous impulse. (WRM)

  19. Eysenck personality inventory: impulsivity/neuroticism and social desirability response set.

    PubMed

    Kumari, V

    1996-02-01

    The Hindi version of the Eysenck Personality Inventory and the Trait scale of the Hindi version of the State-Trait Anxiety Inventory were administered to 945 female Indian students (M age = 20.4 yr., SD = 1.4) to study the personalities of those scoring low and high on the Lie scale, and the association of Lie scale scores in the intercorrelation between Impulsivity and Neuroticism under no motivation to fake good. The group with low scores on the Lie scale had lower scores on Impulsivity and higher scores on Neuroticism and Trait Anxiety than a group scoring high on the Lie scale. No association of Lie scale scores was observed with scores on Extraversion. Lie scale scores were differentially associated with scores on Impulsivity and Neuroticism. The need to consider the Lie scale in addition to other scales in studies of personality is emphasised.

  20. Comparison of several methods for obtaining the time response of linear systems to either a unit impulse or arbitrary input from frequency-response data

    NASA Technical Reports Server (NTRS)

    Donegan, James J; Huss, Carl R

    1957-01-01

    Several methods of obtaining the time response of Linear systems to either a unit impulse or an arbitrary input from frequency-response data are described and compared. Comparisons indicate that all the methods give good accuracy when applied to a second-order system; the main difference is the required computing time. The methods generally classified as inverse Laplace transform methods were found to be most effective in determining the response to a unit impulse from frequency-response data of higher order systems. Some discussion and examples are given of the use of such methods as flight-data-analysis techniques in predicting loads and motions of a flexible aircraft on the basis of simple calculations when the aircraft frequency response is known.

  1. Groundwater recharge and time lag measurement through Vertosols using impulse response functions

    NASA Astrophysics Data System (ADS)

    Hocking, Mark; Kelly, Bryce F. J.

    2016-04-01

    Throughout the world there are many stressed aquifers used to support irrigated agriculture. The Condamine River catchment (southern Queensland, Australia) is one example of a globally significant agricultural region where groundwater use has exceeded recharge over the last 50 years. There is a high dependence on groundwater in this catchment, because yearly rainfall is highly variable, and actual evapotranspiration often exceeds rainfall. To better manage the aquifer there is a need to correctly conceptualise the primary inputs and outputs of the system, and characterise the lags in system response to all forcings. In catchment models it is particularly important to correctly proportion diffuse (areal) rainfall recharge and to account for the lag between rainfall and recharge at the water table. Throughout large portions of the Condamine Catchment, groundwater levels are now 20 or more metres below the ground surface. This study aimed to better quantify the lag between rainfall and recharge at the water table using the predefined impulse response function in continuous time method (PIRFICT; von Asmuth et al., 2002; von Asmuth, 2012). The PIRFICT method was applied to 255 multi-decadal groundwater level data sets throughout the catchment. Inputs into the modelling include rainfall, irrigation deep drainage, stream water level, evapotranspiration, and groundwater extractions. As an independent check the PIRFICT model derived diffuse recharge estimates are compared to point lysimeter and geochemical recharge estimates in the Vertosol soils within this catchment. It is estimated using the PIRFICT method that in the Condamine Catchment between 1990 and 2012, the mean rain-derived groundwater recharge is 4.4 mm/year. Mean groundwater response from rainfall was determined to be 5.3 years: range 188 days to 48 years. The recharge estimates are consistent with both geochemical and lysimeter point measurements of recharge. It is concluded that where extensive groundwater

  2. Structural and acoustic response of a finite stiffened submarine hull

    NASA Astrophysics Data System (ADS)

    Wang, Xian-zhong; Jiang, Chen-ban; Xu, Rui-yang

    2016-12-01

    After borrowing the idea of precise integration method, a precise integration transfer matrix method (PITMM) is proposed by modifying traditional transfer matrix method. The submarine hull can be modeled as joined conicalcylindrical-spherical shells. By considering the effect of the ring-stiffeners, the field transfer matrixes of shells of revolution are obtained accurately by PITMM. After assembling the field transfer matrixes into an entire matrix, the dynamic model is established to solve the dynamic responses of the joined shell. By describing the sound pressure in fluid by modified wave superposition method (MWSM) and collocating points along the meridian line of the joined shell, finally the structural and acoustic responses of a finite stiffened submarine hull can be predicted by coupled PITMM and MWSM. The effectiveness of the present method has been verified by comparing the structural and acoustic responses of the spherical shell with existing results. Furthermore, the effects of the model truncation, stiffness and thickness on the structural and acoustic responses of the submarine hull are studied.

  3. Computation of Schenberg response function by using finite element modelling

    NASA Astrophysics Data System (ADS)

    Frajuca, C.; Bortoli, F. S.; Magalhaes, N. S.

    2016-05-01

    Schenberg is a detector of gravitational waves resonant mass type, with a central frequency of operation of 3200 Hz. Transducers located on the surface of the resonating sphere, according to a distribution half-dodecahedron, are used to monitor a strain amplitude. The development of mechanical impedance matchers that act by increasing the coupling of the transducers with the sphere is a major challenge because of the high frequency and small in size. The objective of this work is to study the Schenberg response function obtained by finite element modeling (FEM). Finnaly, the result is compared with the result of the simplified model for mass spring type system modeling verifying if that is suitable for the determination of sensitivity detector, as the conclusion the both modeling give the same results.

  4. Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Dear, Randall; Carder, Donald A.; Ridgway, Sam H.

    2003-09-01

    A behavioral response paradigm was used to measure underwater hearing thresholds in two California sea lions (Zalophus californianus) before and after exposure to underwater impulses from an arc-gap transducer. Preexposure and postexposure hearing thresholds were compared to determine if the subjects experienced temporary shifts in their masked hearing thresholds (MTTS). Hearing thresholds were measured at 1 and 10 kHz. Exposures consisted of single underwater impulses produced by an arc-gap transducer referred to as a ``pulsed power device'' (PPD). The electrical charge of the PPD was varied from 1.32 to 2.77 kJ; the distance between the subject and the PPD was varied over the range 3.4 to 25 m. No MTTS was observed in either subject at the highest received levels: peak pressures of approximately 6.8 and 14 kPa, rms pressures of approximately 178 and 183 dB re: 1 μPa, and total energy fluxes of 161 and 163 dB re: 1 μPa2s for the two subjects. Behavioral reactions to the tests were observed in both subjects. These reactions primarily consisted of temporary avoidance of the site where exposure to the PPD impulse had previously occurred.

  5. Finite-strain large-deflection elastic-viscoplastic finite-element transient response analysis of structures

    NASA Technical Reports Server (NTRS)

    Rodal, J. J. A.; Witmer, E. A.

    1979-01-01

    A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.

  6. Linking impulse response functions to reaction time: Rod and cone reaction time data and a computational model

    PubMed Central

    Cao, Dingcai; Zele, Andrew J.; Pokorny, Joel

    2007-01-01

    Reaction times for incremental and decremental stimuli were measured at five suprathreshold contrasts for six retinal illuminance levels where rods alone (0.002–0.2 Trolands), rods and cones (2–20 Trolands) or cones alone (200 Trolands) mediated detection. A 4-primary photostimulator allowed independent control of rod or cone excitations. This is the first report of reaction times to isolated rod or cone stimuli at mesopic light levels under the same adaptation conditions. The main findings are: 1) For rods, responses to decrements were faster than increments, but cone reaction times were closely similar. 2) At light levels where both systems were functional, rod reaction times were ~20 ms longer. The data were fitted with a computational model that incorporates rod and cone impulse response functions and a stimulus-dependent neural sensory component that triggers a motor response. Rod and cone impulse response functions were derived from published psychophysical two-pulse threshold data and temporal modulation transfer functions. The model fits were accomplished with a limited number of free parameters: two global parameters to estimate the irreducible minimum reaction time for each receptor type, and one local parameter for each reaction time versus contrast function. This is the first model to provide a neural basis for the variation in reaction time with retinal illuminance, stimulus contrast, stimulus polarity, and receptor class modulated. PMID:17346763

  7. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  8. Extensions of the scattering-object function and the pulser-receiver impulse response in the field II formalism.

    PubMed

    Bloomfield, Philip E

    2005-05-01

    The pulse-echo impulse-response format in the Field II formalism is generalized to separately located transmitter and receiver. To first order in sound velocity and density perturbations, identical results for the scattering-object function are obtained for the Morse-Ingard and the Chernov formulation in both the temporal and frequency domains: f(s)=-[2Delta(c/c)+(Delta(rho/rho))(1-cos(theta))] where for ultrasonic pulse-echo or transmission modality, cos(theta) approximately -1 or +1, respectively.

  9. Vibration Response of Multi Storey Building Using Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  10. Impulse generation by detonation tubes

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding

  11. Fractionating impulsivity: neuropsychiatric implications.

    PubMed

    Dalley, Jeffrey W; Robbins, Trevor W

    2017-02-17

    The ability to make decisions and act quickly without hesitation can be advantageous in many settings. However, when persistently expressed, impulsive decisions and actions are considered risky, maladaptive and symptomatic of such diverse brain disorders as attention-deficit hyperactivity disorder, drug addiction and affective disorders. Over the past decade, rapid progress has been made in the identification of discrete neural networks that underlie different forms of impulsivity - from impaired response inhibition and risky decision making to a profound intolerance of delayed rewards. Herein, we review what is currently known about the neural and psychological mechanisms of impulsivity, and discuss the relevance and application of these new insights to various neuropsychiatric disorders.

  12. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis

    PubMed Central

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-01

    Arterial wave transit time (τw) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τw from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Qtri). The base of the unknown Qtri was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τws obtained using Qtri were compared with those obtained from the measure aortic flow wave (Qm). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τws. The following significant relation was observed (P < 0.0001): τwtriQ = −1.5709 + 1.0604 × τwmQ (r2 = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τw by using a single pressure recording together with the assumed Qtri. PMID:28102355

  13. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis.

    PubMed

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-19

    Arterial wave transit time (τw) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τw from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Q(tri)). The base of the unknown Q(tri) was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τws obtained using Q(tri) were compared with those obtained from the measure aortic flow wave (Q(m)). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τws. The following significant relation was observed (P < 0.0001): τw(triQ) = -1.5709 + 1.0604 × τw(mQ) (r(2) = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τw by using a single pressure recording together with the assumed Q(tri).

  14. Millennial scale system impulse response of polar climates - deconvolution results between δ 18O records from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Reischmann, E.; Yang, X.; Rial, J. A.

    2013-12-01

    Deconvolution has long been used in science to recover real input given a system's impulse response and output. In this study, we applied spectral division deconvolution to select, polar, δ 18O time series to investigate the possible relationship between the climates of the Polar Regions, i.e. the equivalent to a climate system's ';impulse response.' While the records may be the result of nonlinear processes, deconvolution remains an appropriate tool because the two polar climates are synchronized, forming a Hilbert transform pair. In order to compare records, the age models of three Greenland and four Antarctica records have been matched via a Monte Carlo method using the methane-matched pair GRIP and BYRD as a basis for the calculations. For all twelve polar pairs, various deconvolution schemes (Wiener, Damped Least Squares, Tikhonov, Kalman filter) give consistent, quasi-periodic, impulse responses of the system. Multitaper analysis reveals strong, millennia scale, quasi-periodic oscillations in these system responses with a range of 2,500 to 1,000 years. These are not symmetric, as the transfer function from north to south differs from that of south to north. However, the difference is systematic and occurs in the predominant period of the deconvolved signals. Specifically, the north to south transfer function is generally of longer period than the south to north transfer function. High amplitude power peaks at 5.0ky to 1.7ky characterize the former, while the latter contains peaks at mostly short periods, with a range of 2.5ky to 1.0ky. Consistent with many observations, the deconvolved, quasi-periodic, transfer functions share the predominant periodicities found in the data, some of which are likely related to solar forcing (2.5-1.0ky), while some are probably indicative of the internal oscillations of the climate system (1.6-1.4ky). The approximately 1.5 ky transfer function may represent the internal periodicity of the system, perhaps even related to the

  15. Vibration testing based on impulse response excited by pulsed-laser ablation: Measurement of frequency response function with detection-free input

    NASA Astrophysics Data System (ADS)

    Hosoya, Naoki; Kajiwara, Itsuro; Hosokawa, Takahiko

    2012-03-01

    We have developed a non-contact vibration-measurement system that is based on impulse excitation by laser ablation (i.e. laser excitation) to measure the high-frequency-vibration characteristics of objects. The proposed method makes it possible to analyse the frequency response function just by measuring the output (acceleration response) of a test object excited by pulsed-laser ablation. This technique does not require detection of the input force. Firstly, using a rigid block, the pulsed-laser-ablation force is calibrated via Newton's second law. Secondly, an experiment is conducted in which an object whose natural frequency lies in the high-frequency domain is excited by pulsed-laser ablation. The complex frequency spectrum obtained by Fourier transform of the measured response is then divided by the estimated pulsed-laser-ablation force. Finally, because of the error involved in the trigger position of the response with respect to the impulse arrival time, the phase of the complex Fourier transform is modified by accounting for the response dead time. The result is the frequency response function of the object. The effectiveness of the proposed method is demonstrated by a vibration test of an aluminium block.

  16. The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure.

    NASA Astrophysics Data System (ADS)

    Leonovich, Ludmila; Leonovich, Vitaly; Tashchilin, Anatoly

    The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure was revealed at mid-latitudes. The paper presents the study results of the dependence of the observed emissions intensity from the sudden variations in the solar wind and the geomagnetic field. These results show a relationship of the emissions disturbance amplitude with the solar wind speed, as well as with the geomagnetic field variations. We used the zenith photometer optical data, the geomagnetic field and the total electron content variations obtained for the Eastern Siberia region (52(°) N, 103(°) E). The investigation was supported by the RFFI grants № 12-05-00024-а, № 13-05-00733.

  17. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  18. Field-Aligned Current Reconfiguration and Magnetospheric Response to an Impulse in the Interplanetary Magnetic Field BY Component

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Korth, H.; Hairston, M. R.; Baker, J. B.; Heinselman, C. J.

    2013-12-01

    When the interplanetary magnetic field (IMF) is dawnward or duskward, magnetic merging between the IMF and the geomagnetic field occurs near the cusp on the dayside flanks of the magnetosphere. During these intervals, flow channels in the ionosphere with velocities in excess of 2 km/s have been observed, which can deposit large amounts of energy into the high-latitude thermosphere. In this study, we analyze an interval on 5 April 2010 where there was a strong dawnward impulse in the IMF, followed by a gradual decay in IMF magnitude at constant clock angle. Data from the Sondrestrom incoherent scatter radar and the DMSP spacecraft were used to investigate ionospheric convection during this interval, and data from the Active Magnetospheric and Planetary Electrodynamics Response Experiment (AMPERE) were used to investigate the associated Field-Aligned Current (FAC) system. Additionally, data from AMPERE were used to investigate the time response of the dawn-side FAC pair. We find there is a delay of approximately 1.25 hours between the arrival of the dawnward IMF impulse at the magnetopause and strength of the dawnward FAC pair, which is comparable to substorm growth and expansion time scales under southward IMF. Additionally, we find at the time of the peak FAC, there is evidence of a reconfiguring four-sheet FAC system in the morning local time sector of the ionosphere. Additionally, we find an inverse correlation between the dawn FAC strength and both the solar wind Alfvénic Mach number and the SYM-H index. No statistically significant correlation between the FAC strength and the solar wind dynamic pressure was found.

  19. Methodology to determine skull bone and brain responses from ballistic helmet-to-head contact loading using experiments and finite element analysis.

    PubMed

    Pintar, Frank A; Philippens, Mat M G M; Zhang, JiangYue; Yoganandan, Narayan

    2013-11-01

    The objective of the study was to obtain helmet-to-head contact forces from experiments, use a human head finite element model to determine regional responses, and compare outputs to skull fracture and brain injury thresholds. Tests were conducted using two types of helmets (A and B) fitted to a head-form. Seven load cells were used on the head-form back face to measure helmet-to-head contact forces. Projectiles were fired in frontal, left, right, and rear directions. Three tests were conducted with each helmet in each direction. Individual and summated force- and impulse-histories were obtained. Force-histories were inputted to the human head-helmet finite element model. Pulse durations were approximately 4 ms. One-third force and impulse were from the central load cell. 0.2% strain and 40 MPa stress limits were not exceeded for helmet-A. For helmet-B, strains exceeded in left, right, and rear; pressures exceeded in bilateral directions; volume of elements exceeding 0.2% strains correlated with the central load cell forces. For helmet-A, volumes exceeding brain pressure threshold were: 5-93%. All elements crossed the pressure limit for helmet-B. For both helmets, no brain elements exceeded peak principal strain limit. These findings advance our understanding of skull and brain biomechanics from helmet-head contact forces.

  20. A touch screen based Stop Signal Response Task in rhesus monkeys for studying impulsivity associated with chronic cocaine self-administration.

    PubMed

    Liu, Shijing; Heitz, Richard P; Bradberry, Charles W

    2009-02-15

    Among a range of cognitive deficits, human cocaine addicts display increased impulsivity and decreased performance monitoring. In order to establish an animal model that can be used to study the underlying neurobiology of these deficits associated with addiction, we have developed a touch screen based Stop Signal Response Task for rhesus monkeys. This task is essentially identical to the clinically used Stop Signal Task employed for diagnostic and research purposes. In this task, impulsivity is reflected in the amount of time needed to inhibit a response after it has been initiated, the Stop Signal Response Time (SSRT). Performance monitoring is reflected by the slowing of response times following Stop trials (Post-Stop Slowing, PSS). Herein we report on the task structure, the staged methods for training animals to perform the task, and a comparison of performance values for control and cocaine experienced animals. Relative to controls, monkeys that had self-administered cocaine, followed by 18 months abstinence, displayed increased impulsivity (increased SSRT values), and decreased performance monitoring (decreased PSS values). Our results are consistent with human data, and thereby establish an ideal animal model for studying the etiology and underlying neurobiology of cocaine-induced impulse control and performance monitoring deficits.

  1. Finite-element impact response of debonded composite turbine blades

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  2. Low Pretreatment Acoustic Radiation Force Impulse Imaging (ARFI) Values Predict Sustained Virological Response in Antiviral Hepatitis C Virus (HCV) Therapy

    PubMed Central

    Zopf, Steffen; Rösch, Lara; Konturek, Peter C.; Goertz, Ruediger S.; Neurath, Markus F.; Strobel, Deike

    2016-01-01

    Background Non-invasive procedures such as acoustic radiation force impulse imaging (ARFI) shear-wave elastography are currently used for the assessment of liver fibrosis. In the course of chronic hepatitis C, significant liver fibrosis or cirrhosis develops in approximately 25% of patients, which is a negative predictor of antiviral treatment response. Cirrhosis can be prevented by successful virus elimination. In this prospective study, a pretreatment ARFI cutoff value of 1.5 m/s was evaluated in relation to sustained virological response to anti-HCV therapy. Material/Methods In 23 patients with chronic hepatitis C, liver stiffness was examined with ARFI at defined times before and under antiviral triple therapy (peginterferon, ribavirin in combination with a first-generation protease inhibitor, and telaprevir or boceprevir). Patients were stratified into 2 groups based on pretreatment ARFI values (<1.5 m/s and ≥1.5 m/s) for the assessment of virological response. Results The liver stiffness at baseline for all patients was 1.57±0.79 m/s (ARFI median ± standard deviation; margin: 0.81 m/s to 3.45 m/s). At week 4 of triple therapy, patients with low pretreatment ARFI values had higher rates of HCV-RNA negativity (69% vs. 43%), reflecting an early rapid virological response (eRVR). Sustained virological response (SVR) was found in 75% (12/16) of patients with an ARFI value <1.5 m/s and only 57% (4/7) of patients with ARFI value ≥1.5 m/s. Conclusions Patients with chronic hepatitis C and pretreatment ARFI <1.5 m/s showed earlier virus elimination and better response to treatment. PMID:27690214

  3. Preventing (impulsive) errors: Electrophysiological evidence for online inhibitory control over incorrect responses

    PubMed Central

    van den Wildenberg, Wery P. M.; Spieser, Laure; Ridderinkhof, K. Richard

    2016-01-01

    Abstract In a rich environment, with multiple action affordances, selective action inhibition is critical in preventing the execution of inappropriate responses. Here, we studied the origin and the dynamics of incorrect response inhibition and how it can be modulated by task demands. We used EEG in a conflict task where the probability of compatible and incompatible trials was varied. This allowed us to modulate the strength of the prepotent response, and hence to increase the risk of errors, while keeping the probability of the two responses equal. The correct response activation and execution was not affected by compatibility or by probability. In contrast, incorrect response inhibition in the primary motor cortex ipsilateral to the correct response was more pronounced on incompatible trials, especially in the condition where most of the trials were compatible, indicating a modulation of inhibitory strength within the course of the action. Two prefrontal activities, one medial and one lateral, were also observed before the response, and their potential links with the observed inhibitory pattern observed are discussed. PMID:27005956

  4. A responsive finite element method to aid interactive geometric modeling.

    PubMed

    Umetani, N; Takayama, K; Mitani, J; Igarashi, T

    2011-01-01

    Current computer-aided engineering systems use numerical-simulation methods mainly as offline verification tools to reject designs that don't satisfy the required constraints, rather than as tools to guide users toward better designs. However, integrating real-time finite element method (FEM) into interactive geometric modeling can provide user guidance. During interactive editing, real-time feedback from numerical simulation guides users toward an improved design without tedious trial-and-error iterations. Careful reuse of previous computation results, such as meshes and matrices, on the basis of speed and accuracy trade-offs, have helped produce fast FEM analysis during interactive editing. Several 2D example applications and informal user studies show this approach's effectiveness. Such tools could help nonexpert users design objects that satisfy physical constraints and help those users understand the underlying physical properties.

  5. Narrow Band Susceptibility Prediction from the Impulse Scatter Response of a Pseudomissile (Case I),

    DTIC Science & Technology

    1998-04-01

    State University. [2] Comparison of Results Since the prediction of the coupled signal is pertinent to this discussion, the narrow band coupling...1300 to 1500 MHz susceptibility response band. It is not clear based on this method how the probe response was perturbed by the local boundary...scaling property for linear systems dependent upon the local region’s resonant modes, it is appropriate to consider developing better analysis tools and

  6. Adolescent Impulsivity: Findings from a Community Sample

    ERIC Educational Resources Information Center

    d'Acremont, Mathieu; Van der Linden, Martial

    2005-01-01

    Impulsivity is central to several psychopathological states in adolescence. However, there is little consensus concerning the definition of impulsivity and its core dimensions. In response to this lack of consensus, Whiteside and Lynam (2001, "Pers. Individ. Differ." 30, 669-689) have developed the UPPS Impulsive Behavior Scale, which is able to…

  7. From the channel model of an InSb-based superresolution optical disc system to impulse response and resolution limits.

    PubMed

    Hepper, Dietmar

    2011-06-10

    The signal model of a superresolution optical channel can be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector are properly described, a general mathematical model of the superresolution disc itself has not yet been available until recently. Different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. A complete signal-based or phenomenological optical channel model--from non-return-to-zero inverted input to disc readout signal--has recently been developed including the reflectivity of a superresolution disc with InSb used for the mask layer. In this contribution, the model is now extended and applied to a moving disc including a land-and-pit structure, and results are compared with data read from real superresolution discs. Both impulse response and resolution limits are derived and discussed. Thus the model provides a bridge from physical to readout signal properties, which count after all. The presented approach allows judging of the suitability of a mask layer material for storage density enhancement already based on static experiments, i.e., even before developing an associated disc drive.

  8. Cultural Consensus Theory: Aggregating Continuous Responses in a Finite Interval

    NASA Astrophysics Data System (ADS)

    Batchelder, William H.; Strashny, Alex; Romney, A. Kimball

    Cultural consensus theory (CCT) consists of cognitive models for aggregating responses of "informants" to test items about some domain of their shared cultural knowledge. This paper develops a CCT model for items requiring bounded numerical responses, e.g. probability estimates, confidence judgments, or similarity judgments. The model assumes that each item generates a latent random representation in each informant, with mean equal to the consensus answer and variance depending jointly on the informant and the location of the consensus answer. The manifest responses may reflect biases of the informants. Markov Chain Monte Carlo (MCMC) methods were used to estimate the model, and simulation studies validated the approach. The model was applied to an existing cross-cultural dataset involving native Japanese and English speakers judging the similarity of emotion terms. The results sharpened earlier studies that showed that both cultures appear to have very similar cognitive representations of emotion terms.

  9. Impulsive control for hypervelocity missiles

    NASA Astrophysics Data System (ADS)

    Magness, R. W.

    1981-05-01

    A hypervelocity agile interceptor/quickshot is being developed for defense of ballistic missile launch sites. A guidance and control system is required to achieve the missile guidance accuracy necessary for direct target impact. Attitude control systems evaluated for the agile interceptor included aerodynamic controls, thrust vector controls and impulsive motor controls. The solid squib impulsive control motion was selected because of high response rate, low weight and low volume. A baseline motor configuration was designed and a solid propellant squib was developed for use in the control system. Ballistic pendulum and bench tests were conducted with a test impulsive control motor to measure nominal performance, establish the standard deviation of performance, and define requirements to prevent sympathetic ignition. A dynamic control wind tunnel test was also conducted to determine the impulse augmentation due to the impulsive motor jet interaction with the missile boundary layer. The degree and direction of augmentation was measured for variations in Mach number and angle of attack.

  10. Negative urgency and ventromedial prefrontal cortex responses to alcohol cues: fMRI evidence of emotion-based impulsivity

    PubMed Central

    Cyders, Melissa A.; Dzemidzic, Mario; Eiler, William J.; Coskunpinar, Ayca; Karyadi, Kenny; Kareken, David A.

    2013-01-01

    Background Recent research has highlighted the role of emotion-based impulsivity (negative and positive urgency personality traits) for alcohol use and abuse, but has yet to examine how these personality traits interact with the brain’s motivational systems. Using functional magnetic resonance imaging (fMRI), we tested if urgency traits and mood induction affected medial prefrontal responses to alcohol odors (AcO). Methods Twenty seven social drinkers (mean age = 25.2, 14 males) had six fMRI scans while viewing negative, neutral, or positive mood images (3 mood conditions) during intermittent exposure to AcO and appetitive control (AppCo) aromas. Results Voxel-wise analyses (p < 0.001) confirmed [AcO > AppCo] activation throughout medial (mPFC) and ventromedial prefrontal regions (vmPFC). Extracted from a priori mPFC and vmPFC regions, and analyzed in Odor (AcO, AppCo) × Mood factorial models, AcO activation was greater than AppCo in left vmPFC (p < 0.001), left mPFC (p = 0.002), and right vmPFC (p = 0.01) regions. Mood did not interact significantly with activation but the covariate of trait negative urgency accounted for significant variance in left vmPFC (p = 0.01) and right vmPFC (p = 0.01) [AcO > AppCo] activation. Negative urgency also mediated the relationship between vmPFC activation and both (1) subjective craving and (2) problematic drinking. Conclusion The trait of negative urgency is associated with neural responses to alcohol cues in the vmPFC, a region involved in reward value and emotion-guided decision-making. This suggests that negative urgency might alter subjective craving and brain regions involved in coding reward value. PMID:24164291

  11. An automatic damage detection algorithm based on the Short Time Impulse Response Function

    NASA Astrophysics Data System (ADS)

    Auletta, Gianluca; Carlo Ponzo, Felice; Ditommaso, Rocco; Iacovino, Chiara

    2016-04-01

    Structural Health Monitoring together with all the dynamic identification techniques and damage detection techniques are increasing in popularity in both scientific and civil community in last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Damage detection techniques traditionally consist in visual inspection and/or non-destructive testing. A different approach consists in vibration based methods detecting changes of feature related to damage. Structural damage exhibits its main effects in terms of stiffness and damping variation. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. We focused the attention on the structural damage localization and detection after an earthquake, from the evaluation of the mode curvature difference. The methodology is based on the acquisition of the structural dynamic response through a three-directional accelerometer installed on the top floor of the structure. It is able to assess the presence of any damage on the structure providing also information about the related position and severity of the damage. The procedure is based on a Band-Variable Filter, (Ditommaso et al., 2012), used to extract the dynamic characteristics of systems that evolve over time by acting simultaneously in both time and frequency domain. In this paper using a combined approach based on the Fourier Transform and on the seismic interferometric analysis, an useful tool for the automatic fundamental frequency evaluation of nonlinear structures has been proposed. Moreover, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results

  12. Experimental measurement of tympanic membrane response for finite element model validation of a human middle ear.

    PubMed

    Ahn, Tae-Soo; Baek, Moo-Jin; Lee, Dooho

    2013-01-01

    The middle ear consists of a tympanic membrane, ligaments, tendons, and three ossicles. An important function of the tympanic membrane is to deliver exterior sound stimulus to the ossicles and inner ear. In this study, the responses of the tympanic membrane in a human ear were measured and compared with those of a finite element model of the middle ear. A laser Doppler vibrometer (LDV) was used to measure the dynamic responses of the tympanic membrane, which had the measurement point on the cone of light of the tympanic membrane. The measured subjects were five Korean male adults and a cadaver. The tympanic membranes were stimulated using pure-tone sine waves at 18 center frequencies of one-third octave band over a frequency range of 200 Hz ~10 kHz with 60 and 80 dB sound pressure levels. The measured responses were converted into the umbo displacement transfer function (UDTF) with a linearity assumption. The measured UDTFs were compared with the calculated UDTFs using a finite element model for the Korean human middle ear. The finite element model of the middle ear consists of three ossicles, a tympanic membrane, ligaments, and tendons. In the finite element model, the umbo displacements were calculated under a unit sound pressure on the tympanic membrane. The UDTF of the finite element model exhibited good agreement with that of the experimental one in low frequency range, whereas in higher frequency band, the two response functions deviated from each other, which demonstrates that the finite element model should be updated with more accurate material properties and/or a frequency dependent material model.

  13. Adaptive infinite impulse response system identification using modified-interior search algorithm with Lèvy flight.

    PubMed

    Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva

    2017-03-01

    In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method.

  14. Response to Cognitive impulsivity and the behavioral addiction model of obsessive–compulsive disorder: Abramovitch and McKay (2016)

    PubMed Central

    Grassi, Giacomo; Figee, Martjin; Stratta, Paolo; Rossi, Alessandro; Pallanti, Stefano

    2016-01-01

    In our recently published article, we investigated the behavioral addiction model of obsessive–compulsive disorder (OCD), by assessing three core dimensions of addiction in patients with OCD healthy participants. Similar to the common findings in addiction, OCD patients demonstrated increased impulsivity, risky decision-making, and biased probabilistic reasoning compared to healthy controls. Thus, we concluded that these results support the conceptualization of OCD as a disorder of behavioral addiction. Here, we answer to Abramovitch and McKay (2016) commentary on our paper and we support our conclusions by explaining how cognitive impulsivity is also a typical feature of addiction and how our results on decision-making and probabilistic reasoning tasks reflect cognitive impulsivity facets that are consistently replicated in OCD and addiction. PMID:27677325

  15. Impulsivity and comorbid traits: a multi-step approach for finding putative responsible microRNAs in the amygdala

    PubMed Central

    Pietrzykowski, Andrzej Z.; Spijker, Sabine

    2014-01-01

    Malfunction of synaptic plasticity in different brain regions, including the amygdala plays a role in impulse control deficits that are characteristics of several psychiatric disorders, such as ADHD, schizophrenia, depression and addiction. Previously, we discovered a locus for impulsivity (Impu1) containing the neuregulin 3 (Nrg3) gene, of which the level of expression determines levels of inhibitory control. MicroRNAs (miRNAs) are potent regulators of gene expression, and have recently emerged as important factors contributing to the development of psychiatric disorders. However, their role in impulsivity, as well as control of Nrg3 expression or malfunction of the amygdala, is not well established. Here, we used the GeneNetwork database of BXD mice to search for correlated traits with impulsivity using an overrepresentation analysis to filter for biologically meaningful traits. We determined that inhibitory control was significantly correlated with expression of miR-190b, -28a, -340, -219a, and -491 in the amygdala, and that the overrepresented correlated traits showed a specific pattern of coregulation with these miRNAs. A bioinformatics analysis identified that miR-190b, by targeting an Nrg3-related network, could affect synaptic plasticity in the amygdala, targeting bot impulsive and compulsive traits. Moreover, miR-28a, -340, -219a, and possibly -491 could act on synaptic function by determining the balance between neuronal outgrowth and differentiation. We propose that these miRNAs are attractive candidates of regulation of amygdala synaptic plasticity, possibly during development but also in maintaining the impulsive phenotype. These results can help us to better understand mechanisms of synaptic dysregulation in psychiatric disorders. PMID:25561905

  16. Stimulus-Response Theory of Finite Automata, Technical Report No. 133.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    The central aim of this paper and its projected successors is to prove in detail that stimulus-response theory, or at least a mathematically precise version, can give an account of the learning of many phrase-structure grammars. Section 2 is concerned with standard notions of finite and probabilistic automata. An automaton is defined as a device…

  17. The response of monoenergetic gamma rays in finite media are investigated

    NASA Technical Reports Server (NTRS)

    Snow, W. J.

    1969-01-01

    In a study of the transport of radiation in matter, the response parameters of monoenergetic gamma rays incident on various materials with finite geometries were calculated on a CDC 3600 computer. The report includes results for gamma rays normal to cyclindrical germanium and silicon detectors.

  18. A Zero Extraction and Separation Technique for Surface Acoustic Wave and Digital Signal Processing FIR (Finite Impulse Response) Filter Implementation.

    DTIC Science & Technology

    1986-01-01

    situations and is discussed briefly. Factoring Methods Several unique approaches to zero extraction exist. The first was by none other than Sir Issac ... Newton (1642-1727). Since that 34 time, other algorithms by Bairstow, Lin, Muller and Birge-Vieta have arrived (Ralston and Wilf 1960). These

  19. The Neurobiology of Impulsive Aggression.

    PubMed

    Blair, Robert J R

    2016-02-01

    This selective review provides a model of the neurobiology of impulsive aggression from a cognitive neuroscience perspective. It is argued that prototypical cases of impulsive aggression, those associated with anger, involve the recruitment of the acute threat response system structures; that is, the amygdala, hypothalamus, and periaqueductal gray. It is argued that whether the recruitment of these structures results in impulsive aggression or not reflects the functional roles of ventromedial frontal cortex and dorsomedial frontal and anterior insula cortex in response selection. It is also argued that impulsive aggression may occur because of impaired decision making. The aggression may not be accompanied by anger, but it will reflect disrupted evaluation of the rewards/benefits of the action.

  20. The Neurobiology of Impulsive Aggression

    PubMed Central

    2016-01-01

    Abstract This selective review provides a model of the neurobiology of impulsive aggression from a cognitive neuroscience perspective. It is argued that prototypical cases of impulsive aggression, those associated with anger, involve the recruitment of the acute threat response system structures; that is, the amygdala, hypothalamus, and periaqueductal gray. It is argued that whether the recruitment of these structures results in impulsive aggression or not reflects the functional roles of ventromedial frontal cortex and dorsomedial frontal and anterior insula cortex in response selection. It is also argued that impulsive aggression may occur because of impaired decision making. The aggression may not be accompanied by anger, but it will reflect disrupted evaluation of the rewards/benefits of the action. PMID:26465707

  1. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  2. Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions.

    PubMed

    Finneran, J J; Schlundt, C E; Carder, D A; Clark, J A; Young, J A; Gaspin, J B; Ridgway, S H

    2000-07-01

    A behavioral response paradigm was used to measure masked underwater hearing thresholds in two bottlenose dolphins and one beluga whale before and after exposure to impulsive underwater sounds with waveforms resembling distant signatures of underwater explosions. An array of piezoelectric transducers was used to generate impulsive sounds with waveforms approximating those predicted from 5 or 500 kg HBX-1 charges at ranges from 1.5 to 55.6 km. At the conclusion of the study, no temporary shifts in masked-hearing thresholds (MTTSs), defined as a 6-dB or larger increase in threshold over pre-exposure levels, had been observed at the highest impulse level generated (500 kg at 1.7 km, peak pressure 70 kPa); however, disruptions of the animals' trained behaviors began to occur at exposures corresponding to 5 kg at 9.3 km and 5 kg at 1.5 km for the dolphins and 500 kg at 1.9 km for the beluga whale. These data are the first direct information regarding the effects of distant underwater explosion signatures on the hearing abilities of odontocetes.

  3. Interindividual variability of arterial impulse response to intravenous injection of nonionic contrast agent (Iohexol) in DCE-CT study

    SciTech Connect

    Kim, S. M.; Haider, M. A.; Milosevic, M.; Yeung, I. W. T.

    2009-10-15

    Purpose: It is known that the arterial input function (AIF) in dynamic contrast-enhanced (DCE)-CT differs among patients even for fixed contrast injection protocols. Therefore, a study has been performed to investigate the interindividual variability of the AIF with respect to patient factors (such as weight, height, and age). In addition, it has been demonstrated that the relations from the interindividual variability investigation can be further used for the estimation of AIF for a patient without the requirement of measurement. Methods: DCE-CT data for a cohort of 34 patients with cervical carcinoma were used for the investigation of interindividual variability of the AIF. To dissociate the effect of different durations of contrast injection, the arterial impulse response (AIR) to intravenous contrast injection was calculated and examined for its correlations with these patient factors. An empirical functional form was proposed to model the AIR with temporal intensity of a first pass of contrast agent followed by recirculation and quasiequilibrium state of contrast concentration. Specific features (onset time, peak time, and amplitudes) of the AIR were tested for correlations with the patient factors. Linear regression was applied to cases that show significant strong correlation between the AIR amplitudes and patient factors. The results were then used to predict the AIR for any given patient based on the patient factors. It was shown that using the predicted AIR, the AIF of the patient can be estimated without the requirement of measurement given the injection protocol is known. The method of AIF estimation was tested in DCE-CT data from another group of 14 patients. The efficacy of individually estimated AIF on pharmacokinetic analysis was assessed against the use of measured AIF and population-averaged AIF as the latter is another possible strategy for AIF generation if AIF measurement is not available. Results: It was found that the amplitudes of AIR

  4. Callous-unemotional, impulsive-irresponsible, and grandiose-manipulative traits: Distinct associations with heart rate, skin conductance, and startle responses to violent and erotic scenes.

    PubMed

    Fanti, Kostas A; Kyranides, Melina N; Georgiou, Giorgos; Petridou, Maria; Colins, Olivier F; Tuvblad, Catherine; Andershed, Henrik

    2017-02-07

    The present study aimed to examine whether callous-unemotional, grandiose-manipulative, and impulsive-irresponsible dimensions of psychopathy are differentially related to various affective and physiological measures, assessed at baseline and in response to violent and erotic movie scenes. Data were collected from young adults (N = 101) at differential risk for psychopathic traits. Findings from regression analyses revealed a unique predictive contribution of grandiose-manipulative traits in particular to higher ratings of positive valence for violent scenes. Callous-unemotional traits were uniquely associated with lower levels of sympathy toward victims and lower ratings of fear and sadness during violent scenes. All three psychopathy dimensions and the total psychopathy scale showed negative zero-order correlations with heart rate at baseline, but regression analyses revealed that only grandiose manipulation was uniquely predictive of lower baseline heart rate. Grandiose manipulation was also significantly associated with lower baseline skin conductance. Regarding autonomic activity, findings resulted in a unique negative association between grandiose manipulation and heart rate activity in response to violent scenes. In contrast, the impulsive-irresponsible dimension was positively related with heart rate activity to violent scenes. Finally, findings revealed that only callous-unemotional traits were negatively associated with startle potentiation in response to violent scenes. No associations during erotic scenes were identified. These findings point to unique associations between the three assessed dimensions of psychopathy with physiological measures, indicating that grandiose manipulation is associated with hypoarousal, impulsive irresponsibility with hyperarousal, and callous-unemotional traits with low emotional and fear responses to violent scenes.

  5. Modified impulse method for the measurement of the frequency response of acoustic filters to weakly nonlinear transient excitations

    PubMed

    Payri; Desantes; Broatch

    2000-02-01

    In this paper, a modified impulse method is proposed which allows the determination of the influence of the excitation characteristics on acoustic filter performance. Issues related to nonlinear propagation, namely wave steepening and wave interactions, have been addressed in an approximate way, validated against one-dimensional unsteady nonlinear flow calculations. The results obtained for expansion chambers and extended duct resonators indicate that the amplitude threshold for the onset of nonlinear phenomena is related to the geometry considered.

  6. Estimating the pi* goodness of fit index for finite mixtures of item response models.

    PubMed

    Revuelta, Javier

    2008-05-01

    Testing the fit of finite mixture models is a difficult task, since asymptotic results on the distribution of likelihood ratio statistics do not hold; for this reason, alternative statistics are needed. This paper applies the pi* goodness of fit statistic to finite mixture item response models. The pi* statistic assumes that the population is composed of two subpopulations - those that follow a parametric model and a residual group outside the model; pi* is defined as the proportion of population in the residual group. The population was divided into two or more groups, or classes. Several groups followed an item response model and there was also a residual group. The paper presents maximum likelihood algorithms for estimating item parameters, the probabilities of the groups and pi*. The paper also includes a simulation study on goodness of recovery for the two- and three-parameter logistic models and an example with real data from a multiple choice test.

  7. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.

  8. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    NASA Astrophysics Data System (ADS)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  9. Algorithms for accelerated automatic tuning of controllers with estimating the plant model from the plant response to an impulse disturbance and under self-oscillation conditions

    NASA Astrophysics Data System (ADS)

    Kuzishchin, V. F.; Tsarev, V. S.

    2014-04-01

    The problem of automatically tuning controllers in an operating control system is considered. Two methods for quickly determining the model parameters with calculating the plant model and the optimal controller tuning parameters in real time are proposed for the preliminary controller tuning stage: from the experimentally obtained plant response to an impulse disturbance and from two periods of self-oscillations excited in the mode of two-position control. The PID controller tunings are determined using the calculation algorithm of indirect frequency optimality indicators. The results from checking the serviceability of the proposed method in a system fitted with an industry-grade controller are presented.

  10. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.

    2000-01-01

    The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.

  11. Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method

    NASA Astrophysics Data System (ADS)

    Felice, Maria V.; Velichko, Alexander; Wilcox, Paul D.; Barden, Tim J.; Dunhill, Tony K.

    2014-02-01

    A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

  12. Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method

    SciTech Connect

    Felice, Maria V.; Velichko, Alexander; Wilcox, Paul D.; Barden, Tim J.; Dunhill, Tony K.

    2014-02-18

    A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

  13. A double expansion method for the frequency response of finite-length beams with periodic parameters

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response

  14. Impaired Decisional Impulsivity in Pathological Videogamers

    PubMed Central

    Irvine, Michael A.; Worbe, Yulia; Bolton, Sorcha; Harrison, Neil A.; Bullmore, Edward T.; Voon, Valerie

    2013-01-01

    Background Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort. Methods Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment. Results In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time. Conclusions We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management. PMID:24146789

  15. Linear response, fluctuation-dissipation, and finite-system-size effects in superdiffusion

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2013-07-01

    Lévy walks (LWs) are a popular stochastic tool to model anomalous diffusion and have recently been used to describe a variety of phenomena. We study the linear response behavior of this generic model of superdiffusive LWs in finite systems to an external force field under both stationary and nonstationary conditions. These finite-size LWs are based on power-law waiting time distributions with a finite-time regularization at τc, such that the physical requirements are met to apply linear response theory and derive the power spectrum with the correct short frequency limit, without the introduction of artificial cutoffs. We obtain the generalized Einstein relation for both ensemble and time averages over the entire process time and determine the turnover to normal Brownian motion when the full system is explored. In particular, we obtain an exact expression for the long time diffusion constant as a function of the scaling exponent of the waiting time density and the characteristic time scale τc.

  16. Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators

    NASA Astrophysics Data System (ADS)

    Vohar, B.; Kegl, M.; Ren, Z.

    2008-12-01

    Theoretical and practical aspects of an absolute nodal coordinate formulation (ANCF) beam finite element implementation are considered in the context of dynamic transient response optimization of elastic manipulators. The proposed implementation is based on the introduction of new nodal degrees of freedom, which is achieved by an adequate nonlinear mapping between the original and new degrees of freedom. This approach preserves the mechanical properties of the ANCF beam, but converts it into a conventional finite element so that its nodal degrees of freedom are initially always equal to zero and never depend explicitly on the design variables. Consequently, the sensitivity analysis formulas can be derived in the usual manner, except that the introduced nonlinear mapping has to be taken into account. Moreover, the adjusted element can also be incorporated into general finite element analysis and optimization software in the conventional way. The introduced design variables are related to the cross-section of the beam, to the shape of the (possibly) skeletal structure of the manipulator and to the drive functions. The layered cross-section approach and the design element technique are utilized to parameterize the shape of individual elements and the whole structure. A family of implicit time integration methods is adopted for the response and sensitivity analysis. Based on this assumption, the corresponding sensitivity formulas are derived. Two numerical examples illustrate the performance of the proposed element implementation.

  17. Three-Dimensional Finite Element Ablative Thermal Response and Thermostructural Design of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2011-01-01

    A finite element ablation and thermal response program is presented for simulation of three-dimensional transient thermostructural analysis. The three-dimensional governing differential equations and finite element formulation are summarized. A novel probabilistic design methodology for thermal protection systems is presented. The design methodology is an eight step process beginning with a parameter sensitivity study and is followed by a deterministic analysis whereby an optimum design can determined. The design process concludes with a Monte Carlo simulation where the probabilities of exceeding design specifications are estimated. The design methodology is demonstrated by applying the methodology to the carbon phenolic compression pads of the Crew Exploration Vehicle. The maximum allowed values of bondline temperature and tensile stress are used as the design specifications in this study.

  18. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    PubMed

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.

  19. Evanescent pressure gradient response in the upper ocean to subinertial wind stress forcing of finite wavelength

    NASA Technical Reports Server (NTRS)

    White, Warren B.; Mcnally, Gerard

    1987-01-01

    A schematic model is used to interpret field observations related to the mixed layer response to wind stress at subinertial frequencies. It is shown that subinertial density and pressure fluctuations can arise locally from the finite wavelength character of the wind stress forcing as a fundamental part of the upper ocean transient, wind-driven response on time scales of 2-10 pendulum days. Evanescent vertical motions arise which alter the density field of the pycnocline, and hence the pressure field over the entire upper ocean. It is thus found that in the real ocean driven by wind stress, a transient geostrophic response exists which can be as large or larger than the transient Eckman response.

  20. Lyapunov Control of Quantum Systems with Impulsive Control Fields

    PubMed Central

    Yang, Wei; Sun, Jitao

    2013-01-01

    We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method. PMID:23766712

  1. Finite-element/progressive-lattice-sampling response surface methodology and application to benchmark probability quantification problems

    SciTech Connect

    Romero, V.J.; Bankston, S.D.

    1998-03-01

    Optimal response surface construction is being investigated as part of Sandia discretionary (LDRD) research into Analytic Nondeterministic Methods. The goal is to achieve an adequate representation of system behavior over the relevant parameter space of a problem with a minimum of computational and user effort. This is important in global optimization and in estimation of system probabilistic response, which are both made more viable by replacing large complex computer models with fast-running accurate and noiseless approximations. A Finite Element/Lattice Sampling (FE/LS) methodology for constructing progressively refined finite element response surfaces that reuse previous generations of samples is described here. Similar finite element implementations can be extended to N-dimensional problems and/or random fields and applied to other types of structured sampling paradigms, such as classical experimental design and Gauss, Lobatto, and Patterson sampling. Here the FE/LS model is applied in a ``decoupled`` Monte Carlo analysis of two sets of probability quantification test problems. The analytic test problems, spanning a large range of probabilities and very demanding failure region geometries, constitute a good testbed for comparing the performance of various nondeterministic analysis methods. In results here, FE/LS decoupled Monte Carlo analysis required orders of magnitude less computer time than direct Monte Carlo analysis, with no appreciable loss of accuracy. Thus, when arriving at probabilities or distributions by Monte Carlo, it appears to be more efficient to expend computer-model function evaluations on building a FE/LS response surface than to expend them in direct Monte Carlo sampling.

  2. Further evidence of the heterogeneous nature of impulsivity.

    PubMed

    Caswell, Amy J; Bond, Rod; Duka, Theodora; Morgan, Michael J

    2015-04-01

    'Impulsivity' refers to a range of behaviours including preference for immediate reward (temporal-impulsivity) and the tendency to make premature decisions (reflection-impulsivity) and responses (motor-impulsivity). The current study aimed to examine how different behavioural and self-report measurements of impulsivity can be categorised into distinct subtypes. Exploratory factor analysis using full information maximum likelihood was conducted on 10 behavioural and 1 self-report measure of impulsivity. Four factors of impulsivity were indicated, with Factor 1 having a high loading of the Stop Signal Task, which measures motor-impulsivity, factor 2 representing reflection-impulsivity with loadings of the Information Sampling Task and Matching Familiar Figures Task, factor 3 representing the Immediate Memory Task, and finally factor 4 which represents the Delay Discounting Questionnaire and The Monetary Choice Questionnaire, measurements of temporal-impulsivity. These findings indicated that impulsivity is not a unitary construct, and instead represents a series of independent subtypes. There was evidence of a distinct reflection-impulsivity factor, providing the first factor analysis support for this subtype. There was also support for additional factors of motor- and temporal-impulsivity. The present findings indicated that a number of currently accepted tasks cannot be considered as indexing motor- and temporal-impulsivity suggesting that additional characterisations of impulsivity may be required.

  3. Linear optical response of finite systems using multishift linear system solvers

    SciTech Connect

    Hübener, Hannes; Giustino, Feliciano

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  4. Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Laub, Bernard; Braun, Robert D.

    2011-01-01

    The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.

  5. Dynamic response of concrete beams externally reinforced with carbon fiber reinforced plastic (CFRP) subjected to impulsive loads

    SciTech Connect

    Jerome, D.M.; Ross, C.A.

    1996-12-31

    A series of 54 laboratory scale concrete beams 3 x 3 x 30 in. in size were impulsively loaded to failure in a drop weight impact machine. The beams had no internal reinforcement, but instead were externally reinforced on the bottom or tension side of the beams with 1, 2, and 3 ply AS4C/1919 graphite epoxy panels. In addition, several of the beams were also reinforced on the sides with 3 ply CFRP. The beams were simply supported in a drop weight machine and subjected to impact loads with amplitudes up to 10 kips, and durations less than 1 ms, at beam midspan. Measurements made during the loading event included beam total load, midspan displacement, as well as midspan strain at 3 locations in the beam`s cross-section. A high speed framing camera was also used to record the beam`s displacement-time behavior as well as to gain insight into the failure mechanisms. Beam midspan accelerations were determined by double differentiation of the displacement versus time data, and in turn, the beam`s inertial loads were calculated using the beam`s equivalent mass. Beam dynamic bending loads versus time were determined from the difference between the total load versus time and the inertial load versus time data. Bending loads versus displacements were also determined along with fracture energies. Failure to correct the loads for inertia will result in incorrect conclusions being drawn from the data, especially for bending resistance of brittle concrete test specimens. A comparison with quasistatic bending (fracture) energy data showed that the dynamic failure energy absorbed by the beams was always less than the static fracture energy, due to the brittle nature of concrete when impulsively loaded.

  6. Reflected Overpressure Impulse on a Finite Structure

    DTIC Science & Technology

    1983-12-01

    Portsmouth, VA 23709 Commanding Officer Naval Weapons Support Center Crane , IN 47522 No. of Copies Organization Officer In Charge Naval E0D...Engineering Lab ATTN: Code L51, Mr. W.A. Keenan Naval Construction Battalion Center Port Hueneme, CA 93041 Superintendent Naval Postgraduate School

  7. GABRB1 Single Nucleotide Polymorphism Associated with Altered Brain Responses (but not Performance) during Measures of Impulsivity and Reward Sensitivity in Human Adolescents.

    PubMed

    Duka, Theodora; Nikolaou, Kyriaki; King, Sarah L; Banaschewski, Tobias; Bokde, Arun L W; Büchel, Christian; Carvalho, Fabiana M; Conrod, Patricia J; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Heinz, Andreas; Jia, Tianye; Gowland, Penny; Martinot, Jean-Luc; Paus, Tomáš; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael; Schumann, Gunter; Stephens, David N

    2017-01-01

    Variations in genes encoding several GABAA receptors have been associated with human drug and alcohol abuse. Among these, a number of human studies have suggested an association between GABRB1, the gene encoding GABAA receptor β1 subunits, with Alcohol dependence (AD), both on its own and comorbid with other substance dependence and psychiatric illnesses. In the present study, we hypothesized that the GABRB1 genetically-associated increased risk for developing alcoholism may be associated with impaired behavioral control and altered sensitivity to reward, as a consequence of altered brain function. Exploiting the IMAGEN database (Schumann et al., 2010), we explored in a human adolescent population whether possession of the minor (T) variant of the single nucleotide polymorphism (SNP) rs2044081 is associated with performance of tasks measuring aspects of impulsivity, and reward sensitivity that are implicated in drug and alcohol abuse. Allelic variation did not associate with altered performance in either a stop-signal task (SST), measuring one aspect of impulsivity, or a monetary incentive delay (MID) task assessing reward anticipation. However, increased functional magnetic resonance imaging (fMRI) blood-oxygen-level dependent (BOLD) response in the right hemisphere inferior frontal gyrus (IFG), left hemisphere caudate/insula and left hemisphere inferior temporal gyrus (ITG) during MID performance was higher in the minor (T) allelic group. In contrast, during SST performance, the BOLD response found in the right hemisphere supramarginal gyrus, right hemisphere lingual and left hemisphere inferior parietal gyrus indicated reduced responses in the minor genotype. We suggest that β1-containing GABAA receptors may play a role in excitability of brain regions important in controlling reward-related behavior, which may contribute to susceptibility to addictive behavior.

  8. GABRB1 Single Nucleotide Polymorphism Associated with Altered Brain Responses (but not Performance) during Measures of Impulsivity and Reward Sensitivity in Human Adolescents

    PubMed Central

    Duka, Theodora; Nikolaou, Kyriaki; King, Sarah L.; Banaschewski, Tobias; Bokde, Arun L. W.; Büchel, Christian; Carvalho, Fabiana M.; Conrod, Patricia J.; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Heinz, Andreas; Jia, Tianye; Gowland, Penny; Martinot, Jean-Luc; Paus, Tomáš; Rietschel, Marcella; Robbins, Trevor W.; Smolka, Michael; Schumann, Gunter; Stephens, David N.

    2017-01-01

    Variations in genes encoding several GABAA receptors have been associated with human drug and alcohol abuse. Among these, a number of human studies have suggested an association between GABRB1, the gene encoding GABAA receptor β1 subunits, with Alcohol dependence (AD), both on its own and comorbid with other substance dependence and psychiatric illnesses. In the present study, we hypothesized that the GABRB1 genetically-associated increased risk for developing alcoholism may be associated with impaired behavioral control and altered sensitivity to reward, as a consequence of altered brain function. Exploiting the IMAGEN database (Schumann et al., 2010), we explored in a human adolescent population whether possession of the minor (T) variant of the single nucleotide polymorphism (SNP) rs2044081 is associated with performance of tasks measuring aspects of impulsivity, and reward sensitivity that are implicated in drug and alcohol abuse. Allelic variation did not associate with altered performance in either a stop-signal task (SST), measuring one aspect of impulsivity, or a monetary incentive delay (MID) task assessing reward anticipation. However, increased functional magnetic resonance imaging (fMRI) blood-oxygen-level dependent (BOLD) response in the right hemisphere inferior frontal gyrus (IFG), left hemisphere caudate/insula and left hemisphere inferior temporal gyrus (ITG) during MID performance was higher in the minor (T) allelic group. In contrast, during SST performance, the BOLD response found in the right hemisphere supramarginal gyrus, right hemisphere lingual and left hemisphere inferior parietal gyrus indicated reduced responses in the minor genotype. We suggest that β1-containing GABAA receptors may play a role in excitability of brain regions important in controlling reward-related behavior, which may contribute to susceptibility to addictive behavior. PMID:28261068

  9. Electronic chemical response indexes at finite temperature in the canonical ensemble.

    PubMed

    Franco-Pérez, Marco; Gázquez, José L; Vela, Alberto

    2015-07-14

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  10. Electronic chemical response indexes at finite temperature in the canonical ensemble

    SciTech Connect

    Franco-Pérez, Marco E-mail: jlgm@xanum.uam.mx Gázquez, José L. E-mail: jlgm@xanum.uam.mx; Vela, Alberto E-mail: jlgm@xanum.uam.mx

    2015-07-14

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  11. Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization

    NASA Astrophysics Data System (ADS)

    Volk, Brent L.; Lagoudas, Dimitris C.; Chen, Yi-Chao; Whitley, Karen S.

    2010-07-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part I of this work presents the thermomechanical characterization of the material behavior of a shape memory polymer. In this experimental investigation, the vision image correlation system, a visual-photographic apparatus, was used to measure displacements in the gauge area. A series of tensile tests, which included nominal values of the extension of 10%, 25%, 50%, and 100%, were performed on SMP specimens. The effects on the free recovery behavior of increasing the value of the applied deformation and temperature rate were considered. The stress-extension relationship was observed to be nonlinear for increasing values of the extension, and the shape recovery was observed to occur at higher temperatures upon increasing the temperature rate. The experimental results, aided by the advanced experimental apparatus, present components of the material behavior which are critical for the development and calibration of models to describe the response of SMPs.

  12. Implementing a Finite-State Off-Normal and Fault Response System for Robust Tokamak Operation

    NASA Astrophysics Data System (ADS)

    Eidietis, N. W.; Humphreys, D. A.; Sammuli, B.; Walker, M. L.

    2015-11-01

    The initial implementation and testing of a finite state off-normal & fault response (ONFR) system on the DIII-D and KSTAR tokamaks is presented. Robust ONFR will be critical to the operation of ITER as the physical consequences of unexpected events will be far more extreme than in present devices. ``Off-normal'' refers to unexpected plasma events (e.g. disruptions) and plasma events that are expected but still require asynchronous response (e.g. neoclassical tearing modes). ``Fault'' refers to hardware failure. ONFR priorities are to (1) protect the device from damage, (2) minimize recovery time between shots by avoiding unnecessary initiation of mitigation procedures, and (3) maximize the useful pulse length of a given shot by providing for discharge recovery after deleterious events. The detailed implementation of finite-state ONFR using Matlab/Simulink and Stateflow exported to the DIII-D and KSTAR plasma control systems is described, as are initial tests of multi-stage locked mode handling on both devices. Work supported by the US DOE under DE-FC02-04ER54698.

  13. Blast response of curved carbon/epoxy composite panels: Experimental study and finite-element analysis

    NASA Astrophysics Data System (ADS)

    Phadnis, V. A.; Kumar, P.; Shukla, A.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    Experimental and numerical studies were conducted to understand the effect of plate curvature on blast response of carbon/epoxy composite panels. A shock-tube system was utilized to impart controlled shock loading to quasi-isotropic composite panels with differing range of radii of curvatures. A 3D Digital Image Correlation (DIC) technique coupled with high-speed photography was used to obtain out-of-plane deflection and velocity, as well as in-plane strain on the back face of the panels. Macroscopic post-mortem analysis was performed to compare yielding and deformation in these panels. A dynamic computational simulation that integrates fluid-structure interaction was conducted to evaluate the panel response in general purpose finite-element software ABAQUS/Explicit. The obtained numerical results were compared to the experimental data and showed a good correlation.

  14. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2004-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  15. An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation

    NASA Astrophysics Data System (ADS)

    Rajagopal, K. R.; Srinivasa, A. R.

    2016-08-01

    The aim of this paper is to develop a new unified class of 3D nonlinear anisotropic finite deformation inelasticity model that (1) exhibits rate-independent or dependent hysteretic response (i.e., response wherein reversal of the external stimuli does not cause reversal of the path in state space) with or without yield surfaces. The hysteresis persists with quasistatic loading. (2) Encompasses a wide range of different types of inelasticity models (such as Mullins effect in rubber, rock and soil mechanics, traditional metal plasticity, hysteretic behavior of shape memory materials) into a simple unified framework that is relatively easy to implement in computational schemes and (3) does not require any a priori particular notion of plastic strain or yield function. The core idea behind the approach is the development of an system of implicit rate equations that allow for the continuity of the response but with different rates along different directions. The theory, which is in purely mechanical setting, subsumes and generalizes many commonly used approaches for hypoelasticity and rate-independent plasticity. We illustrate its capability by modeling the Mullins effect which is the inelastic behavior of certain rubbery materials. We are able to simulate the entire cyclic response without the use of additional internal variables, i.e., the entire response is modeled by using an implicit function of stress and strain measures and their rates.

  16. Genetics of impulsive behaviour.

    PubMed

    Bevilacqua, Laura; Goldman, David

    2013-01-01

    Impulsivity, defined as the tendency to act without foresight, comprises a multitude of constructs and is associated with a variety of psychiatric disorders. Dissecting different aspects of impulsive behaviour and relating these to specific neurobiological circuits would improve our understanding of the etiology of complex behaviours for which impulsivity is key, and advance genetic studies in this behavioural domain. In this review, we will discuss the heritability of some impulsivity constructs and their possible use as endophenotypes (heritable, disease-associated intermediate phenotypes). Several functional genetic variants associated with impulsive behaviour have been identified by the candidate gene approach and re-sequencing, and whole genome strategies can be implemented for discovery of novel rare and common alleles influencing impulsivity. Via deep sequencing an uncommon HTR2B stop codon, common in one population, was discovered, with implications for understanding impulsive behaviour in both humans and rodents and for future gene discovery.

  17. Genetics of impulsive behaviour

    PubMed Central

    Bevilacqua, Laura; Goldman, David

    2013-01-01

    Impulsivity, defined as the tendency to act without foresight, comprises a multitude of constructs and is associated with a variety of psychiatric disorders. Dissecting different aspects of impulsive behaviour and relating these to specific neurobiological circuits would improve our understanding of the etiology of complex behaviours for which impulsivity is key, and advance genetic studies in this behavioural domain. In this review, we will discuss the heritability of some impulsivity constructs and their possible use as endophenotypes (heritable, disease-associated intermediate phenotypes). Several functional genetic variants associated with impulsive behaviour have been identified by the candidate gene approach and re-sequencing, and whole genome strategies can be implemented for discovery of novel rare and common alleles influencing impulsivity. Via deep sequencing an uncommon HTR2B stop codon, common in one population, was discovered, with implications for understanding impulsive behaviour in both humans and rodents and for future gene discovery. PMID:23440466

  18. Dynamic response of laminated composite plates using a three-dimensional hybrid-stress finite-element formulation

    NASA Technical Reports Server (NTRS)

    Liou, W. J.; Sun, C. T.

    1987-01-01

    A method of analysis of dynamic response of laminated composite plates is presented. The analysis is carried by using a hybrid-stress finite element numerical technique. By using this approach, the response of simply supported laminated plates subjected to sinusoidal loading are investigated. For the solution of the finite element equations of motion of free vibrations and dynamic response problems, two effective methods of solution, the space iteration method and the Newmark direct integration method are used. These two methods are discussed here.

  19. Response to selection in finite locus models with non-additive effects.

    PubMed

    Esfandyari, Hadi; Henryon, Mark; Berg, Peer; Thomasen, Jorn Rind; Bijma, Piter; Sørensen, Anders Christian

    2017-01-12

    Under the finite-locus model in the absence of mutation, the additive genetic variation is expected to decrease when directional selection is acting on a population, according to quantitative-genetic theory. However, some theoretical studies of selection suggest that the level of additive variance can be sustained or even increased when non-additive genetic effects are present. We tested the hypothesis that finite-locus models with both additive and non-additive genetic effects maintain more additive genetic variance (V_A) and realize larger medium-to-long term genetic gains than models with only additive effects when the trait under selection is subject to truncation selection. Four genetic models that included additive, dominance, and additive-by-additive epistatic effects were simulated. The simulated genome for individuals consisted of 25 chromosomes, each with a length of 1M. One hundred bi-allelic QTL, four on each chromosome, were considered. In each generation, 100 sires and 100 dams were mated, producing five progeny per mating. The population was selected for a single trait (h(2)=0.1) for 100 discrete generations with selection on phenotype or BLUP-EBV. V_A decreased with directional truncation selection even in presence of non-additive genetic effects. Non-additive effects influenced long-term response to selection and among genetic models additive gene action had highest response to selection. In addition, in all genetic models, BLUP-EBV resulted in a greater fixation of favourable and unfavourable alleles and higher response than phenotypic selection. In conclusion, for the schemes we simulated, the presence of non-additive genetic effects had little effect in changes of additive variance and V_A decreased by directional selection.

  20. Responses of the ocean planktonic ecosystem to finite-amplitude perturbations

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Mu, Mu

    2014-12-01

    The responses of the ocean planktonic ecosystem to finite-amplitude perturbations are investigated using an ocean planktonic ecosystem model. Through changing the higher predation rate on zooplankton, multiple equilibria of the model, namely "high-nutrient" and "low-nutrient" states, are obtained under certain parameter values. Based on these states, the perturbations with maximum nonlinear growth are determined using the conditional nonlinear optimal perturbation (CNOP) method. The linear and nonlinear evolutions of the CNOP perturbation are compared. The results show that the nonlinear evolution of the perturbation leads to predator-prey oscillations with larger amplitude than the linear evolution. Besides, after the perturbation amplitude exceeds a critical value, the nonlinear evolution of the perturbation will induce the linearly stable ecosystem state to lose the stability and become nonlinearly unstable. This implies that nonlinear processes have important impacts on the stability of the ecosystem. Specifically, we identify the nonlinear processes related to zooplankton grazing to impact the stability most for the high-nutrient state, while for the low-nutrient state the main nonlinear process affecting the stability is the uptake process. These results help to improve our understanding of the sensitivity of the oceanic ecosystem model to finite-amplitude perturbations and the underlying nonlinear stability properties.

  1. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study

    PubMed Central

    Hsu, Hung-Yao

    2016-01-01

    Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies. PMID:28074178

  2. Impulsive action: emotional impulses and their control

    PubMed Central

    Frijda, Nico H.; Ridderinkhof, K. Richard; Rietveld, Erik

    2014-01-01

    This paper presents a novel theoretical view on impulsive action, integrating thus far separate perspectives on non-reflective action, motivation, emotion regulation, and impulse control. We frame impulsive action in terms of directedness of the individual organism toward, away, or against other givens – toward future states and away from one’s present state. First, appraisal of a perceived or thought-of event or object on occasion, rapidly and without premonition or conscious deliberation, triggers a motive to modify one’s relation to that event or object. Situational specifics of the event as perceived and appraised motivate and guide selection of readiness for a particular kind of purposive action. Second, perception of complex situations can give rise to multiple appraisals, multiple motives, and multiple simultaneous changes in action readiness. Multiple states of action readiness may interact in generating action, by reinforcing or attenuating each other, thereby yielding impulse control. We show how emotion control can itself result from a motive state or state of action readiness. Our view links impulsive action mechanistically to states of action readiness, which is the central feature of what distinguishes one kind of emotion from another. It thus provides a novel theoretical perspective to the somewhat fragmented literature on impulsive action. PMID:24917835

  3. Finite strain response of crimped fibers under uniaxial traction: An analytical approach applied to collagen

    NASA Astrophysics Data System (ADS)

    Marino, Michele; Wriggers, Peter

    2017-01-01

    Composite materials reinforced by crimped fibers intervene in a number of advanced structural applications. Accordingly, constitutive equations describing their anisotropic behavior and explicitly accounting for fiber properties are needed for modeling and design purposes. To this aim, the finite strain response of crimped beams under uniaxial traction is herein addressed by obtaining analytical relationships based on the Principle of Virtual Works. The model is applied to collagen fibers in soft biological tissues, coupling geometric nonlinearities related to fiber crimp with material nonlinearities due to nanoscale mechanisms. Several numerical applications are presented, addressing the influence of geometric and material features. Available experimental data for tendons are reproduced, integrating the proposed approach within an optimization procedure for data fitting. The obtained results highlight the effectiveness of the proposed approach in correlating fibers structure with composite material mechanics.

  4. Controlling your impulses: electrical stimulation of the human supplementary motor complex prevents impulsive errors.

    PubMed

    Spieser, Laure; van den Wildenberg, Wery; Hasbroucq, Thierry; Ridderinkhof, K Richard; Burle, Borís

    2015-02-18

    To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy humans leaves action urges unchanged but prevents them from turning into overt errors. Subjects performed a choice reaction-time task known to trigger impulsive responses, leading to fast errors that can be revealed by analyzing accuracy as a function of poststimulus time. Yet, such fast errors are only the tip of the iceberg: electromyography (EMG) revealed fast subthreshold muscle activation in the incorrect response hand in an even larger proportion of overtly correct trials, revealing covert response impulses not discernible in overt behavior. Analyzing both overt and covert response tendencies enables to gauge the ability to prevent these incorrect impulses from turning into overt action errors. Hyperpolarizing the supplementary motor complex using transcranial direct current stimulation (tDCS) preserves action impulses but prevents their behavioral expression. This new combination of detailed behavioral, EMG, and tDCS techniques clarifies the neurophysiology of impulse control, and may point to avenues for improving impulse control deficits in various neurologic and psychiatric disorders.

  5. Unruh-DeWitt detector response across a Rindler firewall is finite

    NASA Astrophysics Data System (ADS)

    Louko, Jorma

    2014-09-01

    We investigate a two-level Unruh-DeWitt detector coupled to a massless scalar field or its proper time derivative in (1 + 1)-dimensional Minkowski spacetime, in a quantum state whose correlation structure across the Rindler horizon mimics the stationary aspects of a firewall that Almheiri et al. have argued to ensue in an evaporating black hole spacetime. Within first-order perturbation theory, we show that the detector's response on falling through the horizon is sudden but finite. The difference from the Minkowski vacuum response is proportional to ω -2 ln(| ω|) for the non-derivative detector and to ln(| ω|) for the derivative-coupling detector, both in the limit of a large energy gap ω and in the limit of adiabatic switching. Adding to the quantum state high Rindler temperature excitations behind the horizon increases the detector's response proportionally to the temperature; this situation has been suggested to model the energetic curtain proposal of Braunstein et al. We speculate that the (1 + 1)-dimensional derivative-coupling detector may be a good model for a non-derivative detector that crosses a firewall in 3 + 1 dimensions.

  6. NIKE3D: an implicit, finite-deformation, finite element code for analyzing the static and dynamic response of three-dimensional solids

    SciTech Connect

    Hallquist, J.O.

    1981-01-01

    A user's manual is provided for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the large deformation static and dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node constant pressure solid elements. Bandwidth minimization is optional. Post-processors for NIKE3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories.

  7. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  8. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    PubMed

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.

  9. Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.

    PubMed

    Maftoon, Nima; Funnell, W Robert J; Daniel, Sam J; Decraemer, Willem F

    2015-10-01

    We present a finite-element model of the gerbil middle ear that, using a set of baseline parameters based primarily on a priori estimates from the literature, generates responses that are comparable with responses we measured in vivo using multi-point vibrometry and with those measured by other groups. We investigated the similarity of numerous features (umbo, pars-flaccida and pars-tensa displacement magnitudes, the resonance frequency and break-up frequency, etc.) in the experimental responses with corresponding ones in the model responses, as opposed to simply computing frequency-by-frequency differences between experimental and model responses. The umbo response of the model is within the range of variability seen in the experimental data in terms of the low-frequency (i.e., well below the middle-ear resonance) magnitude and phase, the main resonance frequency and magnitude, and the roll-off slope and irregularities in the response above the resonance frequency, but is somewhat high for frequencies above the resonance frequency. At low frequencies, the ossicular axis of rotation of the model appears to correspond to the anatomical axis but the behaviour is more complex at high frequencies (i.e., above the pars-tensa break-up). The behaviour of the pars tensa in the model is similar to what is observed experimentally in terms of magnitudes, phases, the break-up frequency of the spatial vibration pattern, and the bandwidths of the high-frequency response features. A sensitivity analysis showed that the parameters that have the strongest effects on the model results are the Young's modulus, thickness and density of the pars tensa; the Young's modulus of the stapedial annular ligament; and the Young's modulus and density of the malleus. Displacements of the tympanic membrane and manubrium and the low-frequency displacement of the stapes did not show large changes when the material properties of the incus, stapes, incudomallear joint, incudostapedial joint, and

  10. Finite element modeling of human brain response to football helmet impacts.

    PubMed

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions.

  11. Advantage of impulse oscillometry over spirometry to diagnose chronic obstructive pulmonary disease and monitor pulmonary responses to bronchodilators: An observational study

    PubMed Central

    Saadeh, Charles; Cross, Blake; Gaylor, Michael; Griffith, Melissa

    2015-01-01

    Objectives: This retrospective study was a comparative analysis of sensitivity of impulse oscillometry and spirometry techniques for use in a mixed chronic obstructive pulmonary disease group for assessing disease severity and inhalation therapy. Methods: A total of 30 patients with mild-to-moderate chronic obstructive pulmonary disease were monitored by impulse oscillometry, followed by spirometry. Lung function was measured at baseline after bronchodilation and at follow-up (3–18 months). The impulse oscillometry parameters were resistance in the small and large airways at 5 Hz (R5), resistance in the large airways at 15 Hz (R15), and lung reactance (area under the curve X; AX). Results: After the bronchodilator therapy, forced expiratory volume in 1 second (FEV1) readings evaluated by spirometry were unaffected at baseline and at follow-up, while impulse oscillometry detected an immediate improvement in lung function, in terms of AX (p = 0.043). All impulse oscillometry parameters significantly improved at follow-up, with a decrease in AX by 37% (p = 0.0008), R5 by 20% (p = 0.0011), and R15 by 12% (p = 0.0097). Discussion: Impulse oscillometry parameters demonstrated greater sensitivity compared with spirometry for monitoring reversibility of airway obstruction and the effect of maintenance therapy. Impulse oscillometry may facilitate early treatment dose optimization and personalized medicine for chronic obstructive pulmonary disease patients. PMID:26770777

  12. Dealing with Impulsivity.

    ERIC Educational Resources Information Center

    Neidhardt, Janet

    1987-01-01

    A mother recounts her neurologically impaired son's struggles and progress in combating impulsivity in his work and social habits. Now 23 years old, employed full-time, and off medication, the son is still impulsive, has problems with social skills, but has improved his self-image through a photography hobby. (CB)

  13. Impulsivity and Academic Cheating

    ERIC Educational Resources Information Center

    Anderman, Eric M.; Cupp, Pamela K.; Lane, Derek

    2009-01-01

    The authors examined the relations between academic cheating and impulsivity in a large sample of adolescents enrolled in high school health education classes. Results indicated that impulsivity predicts academic cheating for students who report extensive involvement in cheating. However, students who engage in extensive cheating are less likely…

  14. Rethinking Impulsivity in Suicide

    ERIC Educational Resources Information Center

    Klonsky, E. David; May, Alexis

    2010-01-01

    Elevated impulsivity is thought to facilitate the transition from suicidal thoughts to suicidal behavior. Therefore, impulsivity should distinguish those who have attempted suicide (attempters) from those who have only considered suicide (ideators-only). This hypothesis was examined in three large nonclinical samples: (1) 2,011 military recruits,…

  15. Barratt Impulsivity and Neural Regulation of Physiological Arousal

    PubMed Central

    Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H.; Li, Chiang-shan R.

    2015-01-01

    Background Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. Methods We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Results Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Conclusions Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control. PMID:26079873

  16. Specific Impulse and Mass Flow Rate Error

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2005-01-01

    Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.

  17. [Response of a finite element model of the pelvis to different side impact loads].

    PubMed

    Ruan, Shijie; Zheng, Huijing; Li, Haiyan; Zhao, Wei

    2013-08-01

    The pelvis is one of the most likely affected areas of the human body in case of side impact, especially while people suffer from motor vehicle crashes. With the investigation of pelvis injury on side impact, the injury biomechanical behavior of pelvis can be found, and the data can help design the vehicle security devices to keep the safety of the occupants. In this study, a finite element (FE) model of an isolated human pelvis was used to study the pelvic dynamic response under different side impact conditions. Fracture threshold was established by applying lateral loads of 1000, 2000, 3000, 4000 and 5000 N, respectively, to the articular surface of the right acetabulum. It was observed that the smaller the lateral loads were, the smaller the von Mises stress and the displacement in the direction of impact were. It was also found that the failure threshold load was near 3000 N, based on the fact that the peak stress would not exceed the average compressive strength of the cortical bone. It could well be concluded that with better design of car-door and hip-pad so that the side impact force was brought down to 3000 N or lower, the pelvis would not be injured.

  18. A Finite Element Study of the Dynamic Response of Brain Based on Two Parasagittal Slice Models.

    PubMed

    Song, Xuewei; Wang, Cong; Hu, Hao; Huang, Tianlun; Jin, Jingxu

    2015-01-01

    The objective of this study is to investigate the influence of gyri and sulci on the response of human head under transient loading. To this end, two detailed parasagittal slice models with and without gyri and sulci have been developed. The models comprised not only cerebrum and skull but also cerebellum, brain stem, CSF, and corpus callosum. In addition, white and gray matters were separated. The material properties were adopted from the literature and assigned to different parts of the models. Nahum's and Trosseille's experiments reported in relevant literature were simulated and the simulation results were compared with the test data. The results show that there is no evident difference in terms of intracranial pressure between the models with and without gyri and sulci under simulated conditions. The equivalent stress below gyri and sulci in the model with gyri and sulci is slightly higher than that in the counterpart model without gyri and sulci. The maximum principle strain in brain tissue is lower in the model with gyri and sulci. The stress and strain distributions are changed due to the existence of gyri and sulci. These findings highlight the necessity to include gyri and sulci in the finite element head modeling.

  19. Finite element prediction of seismic response modification of monumental structures utilizing base isolation

    NASA Astrophysics Data System (ADS)

    Spanos, Konstantinos; Anifantis, Nikolaos; Kakavas, Panayiotis

    2015-05-01

    The analysis of the mechanical behavior of ancient structures is an essential engineering task concerning the preservation of architectural heritage. As many monuments of classical antiquity are located in regions of earthquake activity, the safety assessment of these structures, as well as the selection of possible restoration interventions, requires numerical models capable of correctly representing their seismic response. The work presented herein was part of a research project in which a better understanding of the dynamics of classical column-architrave structures was sought by means of numerical techniques. In this paper, the seismic behavior of ancient monumental structures with multi-drum classical columns is investigated. In particular, the column-architrave classical structure under strong ground excitations was represented by a finite element method. This approach simulates the individual rock blocks as distinct rigid blocks interconnected with slidelines and incorporates seismic isolation dampers under the basement of the structure. Sliding and rocking motions of individual stone blocks and drums are modeled utilizing non-linear frictional contact conditions. The seismic isolation is modeled through the application of pad bearings under the basement of the structure. These pads are interpreted by appropriate rubber and steel layers. Time domain analyses were performed, considering the geometric and material non-linear behavior at the joints and the characteristics of pad bearings. The deformation and failure modes of drum columns subject to seismic excitations of various types and intensities were analyzed. The adverse influence of drum imperfections on structural safety was also examined.

  20. Forced responses of solid axially polarized piezoelectric ceramic finite cylinders with internal losses.

    PubMed

    Ebenezer, D D; Ravichandran, K; Ramesh, R; Padmanabhan, Chandramouli

    2005-06-01

    A method is presented to determine the forced responses of piezoelectric cylinders using weighted sums of only certain exact solutions to the equations of motion and the Gauss electrostatic conditions. One infinite set of solutions is chosen such that each field variable is expressed in terms of Bessel functions that form a complete set in the radial direction. Another infinite set of solutions is chosen such that each field variable is expressed in terms of trigonometric functions that form a complete set in the axial direction. Another solution is used to account for the electric field that can exist even when there is no vibration. The weights are determined by using the orthogonal properties of the functions and are used to satisfy specified, arbitrary, axisymmetric boundary conditions on all the surfaces. Special cases including simultaneous mechanical and electrical excitation of cylinders are presented. All numerical results are in excellent agreement with those obtained using the finite element software ATILA. For example, the five lowest frequencies at which the conductance and susceptance of a stress-free cylinder, of length 10 mm and radius 5 mm, reach a local maximum or minimum differ by less than 0.01% from those computed using ATILA.

  1. Sensitivity of lumbar spine response to follower load and flexion moment: finite element study.

    PubMed

    Naserkhaki, Sadegh; El-Rich, Marwan

    2017-04-01

    The follower load (FL) combined with moments is commonly used to approximate flexed/extended posture of the lumbar spine in absence of muscles in biomechanical studies. There is a lack of consensus as to what magnitudes simulate better the physiological conditions. Considering the in-vivo measured values of the intradiscal pressure (IDP), intervertebral rotations (IVRs) and the disc loads, sensitivity of these spinal responses to different FL and flexion moment magnitudes was investigated using a 3D nonlinear finite element (FE) model of ligamentous lumbosacral spine. Optimal magnitudes of FL and moment that minimize deviation of the model predictions from in-vivo data were determined. Results revealed that the spinal parameters i.e. the IVRs, disc moment, and the increase in disc force and moment from neutral to flexed posture were more sensitive to moment magnitude than FL magnitude in case of flexion. The disc force and IDP were more sensitive to the FL magnitude than moment magnitude. The optimal ranges of FL and flexion moment magnitudes were 900-1100 N and 9.9-11.2 Nm, respectively. The FL magnitude had reverse effect on the IDP and disc force. Thus, magnitude for FL or flexion that minimizes the deviation of all the spinal parameters together from the in-vivo data can vary. To obtain reasonable compromise between the IDP and disc force, our findings recommend that FL of low magnitude must be combined with flexion moment of high intensity and vice versa.

  2. Finite Element Analysis of the Random Response Suppression of Composite Panels at Elevated Temperatures using Shape Memory Alloy Fibers

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Zhong, Z. W.; Mei, Chuh

    1994-01-01

    A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.

  3. Short Time Impulse Response Function (STIRF) for automatic evaluation of the variation of the dynamic parameters of reinforced concrete framed structures during strong earthquakes.

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco

    2015-04-01

    This study presents an innovative strategy for automatic evaluation of the variable fundamental frequency and related damping factor of nonlinear structures during strong motion phases. Most of methods for damage detection are based on the assessment of the variations of the dynamic parameters characterizing the monitored structure. A crucial aspect of these methods is the automatic and accurate estimation of both structural eigen-frequencies and related damping factors also during the nonlinear behaviour. A new method, named STIRF (Short-Time Impulse Response Function - STIRF), based on the nonlinear interferometric analysis combined with the Fourier Transform (FT) here is proposed in order to allow scientists and engineers to characterize frequencies and damping variations of a monitored structure. The STIRF approach helps to overcome some limitation derived from the use of techniques based on simple Fourier Transform. These latter techniques provide good results when the response of the monitored system is stationary, but fails when the system exhibits a non-stationary, time-varying behaviour: even non-stationary input, soil-foundation and/or adjacent structures interaction phenomena can show the inadequacy of classic techniques to analysing the nonlinear and/or non-stationary behaviour of structures. In fact, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results also during the strong motion phase. Results are consistent with those expected if compared with other techniques. The main advantage derived from the use of the proposed approach (STIRF) for Structural Health Monitoring is based on the simplicity of the interpretation of the nonlinear variations of the fundamental frequency and the related equivalent viscous damping factor. The proposed methodology has been tested on both numerical and experimental models also using data retrieved from shaking table tests. Based on

  4. Number-Right, Item-Response, and Finite-State Scoring: Robustness with Respect to Lack of Equally Classifiable Options and Item Option Dependence.

    ERIC Educational Resources Information Center

    Rogers, W. Todd; Ndalichako, Joyce

    2000-01-01

    Determined the robustness of several types of scoring (number-right; one-, two-, and three-parameter item response; finite-state, and partial-credit) with respect to the violation of the equally classifiable options and option independence made in finite-state scoring using analysis of test responses of 1,232 high school seniors. (SLD)

  5. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    SciTech Connect

    Shin, Taeho; Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A.; Kandyla, Maria

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  6. Time-fixed rendezvous by impulse factoring with an intermediate timing constraint. [for transfer orbits

    NASA Technical Reports Server (NTRS)

    Green, R. N.; Kibler, J. F.; Young, G. R.

    1974-01-01

    A method is presented for factoring a two-impulse orbital transfer into a three- or four-impulse transfer which solves the rendezvous problem and satisfies an intermediate timing constraint. Both the time of rendezvous and the intermediate time of a alinement are formulated as any element of a finite sequence of times. These times are integer multiples of a constant plus an additive constant. The rendezvous condition is an equality constraint, whereas the intermediate alinement is an inequality constraint. The two timing constraints are satisfied by factoring the impulses into collinear parts that vectorially sum to the original impulse and by varying the resultant period differences and the number of revolutions in each orbit. Five different types of solutions arise by considering factoring either or both of the two impulses into two or three parts with a limit for four total impulses. The impulse-factoring technique may be applied to any two-impulse transfer which has distinct orbital periods.

  7. Different subtypes of impulsivity differentiate uncontrolled eating and dietary restraint.

    PubMed

    Leitch, Margaret A; Morgan, Michael J; Yeomans, Martin R

    2013-10-01

    The current study explored the relationship between three subtypes of impulsivity (Reflection Impulsivity, Impulsive Choice, and Impulsive Action) and measures of uncontrolled eating (TFEQ-D) and restraint (TFEQ-R). Eighty women classified as scoring higher or lower on TFEQ-D and TFEQ-R completed the Matching Familiar Figures Test (MFFT20), Delay Discounting Task (DDT), a Go No Go task, Balloon Analogue Risk Task (BART), and the Barrett Impulsivity Scale-11 (BIS-11). To test whether these relationships were affected by enforced controls overeating, half of the participants fasted the night before and ate breakfast in the laboratory before testing and half had no such control. Women scoring higher on the TFEQ-D were significantly more impulsive on the MFFT20 and BIS-11 overall but not on DDT, Go No Go or BART. Women scoring higher on TFEQ-R were significantly less impulsive on the Go No Go task but did not differ on other measures. The eating manipulation modulated responses on the BART and BIS-11 non-planning scale depending on TFEQ-D classification. These results confirm recent data that high scores on TFEQ-D are related to impulsivity, but imply this relates more to Reflection Impulsivity rather than Impulsive Choice or Action. In contrast restrained eating was associated with better inhibitory control. Taken together, these results suggest that subtypes of impulsivity further differentiate uncontrolled eating and restraint, and suggest that a poor ability to reflect on decisions may underlie some aspects of overeating.

  8. Maternal overreactive sympathetic nervous system responses to repeated infant crying predicts risk for impulsive harsh discipline of infants.

    PubMed

    Joosen, Katharina J; Mesman, Judi; Bakermans-Kranenburg, Marian J; van Ijzendoorn, Marinus H

    2013-11-01

    Physiological reactivity to repeated infant crying was examined as a predictor of risk for harsh discipline use with 12-month-olds in a longitudinal study with 48 low-income mother-infant dyads. Physiological reactivity was measured while mothers listened to three blocks of infant cry sounds in a standard cry paradigm when their infants were 3 months old. Signs of harsh discipline use were observed during two tasks during a home visit when the infants were 12 months old. Mothers showing signs of harsh discipline (n = 10) with their 12-month-olds were compared to mothers who did not (n = 38) on their sympathetic (skin conductance levels [SCL]) and parasympathetic (respiratory sinus arrhythmia) reactivity to the cry sounds. Results showed a significant interaction effect for sympathetic reactivity only. Mean SCL of harsh-risk mothers showed a significant different response pattern from baseline to crying and onward into the recovery, suggesting that mean SCL of mothers who showed signs of harsh discipline continued to rise across the repeated bouts of cry sounds while, after an initial increase, mean SCL level of the other mothers showed a steady decline. We suggest that harsh parenting is reflected in physiological overreactivity to negative infant signals and discuss our findings from a polyvagal perspective.

  9. The role of retardation in the structure and linear response of finite nuclei

    SciTech Connect

    Crecca, M.A.

    1989-01-01

    Conventional random phase approximation (RPA) and Tamm-Dancoff approximation (TDA) calculations of nuclear structure and the linear response employ interactions between nucleons that are instantaneous. However, N-N interactions derived from the exchange of mesons between nucleons must depend on the space-time separation of the nucleons since the mesons travel at finite speeds. Furthermore, a quantum field theory that contains interacting meson and nucleon degrees of freedom employ the Feynman propagator, i{Delta}{sub F}(x - x{prime}), to connect the nucleon-meson vertices of Feynman diagrams. This raises the question of whether calculations done with space-time dependent interactions differ significantly from the conventional calculations that employ instantaneous forces, and what are the qualitative features of the difference. The inquiry into this question begins by generalizing the traditional RPA and TDA equations into the domain of retarded (space-time dependant) interactions. This entails establishing an integral equation (the Bethe-Salpeter equation) for the polarization propagator with the appropriate RPA or TDA kernel such that the integral equation reduces to the usual RPA or TDA matrix equation for the polarization propagator as the interaction becomes instantaneous. After establishing this generalization of the RPA and TDA, a TDA calculation is performed for an interaction arising from the exchange of a scalar meson. The results are compared with those obtained from the conventional instantaneous reduction of the scalar meson exchange interaction, the Yukawa potential. Upon comparing these results one finds that in general the nuclear structure obtained from scalar meson exchange differ little less than 10%.

  10. Response analysis of the lumbar spine during regular daily activities--a finite element analysis.

    PubMed

    Schmidt, Hendrik; Shirazi-Adl, Aboulfazl; Galbusera, Fabio; Wilke, Hans-Joachim

    2010-07-20

    A non-linear poroelastic finite element model of the lumbar spine was developed to investigate spinal response during daily dynamic physiological activities. Swelling was simulated by imposing a boundary pore pressure of 0.25 MPa at all external surfaces. Partial saturation of the disc was introduced to circumvent the negative pressures otherwise computed upon unloading. The loading conditions represented a pre-conditioning full day followed by another day of loading: 8h rest under a constant compressive load of 350 N, followed by 16 h loading phase under constant or cyclic compressive load varying in between 1000 and 1600 N. In addition, the effect of one or two short resting periods in the latter loading phase was studied. The model yielded fairly good agreement with in-vivo and in-vitro measurements. Taking the partial saturation of the disc into account, no negative pore pressures were generated during unloading and recovery phase. Recovery phase was faster than the loading period with equilibrium reached in only approximately 3h. With time and during the day, the axial displacement, fluid loss, axial stress and disc radial strain increased whereas the pore pressure and disc collagen fiber strains decreased. The fluid pressurization and collagen fiber stiffening were noticeable early in the morning, which gave way to greater compression stresses and radial strains in the annulus bulk as time went by. The rest periods dampened foregoing differences between the early morning and late in the afternoon periods. The forgoing diurnal variations have profound effects on lumbar spine biomechanics and risk of injury.

  11. Finite element comparison of human and Hybrid III responses in a frontal impact.

    PubMed

    Danelson, Kerry A; Golman, Adam J; Kemper, Andrew R; Gayzik, F Scott; Clay Gabler, H; Duma, Stefan M; Stitzel, Joel D

    2015-12-01

    The improvement of finite element (FE) Human Body Models (HBMs) has made them valuable tools for investigating restraint interactions compared to anthropomorphic test devices (ATDs). The objective of this study was to evaluate the effect of various combinations of safety restraint systems on the sensitivity of thoracic injury criteria using matched ATD and Human Body Model (HBM) simulations at two crash severities. A total of seven (7) variables were investigated: 3-point belt with two (2) load limits, frontal airbag, knee bolster airbag, a buckle pretensioner, and two (2) delta-v's - 40kph and 50kph. Twenty four (24) simulations were conducted for the Hybrid III ATD FE model and repeated with a validated HBM for 48 total simulations. Metrics tested in these conditions included sternum deflection, chest acceleration, chest excursion, Viscous Criteria (V*C) criteria, pelvis acceleration, pelvis excursion, and femur forces. Additionally, chest band deflection and rib strain distribution were measured in the HBM for additional restraint condition discrimination. The addition of a frontal airbag had the largest effect on the occupant chest metrics with an increase in chest compression and acceleration but a decrease in excursion. While the THUMS and Hybrid III occupants demonstrated the same trend in the chest compression measurements, there were conflicting results in the V*C, acceleration, and displacement metrics. Similarly, the knee bolster airbag had the largest effect on the pelvis with a decrease in acceleration and excursion. With a knee bolster airbag the simulated occupants gave conflicting results, the THUMS had a decrease in femur force and the ATD had an increase. Preferential use of dummies or HBM's is not debated; however, this study highlights the ability of HBM metrics to capture additional chest response metrics.

  12. Linear and nonlinear optical response of one-dimensional semiconductors: finite-size and Franz–Keldysh effects

    NASA Astrophysics Data System (ADS)

    Bonabi, Farzad; Pedersen, Thomas G.

    2017-04-01

    The dipole moment formalism for the optical response of finite electronic structures breaks down in infinite ones, for which a momentum-based method is better suited. Focusing on simple chain structures, we compare the linear and nonlinear optical response of finite and infinite one-dimensional semiconductors. This comparison is then extended to cases including strong electro-static fields breaking translational invariance. For large electro-static fields, highly non-perturbative Franz–Keldysh (FK) features are observed in both linear and nonlinear spectra. It is demonstrated that dipole and momentum formalisms agree in the limit of large structures provided the intraband momentum contributions are carefully treated. This convergence is established even in the presence of non-perturbative electro-static fields.

  13. Effects of Acoustic Impulses on the Middle Ear

    DTIC Science & Technology

    2015-10-01

    impulsive noises (impacts and impulses). Keywords: Noise exposure; hearing loss, noise-induced; impulsive noise; reflex ; conditioned response...stated in the approved SOW are: 1. Determine the prevalence of acoustic reflexes to among young people with H-1 hearing status as per Army...Regulation 40-501, Table 7-1. 2. Determine whether reflexive MEMC are pervasive for multiple acoustic and non-acoustic stimuli. 3. Determine whether

  14. Genetic association of impulsivity in young adults: a multivariate study

    PubMed Central

    Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D

    2014-01-01

    Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255

  15. Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior.

    PubMed

    Winstanley, Catharine A; Dalley, Jeffrey W; Theobald, David E H; Robbins, Trevor W

    2004-07-01

    Reducing levels of 5-HT in the central nervous system has been associated with increases in impulsive behavior. However, the impulsivity construct describes a wide range of behaviors, including the inability to withhold a response, intolerance to delay of reward and perseveration of a nonrewarded response. Although these behaviors are generally studied using instrumental paradigms, impulsivity may also be reflected in simple Pavlovian tasks such as autoshaping and conditioned activity. This experiment aimed to characterize further the effects of central 5-HT depletion and to investigate whether different behavioral measures of impulsivity are inter-related, thus validating the construct. Rats received intracerebroventricular (ICV) infusions of vehicle (n=10) or the serotonergic neurotoxin 5,7-dihydroxytryptamine (n=12) which depleted forebrain 5-HT levels by about 90%. Lesioned animals showed significant increases in the speed and number of responses made in autoshaping, increased premature responding on a simple visual attentional task, enhanced expression of locomotor activity conditioned to food presentation, yet no change in impulsive choice was observed, as measured by a delay-discounting paradigm. Significant positive correlations were found between responses made in autoshaping and the level of conditioned activity, indicating a possible common basis for these behaviors, yet no correlations were found between other behavioral measures. These data strengthen and extend the hypothesis that 5-HT depletion increases certain types of impulsive responding. However, not all measures of impulsivity appear to be uniformly affected by 5-HT depletion, or correlate with each other, supporting the suggestion that impulsivity is not a unitary construct.

  16. Finite Mixture Dynamic Regression Modeling of Panel Data with Implications for Dynamic Response Analysis

    ERIC Educational Resources Information Center

    Kaplan, David

    2005-01-01

    This article considers the problem of estimating dynamic linear regression models when the data are generated from finite mixture probability density function where the mixture components are characterized by different dynamic regression model parameters. Specifically, conventional linear models assume that the data are generated by a single…

  17. Dynamic and thermal response finite element models of multi-body space structural configurations

    NASA Technical Reports Server (NTRS)

    Edighoffer, Harold H.

    1987-01-01

    Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.

  18. Eyes wide shopped: shopping situations trigger arousal in impulsive buyers.

    PubMed

    Serfas, Benjamin G; Büttner, Oliver B; Florack, Arnd

    2014-01-01

    The present study proposes arousal as an important mechanism driving buying impulsiveness. We examined the effect of buying impulsiveness on arousal in non-shopping and shopping contexts. In an eye-tracking experiment, we measured pupil dilation while participants viewed and rated pictures of shopping scenes and non-shopping scenes. The results demonstrated that buying impulsiveness is closely associated with arousal as response to viewing pictures of shopping scenes. This pertained for hedonic shopping situations as well as for utilitarian shopping situations. Importantly, the effect did not emerge for non-shopping scenes. Furthermore, we demonstrated that arousal of impulsive buyers is independent from cognitive evaluation of scenes in the pictures.

  19. Low-Velocity Impact Response and Finite Element Analysis of Four-Step 3-D Braided Composites

    NASA Astrophysics Data System (ADS)

    Sun, Baozhong; Zhang, Yan; Gu, Bohong

    2013-08-01

    The low-velocity impact characters of 3-D braided carbon/epoxy composites were investigated from experimental and finite element simulation approaches. The quasi-static tests were carried out at a constant velocity of 2 mm/min on MTS 810.23 material tester system to obtain the indentation load-displacement curves and indentation damages. The low-velocity tests were conducted at the velocities from 1 m/s to 6 m/s (corresponding to the impact energy from 3.22 J to 116 J) on Instron Dynatup 9250 impact tester. The peak force, energy for peak force, time to peak force, and total energy absorption were obtained to determine the impact responses of 3-D braided composites. A unit cell model was established according to the microstructure of 3-D braided composites to derive the constitutive equation. Based on the model, a user-defined material subroutine (VUMAT) has been compiled by FORTRAN and connected with commercial finite element code ABAQUS/Explicit to calculate the impact damage. The unit cell model successfully predicted the impact response of 3-D braided composites. Furthermore, the stress wave propagation and failure mechanisms have been revealed from the finite element simulation results and ultimate damage morphologies of specimens.

  20. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    SciTech Connect

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  1. Experimental Validation of Two-dimensional Finite Element Method for Simulating Constitutive Response of Polycrystals During High Temperature Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Agarwal, Sumit; Briant, Clyde L.; Krajewski, Paul E.; Bower, Allan F.; Taleff, Eric M.

    2007-04-01

    A finite element method was recently designed to model the mechanisms that cause superplastic deformation (A.F. Bower and E. Wininger, A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation, J. Mech. Phys. Solids, 2004, 52, p 1289-1317). The computations idealize the solid as a collection of two-dimensional grains, separated by sharp grain boundaries. The grains may deform plastically by thermally activated dislocation motion, which is modeled using a conventional crystal plasticity law. The solid may also deform by sliding on the grain boundaries, or by stress-driven diffusion of atoms along grain boundaries. The governing equations are solved using a finite element method, which includes a front-tracking procedure to monitor the evolution of the grain boundaries and surfaces in the solid. The goal of this article is to validate these computations by systematically comparing numerical predictions to experimental measurements of the elevated-temperature response of aluminum alloy AA5083 (M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A, 2005, 36(5), p 1249-1261). The experimental work revealed that a transition occurs from grain-boundary sliding to dislocation (solute-drag) creep at approximately 0.001/s for temperatures between 425 and 500 °C. In addition, increasing the grain size from 7 to 10 μm decreased the transition to significantly lower strain rates. Predictions from the finite element method accurately predict the effect of grain size on the transition in deformation mechanisms.

  2. Ballistic impulse gauge

    DOEpatents

    Ault, Stanley K.

    1993-01-01

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.

  3. Ballistic impulse gauge

    DOEpatents

    Ault, S.K.

    1993-12-21

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring. 4 figures.

  4. Benchmark solution of the dynamic response of a spherical shell at finite strain

    SciTech Connect

    Versino, Daniele; Brock, Jerry S.

    2016-09-28

    Our paper describes the development of high fidelity solutions for the study of homogeneous (elastic and inelastic) spherical shells subject to dynamic loading and undergoing finite deformations. The goal of the activity is to provide high accuracy results that can be used as benchmark solutions for the verification of computational physics codes. Furthermore, the equilibrium equations for the geometrically non-linear problem are solved through mode expansion of the displacement field and the boundary conditions are enforced in a strong form. Time integration is performed through high-order implicit Runge–Kutta schemes. Finally, we evaluate accuracy and convergence of the proposed method by means of numerical examples with finite deformations and material non-linearities and inelasticity.

  5. Benchmark solution of the dynamic response of a spherical shell at finite strain

    DOE PAGES

    Versino, Daniele; Brock, Jerry S.

    2016-09-28

    Our paper describes the development of high fidelity solutions for the study of homogeneous (elastic and inelastic) spherical shells subject to dynamic loading and undergoing finite deformations. The goal of the activity is to provide high accuracy results that can be used as benchmark solutions for the verification of computational physics codes. Furthermore, the equilibrium equations for the geometrically non-linear problem are solved through mode expansion of the displacement field and the boundary conditions are enforced in a strong form. Time integration is performed through high-order implicit Runge–Kutta schemes. Finally, we evaluate accuracy and convergence of the proposed method bymore » means of numerical examples with finite deformations and material non-linearities and inelasticity.« less

  6. Impulsivity, frontal lobes and risk for addiction.

    PubMed

    Crews, Fulton Timm; Boettiger, Charlotte Ann

    2009-09-01

    Alcohol and substance abuse disorders involve continued use of substances despite negative consequences, i.e. loss of behavioral control of drug use. The frontal-cortical areas of the brain oversee behavioral control through executive functions. Executive functions include abstract thinking, motivation, planning, attention to tasks and inhibition of impulsive responses. Impulsiveness generally refers to premature, unduly risky, poorly conceived actions. Dysfunctional impulsivity includes deficits in attention, lack of reflection and/or insensitivity to consequences, all of which occur in addiction [Evenden JL. Varieties of impulsivity. Psychopharmacology (Berl) 1999;146:348-361.; de Wit H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol 2009;14:22-31]. Binge drinking models indicate chronic alcohol damages in the corticolimbic brain regions [Crews FT, Braun CJ, Hoplight B, Switzer III RC, Knapp DJ. Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats. Alcohol Clin Exp Res 2000;24:1712-1723] causing reversal learning deficits indicative of loss of executive function [Obernier JA, White AM, Swartzwelder HS, Crews FT. Cognitive deficits and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol Biochem Behav 2002b;72:521-532]. Genetics and adolescent age are risk factors for alcoholism that coincide with sensitivity to alcohol-induced neurotoxicity. Cortical degeneration from alcohol abuse may increase impulsivity contributing to the development, persistence and severity of alcohol use disorders. Interestingly, abstinence results in bursts of neurogenesis and brain regrowth [Crews FT, Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol 2009;44:115-127]. Treatments for alcoholism, including naltrexone pharmacotherapy and psychotherapy may work through improving executive functions. This review will examine the

  7. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  8. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  9. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  10. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  11. Impulse response of nonlinear Schrödinger equation and its implications for pre-dispersed fiber-optic communication systems.

    PubMed

    Kumar, Shiva; Shao, Jing; Liang, Xiaojun

    2014-12-29

    In the presence of pre-dispersion, an exact solution of nonlinear Schrödinger equation (NLSE) is derived for impulse input. The phase factor of the exact solution is obtained in a closed form using the exponential integral. The nonlinear interaction among periodically placed impulses launched at the input is investigated, and the condition under which these pulses do not exchange energy is examined. It is found that if the complex weights of the impulses at the input have a secant-hyperbolic envelope and a proper chirp factor, they will propagate over long distances without exchanging energy. To describe their interaction, a discrete version of NLSE is derived. The derived equation is a form of discrete self-trapping (DST) equation, which is found to admit fundamental and higher order soliton solutions in the presence of high pre-dispersion. Nonlinear eigenmodes derived here may be useful for description of signal propagation and nonlinear interaction in highly pre-dispersion fiber-optic systems.

  12. Does impulse noise induce vestibular disturbances?

    PubMed

    Pyykkö, I; Aalto, H; Ylikoski, J

    1989-01-01

    The effect of impulse noise on postural stability was evaluated in 54 subjects from the Finnish army, who were suffering from acute hearing loss caused by exposure to firearms noise. For referents we used 20 non-exposed army recruits and 39 civilian volunteers. The effects of vision, pressoreceptor function and proprioception were stepwise excluded or altered, leaving mainly the vestibular guidance of postural control intact. Since the postural perturbation was fairly smooth during these instances we assume that the condition evaluates mainly the function of the otolith organs in guiding stance. We found no difference in any of the test conditions used, between normal controls, army controls and impulse noise exposed subjects. Furthermore, there was no dose response with body sway and severity of hearing loss. The results indicate that impulse noise may not be the cause of significant functional changes in the vestibular system that can account for noise-induced postural instability.

  13. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models.

    PubMed

    Savage, P; O'Donnell, B P; McHugh, P E; Murphy, B P; Quinn, D F

    2004-02-01

    Cardiovascular stents are metal scaffolds that are used in the treatment of atherosclerosis. These devices are typically composed of very thin struts (< or = 100 microm thickness, for coronary applications). At this size-scale the question arises as to the suitability of using bulk material properties in stent design. This paper investigates the use of finite element analysis to predict the mechanical failure of stent struts, typical of the strut size used in coronary stents. 316 L stainless steel in uniaxial loading was considered. To accurately represent the constitutive behavior of the material at this size-scale, a computational micromechanics approach was taken involving an explicit representation of the grain structure in the steel struts, and the use of crystal plasticity theory to represent the constitutive behavior of the individual grains. The development of the finite element models is discussed and results are presented for the predictions of tensile mechanical behavior as a function of strut thickness. The results showed that using this modelling approach, a size effect, already seen experimentally, is produced. This has significant implications for stent design, especially in the context of the desire to produce smaller stents for small bore neurovascular and peripheral artery applications.

  14. Annoyance of helicopter impulsive noise

    NASA Technical Reports Server (NTRS)

    Dambra, F.; Damongeot, A.

    1978-01-01

    Psychoacoustic studies of helicopter impulsive noise were conducted in order to qualify additional annoyance due to this feature and to develop physical impulsiveness descriptors to develop impulsivity correction methods. The currently proposed descriptors and methods of impulsiveness correction are compared using a multilinear regression analysis technique. It is shown that the presently recommended descriptor and correction method provides the best correlation with the subjective evaluations of real helicopter impulsive noises. The equipment necessary for data processing in order to apply the correction method is discussed.

  15. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    NASA Astrophysics Data System (ADS)

    Çelebi, E.; Göktepe, F.; Karahan, N.

    2012-11-01

    The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D) finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI) system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  16. Steep front short duration low voltage impulse performance of distribution transformers

    SciTech Connect

    Burrage, L.M.; Veverka, E.F.; McConnell, B.W.

    1987-01-01

    An extensive literature search of steep front short duration (SFSD) impulse sources, their characteristics and effect on power system equipment has led to the specification of a test program to evaluate key apparatus and insulations. Distribution transformers, although not overly susceptible to impulse damage, have been selected as one of the candidate apparatus for low and high voltage SFSD impulse tests. This paper covers the low voltage SFSD impulse response of conventional oil insulated shell form and core form distribution transformers.

  17. Pre-attentive information processing and impulsivity in bipolar disorder.

    PubMed

    Swann, Alan C; Lijffijt, Marijn; Lane, Scott D; Steinberg, Joel L; Acas, Michelle D; Cox, Blake; Moeller, F Gerard

    2013-12-01

    Early responses to stimuli can be measured by sensory evoked potentials (EP) using repeated identical stimuli, S1 and S2. Response to S1 may represent efficient stimulus detection, while suppression of response to S2 may represent inhibition. Early responses to stimuli may be related to impulsivity. We compared EP reflecting stimulus detection and inhibition in bipolar disorder and healthy controls, and investigated relationships to impulsivity. Subjects were 48 healthy controls without family histories of mood disorder and 48 with bipolar disorder. EP were measured as latencies and amplitudes for auditory P50 (pre-attentional), N100 (initial direction of attention) and P200 (initial conscious awareness), using a paired-click paradigm, with identical stimuli 0.5 s apart. Impulsivity was measured by questionnaire and by laboratory tests for inability to suppress responses to stimuli or to delay response for a reward. Analyses used general linear models. S1 amplitudes for P50, N100, and P200, and gating of N100 and P200, were lower in bipolar disorder than in controls. P50 S1 amplitude correlated with accurate laboratory-task responding, and S2 amplitude correlated with impulsive task performance and fast reaction times, in bipolar disorder. N100 and P200 EP did not correlate with impulsivity. These findings were independent of symptoms, treatment, or substance-use history. EPs were not related to questionnaire-measured or reward-based impulsivity. Bipolar I disorder is characterized by reduced pre-attentional and early attentional stimulus registration relative to controls. Within bipolar disorder, rapid-response impulsivity correlates with impaired pre-attentional response suppression. These results imply specific relationships between ERP-measured response inhibition and rapid-response impulsivity.

  18. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  19. EARTHQUAKE RESPONSE ANALYSIS OF STEEL PORTAL FRAMES BY PSEUDODYNAMIC SIMULATION TECHNIQUE USING A GENERAL-PURPOSE FINITE ELEMENT ANALYSIS PROGRAM

    NASA Astrophysics Data System (ADS)

    Miki, Toshihiro; Mizusawa, Tomisaku; Yamada, Osamu; Toda, Tomoki

    This paper studies the earthquake response of steel portal frames when the shear collapse occurs at the centre of the beam. The pseudodynamic simulation technique for the earthquake response analysis of the frames is developed in correspondence to the pseudodynamic substructure testing method. For the thin-walled box element under shear force in the middle of beam, the numerical process is utilized by a general-purpose finite element analysis program. The numerical results show the shear collapse behaviour in stiffened box beams and corresponding restoring force - displacement relationship of frames. The advantages of shear collapse of beams for the use in frames during earthquakes are discussed from the point of view of the hysteretic energy dissipated by the column base.

  20. CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues.

    PubMed

    Wang, L; Jacques, S L; Zheng, L

    1997-11-01

    A convolution program (CONV) solving responses to a collimated finite diameter photon beam perpendicularly incident on a multi-layered tissue has been coded in ANSI Standard C, hence, the program can be executed on various computers. The program, employing an extended trapezoidal rule for integration, convolves the responses to an infinitely narrow photon beam computed by a companion program (MCML). Dynamic data allocation is used for CONV as well as MCML, therefore, the number of tissue layers and grid elements of the grid system can be varied at run time. The potential error due to not scoring the first photon-tissue interactions separately is illustrated. The program, including the source code, has been in the public domain since 1992 and can be downloaded from the web site at http:(/)/biomed.tamu.edu/-lw.

  1. A finite element model technique to determine the mechanical response of a lumbar spine segment under complex loads.

    PubMed

    Tsouknidas, Alexander; Michailidis, Nikoalos; Savvakis, Savvas; Anagnostidis, Kleovoulos; Bouzakis, Konstantinos-Dionysios; Kapetanos, Georgios

    2012-08-01

    This study presents a CT-based finite element model of the lumbar spine taking into account all function-related boundary conditions, such as anisotropy of mechanical properties, ligaments, contact elements, mesh size, etc. Through advanced mesh generation and employment of compound elements, the developed model is capable of assessing the mechanical response of the examined spine segment for complex loading conditions, thus providing valuable insight on stress development within the model and allowing the prediction of critical loading scenarios. The model was validated through a comparison of the calculated force-induced inclination/deformation and a correlation of these data to experimental values. The mechanical response of the examined functional spine segment was evaluated, and the effect of the loading scenario determined for both vertebral bodies as well as the connecting intervertebral disc.

  2. Finite-size effects on the magnetoelectric response of field-driven ferroelectric/ferromagnetic chains

    NASA Astrophysics Data System (ADS)

    Jia, Chenglong; Sukhov, Alexander; Horley, Paul P.; Berakdar, Jamal

    2011-07-01

    We study theoretically the coupled multiferroic dynamics of a finite one-dimensional ferroelectric/ferromagnet chain driven by harmonic magnetic and electric fields as a function of the chain length. We consider the case of a linear magnetoelectric coupling that results from the spin-polarized screening charge at the interface. We performed Monte-Carlo simulations and calculations based on the coupled Landau-Lifshitz-Gilbert and Landau-Khalatnikov equations showing that the net magnetization and the total polarization of thin heterostructures, i.e. with up to ten ferroelectric and ferromagnetic sites counted from the interface, can be completely reversed by external electric and magnetic fields, respectively. However, for larger systems merely a limited magnetoelectrical control is achievable.

  3. Waiting Impulsivity: The Influence of Acute Methylphenidate and Feedback

    PubMed Central

    Chang-Webb, Yee Chien; Morris, Laurel S.; Cooper, Ella; Sethi, Arjun; Baek, Kwangyeol; Grant, Jon; Robbins, Trevor W.; Harrison, Neil A

    2016-01-01

    Background: The ability to wait and to weigh evidence is critical to behavioral regulation. These behaviors are known as waiting and reflection impulsivity. In Study 1, we examined the effects of methylphenidate, a dopamine and norepinephrine reuptake inhibitor, on waiting and reflection impulsivity in healthy young individuals. In study 2, we assessed the role of learning from feedback in disorders of addiction. Methods: We used the recently developed 4-Choice Serial Reaction Time task and the Beads task. Twenty-eight healthy volunteers were tested twice in a randomized, double-blind, placebo-controlled cross-over trial with 20mg methylphenidate. In the second study, we analyzed premature responses as a function of prior feedback in disorders of addiction. Results: Study 1: Methylphenidate was associated with greater waiting impulsivity to a cue predicting reward along with faster responding to target onset without a generalized effect on reaction time or attention. Methylphenidate influenced reflection impulsivity based on baseline impulsivity. Study 2: More premature responses occurred after premature responses in stimulant-dependent subjects. Conclusions: We show that methylphenidate has dissociable effects on waiting and reflection impulsivity. Chronic stimulant exposure impairs learning from prior premature responses, suggesting a failure to learn that premature responding is suboptimal. These findings provide a greater mechanistic understanding of waiting impulsivity. PMID:26136351

  4. Heroin and amphetamine users display opposite relationships between trait and neurobehavioral dimensions of impulsivity

    PubMed Central

    Vassileva, Jasmin; Paxton, Jessica; Moeller, F. Gerard; Wilson, Michael; Bozgunov, Kiril; Martin, Eileen; Gonzalez, Raul; Vasilev, Georgi

    2014-01-01

    The multidimensional construct of impulsivity is implicated in all phases of the addiction cycle. Substance dependent individuals (SDIs) demonstrate elevated impulsivity on both trait and laboratory tests of neurobehavioral impulsivity; however our understanding of the relationship between these different aspects of impulsivity in users of different classes of drugs remains rudimentary. The goal of this study was to assess for commonalities and differences in the relationships between trait and neurobehavioral impulsivity in heroin and amphetamine addicts. Participants included 58 amphetamine dependent (ADI) and 74 heroin dependent individuals (HDI) in protracted abstinence. We conducted principal components analyses (PCA) on two self-report trait and six neurobehavioral measures of impulsivity, which resulted in two trait impulsivity (action, planning) and four neurobehavioral impulsivity composites (discriminability, response inhibition efficiency, decision-making efficiency, quality of decision-making). Multiple regression analyses were used to determine whether neurobehavioral impulsivity is predicted by trait impulsivity and drug type. The analyses revealed a significant interaction between drug type and trait action impulsivity on response inhibition efficiency, which showed opposite relationships for ADIs and HDIs. Specifically, increased trait action impulsivity was associated with worse response inhibition efficiency in ADIs, but with better efficiency in HDIs. These results challenge the unitary account of drug addiction and contribute to a growing body of literature that reveals important behavioral, cognitive, and neurobiological differences between users of different classes of drugs. PMID:24342174

  5. Heroin and amphetamine users display opposite relationships between trait and neurobehavioral dimensions of impulsivity.

    PubMed

    Vassileva, Jasmin; Paxton, Jessica; Moeller, F Gerard; Wilson, Michael J; Bozgunov, Kiril; Martin, Eileen M; Gonzalez, Raul; Vasilev, Georgi

    2014-03-01

    The multidimensional construct of impulsivity is implicated in all phases of the addiction cycle. Substance dependent individuals (SDIs) demonstrate elevated impulsivity on both trait and laboratory tests of neurobehavioral impulsivity; however our understanding of the relationship between these different aspects of impulsivity in users of different classes of drugs remains rudimentary. The goal of this study was to assess for commonalities and differences in the relationships between trait and neurobehavioral impulsivity in heroin and amphetamine addicts. Participants included 58 amphetamine dependent (ADIs) and 74 heroin dependent individuals (HDIs) in protracted abstinence. We conducted Principal Component Analyses (PCA) on two self-report trait and six neurobehavioral measures of impulsivity, which resulted in two trait impulsivity (action, planning) and four neurobehavioral impulsivity composites (discriminability, response inhibition efficiency, decision-making efficiency, quality of decision-making). Multiple regression analyses were used to determine whether neurobehavioral impulsivity is predicted by trait impulsivity and drug type. The analyses revealed a significant interaction between drug type and trait action impulsivity on response inhibition efficiency, which showed opposite relationships for ADIs and HDIs. Specifically, increased trait action impulsivity was associated with worse response inhibition efficiency in ADIs, but with better efficiency in HDIs. These results challenge the unitary account of drug addiction and contribute to a growing body of literature that reveals important behavioral, cognitive, and neurobiological differences between users of different classes of drugs.

  6. Impulse Testing of Corporate-Fed Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F.

    2011-01-01

    This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies

  7. Functional impulsivity and reinforcement sensitivity theory.

    PubMed

    Smillie, Luke D; Jackson, Chris J

    2006-02-01

    In this article, we attempt to integrate Dickman's (1990) descriptive concept of Functional Impulsivity (FI) with Gray's (1970, 1991) Reinforcement Sensitivity Theory (RST). Specifically, we consider that FI bears great conceptual similarity to Gray's concept of reward-reactivity, which is thought to be caused by the combined effects of a Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS). In our first study, we examine the construct validity and structural correlates of FI. Results indicate that FI is related positively to measures of BAS and Extraversion, negatively to measures of BIS and Neuroticism, and is separate from Psychoticism and typical trait Impulsivity, which Dickman calls Dysfunctional Impulsivity (DI). In our second study, we use a go/no-go discrimination task to examine the relationship between FI and response bias under conditions of rewarding and punishing feedback. Results indicate that FI, along with two measures of BAS, predicted the development of a response bias for the rewarded alternative. In comparison, high DI appeared to reflect indifference toward either reward or punishment. We consider how these findings might reconcile the perspectives of Gray and Dickman and help clarify the broader understanding of Impulsivity.

  8. A gravitational impulse model predicts collision impulse and mechanical work during a step-to-step transition.

    PubMed

    Yeom, Jin; Park, Sukyung

    2011-01-04

    The simplest walking model, which assumes an instantaneous collision with negligible gravity effect, is limited in its representation of the collision mechanics of human gaits because the actual step-to-step transition occurs over a finite duration of time with finite impulsive ground reaction forces (GRFs) that have the same order of magnitude as the gravitational force. In this study, we propose a new collision model that includes the contribution of the gravitational impulse to the momentum change of the center of mass (COM) during a step-to-step transition. To validate the model, we measured the GRFs of six subjects' over-ground walking at five different gait speeds and calculated the collision impulses and mechanical work. The data showed a significant contribution of the gravitational impulse to the momentum change during collision. To compensate for the gravity, the magnitudes of collision impulse and COM work were estimated to be much greater than in previous predictions. Consistent with the model prediction, push-off propulsion fully compensated for the collision loss, implying the step-to-step transition occurred in an energetically optimal manner. The new model predicted a moderate change in the collision mechanics with gait speed, which seems to be physiologically achievable. The gravitational collision model enables us to better understand collision dynamics during a step-to-step transition.

  9. Active control of the forced and transient response of a finite beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John T.

    1990-01-01

    Structural vibrations from a point force are modelled on a finite beam. This research explores the theoretical limit on controlling beam vibrations utilizing another point source as an active controller. Three different types of excitation are considered, harmonic, random, and transient. For harmonic excitation, control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam. Control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, integrating the expected value of the displacement squared over the required interval, is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. The form of the controller is specified as either one or two delayed pulses, thus constraining the controller to be casual. The best possible control is examined while varying the region of control and the controller location. It is found that control is always possible using either one or two control pulses.

  10. Nonlinear viscoelastic response of highly filled elastomers under multiaxial finite deformation

    NASA Technical Reports Server (NTRS)

    Peng, Steven T. J.; Landel, Robert F.

    1990-01-01

    A biaxial tester was used to obtain precise biaxial stress responses of highly filled, high strain capability elastomers. Stress-relaxation experiments show that the time-dependent part of the relaxation response can be reasonably approximated by a function which is strain and biaxiality independent. Thus, isochronal data from the stress-relaxation curves can be used to determine the stored energy density function. The complex behavior of the elastomers under biaxial deformation may be caused by dewetting.

  11. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  12. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    SciTech Connect

    Franco-Pérez, Marco E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Ayers, Paul W. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Gázquez, José L. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Vela, Alberto E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  13. Impulse pumping modelling and simulation

    NASA Astrophysics Data System (ADS)

    Pierre, B.; Gudmundsson, J. S.

    2010-08-01

    Impulse pumping is a new pumping method based on propagation of pressure waves. Of particular interest is the application of impulse pumping to artificial lift situations, where fluid is transported from wellbore to wellhead using pressure waves generated at wellhead. The motor driven element of an impulse pumping apparatus is therefore located at wellhead and can be separated from the flowline. Thus operation and maintenance of an impulse pump are facilitated. The paper describes the different elements of an impulse pumping apparatus, reviews the physical principles and details the modelling of the novel pumping method. Results from numerical simulations of propagation of pressure waves in water-filled pipelines are then presented for illustrating impulse pumping physical principles, and validating the described modelling with experimental data.

  14. Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence?

    PubMed

    Grant, Jon E; Chamberlain, Samuel R

    2014-11-01

    Substance use disorders are prevalent and debilitating. Certain behavioral syndromes ('behavioral addictions') characterized by repetitive habits, such as gambling disorder, stealing, shopping, and compulsive internet use, may share clinical, co-morbid, and neurobiological parallels with substance addictions. This review considers overlap between substance and behavioral addictions with a particular focus on impulsive action (inability to inhibit motor responses), and impulsive choice (preference for immediate smaller rewards to the detriment of long-term outcomes). We find that acute consumption of drugs with abuse potential is capable of modulating impulsive choice and action, although magnitude and direction of effect appear contingent on baseline function. Many lines of evidence, including findings from meta-analyses, show an association between chronic drug use and elevated impulsive choice and action. In some instances, elevated impulsive choice and action have been found to predate the development of substance use disorders, perhaps signifying their candidacy as objective vulnerability markers. Research in behavioral addictions is preliminary, and has mostly focused on impulsive action, finding this to be elevated versus controls, similar to that seen in chronic substance use disorders. Only a handful of imaging studies has explored the neural correlates of impulsive action and choice across these disorders. Key areas for future research are highlighted along with potential implications in terms of neurobiological models and treatment. In particular, future work should further explore whether the cognitive deficits identified are state or trait in nature: i.e. are evident before addiction perhaps signaling risk; or are a consequence of repetitive engagement in habitual behavior; and effects of novel agents known to modulate these cognitive abilities on various addictive disorders.

  15. On the use of waveform images to describe the initial response of finite-length waveguides

    NASA Astrophysics Data System (ADS)

    Ginsberg, Jerry H.

    2005-09-01

    The d'Alembert solution of the wave equation can be adapted to describe reflection from planar boundaries. One technique for doing so images the incident wave on the opposite side of the boundary. This concept has been introduced in a few texts, most extensively by Morse and Ingard [Theoretical Acoustics, McGraw-Hill, New York (1964), pp. 106-115], but only for nondissipative ends (infinite or zero impedance.) This paper formalizes the procedure for the case where the boundary has a resistive impedance that is independent of frequency, and then extends it to treat waveguides of finite length. It is shown that the field that results from arbitrary initial conditions can be represented by an infinite number of images. This leads to a representation of the acoustic field as oppositely propagating wave in an unbounded waveguide, with only a limited number of images overlapping at any instant. Both mathematical and graphical descriptions of these waves are derived. In addition to assisting the student to understand the evolution of the field, mathematical analysis of the image construction leads to a number of physical and mathematical insights to fundamental acoustic phenomena. These include the fact that the field in the dissipationless case can be represented as a modal series with associated natural frequencies, and a quantitative understanding of the manner in which the field decays when either end is dissipative. A corollary of the latter analysis is an expression for reverberation time that is remarkably similar to the Norris-Eyring formula. From an instructional viewpoint, the fact that all results are derived without recourse to solving differential equations makes the image waveform concept especially useful as a way of introducing new students to fundamental acoustic phenomena.

  16. Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures.

    PubMed

    Tu, Wenqiong; Pindera, Marek-Jerzy

    2013-12-01

    The Particle Swarm Optimization algorithm driven by a homogenized-based model is employed to target the response of three types of heart-valve chordae tendineae with different stiffening characteristics due to different degrees of waviness of collagen fibril/fiber bundles. First, geometric and material parameters are identified through an extensive parametric study that produce excellent agreement of the simulated response based on simplified unit cell architectures with the actual response of the complex biological tissue. These include amplitude and wavelength of the crimped chordae microstructure, elastic moduli of the constituent phases, and degree of microstructural refinement of the stiff phase at fixed volume fraction whose role in the stiffening response is elucidated. The study also reveals potential non-uniqueness of bio-inspired wavy microstructures in attaining the targeted response of certain chordae tendineae crimp configurations. The homogenization-based Particle Swarm Optimization algorithm, whose predictions are validated through the parametric study, is then shown to be an excellent tool in identifying optimal unit cell architectures in the design space that exhibits very steep gradients. Finally, defect criticality of optimal unit cell architectures is investigated in order to assess their feasibility in replacing actual biological tendons with stiffening characteristics.

  17. Development of a Finite Element Model of the Human Shoulder to Investigate the Mechanical Responses and Injuries in Side Impact

    NASA Astrophysics Data System (ADS)

    Iwamoto, Masami; Miki, Kazuo; Yang, King H.

    Previous studies in both fields of automotive safety and orthopedic surgery have hypothesized that immobilization of the shoulder caused by the shoulder injury could be related to multiple rib fractures, which are frequently life threatening. Therefore, for more effective occupant protection, it is important to understand the relationship between shoulder injury and multiple rib fractures in side impact. The purpose of this study is to develop a finite element model of the human shoulder in order to understand this relationship. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder. The model also included approaches to represent bone fractures and joint dislocations. The relationships between shoulder injury and immobilization of the shoulder are discussed using model responses for lateral shoulder impact. It is also discussed how the injury can be related to multiple rib fractures.

  18. Finite Element Nonlinear Random Response of Composite Panels of Arbitrary Shape to Acoustic and Thermal Loads

    DTIC Science & Technology

    1997-10-31

    and Monte Cristo , off the Italian western coast." It was Monday, when people went to work, they read this news very sadly. The jet airliner was the...domain monte carlo for nonlinear response and sonic fatigue". 13th AIAA Aeroacoustics Conference, Paper 90-3938, Tallahassee, FL, October 1990. 89

  19. Propagation of Impulse-Like Waveforms Through the Ionosphere Modeled by Cold Plasma

    NASA Astrophysics Data System (ADS)

    Giri, D. V.; Dvorak, S. L.

    In this chapter, we have studied the propagation of short, impulse-like pulses propagating through the ionosphere. The ionosphere is modeled by simple, cold plasma. The impulse response of such a plasma model is known to consist of two terms. The first term is the impulse itself and the second term contains a Bessel function of first order. This means that the impulse propagates as an impulse followed by a long, oscillatory tail. The numerical example studied here is that of the prototype impulse radiating antenna (IRA). Closed-form expressions are developed for the prototype IRA waveform propagation through the cold-plasma model of the ionosphere. The results are cross-checked with numerical evaluation via a convolution process that uses the known impulse response.

  20. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    NASA Astrophysics Data System (ADS)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka

  1. Active Control of the Forced and Transient Response of a Finite Beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John Theodore

    1989-01-01

    When studying structural vibrations resulting from a concentrated source, many structures may be modelled as a finite beam excited by a point source. The theoretical limit on cancelling the resulting beam vibrations by utilizing another point source as an active controller is explored. Three different types of excitation are considered, harmonic, random, and transient. In each case, a cost function is defined and minimized for numerous parameter variations. For the case of harmonic excitation, the cost function is obtained by integrating the mean squared displacement over a region of the beam in which control is desired. A controller is then found to minimize this cost function in the control interval. The control interval and controller location are continuously varied for several frequencies of excitation. The results show that control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam, but control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, the cost function is realized by integrating the expected value of the displacement squared over the interval of the beam in which control is desired. This is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. A cost function representative of the beam vibration is obtained by integrating the transient displacement squared over a region of the beam and over all time. The form of the controller is chosen a priori as either one or two delayed pulses. Delays

  2. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Chen, Li-Qun; Yang, Shao-Pu

    2012-05-01

    The present paper investigates the convergence of the Galerkin method for the dynamic response of an elastic beam resting on a nonlinear foundation with viscous damping subjected to a moving concentrated load. It also studies the effect of different boundary conditions and span length on the convergence and dynamic response. A train-track or vehicle-pavement system is modeled as a force moving along a finite length Euler-Bernoulli beam on a nonlinear foundation. Nonlinear foundation is assumed to be cubic. The Galerkin method is utilized in order to discretize the nonlinear partial differential governing equation of the forced vibration. The dynamic response of the beam is obtained via the fourth-order Runge-Kutta method. Three types of the conventional boundary conditions are investigated. The railway tracks on stiff soil foundation running the train and the asphalt pavement on soft soil foundation moving the vehicle are treated as examples. The dependence of the convergence of the Galerkin method on boundary conditions, span length and other system parameters are studied.

  3. Validation of Shoulder Response of Human Body Finite-Element Model (GHBMC) Under Whole Body Lateral Impact Condition.

    PubMed

    Park, Gwansik; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R

    2016-08-01

    In previous shoulder impact studies, the 50th-percentile male GHBMC human body finite-element model was shown to have good biofidelity regarding impact force, but under-predicted shoulder deflection by 80% compared to those observed in the experiment. The goal of this study was to validate the response of the GHBMC M50 model by focusing on three-dimensional shoulder kinematics under a whole-body lateral impact condition. Five modifications, focused on material properties and modeling techniques, were introduced into the model and a supplementary sensitivity analysis was done to determine the influence of each modification to the biomechanical response of the body. The modified model predicted substantially improved shoulder response and peak shoulder deflection within 10% of the observed experimental data, and showed good correlation in the scapula kinematics on sagittal and transverse planes. The improvement in the biofidelity of the shoulder region was mainly due to the modifications of material properties of muscle, the acromioclavicular joint, and the attachment region between the pectoralis major and ribs. Predictions of rib fracture and chest deflection were also improved because of these modifications.

  4. Impulsive phase transport

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Bely-Dubau, Francoise; Brown, John C.; Dulk, George A.; Emslie, A. Gordon; Enome, Shinzo; Gabriel, Alan H.; Kundu, Mukul R.; Melrose, Donald; Neidig, Donald F.

    1986-01-01

    The transport of nonthermal electrons is explored. The thick-target electron beam model, in which electrons are presumed to be accelerated in the corona and typically thermalized primarily in the chromosphere and photosphere, is supported by observations throughout the electromagnetic spectrum. At the highest energies, the anisotropy of gamma-ray emission above 10 MeV clearly indicates that these photons are emitted by anisotropically-directed particles. The timing of this high-energy gamma-radiation with respect to lower-energy hard X-radiation implies that the energetic particles have short life-times. For collisional energy loss, this means that they are stopped in the chromosphere or below. Stereoscopic (two-spacecraft) observations at hard X-ray energies (up to 350 keV) imply that these lower-energy (but certainly nonthermal) electrons are also stopped deep in the chromosphere. Hard X-ray images show that, in spatially resolved flares whose radiation consists of impulsive bursts, the impulsive phase starts with X-radiation that comes mostly from the foot-points of coronal loops whose coronal component is outlined by microwaves.

  5. Evaluation of Head Response to Blast Using Sagittal and Transverse Finite Element Head Models

    DTIC Science & Technology

    2012-09-01

    scenario nce in results s and the air layer of nod ration caused b ssue Material priate constitu al parameters yperelastic ma curves at diff s were...viscous material model with bulk properties similar to those of water (Table 2). The viscosity was set to that of water , providing minimal resistance...expected odel predicte ere not include ssue by the nu response in th he brain in th ive parameter imum effectiv in rates did no odel predicte el. at 4 m

  6. Deformation and fracture of impulsively loaded sandwich panels

    NASA Astrophysics Data System (ADS)

    Wadley, H. N. G.; Børvik, T.; Olovsson, L.; Wetzel, J. J.; Dharmasena, K. P.; Hopperstad, O. S.; Deshpande, V. S.; Hutchinson, J. W.

    2013-02-01

    Light metal sandwich panel structures with cellular cores have attracted interest for multifunctional applications which exploit their high bend strength and impact energy absorption. This concept has been explored here using a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility in the welds and a narrow heat affected zone on either side of the weld by approximately 30%. Square, edge clamped sandwich panels and solid plates of equal mass per unit area were subjected to localized impulsive loading by the impact of explosively accelerated, water saturated, sand shells. The hydrodynamic load and impulse applied by the sand were gradually increased by reducing the stand-off distance between the test charge and panel surfaces. The sandwich panels suffered global bending and stretching, and localized core crushing. As the pressure applied by the sand increased, face sheet fracture by a combination of tensile stretching and shear-off occurred first at the two clamped edges of the panels that were parallel with the corrugation and weld direction. The plane of these fractures always lay within the heat affected zone of the longitudinal welds. For the most intensively loaded panels additional cracks occurred at the other clamped boundaries and in the center of the panel. To investigate the dynamic deformation and fracture processes, a particle-based method has been used to simulate the impulsive loading of the panels. This has been combined with a finite element analysis utilizing a modified Johnson-Cook constitutive relation and a Cockcroft-Latham fracture criterion that accounted for local variation in material properties. The fully coupled simulation approach enabled the relationships between the soil-explosive test charge design, panel geometry, spatially varying

  7. IMPULSIVITY PARAMETER FOR SOLAR FLARES

    SciTech Connect

    Fajardo-Mendieta, W. G.; Alvarado-Gómez, J. D.; Calvo-Mozo, B.; Martinez-Oliveros, J. C. E-mail: bcalvom@unal.edu.co E-mail: jalvarad@eso.org

    2016-02-10

    Three phases are typically observed during solar flares: the preflare, impulsive, and decay phases. During the impulsive phase, it is believed that the electrons and other particles are accelerated after the stored energy in the magnetic field is released by reconnection. The impulsivity of a solar flare is a quantifiable property that shows how quickly this initial energy release occurs. It is measured via the impulsivity parameter, which we define as the inverse of the overall duration of the impulsive phase. We take the latter as the raw width of the most prominent nonthermal emission of the flare. We computed this observable over a work sample of 48 M-class events that occurred during the current Solar Cycle 24 by using three different methods. The first method takes into account all of the nonthermal flare emission and gives very accurate results, while the other two just cover fixed energy intervals (30–40 keV and 25–50 keV) and are useful for fast calculations. We propose an alternative way to classify solar flares according to their impulsivity parameter values, defining three different types of impulsivity, namely, high, medium, and low. This system of classification is independent of the manner used to calculated the impulsivity parameter. Lastly, we show the relevance of this tool as a discriminator of different HXR generation processes.

  8. Teaching about Impulse and Momentum

    ERIC Educational Resources Information Center

    Franklin, Bill

    2004-01-01

    This American Association of Physics Teachers/Physics Teaching Resource Agents (APPT/PTRA) spiral-bound manual features labs and demos physics teachers can use to give students hands-on opportunities to learn about impulse and momentum. "Make-and-take activities" include AAPT Apparatus Contest winners "An Air Impulse Rocket," "A Fan Driven…

  9. Wave spectral response to sudden changes in wind direction in finite-depth waters

    NASA Astrophysics Data System (ADS)

    Aijaz, Saima; Rogers, W. Erick; Babanin, Alexander V.

    2016-07-01

    The response of a wind-sea spectrum to sudden changes in wind directions of 180° and 90° is investigated. Numerical simulations using the third-generation wave spectral model SWAN have been undertaken at micro timescales of 30 s and fine spatial resolution of less than 10 m. The results have been validated against the wave data collected during the field campaign at Lake George, Australia. The newly implemented 'ST6' physics in the SWAN model has been evaluated using a selection of bottom-friction terms and the two available functions for the nonlinear energy transfer: (1) exact solution of the nonlinear term (XNL), and (2) discrete interactions approximation (DIA) that parameterizes the nonlinear term. Good agreement of the modelled data is demonstrated directly with the field data and through the known experimental growth curves obtained from the extensive Lake George data set. The modelling results show that of the various combinations of models tested, the ST6/XNL model provides the most reliable computations of integral and spectral wave parameters. When the winds and waves are opposing (180° wind turn), the XNL is nearly twice as fast in the aligning the young wind-sea with the new wind direction than the DIA. In this case, the young wind-sea gradually decouples from the old waves and forms a new secondary peak. Unlike the 180° wind turn, there is no decoupling in the 90° wind turn and the entire spectrum rotates smoothly in the new direction. In both cases, the young wind-sea starts developing in the new wind direction within 10 min of the wind turn for the ST6 while the directional response of the default physics lags behind with a response time that is nearly double of ST6. The modelling results highlight the differences in source term balance among the different models in SWAN. During high wind speeds, the default settings provide a larger contribution from the bottom-friction dissipation than the whitecapping. In contrast, the whitecapping

  10. Finite element modeling of the dynamic response of a composite reinforced concrete bridge for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zanjani Zadeh, V.; Patnaik, A.

    2014-06-01

    This paper describes three-dimensional (3D) finite element (FE) modeling of a composite steel stinger supported reinforced concrete (RC) deck highway bridge subjected to moving truck loads. FE models were validated using test data that were generated elsewhere for structural health monitoring. The FE models were established using a commercial FE analysis package called ABAQUS/standard. The case study bridge was discretized to a combination of shell and solid elements which represent the deck and piers, respectively. Numerous constrain interactions were defined to make the model suitable to obtain accurate results. Moving loads induced by two standard AASHTO trucks were developed through a specific load-time history, applied on 35 nodes on the superstructure. To study the dynamic behavior of the bridge under a moving load, a modal analysis followed by an implicit dynamic analysis was carried out. Acceptable agreement was found between the field measurements and FE simulation. Most concerned dynamic response was strains at different locations in bridge girders and columns, because it is the only critical parameter that can be measured with confidence during SHM at site. The range of strains determined in analysis was reasonably close to the measured strains at the site of the study bridge. Several parameters including damping, truck weight and speed, and material properties were studied. Truck speed had the highest effect on strain response of both girders and columns.

  11. Impulsivity and rapid decision-making for reward.

    PubMed

    Burnett Heyes, Stephanie; Adam, Robert J; Urner, Maren; van der Leer, Leslie; Bahrami, Bahador; Bays, Paul M; Husain, Masud

    2012-01-01

    Impulsivity is a feature of many brain disorders. Although often defined as the predisposition to act with an inadequate degree of deliberation, forethought, or control, it has proven difficult to measure. This may in part be due to the fact that it is a multifaceted construct, with impulsive decisions potentially arising as a result of a number of underlying mechanisms. Indeed, a "functional" degree of impulsivity may even promote effective behavior in healthy participants in a way that can be advantageous under certain circumstances. Although many tasks have been developed to study impulsivity, few examine decisions made rapidly, for time-sensitive rewards. In the current study we examine behavior in 59 adults on a manual "Traffic Light" task which requires participants to take risks under time pressure, if they are to maximize reward. We show that behavioral variables that index rapid anticipatory responding in this paradigm are correlated with one, specific self-report measure of impulsivity: "lack of premeditation" on the UPPS Impulsive Behavior Scale. Participants who scored more highly on this subscale performed better on the task. Moreover, anticipatory behavior reduced significantly with age (18-79 years), an effect that continued to be upheld after correction for potential age differences in the ability to judge the timing of responses. Based on these findings, we argue that the Traffic Light task provides a parametric method to study one aspect of impulsivity in health and disease: namely, rapid decision-making in pursuit of risky, time-sensitive rewards.

  12. Negative emotion-driven impulsivity predicts substance dependence problems.

    PubMed

    Verdejo-García, Antonio; Bechara, Antoine; Recknor, Emily C; Pérez-García, Miguel

    2007-12-01

    Impulsivity is predominant among users of several drugs of abuse including alcohol, cocaine, and amphetamines, and it is considered a risk factor for later development of alcohol and substance abuse and dependence. However, there is little consensus on how impulsivity should be defined and measured, and there are few studies on the relationship between separate dimensions of impulsivity and substance dependence. We used a multidimensional measure of impulsivity (the UPPS scale) to examine differences between 36 individuals with substance dependence (ISD) and 36 drug-free controls on the dimensions of urgency, lack of premeditation, lack of perseverance, and sensation seeking. In addition, we examined which dimensions of impulsivity better predicted addiction-related problems as measured with the addiction severity index. Results revealed that ISD show high scores on dimensions of urgency, lack of perseverance, and lack of premeditation (effect sizes ranging from 1.10 to 1.96), but not on sensation seeking. Among the different impulsivity dimensions, urgency was the best predictor of severity of medical, employment, alcohol, drug, family/social, legal and psychiatric problems in ISD, explaining 13-48% of the total variance of these indices. Furthermore, urgency scores alone correctly classified 83% of the participants in the ISD group. Urgency is characterized by a tendency to act impulsively in response to negative emotional states. Thus, our results could have important implications for novel treatment approaches for substance dependence focused on emotional regulation.

  13. Nonsputtering impulse magnetron discharge

    SciTech Connect

    Khodachenko, G. V.; Mozgrin, D. V.; Fetisov, I. K.; Stepanova, T. V.

    2012-01-15

    Experiments with quasi-steady high-current discharges in crossed E Multiplication-Sign B fields in various gases (Ar, N{sub 2}, H{sub 2}, and SF{sub 6}) and gas mixtures (Ar/SF{sub 6} and Ar/O{sub 2}) at pressures from 10{sup -3} to 5 Torr in discharge systems with different configurations of electric and magnetic fields revealed a specific type of stable low-voltage discharge that does not transform into an arc. This type of discharge came to be known as a high-current diffuse discharge and, later, a nonsputtering impulse magnetron discharge. This paper presents results from experimental studies of the plasma parameters (the electron temperature, the plasma density, and the temperature of ions and atoms of the plasma-forming gas) of a high-current low-pressure diffuse discharge in crossed E Multiplication-Sign B fields.

  14. An overview of measuring impulsive behavior in mice.

    PubMed

    Dent, Claire L; Isles, Anthony R

    2014-06-16

    Impulsive behavior is a key constituent of many psychiatric illnesses, with maladaptive response control being a feature of disorders such as ADHD, schizophrenia, mania, and addiction. In order to understand the neurological underpinnings of impulsivity, a number of behavioral tasks have been developed for use with animal models. Data from studies with rats and other animals have led to the idea of the existence of dissociable components of impulsivity, which in turn informs studies of human disorders and potentially the development of specific therapies. Increasingly, mouse models are being used to investigate the known genetic contribution to psychiatric disorders in which abnormal response control leads to altered impulsive behaviors. In order to maximize the potential of these mouse models, it is important that researchers take into account the non-unitary nature of response control and impulsivity. In this article, we briefly review the tasks available to behavioral neuroscientists and how these can be used in order to tease apart the contribution of a specific genetic lesion into the discrete aspects of impulsive behavior.

  15. Quasi-elastic Coulomb response function for finite systems and elimination of the Landau ghost in the relativistic σ-ω model

    NASA Astrophysics Data System (ADS)

    Kazuhiro, Tanaka; Wolfgang, Bentz; Akito, Arima

    1990-11-01

    The quasi-elastic Coulomb response function of finite nuclei including vacuum polarization effects is investigated in the relativistic σ-ω model. For the consistent elimination of the Landau ghost in meson propagators, the description of the ground state and the response function of the system is formulated utilizing the effective action method, and the effects of the ghost elimination on the nuclear matter response function are discussed. Finite system calculations are performed for 12C (|q|= 300, 400, 550 MeV) and 40Ca (|q|= 410, 500, 550 MeV) , in which particle-hole continuum states are fully taken into account by the method of continuum RPA, while the vacuum polarization effects are included by the local density approximation. The effects of the particle-hole effective interaction and the medium modified single-nucleon form factor on the response function are also discussed.

  16. Serotonergic modulation of ‘waiting impulsivity' is mediated by the impulsivity phenotype in humans

    PubMed Central

    Neufang, S; Akhrif, A; Herrmann, C G; Drepper, C; Homola, G A; Nowak, J; Waider, J; Schmitt, A G; Lesch, K-P; Romanos, M

    2016-01-01

    In rodents, the five-choice serial reaction time task (5-CSRTT) has been established as a reliable measure of waiting impulsivity being defined as the ability to regulate a response in anticipation of reinforcement. Key brain structures are the nucleus accumbens (NAcc) and prefrontal regions (for example, pre- and infralimbic cortex), which are, together with other transmitters, modulated by serotonin. In this functional magnetic resonance imaging study, we examined 103 healthy males while performing the 5-CSRTT measuring brain activation in humans by means of a paradigm that has been widely applied in rodents. Subjects were genotyped for the tryptophan hydroxylase-2 (TPH2; G-703T; rs4570625) variant, an enzyme specific for brain serotonin synthesis. We addressed neural activation patterns of waiting impulsivity and the interaction between the NAcc and the ventromedial prefrontal cortex (vmPFC) using dynamic causal modeling. Genetic influence was examined via interaction analyses between the TPH2 genotype (GG homozygotes vs T allele carriers) and the degree of impulsivity as measured by the 5-CSRTT. We found that the driving input of the vmPFC was reduced in highly impulsive T allele carriers (reflecting a reduced top-down control) in combination with an enhanced response in the NAcc after correct target processing (reflecting an augmented response to monetary reward). Taken together, we found a high overlap of our findings with reports from animal studies in regard to the underlying cognitive processes, the brain regions associated with waiting impulsivity and the neural interplay between the NAcc and vmPFC. Therefore, we conclude that the 5-CSRTT is a promising tool for translational studies. PMID:27824354

  17. Expansion and improvement of the FORMA system for response and load analysis. Volume 2C: Listings, finite element FORMA subroutines

    NASA Technical Reports Server (NTRS)

    Wohlen, R. L.

    1976-01-01

    A listing of the source deck of each finite element FORMA subroutine is given to remove the 'black-box' aura of the subroutines so that the analyst may better understand the detailed operations of each subroutine. The FORTRAN 4 programming language is used in all finite element FORMA subroutines.

  18. Modelling the optical response of human retinal photoreceptors to plane wave illumination with the finite integration technique

    NASA Astrophysics Data System (ADS)

    Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.

    2009-02-01

    The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).

  19. FINITE ELEMENT SIMULATION FOR STRUCTURAL RESPONSE OF U7MO DISPERSION FUEL PLATES VIA FLUID-THERMAL-STRUCTURAL INTERACTION

    SciTech Connect

    Hakan Ozaltun; Herman Shen; Pavel Madvedev

    2010-11-01

    This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.

  20. Probing the Elastic-Plastic, Time-Dependant Response of Test Fasteners using Finite Element Analysis (FEA)

    SciTech Connect

    ML Renauld; H Lien

    2004-12-13

    The evolution of global and local stress/strain conditions in test fasteners under test conditions is investigated using elastic-plastic, time-dependent finite element analyses (FEA). For elastic-plastic response, tensile data from multiple specimens, material heats and test temperatures are integrated into a single, normalized flow curve from which temperature dependency is extracted. A primary creep model is calibrated with specimen- and fastener-based thermal relaxation data generated under a range of times, temperatures, stress levels and environments. These material inputs are used in analytical simulations of experimental test conditions for several types of fasteners. These fastener models are constructed with automated routines and contact conditions prescribed at all potentially mating surfaces. Thermal or mechanical room temperature pre-loading, as appropriate for a given fastener, is followed by a temperature ramp and a dwell time at constant temperature. While the amount of thermal stress relaxation is limited for the conditions modeled, local stress states are highly dependent upon geometry (thread root radius, for example), pre-loading history and thermal expansion differences between the test fastener and test fixture. Benefits of this FE approach over an elastic methodology for stress calculation will be illustrated with correlations of Stress Corrosion Cracking (SCC) initiation time and crack orientations in stress concentrations.

  1. Finite element simulations of the head–brain responses to the top impacts of a construction helmet: Effects of the neck and body mass

    PubMed Central

    Wu, John Z; Pan, Christopher S; Wimer, Bryan M; Rosen, Charles L

    2017-01-01

    Traumatic brain injuries are among the most common severely disabling injuries in the United States. Construction helmets are considered essential personal protective equipment for reducing traumatic brain injury risks at work sites. In this study, we proposed a practical finite element modeling approach that would be suitable for engineers to optimize construction helmet design. The finite element model includes all essential anatomical structures of a human head (i.e. skin, scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all major engineering components of a construction helmet (i.e. shell and suspension system). The head finite element model has been calibrated using the experimental data in the literature. It is technically difficult to precisely account for the effects of the neck and body mass on the dynamic responses, because the finite element model does not include the entire human body. An approximation approach has been developed to account for the effects of the neck and body mass on the dynamic responses of the head–brain. Using the proposed model, we have calculated the responses of the head–brain during a top impact when wearing a construction helmet. The proposed modeling approach would provide a tool to improve the helmet design on a biomechanical basis. PMID:28097935

  2. Finite element simulations of the head-brain responses to the top impacts of a construction helmet: Effects of the neck and body mass.

    PubMed

    Wu, John Z; Pan, Christopher S; Wimer, Bryan M; Rosen, Charles L

    2017-01-01

    Traumatic brain injuries are among the most common severely disabling injuries in the United States. Construction helmets are considered essential personal protective equipment for reducing traumatic brain injury risks at work sites. In this study, we proposed a practical finite element modeling approach that would be suitable for engineers to optimize construction helmet design. The finite element model includes all essential anatomical structures of a human head (i.e. skin, scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all major engineering components of a construction helmet (i.e. shell and suspension system). The head finite element model has been calibrated using the experimental data in the literature. It is technically difficult to precisely account for the effects of the neck and body mass on the dynamic responses, because the finite element model does not include the entire human body. An approximation approach has been developed to account for the effects of the neck and body mass on the dynamic responses of the head-brain. Using the proposed model, we have calculated the responses of the head-brain during a top impact when wearing a construction helmet. The proposed modeling approach would provide a tool to improve the helmet design on a biomechanical basis.

  3. Executive (Dys)Functioning and Impulsivity as Possible Vulnerability Factors for Aggression in Forensic Patients.

    PubMed

    Tonnaer, Franca; Cima, Maaike; Arntz, Arnoud

    2016-04-01

    This study investigated whether executive dysfunction and impulsivity are both predictors of reactive aggression and is the first to use behavioral assessment of aggression in response to provocation by means of a personalized boxing body opponent bag giving harassing feedback. Aggressive behavior, self-reported aggression, executive functioning (ie, working memory, flexibility, and divided attention), and impulsivity dimensions (i.e., Sensation Seeking, Impulsive Decision Making, and [inadequate] Response Inhibition) were measured in 44 incarcerated psychiatric patients. Results show that both executive functioning (working memory) and impulsivity (Impulsive Decision Making) predicted self-reported reactive aggression, whereas Response Inhibition was the only predictor for reactive aggressive behavioral responses. The study suggests that Response Inhibition is a stronger predictor of reactive aggressive behavior than executive capacities of working memory, flexibility, and divided attention. Therefore, future research should investigate whether (inadequate) Response Inhibition could also be a valuable predictor for violent recidivism.

  4. Finite Element Modeling of the Magnetotelluric Phase Tensor Response to Evaluate Sensitivity to Lateral and Vertical Resistivity Contrasts

    NASA Astrophysics Data System (ADS)

    Hawkes, S.; McClain, J. S.

    2015-12-01

    Phase tensor analysis of magnetotelluric data is a relatively new technique introduced by Caldwell et. al. (2004) and requires substantial research efforts to evaluate the capabilities of the method. We have conducted finite element (FE) modeling using the AC/DC module of Comsol Multiphysics to determine the effect of resistivity structure on the phase tensor response. Measurements are made at eleven frequencies from 10-104 Hz at points on a 5x5 grid above various simple model geometries. Phase tensor plotting methods are adapted from Booker (2013) and involve displaying data graphically as stacks of colored ellipses. This allows for interpretation across the frequency spectrum vertically as well as laterally between stations. Two types of plot are presented for each model, a "ϕmin plot" where the ellipses are colored according to the minimum principle phase and a "delta plot" where the ellipses are colored according to the difference between the principle phases (ϕmax - ϕmin), which provides a quantification of the phase anisotropy. Results suggest that the principle phases ϕmin and ϕmax are sensitive to vertical resistivity contrasts but not lateral resistivity contrasts. Conversely, delta plots reveal sensitivity to lateral resistivity contrasts but not vertical resistivity contrasts. A clear distance relationship is observed with proximity to the boundary controlling the frequency range that senses a lateral resistivity contrast. Rotation of the phase tensor ellipses and increased skew values occur in the presence of resistivity contrasts that strike nonparallel to the source field, with the effect increasing towards lower frequencies. The total phase tensor response is confirmed to be sensitive to both vertical and lateral resistivity contrasts and can be used effectively to interpret subsurface resistivity structure.

  5. Impulsive choice and environmental enrichment: effects of d-amphetamine and methylphenidate.

    PubMed

    Perry, Jennifer L; Stairs, Dustin J; Bardo, Michael T

    2008-11-03

    Individual differences in impulsive choice and rearing in differential environments are factors that predict vulnerability to drug abuse. The present study determined if rearing influences impulsive choice, and if d-amphetamine or methylphenidate alters impulsive choice in differentially reared rats. Male Sprague-Dawley rats were raised from 21 days of age in either an enriched condition (EC) or an isolated condition (IC) and were tested as young adults on an adjusting delay task. In this task, two levers were available and a response on one lever yielded one 45mg food pellet immediately, whereas a response on the other yielded three pellets after an adjusting delay. The delay was initially set at 6s, and it decreased or increased by 1s following responses on the immediate or delayed levers, respectively. A mean adjusted delay (MAD) was calculated upon completion of each daily session, and it served as the quantitative measure of impulsivity. Once MADs stabilized, rats were injected with saline, d-amphetamine (0.5, 1.0, or 2.0mg/kg, s.c.), or methylphenidate (2.5, 5.0, or 10.0mg/kg, s.c.) 15min prior to adjusting delay sessions. EC rats had higher baseline MADs (were less impulsive) than IC rats. Additionally, administration of d-amphetamine, but not methylphenidate, dose-dependently increased impulsive choice (decreased MADs) in EC rats. In IC rats, d-amphetamine and methylphenidate dose-dependently decreased impulsivity (increased MADs). These results indicate that rearing environment influences impulsive choice and moderates the effect of psychostimulants on impulsive choice. Specifically, psychostimulants may decrease environment-dependent impulsive choice in individuals with high levels of impulsivity (e.g., those with ADHD), whereas they may increase impulsive choice in individuals with low levels of impulsivity.

  6. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    PubMed Central

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen

  7. Impulsivity and overeating in children in the absence and presence of hunger.

    PubMed

    Nederkoorn, Chantal; Dassen, Fania C M; Franken, Loes; Resch, Christine; Houben, Katrijn

    2015-10-01

    Overweight children appear to be more responsive to environmental, hedonic cues and easily overeat in the current obesogenic environment. They are also found to overeat in the absence of hunger, and this overeating seems related to impulsivity: impulsive participants are more prone to external eating. However, some studies showed that impulsive adults are also more prone to hunger cues: impulsive participants overate especially when feeling hungry. This would mean impulsive people are more reactive to both external and internal cues. The overeating was limited to palatable high energy-dense foods: hunger made them fancy a snack. In the current study, we wanted to test the interaction between impulsivity, hunger and consumption of food type in children. Impulsivity was measured in 88 children between the ages of 7 and 9. Next, half of the participants performed a taste test before their own regular lunch and half of the participants immediately after their lunch. During the taste test, low, medium and high energy-dense food items were presented. Results showed that impulsive children ate more high energy-dense foods than low impulsive children, both before and after their lunch. No differences were found on low or medium energy-dense foods. Impulsive children therefore showed normal sensitivity for internal hunger and satiety cues, but abnormal response to high energy-dense foods. This might render them vulnerable to tasty temptation in the environment and to weight gain in their future.

  8. Impulsive control for fast nanopositioning.

    PubMed

    Tuma, Tomas; Sebastian, Abu; Häberle, Walter; Lygeros, John; Pantazi, Angeliki

    2011-04-01

    In this paper we present a non-linear control scheme for high-speed nanopositioning based on impulsive control. Unlike in the case of a linear feedback controller, the controller states are altered in a discontinuous manner at specific instances in time. Using this technique, it is possible to simultaneously achieve good tracking performance, disturbance rejection and tolerance to measurement noise. Impulsive control is demonstrated experimentally on an atomic force microscope. A significant improvement in tracking performance is demonstrated.

  9. Braking and propulsive impulses increase with speed during accelerated and decelerated walking.

    PubMed

    Peterson, Carrie L; Kautz, Steven A; Neptune, Richard R

    2011-04-01

    The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from 10 healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0-1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects' preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking.

  10. Impulsivity, risk taking, and timing.

    PubMed

    Baumann, Ana A; Odum, Amy L

    2012-07-01

    This study examined the relations among measures of impulsivity and timing. Impulsivity was assessed using delay and probability discounting, and self-report impulsivity (as measured by the Barratt Impulsiveness Scale; BIS-11). Timing was assessed using temporal perception as measured on a temporal bisection task and time perspective (as measured by the Zimbardo Time Perspective Inventory). One hundred and forty three college students completed these measures in a computer laboratory. The degree of delay discounting was positively correlated with the mean and range of the temporal bisection procedure. The degree of delay and probability discounting were also positively correlated. Self-reported motor impulsiveness on the BIS-11 was positively correlated with present hedonism and negatively correlated with future orientation on the ZTPI. Self-reported non-planning on the BIS-11 was positively correlated with fatalism on the ZTPI. These results show that people who overestimate the passage of time (perceive time as passing more quickly) hold less value in delayed rewards. They also confirm previous results regarding the relation between delay and probability discounting, as well as highlight similarities in self-report measures of impulsivity and time perspective.

  11. Impulsivity, Risk Taking, and Timing

    PubMed Central

    Baumann, Ana A.; Odum, Amy. L.

    2012-01-01

    This study examined the relations among measures of impulsivity and timing. Impulsivity was assessed using delay and probability discounting, and self-report impulsivity (as measured by the Barratt Impulsiveness Scale; BIS-11). Timing was assessed using temporal perception as measured on a temporal bisection task and time perspective (as measured by the Zimbardo Time Perspective Inventory). One hundred and forty three college students completed these measures in a computer laboratory. The degree of delay discounting was positively correlated with the mean and range of the temporal bisection procedure. The degree of delay and probability discounting were also positively correlated. Self-reported Motor impulsiveness on the BIS-11 was positively correlated with Present Hedonism and negatively correlated with Future orientation on the ZTPI. Self-reported Non-Planning on the BIS-11 was positively correlated with Fatalism on the ZTPI. These results show that people who overestimate the passage of time (perceive time as passing more quickly) hold less value in delayed rewards. They also confirm previous results regarding the relation between delay and probability discounting, as well as highlight similarities in self-report measures of impulsivity and time perspective. PMID:22542458

  12. An Impulse Based Substructuring approach for impact analysis and load case simulations

    NASA Astrophysics Data System (ADS)

    Rixen, Daniel J.; van der Valk, Paul L. C.

    2013-12-01

    In the present paper we outline the basic theory of assembling substructures for which the dynamics are described as Impulse Response Functions. The assembly procedure computes the time response of a system by evaluating per substructure the convolution product between the Impulse Response Functions and the applied forces, including the interface forces that are computed to satisfy the interface compatibility. We call this approach the Impulse Based Substructuring method since it transposes to the time domain the Frequency Based Substructuring approach. In the Impulse Based Substructuring technique the Impulse Response Functions of the substructures can be gathered either from experimental tests using a hammer impact or from time-integration of numerical submodels. In this paper the implementation of the method is outlined for the case when the impulse responses of the substructures are computed numerically. A simple bar example is shown in order to illustrate the concept. The Impulse Based Substructuring allows fast evaluation of impact response of a structure when the impulse response of its components is known. It can thus be used to efficiently optimize designs of consumer products by including impact behavior at the early stage of the design, but also for performing substructured simulations of complex structures such as offshore wind turbines.

  13. Cigarette Cravings, Impulsivity, and the Brain

    PubMed Central

    Potvin, Stéphane; Tikàsz, Andràs; Dinh-Williams, Laurence Lê-Anh; Bourque, Josiane; Mendrek, Adrianna

    2015-01-01

    Craving is a core feature of tobacco use disorder as well as a significant predictor of smoking relapse. Studies have shown that appetitive smoking-related stimuli (e.g., someone smoking) trigger significant cravings in smokers impede their self-control capacities and promote drug seeking behavior. In this review, we begin by an overview of functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of smokers to appetitive smoking cues. The literature reveals a complex and vastly distributed neuronal network underlying smokers’ craving response that recruits regions involved in self-referential processing, planning/regulatory processes, emotional responding, attentional biases, and automatic conducts. We then selectively review important factors contributing to the heterogeneity of results that significantly limit the implications of these findings, namely between- (abstinence, smoking expectancies, and self-regulation) and within-studies factors (severity of smoking dependence, sex-differences, motivation to quit, and genetic factors). Remarkably, we found that little to no attention has been devoted to examine the influence of personality traits on the neural correlates of cigarette cravings in fMRI studies. Impulsivity has been linked with craving and relapse in substance and tobacco use, which prompted our research team to examine the influence of impulsivity on cigarette cravings in an fMRI study. We found that the influence of impulsivity on cigarette cravings was mediated by fronto-cingulate mechanisms. Given the high prevalence of cigarette smoking in several psychiatric disorders that are characterized by significant levels of impulsivity, we conclude by identifying psychiatric patients as a target population whose tobacco-smoking habits deserve further behavioral and neuro-imaging investigation. PMID:26441686

  14. Use of instant messaging predicts self-report but not performance measures of inattention, impulsiveness, and distractibility.

    PubMed

    Levine, Laura E; Waite, Bradley M; Bowman, Laura L

    2013-12-01

    We examined how young adults' use of instant messaging, text messaging, and traditional reading related to their self-reported experience of distractibility and impulsiveness and to their performance on computerized tasks designed to assess inattention and impulsive responses to visual stimuli. Participants reported their media use and completed self-report measures of impulsiveness (i.e., the Barratt Impulsiveness Scale) and distractibility for academic reading. They also completed performance based measures of inattention and impulsiveness using the Tests of Variables of Attention (T.O.V.A.(®)). Results demonstrated that instant message use was significantly related to higher levels of attentional impulsiveness and distractibility on the self-report measures, while traditional reading consistently predicted lower levels of impulsiveness and distractibility. However, media use was not significantly related to the performance measures of inattention and behavioral impulsiveness.

  15. Impulsivity, Working Memory, and Impaired Control over Alcohol: A Latent Variable Analysis

    PubMed Central

    Wardell, Jeffrey D.; Quilty, Lena C.; Hendershot, Christian S.

    2017-01-01

    Impaired control over alcohol is an important risk factor for heavy drinking among young adults and may mediate, in part, the association between personality risk and alcohol problems. Research suggests that trait impulsivity is associated with impaired control over alcohol; however, few studies of this association have included a range of impulsivity facets. The purpose of this study was to examine specific pathways from higher-order impulsivity factors to alcohol problems mediated via impaired control over alcohol. We also examined the moderating role of working memory in these associations. Young heavy drinkers (N=300) completed two multidimensional impulsivity measures (UPPS-P and BIS-11) along with self-report measures of impaired control over alcohol, alcohol use, and alcohol problems. Working memory was assessed using a computerized digit span task. Results showed that the impulsivity facets loaded onto two higher-order factors that were labeled response and reflection impulsivity. Response impulsivity predicted unique variance in self-reported impaired control and alcohol problems, whereas reflection impulsivity predicted unique variance in heavy drinking frequency only. Further, significant indirect associations were observed from response and reflection impulsivity to alcohol problems mediated via impaired control and heavy drinking frequency, respectively. Working memory and sensation seeking were not uniquely associated with the alcohol variables, and no support was found for the moderating role of working memory. The results help to clarify associations among impulsivity, impaired control, and alcohol problems, suggesting that impaired control may play a specific role in the pathway to alcohol problems from response impulsivity but not from reflection impulsivity. PMID:27269291

  16. Determination of acoustical transfer functions using an impulse method

    NASA Astrophysics Data System (ADS)

    MacPherson, J.

    1985-02-01

    The Transfer Function of a system may be defined as the relationship of the output response to the input of a system. Whilst recent advances in digital processing systems have enabled Impulse Transfer Functions to be determined by computation of the Fast Fourier Transform, there has been little work done in applying these techniques to room acoustics. Acoustical Transfer Functions have been determined for auditoria, using an impulse method. The technique is based on the computation of the Fast Fourier Transform (FFT) of a non-ideal impulsive source, both at the source and at the receiver point. The Impulse Transfer Function (ITF) is obtained by dividing the FFT at the receiver position by the FFT of the source. This quantity is presented both as linear frequency scale plots and also as synthesized one-third octave band data. The technique enables a considerable quantity of data to be obtained from a small number of impulsive signals recorded in the field, thereby minimizing the time and effort required on site. As the characteristics of the source are taken into account in the calculation, the choice of impulsive source is non-critical. The digital analysis equipment required for the analysis is readily available commercially.

  17. Dopamine-agonists and impulsivity in Parkinson's disease: impulsive choices vs. impulsive actions.

    PubMed

    Antonelli, Francesca; Ko, Ji Hyun; Miyasaki, Janis; Lang, Anthony E; Houle, Sylvain; Valzania, Franco; Ray, Nicola J; Strafella, Antonio P

    2014-06-01

    The control of impulse behavior is a multidimensional concept subdivided into separate subcomponents, which are thought to represent different underlying mechanisms due to either disinhibitory processes or poor decision-making. In patients with Parkinson's disease (PD), dopamine-agonist (DA) therapy has been associated with increased impulsive behavior. However, the relationship among these different components in the disease and the role of DA is not well understood. In this imaging study, we investigated in PD patients the effects of DA medication on patterns of brain activation during tasks testing impulsive choices and actions. Following overnight withdrawal of antiparkinsonian medication, PD patients were studied with a H2 ((15)) O PET before and after administration of DA (1 mg of pramipexole), while they were performing the delay discounting task (DDT) and the GoNoGo Task (GNG). We observed that pramipexole augmented impulsivity during DDT, depending on reward magnitude and activated the medial prefrontal cortex and posterior cingulate cortex and deactivated ventral striatum. In contrast, the effect of pramipexole during the GNG task was not significant on behavioral performance and involved different areas (i.e., lateral prefrontal cortex). A voxel-based correlation analysis revealed a significant negative correlation between the discounting value (k) and the activation of medial prefrontal cortex and posterior cingulate suggesting that more impulsive patients had less activation in those cortical areas. Here we report how these different subcomponents of inhibition/impulsivity are differentially sensitive to DA treatment with pramipexole influencing mainly the neural network underlying impulsive choices but not impulsive action.

  18. The influence of laser ablation plume at different laser incidence angle on the impulse coupling coefficient with metal target

    NASA Astrophysics Data System (ADS)

    Zhao, Xiong-Tao; Tang, Feng; Han, Bing; Ni, Xiao-Wu

    2016-12-01

    A calibrated pendulum measuring device and a dimensionless analysis method were used to measure the impulse coupling coefficient at different laser intensities with aluminum, steel, and iron targets. The experiment was performed with a pulsed laser with the wavelength of 1.06 μm and the pulse duration of 7 ns. The experimental measurements of the variation of the impulse coupling coefficient versus the laser energy density agree with the theoretical prediction, and the optimum laser energy density correlated with the maximum impulse coupling coefficient corresponding to the theoretical predictions. The impulse coupling coefficients with laser incidence angles of 0 ° and 45 ° are compared for understanding of the effects of the ablation plume on the impulse coupling effect, and the experimental result shows that the impulse coupling effect grows as the incidence angle changes from 0 ° to 45 ° . Furthermore, the transmittance of the incident laser through the ablation plume in front of the target is deduced from the impulse measurements, and the effect of the ablation plume on the impulse coupling at high laser intensity is discussed. In order to investigate the weak impulse coupling effect, which is difficult to obtain from the experiments, the impulse coupling coefficient at low laser energy density was calculated by the finite element simulation.

  19. Dopamine agonists and the suppression of impulsive motor actions in Parkinson disease.

    PubMed

    Wylie, Scott A; Claassen, Daniel O; Huizenga, Hilde M; Schewel, Kerilyn D; Ridderinkhof, K Richard; Bashore, Theodore R; van den Wildenberg, Wery P M

    2012-08-01

    The suppression of spontaneous motor impulses is an essential facet of cognitive control that is linked to frontal-BG circuitry. BG dysfunction caused by Parkinson disease (PD) disrupts the proficiency of action suppression, but how pharmacotherapy for PD impacts impulsive motor control is poorly understood. Dopamine agonists improve motor symptoms of PD but can also provoke impulsive-compulsive behaviors (ICB). We investigated whether dopamine agonist medication has a beneficial or detrimental effect on impulsive action control in 38 PD patients, half of whom had current ICB. Participants performed the Simon conflict task, which measures susceptibility to acting on spontaneous action impulses as well as the proficiency of suppressing these impulses. Compared with an off-agonist state, patients on their agonists were no more susceptible to reacting impulsively but were less proficient at suppressing the interference from the activation of impulsive actions. Importantly, agonist effects depended on baseline performance in the off-agonist state; more proficient suppressors off agonist experienced a reduction in suppression on agonist, whereas less-proficient suppressors off agonist showed improved suppression on agonist. Patients with active ICB were actually less susceptible to making fast, impulsive response errors than patients without ICB, suggesting that behavioral problems in this subset of patients may be less related to impulsivity in motor control. Our findings provide further evidence that dopamine agonist medication impacts specific cognitive control processes and that the direction of its effects depends on individual differences in performance off medication.

  20. Neurocognitive and psychiatric dimensions of “hot” impulsivity, but not “cool” impulsivity, predict HIV sexual risk behaviors among drug users in protracted abstinence

    PubMed Central

    Wilson, Michael J.; Vassileva, Jasmin

    2016-01-01

    Background Impulsivity is an important risk factor for HIV risky drug and sexual behaviors. Research identifies “hot” (i.e., affectively-mediated, reward-based) and “cool” (motoric, attentional, independent of context) neurocognitive and psychiatric dimensions of impulsivity, though the impact of specific drugs of abuse on these varieties of impulsivity remains an open question. Objectives The present study examined the associations of neurocognitive and psychiatric varieties of “hot” and “cool” impulsivity with measures of lifetime and recent sexual risk behaviors among users of different classes of drugs. Methods The study sample was comprised drug users in protracted (>1yr) abstinence: heroin monodependent (n=61), amphetamine monodependent (n=44), and polysubstance dependent (n= 73). “Hot” impulsivity was operationalized via neurocognitive tasks of reward-based decision-making and symptoms of psychopathy. “Cool” impulsivity was operationalized via neurocognitive tasks of response inhibition and symptoms of ADHD. Results “Hot” impulsivity was associated with sexual risk behaviors among heroin and amphetamine users in protracted abstinence, whereas “cool” impulsivity was not associated with sexual risk behaviors among any drug-using group. Neurocognitive “hot” impulsivity was associated with recent (past 30-day) sexual risk behaviors, whereas psychopathy was associated with sexual risk behaviors during more remote time-periods (past 6 month and lifetime) and mediated the association between heroin dependence and past 6-month sexual risk behaviors. Conclusion Assessments and interventions aimed at reducing sexual risk behaviors among drug users should focus on “hot” neurocognitive and psychiatric dimensions of impulsivity, such as decision-making and psychopathy. “Cool” dimensions of impulsivity such as response inhibition and ADHD were not related to sexual risk behaviors among drug users in protracted abstinence. PMID

  1. Output feedback model matching in linear impulsive systems with control feedthrough: a structural approach

    NASA Astrophysics Data System (ADS)

    Zattoni, Elena

    2017-01-01

    This paper investigates the problem of structural model matching by output feedback in linear impulsive systems with control feedthrough. Namely, given a linear impulsive plant, possibly featuring an algebraic link from the control input to the output, and given a linear impulsive model, the problem consists in finding a linear impulsive regulator that achieves exact matching between the respective forced responses of the linear impulsive plant and of the linear impulsive model, for all the admissible input functions and all the admissible sequences of jump times, by means of a dynamic feedback of the plant output. The problem solvability is characterized by a necessary and sufficient condition. The regulator synthesis is outlined through the proof of sufficiency, which is constructive.

  2. Reduced punishment sensitivity in neural systems of behavior monitoring in impulsive individuals.

    PubMed

    Potts, Geoffrey F; George, Mary Reeni M; Martin, Laura E; Barratt, Ernest S

    This study measured the response-locked event-related potential during a flanker task with performance-based monetarily rewarding and punishing trials in 37 undergraduate students separated into high- and low-impulsive groups based on a median split on self-reported Barrett Impulsiveness Scale. The high-impulsive group had a smaller medial frontal error-related negativity (ERN) on punishment trials than the low-impulsive group. The medial prefrontal neural system of behavior monitoring, indexed by the ERN, appears less sensitive to punishment signals in normal impulsivity. This reduced punishment sensitivity in impulsivity, a personality variation associated with several mental and personality disorders including ADHD and substance abuse may be related to the tendency to select short-term rewards despite potential long-term negative consequences in these individuals.

  3. Effects of finite laser pulse width on two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Leng, Xuan; Yue, Shuai; Weng, Yu-Xiang; Song, Kai; Shi, Qiang

    2017-01-01

    We combine the hierarchical equations of motion method and the equation-of-motion phase-matching approach to calculate two-dimensional electronic spectra of model systems. When the laser pulse is short enough, the current method reproduces the results based on third-order response function calculations in the impulsive limit. Finite laser pulse width is found to affect both the peak positions and shapes, as well as the time evolution of diagonal and cross peaks. Simulations of the two-color two-dimensional electronic spectra also show that, to observe quantum beats in the diagonal and cross peaks, it is necessary to excite the related excitonic states simultaneously.

  4. Do different facets of impulsivity predict different types of aggression?

    PubMed

    Derefinko, Karen; DeWall, C Nathan; Metze, Amanda V; Walsh, Erin C; Lynam, Donald R

    2011-01-01

    This study examined the relations between impulsivity-related traits (as assessed by the UPPS-P Impulsive Behavior Scale) and aggressive behaviors. Results indicated that UPPS-P Lack of Premeditation and Sensation Seeking were important in predicting general violence. In contrast, UPPS-P Urgency was most useful in predicting intimate partner violence. To further explore relations between intimate partner violence and Urgency, a measure of autonomic response to pleasant and aversive stimuli and facets of Neuroticism from the NEO PI-R were used as control variables. Autonomic responsivity was correlated with intimate partner violence at the zero-order level, and predicted significant variance in intimate partner violence in regression equations. However, UPPS-P Urgency was able to account for unique variance in intimate partner violence, above and beyond measures of Neuroticism and arousal. Implications regarding the use of a multifaceted conceptualization of impulsivity in the prediction of different types of violent behavior are discussed.

  5. Do Different Facets of Impulsivity Predict Different Types of Aggression?

    PubMed Central

    Derefinko, Karen; DeWall, C. Nathan; Metze, Amanda V.; Walsh, Erin C.; Lynam, Donald R.

    2011-01-01

    The current study examined the relations between impulsivity-related traits (as assessed by the UPPS-P Impulsive Behavior Scale) and aggressive behaviors. Results indicated that UPPS-P Lack of Premeditation and Sensation Seeking were important in predicting general violence. In contrast, UPPS-P Urgency was most useful in predicting intimate partner violence. To further explore relations between intimate partner violence and Urgency, a measure of autonomic response to pleasant and aversive stimuli and facets of Neuroticism from the NEO PI-R were used as control variables. Autonomic responsivity was correlated with intimate partner violence at the zero-order level, and predicted significant variance in intimate partner violence in regression equations. However, UPPS-P Urgency was able to account for unique variance in intimate partner violence above and beyond measures of Neuroticism and arousal. Implications regarding the use of a multifaceted conceptualization of impulsivity in the prediction of different types of violent behavior are discussed. PMID:21259270

  6. Is impulsivity a link between childhood abuse and suicide?

    PubMed

    Braquehais, M Dolores; Oquendo, Maria A; Baca-García, Enrique; Sher, Leo

    2010-01-01

    Childhood abuse and neglect are known to affect psychological states through behavioral, emotional, and cognitive pathways. They increase the risk of having psychiatric diseases in adulthood and have been considered risk factors for suicidal behavior in all diagnostic categories. Early, prolonged, and severe trauma is also known to increase impulsivity, diminishing the capacity of the brain to inhibit negative actions and to control and modulate emotions. Many neurobiological studies hold that childhood maltreatment may lead to a persistent failure of the inhibitory processes ruled mainly by the frontal cortex over a fear-motivated hyperresponsive limbic system. Multiple neurotransmitters and hormones are involved in the stress response, but, to our knowledge, the two major biological consequences of the chronic exposure to trauma are the hypofunction of the serotonergic system and changes in the hypothalamic-pituitary-adrenal axis function. Some of these findings overlap with the neurobiological features of impulsivity and of suicidal behavior. Impulsivity has also been said to be both a consequence of trauma and a risk factor for the development of a pathological response to trauma. Thus, we suggest that impulsivity could be one of the links between childhood trauma and suicidal behavior. Prevention of childhood abuse could significantly reduce suicidal behavior in adolescents and adults, in part, through a decrease in the frequency of impulsive behaviors in the future.

  7. Trait impulsivity and increased pre-attentional sensitivity to intense stimuli in bipolar disorder and controls.

    PubMed

    Lijffijt, Marijn; Lane, Scott D; Moeller, F Gerard; Steinberg, Joel L; Swann, Alan C

    2015-01-01

    Impulsivity and sensation seeking are stimulus-oriented traits. Because they differ in degree of intention and planning, they may have distinct neurophysiological mechanisms. Impulsivity is prominent in bipolar disorder, and may be related to pre-attentional information filtering and stimulus-orientation. We investigated specificity of relationships between impulsivity and sensitivity to stimulus intensity in bipolar disorder and controls, using intensity-sensitivity of auditory evoked potentials. Seventy-six subjects (37 healthy controls, 39 with bipolar disorder) were administered an intensity-sensitivity paradigm. Additional measures included Barratt Impulsiveness Scale (BIS-11) and Eysenck Impulsivity and Venturesomeness scores. State-dependent rapid-response impulsivity was measured using the Immediate Memory Task. Intensity-sensitivities of the auditory evoked P1N1, N1P2, P1, N1, and P2 potentials were assessed as the slope of amplitude relative to loudness. Analyses used general linear models (GLM) with impulsivity-related measures as dependent variables and age, gender, education, and diagnosis as dependent variables. BIS-11 total, motor, and attentional impulsivity scores correlated positively with pre-attentional N1 and P1N1 intensity-sensitivity slopes in bipolar disorder, but not in controls. BIS-11 nonplanning and Eysenck Venturesomeness scores did not correlate with intensity-sensitivity. Intensity-sensitivity slopes did not correlate with rapid-response impulsivity. Correlations between N1 or P1N1 slopes and BIS-11 scores in bipolar disorder were not affected by age, education, WAIS, treatment, symptoms, or gender. Trait impulsivity in bipolar disorder may be related to poorly modulated stimulus-driven late pre-attentional responses to stimuli, potentially resulting in exaggerated responses to intense stimuli even before conscious awareness. Components of trait impulsivity are physiologically heterogenous relative to intensity-sensitivity.

  8. Dopaminergic influences on executive function and impulsive behaviour in impulse control disorders in Parkinson's disease.

    PubMed

    Leroi, Iracema; Barraclough, Michelle; McKie, Shane; Hinvest, Neal; Evans, Jonathan; Elliott, Rebecca; McDonald, Kathryn

    2013-09-01

    The development of impulse control disorders (ICDs) in Parkinson's disease (PD) may arise from an interaction among cognitive impairment, impulsive responding and dopaminergic state. Dopaminergic state may be influenced by pharmacologic or genotypic (catechol-O-methyltransferase; COMT) factors. We sought to investigate this interaction further by comparing those with (n = 35) and without (n = 55) ICDs on delay-discounting in different pharmacologic conditions (ON or OFF dopaminergic medication) and on response inhibition as well as aspects of executive functioning in the ON state. We then undertook an exploratory sub-group analysis of these same tasks when the overall PD group was divided into different allelic variants of COMT (val/val vs. met/met). A healthy control group (HC; n = 20) was also included. We found that in those with PD and ICDs, 'cognitive flexibility' (set shifting, verbal fluency, and attention) in the ON medication state was not impaired compared with those without ICDs. In contrast, our working memory, or 'cognitive focus', task was impaired in both PD groups compared with the HC group when ON. During the delay-discounting task, the PD with ICDs group expressed greater impulsive choice compared with the PD group without ICDs, when in the ON, but not the OFF, medication state. However, no group difference on the response inhibition task was seen when ON. Finally, the met homozygous group performed differently on tests of executive function compared with the val homozygous group. We concluded that the disparity in levels of impairment among different domains of executive function and impulsive decision-making distinguishes those with ICD in PD from those without ICD, and may in part be affected by dopaminergic status. Both pharmacologic and genotypic influences on dopaminergic state may be important in ICD.

  9. Differential associations between obesity and behavioral measures of impulsivity.

    PubMed

    Lawyer, Steven R; Boomhower, Steven R; Rasmussen, Erin B

    2015-12-01

    A growing literature indicates that impulsivity is a fundamental behavioral process that underlies obesity. However, impulsivity is a multidimensional construct, which comprises independent patterns of decision-making that could be uniquely associated with obesity. No research to date has clarified whether obesity is differentially associated with specific behavioral aspects of impulsivity. This study examined whether obesity was differentially associated with patterns of decision-making associated with impulsivity-delay discounting, probability discounting, and response inhibition. Young adults (n = 296; 44.3% male) age 18-30 were recruited from the community with media advertisements. Participants completed a series of standard self-report measures of health outcomes and behavioral measures of delay discounting, probability discounting, and response inhibition individually in a laboratory. Associations between body mass index (BMI) and behavioral outcomes in the whole sample indicated that BMI was associated with age, delay discounting, and probability discounting, but not response inhibition. A logistic regression that included age, sex, and substance use as covariates found that delay discounting, but neither probability discounting nor response inhibition, was associated with obesity status. Sensitivity to delay, rather than response inhibition and sensitivity to uncertainty, may be the best correlate of obesity status in adults. These findings are relevant to our understanding of the fundamental behavioral processes associated with obesity.

  10. Choice-impulsivity in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): A meta-analytic review.

    PubMed

    Patros, Connor H G; Alderson, R Matt; Kasper, Lisa J; Tarle, Stephanie J; Lea, Sarah E; Hudec, Kristen L

    2016-02-01

    Impulsive behavior is a core DSM-5 diagnostic feature of attention-deficit/hyperactivity disorder (ADHD) that is associated with several pejorative outcomes. Impulsivity is multidimensional, consisting of two sub-constructs: rapid-response impulsivity and reward-delay impulsivity (i.e., choice-impulsivity). While previous research has extensively examined the presence and implications of rapid-response impulsivity in children with ADHD, reviews of choice-impulsive behavior have been both sparse and relatively circumscribed. This review used meta-analytic methods to comprehensively examine between-group differences in choice-impulsivity among children and adolescents with and without ADHD. Twenty-eight tasks (from 26 studies), consisting of 4320 total children (ADHD=2360, TD=1,960), provided sufficient information to compute an overall between-group effect size for choice-impulsivity performance. Results revealed a medium-magnitude between-group effect size (g=.47), suggesting that children and adolescents with ADHD exhibited moderately increased impulsive decision-making compared to TD children and adolescents. Further, relative to the TD group, children and adolescents with ADHD exhibited similar patterns of impulsive decision-making across delay discounting and delay of gratification tasks. However, the use of single-informant diagnostic procedures relative to multiple informants yielded larger between-group effects, and a similar pattern was observed across samples that excluded females relative to samples that included females.

  11. Trait Impulsivity and Newlyweds' Marital Trajectories.

    PubMed

    Lavner, Justin A; Lamkin, Joanna; Miller, Joshua D

    2017-02-01

    Despite the relationship of impulsivity with interpersonal dysfunction, including romantic relationship dysfunction, surprisingly little research has examined the degree to which impulsivity predicts how marriages unfold over time. The current study used data from 172 newlywed couples to examine spouses' impulsivity in relation to their 4-year trajectories of marital satisfaction, marital problems, relationship commitment, and verbal aggression, as well as their 10-year divorce rates. Hierarchical linear modeling indicated that husbands' and wives' impulsivity predicted their own intercepts of marital satisfaction and marital problems, reflecting lower levels of satisfaction and higher levels of problems. Wives' impulsivity also predicted their relationship commitment and their verbal aggression intercepts. No cross-spouse effects or effects on slopes were found, and impulsivity did not predict 10-year divorce rates. These findings indicate that the relationship distress associated with impulsivity begins early in marriage, and they suggest a need for further research on the processes by which impulsivity undermines marital quality.

  12. Children's Help Seeking and Impulsivity

    ERIC Educational Resources Information Center

    Puustinen, Minna; Kokkonen, Marja; Tolvanen, Asko; Pulkkinen, Lea

    2004-01-01

    The aim of the present study was to analyze the relationship between students' (100 children aged 8 to 12) help-seeking behavior and impulsivity. Help-seeking behavior was evaluated using a naturalistic experimental paradigm in which children were placed in a problem-solving situation and had the opportunity to seek help from the experimenter, if…

  13. Demonstrating Sound Impulses in Pipes.

    ERIC Educational Resources Information Center

    Raymer, M. G.; Micklavzina, Stan

    1995-01-01

    Describes a simple, direct method to demonstrate the effects of the boundary conditions on sound impulse reflections in pipes. A graphical display of the results can be made using a pipe, cork, small hammer, microphone, and fast recording electronics. Explains the principles involved. (LZ)

  14. Commentary on Hyperkinetic Impulse Disorder

    ERIC Educational Resources Information Center

    Barkley, Russell A.

    2011-01-01

    Dr. Goldstein continues the laudable practice of reprinting articles of historical significance in the history of ADHD with this selective reprinting of material from the original article by Maurice Laufer, Eric Denhoff, and Gerald Solomons on hyperkinetic impulsive disorder (HID) in children. This article on HID is among the first articles to…

  15. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  16. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study

    PubMed Central

    2014-01-01

    Background Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Methods Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. Results There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Conclusions Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process. PMID:24885073

  17. Overweight in adolescent, psychiatric inpatients: A problem of general or food-specific impulsivity?

    PubMed

    Deux, Natalie; Schlarb, Angelika A; Martin, Franziska; Holtmann, Martin; Hebebrand, Johannes; Legenbauer, Tanja

    2017-05-01

    Adolescent psychiatric patients are vulnerable to weight problems and show an overrepresentation of overweight compared to the healthy population. One potential factor that can contribute to the etiology of overweight is higher impulsivity. As of yet, it is unclear whether it is a general impulse control deficit or weight-related aspects such as lower impulse control in response to food that have an impact on body weight. As this may have therapeutic implications, the current study investigated differences between overweight and non-overweight adolescent psychiatric inpatients (N = 98; aged 12-20) in relation to trait impulsivity and behavioral inhibition performance. The Barratt Impulsiveness Scale and two go/no-go paradigms with neutral and food-related stimulus materials were applied. Results indicated no significant differences concerning trait impulsivity, but revealed that overweight inpatients had significantly more difficulties in inhibition performance (i.e. they reacted more impulsively) in response to both food and neutral stimuli compared to non-overweight inpatients. Furthermore, no specific inhibition deficit for high-caloric vs. low-caloric food cues emerged in overweight inpatients, whereas non-overweight participants showed significantly lower inhibition skills in response to high-caloric than low-caloric food stimuli. The results highlight a rather general, non-food-specific reduced inhibition performance in an overweight adolescent psychiatric population. Further research is necessary to enhance the understanding of the role of impulsivity in terms of body weight status in this high-risk group of adolescent inpatients.

  18. Baseline impulsive choice predicts the effects of nicotine and nicotine withdrawal on impulsivity in rats.

    PubMed

    Kayir, Hakan; Semenova, Svetlana; Markou, Athina

    2014-01-03

    Impulsive choice, a form of impulsivity, is associated with tobacco smoking in humans. Trait impulsivity may be a vulnerability factor for smoking, or smoking may lead to impulsive behaviors. We investigated the effects of 14-day nicotine exposure (6.32mg/kg/day base, subcutaneous minipumps) and spontaneous nicotine withdrawal on impulsive choice in low impulsive (LI) and high impulsive (HI) rats. Impulsive choice was measured in the delayed reward task in which rats choose between a small immediate reward and a large delayed reward. HI and LI rats were selected from the highest and lowest quartiles of the group before exposure to nicotine. In non-selected rats, nicotine or nicotine withdrawal had no effect on impulsive choice. In LI rats, chronic nicotine exposure decreased preference for the large reward with larger effects at longer delays, indicating increased impulsive choice. Impulsive choices for the smaller immediate rewards continued to increase during nicotine withdrawal in LI rats. In HI rats, nicotine exposure and nicotine withdrawal had no effect on impulsive choice, although there was a tendency for decreased preference for the large reward at short delays. These results indicate that nicotine- and nicotine withdrawal-induced increases in impulsive choice depend on trait impulsivity with more pronounced increases in impulsive choice in LI compared to HI subjects. Increased impulsivity during nicotine exposure may strengthen the addictive properties of nicotine and contribute to compulsive nicotine use.

  19. Existence and exponential stability for impulsive stochastic partial functional differential equations

    NASA Astrophysics Data System (ADS)

    Xiao, Shuiming; Chen, Huabin

    2017-03-01

    In this paper, the existence and uniqueness, the exponential stability, and the almost sure exponential stability of mild solution for impulsive stochastic partial functional differential equations with finite delay are considered. Some sufficient conditions are established for our concerned problems, and some existing results are generalized and improved. Finally, an illustrative example is provided to show the feasibility and effectiveness of the obtained results.

  20. Comparison of impulsivity in non-problem, at-risk and problem gamblers

    PubMed Central

    Yan, Wan-Sen; Zhang, Ran-Ran; Lan, Yan; Li, Yong-Hui; Sui, Nan

    2016-01-01

    As a non-substance addiction, gambling disorder represents the model for studying the neurobiology of addiction without toxic consequences of chronic drug use. From a neuropsychological perspective, impulsivity is deemed as a potential construct responsible in the onset and development of drug addiction. The objective of this study was to investigate the associations between impulsivity and gambling status in young adults with varying severity of gambling. A sample of 1120 college students, equally divided into non-problem, at-risk and problem gamblers, were administered multiple measures of impulsivity including the UPPSP Impulsive Behaviors Scale (UPPSP), the Barratt Impulsiveness Scale-11 (BIS-11), and the Delay-discounting Test (DDT). Compared with non-problem gamblers, both at-risk gamblers and problem gamblers displayed elevated scores on Negative Urgency, Positive Urgency, Motor Impulsiveness, and Attentional Impulsiveness. Problem gamblers showed higher scores than at-risk gamblers on Positive Urgency. Logistic regression models revealed that only Negative Urgency positively predicted both at-risk gambling and problem gambling compared to non-problem gambling. These results suggest that dimensions of impulsivity may be differentially linked to gambling behavior in young adults, with Negative Urgency putatively identified as an important impulsivity-related marker for the development of gambling disorder, which may provide a better understanding of the pathogenesis. PMID:27976705

  1. Psychedelic symptoms of cannabis and cocaine use as a function of trait impulsivity.

    PubMed

    van Wel, J H P; Spronk, D B; Kuypers, K P C; Theunissen, E L; Toennes, S W; Verkes, R J; Ramaekers, J G

    2015-03-01

    Trait impulsivity has been linked to addiction in humans. It has been suggested that drug users with high trait impulsivity levels are more sensitive to subjective drug intoxication. This study assessed whether subjective response to drugs differs between drug users with normal or high levels of trait impulsivity. Regular drug users (N = 122) received doses of cocaine HCl, cannabis, and placebo in a three-way crossover study. Their mood, dissociative state, and psychedelic symptoms were measured with subjective rating scales (CADDS, Bowdle, POMS). Trait impulsivity was assessed with the Barratt Impulsiveness Scale. Cannabis increased dissociation and psychedelic state, as well as fatigue, confusion, depression and anxiety, and decreased arousal, positive mood, vigor, friendliness, and elation. Cocaine increased dissociation, psychedelic state, vigor, friendliness, elation, positive mood, anxiety and arousal, while decreasing fatigue. Only a few subjective items revealed a drug × trait impulsivity interaction, suggesting that psychedelic symptoms were most intense in high impulsivity subjects. Trait impulsiveness ratings were negatively correlated with ratings of vigor (r = -.197) and positively correlated with ratings of loss of thought control (r = .237) during cannabis intoxication. It is concluded that a broad association between trait impulsivity and psychedelic subjective drug experience appears to be absent.

  2. High Level Impulse Sounds and Human Hearing: Standards, Physiology, Quantification

    DTIC Science & Technology

    2012-05-01

    1976; Dancer , 2004). 3.1.2.2 Warned and Unwarned Response of the Ear The role of the AR in protecting hearing against impulse sounds has been...1974; Dancer , 2004). Price (2007a) refers to human reaction to unexpected and expected sounds as the unwarned response and warned response. The...Henderson et al., 2001; Maison and Liberman, 2000). This system has been referred to by Dancer (2004) as the inner ear acoustic reflex. Although

  3. Impulsive control for angular momentum management of tumbling spacecraft

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shoji; Yamada, Katsuhiko

    2007-05-01

    We discuss an angular momentum control of a tumbling spacecraft. The proposed control method is to apply an impulse by a space robot arm, to measure and control the relative position and attitude between the target spacecraft, and then to apply another impulse until the rotational motion of the target spacecraft is well damped. A discrete controller is designed using the simplified equations of rotational motion through appropriate coordinate transformation. The stationary response under contact model uncertainty is investigated and stability condition is analytically derived. Numerical simulations are given to validate the proposed approach.

  4. On-Orbit Propellant Motion Resulting from an Impulsive Acceleration

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.

    1994-01-01

    In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low-gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle cargo bay. Although the shuttle/Centaur development activity has been suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.

  5. Characteristics of Impulsive Suicide Attempts and Attempters.

    ERIC Educational Resources Information Center

    Simon, Thomas R.; Swann, Alan C.; Powell, Kenneth E.; Potter, Lloyd B.; Kresnow, Marcie-jo; O'Carroll, Patrick W.

    2002-01-01

    Examined impulsive suicide attempts within a population-based, case-control study of nearly lethal suicide attempts among adolescents and young adults. Impulsive attempts were more likely among those who had been in a physical fight and less likely among those who were depressed. Findings suggest inadequate control of aggressive impulses as a…

  6. Lagrangian three-dimensional finite-element formulation for the nonlinear fluid-structural response of reactor components. [LMFBR

    SciTech Connect

    Kulak, R. F.; Fiala, C.

    1980-03-01

    This report presents the formulations used in the NEPTUNE code. Specifically, it describes the finite-element formulation of a three-dimensional hexahedral element for simulating the behavior of either fluid or solid continua. Since the newly developed hexahedral element and the original triangular plate element are finite elements, they are compatible in the sense that they can be combined arbitrarily to simulate complex reactor components in three-dimensional space. Because rate-type constitutive relations are used in conjunction with a velocity-strain tensor, the formulation is applicable to large deformation problems. This development can be used to simulate (1) the fluid adjacent to reactor components and (2) the concrete fill found in large reactor head closures.

  7. Why obese children cannot resist food: the role of impulsivity.

    PubMed

    Nederkoorn, Chantal; Braet, Caroline; Van Eijs, Yvonne; Tanghe, Ann; Jansen, Anita

    2006-11-01

    Facing the undesirable health consequences of being obese, an important question is why some people are not able to resist eating to excess. It is theorized that increased impulsivity at least partly underlies the inability to control eating behaviour; being more impulsive is supposed to make it more difficult to resist food intake. Thirty-three obese children in a residential setting and 31 lean control children are tested. Impulsivity is measured with two behavioural measures (inhibitory control and sensitivity to reward) and questionnaires. Results show that the obese children in treatment were more sensitive to reward and showed less inhibitory control than normal weight children. In addition, the obese children with eating binges were more impulsive than the obese children without eating binges. Most interesting finding was that the children that were the least effective in inhibiting responses, lost less weight in the residential treatment program. To conclude: impulsivity is a personality characteristic that potentially has crucial consequences for the development and maintenance, as well as treatment of obesity.

  8. Relations between trait impulsivity, behavioral impulsivity, physiological arousal, and risky sexual behavior among young men.

    PubMed

    Derefinko, Karen J; Peters, Jessica R; Eisenlohr-Moul, Tory A; Walsh, Erin C; Adams, Zachary W; Lynam, Donald R

    2014-08-01

    The current study examined how impulsivity-related traits (negative urgency, sensation seeking, and positive urgency), behavioral measures of risk taking and reward seeking, and physiological reactivity related to three different risky sexual behaviors in sexually active undergraduate men (N = 135). Regression analyses indicated that sensation seeking and behavioral risk-taking predicted unique variance in number of sexual partners. These findings suggest that, for young men, acquisition of new partners is associated with need for excitement and reward and willingness to take risks to meet those needs. Sensation seeking, behavioral risk-taking, and skin conductance reactivity to arousing stimuli was related to ever having engaged in sex with a stranger, indicating that, for men, willingness to have sex with a stranger is related not only to the need for excitement and risk-taking but also with innate responsiveness to arousing environmental triggers. In contrast, regression analyses indicated that young men who were impulsive in the context of negative emotions were less likely to use condoms, suggesting that emotion-based impulsivity may be an important factor in negligent prophylactic use. This study adds to the current understanding of the divergence between the correlates of risky sexual behaviors and may lend utility to the development of individualized HIV prevention programming.

  9. Relations Between Trait Impulsivity, Behavioral Impulsivity, Physiological Arousal, and Risky Sexual Behavior among Young Men

    PubMed Central

    Derefinko, Karen J.; Peters, Jessica R.; Eisenlohr-Moul, Tory A.; Walsh, Erin C.; Adams, Zachary W.; Lynam, Donald R.

    2014-01-01

    The current study examined how impulsivity-related traits (negative urgency, sensation seeking, and positive urgency), behavioral measures of risk taking and reward seeking, and physiological reactivity related to three different risky sexual behaviors in sexually active undergraduate men (N = 135). Regression analyses indicated that sensation seeking and behavioral risk-taking predicted unique variance in number of sexual partners. These findings suggest that, for young men, acquisition of new partners is associated with need for excitement and reward and willingness to take risks to meet those needs. Sensation seeking, behavioral risk-taking, and skin conductance reactivity to arousing stimuli was related to ever having engaged in sex with a stranger, indicating that, for men, willingness to have sex with a stranger is related not only to the need for excitement and risk-taking but also with innate responsiveness to arousing environmental triggers. In contrast, regression analyses indicated that young men who were impulsive in the context of negative emotions were less likely to use condoms, suggesting that emotion-based impulsivity may be an important factor in negligent prophylactic use. This study adds to the current understanding of the divergence between the correlates of risky sexual behaviors and may lend utility to the development of individualized HIV prevention programming. PMID:24958252

  10. Three-dimensional, Impulsive Magnetic Reconnection in a Laboratory Plasma

    SciTech Connect

    S Dorfman, et al

    2013-05-03

    Impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The events observed in the Magnetic Reconnection Experiment (MRX) are characterized by large local gradients in the third direction and cannot be explained by 2-D models. Detailed measurements show that the ejection of flux rope structures from the current sheet plays a key role in these events. By contrast, even though electromagnetic fluctuations in the lower hybrid frequency range are also observed concurrently with the impulsive behavior, they are not the key physics responsible. A qualitative, 3-D, two-fluid model is proposed to explain the observations. The experimental results may be particularly applicable to space and astrophysical plasmas where impulsive reconnection occurs.

  11. THz impulse radar for biomedical sensing: nonlinear system behavior

    NASA Astrophysics Data System (ADS)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  12. Exposure to Ketamine Anesthesia Affects Rat Impulsive Behavior.

    PubMed

    Melo, António; Leite-Almeida, Hugo; Ferreira, Clara; Sousa, Nuno; Pêgo, José M

    2016-01-01

    Introduction: Ketamine is a general anesthetic (GA) that activates several neurotransmitter pathways in various part of the brain. The acute effects as GA are the most well-known and sought-after: to induce loss of responsiveness and to produce immobility during invasive procedures. However, there is a concern that repeated exposure might induce behavioral changes that could outlast their acute effect. Most research in this field describes how GA affects cognition and memory. Our work is to access if general anesthesia with ketamine can disrupt the motivational behavior trait, more specifically measuring impulsive behavior. Methods: Aiming to evaluate the effects of exposure to repeat anesthetic procedures with ketamine in motivational behavior, we tested animals in a paradigm of impulsive behavior, the variable delay-to-signal (VDS). In addition, accumbal and striatal medium spiny neurons morphology was assessed. Results: Our results demonstrated that previous exposure to ketamine deep-anesthesia affects inhibitory control (impulsive behavior). Specifically, ketamine exposed animals maintain a subnormal impulsive rate in the initial periods of the delays. However, in longer delays while control animals progressively refrain their premature unrewarded actions, ketamine-exposed animals show a different profile of response with higher premature unrewarded actions in the last seconds. Animals exposed to multiple ketamine anesthesia also failed to show an increase in premature unrewarded actions between the initial and final periods of 3 s delays. These behavioral alterations are paralleled by an increase in dendritic length of medium spiny neurons of the nucleus accumbens (NAc). Conclusions: This demonstrates that ketamine anesthesia acutely affects impulsive behavior. Interestingly, it also opens up the prospect of using ketamine as an agent with the ability to modulate impulsivity trait.

  13. Exposure to Ketamine Anesthesia Affects Rat Impulsive Behavior

    PubMed Central

    Melo, António; Leite-Almeida, Hugo; Ferreira, Clara; Sousa, Nuno; Pêgo, José M.

    2016-01-01

    Introduction: Ketamine is a general anesthetic (GA) that activates several neurotransmitter pathways in various part of the brain. The acute effects as GA are the most well-known and sought-after: to induce loss of responsiveness and to produce immobility during invasive procedures. However, there is a concern that repeated exposure might induce behavioral changes that could outlast their acute effect. Most research in this field describes how GA affects cognition and memory. Our work is to access if general anesthesia with ketamine can disrupt the motivational behavior trait, more specifically measuring impulsive behavior. Methods: Aiming to evaluate the effects of exposure to repeat anesthetic procedures with ketamine in motivational behavior, we tested animals in a paradigm of impulsive behavior, the variable delay-to-signal (VDS). In addition, accumbal and striatal medium spiny neurons morphology was assessed. Results: Our results demonstrated that previous exposure to ketamine deep-anesthesia affects inhibitory control (impulsive behavior). Specifically, ketamine exposed animals maintain a subnormal impulsive rate in the initial periods of the delays. However, in longer delays while control animals progressively refrain their premature unrewarded actions, ketamine-exposed animals show a different profile of response with higher premature unrewarded actions in the last seconds. Animals exposed to multiple ketamine anesthesia also failed to show an increase in premature unrewarded actions between the initial and final periods of 3 s delays. These behavioral alterations are paralleled by an increase in dendritic length of medium spiny neurons of the nucleus accumbens (NAc). Conclusions: This demonstrates that ketamine anesthesia acutely affects impulsive behavior. Interestingly, it also opens up the prospect of using ketamine as an agent with the ability to modulate impulsivity trait. PMID:27932959

  14. Food reinforcement and impulsivity in overweight children and their parents.

    PubMed

    Epstein, Leonard H; Dearing, Kelly K; Temple, Jennifer L; Cavanaugh, Meghan D

    2008-08-01

    Pediatric obesity involves choices among healthy and less healthy alternatives, as well as choices whose consequences vary over time, such as engaging in unhealthy behaviors now at the expense of future health. The purpose of this study was to examine the relative reinforcing value of food and behavioral impulsivity under different experimental conditions in a sample of 50 families screened for participation in a pediatric obesity treatment program. Relative reinforcing value for food versus money was studied under conditions in which increased response requirements were placed on either access to food or money, and the amount of money, the alternative reinforcer, was varied. Impulsivity for small immediate versus larger delayed monetary rewards was studied under conditions in which the value of the immediate reward and the duration of the delay were varied. Results showed that response requirements affected the choice of food for both parents and children (p<0.001), and there was a significant correlation between the number of food reinforcers chosen by parents and children (r=0.57, p<0.001). The value of the immediate reward differentially influenced choice of the immediate reward for parents and children (p<0.05), with children (p<0.001) but not parents (p=0.36) more impulsive as value of the immediate reward increased. The length of the delay influenced both parent (p=0.004) and child (p<0.01) choice of the immediate reward. Parent and child impulsivity were not correlated (r=0.15, p=0.29). This study suggests that food reinforcement may be more similar between parents and children than behavioral impulsivity, though additional research using other measures of relative reinforcing value and impulsivity is warranted.

  15. Progesterone attenuates impulsive action in a Go/No-Go task for sucrose pellets in female and male rats.

    PubMed

    Swalve, Natashia; Smethells, John R; Carroll, Marilyn E

    2016-09-01

    Impulsivity, or a tendency to act without anticipation of future consequences, is associated with drug abuse. Impulsivity is typically separated into two main measures, impulsive action and impulsive choice. Given the association of impulsivity and drug abuse, treatments that reduce impulsivity have been proposed as an effective method for countering drug addiction. Progesterone has emerged as a promising treatment, as it is associated with decreased addiction-related behaviors and impulsive action. The goal of the present study was to determine the effects of progesterone (PRO) on impulsive action for food: a Go/No-Go task. Female and male rats responded for sucrose pellets during a Go component when lever pressing was reinforced on a variable-interval 30-s schedule. During the alternate No-Go component, withholding a lever press was reinforced on a differential reinforcement of other (DRO) behavior 30-s schedule, where a lever press reset the DRO timer. Impulsive action was operationally defined as the inability to withhold a response during the No-Go component (i.e. the number of DRO resets). Once Go/No-Go behavior was stable, responding between rats treated with PRO (0.5mg/kg) or vehicle was examined. Progesterone significantly decreased the total number of DRO resets in both males and females, but it did not affect VI responding for sucrose pellets. This suggests that PRO decreases motor impulsivity for sucrose pellets without affecting motivation for food. Thus, PRO may reduce motor impulsivity, a behavior underlying drug addiction.

  16. The static response function in Kohn-Sham theory: an appropriate basis for its matrix representation in case of finite AO basis sets.

    PubMed

    Kollmar, Christian; Neese, Frank

    2014-10-07

    The role of the static Kohn-Sham (KS) response function describing the response of the electron density to a change of the local KS potential is discussed in both the theory of the optimized effective potential (OEP) and the so-called inverse Kohn-Sham problem involving the task to find the local KS potential for a given electron density. In a general discussion of the integral equation to be solved in both cases, it is argued that a unique solution of this equation can be found even in case of finite atomic orbital basis sets. It is shown how a matrix representation of the response function can be obtained if the exchange-correlation potential is expanded in terms of a Schmidt-orthogonalized basis comprising orbitals products of occupied and virtual orbitals. The viability of this approach in both OEP theory and the inverse KS problem is illustrated by numerical examples.

  17. Role of finite-size effects in the microwave and subterahertz electromagnetic response of a multiwall carbon-nanotube-based composite: Theory and interpretation of experiments

    NASA Astrophysics Data System (ADS)

    Shuba, M. V.; Melnikov, A. V.; Paddubskaya, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Thomsen, C.

    2013-07-01

    Electromagnetic scattering theory has been applied to calculate polarizabilities of finite-length multiwall carbon nanotubes (MWCNTs) in microwave and subterahertz ranges. The influence of the length and diameter of a MWCNT and electron relaxation time on the regime of the MWCNT interaction with an electromagnetic field has been analyzed. Significant screening effect, due to the strong depolarizing field, determines electromagnetic response of the MWCNTs field in a wide gigahertz frequency range. The main features of the gigahertz spectra of effective permittivity and electromagnetic interference shielding efficiencies of a MWCNT-based composite observed previously in experiments have been systematized and theoretically described.

  18. Emotion Regulation and Impulsivity in Young Adults

    PubMed Central

    Schreiber, Liana R.N.; Grant, Jon E.; Odlaug, Brian L.

    2012-01-01

    Past research has linked both emotion regulation and impulsivity with the development and maintenance of addictions. However, no research has investigated the relationship between emotion regulation and impulsivity within young adults. In the present study, we analyzed 194 young adults (27.8% female; 21.3 ± 3.32 years old; 91.8% single; 85.1% Caucasian), grouping them as low, average, or high emotionally dysregulated, and compared self-reported impulsivity, impulsive behaviors (such as alcohol and substance use and gambling) and cognitive impulsivity. We hypothesized that those with high levels of emotion dysregulation would score higher on self-reported and cognitive impulsivity, and report more impulsive behaviors. Analysis indicated that compared to low, the high emotion dysregulation group scored significantly higher on two self-report measures of impulsivity, harm avoidance, and cognitive reasoning. No significant differences were found between groups in impulsive behaviors and cognitive impulsivity. Overall, this study highlights the relationship between emotion dysregulation and impulsivity, suggesting that emotion regulation may be an important factor to consider when assessing individuals at a higher risk for developing an addiction. PMID:22385661

  19. A Neurogenetic Approach to Impulsivity

    PubMed Central

    Congdon, Eliza; Canli, Turhan

    2008-01-01

    Impulsivity is a complex and multidimensional trait that is of interest to both personality psychologists and to clinicians. For investigators seeking the biological basis of personality traits, the use of neuroimaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) revolutionized personality psychology in less than a decade. Now, another revolution is under way, and it originates from molecular biology. Specifically, new findings in molecular genetics, the detailed mapping and the study of the function of genes, have shown that individual differences in personality traits can be related to individual differences within specific genes. In this article, we will review the current state of the field with respect to the neural and genetic basis of trait impulsivity. PMID:19012655

  20. Impulse Response Operators for Structural Complexes

    DTIC Science & Technology

    1990-05-12

    systems of the complex. The statistical energy analysis (SEA) is one such a device [ 13, 14]. The rendering of SEA from equation (21) and/or (25) lies...Propagation.] 13. L. Cremer, M. Heckl, and E.E. Ungar 1973 Structure-Borne Sound (Springer Verlag). 14. R. H. Lyon 1975 Statistical Energy Analysis of

  1. Double trouble. Trait food craving and impulsivity interactively predict food-cue affected behavioral inhibition.

    PubMed

    Meule, Adrian; Kübler, Andrea

    2014-08-01

    Impulsivity and food craving have both been implicated in overeating. Recent results suggest that both processes may interactively predict increased food intake. In the present study, female participants performed a Go/No-go task with pictures of high- and low-calorie foods. They were instructed to press a button in response to the respective target category, but withhold responses to the other category. Target category was switched after every other block, thereby creating blocks in which stimulus-response mapping was the same as in the previous block (nonshift blocks) and blocks in which it was reversed (shift blocks). The Food Cravings Questionnaires and the Barratt Impulsiveness Scale were used to assess trait and state food craving and attentional, motor, and nonplanning impulsivity. Participants had slower reaction times and more omission errors (OE) in high-calorie than in low-calorie blocks. Number of commission errors (CE) and OE was higher in shift blocks than in nonshift blocks. Trait impulsivity was positively correlated with CE in shift blocks while trait food craving was positively correlated with CE in high-calorie blocks. Importantly, CE in high-calorie-shift blocks were predicted by an interaction of food craving × impulsivity such that the relationship between food craving and CE was particularly strong at high levels of impulsivity, but vanished at low levels of impulsivity. Thus, impulsive reactions to high-calorie food-cues are particularly pronounced when both trait impulsivity and food craving is high, but low levels of impulsivity can compensate for high levels of trait food craving. Results support models of self-regulation which assume that interactive effects of low top-down control and strong reward sensitive, bottom-up mechanisms may determine eating-related disinhibition, ultimately leading to increased food intake.

  2. Multidimensional assessment of impulsivity in relation to obesity and food addiction.

    PubMed

    VanderBroek-Stice, Lauren; Stojek, Monika K; Beach, Steven R H; vanDellen, Michelle R; MacKillop, James

    2017-05-01

    Based on similarities between overconsumption of food and addictive drugs, there is increasing interest in "food addiction," a compulsive eating pattern defined using symptoms parallel to substance use disorders. Impulsivity, a multidimensional construct robustly linked to drug addiction, has been increasingly examined as an obesity determinant, but with mixed findings. This study sought to clarify relations between three major domains of impulsivity (i.e., impulsive personality traits, discounting of delayed rewards, and behavioral inhibition) in both obesity and food addiction. Based on the association between impulsivity and compulsive drug use, the general hypothesis was that the impulsivity-food addiction relation would be stronger than and responsible for the impulsivity-obesity relation. Using a cross-sectional dimensional design, participants (N = 181; 32% obese) completed a biometric assessment, the Yale Food Addiction Scale (YFAS), the UPPS-P Impulsive Behavior Scales, a Go/NoGo task, and measures of monetary delay discounting. Results revealed significantly higher prevalence of food addiction among obese participants and stronger zero-order associations between impulsivity indices and YFAS compared to obesity. Two aspects of impulsivity were independently significantly associated with food addiction: (a) a composite of Positive and Negative Urgency, reflecting proneness to act impulsively during intense mood states, and (b) steep discounting of delayed rewards. Furthermore, the results supported food addiction as a mediator connecting both urgency and delay discounting with obesity. These findings provide further evidence linking impulsivity to food addiction and obesity, and suggest that food addiction may be a candidate etiological pathway to obesity for individuals exhibiting elevations in these domains.

  3. Periodic components of hand acceleration/deceleration impulses during telemanipulation

    SciTech Connect

    Draper, J.V.; Handel, S.

    1994-01-01

    Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF`s) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25 Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition.

  4. Dimensions of impulsive behavior and treatment outcomes for adolescent smokers.

    PubMed

    Harris, Millie; Penfold, Robert B; Hawkins, Ariane; Maccombs, Jared; Wallace, Bryan; Reynolds, Brady

    2014-02-01

    Adolescent cigarette smoking rates remain a significant public health concern, and as a result there is a continued need to understand factors that contribute to an adolescent's ability to reduce or quit smoking. Previous research suggests that impulsive behavior may be associated with treatment outcomes for smoking. The current research (N = 81) explored 3 dimensions of impulsive behavior as predictors of treatment response from a social-cognitive type program for adolescent smokers (i.e., Not On Tobacco; N-O-T). Measures included laboratory assessments of delay discounting, sustained attention, and behavioral disinhibition. A self-report measure of impulsivity was also included. Adolescent smokers who had better sustained attention were more likely to reduce or quit smoking by the end of treatment. No other measures of impulsivity were significantly associated with treatment response. From these findings, an adolescent smoker's ability to sustain attention appears to be an important behavioral attribute to consider when implementing smoking cessation programs such as N-O-T.

  5. Finite Element Modeling of the Muscle Effects on Kinematic Responses of Head-Neck Complex in Frontal Impact at High Speed

    NASA Astrophysics Data System (ADS)

    Wittek, Adam; Kajzer, Janusz; Haug, Eberhard; Ono, Koshiro

    In the present study, a previously developed finite-element model of the neck was modified by adding the Hill-type muscle elements. The modified model was utilized to investigate the muscle effects on the kinematic responses of the head-neck complex in a frontal impact at a speed of around 60 km/h. The behavior of this model was consistent with the literature data describing kinematic responses of volunteers and cadavers subjected to such an impact. The present results suggest the following: 1) It is likely that, when the neck muscles are activated at around 25-50 ms after the start of the impact acceleration, they can significantly reduce the peak values of the head-gravity center displacements and angular acceleration in a high-speed frontal impact; and 2) When the activation of neck muscles starts at around 100 ms or later, their effects can be disregarded.

  6. A Galerkin finite-element flow model to predict the transient response of a radially symmetric aquifer

    USGS Publications Warehouse

    Reilly, Thomas E.

    1984-01-01

    A computer program developed to evaluate radial flow of ground water, such as at a pumping well, recharge basin, or injection well, is capable of simulating anisotropic, inhomogenous, confined, or pseudo-unconfined (constant saturated thickness) conditions. Results compare well with those calculated from published analytical and model solutions. The program is based on the Galerkin finite-element technique. A sample model run is presented to illustrate the use of the program; supplementary material provides the program listing as well as a sample problem data set and output. From the text and other material presented, one can use the program to predict drawdowns from pumping and ground-water buildups from recharge in a radially symmetric ground-water system.

  7. Maximization of the effective impulse delivered by a high-frequency/low-frequency planetary drill tool.

    PubMed

    Harkness, Patrick; Lucas, Margaret; Cardoni, Andrea

    2011-11-01

    Ultrasonic tools are used for a variety of cutting applications in surgery and the food industry, but when they are applied to harder materials, such as rock, their cutting performance declines because of the low effective impulse delivered by each vibration cycle. To overcome this problem, a technique known as high-frequency/low-frequency (or alternatively, ultrasonic/sonic) drilling is employed. In this approach, an ultrasonic step-horn is used to deliver an impulse to a free mass which subsequently moves toward a drilling bit, delivering the impulse on contact. The free mass then rebounds to complete the cycle. The horn has time between impacts to build significant vibration amplitude and thus delivers a much larger impulse to the free mass than could be delivered if it were applied directly to the target. To maximize the impulse delivered to the target by the cutting bit, both the momentum transfer from the ultrasonic horn to the free mass and the dynamics of the horn/free mass/cutting bit stack must be optimized. This paper uses finite element techniques to optimize the ultrasonic horns and numerical propagation of the stack dynamics to maximize the delivered effective impulse, validated in both cases by extensive experimental analysis.

  8. Cued to Act on Impulse: More Impulsive Choice and Risky Decision Making by Women Susceptible to Overeating after Exposure to Food Stimuli

    PubMed Central

    Yeomans, Martin R.; Brace, Aaron

    2015-01-01

    There is increasing evidence that individual differences in tendency to overeat relate to impulsivity, possibly by increasing reactivity to food-related cues in the environment. This study tested whether acute exposure to food cues enhanced impulsive and risky responses in women classified on tendency to overeat, indexed by scores on the three factor eating questionnaire disinhibition (TFEQ-D), restraint (TFEQ-R) and hunger scales. Ninety six healthy women completed two measures of impulsive responding (delayed discounting, DDT and a Go No-Go, GNG, task) and a measure of risky decision making (the balloon analogue risk task, BART) as well as questionnaire measures of impulsive behaviour either after looking at a series of pictures of food or visually matched controls. Impulsivity (DDT) and risk-taking (BART) were both positively associated with TFEQ-D scores, but in both cases this effect was exacerbated by prior exposure to food cues. No effects of restraint were found. TFEQ-D scores were also related to more commission errors on the GNG, while restrained women were slower on the GNG, but neither effect was modified by cue exposure. Overall these data suggest that exposure to food cues act to enhance general impulsive responding in women at risk of overeating and tentatively suggest an important interaction between tendency for impulsive decision making and food cues that may help explain a key underlying risk factor for overeating. PMID:26378459

  9. An Abbreviated Impulsiveness Scale (ABIS) Constructed through Confirmatory Factor Analysis of the BIS-11

    PubMed Central

    Coutlee, Christopher G.; Politzer, Cary S.; Hoyle, Rick H.; Huettel, Scott A.

    2015-01-01

    Impulsiveness is a personality trait that reflects an urge to act spontaneously, without thinking or planning ahead for the consequences of your actions. High impulsiveness is characteristic of a variety of problematic behaviors including attention deficit disorder, hyperactivity, excessive gambling, risk-taking, drug use, and alcoholism. Researchers studying attention and self-control often assess impulsiveness using personality questionnaires, notably the common Barratt Impulsiveness Scale version 11 (BIS-11; last revised in 1995). Advances in techniques for producing personality questionnaires over the last 20 years prompted us to revise and improve the BIS-11. We sought to make the revised scale shorter – so that it would be quicker to administer – and better matched to current behaviors. We analyzed responses from 1549 adults who took the BIS-11 questionnaire. Using a statistical technique called factor analysis, we eliminated 17 questions that did a poor job of measuring the three major types of impulsiveness identified by the scale: inattention, spontaneous action, and lack of planning. We constructed our ABbreviated Impulsiveness Scale (ABIS) using the remaining 13 questions. We showed that the ABIS performed well when administered to additional groups of 657 and 285 adults. Finally, we showed expected relationships between the ABIS and other personality measurements related to impulsiveness, and showed that the ABIS can help predict alcohol consumption. We present the ABIS as a useful and efficient tool for researchers interested in measuring impulsive personality. PMID:26258000

  10. Skin impulse excitation of spinal sensory neurons in developing Xenopus laevis (Daudin) tadpoles.

    PubMed

    James, Lisa J; Soffe, Stephen R

    2011-10-15

    Responses to gentle touch in young Xenopus tadpoles are mediated by spinal cord sensory Rohon-Beard neurons. Tadpoles also respond to noxious stimuli that elicit 'skin impulses', which propagate between epithelial cells over the whole body surface, somehow entering the CNS to generate a response. After hatching (~48 h post-fertilization), skin impulse signals enter the CNS only via cranial nerves, but previous evidence suggested the possibility of direct entry to the spinal cord before this (~24 h). We have used behavioural and electrophysiological methods to explore the developmental pattern of skin impulse entry into the spinal cord and the involvement of Rohon-Beard neurons. Lesioning confirmed that skin impulse signals can directly enter the spinal cord in young embryos, but access decreases over ~12 h and disappears soon after hatching. Electrical recordings from central Rohon-Beard axons in young embryos showed firing in response to skin impulses. However, unit recordings from Rohon-Beard somata showed that individuals that responded to touch within a characteristic, localised receptive field did not fire to skin impulses, whereas others from similar locations responded reliably. Developmental loss of skin impulse access to the spinal cord mirrored the known spread of sensitivity to gentle touch as the peripheral mechanosensory endings of Rohon-Beard neurons mature. Together, these results suggest that Rohon-Beard neurons respond to skin impulses only while immature, providing a transitory route for skin impulses to excite the CNS. In this way, Rohon-Beard neurons would mediate responses first to noxious and then to localised, gentle touch stimuli as the neurons developed.

  11. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function.

    PubMed

    Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M

    2014-02-01

    Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment.

  12. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  13. Impulsivity and sexual assault in college men.

    PubMed

    Mouilso, Emily R; Calhoun, Karen S; Rosenbloom, Thomas G

    2013-01-01

    Although impulsivity has been consistently linked to perpetration of sexual aggression, results lack clarity because they do not account for the substantial heterogeneity associated with the construct. The UPPS-P model (Lynam, Smith, Whiteside, & Cyders, 2006), which was proposed to clarify the multidimensional nature of impulsivity, has yet to be applied to sexual aggression. We measured UPPS-P Impulsivity in a sample of male college students who also self-reported on perpetration of sexual aggression. As predicted, impulsivity distinguished perpetrators from nonperpetrators. Perpetrators scored higher than non-perpetrators on Negative Urgency, Positive Urgency, and lack of Premeditation. Results suggest that the impulsivity traits most relevant to sexual aggression are the tendency to act impulsively when experiencing intense emotions (Positive and Negative Urgency) and lack of forethought and planning (lack of Premeditation).

  14. Teens impulsively react rather than retreat from threat.

    PubMed

    Dreyfuss, Michael; Caudle, Kristina; Drysdale, Andrew T; Johnston, Natalie E; Cohen, Alexandra O; Somerville, Leah H; Galván, Adriana; Tottenham, Nim; Hare, Todd A; Casey, B J

    2014-01-01

    There is a significant inflection in risk taking and criminal behavior during adolescence, but the basis for this increase remains largely unknown. An increased sensitivity to rewards has been suggested to explain these behaviors, yet juvenile offences often occur in emotionally charged situations of negative valence. How behavior is altered by changes in negative emotional processes during adolescence has received less attention than changes in positive emotional processes. The current study uses a measure of impulsivity in combination with cues that signal threat or safety to assess developmental changes in emotional responses to threat cues. We show that adolescents, especially males, impulsively react to threat cues relative to neutral ones more than adults or children, even when instructed not to respond. This adolescent-specific behavioral pattern is paralleled by enhanced activity in limbic cortical regions implicated in the detection and assignment of emotional value to inputs and in the subsequent regulation of responses to them when successfully suppressing impulsive responses to threat cues. In contrast, prefrontal control regions implicated in detecting and resolving competing responses show an adolescent-emergent pattern (i.e. greater activity in adolescents and adults relative to children) during successful suppression of a response regardless of emotion. Our findings suggest that adolescence is a period of heightened sensitivity to social and emotional cues that results in diminished regulation of behavior in their presence.

  15. Impulsively started incompressible turbulent jet

    SciTech Connect

    Witze, P O

    1980-10-01

    Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.

  16. Modeling of impulsive propellant reorientation

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Patag, Alfredo E.; Chato, David J.

    1988-01-01

    The impulsive propellant reorientation process is modeled using the (Energy Calculations for Liquid Propellants in a Space Environment (ECLIPSE) code. A brief description of the process and the computational model is presented. Code validation is documented via comparison to experimentally derived data for small scale tanks. Predictions of reorientation performance are presented for two tanks designed for use in flight experiments and for a proposed full scale OTV tank. A new dimensionless parameter is developed to correlate reorientation performance in geometrically similar tanks. Its success is demonstrated.

  17. The annoyance of impulsive helicopter noise

    NASA Technical Reports Server (NTRS)

    Karamcheti, K.

    1981-01-01

    A total of 96 impulsive and non-impulsive sounds were rated for annoyance by 10 subjects. The signals had the same amplitude spectrum with a maximum frequency of 4.75 kHz. By changing the phase of the spectral components different levels of impulsivity were obtained. The signals had coefficients of impulsivity of 10,8, 7,9, and -0.2 respectively. Further, signals had intensity levels 89 and 95 dBA, pulse repetition rates 10 and 20 Hz, and half the signals had pink noise added at a level 12 dBA lower than the level of the sound. The significant results were: The four females and six male subjects rated the impulsive sounds respectively 3.7 dB less annoying and 2.6 dB more annoying than the non-impulsive sounds. Overall, impulsivity had no effect. The hish pulse repetition rate increased annoyance by 2.2 dB. Addition of pink noise increased annoyance of the non-impulsive sounds 1.2 dB, but decreased the annoyance of the impulsive sounds 0.5 dB.

  18. Impulsiveness without discounting: the ecological rationality hypothesis.

    PubMed Central

    Stephens, David W.; Kerr, Benjamin; Fernández-Juricic, Esteban

    2004-01-01

    Observed animal impulsiveness challenges ideas from foraging theory about the fitness value of food rewards, and may play a role in important behavioural phenomena such as cooperation and addiction. Behavioural ecologists usually invoke temporal discounting to explain the evolution of animal impulsiveness. According to the discounting hypothesis, delay reduces the fitness value of the delayed food. We develop an alternative model for the evolution of impulsiveness that does not require discounting. We show that impulsive or short-sighted rules can maximize long-term rates of food intake. The advantages of impulsive rules come from two sources. First, naturally occurring choices have a foreground-background structure that reduces the long-term cost of impulsiveness. Second, impulsive rules have a discrimination advantage because they tend to compare smaller quantities. Discounting contributes little to this result. Although we find that impulsive rules are optimal in a simple foreground-background choice situation in the absence of discounting, in contrast we do not find comparable impulsiveness in binary choice situations even when there is strong discounting. PMID:15590596

  19. Study on the Influence of Different Interface Conditions on the Response of Finite Element Human Head Models under Occipital Impact Loading

    NASA Astrophysics Data System (ADS)

    Aomura, Shigeru; Fujiwara, Satoshi; Ikoma, Takayuki

    The aim of the present study is to obtain a better understanding of skull-brain interface conditions and the influence of the neck region when the finite element human head model under impact loading is constructed. The three-dimensional finite element head model consisting of skin, skull, CSF and neck is constructed based on MRI and CT data. The material properties are adopted from the literature previously published and are homogeneous and isotropic. Next, a crash test is carried out by crashing an iron block impactor on the occipital region of the physical human head neck model in which water is filled and intracranial pressure and head acceleration are measured. The result of the numerical calculation is compared with the result of the experiment for verification of the computer model and good agreement is obtained. The result shows that the tied-type interface condition is preferable than the slide-type condition in order to represent the phenomenon in the physical model. The presence of the neck is important for analysis but the stiffness of the neck seldom affects the intracranial response.

  20. Impulsivity moderates the association between racial discrimination and alcohol problems.

    PubMed

    Latzman, Robert D; Chan, Wing Yi; Shishido, Yuri

    2013-12-01

    Alcohol use among university students is a serious public health concern, particularly among minority students who may use alcohol to cope with experiences of racial discrimination. Although the impact of racial discrimination on alcohol use has been well-established, individual differences in factors that may act to either attenuate or exacerbate the negative effects of racial discrimination are largely unknown. One potentially fruitful individual differences trait that has repeatedly been found to predict alcohol problems is the multidimensional personality trait of impulsivity. Nonetheless, the ways in which various aspects of impulsivity interact with racial discrimination is yet unknown. The current study, therefore, examined the joint and interactive contribution of racial discrimination and impulsivity in the prediction of alcohol consumption among racial minority university students. Participants included 336 Black/African-American and Asian/Asian-American university students. Results revealed both racial discrimination and impulsivity to be significantly associated with alcohol problems. Further, individuals' responses to racial discrimination were not uniform. Specifically, the association between racial discrimination and alcohol problems was moderated by lack of Premeditation; racial discrimination was most strongly predictive of alcohol problems for those who reported low level of premeditation. Findings from the present study highlight the importance of investigating risk factors for alcohol problems across multiple levels of the ecology as individual personality traits appear to relate to how one might respond to the experience of racial discrimination.

  1. Brain structure correlates of emotion-based rash impulsivity

    PubMed Central

    Muhlert, N.; Lawrence, A.D.

    2015-01-01

    Negative urgency (the tendency to engage in rash, ill-considered action in response to intense negative emotions), is a personality trait that has been linked to problematic involvement in several risky and impulsive behaviours, and to various forms of disinhibitory psychopathology, but its neurobiological correlates are poorly understood. Here, we explored whether inter-individual variation in levels of trait negative urgency was associated with inter-individual variation in regional grey matter volumes. Using voxel-based morphometry (VBM) in a sample (n = 152) of healthy participants, we found that smaller volumes of the dorsomedial prefrontal cortex and right temporal pole, regions previously linked to emotion appraisal, emotion regulation and emotion-based decision-making, were associated with higher levels of trait negative urgency. When controlling for other impulsivity linked personality traits (sensation seeking, lack of planning/perseverance) and negative emotionality per se (neuroticism), these associations remained, and an additional relationship was found between higher levels of trait negative urgency and smaller volumes of the left ventral striatum. This latter finding mirrors recent VBM findings in an animal model of impulsivity. Our findings offer novel insight into the brain structure correlates of one key source of inter-individual differences in impulsivity. PMID:25957991

  2. Effects of mood state on impulsivity in pathological buying.

    PubMed

    Nicolai, Jennifer; Darancó, Stefaniá; Moshagen, Morten

    2016-10-30

    Pathological buying is characterized by irrepressible buying behaviour and its negative consequences. A possible mechanism contributing to its development and maintenance is that buying episodes act as a maladaptive strategy to cope with negative emotions. Accordingly, pathological buying has been repeatedly associated with impulsivity, in particular with the tendency to experience strong reactions under negative affect. Relying on an experimental mood induction procedure, the present study tested in a sample of 100 individuals (a) whether individuals with pathological buying symptoms respond more impulsively in the Go/No-Go Task (as a measure of the behavioural inhibition aspect of impulsivity) and (b) whether this association is more pronounced in a negative mood. While controlling for comorbidities, the results show that pathological buying is associated with faster responses and a larger number of commission errors. Moreover, a significant interaction indicated that the association between pathological buying and performance the Go/No-Go Task was stronger in the negative mood condition. The present study thus shows that pathological buying is associated with deficits in the behavioural inhibition component of impulsivity. These deficits are most pronounced when mood is negative; in turn, this provides an explanation for the occurrence of excessive buying episodes following negative affect.

  3. The video head impulse test during post-rotatory nystagmus: physiology and clinical implications.

    PubMed

    Mantokoudis, Georgios; Tehrani, Ali S Saber; Xie, Li; Eibenberger, Karin; Eibenberger, Bernhard; Roberts, Dale; Newman-Toker, David E; Zee, David S

    2016-01-01

    The aim of this study was to test the effects of a sustained nystagmus on the head impulse response of the vestibulo-ocular reflex (VOR) in healthy subjects. VOR gain (slow-phase eye velocity/head velocity) was measured using video head impulse test goggles. Acting as a surrogate for a spontaneous nystagmus (SN), a post-rotatory nystagmus (PRN) was elicited after a sustained, constant-velocity rotation, and then head impulses were applied. 'Raw' VOR gain, uncorrected for PRN, in healthy subjects in response to head impulses with peak velocities in the range of 150°/s-250°/s was significantly increased (as reflected in an increase in the slope of the gain versus head velocity relationship) after inducing PRN with slow phases of nystagmus of high intensity (>30°/s) in the same but not in the opposite direction as the slow-phase response induced by the head impulses. The values of VOR gain themselves, however, remained in the normal range with slow-phase velocities of PRN < 30°/s. Finally, quick phases of PRN were suppressed during the first 20-160 ms of a head impulse; the time frame of suppression depended on the direction of PRN but not on the duration of the head impulse. Our results in normal subjects suggest that VOR gains measured using head impulses may have to be corrected for any superimposed SN when the slow-phase velocity of nystagmus is relatively high and the peak velocity of the head movements is relatively low. The suppression of quick phases during head impulses may help to improve steady fixation during rapid head movements.

  4. Head and neck response of a finite element anthropomorphic test device and human body model during a simulated rotary-wing aircraft impact.

    PubMed

    White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D

    2014-11-01

    A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact.

  5. A multifactorial and integrative approach to impulsivity in neuropsychology: insights from the UPPS model of impulsivity.

    PubMed

    Rochat, Lucien; Billieux, Joël; Gagnon, Jean; Van der Linden, Martial

    2017-04-11

    Risky and excessive behaviors, such as aggressive and compulsive behaviors, are frequently described in patients with brain damage and have dramatic psychosocial consequences. Although there is strong evidence that impulsivity constitutes a key factor at play in these behaviors, the literature about impulsivity in neuropsychology is to date scarce. In addition, examining and understanding these problematic behaviors requires the assumption that impulsivity is a multidimensional construct. Consequently, this article aims at shedding light on frequent risky and excessive behaviors in patients with brain damage by focusing on a unified, comprehensive, and well-validated model, namely, the UPPS model of impulsivity. This model considers impulsivity as a multidimensional construct that includes four facets: urgency, (lack of) premeditation, (lack of) perseverance, and sensation seeking. Furthermore, we discuss the psychological mechanisms underlying the dimensions of impulsivity, as well as the laboratory tasks designed to assess each mechanism and their neural bases. We then present a scale specifically designed to assess these four dimensions of impulsivity in patients with brain damage and examine the data regarding this multidimensional approach to impulsivity in neuropsychology. This review supports the need to adopt a multifactorial and integrative approach toward impulsive behaviors, and the model presented provides a valuable rationale to disentangle the nature of brain systems and mechanisms underlying impulsive behaviors in patients with brain damage. It may also foster further relevant research in the field of impulsivity and improve assessment and rehabilitation of impulsive behaviors in clinical settings.

  6. Impulsivity and the Sexes: Measurement and Structural Invariance of the UPPS-P Impulsive Behavior Scale

    ERIC Educational Resources Information Center

    Cyders, Melissa A.

    2013-01-01

    Before it is possible to test whether men and women differ in impulsivity, it is necessary to evaluate whether impulsivity measures are invariant across sex. The UPPS-P Impulsive Behavior Scale (negative urgency, lack of premeditation, lack of perseverance, and sensation seeking, with added subscale of positive urgency) is one measure of five…

  7. On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series

    NASA Astrophysics Data System (ADS)

    Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen

    2016-09-01

    Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.

  8. Impulsive model for reactive collisions

    NASA Technical Reports Server (NTRS)

    Marron, M. T.; Bernstein, R. B.

    1972-01-01

    A simple classical mechanical model of the reactive scattering of a structureless atom A and a quasi-diatomic BC is developed which takes full advantage of energy, linear and angular momentum conservation relations but introduces a minimum of further assumptions. These are as follows: (1) the vibrational degree of freedom of the reactant (BC) and product (AB) molecules is suppressed, so the change in vibrational energy is simply a parameter; (2) straight-line trajectories are assumed outside of a reaction shell; (3) within this zone, momentum transfer occurs impulsively (essentially instantaneously) following mass transfer; (4) the impulse, which may be either positive or negative, is directed along the BC axis, which may, however, assume all orientations with respect to the incident relative velocity. The model yields differential and total cross sections and product rotational energy distributions for a given collision exoergicity Q, or for any known distribution over Q. Numerical results are presented for several prototype reactions whose dynamics have been well-studied.

  9. Integration of a Finite Element Model with the DAP Bone Remodeling Model to Characterize Bone Response to Skeletal Loading

    NASA Technical Reports Server (NTRS)

    Werner, Christopher R.; Mulugeta, Lealem; Myers, J. G.; Pennline, J. A.

    2015-01-01

    NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone in the absence of mechanical loading. The model was recently updated to include skeletal loading from exercise and free living activities to maintain healthy bone using a new daily load stimulus (DLS). This new formula was developed based on an extensive review of existing DLS formulas, as discussed in the abstract by Pennline et al. The DLS formula incorporated into the bone remodeling model utilizes strains and stress calculated from finite element model (FEM) of the bone region of interest. The proximal femur was selected for the initial application of the DLS formula, with a specific focus on the femoral neck. METHODS: The FEM was generated from CAD geometry of a femur using de-identified CT data. The femur was meshed using linear tetrahedral elements Figure (1) with higher mesh densities in the femoral neck region, which is the primary region of interest for the initial application of the DLS formula in concert with the DAP bone remodeling model. Nodal loads were applied to the femoral head and the greater trochanter and the base of the femur was held fixed. An L2 norm study was conducted to reduce the length of the femoral shaft without significantly impacting the stresses in the femoral neck. The material properties of the FEM of the proximal femur were separated between cortical and trabecular regions to work with the bone remodeling model. Determining the elements with cortical material properties in the FEM was based off of publicly available CT hip scans [4] that were segmented, cleaned, and overlaid onto the FEM.

  10. Impulse gage development for the 100-200 ktap range

    SciTech Connect

    Rose, P.C.; Naumann, W.J. . Advanced Technologies Div.)

    1990-07-31

    Special effects underground test (UGT) material response and source diagnostics data require impulse gages that can be used in the 50--150 ktap range and have equilibrated from electrical and mechanical noise sources within 0.001 s. Such gages were designed, analyzed, and tested under this program. One- and two-dimensional stress propagation calculations were performed and predictions were developed for deformation of the gage specimen cup. These predictions were conservative when compared to gas gun test results. The response of the gage will equilibrate within 5% to its final value within 300 {mu}sec. The impulse delivered to the gages for these tests exceeded 250 ktap. The code and experimental results provides a basis for confidence in the operability of the gage in an actual UGT environment.

  11. Impact response and biomechanical analysis of the knee-thigh-hip complex in frontal impacts with a full human body finite element model.

    PubMed

    Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Rouhana, Stephen W; Prasad, Priya

    2008-11-01

    Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts. It was further validated with cadaver knee-thigh-hip impact tests in the current study. The effects of impactor configuration and flexion angle of the knee on biomechanical impact responses of the knee-thigh-hip complex were studied using the validated human body finite element model. This study showed that the knee flexion angle and the impact direction and shape of the impactors affected the injury outcomes of the knee-thigh-hip complex significantly. The 60 degrees flexed knee impact showed the least impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress but largest relative displacements of the Posterior Cruciate Ligament (PCL) and Anterior Cruciate Ligament (ACL). The 90 degrees flexed knee impact resulted in a higher impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress; but smaller PCL and ACL displacements. Stress distributions of the patella, femur, and pelvis were also given for all the simulated conditions.

  12. Reliability and Validity of Measures of Impulsive Choice and Impulsive Action in Smokers Trying to Quit

    PubMed Central

    McCarthy, Danielle E.; Bold, Krysten W.; Minami, Haruka; Yeh, Vivian M.; Rutten, Emily; Nadkarni, Shruti G.; Chapman, Gretchen B.

    2016-01-01

    Cross-sectional research suggests that smokers are more impulsive than are non-smokers, but few studies have examined relations between impulsiveness and later success in quitting smoking. The purpose of this study was to investigate the reliability and predictive validity of facets of impulsiveness in adult smokers trying to quit. Baseline behavioral measures of impulsive choice (assessed with a delay discounting task) and impulsive action (assessed with a measure of behavioral disinhibition) were used as predictors of smoking cessation success over 12 weeks. The sample included 116 adult (18 years old or older) daily smokers from central New Jersey. Impulsive choice, impulsive action, and self-reported impulsiveness were not significantly related to one another at baseline. Impulsive choice had high test-retest reliability from pre- to post-quit, whereas impulsive action was less stable. Test-retest reliability from pre-quit to three weeks post-quit was moderated by achievement of seven-day abstinence. Baseline impulsive action was significantly negatively related to quitting for at least one day in the first two weeks of a quit attempt and of prolonged abstinence (no relapse over the next 10 weeks). Baseline impulsive choice was robustly associated with biochemically verified seven-day point-prevalence abstinence 12 weeks post-quit, such that those with lower delay discounting were more likely to achieve abstinence. Facets of impulsiveness appear to function largely independently in adult smokers, as indicated by their lack of inter-correlation, differential stability, and differential relations with abstinence. Impulsive action may impede initial quitting, whereas impulsive choice may be an obstacle to maintaining lasting abstinence. PMID:26751623

  13. Reflection-Impulsivity and Wholist-Analytic: Two Fledglings...or is R-I a cuckoo?

    ERIC Educational Resources Information Center

    Jones, Anne Elizabeth

    1997-01-01

    Considers the theoretical validity of two approaches to cognitive style. Wholist-Analytic maintains that cognitive processes depend on the interaction of two opposing forces, destructive and constructive. Reflection-Impulsivity characterizes learners according to their reflective or impulsive responses to solution hypotheses. Evaluates these…

  14. An experimental technique to study impulse-wave propagation in materials

    NASA Astrophysics Data System (ADS)

    Yazdani-Ardakani, S.; Kesavan, S. K.; Chu, M. L.

    1986-01-01

    The dynamic characteristics of materials are studied with a technique which uses a mechanical shaker to subject vertically mounted specimens to impulsive forces. The mounting of the specimens over the mechanical shaker with a suspension system is examined. The components of the coupling assembly are described. The electric circuitries for the adjustment of shaker-platform height and suspending-wire tension, and for the acceleration-response measurement of impacted specimens are diagramatically presented. The procedures for studying impulse-wave propagation in materials are discussed; accelerometer response is utilized to determine the velocity of the impulse-wave propagation in the test specimens. The design and function of the suspension and coupling system are evaluated. The data reveal that the technique is applicable for analyzing the impulse-wave propagation in cylindrical specimens, biomechanical measurements, and modal analysis.

  15. Impulsive events in the evolution of a forced nonlinear system

    SciTech Connect

    Longcope, D.W.; Sudan, R.N. )

    1992-03-16

    Long-time numerical solutions of a low-dimensional model of the reduced MHD equations show that, when this system is driven quasistatically, the response is punctuated by impulsive events. The statistics of these events indicate a Poisson process; the frequency of these events scales as {Delta}{ital E}{sub {ital M}}{sup {minus}1}, where {Delta}{ital E}{sub {ital M}} is the energy released in one event.

  16. Experimental study of 3-D, impulsive reconnection events in a laboratory plasma

    NASA Astrophysics Data System (ADS)

    Dorfman, Seth Elliot

    Fast, impulsive reconnection is commonly observed in laboratory, space and astrophysical plasmas. Many existing models of reconnection attempt to explain this behavior without including variation in the third direction. However, the impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) which are described in this dissertation cannot be explained by 2-D models and are therefore fundamentally three-dimensional. These events include both a slow buildup phase and a fast current layer disruption phase. The buildup phase is characterized by a slow transition from collisional to collisionless reconnection and the formation of "flux rope" structures; these "flux ropes" are defined as 3-D high current density regions associated with an O point at the measurement location. In the disruption phase, the "flux ropes" are ejected from the reconnection layer as the total current drops and the reconnection rate spikes. Strong out-of-plane gradients in both the density and reconnecting magnetic field are another key feature of disruptive discharges; after finite upstream density is depleted by reconnection during the buildup phase, the out of plane magnetic field gradient flattens and this disruption spreads in the electron flow direction. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. Furthermore, an important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations persists when the fluctuations are small or absent, implying that they are not the cause of the wider electron layers observed in the experiment. These wider layers may instead be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope

  17. Hyperkinetic Impulse Disorder in Children's Behavior Problems

    ERIC Educational Resources Information Center

    Laufer, Maurice W.; Denhoff, Eric; Solomons, Gerald

    2011-01-01

    A very common cause of children's behavior disorder disturbance is an entity described as the hyperkinetic impulse disorder. This is characterized by hyperactivity, short attention span and poor powers of concentration, irritability, impulsiveness, variability, and poor schoolwork. The existence of this complexity may lead to many psychological…

  18. Assessing impulsivity changes in Alzheimer disease.

    PubMed

    Rochat, Lucien; Delbeuck, Xavier; Billieux, Joël; d'Acremont, Mathieu; Van der Linden, Anne-Claude Juillerat; Van der Linden, Martial

    2008-01-01

    Impulsive behaviors are common in brain-damaged patients including those with neurodegenerative diseases such as Alzheimer disease (AD). The objective of this study was to develop and validate a short version of the UPPS Impulsive Behavior Scale assessing changes on 4 different dimensions of impulsivity, namely urgency, (lack of) premeditation, (lack of) perseverance, and sensation seeking, arising in the course of a neurodegenerative disease. To this end, caregivers of 83 probable AD patients completed a short questionnaire adapted from the UPPS Impulsive Behavior Scale. Exploratory and confirmatory factor analyses of the data were performed and revealed that a model with 4 distinct but related latent variables corresponding to 4 different dimensions of impulsivity fit the data best. Furthermore, the results showed that lack of perseverance, followed by lack of premeditation and urgency, increased after the onset of the disease, whereas sensation seeking decreased. Overall, the multifaceted nature of impulsivity was confirmed in a sample of AD patients, whose caregivers reported significant changes regarding each facet of impulsivity. Consequently, the short version of the UPPS Impulsive Behavior Scale opens up interesting prospects for a better comprehension of behavioral symptoms of dementia.

  19. Impulsive Vaccination for an Epidemiology Model

    NASA Astrophysics Data System (ADS)

    De la Sen, M.; Garrido, A. J.

    2017-03-01

    This paper investigates sufficient conditions of almost periodic sand periodic solutions of an integral model under impulsive controls. Since the model is of generic epidemiological interest, such impulsive controls are either vaccination actions or abrupt variations of the infected population due to infected immigration or lost of infective numbers due to either vaccination or lost of infected population by out-migration.

  20. Impulsivity, School Context, and School Misconduct

    ERIC Educational Resources Information Center

    Vogel, Matt; Barton, Michael S.

    2013-01-01

    Impulsivity holds a central place in the explanations of adolescent delinquency. Recent research suggests that neighborhood characteristics, particularly SES (socioeconomic status), perceived supervision, and collective efficacy, moderate the association between impulsivity and delinquency. However, findings to date have been equivocal, and the…

  1. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2016-07-12

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  2. Solar Impulse's Solar-Powered Plane

    SciTech Connect

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  3. Multidimensionality in Impulsivity and Alcohol Use: A Meta-Analysis using the UPPS Model of Impulsivity

    PubMed Central

    Coskunpinar, Ayca; Dir, Allyson L.; Cyders, Melissa A.

    2013-01-01

    Background Although there is considerable support for the relationship between impulsivity and alcohol use, the use of multidimensional conceptualizations of impulsivity and alcohol use has lead to varying relationship sizes across studies. The aims of the current meta-analysis are to (1) examine variability in the magnitude of the bivariate relationship between impulsivity and alcohol use across studies, and (2) describe the pattern of effects between specific impulsivity traits and alcohol use variables, using the UPPS Model of Impulsivity. Methods Ninety-six studies were meta-analyzed using a random effects model to examine the relationship between general impulsivity and alcohol use, as well as the relationships among separate impulsivity traits based in the UPPS model of impulsivity and specific alcohol use outcomes. Results Results indicate that, in general, impulsivity and alcohol use are related (r = .28); however, this effect size varied significantly across studies (from −.05 to 1.02). Drinking quantity was most strongly predicted by lack of perseverance (r = .32), whereas all traits equally predicted drinking frequency. Drinking problems were most highly related to negative (r = .35) and positive (r = .34) urgency, and alcohol dependence was most highly related to negative urgency (r = .38) and lack of planning (r = .37). Conclusion Effect sizes between impulsivity and alcohol use vary significantly by UPPS trait used in each study; thus, findings suggest and further reinforce the view in the literature that specific impulsivity-related constructs differentially relate to specific alcohol use outcomes. PMID:23578176

  4. Impulse position control algorithms for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  5. Impulse position control algorithms for nonlinear systems

    SciTech Connect

    Sesekin, A. N.; Nepp, A. N.

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  6. Modified impulsive synchronization of hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Haeri, Mohammad; Dehghani, Mahsa

    2010-03-01

    In an original impulsive synchronization only instantaneous errors are used to determine the impulsive inputs. To improve the synchronization performance, addition of an integral term of the errors is proposed here. In comparison with the original form, the proposed modification increases the impulse distances which leads to reduction in the control cost as the most important characteristic of the impulsive synchronization technique. It can also decrease the error magnitude in the presence of noise. Sufficient conditions are presented through four theorems for different situations (nominal, uncertain, noisy, and noisy uncertain cases) under which stability of the error dynamics is guaranteed. Results from computer based simulations are provided to illustrate feasibility and effectiveness of the modified impulsive synchronization method applied on Rossler hyperchaotic systems.

  7. Helicopter impulsive noise: Theoretical and experimental status

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Yu, Y. H.

    1983-01-01

    The theoretical and experimental status of helicopter impulsive noise is reviewed. The two major source mechanisms of helicopter impulsive noise are addressed: high-speed impulsive noise and blade-vortex interaction impulsive noise. A thorough physical explanation of both generating mechanism is presented together with model and full-scale measurements of the phenomena. Current theoretical prediction methods are compared with experimental findings of isolated rotor tests. The noise generating mechanism of high speed impulsive noise are fairly well understood - theory and experiment compare nicely over Mach number ranges typical of today's helicopters. For the case of blade-vortex interaction noise, understanding of noise generating mechanisms and theoretical comparison with experiment are less satisfactory. Several methods for improving theory-experiment are suggested.

  8. The horizontal computerized rotational impulse test.

    PubMed

    Furman, Joseph M; Shirey, Ian; Roxberg, Jillyn; Kiderman, Alexander

    2016-01-01

    Whole-body impulsive rotations were used to overcome several limitations associated with manual head impulse testing. A computer-controlled rotational chair delivered brief, whole-body, earth-vertical axis yaw impulsive rotations while eye movements were measured using video-oculography. Results from an unselected group of 20 patients with dizziness and a group of 22 control subjects indicated that the horizontal computerized rotational head impulse test (crHIT) is well-tolerated and provides an estimate of unidirectional vestibulo-ocular reflex gain comparable to results from caloric testing. This study demonstrates that the horizontal crHIT is a new assessment tool that overcomes many of the limitations of manual head impulse testing and provides a reliable laboratory-based measure of unilateral horizontal semicircular canal function.

  9. Successful restrained eating and trait impulsiveness.

    PubMed

    van Koningsbruggen, Guido M; Stroebe, Wolfgang; Aarts, Henk

    2013-01-01

    Restrained eaters with high scores on the Perceived Self-Regulatory Success in Dieting Scale (PSRS) are more successful than low scorers in regulating their food intake. According to the theory of temptation-elicited goal activation (Fishbach, Friedman, & Kruglanski, 2003), they have become successful because, due to earlier repeated instances of successful self-control, they formed an associative link between temptations and thoughts of dieting. It is unclear, however, why they should have been more successful in earlier attempts at self-control than their unsuccessful counterparts. We examined whether trait impulsiveness plays a role by investigating the associations between dietary restraint, trait impulsiveness, and PSRS. Results showed that the interaction between dietary restraint and impulsiveness predicted dieting success: A lower level of impulsiveness was associated with greater dieting success among restrained eaters. These results suggest that restrained eaters who are less impulsive are more likely to become successful restrained eaters as identified with the PSRS.

  10. Conversion of Impulse Voltage Generator Into Steep Wave Impulse Test-Equipment

    NASA Astrophysics Data System (ADS)

    Khan, Mohammed Zaid; Tanwar, Surender Singh; Dayama, Ravindra; Choudhary, Rahul Raj; Mangal, Ravindra

    This paper demonstrates the alternative measures to generate the Steep wave impulse by using Impulse Voltage Generator (IVG) for high voltage testing of porcelain insulators. The modification of IVG by incorporating compensation of resistor, inductor, and capacitor has been achieved and further performance of the modified system has been analyzed by applying the generated lightning impulse and analyzing the electrical characteristics of impulse waves under standard lightning and fast rise multiple lightning waveform to determine the effect to improve rise time. The advantageous results have been received and being reported such as increase in overshoot compensation, increase in capacitive and inductive load ranges. Such further reduces the duration of oscillations of standard impulse voltages. The reduction in oscillation duration of steep front impulse voltages may be utilized in up gradation of Impulse Voltage Generator System. Stray capacitance could further be added in order to get the minimized difference of measurement between simulation and the field establishment.

  11. Characteristics of marine CSEM responses in complex geologic terrain of Niger Delta Oil province: Insight from 2.5D finite element forward modeling

    NASA Astrophysics Data System (ADS)

    Folorunso, Adetayo F.; Li, Yuguo; Liu, Ying

    2015-02-01

    Mapping hydrocarbon reservoirs with sufficient resistivity contrasts between them and the surrounding layers has been demonstrated using marine Controlled Source Electromagnetic (mCSEM) technique in this study. The methodology was applied to the Niger Delta hydrocarbon province where resistive targets are located in a wide range of depths beneath variable seawater depths in the presence of heterogeneous overburden. An efficient 2.5D adaptive finite element (FE) forward modeling code was used to delineate the characteristics of the mCSEM responses on geological models; and to establish the suitable transmission and detectable frequencies for targets with variable seawater and burial depths. The models consist of three resistive hydrocarbon layers of 100 Ωm resistivity, two of which overlain each other. This presents an opportunity to study and understand the 2.5D marine CSEM responses such as the transmission frequency, transmitter-receiver-target geometry, seawater depth and burial depth of the resistive hydrocarbon layers that is characteristics of the region. We found that mCSEM response to two vertically-placed thin resistors is higher than that of the individual resistive layer, which could be a veritable tool to identify the two reservoirs, which would have been previously identified by seismic, as possible hydrocarbon layers. For the seawater depths model, detectability of the resistive hydrocarbon increases for the deeper models but decreases for the shallow anomalous depths (305-m and 500-m subsea). This is noticeable for all offsets in the electric filed amplitude responses. The responses are obvious and distinct for the long range electric fields models. The modeling results also indicates that lower frequencies produce high E-field amplitude though higher frequencies generate higher anomaly measured as normalized amplitude ratio (NAR). Generally, it was deduced that expanded frequency spectrum will be needed to significantly resolve thin resistive

  12. Assessment of the performance of rigid pavement back-calculation through finite element modeling

    NASA Astrophysics Data System (ADS)

    Shoukry, Samir N.; William, Gergis W.; Martinelli, David R.

    1999-02-01

    This study focuses on examining the behavior of rigid pavement layers during the Falling Weight Deflectometer (FWD) test. Factors affecting the design of a concrete slab, such as whether the joints are doweled or undoweled and the spacing between the transverse joints, were considered in this study. Explicit finite element analysis was employed to investigate pavement layers' responses to the action of the impulse of the FWD test. Models of various dimensions were developed to satisfy the factors under consideration. The accuracy of the finite element models developed in this investigation was verified by comparing the finite element- generated deflection basin with that experimentally measured during an actual test. The results showed that the measured deflection basin can be reproduced through finite element modeling of the pavement structure. The resulting deflection basins from the use FE modeling was processed in order to backcalculate pavement layer moduli. This approach provides a method for the evaluation of the performance of existing backcalculation programs which are based on static elastic layer analysis. Based upon the previous studies conducted for the selection of software, three different backcalculation programs were chosen for the evaluation: MODULUS5.0, EVERCALC4.0, and MODCOMP3. The results indicate that ignoring the dynamic nature of the load may lead to crude results, especially during backcalculation procedures.

  13. Tourette-like behaviors in the normal population are associated with hyperactive/impulsive ADHD-like behaviors but do not relate to deficits in conditioned inhibition or response inhibition

    PubMed Central

    Heym, Nadja; Kantini, Ebrahim; Checkley, Hannah L. R.; Cassaday, Helen J.

    2014-01-01

    Attention-Deficit Hyperactivity Disorder (ADHD) and Tourette Syndrome (TS) present as distinct conditions clinically; however, comorbidity and inhibitory control deficits have been proposed for both. Whilst such deficits have been studied widely within clinical populations, findings are mixed—partly due to comorbidity and/or medication effects—and studies have rarely distinguished between subtypes of the disorders. Studies in the general population are sparse. Using a continuity approach, the present study examined (i) the relationships between inattentive and hyperactive/impulsive aspects of ADHD and TS-like behaviors in the general population, and (ii) their unique associations with automatic and executive inhibitory control, as well as (iii) yawning (a proposed behavioral model of TS). One hundred and thirty-eight participants completed self-report measures for ADHD and TS-like behaviors as well as yawning, and a conditioned inhibition task to assess automatic inhibition. A sub-sample of fifty-four participants completed three executive inhibition tasks. An exploratory factor analysis of the TS behavior checklist supported a distinction between phonic and motor like pure TS behaviors. Whilst hyperactive/impulsive aspects of ADHD were associated with increased pure and compulsive TS-like behaviors, inattention in isolation was related to reduced obsessive-compulsive TS-like behaviors. TS-like behaviors were associated with yawning during situations of inactivity, and specifically motor TS was related to yawning during stress. Phonic TS and inattention aspects of ADHD were associated with yawning during concentration/activity. Whilst executive interference control deficits were linked to hyperactive/impulsive ADHD-like behaviors, this was not the case for inattentive ADHD or TS-like behaviors, which instead related to increased performance on some measures. No associations were observed for automatic conditioned inhibition. PMID:25228890

  14. Behavioral assessment of impulsivity in pathological gamblers with and without substance use disorder histories versus healthy controls.

    PubMed

    Ledgerwood, David M; Alessi, Sheila M; Phoenix, Natalie; Petry, Nancy M

    2009-11-01

    Pathological gamblers (PGs) may have high levels of impulsivity, and a correlation between substance use disorders (SUDs) and impulsivity is well established. However, only a handful of studies have attempted to assess impulsivity and other impulse-spectrum traits (e.g., sensation seeking) using a variety of behavioral and self-report measures in PGs and few examined the independent impact of SUDs. We compared 30 PGs without SUD histories, 31 PGs with SUD histories and 40 control participants on self-reported impulsivity, delayed discounting, attention/memory, response inhibition, risk taking, sensation seeking and distress tolerance measures. PGs, regardless of SUD history, discounted delayed rewards at greater rates than controls. PGs also reported acting on the spur of the moment, experienced trouble planning and thinking carefully, and noted greater attention difficulties than controls. PGs with SUD took greater risks on a risk-taking task than did PGs without SUD histories, but the two groups did not differ on any other measures of impulsivity. We conclude that PGs are more impulsive than non-problem gamblers in fairly specific ways, but PGs with and without SUD histories differ on few measures. More research should focus on specific ways in which PGs exhibit impulsivity to better address impulsive behaviors in treatment.

  15. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  16. The Video Head Impulse Test in a Case of Suspected Bilateral Loss of Vestibular Function

    PubMed Central

    Albernaz, Pedro L. Mangabeira; Cusin, Flavia Salvaterra

    2014-01-01

    Introduction A patient who had no symptoms suggestive of bilateral loss of vestibular function presented no responses in rotational and caloric tests. Objectives To demonstrate the importance of the video head impulse test in neuro-otologic diagnosis. Resumed Report This patient had a neuro-otologic evaluation and presented no responses in torsion swing tests, caloric tests, and rotational tests in a Bárány chair. The video head impulse test elicited responses in four of the six semicircular canals. Conclusion Absent responses in caloric and rotatory tests alone are not sufficient to diagnose bilateral loss of vestibular function. PMID:26722351

  17. The Video Head Impulse Test in a Case of Suspected Bilateral Loss of Vestibular Function.

    PubMed

    Albernaz, Pedro L Mangabeira; Cusin, Flavia Salvaterra

    2016-01-01

    Introduction A patient who had no symptoms suggestive of bilateral loss of vestibular function presented no responses in rotational and caloric tests. Objectives To demonstrate the importance of the video head impulse test in neuro-otologic diagnosis. Resumed Report This patient had a neuro-otologic evaluation and presented no responses in torsion swing tests, caloric tests, and rotational tests in a Bárány chair. The video head impulse test elicited responses in four of the six semicircular canals. Conclusion Absent responses in caloric and rotatory tests alone are not sufficient to diagnose bilateral loss of vestibular function.

  18. A maximum principle for smooth optimal impulsive control problems with multipoint state constraints

    NASA Astrophysics Data System (ADS)

    Dykhta, V. A.; Samsonyuk, O. N.

    2009-06-01

    A nonlinear optimal impulsive control problem with trajectories of bounded variation subject to intermediate state constraints at a finite number on nonfixed instants of time is considered. Features of this problem are discussed from the viewpoint of the extension of the classical optimal control problem with the corresponding state constraints. A necessary optimality condition is formulated in the form of a smooth maximum principle; thorough comments are given, a short proof is presented, and examples are discussed.

  19. Anti-periodic solutions of Liénard equations with state dependent impulses

    NASA Astrophysics Data System (ADS)

    Belley, J.-M.; Bondo, É.

    2016-10-01

    Subject to a priori bounds, Liénard equations with state dependent impulsive forcing are shown to admit a unique absolutely continuous anti-periodic solution with first derivative of bounded variation on finite intervals. The point-wise convergence of a sequence of iterates to the solution is obtained, along with a bound for the rate of convergence. The results are applied to Josephson's and van der Pol's equations.

  20. A numerical study on the limitations of modal Iwan models for impulsive excitations

    NASA Astrophysics Data System (ADS)

    Lacayo, Robert M.; Deaner, Brandon J.; Allen, Matthew S.

    2017-03-01

    Structures with mechanical joints are difficult to model accurately. Even if the natural frequencies of the system remain essentially constant, the damping introduced by the joints is often observed to change dramatically with amplitude. Although models for individual joints have been employed with some success, accurately modeling a structure with many joints remains a significant obstacle. To this end, Segalman proposed a modal Iwan model, which simplifies the analysis by modeling a system with a linear superposition of weakly-nonlinear, uncoupled single degree-of-freedom systems or modes. Given a simulation model with discrete joints, one can identify the model for each mode by selectively exciting each mode one at a time and observing how the transient response decays. However, in the environment of interest several modes may be excited simultaneously, such as in an experiment when an impulse is applied at a discrete point. In this work, the modal Iwan model framework is assessed numerically to understand how well it captures the dynamic response of typical structures with joints when they are excited with impulsive forces applied at point locations. This is done by comparing the effective natural frequency and modal damping of the uncoupled modal models with those of truth models that include nonlinear modal coupling. These concepts are explored for two structures, a simple spring-mass system and a finite element model of a beam, both of which contain physical Iwan elements to model joint nonlinearity. The results show that modal Iwan models can effectively capture the variations in frequency and damping with amplitude, which, for damping, can increase by as much as two orders of magnitude in the microslip regime. However, even in the microslip regime the accuracy of a modal Iwan model is found to depend on whether the mode in question is dominant in the response; in some cases the effective damping that the uncoupled model predicts is found to be in error by

  1. Use of Finite Difference Time Domain Simulations and Debye Theory for Modelling the Terahertz Reflection Response of Normal and Tumour Breast Tissue

    PubMed Central

    Fitzgerald, Anthony J.; Pickwell-MacPherson, Emma; Wallace, Vincent P.

    2014-01-01

    The aim of this work was to evaluate the capabilities of Debye theory combined with Finite Difference Time Domain (FDTD) methods to simulate the terahertz (THz) response of breast tissues. Being able to accurately model breast tissues in the THz regime would facilitate the understanding of image contrast parameters used in THz imaging of breast cancer. As a test case, the model was first validated using liquid water and simulated reflection pulses were compared to experimental measured pulses with very good agreement (p = 1.00). The responses of normal and cancerous breast tissues were simulated with Debye properties and the correlation with measured data was still high for tumour (p = 0.98) and less so for normal breast (p = 0.82). Sections of the time domain pulses showed clear differences that were also evident in the comparison of pulse parameter values. These deviations may arise from the presence of adipose and other inhomogeneities in the breast tissue that are not accounted for when using the Debye model. In conclusion, the study demonstrates the power of the model for simulating THz reflection imaging; however, for biological tissues extra Debye terms or a more detailed theory may be required to link THz image contrast to physiological composition and structural changes of breast tissue associated with differences between normal and tumour tissues. PMID:25010734

  2. Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films

    PubMed Central

    Mondal, Mintu; Kamlapure, Anand; Ganguli, Somesh Chandra; Jesudasan, John; Bagwe, Vivas; Benfatto, Lara; Raychaudhuri, Pratap

    2013-01-01

    The persistence of a soft gap in the density of states above the superconducting transition temperature Tc, the pseudogap, has long been thought to be a hallmark of unconventional high-temperature superconductors. However, in the last few years this paradigm has been strongly revised by increasing experimental evidence for the emergence of a pseudogap state in strongly-disordered conventional superconductors. Nonetheless, the nature of this state, probed primarily through scanning tunneling spectroscopy (STS) measurements, remains partly elusive. Here we show that the dynamic response above Tc, obtained from the complex ac conductivity, is highly modified in the pseudogap regime of strongly disordered NbN films. Below the pseudogap temperature, T*, the superfluid stiffness acquires a strong frequency dependence associated with a marked slowing down of critical fluctuations. When translated into the length-scale of fluctuations, our results suggest a scenario of thermal phase fluctuations between superconducting domains in a strongly disordered s-wave superconductor. PMID:23446946

  3. The Influence of Mesh Density on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2004-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.

  4. Optimal impulsive manoeuvres and aerodynamic braking

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1985-01-01

    A method developed for obtaining solutions to the aerodynamic braking problem, using impulses in the exoatmospheric phases is discussed. The solution combines primer vector theory and the results of a suboptimal atmospheric guidance program. For a specified initial and final orbit, the solution determines: (1) the minimum impulsive cost using a maximum of four impulses, (2) the optimal atmospheric entry and exit-state vectors subject to equality and inequality constraints, and (3) the optimal coast times. Numerical solutions which illustrate the characteristics of the solution are presented.

  5. [Serotonin and impulsivity (experiments on animals)].

    PubMed

    Grigor'ian, G A

    2011-01-01

    In the current paper a role of the serotinergic system in organization of impulsive behaviour in animals was considered. The results of influence of antagonists and agonists of the different types and subtypes of 5-HT receptors (1A, B; 2A, B, C; 7) and the effects of the dorsal raphe nuclei lesions on characteristics of impulsivity related with a motor control, mechanisms of attention, reinforcement and decision making were summarized. The data on knock-out animals and the experiments with microdialysis have been also considered. There was emphasized the important role of interaction of 5-HT-, dopamine- and glutamatergic systems in mediation of impulsive behaviour.

  6. Two-impulse reorientation of asymmetric spacecraft

    NASA Technical Reports Server (NTRS)

    Martz, C. W.

    1979-01-01

    An investigation conducted to determine minimum maneuver costs for attitude reorientation of spacecraft of all possible inertial distribution over a wide range of maneuver angles by use of a two impulse coning method of reorientation is reported. Maneuver cost, proportional to the product of fuel consumed (total impulse) and time expended during a maneuver is discussed. Assumptions included external impulsive control torques, rigid body spacecraft rest-to-rest maneuvers, and no disturbance torques. Results are presented in terms of average cost and standard deviation for various maneuver ranges. Costs of individual reorientations are calculated with the computer program included.

  7. Suicidality in Bipolar Disorder: The Role of Emotion-Triggered Impulsivity.

    PubMed

    Johnson, Sheri L; Carver, Charles S; Tharp, Jordan A

    2017-04-01

    A growing body of research suggests that impulsive responses to emotion more robustly predict suicidality than do other forms of impulsivity. This issue has not yet been examined within bipolar disorder, however. Participants diagnosed with bipolar I disorder (n = 133) and control participants (n = 110) diagnosed with no mood or psychotic disorder completed self-report measures of emotion-triggered impulsivity (Negative and Positive Urgency Scales) and interviews concerning lifetime suicidality. Analyses examined the effects of emotion-triggered impulsivity alone and in combination with gender, age of onset, depression severity, comorbid anxiety, comorbid substance use, and medication. A history of suicide ideation and attempts, as well as self-harm, were significantly more common in the bipolar disorder group compared with the control group. Impulsive responses to positive emotions related to suicide ideation, attempts, and self-harm within the bipolar group. Findings extend research on the importance of emotion-triggered impulsivity to a broad range of key outcomes within bipolar disorder. The discussion focuses on limitations and potential clinical implications.

  8. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.

    2006-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.

  9. Apt strain measurement technique for impulsive loading applications

    NASA Astrophysics Data System (ADS)

    Ranjan Nanda, Soumya; Kulkarni, Vinayak; Sahoo, Niranjan

    2017-03-01

    The necessity of precise measurement of strain time history for impulsive loading applications has been addressed in the present investigation. Finite element modeling is initially carried out for a hemispherical test model and stress bar assembly to arrive at an appropriate location for strain measurement. In dynamic calibration experiments, strain measurements are performed using two wire and three wire quarter bride arrangements along with half bridge circuit. Usefulness of these arrangements has been verified by analyzing strain signals in time and frequency domains. Comparison of recovered force time histories proved that the half bridge circuit is the most suitable for such applications. Actual shock tube testing of the instrumented hemispherical test model confirmed the applicability of half bridge circuit for short duration strain measurements.

  10. Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking

    PubMed Central

    Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.

    2015-01-01

    Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376

  11. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  12. Impulsivity Characterization in the Roman High- and Low-Avoidance Rat Strains: Behavioral and Neurochemical Differences

    PubMed Central

    Moreno, Margarita; Cardona, Diana; Gómez, Maria José; Sánchez-Santed, Fernando; Tobeña, Adolf; Fernández-Teruel, Alberto; Campa, Leticia; Suñol, Cristina; Escarabajal, Maria Dolores; Torres, Carmen; Flores, Pilar

    2010-01-01

    The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats for rapid vs extremely poor acquisition of active avoidance behavior in a shuttle-box has generated two phenotypes with different emotional and motivational profiles. The phenotypic traits of the Roman rat lines/strains (outbred or inbred, respectively) include differences in sensation/novelty seeking, anxiety/fearfulness, stress responsivity, and susceptibility to addictive substances. We designed this study to characterize differences between the inbred RHA-I and RLA-I strains in the impulsivity trait by evaluating different aspects of the multifaceted nature of impulsive behaviors using two different models of impulsivity, the delay-discounting task and five-choice serial reaction time (5-CSRT) task. Previously, rats were evaluated on a schedule-induced polydipsia (SIP) task that has been suggested as a model of obsessive-compulsive disorder. RHA-I rats showed an increased acquisition of the SIP task, higher choice impulsivity in the delay-discounting task, and poor inhibitory control as shown by increased premature responses in the 5-CSRT task. Therefore, RHA-I rats manifested an increased impulsivity phenotype compared with RLA-I rats. Moreover, these differences in impulsivity were associated with basal neurochemical differences in striatum and nucleus accumbens monoamines found between the two strains. These findings characterize the Roman rat strains as a valid model for studying the different aspects of impulsive behavior and for analyzing the mechanisms involved in individual predisposition to impulsivity and its related psychopathologies. PMID:20090672

  13. Effects of tryptophan depletion and a simulated alcohol binge on impulsivity

    PubMed Central

    Dougherty, Donald M.; Mullen, Jillian; Hill-Kapturczak, Nathalie; Liang, Yuanyuan; Karns, Tara E.; Lake, Sarah L.; Mathias, Charles W.; Roache, John D.

    2015-01-01

    Background Researchers have suggested that binge drinkers experience disproportionate increases in impulsivity during the initial period of drinking, leading to a loss of control over further drinking, and that serotonergic mechanisms may underlie such effects. Methods We examined the effects of a simulated-alcohol binge and tryptophan depletion on three types of impulsivity: response initiation (IMT task), response inhibition (GoStop task), and delay discounting (SKIP task), and tested whether observed effects were related to “real world” binge drinking. 179 adults with diverse drinking histories completed a within-subject crossover design over 4 experimental days. Each day, participants underwent one of four test conditions: tryptophan depletion/alcohol, tryptophan depletion/placebo, tryptophan balanced control/alcohol, or tryptophan balanced control/placebo. The simulated binge involved consuming 0.3 g/kg of alcohol at 5, 6, and 7 hours after consuming the tryptophan depletion/balanced mixture. Impulsivity was measured before and after each drink. Results Relative to the placebo beverage condition, when alcohol was consumed, impulsive responding was increased at moderate and high levels of intoxication on the IMT and GoStop, but only at high levels of intoxication on the SKIP. Tryptophan depletion had no effect on impulsivity measured under either placebo or alcohol beverage conditions. Effects of alcohol and tryptophan manipulations on impulsivity were unrelated to patterns of binge drinking outside the laboratory. Conclusion The effects of alcohol consumption on impulsivity depend on the component of impulsivity being measured and the dose of alcohol consumed. Such effects do not appear to be a result of reduced serotonin synthesis. Additionally, “real world” binge drinking behaviors were unrelated to behavioral changes observed in the laboratory. PMID:25730415

  14. Imaging Impulsivity in Parkinson's Disease and the Contribution of the Subthalamic Nucleus

    PubMed Central

    Ray, Nicola; Antonelli, Francesca; Strafella, Antonio P.

    2011-01-01

    Taking risks is a natural human response, but, in some, risk taking is compulsive and may be detrimental. The subthalamic nucleus (STN) is thought to play a large role in our ability to inhibit responses. Differences between individuals' ability to inhibit inappropriate responses may underlie both the normal variation in trait impulsivity in the healthy population, as well as the pathological compulsions experienced by those with impulse control disorders (ICDs). Thus, we review the role of the STN in response inhibition, with a particular focus on studies employing imaging methodology. We also review the latest evidence that disruption of the function of the STN by deep brain stimulation in patients with Parkinson's disease can increase impulsivity. PMID:21765999

  15. 3D numerical simulation for the transient electromagnetic field excited by the central loop based on the vector finite-element method

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Zhu, Z. Q.; Liu, S. C.; Zeng, S. H.

    2011-12-01

    Based on the principle of abnormal field algorithms, Helmholtz equations for electromagnetic field have been deduced. We made the electric field Helmholtz equation the governing equation, and derived the corresponding system of vector finite element method equations using the Galerkin method. For solving the governing equation using the vector finite element method, we divided the computing domain into homogenous brick elements, and used Whitney-type vector basis functions. After obtaining the electric field's anomaly field in the Laplace domain using the vector finite element method, we used the Gaver-Stehfest algorithm to transform the electric field's anomaly field to the time domain, and obtained the impulse response of magnetic field's anomaly field through the Faraday law of electromagnetic induction. By comparing 1D analytic solutions of quasi-H-type geoelectric models, the accuracy of the vector finite element method is tested. For the low resistivity brick geoelectric model, the plot shape of electromotive force computed using the vector finite element method coincides with that of the integral equation method and finite difference in time domain solutions.

  16. Impulsively generated fast coronal pulsations

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1986-01-01

    Rapid oscillations in the corona are discussed from a theoretical standpoint, developing some previous work on ducted, fast magnetoacoustic waves in an inhomogeneous medium. In the theory, impulsively (e.g., flare) generated mhd (magnetohydrodynamic) waves are ducted by regions of low Alfven speed (high density) such as coronal loops. Wave propagation in such ducts is strongly dispersive and closely akin to the behavior of Love waves in seismology, Pekeris waves in oceanography and guided waves in fiber optics. Such flare-generated magnetoacoustic waves possess distinctive temporal signatures consisting of periodic, quasi-periodic and decay phases. The quasi-periodic phase possesses the strongest amplitudes and the shortest time scales. Time scales are typically of the order of a second for inhomogeneities (coronal loop width) of 1000 km and Alfven speeds of 1000/kms, and pulse duration times are of tens of seconds. Quasi-periodic signatures have been observed in radio wavelengths for over a decade and more recently by SMM. It is hoped that the theoretical ideas outlined may be successfully related to these observations and thus aid the interpretation of oscillatory signatures recorded by SMM. Such signatures may also provide a diagnostic of coronal conditions. New aspects of the ducted mhd waves, for example their behavior in smoothly varying as opposed to tube-like inhomogeneities, are currently under investigation. The theory is not restricted to loops but applied equally to open field regions.

  17. Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System

    PubMed Central

    Fink, Latham HL; Anastasio, Noelle C; Fox, Robert G; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-01-01

    Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([3H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system. PMID:25666313

  18. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  19. Impulsive behaviour in interpersonal encounters: associations with quarrelsomeness and agreeableness.

    PubMed

    aan Het Rot, Marije; Moskowitz, D S; Young, Simon N

    2015-02-01

    Associations between impulsivity and interpersonal behaviours have rarely been examined, even though impulsivity may disrupt the flow of social interactions. For example, it is unknown to what extent the commonly used Barratt Impulsiveness Scale (BIS-11) predicts impulsive behaviour in social situations, and how behaving impulsively during interpersonal encounters might influence levels of quarrelsomeness and agreeableness. In this study, 48 healthy working individuals completed the BIS-11 and recorded their behaviour in social situations using event-contingent recording. Record forms included items representing quarrelsome, agreeable, and impulsive behaviours. BIS-11 motor impulsiveness scores predicted impulsive behaviour in social situations. Impulsive behaviour was associated, in different interactions, with both agreeableness and quarrelsomeness. Behaving impulsively in specific interactions was negatively associated with agreeableness in participants with higher BIS-11 motor impulsiveness and positively associated with agreeableness in participants with lower BIS-11 motor impulsiveness. Impulsive quarrelsome behaviour may cause interpersonal problems. Impulsive agreeable behaviour may have positive effects in individuals with low trait impulsivity. The idea that there are between-person differences in the effects of state impulsivity on the flow of social interaction deserves further study.

  20. Aperture Engineering for Impulse Radiating Antennas

    NASA Astrophysics Data System (ADS)

    Tyo, J. S.

    The past several years have seen the development of an improved understanding of the role of aperture design for impulse radiating antennas (IRAs). The understanding began with the emergence of the concept of prompt aperture efficiency for ultra-wideband (UWB) antennas. This emergence allowed us to concentrate on ways to shape the aperture and control the field distribution within the aperture in order to maximize the prompt response from IRAs. In many high voltage UWB applications it is impossible to increase the radiated fields by increasing the source power. This is because in such instances the sources are already at the limits of linear electromagnetics. In these cases, we would like to come up with methods to improve the radiated field without altering the input impedance of the IRA. In this paper we will explore several such methods including the position of the feed arms to maximize field uniformity, the shaping of the aperture to increase radiated fields by reducing the aperture size, the relative sizing of the reflector (or lens) and the feed horn, and actually reorienting the currents on the reflector by controlling the direction of current flow. One common thread appears in all of these studies, that is the influence of Dr. Carl Baum on the direction and development of the work.

  1. Multi-impulsivity of Japanese patients with eating disorders: primary and secondary impulsivity.

    PubMed

    Nagata, T; Kawarada, Y; Kiriike, N; Iketani, T

    2000-07-17

    Several studies have noted that multi-impulsive bulimia nervosa tends to be refractory to treatment. However, it is not known whether these impulsivities are an expression of more fundamental psychopathology or simply the consequence of chaotic eating behaviors. Studies of the temporal relationship between the onset of eating disorder and the occurrence of impulsive behaviors will facilitate a better understanding of these issues. Subjects consisted of 60 patients with anorexia nervosa restricting type (AN-R), 62 patients with anorexia nervosa binge-eating/purging type (AN-BP), 114 patients with bulimia nervosa purging type (BN) and 66 control subjects. Impulsive behaviors and childhood traumatic experiences were assessed by self-report questionnaire. Multi-impulsivity (defined by at least three of the following: heavy regular alcohol drinking; suicide attempt; self-mutilation; repeated shoplifting of items other than food; sexual relationships with persons not well known to the subject) was found in 2% of AN-R, 11% of AN-BP, 18% of BN and 2% of control subjects. Eighty percent of BN patients with multi-impulsivity had a history of suicide attempts or self-mutilation history prior to the onset of bulimia nervosa. In BN patients, there tended to be a relationship between childhood parental loss or borderline personality disorder and multi-impulsivity. In conclusion, primary impulsivity (chronological prior occurrence of impulsive behaviors) does exist even in a very different culture, although the number of patients of this type is very limited.

  2. Impulsive Social Influence Increases Impulsive Choices on a Temporal Discounting Task in Young Adults

    PubMed Central

    Gilman, Jodi M.; Curran, Max T.; Calderon, Vanessa; Stoeckel, Luke E.; Evins, A. Eden

    2014-01-01

    Adolescents and young adults who affiliate with friends who engage in impulsive behavior are more likely to engage in impulsive behaviors themselves, and those who associate with prosocial (i.e. more prudent, future oriented) peers are more likely to engage in prosocial behavior. However, it is difficult to disentangle the contribution of peer influence vs. peer selection (i.e., whether individuals choose friends with similar traits) when interpreting social behaviors. In this study, we combined a novel social manipulation with a well-validated delay discounting task assessing impulsive behavior to create a social influence delay discounting task, in which participants were exposed to both impulsive (smaller, sooner or SS payment) and non-impulsive (larger, later or LL payment) choices from their peers. Young adults in this sample, n = 51, aged 18–25 had a higher rate of SS choices after exposure to impulsive peer influence than after exposure to non-impulsive peer influence. Interestingly, in highly susceptible individuals, the rate of non-impulsive choices did not increase after exposure to non-impulsive influence. There was a positive correlation between self-reported suggestibility and degree of peer influence on SS choices. These results suggest that, in young adults, SS choices appear to be influenced by the choices of same-aged peers, especially for individuals who are highly susceptible to influence. PMID:24988440

  3. Effects of R-Phase on Mechanical Responses of a Nickel-Titanium Endodontic Instrument: Structural Characterization and Finite Element Analysis

    PubMed Central

    Santos, Leandro de Arruda; Resende, Pedro Damas; Bahia, Maria Guiomar de Azevedo; Buono, Vicente Tadeu Lopes

    2016-01-01

    The effects of the presence of the R-phase in a near-equiatomic NiTi alloy on the mechanical responses of an endodontic instrument were studied by using finite element analysis. The input data for the constitutive model in the simulation were obtained by tensile testing of three NiTi wires: superelastic austenite NiTi, austenite + R-phase NiTi, and fully R-phased NiTi. The wires were also characterized by X-ray diffraction and differential scanning calorimetry. A commercially available endodontic instrument was scanned using microcomputed tomography, and the resulting images were used to build the geometrical model. The numerical analyses were performed in ABAQUS using load and boundary conditions based on the ISO 3630-1 specification for the bending and torsion of endodontic instruments. The modeled instrument containing only R-phase demanded the lowest moment to be bent, followed by the one with mixed austenite + R-phase. The superelastic instrument, containing essentially austenite, required the highest bending moment. During bending, the fully R-phased instrument reached the lowest stress values; however, it also experienced the highest angular deflection when subjected to torsion. In summary, this simulation showed that NiTi endodontic instruments containing only R-phase in their microstructure would show higher flexibility without compromising their performance under torsion. PMID:27314059

  4. Effects of R-Phase on Mechanical Responses of a Nickel-Titanium Endodontic Instrument: Structural Characterization and Finite Element Analysis.

    PubMed

    Santos, Leandro de Arruda; Resende, Pedro Damas; Bahia, Maria Guiomar de Azevedo; Buono, Vicente Tadeu Lopes

    2016-01-01

    The effects of the presence of the R-phase in a near-equiatomic NiTi alloy on the mechanical responses of an endodontic instrument were studied by using finite element analysis. The input data for the constitutive model in the simulation were obtained by tensile testing of three NiTi wires: superelastic austenite NiTi, austenite + R-phase NiTi, and fully R-phased NiTi. The wires were also characterized by X-ray diffraction and differential scanning calorimetry. A commercially available endodontic instrument was scanned using microcomputed tomography, and the resulting images were used to build the geometrical model. The numerical analyses were performed in ABAQUS using load and boundary conditions based on the ISO 3630-1 specification for the bending and torsion of endodontic instruments. The modeled instrument containing only R-phase demanded the lowest moment to be bent, followed by the one with mixed austenite + R-phase. The superelastic instrument, containing essentially austenite, required the highest bending moment. During bending, the fully R-phased instrument reached the lowest stress values; however, it also experienced the highest angular deflection when subjected to torsion. In summary, this simulation showed that NiTi endodontic instruments containing only R-phase in their microstructure would show higher flexibility without compromising their performance under torsion.

  5. Response of PWR Baffle-Former Bolt Loading to Swelling, Irradiation Creep and Bolt Replacement as Revealed Using Finite Element Modeling

    SciTech Connect

    Simonen, Edward P.; Garner, Francis A.; Klymyshyn, Nicholas A.; Toloczko, Mychailo B.

    2005-10-01

    Baffle-former bolts in pressurized water reactors (PWRs) tend to degrade with aging, partially due to radiation-induced hardening and also due to the often complex stress history of the bolt in response to time-dependent and spatial gradients in temperature and neutron flux-spectra that can alter the stress distribution of the bolts. The time-integrated stresses must play some role in bolt cracking, however, and therefore it is of interest to study the time dependence of bolt stresses even for idealized cases. These stresses have been quantified in the present analysis using newly developed material constitutive equations for swelling and creep at light-water reactor (LWR)-relevant temperatures and dose rates. ABAQUS finite element calculations demonstrate that irradiation creep in the absence of void swelling tends to relax bolt tension before 10 dpa. Subsequent differential swelling leads to an increase in bolt tension, but only to stresses below the yield strength and usually below the initial bolt loading. Various assumed bolt replacement scenarios are considered with respect to their consequences on future failure possibilities.

  6. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  7. Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry.

    PubMed

    Archer, Trevor; Oscar-Berman, Marlene; Blum, Kenneth; Gold, Mark

    2012-05-30

    Adverse, unfavourable life conditions, particularly during early life stages and infancy, can lead to epigenetic regulation of genes involved in stress-response, behavioral disinhibition, and cognitive-emotional systems. Over time, the ultimate final outcome can be expressed through behaviors bedeviled by problems with impulse control, such as eating disorders, alcoholism, and indiscriminate social behavior. While many reward gene polymorphisms are involved in impulsive behaviors, a polymorphism by itself may not translate to the development of a particular behavioral disorder unless it is impacted by epigenetic effects. Brain-derived neurotrophic factor (BDNF) affects the development and integrity of the noradrenergic, dopaminergic, serotonergic, glutamatergic, and cholinergic neurotransmitter systems, and plasma levels of the neurotrophin are associated with both cognitive and aggressive impulsiveness. Epigenetic mechanisms associated with a multitude of environmental factors, including premature birth, low birth weight, prenatal tobacco exposure, non-intact family, young maternal age at birth of the target child, paternal history of antisocial behavior, and maternal depression, alter the developmental trajectories for several neuropsychiatric disorders. These mechanisms affect brain development and integrity at several levels that determine structure and function in resolving the final behavioral expressions.

  8. Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry

    PubMed Central

    Archer, Trevor; Oscar-Berman, Marlene; Blum, Kenneth; Gold, Mark

    2012-01-01

    Adverse, unfavourable life conditions, particularly during early life stages and infancy, can lead to epigenetic regulation of genes involved in stress-response, behavioral disinhibition, and cognitive-emotional systems. Over time, the ultimate final outcome can be expressed through behaviors bedeviled by problems with impulse control, such as eating disorders, alcoholism, and indiscriminate social behavior. While many reward gene polymorphisms are involved in impulsive behaviors, a polymorphism by itself may not translate to the development of a particular behavioral disorder unless it is impacted by epigenetic effects. Brain-derived neurotrophic factor (BDNF) affects the development and integrity of the noradrenergic, dopaminergic, serotonergic, glutamatergic, and cholinergic neurotransmitter systems, and plasma levels of the neurotrophin are associated with both cognitive and aggressive impulsiveness. Epigenetic mechanisms associated with a multitude of environmental factors, including premature birth, low birth weight, prenatal tobacco exposure, non-intact family, young maternal age at birth of the target child, paternal history of antisocial behavior, and maternal depression, alter the developmental trajectories for several neuropsychiatric disorders. These mechanisms affect brain development and integrity at several levels that determine structure and function in resolving the final behavioral expressions. PMID:23264884

  9. LONG DURATION FLARE EMISSION: IMPULSIVE HEATING OR GRADUAL HEATING?

    SciTech Connect

    Qiu, Jiong; Longcope, Dana W.

    2016-03-20

    Flare emissions in X-ray and EUV wavelengths have previously been modeled as the plasma response to impulsive heating from magnetic reconnection. Some flares exhibit gradually evolving X-ray and EUV light curves, which are believed to result from superposition of an extended sequence of impulsive heating events occurring in different adjacent loops or even unresolved threads within each loop. In this paper, we apply this approach to a long duration two-ribbon flare SOL2011-09-13T22 observed by the Atmosphere Imaging Assembly (AIA). We find that to reconcile with observed signatures of flare emission in multiple EUV wavelengths, each thread should be heated in two phases, an intense impulsive heating followed by a gradual, low-rate heating tail that is attenuated over 20–30 minutes. Each AIA resolved single loop may be composed of several such threads. The two-phase heating scenario is supported by modeling with both a zero-dimensional and a 1D hydrodynamic code. We discuss viable physical mechanisms for the two-phase heating in a post-reconnection thread.

  10. Signaling When (and When Not) to Be Cautious and Self-Protective: Impulsive and Reflective Trust in Close Relationships

    PubMed Central

    Murray, Sandra L.; Pinkus, Rebecca T.; Holmes, John G.; Harris, Brianna; Gomillion, Sarah; Aloni, Maya; Derrick, Jaye L.; Leder, Sadie

    2011-01-01

    A dual process model is proposed to explain how automatic evaluative associations to the partner (i.e., impulsive trust) and deliberative expectations of partner caring (i.e., reflective trust) interact to govern self-protection in romantic relationships. Experimental and correlational studies of dating and marital relationships supported the model. Subliminally conditioning more positive evaluative associations to the partner increased confidence in the partner’s caring, suggesting that trust has an impulsive basis. Being high on impulsive trust (i.e., more positive evaluative associations to the partner on the IAT) also reduced the automatic inclination to distance in response to doubts about the partner’s trustworthiness. It similarly reduced self-protective behavioral reactions to these reflective trust concerns. The studies further revealed that the effects of impulsive trust depend on working memory capacity: Being high on impulsive trust inoculated against reflective trust concerns for people low on working memory capacity. PMID:21443370

  11. Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior.

    PubMed

    Nautiyal, Katherine M; Wall, Melanie M; Wang, Shuai; Magalong, Valerie M; Ahmari, Susanne E; Balsam, Peter D; Blanco, Carlos; Hen, René

    2017-01-18

    Impulsivity is an endophenotype found in many psychiatric disorders including substance use disorders, pathological gambling, and attention deficit hyperactivity disorder. Two behavioral features often considered in impulsive behavior are behavioral inhibition (impulsive action) and delayed gratification (impulsive choice). However, the extent to which these behavioral constructs represent distinct facets of behavior with discrete biological bases is unclear. To test the hypothesis that impulsive action and impulsive choice represent statistically independent behavioral constructs in mice, we collected behavioral measures of impulsivity in a single cohort of mice using well-validated operant behavioral paradigms. Mice with manipulation of serotonin 1B receptor (5-HT1BR) expression were included as a model of disordered impulsivity. A factor analysis was used to characterize correlations between the measures of impulsivity and to identify covariates. Using two approaches, we dissociated impulsive action from impulsive choice. First, the absence of 5-HT1BRs caused increased impulsive action, but not impulsive choice. Second, based on an exploratory factor analysis, a two-factor model described the data well, with measures of impulsive action and choice separating into two independent factors. A multiple-indicator multiple-causes analysis showed that 5-HT1BR expression and sex were significant covariates of impulsivity. Males displayed increased impulsivity in both dimensions, whereas 5-HT1BR expression was a predictor of increased impulsive action only. These data support the conclusion that impulsive action and impulsive choice are distinct behavioral phenotypes with dissociable biological influences that can be modeled in mice. Our work may help inform better classification, diagnosis, and treatment of psychiatric disorders, which present with disordered impulsivity.Neuropsychopharmacology advance online publication, 18 January 2017; doi:10.1038/npp.2016.277.

  12. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models

    PubMed Central

    Jupp, B; Dalley, J W

    2014-01-01

    Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24866553

  13. Impulsivity and Aggression in Schizophrenia: A Neural Circuitry Perspective with Implications for Treatment

    PubMed Central

    Hoptman, Matthew J.

    2015-01-01

    Elevations of impulsive behavior have been observed in a number of serious mental illnesses. These phenomena can lead to harmful behaviors, including violence, and thus represent a serious public health concern. Such violence is often a reason for psychiatric hospitalization, and it often leads to prolonged hospital stays, suffering by patients and their victims, and increased stigmatization. Despite the attention paid to violence, little is understood about its neural basis in schizophrenia. On a psychological level, aggression in schizophrenia has been primarily attributed to psychotic symptoms, desires for instrumental gain, or impulsive responses to perceived personal slights. Often multiple attributions can coexist during a single aggressive incident. In this review, I will discuss the neural circuitry associated with impulsivity and aggression in schizophrenia, with an emphasis on implications for treatment. Impulsivity appears to account for a great deal of aggression in schizophrenia, especially in inpatient settings. Urgency, defined as impulsivity in the context of strong emotion, is the primary focus of this article. It is elevated in several psychiatric disorders, and in schizophrenia, it has been related to aggression. Many studies have implicated dysfunctional frontotemporal circuitry in impulsivity and aggression in schizophrenia, and pharmacological treatments may act via that circuitry to reduce urgency and aggressive behaviors, but more mechanistic studies are critically needed. Recent studies point toward manipulable neurobehavioral targets and suggest that cognitive, pharmacological, neuromodulatory, and neurofeedback treatment approaches can be developed to ameliorate urgency and aggression in schizophrenia. It is hoped that these approaches will improve treatment efficacy. PMID:25900066

  14. Impulsivity and aggression in schizophrenia: a neural circuitry perspective with implications for treatment.

    PubMed

    Hoptman, Matthew J

    2015-06-01

    Elevations of impulsive behavior have been observed in a number of serious mental illnesses. These phenomena can lead to harmful behaviors, including violence, and thus represent a serious public health concern. Such violence is often a reason for psychiatric hospitalization, and it often leads to prolonged hospital stays, suffering by patients and their victims, and increased stigmatization. Despite the attention paid to violence, little is understood about its neural basis in schizophrenia. On a psychological level, aggression in schizophrenia has been primarily attributed to psychotic symptoms, desires for instrumental gain, or impulsive responses to perceived personal slights. Often, multiple attributions can coexist during a single aggressive incident. In this review, I discuss the neural circuitry associated with impulsivity and aggression in schizophrenia, with an emphasis on implications for treatment. Impulsivity appears to account for a great deal of aggression in schizophrenia, especially in inpatient settings. Urgency, defined as impulsivity in the context of strong emotion, is the primary focus of this article. It is elevated in several psychiatric disorders, and in schizophrenia, it has been related to aggression. Many studies have implicated dysfunctional frontotemporal circuitry in impulsivity and aggression in schizophrenia, and pharmacological treatments may act via that circuitry to reduce urgency and aggressive behaviors; however, more mechanistic studies are critically needed. Recent studies point toward manipulable neurobehavioral targets and suggest that cognitive, pharmacological, neuromodulatory, and neurofeedback treatment approaches can be developed to ameliorate urgency and aggression in schizophrenia. It is hoped that these approaches will improve treatment efficacy.

  15. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models.

    PubMed

    Jupp, B; Dalley, J W

    2014-10-01

    Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies.

  16. BMI predicts emotion-driven impulsivity and cognitive inflexibility in adolescents with excess weight.

    PubMed

    Delgado-Rico, Elena; Río-Valle, Jacqueline S; González-Jiménez, Emilio; Campoy, Cristina; Verdejo-García, Antonio

    2012-08-01

    Adolescent obesity is increasingly viewed as a brain-related dysfunction, whereby reward-driven urges for pleasurable foods "hijack" response selection systems, such that behavioral control progressively shifts from impulsivity to compulsivity. In this study, we aimed to examine the link between personality factors (sensitivity to reward (SR) and punishment (SP), BMI, and outcome measures of impulsivity vs. flexibility in--otherwise healthy--excessive weight adolescents. Sixty-three adolescents (aged 12-17) classified as obese (n = 26), overweight (n = 16), or normal weight (n = 21) participated in the study. We used psychometric assessments of the SR and SP motivational systems, impulsivity (using the UPPS-P scale), and neurocognitive measures with discriminant validity to dissociate inhibition vs. flexibility deficits (using the process-approach version of the Stroop test). We tested the relative contribution of age, SR/SP, and BMI on estimates of impulsivity and inhibition vs. switching performance using multistep hierarchical regression models. BMI significantly predicted elevations in emotion-driven impulsivity (positive and negative urgency) and inferior flexibility performance in adolescents with excess weight--exceeding the predictive capacity of SR and SP. SR was the main predictor of elevations in sensation seeking and lack of premeditation. These findings demonstrate that increases in BMI are specifically associated with elevations in emotion-driven impulsivity and cognitive inflexibility, supporting a dimensional path in which adolescents with excess weight increase their proneness to overindulge when under strong affective states, and their difficulties to switch or reverse habitual behavioral patterns.

  17. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    SciTech Connect

    Aman, A.; Majcherek, S.; Hirsch, S.; Schmidt, B.

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  18. Poor impulse control predicts inelastic demand for nicotine but not alcohol in rats.

    PubMed

    Diergaarde, Leontien; van Mourik, Yvar; Pattij, Tommy; Schoffelmeer, Anton N M; De Vries, Taco J

    2012-05-01

    Tobacco and alcohol dependence are characterized by continued use despite deleterious health, social and occupational consequences, implying that addicted individuals pay a high price for their use. In behavioral economic terms, such persistent consumption despite increased costs can be conceptualized as inelastic demand. Recent animal studies demonstrated that high-impulsive individuals are more willing to work for nicotine or cocaine infusions than their low-impulsive counterparts, indicating that this trait might be causally related to inelastic drug demand. By employing progressive ratio schedules of reinforcement combined with a behavioral economics approach of analysis, we determined whether trait impulsivity is associated with an insensitivity of nicotine or alcohol consumption to price increments. Rats were trained on a delayed discounting task, measuring impulsive choice. Hereafter, high- and low-impulsive rats were selected and trained to nose poke for intravenous nicotine or oral alcohol. Upon stable self-administration on a continuous reinforcement schedule, the price (i.e. response requirement) was increased. Demand curves, depicting the relationship between price and consumption, were produced using Hursh's exponential demand equation. Similar to human observations, nicotine and alcohol consumption in rats fitted this equation, thereby demonstrating the validity of our model. Moreover, high-impulsive rats displayed inelastic nicotine demand, as their nicotine consumption was less sensitive to price increments as compared with that in low-impulsive rats. Impulsive choice was not related to differences in alcohol demand elasticity. Our model seems well suited for studying nicotine and alcohol demand in rats and, as such, might contribute to our understanding of tobacco and alcohol dependence.

  19. Increased Impulsivity Retards the Transition to Dorsolateral Striatal Dopamine Control of Cocaine Seeking

    PubMed Central

    Murray, Jennifer E.; Dilleen, Ruth; Pelloux, Yann; Economidou, Daina; Dalley, Jeffrey W.; Belin, David; Everitt, Barry J.

    2014-01-01

    Background Development of maladaptive drug-seeking habits occurs in conjunction with a ventral-to-dorsal striatal shift in dopaminergic control over behavior. Although these habits readily develop as drug use continues, high impulsivity predicts loss of control over drug seeking and taking. However, whether impulsivity facilitates the transition to dorsolateral striatum (DLS) dopamine-dependent cocaine-seeking habits or whether impulsivity and cocaine-induced intrastriatal shifts are additive processes is unknown. Methods High- and low-impulsive rats identified in the five-choice serial reaction-time task were trained to self-administer cocaine (.25 mg/infusion) with infusions occurring in the presence of a cue-light conditioned stimulus. Dopamine transmission was blocked in the DLS after three stages of training: early, transition, and late-stage, by bilateral intracranial infusions of α-flupenthixol (0, 5, 10, or 15 μg/side) during 15-min cocaine-seeking test sessions in which each response was reinforced by a cocaine-associated conditioned stimulus presentation. Results In early-stage tests, neither group was affected by DLS dopamine receptor blockade. In transition-stage tests, low-impulsive rats showed a significant dose-dependent reduction in cocaine seeking, whereas high-impulsive rats were still unaffected by α-flupenthixol infusions. In the final, late-stage seeking test, both groups showed dose-dependent sensitivity to dopamine receptor blockade. Conclusions The results demonstrate that high impulsivity is associated with a delayed transition to DLS-dopamine-dependent control over cocaine seeking. This suggests that, if impulsivity confers an increased propensity to addiction, it is not simply through a more rapid development of habits but instead through interacting corticostriatal and striato-striatal processes that result ultimately in maladaptive drug-seeking habits. PMID:24157338

  20. Neural substrates of time perception and impulsivity.

    PubMed

    Wittmann, Marc; Simmons, Alan N; Flagan, Taru; Lane, Scott D; Wackermann, Jiří; Paulus, Martin P

    2011-08-11

    Several studies provide empirical evidence for the association between impulsivity and time perception. However, little is known about the neural substrates underlying this function. This investigation examined the influence of impulsivity on neural activation patterns during the encoding and reproduction of intervals with durations of 3, 9 and 18s using event-related functional magnetic resonance imaging (fMRI). Twenty-seven subjects participated in this study, including 15 high impulsive subjects that were classified based on their self-rating. FMRI activation during the duration reproduction task was correlated with measures of two self-report questionnaires related to the concept of impulsivity (Barratt Impulsiveness Scale, BIS; Zimbardo Time Perspective Inventory, ZTPI). Behaviorally, those individuals who under-reproduced temporal intervals also showed lower scores on the ZTPI future perspective subscale and higher scores on the BIS. FMRI activation revealed an accumulating pattern of neural activity peaking at the end of the 9- and 18-s intervals within right posterior insula. Activations of brain regions during the reproduction phase of the timing task, such as those related to motor execution as well as to the 'core control network' - encompassing the inferior frontal and medial frontal cortices, the anterior insula as well as the inferior parietal cortex - were significantly correlated with reproduced duration, as well as with BIS and ZTPI subscales. In particular, the greater activation in these regions the shorter were the reproduced intervals, the more impulsive was an individual and the less pronounced the future perspective. Activation in the core control network, thus, may form a biological marker for cognitive time management and for impulsiveness.

  1. Neural substrates of time perception and impulsivity

    PubMed Central

    Wittmann, Marc; Simmons, Alan N.; Flagan, Taru; Lane, Scott D.; Wackermann, Jiří; Paulus, Martin P.

    2011-01-01

    Several studies provide empirical evidence for the association between impulsivity and time perception. However, little is known about the neural substrates underlying this function. This investigation examined the influence of impulsivity on neural activation patterns during the encoding and reproduction of intervals with durations of 3, 9 and 18 seconds using event-related functional magnetic resonance imaging (fMRI). Twenty-seven subjects participated in this study, including 15 high impulsive subjects that were classified based on their self-rating. FMRI activation during the duration reproduction task was correlated with measures of two self-report questionnaires related to the concept of impulsivity (Barratt Impulsiveness Scale, BIS; Zimbardo Time Perspective Inventory, ZTPI). Behaviorally, those individuals who under-reproduced temporal intervals also showed lower scores on the ZTPI future perspective subscale and higher scores on the BIS. FMRI activation revealed an accumulating pattern of neural activity peaking at the end of the 9- and 18-s interval within right posterior insula. Activations of brain regions during the reproduction phase of the timing task, such as those related to motor execution as well as to the ‘core control network’ – encompassing the inferior frontal and medial frontal cortex, the anterior insula as well as the inferior parietal cortex – were significantly correlated with reproduced duration, as well as with BIS and ZTPI subscales. In particular, the greater activation in these regions the shorter were the reproduced intervals, the more impulsive was an individual and the less pronounced the future perspective. Activation in the core control network, thus, may form a biological marker for cognitive time management and for impulsiveness. PMID:21763642

  2. Characterization of impulse noise and hazard analysis of impulse noise induced hearing loss using AHAAH modeling

    NASA Astrophysics Data System (ADS)

    Wu, Qing

    Millions of people across the world are suffering from noise induced hearing loss (NIHL), especially under working conditions of either continuous Gaussian or non-Gaussian noise that might affect human's hearing function. Impulse noise is a typical non-Gaussian noise exposure in military and industry, and generates severe hearing loss problem. This study mainly focuses on characterization of impulse noise using digital signal analysis method and prediction of the auditory hazard of impulse noise induced hearing loss by the Auditory Hazard Assessment Algorithm for Humans (AHAAH) modeling. A digital noise exposure system has been developed to produce impulse noises with peak sound pressure level (SPL) up to 160 dB. The characterization of impulse noise generated by the system has been investigated and analyzed in both time and frequency domains. Furthermore, the effects of key parameters of impulse noise on auditory risk unit (ARU) are investigated using both simulated and experimental measured impulse noise signals in the AHAAH model. The results showed that the ARUs increased monotonically with the peak pressure (both P+ and P-) increasing. With increasing of the time duration, the ARUs increased first and then decreased, and the peak of ARUs appeared at about t = 0.2 ms (for both t+ and t-). In addition, the auditory hazard of experimental measured impulse noises signals demonstrated a monotonically increasing relationship between ARUs and system voltages.

  3. Impulsivity and psychopathy: associations between the barrett impulsivity scale and the psychopathy checklist revised.

    PubMed

    Snowden, Robert J; Gray, Nicola S

    2011-05-30

    Impulsivity is often cited as a core dysfunction in those who are high in psychopathic traits. However, both impulsivity and psychopathy are both multi-faceted constructs. We examined a 3-factor model of self-reported impulsivity (Barrett Impulsivity: BIS-11) against the 2-factor and 4-facet model of psychopathy as defined by the Psychopathy Checklist-Revised (PCL-R). Those high on 'secondary psychopathy' (Factor 2 and Facets 3 and 4 of the PCL-R) showed increased impulsivity as it related to acting with thinking (Motor Scale of BIS) and lack of future planning (Non-Planning scale of BIS), but not did not show any elevated features of poor concentration or distraction (Attention Scale of BIS). On the other hand, there was some evidence that 'primary psychopathy' (Factor 1 of PCL-R) was associated with reduced impulsivity as it relates to future planning (Non-Planning scale of BIS). Thus, our results show that only some psychopaths show increased impulsivity and that not all forms of impulsivity are raised.

  4. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.

    PubMed

    Venäläinen, Mikko S; Mononen, Mika E; Jurvelin, Jukka S; Töyräs, Juha; Virén, Tuomas; Korhonen, Rami K

    2014-12-01

    Mechanical behavior of bone is determined by the structure and intrinsic, local material properties of the tissue. However, previously presented knee joint models for evaluation of stresses and strains in joints generally consider bones as rigid bodies or linearly elastic solid materials. The aim of this study was to estimate how different structural and mechanical properties of bone affect the mechanical response of articular cartilage within a knee joint. Based on a cadaver knee joint, a two-dimensional (2D) finite element (FE) model of a knee joint including bone, cartilage, and meniscus geometries was constructed. Six different computational models with varying properties for cortical, trabecular, and subchondral bone were created, while the biphasic fibril-reinforced properties of cartilage and menisci were kept unaltered. The simplest model included rigid bones, while the most complex model included specific mechanical properties for different bone structures and anatomically accurate trabecular structure. Models with different porosities of trabecular bone were also constructed. All models were exposed to axial loading of 1.9 times body weight within 0.2 s (mimicking typical maximum knee joint forces during gait) while free varus-valgus rotation was allowed and all other rotations and translations were fixed. As compared to results obtained with the rigid bone model, stresses, strains, and pore pressures observed in cartilage decreased depending on the implemented properties of trabecular bone. Greatest changes in these parameters (up to -51% in maximum principal stresses) were observed when the lowest modulus for trabecular bone (measured at the structural level) was used. By increasing the trabecular bone porosity, stresses and strains were reduced substantially in the lateral tibial cartilage, while they remained relatively constant in the medial tibial plateau. The present results highlight the importance of long bones, in particular, their mechanical

  5. Mechanical response comparison in an implant overdenture retained by ball attachments on conventional regular and mini dental implants: a finite element analysis.

    PubMed

    Chang, Shih-Hao; Huang, Shiang-Rung; Huang, Shao-Fu; Lin, Chun-Li

    2016-01-01

    This study investigates the bone/implant mechanical responses in an implant overdenture retained by ball attachments on two conventional regular dental implants (RDI) and four mini dental implants (MDI) using finite element (FE) analysis. Two FE models of overdentures retained by RDIs and MDIs for a mandibular edentulous patient with validation within 6% variation errors were constructed by integrating CT images and CAD system. Bone grafting resulted in 2 mm thickness at the buccal side constructed for the RDIs-supported model to mimic the bone augmentation condition for the atrophic alveolar ridge. Nonlinear hyperelastic material and frictional contact element were used to simulate characteristic of the ball attachment-retained overdentures. The results showed that a denture supported by MDIs presented higher surrounding bone strains than those supported by RDIs under different load conditions. Maximum bone micro strains were up to 6437/2987 and 13323/5856 for MDIs/RDIs under single centric and lateral contacts, respectively. Corresponding values were 4429/2579 and 9557/5774 under multi- centric and lateral contacts, respectively. Bone micro strains increased 2.06 and 1.96-folds under single contact, 2.16 and 2.24-folds under multiple contacts for MDIs and RDIs when lateral to axial loads were compared. The maximum RDIs and MDIs implant stresses in all simulated cases were found by far lower than their yield strength. Overdentures retained using ball attachments on MDIs in poor edentulous bone structure increase the surrounding bone strain over the critical value, thereby damaging the bone when compared to the RDIs. Eliminating the occlusal single contact and oblique load of an implant-retained overdenture reduces the risk for failure.

  6. Impulsivity and personality variables in adolescents with eating disorders.

    PubMed

    Boisseau, Christina L; Thompson-Brenner, Heather; Eddy, Kamryn T; Satir, Dana A

    2009-04-01

    Impulsivity among individuals with eating disorders (EDs) is associated with severe comorbidities and poor treatment outcome. However, research investigating the construct of impulsivity in EDs is limited. The objectives of the present study were to characterize multiple dimensions of impulsivity in adolescents with EDs; determine if differences in impulsivity were associated with ED diagnosis and/or broader personality traits; and explore the relationship between impulsivity and etiologically significant variables. Experienced clinicians from a practice-research network provided data on ED symptoms, impulsive characteristics, personality pathology, The Diagnostic and Statistical Manual of Mental Disorders comorbidity, and family and developmental history for 120 adolescent patients with EDs. Three distinct types of impulsivity were identified: general, acting out, and aggressive/destructive. The impulsivity types showed specific relationships to ED diagnosis, broader personality factors, individual histories of adverse (traumatic) events, and family histories of externalizing disorders, supporting the importance of taking, assessing, and addressing impulsivity in ED research and treatment.

  7. How Many Impulsivities? A Discounting Perspective

    PubMed Central

    Green, Leonard; Myerson, Joel

    2014-01-01

    People discount the value of delayed and uncertain outcomes, and how steeply individuals discount is thought to reflect how impulsive they are. From this perspective, steep discounting of delayed outcomes (which fails to maximize long-term welfare) and shallow discounting of probabilistic outcomes (which fails to adequately take risk into account) reflect the same trait of impulsivity. Despite the fact that a hyperboloid function describes the discounting of both delayed and probabilistic outcomes, there is considerable evidence that the two kinds of discounting involve different processes as well as separate impulsivity traits. Several manipulations differentially affect delay and probability discounting, and correlational studies show that how steeply one discounts delayed rewards is relatively independent of how steeply one discounts probabilistic rewards. Moreover, people’s discounting of delayed money and health outcomes are uncorrelated as are discounting of real, consumable rewards and hypothetical money. These results suggest that even within delay discounting, there may be multiple ‘impulsivities,’ each of which may be important for understanding a different aspect of decision making. Taken together, the pattern of findings reviewed here argues for a more nuanced view of impulsivity than that which is usually assumed in discounting research. PMID:23344985

  8. Entrainment and the cranial rhythmic impulse.

    PubMed

    McPartland, J M; Mein, E A

    1997-01-01

    Entrainment is the integration or harmonization of oscillators. All organisms pulsate with myriad electrical and mechanical rhythms. Many of these rhythms emanate from synchronized pulsating cells (eg, pacemaker cells, cortical neurons). The cranial rhythmic impulse is an oscillation recognized by many bodywork practitioners, but the functional origin of this impulse remains uncertain. We propose that the cranial rhythmic impulse is the palpable perception of entrainment, a harmonic frequency that incorporates the rhythms of multiple biological oscillators. It is derived primarily from signals between the sympathetic and parasympathetic nervous systems. Entrainment also arises between organisms. The harmonizing of coupled oscillators into a single, dominant frequency is called frequency-selective entrainment. We propose that this phenomenon is the modus operandi of practitioners who use the cranial rhythmic impulse in craniosacral treatment. Dominant entrainment is enhanced by "centering," a technique practiced by many healers, for example, practitioners of Chinese, Tibetan, and Ayurvedic medicine. We explore the connections between centering, the cranial rhythmic impulse, and craniosacral treatment.

  9. Impulsive magnetic pulsations and electrojets in the loop footpoint driven by the fast reconnection jet

    SciTech Connect

    Ugai, M.

    2009-11-15

    It is well known that magnetic pulsations of long periods impulsively occur in accordance with the sudden onset of geomagnetic substorms and drastic enhancement of electrojets in the ionosphere. On the basis of the spontaneous fast reconnection model, the present paper examines the physical mechanism by which both magnetic pulsations and strong electrojets are impulsively driven by the fast (Alfvenic) reconnection jet. When a large-scale plasmoid [or traveling compression region (TCR)], directly caused by the fast reconnection jet, collides with the magnetic loop footpoint, strong electrojets are impulsively driven in a finite extent in the loop footpoint in accordance with the evolution of the current wedge and the generator current circuit. Simultaneously, magnetohydrodynamic (Alfven) waves, accompanied by the TCR, are reflected from the electrojet layer, leading to impulsive magnetic pulsations ahead of the loop footpoint because of the interaction (or resonance) between the reflected waves and the waves traveling toward the footpoint. The pulsations propagate outward in all directions from the source region of the wave reflection, and the pulsation periods are typically estimated to be of several tens of seconds.

  10. Impulsive-choice patterns for food in genetically lean and obese Zucker rats.

    PubMed

    Boomhower, Steven R; Rasmussen, Erin B; Doherty, Tiffany S

    2013-03-15

    Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0-10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism.

  11. 3-D, Impulsive Magnetic Reconnection in a Laboratory Plasma (Invited)

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Ji, H.; Yamada, M.; Yoo, J.; Myers, C. E.; Roytershteyn, V.; Daughton, W. S.; Jara-Almonte, J.

    2013-12-01

    Magnetic reconnection is a fundamental plasma process involving the efficient conversion of magnetic field energy to plasma kinetic energy through changing field line topology. In many space and astrophysical systems, including the solar surface and the Earth's magnetotail, reconnection is not only fast, but also impulsive; in other words, a slow buildup phase is followed by a comparatively quick release of magnetic energy. An important question in the literature is if these examples of impulsive reconnection can be described by a two-dimensional model with no variation in the out-of-plane direction or if impulsive reconnection is fundamentally three-dimensional. Events observed on the Magnetic Reconnection Experiment (MRX) are characterized by large local gradients in the third direction and cannot be explained by 2-D models [1]. Detailed measurements show that the ejection of flux rope structures from the current sheet plays a key role in these events. By contrast, even though electromagnetic fluctuations in the lower hybrid frequency range are also observed concurrently with the impulsive behavior, they are not the key physics responsible. Furthermore, an important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations [2-4] persists when the fluctuations are small or absent, implying that they are not the cause of the wider electron layers observed in the experiment [5]. These wider layers may instead be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a qualitative, 3-D, two-fluid model is proposed to explain the observed disruptions. Many of the features observed in MRX including current disruptions [6], flux ropes [7], and electromagnetic fluctuations [8] have analogues in space observations. Thus, further detailed comparisons may enhance our understanding

  12. Impulsive Behavior and Associated Clinical Variables in Parkinson's Disease

    PubMed Central

    Abosch, Aviva; Gupte, Akshay; Eberly, Lynn E.; Tuite, Paul J.; Nance, Martha; Grant, Jon E.

    2011-01-01

    Parkinson's disease (PD) is a degenerative brain disorder accompanied by the loss of dopaminergic neurons and the presence of motor and non-motor symptoms. We performed a cross-sectional, questionnaire-based analysis of impulsive behavior in our PD clinic population to assess prevalence and associated characteristics. We found a higher prevalence of impulsive behavior (29.7%) than previously reported, and found multiple, concurrent impulsive behaviors in 26% of subjects reporting impulsive behavior. Our findings contribute to the growing awareness of impulsive behavior in PD, and support the need for longitudinal studies to assess changes in impulsive behaviors in Parkinson's patients. PMID:21300194

  13. Auto-programmable impulse neural circuits

    NASA Technical Reports Server (NTRS)

    Watula, D.; Meador, J.

    1990-01-01

    Impulse neural networks use pulse trains to communicate neuron activation levels. Impulse neural circuits emulate natural neurons at a more detailed level than that typically employed by contemporary neural network implementation methods. An impulse neural circuit which realizes short term memory dynamics is presented. The operation of that circuit is then characterized in terms of pulse frequency modulated signals. Both fixed and programmable synapse circuits for realizing long term memory are also described. The implementation of a simple and useful unsupervised learning law is then presented. The implementation of a differential Hebbian learning rule for a specific mean-frequency signal interpretation is shown to have a straightforward implementation using digital combinational logic with a variation of a previously developed programmable synapse circuit. This circuit is expected to be exploited for simple and straightforward implementation of future auto-adaptive neural circuits.

  14. Reflective and impulsive determinants of social behavior.

    PubMed

    Strack, Fritz; Deutsch, Roland

    2004-01-01

    This article describes a 2-systems model that explains social behavior as a joint function of reflective and impulsive processes. In particular, it is assumed that social behavior is controlled by 2 interacting systems that follow different operating principles. The reflective system generates behavioral decisions that are based on knowledge about facts and values, whereas the impulsive system elicits behavior through associative links and motivational orientations. The proposed model describes how the 2 systems interact at various stages of processing, and how their outputs may determine behavior in a synergistic or antagonistic fashion. It extends previous models by integrating motivational components that allow more precise predictions of behavior. The implications of this reflective-impulsive model are applied to various phenomena from social psychology and beyond. Extending previous dual-process accounts, this model is not limited to specific domains of mental functioning and attempts to integrate cognitive, motivational, and behavioral mechanisms.

  15. Impulsive-compulsive buying disorder: clinical overview.

    PubMed

    Dell'Osso, Bernardo; Allen, Andrea; Altamura, A Carlo; Buoli, Massimiliano; Hollander, Eric

    2008-04-01

    Impulsive-compulsive buying disorder (ICBD) is an impulse control disorder not otherwise specified (ICD-NOS) characterized by impulsive drives and compulsive behaviours (buying unneeded things), personal distress, impaired social and vocational functioning and financial problems. Despite being described in the 19th century, serious attention to ICBD began only in the last decade with the first epidemiological and pharmacological investigation. Biological, social and psychological factors contribute to the aetiology of ICBD. Cognitive-behavioural therapy and selective serotonin re-uptake inhibitors are currently considered the more effective interventions in the treatment of ICBD. The present review aims to provide a broad overview of the epidemiology, aetiology, phenomenology and treatment options of ICBD.

  16. Out of control: Evidence for anterior insula involvement in motor impulsivity and reactive aggression

    PubMed Central

    Sack, Alexander T.; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Schuhmann, Teresa

    2015-01-01

    Inhibiting impulsive reactions while still defending one’s vital resources is paramount to functional self-control and successful development in a social environment. However, this ability of successfully inhibiting, and thus controlling one’s impulsivity, often fails, leading to consequences ranging from motor impulsivity to aggressive reactions following provocation. Although inhibitory failure represents the underlying mechanism, the neurocognition of social aggression and motor response inhibition have traditionally been investigated in separation. Here, we aimed to directly investigate and compare the neural mechanisms underlying the failure of inhibition across those different modalities of self-control. We used functional imaging to reveal the overlap in neural correlates between failed motor response inhibition (measured by a go/no-go task) and reactive aggression (measured by the Taylor aggression paradigm) in healthy males. The core overlap of neural correlates was located in the anterior insula, suggesting common anterior insula involvement in motor impulsivity as well as reactive aggression. This evidence regarding an overarching role of the anterior insula across different modalities of self-control enables an integrative perspective on insula function and a better integration of cognitive, social and emotional factors into a comprehensive model of impulsivity. Furthermore, it can eventually lead to a better understanding of clinical syndromes involving inhibitory deficits. PMID:24837479

  17. Finite-time Properties of the Navier-Stokes Equations Under Lebesque Space Disturbances

    NASA Astrophysics Data System (ADS)

    Bobba, Kumar

    2006-11-01

    A complete understanding of the stability characteristics of the Navier-Stokes equations involve understanding both the transient response and the steady state response. The steady state (or infinite-time) response of the Navier-Stokes equations is characterized by the point spectrum and has been well studied. In this work, we study the transient (or finite-time) response of the unsteady Navier-Stokes equations linearized about plane Couette base flow under spatial and temporal varying disturbance forcing. The forcing and response are assumed to belong to infinite-dimensional Lebesque function spaces, L2 and L∞. An analytical characterization is given for the induced norms that characterize the response. It is shown that the L2 induced norm is tightly bounded by the H∞ norm of the transfer function operator and the L∞ induced norm is upper bounded by the L1 norm of the impulse response operator. The structure of the worst case disturbances and their amplification rates are computed using spectral methods---with Fourier modes in homogeneous direction and Chebyshev collocation in non-homogeneous direction. The relevance of the present results to the channel flow laminar-turbulent transition experiments will be discussed.

  18. Effects of nerve impulses on threshold of frog sciatic nerve fibres.

    PubMed Central

    Raymond, S A

    1979-01-01

    persists for at least as long as an absolute superexcitability (with threshold below the resting level) can be measured in the same fibre at rest. 7. The duration of the superexcitable phase interpreted as a relative change in excitability was roughly the same regardless of the level of depression. 8. The magnitude of the oscillation in threshold was give to ten times larger than the grey region (the range of stimuli for which response is probabilistic). It is concluded that at regions of low conduction safety such as axonal branches, where weak forces can influence whether an impulse will pass, such pronounced and long-lasting after-effects of firing can be expected to modulate conduction of nerve impulses. PMID:313985

  19. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors

    PubMed Central

    Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir

    2016-01-01

    Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated. PMID:27110783

  20. Infinite horizon optimal impulsive control with applications to Internet congestion control

    NASA Astrophysics Data System (ADS)

    Avrachenkov, Konstantin; Habachi, Oussama; Piunovskiy, Alexey; Zhang, Yi

    2015-04-01

    We investigate infinite-horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long-run time-average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.

  1. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors.

    PubMed

    Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir

    2016-04-21

    Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.

  2. Insight Into the Relationship Between Impulsivity and Substance Abuse From Studies Using Animal Models

    PubMed Central

    Winstanley, Catharine A.; Olausson, Peter; Taylor, Jane R.; Jentsch, J. David

    2010-01-01

    Drug use disorders are often accompanied by deficits in the capacity to efficiently process reward-related information and to monitor, suppress, or override reward-controlled behavior when goals are in conflict with aversive or immediate outcomes. This emerging deficit in behavioral flexibility and impulse control may be a central component of the progression to addiction, as behavior becomes increasingly driven by drugs and drug-associated cues at the expense of more advantageous activities. Understanding how neural mechanisms implicated in impulse control are affected by addictive drugs may therefore prove a useful strategy in the search for new treatment options. Animal models of impulsivity and addiction could make a significant contribution to this endeavor. Here, some of the more common behavioral paradigms used to measure different aspects of impulsivity across species are outlined, and the importance of the response to reward-paired cues in such paradigms is discussed. Naturally occurring differences in forms of impulsivity have been found to be predictive of future drug self-administration, but drug exposure can also increase impulsive responding. Such data are in keeping with the suggestion that impulsivity may contribute to multiple stages within the spiral of addiction. From a neurobiological perspective, converging evidence from rat, monkey, and human studies suggest that compromised functioning within the orbitofrontal cortex may critically contribute to the cognitive sequelae of drug abuse. Changes in gene transcription and protein expression within this region may provide insight into the mechanism underlying drug-induced cortical hypofunction, reflecting new molecular targets for the treatment of uncontrolled drug-seeking and drug-taking behavior. PMID:20491734

  3. A model-based analysis of impulsivity using a slot-machine gambling paradigm.

    PubMed

    Paliwal, Saee; Petzschner, Frederike H; Schmitz, Anna Katharina; Tittgemeyer, Marc; Stephan, Klaas E

    2014-01-01

    Impulsivity plays a key role in decision-making under uncertainty. It is a significant contributor to problem and pathological gambling (PG). Standard assessments of impulsivity by questionnaires, however, have various limitations, partly because impulsivity is a broad, multi-faceted concept. What remains unclear is which of these facets contribute to shaping gambling behavior. In the present study, we investigated impulsivity as expressed in a gambling setting by applying computational modeling to data from 47 healthy male volunteers who played a realistic, virtual slot-machine gambling task. Behaviorally, we found that impulsivity, as measured independently by the 11th revision of the Barratt Impulsiveness Scale (BIS-11), correlated significantly with an aggregate read-out of the following gambling responses: bet increases (BIs), machines switches (MS), casino switches (CS), and double-ups (DUs). Using model comparison, we compared a set of hierarchical Bayesian belief-updating models, i.e., the Hierarchical Gaussian Filter (HGF) and Rescorla-Wagner reinforcement learning (RL) models, with regard to how well they explained different aspects of the behavioral data. We then examined the construct validity of our winning models with multiple regression, relating subject-specific model parameter estimates to the individual BIS-11 total scores. In the most predictive model (a three-level HGF), the two free parameters encoded uncertainty-dependent mechanisms of belief updates and significantly explained BIS-11 variance across subjects. Furthermore, in this model, decision noise was a function of trial-wise uncertainty about winning probability. Collectively, our results provide a proof of concept that hierarchical Bayesian models can characterize the decision-making mechanisms linked to the impulsive traits of an individual. These novel indices of gambling mechanisms unmasked during actual play may be useful for online prevention measures for at-risk players and future

  4. Insight into the relationship between impulsivity and substance abuse from studies using animal models.

    PubMed

    Winstanley, Catharine A; Olausson, Peter; Taylor, Jane R; Jentsch, J David

    2010-08-01

    Drug use disorders are often accompanied by deficits in the capacity to efficiently process reward-related information and to monitor, suppress, or override reward-controlled behavior when goals are in conflict with aversive or immediate outcomes. This emerging deficit in behavioral flexibility and impulse control may be a central component of the progression to addiction, as behavior becomes increasingly driven by drugs and drug-associated cues at the expense of more advantageous activities. Understanding how neural mechanisms implicated in impulse control are affected by addictive drugs may therefore prove a useful strategy in the search for new treatment options. Animal models of impulsivity and addiction could make a significant contribution to this endeavor. Here, some of the more common behavioral paradigms used to measure different aspects of impulsivity across species are outlined, and the importance of the response to reward-paired cues in such paradigms is discussed. Naturally occurring differences in forms of impulsivity have been found to be predictive of future drug self-administration, but drug exposure can also increase impulsive responding. Such data are in keeping with the suggestion that impulsivity may contribute to multiple stages within the spiral of addiction. From a neurobiological perspective, converging evidence from rat, monkey, and human studies suggest that compromised functioning within the orbitofrontal cortex may critically contribute to the cognitive sequelae of drug abuse. Changes in gene transcription and protein expression within this region may provide insight into the mechanism underlying drug-induced cortical hypofunction, reflecting new molecular targets for the treatment of uncontrolled drug-seeking and drug-taking behavior.

  5. A model-based analysis of impulsivity using a slot-machine gambling paradigm

    PubMed Central

    Paliwal, Saee; Petzschner, Frederike H.; Schmitz, Anna Katharina; Tittgemeyer, Marc; Stephan, Klaas E.

    2014-01-01

    Impulsivity plays a key role in decision-making under uncertainty. It is a significant contributor to problem and pathological gambling (PG). Standard assessments of impulsivity by questionnaires, however, have various limitations, partly because impulsivity is a broad, multi-faceted concept. What remains unclear is which of these facets contribute to shaping gambling behavior. In the present study, we investigated impulsivity as expressed in a gambling setting by applying computational modeling to data from 47 healthy male volunteers who played a realistic, virtual slot-machine gambling task. Behaviorally, we found that impulsivity, as measured independently by the 11th revision of the Barratt Impulsiveness Scale (BIS-11), correlated significantly with an aggregate read-out of the following gambling responses: bet increases (BIs), machines switches (MS), casino switches (CS), and double-ups (DUs). Using model comparison, we compared a set of hierarchical Bayesian belief-updating models, i.e., the Hierarchical Gaussian Filter (HGF) and Rescorla–Wagner reinforcement learning (RL) models, with regard to how well they explained different aspects of the behavioral data. We then examined the construct validity of our winning models with multiple regression, relating subject-specific model parameter estimates to the individual BIS-11 total scores. In the most predictive model (a three-level HGF), the two free parameters encoded uncertainty-dependent mechanisms of belief updates and significantly explained BIS-11 variance across subjects. Furthermore, in this model, decision noise was a function of trial-wise uncertainty about winning probability. Collectively, our results provide a proof of concept that hierarchical Bayesian models can characterize the decision-making mechanisms linked to the impulsive traits of an individual. These novel indices of gambling mechanisms unmasked during actual play may be useful for online prevention measures for at-risk players and

  6. Dimensions of impulsive behavior in adolescents: laboratory behavioral assessments.

    PubMed

    Reynolds, Brady; Penfold, Robert B; Patak, Michele

    2008-04-01

    Impulsivity is a multifaceted construct that defines a range of maladaptive behavioral styles. The present research aimed to identify different dimensions of impulsive behavior in adolescents from a battery of laboratory behavioral assessments. In one analysis, correlations were examined between two self report and seven laboratory behavioral measures of impulsivity. The correlation between the two self report measures was high compared to correlations between the self report and laboratory behavioral measures. In a second analysis, a principal components analysis was performed with just the laboratory behavioral measures. Three behavioral dimensions were identified -- "impulsive decision-making", "impulsive inattention", and "impulsive disinhibition". These dimensions were further evaluated using the same sample with a confirmatory factor analysis, which did support the hypothesis that these are significant and independent dimensions of impulsivity. This research indicates there are at least three separate subtypes of impulsive behavior when using laboratory behavioral assessments with adolescent participants.

  7. Empathic deficits and alexithymia in trauma-related impulsive aggression.

    PubMed

    Teten, Andra L; Miller, Lisa A; Bailey, Sara D; Dunn, Nancy Jo; Kent, Thomas A

    2008-01-01

    Our long term interest is to develop a developmental model of impulsive aggression based on a confluence of social, psychological and biological features. This approach incorporates neurobiological research, which has identified language processing deficits as a unique characteristic of impulsive aggressors and extends it to include emotional deficits. As an initial test of this hypothesis, we examined whether empathy and alexithymia were associated with impulsive aggression. Regressions were performed to explore the associations among impaired empathy, alexithymia, impulsive aggression, verbal and physical general aggression. Among impulsive aggressive veterans (n=38) recruited from a VA trauma clinic, alexithymia predicted impulsive aggression and empathic deficits predicted verbal aggression. Neither emotional awareness deficit predicted general physical aggression in this middle-aged sample. Results suggested that empathic deficits were associated with general verbal aggression, but alexithymia was uniquely associated with impulsive aggression. Consideration of alexithymia in impulsive aggression has implications for its etiology, prevention and treatment.

  8. Opacity Build-up in Impulsive Relativistic Sources

    SciTech Connect

    Granot, Jonathan; Cohen-Tanugi, Johann; Silva, Eduardo do Couto e

    2007-09-28

    Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the outflow as well as the distance of the emission site from the source, and thus help constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous works consider the opacity in steady state. Here we study the effects of the time dependence of the opacity to pair production ({gamma}{gamma} {yields} e{sup +}e{sup -}) in an impulsive relativistic source, which may be relevant for the prompt gamma-ray emission in GRBs or flares in Blazars. We present a simple, yet rich, semi-analytic model for the time and energy dependence of the optical depth, {tau}{gamma}{gamma}, in which a thin spherical shell expands ultra-relativistically and emits isotropically in its own rest frame over a finite range of radii, R{sub 0} {le} R {le} R{sub 0}+{Delta}R. This is particularly relevant for GRB internal shocks. We find that in an impulsive source ({Delta}R {approx}< R{sub 0}), while the instantaneous spectrum (which is typically hard to measure due to poor photon statistics) has an exponential cutoff above the photon energy {var_epsilon}1(T) where t{gamma}{gamma}({var_epsilon}1) = 1, the time integrated spectrum (which is easier to measure) has a power-law high-energy tail above the photon energy {var_epsilon}1* {approx} {var_epsilon}1({Delta}T) where {Delta}T is the duration of the emission episode. Furthermore, photons with energies {var_epsilon} > {var_epsilon}1* are expected to arrive mainly near the onset of the spike in the light curve or flare, which corresponds to the short emission episode. This arises since in such impulsive sources it takes time to build-up the (target) photon field, and thus the optical depth {tau}{gamma}{gamma}({var_epsilon}) initially increases with time and {var_epsilon}1(T) correspondingly decreases with time, so that photons of energy {var_epsilon} > {var

  9. Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin.

    PubMed

    Sesia, Thibaut; Bulthuis, Vincent; Tan, Sonny; Lim, Lee Wei; Vlamings, Rinske; Blokland, Arjan; Steinbusch, Harry W M; Sharp, Trevor; Visser-Vandewalle, Veerle; Temel, Yasin

    2010-10-01

    The nucleus accumbens (NAc) is gaining interest as a target for deep brain stimulation (DBS) in refractory neuropsychiatric disorders with impulsivity as core symptom. The nucleus accumbens is composed of two subterritories, core and shell, which have different anatomical connections. In animal models, it has been shown that DBS of the NAc changes impulsive action. Here, we tested the hypothesis that a change in impulsive action by DBS of the NAc is associated with changes in dopamine levels. Rats received stimulating electrodes either in the NAc core or shell, and underwent behavioral testing in a reaction time task. In addition, in a second experiment, the effect of DBS of the NAc core and shell on extracellular dopamine and serotonin levels was assessed in the NAc and medial prefrontal cortex. Control subjects received sham surgery. We have found that DBS of the NAc shell stimulation induced more impulsive action but less perseverative checking. These effects were associated with increased levels of dopamine and serotonin in the NAc, but not in the medial prefrontal cortex. DBS of the NAc core had no effect on impulsive action, but decreased perseverative responses indicative of a better impulse control. In these subjects, no effects were found on neurotransmitter levels. Our data point out that DBS of the NAc shell has negative effects on impulsive action which is accompanied by increases of dopamine and serotonin levels in the NAc, whereas DBS of the NAc core has beneficial behavioral effects.

  10. Impulse Plasma In Surface Engineering - a review

    NASA Astrophysics Data System (ADS)

    Zdunek, K.; Nowakowska-Langier, K.; Chodun, R.; Okrasa, S.; Rabinski, M.; Dora, J.; Domanowski, P.; Halarowicz, J.

    2014-11-01

    The article describes the view of the plasma surface engineering, assuming the role of non-thermal energy effects in the synthesis of materials and coatings deposition. In the following study it was underlined that the vapor excitation through the application of an electric field during coatings deposition gives new possibilities for coatings formation. As an example the IPD method was chosen. During the IPD (Impulse Plasma Deposition) the impulse plasma is generated in the coaxial accelerator by strong periodic electrical pulses. The impulse plasma is distributed in the form of energetic plasma pockets. Due to the almost completely ionization of gas, the nucleation of new phases takes place on ions directly in the plasma itself. As a result the coatings of metastable materials with nano-amorphous structure and excellent adhesion to the non-heated intentionally substrates could be deposited. Recently the novel way of impulse plasma generation during the coatings deposition was proposed and developed by our group. An efficient tool for plasma process control, the plasma forming gas injection to the interelectrode space was used. Periodic changing the gas pressure results in increasing both the degree of dispersion and the dynamics of the plasma pulses. The advantage of the new technique in deposition of coatings with exceptionally good properties has been demonstrated in the industrial scale not only in the case of the IPD method but also in the case of very well known magnetron sputtering method.

  11. Impulsive Behaviors in Patients With Pathological Buying

    PubMed Central

    Zander, Heike; Claes, Laurence; Voth, Eva M.; de Zwaan, Martina; Müller, Astrid

    2016-01-01

    Aim To investigate impulsive behaviors in pathological buying (PB). Methods The study included three groups matched for age and gender: treatment seeking outpatients with PB (PB+), treatment seeking psychiatric inpatients without PB (PB−), and a healthy control group (HC). PB was assessed by means of the Compulsive Buying Scale and by the impulse control disorder (ICD) module of the research version of the Structured Clinical Interview for DSM-IV (SCID-ICD). All participants answered questionnaires concerning symptoms of borderline personality disorder, self-harming behaviors, binge eating and symptoms of attention deficit and hyperactivity disorder (ADHD). In addition, comorbid ICDs were assessed using the SCID-ICD. Results The PB+ and PB− groups did not differ with regard to borderline personality disorder or ADHD symptoms, but both groups reported significantly more symptoms than the HC group. Frequencies of self-harming behaviors did not differ between the three groups. Patients with PB were more often diagnosed with any current ICD (excluding PB) compared to those without PB and the HC group (38.7% vs. 12.9% vs. 12.9%, respectively, p=.017). Discussion Our findings confirm prior research suggesting more impulsive behaviors in patients with and without PB compared to healthy controls. The results of the questionnaire-based assessment indicate that outpatients with PB perceive themselves equally impulsive and self-harm as frequently as inpatients without PB; but they seem to suffer more often from an ICD as assessed by means of an interview. PMID:27415604

  12. Specific Impulses Losses in Solid Propellant Rockets

    DTIC Science & Technology

    1974-12-17

    to use the collision function form proposed by Golovin to simplify this production term: 4C><=) <P- .: Accordingly: m