Sample records for finite range potentials

  1. Propagator for finite range potentials: The case of reflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacciari, Ilaria; Moretti, Paolo; Istituto dei Sistemi Complessi, CNR, Sezione di Firenze, via Madonna del Piano 10, Sesto Fiorentino, Florence 50019

    2007-04-15

    Following a previous study on the transmission propagator for a finite range potential, the problem of reflection is considered. It is found that the Laplace transform of the reflection propagator can be expressed in terms of the usual Fredholm determinant {delta} and of a new similar determinant {gamma}, containing the peculiar characteristics of reflection. As an example, an array of delta potentials is considered. Moreover, a possible application to the calculation of quantum traversal time is shown.

  2. Active invisibility cloaks in one dimension

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali

    2015-06-01

    We outline a general method of constructing finite-range cloaking potentials which render a given finite-range real or complex potential, v (x ) , unidirectionally reflectionless or invisible at a wave number, k0, of our choice. We give explicit analytic expressions for three classes of cloaking potentials which achieve this goal while preserving some or all of the other scattering properties of v (x ) . The cloaking potentials we construct are the sum of up to three constituent unidirectionally invisible potentials. We discuss their utility in making v (x ) bidirectionally invisible at k0 and demonstrate the application of our method to obtain antireflection and invisibility cloaks for a Bragg reflector.

  3. A first-order Green's function approach to supersonic oscillatory flow: A mixed analytic and numeric treatment

    NASA Technical Reports Server (NTRS)

    Freedman, M. I.; Sipcic, S.; Tseng, K.

    1985-01-01

    A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

  4. Entanglement entropy in Fermi gases and Anderson's orthogonality catastrophe.

    PubMed

    Ossipov, A

    2014-09-26

    We study the ground-state entanglement entropy of a finite subsystem of size L of an infinite system of noninteracting fermions scattered by a potential of finite range a. We derive a general relation between the scattering matrix and the overlap matrix and use it to prove that for a one-dimensional symmetric potential the von Neumann entropy, the Rényi entropies, and the full counting statistics are robust against potential scattering, provided that L/a≫1. The results of numerical calculations support the validity of this conclusion for a generic potential.

  5. Finite element analysis of time-independent superconductivity. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Schuler, James J.

    1993-01-01

    The development of electromagnetic (EM) finite elements based upon a generalized four-potential variational principle is presented. The use of the four-potential variational principle allows for downstream coupling of EM fields with the thermal, mechanical, and quantum effects exhibited by superconducting materials. The use of variational methods to model an EM system allows for a greater range of applications than just the superconducting problem. The four-potential variational principle can be used to solve a broader range of EM problems than any of the currently available formulations. It also reduces the number of independent variables from six to four while easily dealing with conductor/insulator interfaces. This methodology was applied to a range of EM field problems. Results from all these problems predict EM quantities exceptionally well and are consistent with the expected physical behavior.

  6. Universality and tails of long-range interactions in one dimension

    NASA Astrophysics Data System (ADS)

    Valiente, Manuel; Öhberg, Patrik

    2017-07-01

    Long-range interactions and, in particular, two-body potentials with power-law long-distance tails are ubiquitous in nature. For two bosons or fermions in one spatial dimension, the latter case being formally equivalent to three-dimensional s -wave scattering, we show how generic asymptotic interaction tails can be accounted for in the long-distance limit of scattering wave functions. This is made possible by introducing a generalization of the collisional phase shifts to include space dependence. We show that this distance dependence is universal, in that it does not depend on short-distance details of the interaction. The energy dependence is also universal, and is fully determined by the asymptotic tails of the two-body potential. As an important application of our findings, we describe how to eliminate finite-size effects with long-range potentials in the calculation of scattering phase shifts from exact diagonalization. We show that even with moderately small system sizes it is possible to accurately extract phase shifts that would otherwise be plagued with finite-size errors. We also consider multichannel scattering, focusing on the estimation of open channel asymptotic interaction strengths via finite-size analysis.

  7. Surface calculations with asymptotically long-ranged potentials in the full-potential linearized augmented plane-wave method

    NASA Astrophysics Data System (ADS)

    Ye, Lin-Hui

    2015-09-01

    Although the supercell method has been widely used for surface calculations, it only works well with short-ranged potentials, but meets difficulty when the potential decays very slowly into the vacuum. Unfortunately, the exact exchange-correlation potential of the density functional theory is asymptotically long ranged, and therefore is not easily handled by use of supercells. This paper illustrates that the authentic slab geometry, another technique for surface calculations, is not affected by this issue: It works equally well with both short- and long-ranged potentials, with the computational cost and the convergence speed being essentially the same. Using the asymptotically long-ranged Becke-Roussel'89 exchange potential as an example, we have calculated six surfaces of various types. We found that accurate potential values can be obtained even in extremely low density regions of more than 100 Å away from the surface. This high performance allows us to explore the asymptotic region, and prove with clean numerical evidence that the Becke-Roussel'89 potential satisfies the correct asymptotic behavior for slab surfaces, as it does for finite systems. Our finding further implies that the Slater component of the exact exchange optimized effective potential is responsible for the asymptotic behavior, not only for jellium slabs, but for slabs of any type. The Becke-Roussel'89 potential may therefore be used to build asymptotically correct model exchange potentials applicable to both finite systems and slab surfaces.

  8. Neutron-19C scattering: Emergence of universal properties in a finite range potential

    NASA Astrophysics Data System (ADS)

    Shalchi, M. A.; Yamashita, M. T.; Hadizadeh, M. R.; Frederico, T.; Tomio, Lauro

    2017-01-01

    The low-energy properties of the elastic s-wave scattering for the n-19C are studied near the critical condition for the occurrence of an excited Efimov state in n-n-18C. It is established to which extent the universal scaling laws, strictly valid in the zero-range limit, survive when finite range potentials are considered. By fixing the two-neutrons separation energy in 20C with available experimental data, it is studied the scaling of the real (δ0R) and imaginary parts of the s-wave phase-shift with the variation of the n-18C binding energy. We obtain some universal characteristics given by the pole-position of kcot ⁡ (δ0R) and effective-range parameters. By increasing the n-18C binding energy, it was verified that the excited state of 20C goes to a virtual state, resembling the neutron-deuteron behavior in the triton. It is confirmed that the analytical structure of the unitary cut is not affected by the range of the potential or mass asymmetry of the three-body system.

  9. Modelling Polar Self Assembly

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  10. Numerical approach for finite volume three-body interaction

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Gasparian, Vladimir

    2018-01-01

    In the present work, we study a numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise δ -function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when the strength of short-range interactions are set equal for all pairs.

  11. Measuring the nonlinear elastic properties of tissue-like phantoms.

    PubMed

    Erkamp, Ramon Q; Skovoroda, Andrei R; Emelianov, Stanislav Y; O'Donnell, Matthew

    2004-04-01

    A direct mechanical system simultaneously measuring external force and deformation of samples over a wide dynamic range is used to obtain force-displacement curves of tissue-like phantoms under plain strain deformation. These measurements, covering a wide deformation range, then are used to characterize the nonlinear elastic properties of the phantom materials. The model assumes incompressible media, in which several strain energy potentials are considered. Finite-element analysis is used to evaluate the performance of this material characterization procedure. The procedures developed allow calibration of nonlinear elastic phantoms for elasticity imaging experiments and finite-element simulations.

  12. One-dimensional "atom" with zero-range potential perturbed by finite sequence of zero-duration laser pulses

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Chuluunbaatar, O.; Popov, Yu. V.; Vinitsky, S. I.; Derbov, V. L.; Lovetskiy, K. P.

    2018-04-01

    The exactly soluble model of a train of zero-duration electromagnetic pulses interacting with a 1D atom with short-range interaction potential modelled by a δ-function is considered. The model is related to the up-to-date laser techniques providing the duration of pulses as short as a few attoseconds and the intensities higher than 1014 W/cm2.

  13. Systematics of α-decay fine structure in odd-mass nuclei based on a finite-range nucleon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Adel, A.; Alharbi, T.

    2018-07-01

    A systematic study on α-decay fine structure is presented for odd-mass nuclei in the range 83 ≤ Z ≤ 92. The α-decay partial half-lives and branching ratios to the ground and excited states of daughter nuclei are calculated in the framework of the Wentzel-Kramers-Brillouin (WKB) approximation with the implementation of the Bohr-Sommerfeld quantization condition. The microscopic α-daughter potential is obtained using the double-folding model with a realistic M3Y-Paris nucleon-nucleon (NN) interaction. The exchange potential, which accounts for the knock-on exchange of nucleons between the interacting nuclei, is calculated using the finite-range exchange NN interaction which is essentially a much better approximation as compared to the zero-range pseudo-potential adopted in the usual double-folding calculations. Our calculations of α-decay fine structure have been improved by considering the preformation factor extracted from the recently proposed cluster formation model on basis of the binding energy difference. The computed partial half-lives and branching ratios are compared with the recent experimental data and they are in good agreement.

  14. Density of states and magnetotransport in Weyl semimetals with long-range disorder

    NASA Astrophysics Data System (ADS)

    Pesin, D. A.; Mishchenko, E. G.; Levchenko, A.

    2015-11-01

    We study the density of states and magnetotransport properties of disordered Weyl semimetals, focusing on the case of a strong long-range disorder. To calculate the disorder-averaged density of states close to nodal points, we treat exactly the long-range random potential fluctuations produced by charged impurities, while the short-range component of disorder potential is included systematically and controllably with the help of a diagram technique. We find that, for energies close to the degeneracy point, long-range potential fluctuations lead to a finite density of states. In the context of transport, we discuss that a self-consistent theory of screening in magnetic field may conceivably lead to nonmonotonic low-field magnetoresistance.

  15. Ab initio calculation of finite-temperature charmonium potentials

    NASA Astrophysics Data System (ADS)

    Evans, P. W. M.; Allton, C. R.; Skullerud, J.-I.

    2014-04-01

    The interquark potential in charmonium states is calculated in both the zero and nonzero temperature phases from a first-principles lattice QCD calculation. Simulations with two dynamical quark flavors are used with temperatures T in the range 0.4Tc≲T≲1.7Tc, where Tc is the deconfining temperature. The correlators of point-split operators are analyzed to gain spatial information about the charmonium states. A method introduced by the HAL QCD Collaboration and based on the Schrödinger equation is applied to obtain the interquark potential. We find a clear temperature dependence with the central potential agreeing with the Cornell potential in the confined phase and becoming flatter (more screened) as the temperature increases past the deconfining temperature. This is the first time the interquark potential has been calculated for realistic quarks at finite temperature.

  16. A Revision on Classical Solutions to the Cauchy Boltzmann Problem for Soft Potentials

    NASA Astrophysics Data System (ADS)

    Alonso, Ricardo J.; Gamba, Irene M.

    2011-05-01

    This short note complements the recent paper of the authors (Alonso, Gamba in J. Stat. Phys. 137(5-6):1147-1165, 2009). We revisit the results on propagation of regularity and stability using L p estimates for the gain and loss collision operators which had the exponent range misstated for the loss operator. We show here the correct range of exponents. We require a Lebesgue's exponent α>1 in the angular part of the collision kernel in order to obtain finiteness in some constants involved in the regularity and stability estimates. As a consequence the L p regularity associated to the Cauchy problem of the space inhomogeneous Boltzmann equation holds for a finite range of p≥1 explicitly determined.

  17. Adsorption of finite semiflexible polymers and their loop and tail distributions

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias A.; Kierfeld, Jan

    2017-07-01

    We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range, and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the global orientational or translational degrees of freedom are restricted by grafting or confinement. We discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions, we find power laws with an exponential decay on length scales exceeding the correlation length. We derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers. This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail distribution allows us to extract the free energy per length of adsorption for actin filaments from experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)].

  18. Electroosmosis over charge-modulated surfaces with finite electrical double layer thicknesses: Asymptotic and numerical investigations

    NASA Astrophysics Data System (ADS)

    Ghosh, Uddipta; Mandal, Shubhadeep; Chakraborty, Suman

    2017-06-01

    Here we attempt to solve the fully coupled Poisson-Nernst-Planck-Navier-Stokes equations, to ascertain the influence of finite electric double layer (EDL) thickness on coupled charge and fluid dynamics over patterned charged surfaces. We go beyond the well-studied "weak-field" limit and obtain numerical solutions for a wide range of EDL thicknesses, applied electric field strengths, and the surface potentials. Asymptotic solutions to the coupled system are also derived using a combination of singular and regular perturbation, for thin EDLs and low surface potential, and good agreement between the two solutions is observed. Counterintuitively to common arguments, our analysis reveals that finite EDL thickness may either increase or decrease the "free-stream velocity" (equivalent to net throughput), depending on the strength of the applied electric field. We also unveil a critical EDL thickness for which the effect of finite EDL thickness on the free-stream velocity is the most prominent. Finally, we demonstrate that increasing the surface potential and the applied field tends to influence the overall flow patterns in the contrasting manners. These results may be of profound importance in developing a comprehensive theoretical basis for designing electro-osmotically actuated microfluidic mixtures.

  19. Tunneling of Massive Flux Lines in a High Tc Superconductor at absolute Zero

    NASA Astrophysics Data System (ADS)

    Narahari Achar, B. N.; Waleed Gaber, M.

    1997-11-01

    Our previous study(M. W. Gaber and B. N. N. Achar, Phys. Rev. B52, 1314(1995)) of quantum tunneling of damped flux lines of finite mass has been extended over the temperature range from the crossover temperature T0 to T=0 with a view to investigate further the temperature dependence of the tunneling rate found earlier. It has been found that at T=0, for the case of the cubic pinning potential, the action can be evaluated in a closed form for a flux line of finite length. The only non-zero contribution arises from the dissipation term resulting in a finite action.

  20. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  1. Development of low-frequency kernel-function aerodynamics for comparison with time-dependent finite-difference methods

    NASA Technical Reports Server (NTRS)

    Bland, S. R.

    1982-01-01

    Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.

  2. Finite temperature static charge screening in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Akbari-Moghanjoughi, M.

    2016-07-01

    The shielding potential around a test charge is calculated, using the linearized quantum hydrodynamic formulation with the statistical pressure and Bohm potential derived from finite temperature kinetic theory, and the temperature effects on the force between ions is assessed. The derived screening potential covers the full range of electron degeneracy in the equation of state of the plasma electrons. An attractive force between shielded ions in an arbitrary degenerate plasma exists below a critical temperature and density. The effect of the temperature on the screening potential profile qualitatively describes the ion-ion bound interaction strength and length variations. This may be used to investigate physical properties of plasmas and in molecular-dynamics simulations of fermion plasma. It is further shown that the Bohm potential including the kinetic corrections has a profound effect on the Thomson scattering cross section in quantum plasmas with arbitrary degeneracy.

  3. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  4. PT-symmetry breaking with divergent potentials: Lattice and continuum cases

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh N.; Scott, Derek D.; Saxena, Avadh

    2014-09-01

    We investigate the parity- and time-reversal (PT-) symmetry breaking in lattice models in the presence of long-ranged, non-Hermitian, PT-symmetric potentials that remain finite or become divergent in the continuum limit. By scaling analysis of the fragile PT threshold for an open finite lattice, we show that continuum loss-gain potentials Vα(x)∝i|x|αsgn(x) have a positive PT-breaking threshold for α >-2, and a zero threshold for α ≤-2. When α <0 localized states with complex (conjugate) energies in the continuum energy band occur at higher loss-gain strengths. We investigate the signatures of PT-symmetry breaking in coupled waveguides, and show that the emergence of localized states dramatically shortens the relevant time scale in the PT-symmetry broken region.

  5. Effect of pairwise additivity on finite-temperature behavior of classical ideal gas

    NASA Astrophysics Data System (ADS)

    Shekaari, Ashkan; Jafari, Mahmoud

    2018-05-01

    Finite-temperature molecular dynamics simulations have been applied to inquire into the effect of pairwise additivity on the behavior of classical ideal gas within the temperature range of T = 250-4000 K via applying a variety of pair potentials and then examining the temperature dependence of a number of thermodynamical properties. Examining the compressibility factor reveals the most deviation from ideal-gas behavior for the Lennard-Jones system mainly due to the presence of both the attractive and repulsive terms. The systems with either attractive or repulsive intermolecular potentials are found to present no resemblance to real gases, but the most similarity to the ideal one as temperature rises.

  6. Dynamical Quasicondensation of Hard-Core Bosons at Finite Momenta: A Non-equilibrium Condensation Effect

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Vidmar, L.; Ronzheimer, J. P.; Hodgman, S.; Schreiber, M.; Braun, S.; Langer, S.; Bloch, I.; Schneider, U.

    2016-05-01

    Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant d. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta +/-(π / 2)(ℏ / d) in the momentum distribution function. Supported by the DFG via FOR 801.

  7. Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces

    NASA Astrophysics Data System (ADS)

    Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David

    2018-03-01

    Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.

  8. Separable Ernst-Shakin-Thaler expansions of local potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bund, G.W.

    The boundary condition Ernst-Shakin-Thaler method, introduced previously to generate separable expansions of local potentials of finite range, is applied to the study of the triplet s-wave Malfliet-Tjon potential. The effect of varying the radius where the boundary condition is applied on the T matrix is analyzed. Further, we compare the convergence of the n-d scattering cross sections in the quartet state below the breakup threshold for expansions corresponding to two different boundaries.

  9. Finite-density transition line for QCD with 695 MeV dynamical fermions

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff; Höllwieser, Roman

    2018-06-01

    We apply the relative weights method to SU(3) gauge theory with staggered fermions of mass 695 MeV at a set of temperatures in the range 151 ≤T ≤267 MeV , to obtain an effective Polyakov line action at each temperature. We then apply a mean field method to search for phase transitions in the effective theory at finite densities. The result is a transition line in the plane of temperature and chemical potential, with an end point at high temperature, as expected, but also a second end point at a lower temperature. We cannot rule out the possibilities that a transition line reappears at temperatures lower than the range investigated, or that the second end point is absent for light quarks.

  10. Interquark potential with finite quark mass from lattice QCD.

    PubMed

    Kawanai, Taichi; Sasaki, Shoichi

    2011-08-26

    We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1  GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society

  11. Imputation of missing genotypes from sparse to high density using long-range phasing

    USDA-ARS?s Scientific Manuscript database

    Related individuals share potentially long chromosome segments that trace to a common ancestor. A phasing algorithm (ChromoPhase) that utilizes this characteristic of finite populations was developed to phase large sections of a chromosome. In addition to phasing, ChromoPhase imputes missing genotyp...

  12. Size-dependent chemical transformation, structural phase-change, and optical properties of nanowires

    PubMed Central

    Piccione, Brian; Agarwal, Rahul; Jung, Yeonwoong; Agarwal, Ritesh

    2013-01-01

    Nanowires offer a unique approach for the bottom up assembly of electronic and photonic devices with the potential of integrating photonics with existing technologies. The anisotropic geometry and mesoscopic length scales of nanowires also make them very interesting systems to study a variety of size-dependent phenomenon where finite size effects become important. We will discuss the intriguing size-dependent properties of nanowire systems with diameters in the 5 – 300 nm range, where finite size and interfacial phenomena become more important than quantum mechanical effects. The ability to synthesize and manipulate nanostructures by chemical methods allows tremendous versatility in creating new systems with well controlled geometries, dimensions and functionality, which can then be used for understanding novel processes in finite-sized systems and devices. PMID:23997656

  13. Linear magnetoconductivity in an intrinsic topological Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2016-05-01

    Searching for the signature of the violation of chiral charge conservation in solids has inspired a growing passion for the magneto-transport in topological semimetals. One of the open questions is how the conductivity depends on magnetic fields in a semimetal phase when the Fermi energy crosses the Weyl nodes. Here, we study both the longitudinal and transverse magnetoconductivity of a topological Weyl semimetal near the Weyl nodes with the help of a two-node model that includes all the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the 0th Landau bands in magnetic fields. For a finite potential range of impurities, it is found that both the longitudinal and transverse magnetoconductivity are positive and linear at the Weyl nodes, leading to an anisotropic and negative magnetoresistivity. The longitudinal magnetoconductivity depends on the potential range of impurities. The longitudinal conductivity remains finite at zero field, even though the density of states vanishes at the Weyl nodes. This work establishes a relation between the linear magnetoconductivity and the intrinsic topological Weyl semimetal phase.

  14. Emergent phases and critical behavior in a non-Markovian open quantum system

    NASA Astrophysics Data System (ADS)

    Cheung, H. F. H.; Patil, Y. S.; Vengalattore, M.

    2018-05-01

    Open quantum systems exhibit a range of novel out-of-equilibrium behavior due to the interplay between coherent quantum dynamics and dissipation. Of particular interest in these systems are driven, dissipative transitions, the emergence of dynamical phases with novel broken symmetries, and critical behavior that lies beyond the conventional paradigm of Landau-Ginzburg phenomenology. Here, we consider a parametrically driven two-mode system in the presence of non-Markovian system-reservoir interactions. We show that the non-Markovian dynamics modifies the phase diagram of this system, resulting in the emergence of a broken symmetry phase in a universality class that has no counterpart in the corresponding Markovian system. This emergent phase is accompanied by enhanced two-mode entanglement that remains robust at finite temperatures. Such reservoir-engineered dynamical phases can potentially shed light on universal aspects of dynamical phase transitions in a wide range of nonequilibrium systems, and aid in the development of techniques for the robust generation of entanglement and quantum correlations at finite temperatures with potential applications to quantum control, state preparation, and metrology.

  15. Elasto-Plastic Analysis of Tee Joints Using HOT-SMAC

    NASA Technical Reports Server (NTRS)

    Arnold, Steve M. (Technical Monitor); Bednarcyk, Brett A.; Yarrington, Phillip W.

    2004-01-01

    The Higher Order Theory - Structural/Micro Analysis Code (HOT-SMAC) software package is applied to analyze the linearly elastic and elasto-plastic response of adhesively bonded tee joints. Joints of this type are finding an increasing number of applications with the increased use of composite materials within advanced aerospace vehicles, and improved tools for the design and analysis of these joints are needed. The linearly elastic results of the code are validated vs. finite element analysis results from the literature under different loading and boundary conditions, and new results are generated to investigate the inelastic behavior of the tee joint. The comparison with the finite element results indicates that HOT-SMAC is an efficient and accurate alternative to the finite element method and has a great deal of potential as an analysis tool for a wide range of bonded joints.

  16. On the tidal evolution and tails formation of disc galaxies

    NASA Astrophysics Data System (ADS)

    Alavi, M.; Razmi, H.

    2015-11-01

    In this paper, we want to study the tidal effect of an external perturber upon a disc galaxy based on the generalization of already used Keplerian potential. The generalization of the simple ideal Keplerian potential includes an orbital centripetal term and an overall finite range controlling correction. Considering the generalized form of the interaction potential, the velocity impulse expressions resulting from tidal forces are computed; then, using typical real values already known from modern observational data, the evolution of the disc including tidal tails formation is graphically investigated.

  17. Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael

    2016-03-01

    In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.

  18. Out-of-plane electron transport in finite layer MoS2

    NASA Astrophysics Data System (ADS)

    Holzapfel, R.; Weber, J.; Lukashev, P. V.; Stollenwerk, A. J.

    2018-05-01

    Ballistic electron emission microscopy (BEEM) has been used to study the processes affecting electron transport along the [0001] direction of finite layer MoS2 flakes deposited onto the surface of Au/Si(001) Schottky diodes. Prominent features present in the differential spectra from the MoS2 flakes are consistent with the density of states of finite layer MoS2 calculated using density functional theory. The ability to observe the electronic structure of the MoS2 appears to be due to the relatively smooth density of states of Si in this energy range and a substantial amount of elastic or quasi-elastic scattering along the MoS2/Au/Si(001) path. Demonstration of these measurements using BEEM suggests that this technique could potentially be used to study electron transport through van der Waals heterostructures, with applications in a number of electronic devices.

  19. A model of mesons in finite extra-dimension

    NASA Astrophysics Data System (ADS)

    Lahkar, Jugal; Choudhury, D. K.; Roy, S.; Bordoloi, N. S.

    2018-05-01

    Recently,problem of stability of H-atom has been reported in extra-finite dimension,and found out that it is stable in extra-finite dimension of size,$R\\leq\\frac{a_0}{4}$,where,$a_0$ is the Bohr radius.Assuming that,the heavy flavoured mesons have also such stability controlled by the scale of coupling constant,we obtain corresponding QCD Bohr radius and it is found to be well within the present theoretical and experimental limit of higher dimension.We then study its consequences in their masses using effective string inspired potential model in higher dimension pursued by us.Within the uncertainty of masses of known Heavy Flavoured mesons the allowed range of extra dimension is $L\\leq10^{-16}m$,which is well below the present theoretical and experimental limit,and far above the Planck length $\\simeq1.5\\times10^{-35}$ m.

  20. Efficient solution of 3D electromagnetic eddy-current problems within the finite volume framework of OpenFOAM

    NASA Astrophysics Data System (ADS)

    Beckstein, Pascal; Galindo, Vladimir; Vukčević, Vuko

    2017-09-01

    Eddy-current problems occur in a wide range of industrial and metallurgical applications where conducting material is processed inductively. Motivated by realising coupled multi-physics simulations, we present a new method for the solution of such problems in the finite volume framework of foam-extend, an extended version of the very popular OpenFOAM software. The numerical procedure involves a semi-coupled multi-mesh approach to solve Maxwell's equations for non-magnetic materials by means of the Coulomb gauged magnetic vector potential A and the electric scalar potential ϕ. The concept is further extended on the basis of the impressed and reduced magnetic vector potential and its usage in accordance with Biot-Savart's law to achieve a very efficient overall modelling even for complex three-dimensional geometries. Moreover, we present a special discretisation scheme to account for possible discontinuities in the electrical conductivity. To complement our numerical method, an extensive validation is completing the paper, which provides insight into the behaviour and the potential of our approach.

  1. Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability

    NASA Astrophysics Data System (ADS)

    Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.

    2018-05-01

    We investigate families of finite core vortex quartets in mutual equilibrium in a two-layer quasi-geostrophic flow. The finite core solutions stem from known solutions for discrete (singular) vortex quartets. Two vortices lie in the top layer and two vortices lie in the bottom layer. Two vortices have a positive potential vorticity anomaly, while the two others have negative potential vorticity anomaly. The vortex configurations are therefore related to the baroclinic dipoles known in the literature as hetons. Two main branches of solutions exist depending on the arrangement of the vortices: the translating zigzag-shaped hetonic quartets and the rotating zigzag-shaped hetonic quartets. By addressing their linear stability, we show that while the rotating quartets can be unstable over a large range of the parameter space, most translating quartets are stable. This has implications on the longevity of such vortex equilibria in the oceans.

  2. Applications of a global nuclear-structure model to studies of the heaviest elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, P.; Nix, J.R.

    1993-10-01

    We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, {alpha}-decay properties, {beta}-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements.

  3. JOZSO, a computer code for calculating broad neutron resonances in phenomenological nuclear potentials

    NASA Astrophysics Data System (ADS)

    Baran, Á.; Noszály, Cs.; Vertse, T.

    2018-07-01

    A renewed version of the computer code GAMOW (Vertse et al., 1982) is given in which the difficulties in calculating broad neutron resonances are amended. New types of phenomenological neutron potentials with strict finite range are built in. Landscape of the S-matrix can be generated on a given domain of the complex wave number plane and S-matrix poles in the domain are localized. Normalized Gamow wave functions and trajectories of given poles can be calculated optionally.

  4. Dependence of Coulomb Sum Rule on the Short Range Correlation by Using Av18 Potential

    NASA Astrophysics Data System (ADS)

    Modarres, M.; Moeini, H.; Moshfegh, H. R.

    The Coulomb sum rule (CSR) and structure factor are calculated for inelastic electron scattering from nuclear matter at zero and finite temperature in the nonrelativistic limit. The effect of short-range correlation (SRC) is presented by using lowest order constrained variational (LOCV) method and the Argonne Av18 and Δ-Reid soft-core potentials. The effects of different potentials as well as temperature are investigated. It is found that the nonrelativistic version of Bjorken scaling approximately sets in at the momentum transfer of about 1.1 to 1.2 GeV/c and the increase of temperature makes it to decrease. While different potentials do not significantly change CSR, the SRC improves the Coulomb sum rule and we get reasonably close results to both experimental data and others theoretical predictions.

  5. Modified coulomb law in a strongly magnetized vacuum.

    PubMed

    Shabad, Anatoly E; Usov, Vladimir V

    2007-05-04

    We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.

  6. Potential-splitting approach applied to the Temkin-Poet model for electron scattering off the hydrogen atom and the helium ion

    NASA Astrophysics Data System (ADS)

    Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.

    2015-06-01

    The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.

  7. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    PubMed

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  8. Nonlinear transient analysis by energy minimization: A theoretical basis for the ACTION computer code. [predicting the response of a lightweight aircraft during a crash

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1980-01-01

    The formulation basis for establishing the static or dynamic equilibrium configurations of finite element models of structures which may behave in the nonlinear range are provided. With both geometric and time independent material nonlinearities included, the development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. Representations of a rigid link and an impenetrable contact plane are added to the deformation model so that any number of nodes of the finite element model may be connected by a rigid link or may contact the plane. Equilibrium configurations are derived as the stationary conditions of a potential function of the generalized nodal variables of the model. Minimization of the nonlinear potential function is achieved by using the best current variable metric update formula for use in unconstrained minimization. Powell's conjugate gradient algorithm, which offers very low storage requirements at some slight increase in the total number of calculations, is the other alternative algorithm to be used for extremely large scale problems.

  9. Degenerate limit thermodynamics beyond leading order for models of dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantinou, Constantinos, E-mail: c.constantinou@fz-juelich.de; Muccioli, Brian, E-mail: bm956810@ohio.edu; Prakash, Madappa, E-mail: prakash@ohio.edu

    2015-12-15

    Analytical formulas for next-to-leading order temperature corrections to the thermal state variables of interacting nucleons in bulk matter are derived in the degenerate limit. The formalism developed is applicable to a wide class of non-relativistic and relativistic models of hot and dense matter currently used in nuclear physics and astrophysics (supernovae, proto-neutron stars and neutron star mergers) as well as in condensed matter physics. We consider the general case of arbitrary dimensionality of momentum space and an arbitrary degree of relativity (for relativistic models). For non-relativistic zero-range interactions, knowledge of the Landau effective mass suffices to compute next-to-leading order effects,more » but for finite-range interactions, momentum derivatives of the Landau effective mass function up to second order are required. Results from our analytical formulas are compared with the exact results for zero- and finite-range potential and relativistic mean-field theoretical models. In all cases, inclusion of next-to-leading order temperature effects substantially extends the ranges of partial degeneracy for which the analytical treatment remains valid. Effects of many-body correlations that deserve further investigation are highlighted.« less

  10. A new DFT approach to model small polarons in oxides with proper account for long-range polarization

    NASA Astrophysics Data System (ADS)

    Kokott, Sebastian; Levchenko, Sergey V.; Scheffler, Matthias; Theory Department Team

    In this work, we address two important challenges in the DFT description of small polarons (excess charges localized within one unit cell): sensitivity to the errors in exchange-correlation (XC) treatment and finite-size effects in supercell calculations. The polaron properties are obtained using a modified neutral potential-energy surface (PES). Using the hybrid HSE functional and considering the whole range 0 <= α <= 1 , we show that the modified PES model significantly reduces the dependence of the polaron level and binding energy in MgO and TiO2 on the XC functional. It does not eliminate the dependence on supercell size. Based on Pekar's model, we derive the proper long-range behavior of the polaron and a finite-size correction that allows to obtain the polaron properties in the dilute limit (tested for supercells containing up to 1,000 atoms). The developed approach reduces drastically the computational time for exploring the polaron PES, and gives a consistent description of polarons for the whole range of α. It allowed us to find a self-trapped hole in MgO that is noticeably more stable than reported previously. partially supported by UniCat (Deutsche Forschungsgemeinschaft).

  11. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis.

    PubMed

    Chen, W P; Tang, F T; Ju, C W

    2001-08-01

    To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.

  12. Polytypism in the ground state structure of the Lennard-Jonesium.

    PubMed

    Pártay, Lívia B; Ortner, Christoph; Bartók, Albert P; Pickard, Chris J; Csányi, Gábor

    2017-07-26

    We present a systematic study of the stability of nineteen different periodic structures using the finite range Lennard-Jones potential model discussing the effects of pressure, potential truncation, cutoff distance and Lennard-Jones exponents. The structures considered are the hexagonal close packed (hcp), face centred cubic (fcc) and seventeen other polytype stacking sequences, such as dhcp and 9R. We found that at certain pressure and cutoff distance values, neither fcc nor hcp is the ground state structure as previously documented, but different polytypic sequences. This behaviour shows a strong dependence on the way the tail of the potential is truncated.

  13. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  14. Poles of the S-matrix in Woods-Saxon and Salamon-Vertse potentials

    NASA Astrophysics Data System (ADS)

    Vertse, T.; Lovas, R. G.; Salamon, P.; Rácz, A.

    2012-10-01

    The motions of the l = 0 poles of the S-matrix with varying potential strength is calculated in a cut-off Woods-Saxon (CWS) potential and in the Salamon-Vertse (SV) potential [3]. Both potentials are zero beyond a certain finite distance but the CWS potential has a jump at the cut while the SV potential goes to zero smoothly. The jump of the CWS potential might cause a strange circling of the trajectories at their starting region. This feature does not appear with the SV potential. Starting points of the trajectories depend on the ranges of the potentials. For CWS these points do depend on the unphysical cut-off radius. In this respect the SV potential seems to be superior to the CWS potential.

  15. Stress-intensity factors for small surface and corner cracks in plates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Atluri, S. N.; Newman, J. C., Jr.

    1988-01-01

    Three-dimensional finite-element and finite-alternating methods were used to obtain the stress-intensity factors for small surface and corner cracked plates subjected to remote tension and bending loads. The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The performance of the finite-element alternating method was studied on these crack configurations. A study of the computational effort involved in the finite-element alternating method showed that several crack configurations could be analyzed with a single rectangular mesh idealization, whereas the conventional finite-element method requires a different mesh for each configuration. The stress-intensity factors obtained with the finite-element-alternating method agreed well (within 5 percent) with those calculated from the finite-element method with singularity elements.

  16. Finite barrier corrections to the PGH solution of Kramers' turnover theory

    NASA Astrophysics Data System (ADS)

    Pollak, Eli; Ianconescu, Reuven

    2014-04-01

    Kramers [Physica 7, 284 (1940)], in his seminal paper, derived expressions for the rate of crossing a barrier in the underdamped limit of weak friction and the moderate to strong friction limit. The challenge of obtaining a uniform expression for the rate, valid for all damping strengths is known as Kramers turnover theory. Two different solutions have been presented. Mel'nikov and Meshkov [J. Chem. Phys. 85, 1018 (1986)] (MM) considered the motion of the particle, treating the friction as a perturbation parameter. Pollak, Grabert, and Hänggi [J. Chem. Phys. 91, 4073 (1989)] (PGH), considered the motion along the unstable mode which is separable from the bath in the barrier region. In practice, the two theories differ in the way an energy loss parameter is estimated. In this paper, we show that previous numerical attempts to resolve the quality of the two approaches were incomplete and that at least for a cubic potential with Ohmic friction, the quality of agreement of both expressions with numerical simulation is similar over a large range of friction strengths and temperatures. Mel'nikov [Phys. Rev. E 48, 3271 (1993)], in a later paper, improved his theory by introducing finite barrier corrections. In this paper we note that previous numerical tests of the finite barrier corrections were also incomplete. They did not employ the exact rate expression, but a harmonic approximation to it. The central part of this paper, is to include finite barrier corrections also within the PGH formalism. Tests on a cubic potential demonstrate that finite barrier corrections significantly improve the agreement of both MM and PGH theories when compared with numerical simulations.

  17. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2015-08-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain initiation. Calculation of bone elastic moduli from image data is a basic step when constructing finite element models. However, different relationships between elastic moduli and imaged density (known as density-modulus relationships) have been reported in the literature. The objective of this study was to apply seven different trabecular-specific and two cortical-specific density-modulus relationships from the literature to finite element models of proximal tibia subchondral bone, and identify the relationship(s) that best predicted experimentally measured local subchondral structural stiffness with highest explained variance and least error. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using published density-modulus relationships and mapped to corresponding finite element models. Proximal tibial structural stiffness values were compared to experimentally measured stiffness values from in-situ macro-indentation testing directly on the subchondral bone surface (47 indentation points). Regression lines between experimentally measured and finite element calculated stiffness had R(2) values ranging from 0.56 to 0.77. Normalized root mean squared error varied from 16.6% to 337.6%. Of the 21 evaluated density-modulus relationships in this study, Goulet combined with Snyder and Schneider or Rho appeared most appropriate for finite element modeling of local subchondral bone structural stiffness. Though, further studies are needed to optimize density-modulus relationships and improve finite element estimates of local subchondral bone structural stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Finite-Size Scaling of a First-Order Dynamical Phase Transition: Adaptive Population Dynamics and an Effective Model

    NASA Astrophysics Data System (ADS)

    Nemoto, Takahiro; Jack, Robert L.; Lecomte, Vivien

    2017-03-01

    We analyze large deviations of the time-averaged activity in the one-dimensional Fredrickson-Andersen model, both numerically and analytically. The model exhibits a dynamical phase transition, which appears as a singularity in the large deviation function. We analyze the finite-size scaling of this phase transition numerically, by generalizing an existing cloning algorithm to include a multicanonical feedback control: this significantly improves the computational efficiency. Motivated by these numerical results, we formulate an effective theory for the model in the vicinity of the phase transition, which accounts quantitatively for the observed behavior. We discuss potential applications of the numerical method and the effective theory in a range of more general contexts.

  19. Cost-effective use of minicomputers to solve structural problems

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Foster, E. P.

    1978-01-01

    Minicomputers are receiving increased use throughout the aerospace industry. Until recently, their use focused primarily on process control and numerically controlled tooling applications, while their exposure to and the opportunity for structural calculations has been limited. With the increased availability of this computer hardware, the question arises as to the feasibility and practicality of carrying out comprehensive structural analysis on a minicomputer. This paper presents results on the potential for using minicomputers for structural analysis by (1) selecting a comprehensive, finite-element structural analysis system in use on large mainframe computers; (2) implementing the system on a minicomputer; and (3) comparing the performance of the minicomputers with that of a large mainframe computer for the solution to a wide range of finite element structural analysis problems.

  20. Precise determination of lattice phase shifts and mixing angles

    DOE PAGES

    Lu, Bing -Nan; Lähde, Timo A.; Lee, Dean; ...

    2016-07-09

    Here, we introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles formore » all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.« less

  1. Finite-size effects in simulations of electrolyte solutions under periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Thompson, Jeffrey; Sanchez, Isaac

    The equilibrium properties of charged systems with periodic boundary conditions may exhibit pronounced system-size dependence due to the long range of the Coulomb force. As shown by others, the leading-order finite-size correction to the Coulomb energy of a charged fluid confined to a periodic box of volume V may be derived from sum rules satisfied by the charge-charge correlations in the thermodynamic limit V -> ∞ . In classical systems, the relevant sum rule is the Stillinger-Lovett second-moment (or perfect screening) condition. This constraint implies that for large V, periodicity induces a negative bias of -kB T(2 V) - 1 in the total Coulomb energy density of a homogeneous classical charged fluid of given density and temperature. We present a careful study of the impact of such finite-size effects on the calculation of solute chemical potentials from explicit-solvent molecular simulations of aqueous electrolyte solutions. National Science Foundation Graduate Research Fellowship Program, Grant No. DGE-1610403.

  2. A Modeling Approach for Burn Scar Assessment Using Natural Features and Elastic Property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V; Zhang, Y; Goldgof, D B

    2004-04-02

    A modeling approach is presented for quantitative burn scar assessment. Emphases are given to: (1) constructing a finite element model from natural image features with an adaptive mesh, and (2) quantifying the Young's modulus of scars using the finite element model and the regularization method. A set of natural point features is extracted from the images of burn patients. A Delaunay triangle mesh is then generated that adapts to the point features. A 3D finite element model is built on top of the mesh with the aid of range images providing the depth information. The Young's modulus of scars ismore » quantified with a simplified regularization functional, assuming that the knowledge of scar's geometry is available. The consistency between the Relative Elasticity Index and the physician's rating based on the Vancouver Scale (a relative scale used to rate burn scars) indicates that the proposed modeling approach has high potentials for image-based quantitative burn scar assessment.« less

  3. Particle formation and ordering in strongly correlated fermionic systems: Solving a model of quantum chromodynamics

    DOE PAGES

    Azaria, P.; Konik, R. M.; Lecheminant, P.; ...

    2016-08-03

    In our paper we study a (1+1)-dimensional version of the famous Nambu–Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, μ, is zero, we describe the formation of fermion three-quark (nucleons and Δ baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at μ=0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phasesmore » with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). Finally, the QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).« less

  4. Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy.

    PubMed

    Mansouri, Ali; Bhattacharjee, Subir; Kostiuk, Larry W

    2007-11-08

    Numerical simulations with the fluid mechanics based on the unsteady Navier-Stokes equations and the Poisson-Nernst-Planck formulation of electrostatics and ion transport were used to explore the transient transport of charge through a finite length cylindrical microchannel that is driven by a pressure difference. The evolution of the transcapillary potential from a no-flow equilibrium to the steady-state-steady-flow streaming potential was analyzed by following the convection, migration, and net currents. Observations of the unsteady characteristics of the streaming current, electrical resistance, and capacitance led to an electrical analogy. This electrical analogy was made from a current source (to represent convection current), which was placed in parallel with a capacitor (to allow the accumulation of charge) and a resistor (to permit a migration current). A parametric study involving a range of geometries, fluid mechanics, electrostatics, and mass transfer states allowed predictive submodels for the current source, capacitor, and resistor to be developed based on a dimensional analysis.

  5. Surface plasmons for doped graphene

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Pirozhenko, I. G.

    2015-04-01

    Within the Dirac model for the electronic excitations of graphene, we calculate the full polarization tensor with finite mass and chemical potential. It has, besides the (00)-component, a second form factor, which must be accounted for. We obtain explicit formulas for both form factors and for the reflection coefficients. Using these, we discuss the regions in the momentum-frequency plane where plasmons may exist and give numeric solutions for the plasmon dispersion relations. It turns out that plasmons exist for both, transverse electric and transverse magnetic polarizations over the whole range of the ratio of mass to chemical potential, except for zero chemical potential, where only a TE plasmon exists.

  6. Thermodynamics and structural transition of binary atomic Bose-Fermi mixtures in box or harmonic potentials: A path-integral study

    NASA Astrophysics Data System (ADS)

    Kim, Tom; Chien, Chih-Chun

    2018-03-01

    Experimental realizations of a variety of atomic binary Bose-Fermi mixtures have brought opportunities for studying composite quantum systems with different spin statistics. The binary atomic mixtures can exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By using a path-integral formalism to evaluate the grand partition function and the thermodynamic grand potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective potential curve, and the volume fraction of phase separation can be determined by the lever rule. For 6Li-7Li and 6Li-41K mixtures, we present the phase diagrams of the mixtures in a box potential at zero and finite temperatures. Due to the flexible densities of atomic gases, the construction of phase separation is more complicated when compared to conventional liquid or solid mixtures where the individual densities are fixed. For harmonically trapped mixtures, we use the local density approximation to map out the finite-temperature density profiles and present typical trap structures, including the mixture, partially separated phases, and fully separated phases.

  7. Quantum logic between remote quantum registers

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  8. Pile-Driving Pressure and Particle Velocity at the Seabed: Quantifying Effects on Crustaceans and Groundfish.

    PubMed

    Miller, James H; Potty, Gopu R; Kim, Hui-Kwan

    2016-01-01

    We modeled the effects of pile driving on crustaceans, groundfish, and other animals near the seafloor. Three different waves were investigated, including the compressional wave, shear wave, and interface wave. A finite element (FE) technique was employed in and around the pile, whereas a parabolic equation (PE) code was used to predict propagation at long ranges from the pile. Pressure, particle displacement, and particle velocity are presented as a function of range at the seafloor for a shallow-water environment near Rhode Island. We discuss the potential effects on animals near the seafloor.

  9. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory.

    PubMed

    Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth

    2015-02-10

    Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.

  10. On the theory of Lorentz gases with long range interactions

    NASA Astrophysics Data System (ADS)

    Nota, Alessia; Simonella, Sergio; Velázquez, Juan J. L.

    We construct and study the stochastic force field generated by a Poisson distribution of sources at finite density, x1,x2,…, in ℝ3 each of them yielding a long range potential QiΦ(x - xi) with possibly different charges Qi ∈ ℝ. The potential Φ is assumed to behave typically as |x|-s for large |x|, with s > 1/2. We will denote the resulting random field as “generalized Holtsmark field”. We then consider the dynamics of one tagged particle in such random force fields, in several scaling limits where the mean free path is much larger than the average distance between the scatterers. We estimate the diffusive time scale and identify conditions for the vanishing of correlations. These results are used to obtain appropriate kinetic descriptions in terms of a linear Boltzmann or Landau evolution equation depending on the specific choices of the interaction potential.

  11. Nonempirical range-separated hybrid functionals for solids and molecules

    DOE PAGES

    Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    2016-06-03

    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Moreover, we show thatmore » these functionals may be generalized to finite systems.« less

  12. Long Range Debye-Hückel Correction for Computation of Grid-based Electrostatic Forces Between Biomacromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mereghetti, Paolo; Martinez, M.; Wade, Rebecca C.

    Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulatemore » solutions of bovine serum albumin and of hen egg white lysozyme.« less

  13. Using algebra for massively parallel processor design and utilization

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Fellows, Michael R.

    1990-01-01

    This paper summarizes the author's advances in the design of dense processor networks. Within is reported a collection of recent constructions of dense symmetric networks that provide the largest know values for the number of nodes that can be placed in a network of a given degree and diameter. The constructions are in the range of current potential engineering significance and are based on groups of automorphisms of finite-dimensional vector spaces.

  14. Pion properties at finite isospin chemical potential with isospin symmetry breaking

    NASA Astrophysics Data System (ADS)

    Wu, Zuqing; Ping, Jialun; Zong, Hongshi

    2017-12-01

    Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)

  15. A Gaussian Approximation Potential for Silicon

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor

    We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.

  16. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study

    PubMed Central

    Kiapour, Ali; Yerby, Scott A.; Goel, Vijay K.

    2015-01-01

    Background Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. Methods An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. Results The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Conclusions Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated. PMID:26767156

  17. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study.

    PubMed

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2015-01-01

    Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated.

  18. Electromagnetic finite elements based on a four-potential variational principle

    NASA Technical Reports Server (NTRS)

    Schuler, James J.; Felippa, Carlos A.

    1991-01-01

    Electromagnetic finite elements based on a variational principle that uses the electromagnetic four-potential as a primary variable are derived. This choice is used to construct elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that involve superconductors. The main advantages of the four-potential as a basis for finite element formulation are that the number of degrees of freedom per node remains modest as the problem dimensionally increases, that jump discontinuities on interfaces are naturally accommodated, and that statics as well as dynamics may be treated without any a priori approximations. The new elements are tested on an axisymmetric problem under steady state forcing conditions. The results are in excellent agreement with analytical solutions.

  19. Characterization of a plasma photonic crystal using a multi-fluid plasma model

    NASA Astrophysics Data System (ADS)

    Thomas, W. R.; Shumlak, U.; Wang, B.; Righetti, F.; Cappelli, M. A.; Miller, S. T.

    2017-10-01

    Plasma photonic crystals have the potential to significantly expand the capabilities of current microwave filtering and switching technologies by providing high speed (μs) control of energy band-gap/pass characteristics in the GHz through low THz range. While photonic crystals consisting of dielectric, semiconductor, and metallic matrices have seen thousands of articles published over the last several decades, plasma-based photonic crystals remain a relatively unexplored field. Numerical modeling efforts so far have largely used the standard methods of analysis for photonic crystals (the Plane Wave Expansion Method, Finite Difference Time Domain, and ANSYS finite element electromagnetic code HFSS), none of which capture nonlinear plasma-radiation interactions. In this study, a 5N-moment multi-fluid plasma model is implemented using University of Washington's WARPXM finite element multi-physics code. A two-dimensional plasma-vacuum photonic crystal is simulated and its behavior is characterized through the generation of dispersion diagrams and transmission spectra. These results are compared with theory, experimental data, and ANSYS HFSS simulation results. This research is supported by a Grant from United States Air Force Office of Scientific Research.

  20. Neutron-proton effective mass splitting in terms of symmetry energy and its density slope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Sahoo, B.; Sahoo, S., E-mail: sukadevsahoo@yahoo.com

    2015-01-15

    Using a simple density-dependent finite-range effective interaction having Yukawa form, the density dependence of isoscalar and isovector effective masses is studied. The isovector effective mass is found to be different for different pairs of like and unlike nucleons. Using HVH theorem, the neutron-proton effective mass splitting is represented in terms of symmetry energy and its density slope. It is again observed that the neutron-proton effective mass splitting has got a positive value when isoscalar effective mass is greater than the isovector effective mass and has a negative value for the opposite case. Furthermore, the neutron-proton effective mass splitting is foundmore » to have a linear dependence on asymmetry β. The second-order symmetry potential has a vital role in the determination of density slope of symmetry energy but it does not have any contribution on neutron-proton effective mass splitting. The finite-range effective interaction is compared with the SLy2, SKM, f{sub −}, f{sub 0}, and f{sub +} forms of interactions.« less

  1. Computer-simulation study of a disordered classical spin system in one dimension with long-range anisotropic ferromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Romano, S.

    1992-01-01

    The present paper considers a classical system, consisting of n-component unit vectors (n=2 or 3), associated with a one-dimensional lattice \\{uk||k∈openZ\\}, and interacting via a translationally invariant pair potential of the long-range, ferromagnetic and anisotropic form W=Wjk=-ɛ||j-k||-2(auj,nuk,n +b tsumλ

  2. Experimental and numerical analysis of stress wave propagation in polymers and the role of interfaces in armour systems

    NASA Astrophysics Data System (ADS)

    Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.

    2012-12-01

    Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.

  3. Beyond the Rayleigh instability limit for multicharged finite systems: From fission to Coulomb explosion

    PubMed Central

    Last, Isidore; Levy, Yaakov; Jortner, Joshua

    2002-01-01

    We address the stability of multicharged finite systems driven by Coulomb forces beyond the Rayleigh instability limit. Our exploration of the nuclear dynamics of heavily charged Morse clusters enabled us to vary the range of the pair potential and of the fissibility parameter, which results in distinct fragmentation patterns and in the angular distributions of the fragments. The Rayleigh instability limit separates between nearly binary (or tertiary) spatially unisotropic fission and spatially isotropic Coulomb explosion into a large number of small, ionic fragments. Implications are addressed for a broad spectrum of dynamics in chemical physics, radiation physics of ultracold gases, and biophysics, involving the fission of clusters and droplets, the realization of Coulomb explosion of molecular clusters, the isotropic expansion of optical molasses, and the Coulomb instability of “isolated” proteins. PMID:12093910

  4. Ground-states for the liquid drop and TFDW models with long-range attraction

    NASA Astrophysics Data System (ADS)

    Alama, Stan; Bronsard, Lia; Choksi, Rustum; Topaloglu, Ihsan

    2017-10-01

    We prove that both the liquid drop model in R 3 with an attractive background nucleus and the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) model attain their ground-states for all masses as long as the external potential V(x) in these models is of long range, that is, it decays slower than Newtonian (e.g., V ( x ) ≫ | x | - 1 for large |x|.) For the TFDW model, we adapt classical concentration-compactness arguments by Lions, whereas for the liquid drop model with background attraction, we utilize a recent compactness result for sets of finite perimeter by Frank and Lieb.

  5. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States.

    PubMed

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-25

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  6. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-01

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  7. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  8. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  9. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  10. On the effects of grid ill-conditioning in three dimensional finite element vector potential magnetostatic field computations

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1990-01-01

    The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.

  11. Fractional finite Fourier transform.

    PubMed

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  12. Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures

    PubMed Central

    Deng, Tianqi; Su, Haibin

    2015-01-01

    We develop an orbital-dependent potential to describe electron-hole interaction in materials with structural 2D character, i.e. quasi-2D materials. The modulated orbital-dependent potentials are also constructed with non-local screening, multi-layer screening, and finite gap due to the coupling with substrates. We apply the excitonic Hamiltonian in coordinate-space with developed effective electron-hole interacting potentials to compute excitons’ binding strength at M (π band) and Γ (σ band) points in graphene and its associated multi-layer forms. The orbital-dependent potential provides a range-separated property for regulating both long- and short-range interactions. This accounts for the existence of the resonant π exciton in single- and bi-layer graphenes. The remarkable strong electron-hole interaction in σ orbitals plays a decisive role in the existence of σ exciton in graphene stack at room temperature. The interplay between gap-opening and screening from substrates shed a light on the weak dependence of σ exciton binding energy on the thickness of graphene stacks. Moreover, the analysis of non-hydrogenic exciton spectrum in quasi-2D systems clearly demonstrates the remarkable comparable contribution of orbital dependent potential with respect to non-local screening process. The understanding of orbital-dependent potential developed in this work is potentially applicable for a wide range of materials with low dimension. PMID:26610715

  13. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  14. Technique for evaluation of the strong potential Born approximation for electron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sil, N.C.; McGuire, J.H.

    1985-04-01

    A technique is presented for evaluating differential cross sections in the strong potential Born (SPB) approximation. Our final expression is expressed as a finite sum of one-dimensional integrals, expressible as a finite sum of derivatives of hypergeometric functions.

  15. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  16. Finite element analysis of low speed viscous and inviscid aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1977-01-01

    A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.

  17. Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer.

    PubMed

    Lim, Jongil; Whitcomb, John; Boyd, James; Varghese, Julian

    2007-01-01

    A finite element implementation of the transient nonlinear Nernst-Planck-Poisson (NPP) and Nernst-Planck-Poisson-modified Stern (NPPMS) models is presented. The NPPMS model uses multipoint constraints to account for finite ion size, resulting in realistic ion concentrations even at high surface potential. The Poisson-Boltzmann equation is used to provide a limited check of the transient models for low surface potential and dilute bulk solutions. The effects of the surface potential and bulk molarity on the electric potential and ion concentrations as functions of space and time are studied. The ability of the models to predict realistic energy storage capacity is investigated. The predicted energy is much more sensitive to surface potential than to bulk solution molarity.

  18. Self Diagnostic Adhesive for Bonded Joints in Aircraft Structures

    DTIC Science & Technology

    2016-10-04

    validated under the fatigue/dynamic loading condition. 3) Both SEM (Spectral Element Modeling) and FEM ( Finite Element Modeling) simulation of the...Sensors ..................................................................... 22 Parametric Study of Sensor Performance via Finite Element Simulation...The frequency range that we are interested is around 800 kHz. Conventional linear finite element method (FEM) requires a very fine spatial

  19. Thermal effects in supernova matter

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos

    A crucial ingredient in simulations of core collapse supernova (SN) explosions is the equation of state (EOS) of nucleonic matter for densities extending from 10-7 fm-3 to 1 ffm-3, temperatures up to 50 MeV, and proton-to-baryon fraction in the range 0 to 1/2. SN explosions release 99% of the progenitor star's gravitational potential energy in the form of neutrinos and, additionally, they are responsible for populating the universe with elements heavier than 56Fe. Therefore, the importance of understanding this phenomenon cannot be overstated as it could shed light onto the underlying nuclear and neutrino physics. A realistic EOS of SN matter must incorporate the nucleon-nucleon interaction in a many-body environment. We treat this problem with a non-relativistic potential model as well as relativistic mean-field theoretical one. In the former approach, we employ the Skyrme-like Hamiltonian density constructed by Akmal, Pandharipande, and Ravenhall which takes into account the long scattering lengths of nucleons that determine the low density characteristics. In the latter, we use a Walecka-like Lagrangian density supplemented by non-linear interactions involving scalar, vector, and isovector meson exchanges, calibrated so that known properties of nuclear matter are reproduced. We focus on the bulk homogeneous phase and calculate its thermodynamic properties as functions of baryon density, temperature, and proton-to-baryon ratio. The exact numerical results are then compared to those in the degenerate and non-degenerate limits for which analytical formulae have been derived. We find that the two models bahave similarly for densities up to nuclear saturation but exhibit differences at higher densities most notably in the isospin susceptibilities, the chemical potentials, and the pressure. The importance of the correct momentum dependence in the single particle potential that fits optical potentials of nucleon-nucleus scattering was highlighted in the context of intermediate energy heavy-ion collisions. To explore the effect momentum-dependent interactions have on the thermal properties of dense matter we study a schematic model constructed by Welke et al. in which the appropriate momentum dependence that fits optical potential data is built through finite-range exchange forces of the Yukawa type. We look into the finite-temperature properties of this model in the context of infinite, isospin-symmetric nucleonic matter. The exact numerical results are compared to analytical ones in the quantum regime where we rely on Landau's Fermi-Liquid Theory, and in the classical regime where the state variables are obtained through a steepest descent calculation. Detailed comparisons with similarly calibrated Skyrme models are also performed. We find that the high-density behavior of the thermal pressure is once again a differentiating feature. We attribute this to the temperature dependence of the energy spectrum of the finite-range and the meson-exchange models which leads to a higher specific heat and thus a lower pressure.

  20. Topological footprints of the Kitaev chain with long-range superconducting pairings at a finite temperature

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Utso; Dutta, Amit

    2018-06-01

    We study the one-dimensional Kitaev chain with long-range superconductive pairing terms at a finite temperature where the system is prepared in a mixed state in equilibrium with a heat reservoir maintained at a constant temperature T . In order to probe the footprint of the ground-state topological behavior of the model at finite temperature, we look at two global quantities extracted out of two geometrical constructions: the Uhlmann and the interferometric phase. Interestingly, when the long-range effect dominates, the Uhlmann phase approach fails to reproduce the topological aspects of the model in the pure-state limit; on the other hand, the interferometric phase which has a proper pure state reduction, shows a behavior independent of the ambient temperature.

  1. Analysis of finite-strain equations of state for solids under high pressures

    NASA Astrophysics Data System (ADS)

    Sushil, K.; Arunesh, K.; Singh, P. K.; Sharma, B. S.

    2004-10-01

    We have reformulated equations of state (EOS) for solids based on Lagrangian and Eulerian strains following the method developed by Stacey [Phys. Earth Planet. Inter. 128 (2001) 179]. The expressions thus obtained are used conveniently to assess the validity of various EOS for different types of solids. The logarithmic EOS based on the Hencky measure of finite-strain is also modified by including the higher terms arising from the fourth-order contribution in the Taylor series expansion of the free energy. The results are obtained for pressure (P), isothermal bulk modulus (KT) and its pressure derivative (dKT/dP) for Ne, Ar, Al, Cu, LiH and MgO solids for a wide range of compressions (V/V0) down to 0.5. The results determined from the finite-strain equations are compared with those obtained from the Vinet-Rydberg equation and the Shanker equation, which are based on the interatomic potential energy functions. The results are also compared with the ab inito values reported by Hama and Suito [J. Phys.: Condens. Matter 8 (1996) 67] determined from first-principles calculations using the augmented plane wave method and the quantum statistical model. The EOS based on the K‧ finite-strain theory due to Keane and Stacey are also discussed, emphasising the importance of K∞‧ , in the limit P→∞.

  2. The use of spectral methods in bidomain studies.

    PubMed

    Trayanova, N; Pilkington, T

    1992-01-01

    A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.

  3. Role of the 3He optical model potential ambiguity in the distorted-wave Born approximation description of the 58Ni(3He, d)59Cu reaction at 130 MeV incident energy

    NASA Astrophysics Data System (ADS)

    Djaloeis, A.; Alderliesten, C.; Bojowald, J.; Mayer-Böricke, C.; Oelert, W.; Turek, P.

    1983-04-01

    Angular distributions of 58Ni(3He, d)59Cu transitions leading to the (0.0 MeV, 32-), (0.91 MeV, 52-), and (3.04 MeV, 92+) states in 59Cu have been measured at an incident energy of 130 MeV. The experimental data have been used to study mainly the role of the 3He optical model potential ambiguity in the distorted-wave Born approximation description of the reaction. Satisfactory fits to the data are obtained using a deep helion potential in standard local zero-range calculations. For a shallow 3He potential a comparable description can be achieved if the depth of the real part of the deuteron optical potential is reduced considerably, and nonlocality as well as finite-range corrections are taken into account. Under these conditions, the use of a 3He potential constructed according to the Johnson-Soper prescription yields similar results. NUCLEAR REACTIONS 58Ni (3He, d)59Cu, E=130 MeV; measured dσ(θ)dΩ. Enriched target; DWBA analysis; discussed reaction mechanism.

  4. Finite Element Analysis and Understanding the Biomechanics and Evolution of Living and Fossil Organisms

    NASA Astrophysics Data System (ADS)

    Rayfield, Emily J.

    2007-05-01

    Finite element analysis (FEA) is a technique that reconstructs stress, strain, and deformation in a digital structure. Although commonplace in engineering and orthopedic science for more than 30 years, only recently has it begun to be adopted in the zoological and paleontological sciences to address questions of organismal morphology, function, and evolution. Current research tends to focus on either deductive studies that assume a close relationship between form and function or inductive studies that aim to test this relationship, although explicit hypothesis-testing bridges these two standpoints. Validation studies have shown congruence between in vivo or in vitro strain and FE-inferred strain. Future validation work on a broad range of taxa will assist in phylogenetically bracketing our extinct animal FE-models to increase confidence in our input parameters, although currently, FEA has much potential in addressing questions of form-function relationships, providing appropriate questions are asked of the existing data.

  5. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rufai, O. R., E-mail: rrufai@csir.co.za; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulsemore » duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.« less

  6. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1982-01-01

    Various problems which are confronted in the development of an unsteady finite difference potential code are reviewed mainly in the context of what is done for a typical small disturbance and full potential method. The issues discussed include choice of equations, linearization and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three dimensional rotor calculations, are demonstrated.

  7. The strain capacitor: A novel energy storage device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb Shuvra, Pranoy; McNamara, Shamus, E-mail: shamus.mcnamara@louisville.edu

    2014-12-15

    A novel electromechanical energy storage device is reported that has the potential to have high energy densities. It can efficiently store both mechanical strain energy and electrical energy in the form of an electric field between the electrodes of a strain-mismatched bilayer capacitor. When the charged device is discharged, both the electrical and mechanical energy are extracted in an electrical form. The charge-voltage profile of the device is suitable for energy storage applications since a larger portion of the stored energy can be extracted at higher voltage levels compared to a normal capacitor. Its unique features include the potential formore » long lifetime, safety, portability, wide operating temperature range, and environment friendliness. The device can be designed to operate over varied operating voltage ranges by selecting appropriate materials and by changing the dimensions of the device. In this paper a finite element model of the device is developed to verify and demonstrate the potential of the device as an energy storage element. This device has the potential to replace conventional energy storage devices.« less

  8. A finite element simulation of sound attenuation in a finite duct with a peripherally variable liner

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1977-01-01

    Using multimodal analysis, a variational finite element method is presented for analyzing sound attenuation in a three-dimensional finite duct with a peripherally variable liner in the absence of flow. A rectangular element, with cubic shaped functions, is employed. Once a small portion of a peripheral liner is removed, the attenuation rate near the frequency where maximum attenuation occurs drops significantly. The positioning of the liner segments affects the attenuation characteristics of the liner. Effects of the duct termination are important in the low frequency ranges. The main effect of peripheral variation of the liner is a broadening of the attenuation characteristics in the midfrequency range. Because of matrix size limitations of the presently available computer program, the eigenvalue equations should be solved out of core in order to handle realistic sources.

  9. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    PubMed

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.

  10. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  11. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory

    NASA Astrophysics Data System (ADS)

    Evans, Robert; Stewart, Maria C.; Wilding, Nigel B.

    2017-07-01

    We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.

  12. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.

    PubMed

    Evans, Robert; Stewart, Maria C; Wilding, Nigel B

    2017-07-28

    We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν ∥ , which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.

  13. Finite Energy and Bounded Actuator Attacks on Cyber-Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djouadi, Seddik M; Melin, Alexander M; Ferragut, Erik M

    As control system networks are being connected to enterprise level networks for remote monitoring, operation, and system-wide performance optimization, these same connections are providing vulnerabilities that can be exploited by malicious actors for attack, financial gain, and theft of intellectual property. Much effort in cyber-physical system (CPS) protection has focused on protecting the borders of the system through traditional information security techniques. Less effort has been applied to the protection of cyber-physical systems from intelligent attacks launched after an attacker has defeated the information security protections to gain access to the control system. In this paper, attacks on actuator signalsmore » are analyzed from a system theoretic context. The threat surface is classified into finite energy and bounded attacks. These two broad classes encompass a large range of potential attacks. The effect of theses attacks on a linear quadratic (LQ) control are analyzed, and the optimal actuator attacks for both finite and infinite horizon LQ control are derived, therefore the worst case attack signals are obtained. The closed-loop system under the optimal attack signals is given and a numerical example illustrating the effect of an optimal bounded attack is provided.« less

  14. The finite layer method for modelling the sound transmission through double walls

    NASA Astrophysics Data System (ADS)

    Díaz-Cereceda, Cristina; Poblet-Puig, Jordi; Rodríguez-Ferran, Antonio

    2012-10-01

    The finite layer method (FLM) is presented as a discretisation technique for the computation of noise transmission through double walls. It combines a finite element method (FEM) discretisation in the direction perpendicular to the wall with trigonometric functions in the two in-plane directions. It is used for solving the Helmholtz equation at the cavity inside the double wall, while the wall leaves are modelled with the thin plate equation and solved with modal analysis. Other approaches to this problem are described here (and adapted where needed) in order to compare them with the FLM. They range from impedance models of the double wall behaviour to different numerical methods for solving the Helmholtz equation in the cavity. For the examples simulated in this work (impact noise and airborne sound transmission), the former are less accurate than the latter at low frequencies. The main advantage of FLM over the other discretisation techniques is the possibility of extending it to multilayered structures without changing the interpolation functions and with an affordable computational cost. This potential is illustrated with a calculation of the noise transmission through a multilayered structure: a double wall partially filled with absorbing material.

  15. Long range Debye-Hückel correction for computation of grid-based electrostatic forces between biomacromolecules

    PubMed Central

    2014-01-01

    Background Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme. Results We found that the inclusion of the long-range electrostatic correction increased the accuracy of both the protein-protein interaction profiles and the protein diffusion coefficients at low ionic strength. Conclusions An advantage of this method is the low additional computational cost required to treat long-range electrostatic interactions in large biomacromolecular systems. Moreover, the implementation described here for BD simulations of protein solutions can also be applied in implicit solvent molecular dynamics simulations that make use of gridded interaction potentials. PMID:25045516

  16. Evaluation of the 3D Finite Element Method Using a Tantalum Rod for Osteonecrosis of the Femoral Head

    PubMed Central

    Shi, Jingsheng; Chen, Jie; Wu, Jianguo; Chen, Feiyan; Huang, Gangyong; Wang, Zhan; Zhao, Guanglei; Wei, Yibing; Wang, Siqun

    2014-01-01

    Background The aim of this study was to contrast the collapse values of the postoperative weight-bearing areas of different tantalum rod implant positions, fibula implantation, and core decompression model and to investigate the advantages and disadvantages of tantalum rod implantation in different ranges of osteonecrosis in comparison with other methods. Material/Methods The 3D finite element method was used to establish the 3D finite element model of normal upper femur, 3D finite element model after tantalum rod implantation into different positions of the upper femur in different osteonecrosis ranges, and other 3D finite element models for simulating fibula implant and core decompression. Results The collapse values in the weight-bearing area of the femoral head of the tantalum rod implant model inside the osteonecrosis area, implant model in the middle of the osteonecrosis area, fibula implant model, and shortening implant model exhibited no statistically significant differences (p>0.05) when the osteonecrosis range was small (60°). The stress values on the artificial bone surface for the tantalum rod implant model inside the osteonecrosis area and the shortening implant model exhibited statistical significance (p<0.01). Conclusions Tantalum rod implantation into the osteonecrosis area can reduce the collapse values in the weight-bearing area when osteonecrosis of the femoral head (ONFH) was in a certain range, thereby obtaining better clinical effects. When ONFH was in a large range (120°), the tantalum rod implantation inside the osteonecrosis area, shortening implant or fibula implant can reduce the collapse values of the femoral head, as assessed by other methods. PMID:25479830

  17. Measuring finite-range phase coherence in an optical lattice using Talbot interferometry

    PubMed Central

    Santra, Bodhaditya; Baals, Christian; Labouvie, Ralf; Bhattacherjee, Aranya B.; Pelster, Axel; Ott, Herwig

    2017-01-01

    One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose–Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications. PMID:28580941

  18. A blended continuous–discontinuous finite element method for solving the multi-fluid plasma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousa, E.M., E-mail: sousae@uw.edu; Shumlak, U., E-mail: shumlak@uw.edu

    The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutralmore » physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the Blended Finite Element Method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.« less

  19. Predictions of thermal buckling strengths of hypersonic aircraft sandwich panels using minimum potential energy and finite element methods

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1995-01-01

    Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue convergence rate is discussed.

  20. Holographic QCD in the Veneziano Limit at a Finite Magnetic Field and Chemical Potential

    NASA Astrophysics Data System (ADS)

    Gürsoy, Umut; Järvinen, Matti; Nijs, Govert

    2018-06-01

    We investigate QCD-like gauge theories at strong coupling at a finite magnetic field B , temperature T , and quark chemical potential μ using the improved holographic QCD model, including the full backreaction of the quarks in the plasma. In addition to the phase diagram, we study the behavior of the quark condensate as a function of T , B , and μ and discuss the fate of (inverse) magnetic catalysis at a finite μ . In particular, we observe that inverse magnetic catalysis exists only for small values of the chemical potential. The speed of sound in this holographic quark-gluon plasma exhibits interesting dependence on the thermodynamic parameters.

  1. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1985-01-01

    A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.

  2. Micro-Coplanar Striplines: New Transmission Media for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.

    1998-01-01

    In this paper a new transmission line for microwave applications, referred to here as the Micro-Coplanar Stripline (MCPS), is introduced. The propagation characteristics, such as, characteristic impedance (Z(sub 0) and effective dielectric constant (epsilon eff) for a range of MCPS geometries have been modeled using the Finite Difference Time Domain (FDTD) Technique and presented here. Also, preliminary experimental results on the performance of an MCP-Microstrip transition and an MCPS-fed patch antenna are presented. The results indicate several potential applications of the MCPS line in microwave integrated circuit technology.

  3. Finite-size scaling above the upper critical dimension in Ising models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin

    2015-01-01

    The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.

  4. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  5. Truncated Calogero-Sutherland models

    NASA Astrophysics Data System (ADS)

    Pittman, S. M.; Beau, M.; Olshanii, M.; del Campo, A.

    2017-05-01

    A one-dimensional quantum many-body system consisting of particles confined in a harmonic potential and subject to finite-range two-body and three-body inverse-square interactions is introduced. The range of the interactions is set by truncation beyond a number of neighbors and can be tuned to interpolate between the Calogero-Sutherland model and a system with nearest and next-nearest neighbors interactions discussed by Jain and Khare. The model also includes the Tonks-Girardeau gas describing impenetrable bosons as well as an extension with truncated interactions. While the ground state wave function takes a truncated Bijl-Jastrow form, collective modes of the system are found in terms of multivariable symmetric polynomials. We numerically compute the density profile, one-body reduced density matrix, and momentum distribution of the ground state as a function of the range r and the interaction strength.

  6. Finite Element Analysis of Reverberation Chambers

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  7. Interfacial ion solvation: Obtaining the thermodynamic limit from molecular simulations

    NASA Astrophysics Data System (ADS)

    Cox, Stephen J.; Geissler, Phillip L.

    2018-06-01

    Inferring properties of macroscopic solutions from molecular simulations is complicated by the limited size of systems that can be feasibly examined with a computer. When long-ranged electrostatic interactions are involved, the resulting finite size effects can be substantial and may attenuate very slowly with increasing system size, as shown by previous work on dilute ions in bulk aqueous solution. Here we examine corrections for such effects, with an emphasis on solvation near interfaces. Our central assumption follows the perspective of Hünenberger and McCammon [J. Chem. Phys. 110, 1856 (1999)]: Long-wavelength solvent response underlying finite size effects should be well described by reduced models like dielectric continuum theory, whose size dependence can be calculated straightforwardly. Applied to an ion in a periodic slab of liquid coexisting with vapor, this approach yields a finite size correction for solvation free energies that differs in important ways from results previously derived for bulk solution. For a model polar solvent, we show that this new correction quantitatively accounts for the variation of solvation free energy with volume and aspect ratio of the simulation cell. Correcting periodic slab results for an aqueous system requires an additional accounting for the solvent's intrinsic charge asymmetry, which shifts electric potentials in a size-dependent manner. The accuracy of these finite size corrections establishes a simple method for a posteriori extrapolation to the thermodynamic limit and also underscores the realism of dielectric continuum theory down to the nanometer scale.

  8. Graphene: A partially ordered non-periodic solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Dongshan; Wang, Feng, E-mail: fengwang@uark.edu

    2014-10-14

    Molecular dynamics simulations were performed to study the structural features of graphene over a wide range of temperatures from 50 to 4000 K using the PPBE-G potential [D. Wei, Y. Song, and F. Wang, J. Chem. Phys. 134, 184704 (2011)]. This potential was developed by force matching the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional and has been validated previously to provide accurate potential energy surface for graphene at temperatures as high as 3000 K. Simulations with the PPBE‑G potential are the best available approximation to a direct Car-Parrinello Molecular Dynamics study of graphene. One advantage of the PBE-G potential is to allowmore » large simulation boxes to be modeled efficiently so that properties showing strong finite size effects can be studied. Our simulation box contains more than 600 000 C atoms and is one of the largest graphene boxes ever modeled. With the PPBE-G potential, the thermal-expansion coefficient is negative up to 4000 K. With a large box and an accurate potential, the critical exponent for the scaling properties associated with the normal-normal and height-height correlation functions was confirmed to be 0.85. This exponent remains constant up to 4000 K suggesting graphene to be in the deeply cooled regime even close to the experimental melting temperature. The reduced peak heights in the radial distribution function of graphene show an inverse power law dependence to distance, which indicates that a macroscopic graphene sheet will lose long-range crystalline order as predicted by the Mermin-Wagner instability. Although graphene loses long-range translational order, it retains long range orientational order as indicated by its orientational correlation function; graphene is thus partially ordered but not periodic.« less

  9. Effective theory and breakdown of conformal symmetry in a long-range quantum chain

    NASA Astrophysics Data System (ADS)

    Lepori, L.; Vodola, D.; Pupillo, G.; Gori, G.; Trombettoni, A.

    2016-11-01

    We deal with the problem of studying the symmetries and the effective theories of long-range models around their critical points. A prominent issue is to determine whether they possess (or not) conformal symmetry (CS) at criticality and how the presence of CS depends on the range of the interactions. To have a model, both simple to treat and interesting, where to investigate these questions, we focus on the Kitaev chain with long-range pairings decaying with distance as power-law with exponent α. This is a quadratic solvable model, yet displaying non-trivial quantum phase transitions. Two critical lines are found, occurring respectively at a positive and a negative chemical potential. Focusing first on the critical line at positive chemical potential, by means of a renormalization group approach we derive its effective theory close to criticality. Our main result is that the effective action is the sum of two terms: a Dirac action SD, found in the short-range Ising universality class, and an "anomalous" CS breaking term SAN. While SD originates from low-energy excitations in the spectrum, SAN originates from the higher energy modes where singularities develop, due to the long-range nature of the model. At criticality SAN flows to zero for α > 2, while for α < 2 it dominates and determines the breakdown of the CS. Out of criticality SAN breaks, in the considered approximation, the effective Lorentz invariance (ELI) for every finite α. As α increases such ELI breakdown becomes less and less pronounced and in the short-range limit α → ∞ the ELI is restored. In order to test the validity of the determined effective theory, we compared the two-fermion static correlation functions and the von Neumann entropy obtained from them with the ones calculated on the lattice, finding agreement. These results explain two observed features characteristic of long-range models, the hybrid decay of static correlation functions within gapped phases and the area-law violation for the von Neumann entropy. The proposed scenario is expected to hold in other long-range models displaying quasiparticle excitations in ballistic regime. From the effective theory one can also see that new phases emerge for α < 1. Finally we show that at every finite α the critical exponents, defined as for the short-range (α → ∞) model, are not altered. This also shows that the long-range paired Kitaev chain provides an example of a long-range model in which the value of α where the CS is broken does not coincide with the value at which the critical exponents start to differ from the ones of the corresponding short-range model. At variance, for the second critical line, having negative chemical potential, only SAN (SD) is present for 1 < α < 2 (for α > 2). Close to this line, where the minimum of the spectrum coincides with the momentum where singularities develop, the critical exponents change where CS is broken.

  10. Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime

    NASA Astrophysics Data System (ADS)

    Wu, Ka Ling; Porté-Agel, Fernando

    2017-04-01

    Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully-developed flow regime. The flow characteristics of the wake of these large finite-size wind farms are reported to forecast the effect of large finite-size wind farms on adjacent wind farms. A power deficit as large as 8% is found at a distance of 10 km downwind from the large finite-size wind farms.

  11. A vortex wake capturing method for potential flow calculations

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Stremel, P. M.

    1982-01-01

    A method is presented for modifying finite difference solutions of the potential equation to include the calculation of non-planar vortex wake features. The approach is an adaptation of Baker's 'cloud in cell' algorithm developed for the stream function-vorticity equations. The vortex wake is tracked in a Lagrangian frame of reference as a group of discrete vortex filaments. These are distributed to the Eulerian mesh system on which the velocity is calculated by a finite difference solution of the potential equation. An artificial viscosity introduced by the finite difference equations removes the singular nature of the vortex filaments. Computed examples are given for the two-dimensional time dependent roll-up of vortex wakes generated by wings with different spanwise loading distributions.

  12. Stabilization of lower hybrid drift modes by finite parallel wavenumber and electron temperature gradients in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Farengo, R.; Guzdar, P. N.; Lee, Y. C.

    1989-08-01

    The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.

  13. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    NASA Astrophysics Data System (ADS)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  14. Finite length-scale anti-gravity and observations of mass discrepancies in galaxies

    NASA Astrophysics Data System (ADS)

    Sanders, R. H.

    1986-01-01

    The modification of Newtonian attraction suggested by Sanders (1984) contains a repulsive Yukawa component which is characterised by two physical parameters: a coupling constant, α, and a length scale, r0. Although this form of the gravitational potential can result in flat rotation curves for a galaxy (or a point mass) it is not obvious that any modification of gravity associated with a definite length scale can reproduce the observed rotation curves of galaxies covering a wide range of mass and size. Here it is shown that the rotation curves of galaxies ranging in size from 5 to 40 kpc can be reproduced by this modified potential. Moreover, the implied mass-to-light ratios for a larger sample of galaxies are reasonable (one to three) and show no systematic trend with the size of the galaxy. The observed infrared Tully-Fisher law is shown to be consistent with the prediction of this revised gravity. The modified potential permits the X-ray emitting halos observed around elliptical galaxies to be bound without the addition of dark matter.

  15. Approximate Approaches to the One-Dimensional Finite Potential Well

    ERIC Educational Resources Information Center

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  16. A total variation diminishing finite difference algorithm for sonic boom propagation models

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1993-01-01

    It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.

  17. Fission barriers of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Pl-dash-baraneta, R.; Blann, M.

    1989-04-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems.

  18. A finite-step method for estimating the spanwise lift distribution of wings in symmetric, yawed, and rotary flight at low speeds

    NASA Technical Reports Server (NTRS)

    Krenkel, A. R.

    1978-01-01

    The finite-step method was programmed for computing the span loading and stability derivatives of trapezoidal shaped wings in symmetric, yawed, and rotary flight. Calculations were made for a series of different wing planforms and the results compared with several available methods for estimating these derivatives in the linear angle of attack range. The agreement shown was generally good except in a few cases. An attempt was made to estimate the nonlinear variation of lift with angle of attack in the high alpha range by introducing the measured airfoil section data into the finite-step method. The numerical procedure was found to be stable only at low angles of attack.

  19. Effect of Finite Computational Domain on Turbulence Scaling Law in Both Physical and Spectral Spaces

    NASA Technical Reports Server (NTRS)

    Hou, Thomas Y.; Wu, Xiao-Hui; Chen, Shiyi; Zhou, Ye

    1998-01-01

    The well-known translation between the power law of energy spectrum and that of the correlation function or the second order structure function has been widely used in analyzing random data. Here, we show that the translation is valid only in proper scaling regimes. The regimes of valid translation are different for the correlation function and the structure function. Indeed, they do not overlap. Furthermore, in practice, the power laws exist only for a finite range of scales. We show that this finite range makes the translation inexact even in the proper scaling regime. The error depends on the scaling exponent. The current findings are applicable to data analysis in fluid turbulence and other stochastic systems.

  20. Adsorption of a single polymer chain on a surface: Effects of the potential range

    NASA Astrophysics Data System (ADS)

    Klushin, Leonid I.; Polotsky, Alexey A.; Hsu, Hsiao-Ping; Markelov, Denis A.; Binder, Kurt; Skvortsov, Alexander M.

    2013-02-01

    We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value Uc corresponding to the adsorption transition scales as W-1/ν, where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory Uc≈((π2)/(24))(W+1/2)-2 and in the best-fit equation for the MC simulation data Uc=0.585(W+1/2)-5/3. Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NUc,U/Uc). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value /=0.320±0.003 only at N˜5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent ϕeff(N). Strong corrections to scaling of order N-0.5 are observed, and the extrapolated value ϕ=0.483±0.003 is found for all values of W. The strong correction to scaling effects found here explain why for smaller values of N, as used in most previous work, misleadingly large values of ϕeff(N) were identified as the asymptotic value for the crossover exponent.

  1. Wave chaos in a randomly inhomogeneous waveguide: spectral analysis of the finite-range evolution operator.

    PubMed

    Makarov, D V; Kon'kov, L E; Uleysky, M Yu; Petrov, P S

    2013-01-01

    The problem of sound propagation in a randomly inhomogeneous oceanic waveguide is considered. An underwater sound channel in the Sea of Japan is taken as an example. Our attention is concentrated on the domains of finite-range ray stability in phase space and their influence on wave dynamics. These domains can be found by means of the one-step Poincare map. To study manifestations of finite-range ray stability, we introduce the finite-range evolution operator (FREO) describing transformation of a wave field in the course of propagation along a finite segment of a waveguide. Carrying out statistical analysis of the FREO spectrum, we estimate the contribution of regular domains and explore their evanescence with increasing length of the segment. We utilize several methods of spectral analysis: analysis of eigenfunctions by expanding them over modes of the unperturbed waveguide, approximation of level-spacing statistics by means of the Berry-Robnik distribution, and the procedure used by A. Relano and coworkers [Relano et al., Phys. Rev. Lett. 89, 244102 (2002); Relano, Phys. Rev. Lett. 100, 224101 (2008)]. Comparing the results obtained with different methods, we find that the method based on the statistical analysis of FREO eigenfunctions is the most favorable for estimating the contribution of regular domains. It allows one to find directly the waveguide modes whose refraction is regular despite the random inhomogeneity. For example, it is found that near-axial sound propagation in the Sea of Japan preserves stability even over distances of hundreds of kilometers due to the presence of a shearless torus in the classical phase space. Increasing the acoustic wavelength degrades scattering, resulting in recovery of eigenfunction localization near periodic orbits of the one-step Poincaré map.

  2. Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models.

    PubMed

    Campbell, J Q; Coombs, D J; Rao, M; Rullkoetter, P J; Petrella, A J

    2016-09-06

    The purpose of this study was to seek broad verification and validation of human lumbar spine finite element models created using a previously published automated algorithm. The automated algorithm takes segmented CT scans of lumbar vertebrae, automatically identifies important landmarks and contact surfaces, and creates a finite element model. Mesh convergence was evaluated by examining changes in key output variables in response to mesh density. Semi-direct validation was performed by comparing experimental results for a single specimen to the automated finite element model results for that specimen with calibrated material properties from a prior study. Indirect validation was based on a comparison of results from automated finite element models of 18 individual specimens, all using one set of generalized material properties, to a range of data from the literature. A total of 216 simulations were run and compared to 186 experimental data ranges in all six primary bending modes up to 7.8Nm with follower loads up to 1000N. Mesh convergence results showed less than a 5% difference in key variables when the original mesh density was doubled. The semi-direct validation results showed that the automated method produced results comparable to manual finite element modeling methods. The indirect validation results showed a wide range of outcomes due to variations in the geometry alone. The studies showed that the automated models can be used to reliably evaluate lumbar spine biomechanics, specifically within our intended context of use: in pure bending modes, under relatively low non-injurious simulated in vivo loads, to predict torque rotation response, disc pressures, and facet forces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Molecular versus squared Woods-Saxon α-nucleus potentials in the 27Al(α, t)28Si reaction

    NASA Astrophysics Data System (ADS)

    Abdullah, M. N. A.; Das, S. K.; Tariq, A. S. B.; Mahbub, M. S.; Mondal, A. S.; Uddin, M. A.; Basak, A. K.; Gupta, H. M. Sen; Malik, F. B.

    2003-06-01

    The differential cross-section of the 27Al(alpha, t)28Si reaction for 64.5 MeV incident energy has been reanalysed in DWBA with full finite range using a squared Woods-Saxon (Michel) alpha-nucleus potential with the modified value of the depth parameter alpha = 2.0 as reported in a comment article by Michel and Reidemeister. This new value produces significant improvement in fitting the data of the reaction with its overall performance, in some cases, close to that previously observed for the molecular potential. Although the non-monotonic shallow molecular potential with a soft repulsive core and the Michel potentials produce the same quality fits to the elastic scattering and non-elastic processes, they are not phase equivalent. The two types of potential produce altogether different cross-sections, particularly at large reaction angles. The importance of the experimental cross-sections at large angles for both elastic scattering and non-elastic processes is elucidated.

  4. Theoretical predictions for α -decay chains of 118 290 -298Og isotopes using a finite-range nucleon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Adel, A.

    2018-04-01

    The α -decay half-lives of the recently synthesized superheavy nuclei (SHN) are investigated by employing the density dependent cluster model. A realistic nucleon-nucleon (NN ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the Bohr-Sommerfeld quantization condition. The calculated values of α -decay half-lives of the recently synthesized Og isotopes and its decay products are in good agreement with the experimental data. Moreover, the calculated values of α -decay half-lives have been compared with those values evaluated using other theoretical models, and it was found that our theoretical values match well with their counterparts. The competition between α decay and spontaneous fission is investigated and predictions for possible decay modes for the unknown nuclei 118 290 -298Og are presented. We studied the behavior of the α -decay half-lives of Og isotopes and their decay products as a function of the mass number of the parent nuclei. We found that the behavior of the curves is governed by proton and neutron magic numbers found from previous studies. The proton numbers Z =114 , 116, 108, 106 and the neutron numbers N =172 , 164, 162, 158 show some magic character. We hope that the theoretical prediction of α -decay chains provides a new perspective to experimentalists.

  5. Efficient parallelization of analytic bond-order potentials for large-scale atomistic simulations

    NASA Astrophysics Data System (ADS)

    Teijeiro, C.; Hammerschmidt, T.; Drautz, R.; Sutmann, G.

    2016-07-01

    Analytic bond-order potentials (BOPs) provide a way to compute atomistic properties with controllable accuracy. For large-scale computations of heterogeneous compounds at the atomistic level, both the computational efficiency and memory demand of BOP implementations have to be optimized. Since the evaluation of BOPs is a local operation within a finite environment, the parallelization concepts known from short-range interacting particle simulations can be applied to improve the performance of these simulations. In this work, several efficient parallelization methods for BOPs that use three-dimensional domain decomposition schemes are described. The schemes are implemented into the bond-order potential code BOPfox, and their performance is measured in a series of benchmarks. Systems of up to several millions of atoms are simulated on a high performance computing system, and parallel scaling is demonstrated for up to thousands of processors.

  6. Analytical and Experimental Characterization of Gravity Induced Deformations In Subscale Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Blandino, Joseph R.; McEvoy, Kiley C.

    2004-01-01

    The development of gossamer space structures such as solar sails and sunshields presents many challenges due to their large size and extreme flexibility. The post-deployment structural geometry exhibited during ground testing may significantly depart from the in-space configuration due to the presence of gravity-induced deformations (gravity sag) of lightly preloaded membranes. This paper describes a study carried out to characterize gravity sag in two subscale gossamer structures: a single quadrant from a 2 m, 4 quadrant square solar sail and a 1.7 m membrane layer from a multi-layer sunshield The behavior of the test articles was studied over a range of preloads and in several orientations with respect to gravity. An experimental study was carried out to measure the global surface profiles using photogrammetry, and nonlinear finite element analysis was used to predict the behavior of the test articles. Comparison of measured and predicted surface profiles shows that the finite dement analysis qualitatively predicts deformed shapes comparable to those observed in the laboratory. Quantitatively, finite element analysis predictions for peak gravity-induced deformations in both test articles were within 10% of measured values. Results from this study provide increased insight into gravity sag behavior in gossamer structures, and demonstrates the potential to analytically predict gravity-induced deformations to within reasonable accuracy.

  7. Molecular dynamics simulations of diffusion and clustering along critical isotherms of medium-chain n-alkanes.

    PubMed

    Mutoru, J W; Smith, W; O'Hern, C S; Firoozabadi, A

    2013-01-14

    Understanding the transport properties of molecular fluids in the critical region is important for a number of industrial and natural systems. In the literature, there are conflicting reports on the behavior of the self diffusion coefficient D(s) in the critical region of single-component molecular systems. For example, D(s) could decrease to zero, reach a maximum, or remain unchanged and finite at the critical point. Moreover, there is no molecular-scale understanding of the behavior of diffusion coefficients in molecular fluids in the critical regime. We perform extensive molecular dynamics simulations in the critical region of single-component fluids composed of medium-chain n-alkanes-n-pentane, n-decane, and n-dodecane-that interact via anisotropic united-atom potentials. For each system, we calculate D(s), and average molecular cluster sizes κ(cl) and numbers N(cl) at various cluster lifetimes τ, as a function of density ρ in the range 0.2ρ(c) ≤ ρ ≤ 2.0ρ(c) at the critical temperature T(c). We find that D(s) decreases with increasing ρ but remains finite at the critical point. Moreover, for any given τ < 1.2 × 10(-12) s, κ(cl) increases with increasing ρ but is also finite at the critical point.

  8. Compact terahertz wave polarization beam splitter using photonic crystal.

    PubMed

    Mo, Guo-Qiang; Li, Jiu-Sheng

    2016-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of a terahertz wave polarization state exhibits tremendous potential in developing applications of terahertz science and technology. We propose an approach to efficiently split transverse-electric and transverse-magnetic polarized terahertz waves into different propagation directions over the frequency range from 0.9998 to 1.0007 THz. Both the plane wave expansion method and the finite-difference time-domain method are used to calculate and analyze the transmission characteristics of the proposed device. The present device is very compact and the total size is 1.02  mm×0.99  mm. This polarization beam splitter performance indicates that the structure has a potential application for forthcoming terahertz-wave integrated circuit fields.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filinov, A.V.; Golubnychiy, V.O.; Bonitz, M.

    Extending our previous work [A.V. Filinov et al., J. Phys. A 36, 5957 (2003)], we present a detailed discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component Coulomb systems. Different pseudopotentials are discussed: (i) the diagonal Kelbg potential, (ii) the off-diagonal Kelbg potential, (iii) the improved diagonal Kelbg potential, (iv) an effective potential obtained with the Feynman-Kleinert variational principle, and (v) the 'exact' quantum pair potential derived from the two-particle density matrix. For the improved diagonal Kelbg potential, a simple temperature-dependent fit is derived which accurately reproduces the 'exact' pair potential in the whole temperature range. The derivedmore » pseudopotentials are then used in path integral Monte Carlo and molecular-dynamics (MD) simulations to obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simulations with spin-dependent interaction potentials for the electrons allow for an accurate description of the internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 60 000 K. Finally, we point out an interesting relationship between the quantum potentials and the effective potentials used in density-functional theory.« less

  10. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    NASA Astrophysics Data System (ADS)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  11. Strain analysis and microstructural evolution characteristic of neoproterozoic rocks associations of Wadi El Falek, centre Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Rahim, Said H. Abd El; Nashar, El Said R. El

    2012-09-01

    The estimation of finite strain in rocks is fundamental to a meaningful understanding of deformational processes and products on all scales from microscopic fabric development to regional structural analyses. The Rf/φ and Fry methods on feldspar porphyroclasts and mafic grains from 5 granite, 1 metavolcanic, 3 metasedimentary and 1 granodiorite samples were used in Wadi El Falek region. Finite-strain data shows that a high to moderate range of deformation of the granitic to metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.60 to 4.10 for the Rf/φ method and from 2.80 to 4.90 for the Fry method. Furthermore, the short axes are subvertical associated with a subhorizontal foliation. We conclude that finite strain in the deformed granite rocks is of the same order of magnitude as that from metavolcano-sedimentary rocks. Furthermore, contacts formed during intrusion of plutons with some faults in the Wadi El Falek area under brittle to semi-ductile deformation conditions. In this case, finite strain accumulated during superimposed deformation on the already assembled nappe structure. It indicates that the nappe contacts formed during the accumulation of finite strain.

  12. A simple and efficient shear-flexible plate bending element

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Reaz A.

    1987-01-01

    A shear-flexible triangular element formulation, which utilizes an assumed quadratic displacement potential energy approach and is numerically integrated using Gauss quadrature, is presented. The Reissner/Mindlin hypothesis of constant cross-sectional warping is directly applied to the three-dimensional elasticity theory to obtain a moderately thick-plate theory or constant shear-angle theory (CST), wherein the middle surface is no longer considered to be the reference surface and the two rotations are replaced by the two in-plane displacements as nodal variables. The resulting finite-element possesses 18 degrees of freedom (DOF). Numerical results are obtained for two different numerical integration schemes and a wide range of meshes and span-to-thickness ratios. These, when compared with available exact, series or finite-element solutions, demonstrate accuracy and rapid convergence characteristics of the present element. This is especially true in the case of thin to very thin plates, when the present element, used in conjunction with the reduced integration scheme, outperforms its counterpart, based on discrete Kirchhoff constraint theory (DKT).

  13. Acoustic Analysis of a Sandwich Non Metallic Panel for Roofs by FEM and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Nieto, P. J. García; del Coz Díaz, J. J.; Vilán, J. A. Vilán; Rabanal, F. P. Alvarez

    2007-12-01

    In this paper we have studied the acoustic behavior of a sandwich non metallic panel for roofs by the finite element method (FEM). This new field of analysis is the fully coupled solution of fluid flows with structural interactions, commonly referred to as fluid-structure interaction (FSI). It is the natural next step to take in the simulation of mechanical systems. The finite element analysis of acoustic-fluid/structure interactions using potential-based or displacement-based Lagrangian formulations is now well established. The non-linearity is due to the `fluid-structure interaction' (FSI) that governs the problem. In a very considerable range of problems the fluid displacement remains small while interaction is substantial. In this category falls our problem, in which the structural motion influence and react with the generation of pressures in two reverberation rooms. The characteristic of acoustic insulation of the panel is calculated basing on the pressures for different frequencies and points in the transmission rooms. Finally the conclusions reached are shown.

  14. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    NASA Astrophysics Data System (ADS)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  15. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  16. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  17. The Magnetopause Boundary Layer

    DTIC Science & Technology

    1990-06-29

    y.CL4 SSFICATION o UNCLASSIFIED/UNLIMITED 0 SAME AS RPT DTIC USERS i ncl assi le ,a NAME OF RE,ONSIBLE iNDIVIDUAL 22b T;LEPHONE (include Ar-a Cod...where A is the latitude of the foot of the field line in the cosity (finite vIand particle acceleration (finite K ionosphere and L is the radial...processes and inertial . k:; le 1 .410) range spectra have not been analyzed. To the extent that both S= llK. ) ’L. " + -- ". 1201 inertial ranges are a

  18. Multipartite Entanglement in Topological Quantum Phases.

    PubMed

    Pezzè, Luca; Gabbrielli, Marco; Lepori, Luca; Smerzi, Augusto

    2017-12-22

    We witness multipartite entanglement in the ground state of the Kitaev chain-a benchmark model of a one dimensional topological superconductor-also with variable-range pairing, using the quantum Fisher information. Phases having a finite winding number, for both short- and long-range pairing, are characterized by a power-law diverging finite-size scaling of multipartite entanglement. Moreover, the occurring quantum phase transitions are sharply marked by the divergence of the derivative of the quantum Fisher information, even in the absence of a closing energy gap.

  19. Complete wetting near an edge of a rectangular-shaped substrate

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr

    2014-08-01

    We consider fluid adsorption near a rectangular edge of a solid substrate that interacts with the fluid atoms via long range (dispersion) forces. The curved geometry of the liquid-vapour interface dictates that the local height of the interface above the edge ℓE must remain finite at any subcritical temperature, even when a macroscopically thick film is formed far from the edge. Using an interfacial Hamiltonian theory and a more microscopic fundamental measure density functional theory (DFT), we study the complete wetting near a single edge and show that {{\\ell}_{\\text{E}}}\\left(0\\right)-{{\\ell}_{\\text{E}}}\\left(\\delta \\mu \\right)\\sim \\delta {{\\mu}^{\\beta _{\\text{E}}^{\\text{co}}}} , as the chemical potential departure from the bulk coexistence δμ = μs(T) - μ tends to zero. The exponent \\beta _{\\text{E}}^{\\text{co}} depends on the range of the molecular forces and in particular \\beta _{\\text{E}}^{\\text{co}}=2/3 for three-dimensional systems with van der Waals forces. We further show that for a substrate model that is characterised by a finite linear dimension L, the height of the interface deviates from the one at the infinite substrate as δℓE(L) ˜ L-1 in the limit of large L. Both predictions are supported by numerical solutions of the DFT.

  20. Prediction of deviations from the Rutherford formula for low-energy Coulomb scattering of wavepackets

    NASA Astrophysics Data System (ADS)

    Hoffmann, Scott E.

    2017-11-01

    We calculate the nonrelativistic scattering of a wavepacket from a Coulomb potential and find deviations from the Rutherford formula in all cases. These generally occur only at low scattering angles, where they would be obscured by the part of the incident beam that emerges essentially unscattered. For a model experiment, the scattering of helium nuclei from a thin gold foil, we find the deviation region is magnified for low incident energies (in the keV range), so that a large shadow zone of low probability around the forward direction is expected to be measurable. From a theoretical perspective, the use of wavepackets makes partial wave analysis applicable to this infinite-range potential. It allows us to calculate the everywhere finite probability for a wavepacket to wavepacket transition and to relate this to the differential cross section. Time delays and advancements in the detection probabilities can be calculated. We investigate the optical theorem as applied to this special case.

  1. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory.

    PubMed

    Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-10-07

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.

  2. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  3. QCD at finite isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Endrődi, Gergely; Schmalzbauer, Sebastian

    2018-03-01

    We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.

  4. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less

  5. Computer animation of modal and transient vibrations

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1987-01-01

    An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.

  6. Application of laser ranging and VLBI data to a study of plate tectonic driving forces. [finite element method

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The measurability of changes in plate driving or resistive forces associated with plate boundary earthquakes by laser rangefinding or VLBI is considered with emphasis on those aspects of plate forces that can be characterized by such measurements. Topics covered include: (1) analytic solutions for two dimensional stress diffusion in a plate following earthquake faulting on a finite fault; (2) two dimensional finite-element solutions for the global state of stress at the Earth's surface for possible plate driving forces; and (3) finite-element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting.

  7. Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors

    NASA Astrophysics Data System (ADS)

    Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay

    2017-11-01

    Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α , the appropriate FRCG model has the effective range d =b2/N =α2/N , for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

  8. Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.

    PubMed

    Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay

    2017-11-01

    Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

  9. Finite element analysis of transonic flows in cascades: Importance of computational grids in improving accuracy and convergence

    NASA Technical Reports Server (NTRS)

    Ecer, A.; Akay, H. U.

    1981-01-01

    The finite element method is applied for the solution of transonic potential flows through a cascade of airfoils. Convergence characteristics of the solution scheme are discussed. Accuracy of the numerical solutions is investigated for various flow regions in the transonic flow configuration. The design of an efficient finite element computational grid is discussed for improving accuracy and convergence.

  10. Gravity and the membrane-solution interface: theoretical investigations.

    PubMed

    Schatz, A; Linke-Hommes, A

    1989-01-01

    The theory of concentration and potential variations at interfaces is applied to the membrane-solution interface to calculate density variations. The theory is modified to take care of the finite ion volumes in electrolytes. Our model is a phospholipid membrane with a surface charge density of -4.824*10(-6)(As/cm2) in contact with solutions of KCl, NaCl, CaCl2, and mixtures. Maximal density variations of about 4*10(-2)(G/cm3) were found in surface layers between the membrane and the solutions. The extension of the layers is in the range of 1 to 6 nm.

  11. Temperature dependence of the fundamental optical absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-04-01

    We present a first principles theory of the temperature dependence of the Urbach optical absorption edge in crystals and disordered semiconductors which incorporates the effects of short range correlated static disorder and the non-adiabatic quantum dynamics of the coupled electron-phonon system. At finite temperatures the dominant features of the Urbach tail are accounted for by multiple phonon absorption and emission side bands which accompany the optically induced electronic transition and which provide a dynamic polaronic potential well that localizes the electron. Excellent agreement is found with experimental data on both crystalline and amorphous silicon.

  12. Effects of turbulence on hydraulic heads and parameter sensitivities in preferential groundwater flow layers

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Cunningham, Kevin J.; Kuniansky, Eve L.; Dixon, Joann F.

    2008-01-01

    A conduit flow process (CFP) for the Modular Finite Difference Ground‐Water Flow model, MODFLOW‐2005, has been created by the U.S. Geological Survey. An application of the CFP on a carbonate aquifer in southern Florida is described; this application examines (1) the potential for turbulent groundwater flow and (2) the effects of turbulent flow on hydraulic heads and parameter sensitivities. Turbulent flow components were spatially extensive in preferential groundwater flow layers, with horizontal hydraulic conductivities of about 5,000,000 m d−1, mean void diameters equal to about 3.5 cm, groundwater temperature equal to about 25°C, and critical Reynolds numbers less than or equal to 400. Turbulence either increased or decreased simulated heads from their laminar elevations. Specifically, head differences from laminar elevations ranged from about −18 to +27 cm and were explained by the magnitude of net flow to the finite difference model cell. Turbulence also affected the sensitivities of model parameters. Specifically, the composite‐scaled sensitivities of horizontal hydraulic conductivities decreased by as much as 70% when turbulence was essentially removed. These hydraulic head and sensitivity differences due to turbulent groundwater flow highlight potential errors in models based on the equivalent porous media assumption, which assumes laminar flow in uniformly distributed void spaces.

  13. The application of finite volume methods for modelling three-dimensional incompressible flow on an unstructured mesh

    NASA Astrophysics Data System (ADS)

    Lonsdale, R. D.; Webster, R.

    This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.

  14. Optical absorption of suspended graphene based metal plasmonic grating in the visible range

    NASA Astrophysics Data System (ADS)

    Han, Y. X.; Chen, B. B.; Yang, J. B.; He, X.; Huang, J.; Zhang, J. J.; Zhang, Z. J.

    2018-05-01

    We employ finite-difference time-domain ( FDTD) method and Raman spectroscopy to study the properties of graphene, which is suspended on a gold/SiO2/Si grating structure with different trench depth of SiO2 layer. The absorption enhancement of suspended graphene and plasmonic resonance of metal grating are investigated in the visible range using 2D FDTD method. Moreover, it is found that the intensity of the Raman features depends very sensitively on the trench depth of SiO2 layer. Raman enhancement in our experiments is attributed to the enhanced optical absorption of graphene by near-field coupling based metal plasmonic grating. The enhanced absorption of suspended graphene modulated by localized surface plasmon resonance (LSPR) offers a potential application for opto-electromechanical devices.

  15. A Mixed Finite Volume Element Method for Flow Calculations in Porous Media

    NASA Technical Reports Server (NTRS)

    Jones, Jim E.

    1996-01-01

    A key ingredient in the simulation of flow in porous media is the accurate determination of the velocities that drive the flow. The large scale irregularities of the geology, such as faults, fractures, and layers suggest the use of irregular grids in the simulation. Work has been done in applying the finite volume element (FVE) methodology as developed by McCormick in conjunction with mixed methods which were developed by Raviart and Thomas. The resulting mixed finite volume element discretization scheme has the potential to generate more accurate solutions than standard approaches. The focus of this paper is on a multilevel algorithm for solving the discrete mixed FVE equations. The algorithm uses a standard cell centered finite difference scheme as the 'coarse' level and the more accurate mixed FVE scheme as the 'fine' level. The algorithm appears to have potential as a fast solver for large size simulations of flow in porous media.

  16. On the Definition of Surface Potentials for Finite-Difference Operators

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    For a class of linear constant-coefficient finite-difference operators of the second order, we introduce the concepts similar to those of conventional single- and double-layer potentials for differential operators. The discrete potentials are defined completely independently of any notion related to the approximation of the continuous potentials on the grid. We rather use all approach based on differentiating, and then inverting the differentiation of a function with surface discontinuity of a particular kind, which is the most general way of introducing surface potentials in the theory of distributions. The resulting finite-difference "surface" potentials appear to be solutions of the corresponding continuous potentials. Primarily, this pertains to the possibility of representing a given solution to the homogeneous equation on the domain as a variety of surface potentials, with the density defined on the domain's boundary. At the same time the discrete surface potentials can be interpreted as one specific realization of the generalized potentials of Calderon's type, and consequently, their approximation properties can be studied independently in the framework of the difference potentials method by Ryaben'kii. The motivation for introducing and analyzing the discrete surface potentials was provided by the problems of active shielding and control of sound, in which the aforementioned source terms that drive the potentials are interpreted as the acoustic control sources that cancel out the unwanted noise on a predetermined region of interest.

  17. A user's guide for V174, a program using a finite difference method to analyze transonic flow over oscillating wings

    NASA Technical Reports Server (NTRS)

    Butler, T. D.; Weatherill, W. H.; Sebastian, J. D.; Ehlers, F. E.

    1977-01-01

    The design and usage of a pilot program using a finite difference method for calculating the pressure distributions over harmonically oscillating wings in transonic flow are discussed. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The steady velocity potential which must be obtained from some other program, is required for input. The unsteady differential equation is linear, complex in form with spatially varying coefficients. Because sinusoidal motion is assumed, time is not a variable. The numerical solution is obtained through a finite difference formulation and a line relaxation solution method.

  18. The effects of dielectric decrement and finite ion size on differential capacitance of electrolytically gated graphene

    NASA Astrophysics Data System (ADS)

    Daniels, Lindsey; Scott, Matthew; Mišković, Z. L.

    2018-06-01

    We analyze the effects of dielectric decrement and finite ion size in an aqueous electrolyte on the capacitance of a graphene electrode, and make comparisons with the effects of dielectric saturation combined with finite ion size. We first derive conditions for the cross-over from a camel-shaped to a bell-shaped capacitance of the diffuse layer. We show next that the total capacitance is dominated by a V-shaped quantum capacitance of graphene at low potentials. A broad peak develops in the total capacitance at high potentials, which is sensitive to the ion size with dielectric saturation, but is stable with dielectric decrement.

  19. Complex heavy-quark potential at finite temperature from lattice QCD.

    PubMed

    Rothkopf, Alexander; Hatsuda, Tetsuo; Sasaki, Shoichi

    2012-04-20

    We calculate for the first time the complex potential between a heavy quark and antiquark at finite temperature across the deconfinement transition in lattice QCD. The real and imaginary part of the potential at each separation distance r is obtained from the spectral function of the thermal Wilson loop. We confirm the existence of an imaginary part above the critical temperature T(C), which grows as a function of r and underscores the importance of collisions with the gluonic environment for the melting of heavy quarkonia in the quark-gluon plasma.

  20. Anomalous columnar order of charged colloidal platelets

    NASA Astrophysics Data System (ADS)

    Morales-Anda, L.; Wensink, H. H.; Galindo, A.; Gil-Villegas, A.

    2012-01-01

    Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory.

  1. Finite strain analysis of metavolcanics and metapyroclastics in gold-bearing shear zone of the Dungash area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2014-11-01

    The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures, which are attributed to various deformational stages of the Neoproterozoic basement rocks. Field geology, finite strain and microstructural analyses were carried out and the relation-ships between the lithological contacts and major/minor structures have been studied. The R f/ϕ and Fry methods were applied on the metavolcano-sedimentary and metapyroclastic samples from 5 quartz veins samples, 7 metavolcanics samples, 3 metasedimentary samples and 4 metapyroclastic samples in Dungash area. Finite-strain data show that a low to moderate range of deformation of the metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.70 to 4.80 for the R f/ϕ method and from 1.65 to 4.50 for the Fry method. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, the contact between principal rock units is sheared in the Dungash area under brittle to semi-ductile deformation conditions. In this case, the accumulated finite strain is associated with the deformation during thrusting to assemble nappe structure. It indicates that the sheared contacts have been formed during the accumulation of finite strain.

  2. Renormalization group procedure for potential -g/r2

    NASA Astrophysics Data System (ADS)

    Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.

    2018-02-01

    Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.

  3. Many-body delocalization with random vector potentials

    NASA Astrophysics Data System (ADS)

    Cheng, Chen; Mondaini, Rubem

    2016-11-01

    We study the ergodic properties of excited states in a model of interacting fermions in quasi-one-dimensional chains subjected to a random vector potential. In the noninteracting limit, we show that arbitrarily small values of this complex off-diagonal disorder trigger localization for the whole spectrum; the divergence of the localization length in the single-particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. When short-range interactions are included, the localization is lost, and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields.

  4. Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics.

    PubMed

    De Greef, Daniel; Pires, Felipe; Dirckx, Joris J J

    2017-02-01

    Despite continuing advances in finite element software, the realistic simulation of middle ear response under acoustic stimulation continues to be challenging. One reason for this is the wide range of possible choices that can be made during the definition of a model. Therefore, an explorative study of the relative influences of some of these choices is potentially very helpful. Three finite element models of the human middle ear were constructed, based on high-resolution micro-computed tomography scans from three different human temporal bones. Interesting variations in modeling definitions and parameter values were selected and their influences on middle ear transmission were evaluated. The models were compared against different experimental validation criteria, both from the literature and from our own measurements. Simulation conditions were restricted to the frequency range 0.1-10 kHz. Modeling the three geometries with the same modeling definitions and parameters produces stapes footplate response curves that exhibit similar shapes, but quantitative differences of 4 dB in the lower frequencies and up to 6 dB around the resonance peaks. The model properties with the largest influences on our model outcomes are the tympanic membrane (TM) damping and stiffness and the cochlear load. Model changes with a small to negligible influence include the isotropy or orthotropy of the TM, the geometry of the connection between the TM and the malleus, the microstructure of the incudostapedial joint, and the length of the tensor tympani tendon. The presented results provide insights into the importance of different features in middle ear finite element modeling. The application of three different individual middle ear geometries in a single study reduces the possibility that the conclusions are strongly affected by geometrical abnormalities. Some modeling variations that were hypothesized to be influential turned out to be of minor importance. Furthermore, it could be confirmed that different geometries, simulated using the same parameters and definitions, can produce significantly different responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A novel soft tissue prediction methodology for orthognathic surgery based on probabilistic finite element modelling

    PubMed Central

    Borghi, Alessandro; Ruggiero, Federica; Badiali, Giovanni; Bianchi, Alberto; Marchetti, Claudio; Rodriguez-Florez, Naiara; Breakey, Richard W. F.; Jeelani, Owase; Dunaway, David J.; Schievano, Silvia

    2018-01-01

    Repositioning of the maxilla in orthognathic surgery is carried out for functional and aesthetic purposes. Pre-surgical planning tools can predict 3D facial appearance by computing the response of the soft tissue to the changes to the underlying skeleton. The clinical use of commercial prediction software remains controversial, likely due to the deterministic nature of these computational predictions. A novel probabilistic finite element model (FEM) for the prediction of postoperative facial soft tissues is proposed in this paper. A probabilistic FEM was developed and validated on a cohort of eight patients who underwent maxillary repositioning and had pre- and postoperative cone beam computed tomography (CBCT) scans taken. Firstly, a variables correlation assessed various modelling parameters. Secondly, a design of experiments (DOE) provided a range of potential outcomes based on uniformly distributed input parameters, followed by an optimisation. Lastly, the second DOE iteration provided optimised predictions with a probability range. A range of 3D predictions was obtained using the probabilistic FEM and validated using reconstructed soft tissue surfaces from the postoperative CBCT data. The predictions in the nose and upper lip areas accurately include the true postoperative position, whereas the prediction under-estimates the position of the cheeks and lower lip. A probabilistic FEM has been developed and validated for the prediction of the facial appearance following orthognathic surgery. This method shows how inaccuracies in the modelling and uncertainties in executing surgical planning influence the soft tissue prediction and it provides a range of predictions including a minimum and maximum, which may be helpful for patients in understanding the impact of surgery on the face. PMID:29742139

  6. A novel soft tissue prediction methodology for orthognathic surgery based on probabilistic finite element modelling.

    PubMed

    Knoops, Paul G M; Borghi, Alessandro; Ruggiero, Federica; Badiali, Giovanni; Bianchi, Alberto; Marchetti, Claudio; Rodriguez-Florez, Naiara; Breakey, Richard W F; Jeelani, Owase; Dunaway, David J; Schievano, Silvia

    2018-01-01

    Repositioning of the maxilla in orthognathic surgery is carried out for functional and aesthetic purposes. Pre-surgical planning tools can predict 3D facial appearance by computing the response of the soft tissue to the changes to the underlying skeleton. The clinical use of commercial prediction software remains controversial, likely due to the deterministic nature of these computational predictions. A novel probabilistic finite element model (FEM) for the prediction of postoperative facial soft tissues is proposed in this paper. A probabilistic FEM was developed and validated on a cohort of eight patients who underwent maxillary repositioning and had pre- and postoperative cone beam computed tomography (CBCT) scans taken. Firstly, a variables correlation assessed various modelling parameters. Secondly, a design of experiments (DOE) provided a range of potential outcomes based on uniformly distributed input parameters, followed by an optimisation. Lastly, the second DOE iteration provided optimised predictions with a probability range. A range of 3D predictions was obtained using the probabilistic FEM and validated using reconstructed soft tissue surfaces from the postoperative CBCT data. The predictions in the nose and upper lip areas accurately include the true postoperative position, whereas the prediction under-estimates the position of the cheeks and lower lip. A probabilistic FEM has been developed and validated for the prediction of the facial appearance following orthognathic surgery. This method shows how inaccuracies in the modelling and uncertainties in executing surgical planning influence the soft tissue prediction and it provides a range of predictions including a minimum and maximum, which may be helpful for patients in understanding the impact of surgery on the face.

  7. Influence of the nuclear matter equation of state on the r-mode instability using the finite-range simple effective interaction

    NASA Astrophysics Data System (ADS)

    Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.

    2018-05-01

    The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.

  8. Generalized energy and potential enstrophy conserving finite difference schemes for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Abramopoulos, Frank

    1988-01-01

    The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.

  9. Emergent kink statistics at finite temperature

    DOE PAGES

    Lopez-Ruiz, Miguel Angel; Yepez-Martinez, Tochtli; Szczepaniak, Adam; ...

    2017-07-25

    In this paper we use 1D quantum mechanical systems with Higgs-like interaction potential to study the emergence of topological objects at finite temperature. Two different model systems are studied, the standard double-well potential model and a newly introduced discrete kink model. Using Monte-Carlo simulations as well as analytic methods, we demonstrate how kinks become abundant at low temperatures. These results may shed useful insights on how topological phenomena may occur in QCD.

  10. Single-cone finite-difference schemes for the (2+1)-dimensional Dirac equation in general electromagnetic textures

    NASA Astrophysics Data System (ADS)

    Pötz, Walter

    2017-11-01

    A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.

  11. Dynamics of DNA breathing: weak noise analysis, finite time singularity, and mapping onto the quantum Coulomb problem.

    PubMed

    Fogedby, Hans C; Metzler, Ralf

    2007-12-01

    We study the dynamics of denaturation bubbles in double-stranded DNA on the basis of the Poland-Scheraga model. We show that long time distributions for the survival of DNA bubbles and the size autocorrelation function can be derived from an asymptotic weak noise approach. In particular, below the melting temperature the bubble closure corresponds to a noisy finite time singularity. We demonstrate that the associated Fokker-Planck equation is equivalent to a quantum Coulomb problem. Below the melting temperature, the bubble lifetime is associated with the continuum of scattering states of the repulsive Coulomb potential; at the melting temperature, the Coulomb potential vanishes and the underlying first exit dynamics exhibits a long time power law tail; above the melting temperature, corresponding to an attractive Coulomb potential, the long time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed.

  12. Evaluation of Resuspension from Propeller Wash in DoD Harbors

    DTIC Science & Technology

    2016-09-01

    Environmental Research and Development Center FANS FOV ICP-MS Finite Analytical Navier-Stoker Solver Field of View Inductively Coupled Plasma with...Model (1984) and the Finite Analytical Navier- Stoker Solver (FANS) model (Chen et al., 2003) were set up to simulate and evaluate flow velocities and...model for evaluating the resuspension potential of propeller wash by a tugboat and the FANS model for a DDG. The Finite -Analytic Navier-Stokes (FANS

  13. Characterization and modeling of a highly-oriented thin film for composite forming

    NASA Astrophysics Data System (ADS)

    White, K. D.; Sherwood, J. A.

    2018-05-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) materials exhibit high impact strength, excellent abrasion resistance and high chemical resistance, making them attractive for a number of impact applications for automotive, marine and medical industries. One format of this class of materials that is being considered for the thermoforming process is a highly-oriented extruded thin film. Parts are made using a two-step manufacturing process that involves first producing a set of preforms and then consolidating these preforms into a final shaped part. To assist in the design of the processing parameters, simulations of the preforming and compression molding steps can be completed using the finite element method. Such simulations require material input data as developed through a comprehensive characterization test program, e.g. shear, tensile and bending, over the range of potential processing temperatures. The current research investigates the challenges associated with the characterization of thin, highly-oriented UHMWPE films. Variations in grip type, sample size and testing rates are explored to achieve convergence of the characterization data. Material characterization results are then used in finite element simulations of the tension test to explore element formulations that work well with the mechanical behavior. Comparisons of the results from the material characterization tests to results of simulations of the same test are performed to validate the finite element method parameters and the credibility of the user-defined material model.

  14. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  15. Patient-specific finite element modeling of bones.

    PubMed

    Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A

    2013-04-01

    Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.

  16. A full potential flow analysis with realistic wake influence for helicopter rotor airload prediction

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Sparks, S. Patrick

    1987-01-01

    A 3-D, quasi-steady, full potential flow solver was adapted to include realistic wake influence for the aerodynamic analysis of helicopter rotors. The method is based on a finite difference solution of the full potential equation, using an inner and outer domain procedure for the blade flowfield to accommodate wake effects. The nonlinear flow is computed in the inner domain region using a finite difference solution method. The wake is modeled by a vortex lattice using prescribed geometry techniques to allow for the inclusion of realistic rotor wakes. The key feature of the analysis is that vortices contained within the finite difference mesh (inner domain) were treated with a vortex embedding technique while the influence of the remaining portion of the wake (in the outer domain) is impressed as a boundary condition on the outer surface of the finite difference mesh. The solution procedure couples the wake influence with the inner domain solution in a consistent and efficient solution process. The method has been applied to both hover and forward flight conditions. Correlation with subsonic and transonic hover airload data is shown which demonstrates the merits of the approach.

  17. KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I.

    2007-10-01

    A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4224 No. of bytes in distributed program, including test data, etc.: 31 232 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986] Nature of problem: In the hyperspherical adiabatic approach [J. Macek, J. Phys. B 1 (1968) 831-843; U. Fano, Rep. Progr. Phys. 46 (1983) 97-165; C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142], a multi-dimensional Schrödinger equation for a two-electron system [A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Comm. 90 (1995) 311-339] or a hydrogen atom in magnetic field [M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352] is reduced by separating the radial coordinate ρ from the angular variables to a system of second-order ordinary differential equations which contain potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite-element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions for such systems of coupled differential equations. Solution method: The boundary problems for coupled differential equations are solved by the finite-element method using high-order accuracy approximations [A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns ( E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. The generalized algebraic eigenvalue problem (A-EB)F=λDF with respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDL factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials described in [Yu. A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361; O. Chuluunbaatar, A.A. Gusev, S.Y. Larsen, S.I. Vinitsky, J. Phys. A 35 (2002) L513-L525; N.P. Mehta, J.R. Shepard, Phys. Rev. A 72 (2005) 032728-1-11; O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269]. For this benchmark model the needed analytical expressions for the potential matrix elements and first-derivative coupling terms, their asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system. Restrictions: The computer memory requirements depend on: (a) the number of differential equations; (b) the number and order of finite-elements; (c) the total number of hyperradial points; and (d) the number of eigensolutions required. Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Long Write-Up and listing for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMSC (when solving the scattering problem) that evaluate the asymptotics of the radial wave functions at the right boundary point in case of a boundary condition of the third type, respectively. Running time: The running time depends critically upon: (a) the number of differential equations; (b) the number and order of finite-elements; (c) the total number of hyperradial points on interval [0,ρ]; and (d) the number of eigensolutions required. The test run which accompanies this paper took 28.48 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.

  18. Nuclear symmetry energy in terms of single-nucleon potential and its effect on the proton fraction of β-stable npeμ matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Babita, E-mail: patra-babita@rediffmail.com; Chakraborty, Suparna, E-mail: banerjee.suparna@hotmail.com; Sahoo, Sukadev, E-mail: sukadevsahoo@yahoo.com

    2016-01-15

    Momentum and density dependence of single-nucleon potential u{sub τ} (k, ρ, β) is analyzed using a density dependent finite range effective interaction of the Yukawa form. Depending on the choice of the strength parameters of exchange interaction, two different trends of the momentum dependence of nuclear symmetry potential are noticed which lead to two opposite types of neutron and proton effective mass splitting. The 2nd-order and 4th-order symmetry energy of isospin asymmetric nuclear matter are expressed analytically in terms of the single-nucleon potential. Two distinct behavior of the density dependence of 2nd-order and 4th-order symmetry energy are observed depending onmore » neutron and proton effective mass splitting. It is also found that the 4th-order symmetry energy has a significant contribution towards the proton fraction of β-stable npeμ matter at high densities.« less

  19. Toric-boson model: Toward a topological quantum memory at finite temperature

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Castelnovo, Claudio; Chamon, Claudio

    2009-06-01

    We discuss the existence of stable topological quantum memory at finite temperature. At stake here is the fundamental question of whether it is, in principle, possible to store quantum information for macroscopic times without the intervention from the external world, that is, without error correction. We study the toric code in two dimensions with an additional bosonic field that couples to the defects, in the presence of a generic environment at finite temperature: the toric-boson model. Although the coupling constants for the bare model are not finite in the thermodynamic limit, the model has a finite spectrum. We show that in the topological phase, there is a finite temperature below which open strings are confined and therefore the lifetime of the memory can be made arbitrarily (polynomially) long in system size. The interaction with the bosonic field yields a long-range attractive force between the end points of open strings but leaves closed strings and topological order intact.

  20. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions

    NASA Astrophysics Data System (ADS)

    Luscher, Darby J.; Bronkhorst, Curt A.; Alleman, Coleman N.; Addessio, Francis L.

    2013-09-01

    A physically consistent framework for combining pressure-volume-temperature equations of state with crystal plasticity models is developed for the application of modeling the response of single and polycrystals under shock conditions. The particular model is developed for copper, thus the approach focuses on crystals of cubic symmetry although many of the concepts in the approach are applicable to crystals of lower symmetry. We employ a multiplicative decomposition of the deformation gradient into isochoric elastic, thermoelastic dilation, and plastic parts leading to a definition of isochoric elastic Green-Lagrange strain. This finite deformation kinematic decomposition enables a decomposition of Helmholtz free-energy into terms reflecting dilatational thermoelasticity, strain energy due to long-range isochoric elastic deformation of the lattice and a term reflecting energy stored in short range elastic lattice deformation due to evolving defect structures. A model for the single crystal response of copper is implemented consistent with the framework into a three-dimensional Lagrangian finite element code. Simulations exhibit favorable agreement with single and bicrystal experimental data for shock pressures ranging from 3 to 110 GPa.

  1. Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model.

    PubMed

    Shateri, Hamed; Cronin, Duane S

    2015-01-01

    Whiplash injuries can occur in automotive crashes and may cause long-term health issues such as neck pain, headache, and visual and auditory disturbance. Evidence suggests that nonneutral head posture can significantly increase the potential for injury in a given impact scenario, but epidemiological and experimental data are limited and do not provide a quantitative assessment of the increased potential for injury. Although there have been some attempts to evaluate this important issue using finite element models, none to date have successfully addressed this complex problem. An existing detailed finite element neck model was evaluated in nonneutral positions and limitations were identified, including musculature implementation and attachment, upper cervical spine kinematics in axial rotation, prediction of ligament failure, and the need for repositioning the model while incorporating initial tissue strains. The model was enhanced to address these issues and an iterative procedure was used to determine the upper cervical spine ligament laxities. The neck model was revalidated using neutral position impacts and compared to an out-of-position cadaver experiment in the literature. The effects of nonneutral position (axial head rotation) coupled with muscle activation were studied at varying impact levels. The laxities for the ligaments of the upper cervical spine were determined using 4 load cases and resulted in improved response and predicted failure loads relative to experimental data. The predicted head response from the model was similar to an experimental head-turned bench-top rear impact experiment. The parametric study identified specific ligaments with increased distractions due to an initial head-turned posture and the effect of active musculature leading to reduced ligament distractions. The incorporation of ligament laxity in the upper cervical spine was essential to predict range of motion and traumatic response, particularly for repositioning of the neck model prior to impact. The results of this study identify a higher potential for injury in out-of-position rear collisions and identified at-risk locations based on ligament distractions. The model predicted higher potential for injury by as much as 50% based on ligament distraction for the out-of-position posture and reduced potential for injury with muscle activation. Importantly, this study demonstrated that the location of injury or pain depends on the initial occupant posture, so that both the location of injury and kinematic threshold may vary when considering common head positions while driving.

  2. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes.

    PubMed

    Zurek, Eva; Pickard, Chris J; Walczak, Brian; Autschbach, Jochen

    2006-11-02

    NMR chemical shifts were calculated for semiconducting (n,0) single-walled carbon nanotubes (SWNTs) with n ranging from 7 to 17. Infinite isolated SWNTs were calculated using a gauge-including projector-augmented plane-wave (GIPAW) approach with periodic boundary conditions and density functional theory (DFT). In order to minimize intertube interactions in the GIPAW computations, an intertube distance of 8 A was chosen. For the infinite tubes, we found a chemical shift range of over 20 ppm for the systems considered here. The SWNT family with lambda = mod(n, 3) = 0 has much smaller chemical shifts compared to the other two families with lambda = 1 and lambda = 2. For all three families, the chemical shifts decrease roughly inversely proportional to the tube's diameter. The results were compared to calculations of finite capped SWNT fragments using a gauge-including atomic orbital (GIAO) basis. Direct comparison of the two types of calculations could be made if benzene was used as the internal (computational) reference. The NMR chemical shifts of finite SWNTs were found to converge very slowly, if at all, to the infinite limit, indicating that capping has a strong effect (at least for the (9,0) tubes) on the calculated properties. Our results suggest that (13)C NMR has the potential for becoming a useful tool in characterizing SWNT samples.

  3. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.

    1979-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.

  4. Validation of Measured Damping Trends for Flight-Like Vehicle Panel/Equipment including a Range of Cable Harness Assemblies

    NASA Technical Reports Server (NTRS)

    Smith, Andrew M.; Davis, R. Benjamin; LaVerde, Bruce T.; Fulcher, Clay W.; Jones, Douglas C.; Waldon, James M.; Craigmyle, Benjamin B.

    2012-01-01

    This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that leverages a finite element model of the panel in conjunction with advanced optimization techniques. While the full test series is not yet complete, the first configuration of cable bundles that was assessed effectively increased the viscous critical damping fraction of the system by as much as 0.02 in certain frequency ranges.

  5. A Finite Rate Chemical Analysis of Nitric Oxide Flow Contamination Effects on Scramjet Performance

    NASA Technical Reports Server (NTRS)

    Cabell, Karen F.; Rock, Kenneth E.

    2003-01-01

    The level of nitric oxide contamination in the test gas of the Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. A finite rate chemical analysis was performed to determine the levels of nitric oxide produced in the facility at conditions corresponding to Mach 6 to 8 flight simulations. Results indicate that nitric oxide levels range from one to three mole percent, corroborating previously obtained measurements. A three-stream combustor code with finite rate chemistry was used to investigate the effects of nitric oxide on scramjet performance. Results indicate that nitric oxide in the test gas causes a small increase in heat release and thrust performance for the test conditions investigated. However, a rate constant uncertainty analysis suggests that the effect of nitric oxide ranges from no net effect, to an increase of about 10 percent in thrust performance.

  6. Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review

    PubMed Central

    Galbusera, Fabio; Freutel, Maren; Dürselen, Lutz; D’Aiuto, Marta; Croce, Davide; Villa, Tomaso; Sansone, Valerio; Innocenti, Bernardo

    2014-01-01

    Knee ligaments are elastic bands of soft tissue with a complex microstructure and biomechanics, which are critical to determine the kinematics as well as the stress bearing behavior of the knee joint. Their correct implementation in terms of material models and properties is therefore necessary in the development of finite element models of the knee, which has been performed for decades for the investigation of both its basic biomechanics and the development of replacement implants and repair strategies for degenerative and traumatic pathologies. Indeed, a wide range of element types and material models has been used to represent knee ligaments, ranging from elastic unidimensional elements to complex hyperelastic three-dimensional structures with anatomically realistic shapes. This paper systematically reviews literature studies, which described finite element models of the knee, and summarizes the approaches, which have been used to model the ligaments highlighting their strengths and weaknesses. PMID:25478560

  7. Anomalous group velocity at the high energy range of real 3D photonic nanostructures

    NASA Astrophysics Data System (ADS)

    Botey, Muriel; Martorell, Jordi; Lozano, Gabriel; Míguez, Hernán; Dorado, Luis A.; Depine, Ricardo A.

    2010-05-01

    We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size effects on light propagation in the ΓL and ΓX directions of fcc close-packed opal films made of dielectric spheres. The group is index determined from the phase delay introduced by the structure to the forwardly transmitted electric field. We show that for certain frequencies, light propagation can either be superluminal -positive or negative- or approach zero depending on the crystal size and absorption. Such anomalous behavior can be attributed to the finite character of the structure and provides confirmation of recently emerged experimental results.

  8. Adsorption of a single polymer chain on a surface: effects of the potential range.

    PubMed

    Klushin, Leonid I; Polotsky, Alexey A; Hsu, Hsiao-Ping; Markelov, Denis A; Binder, Kurt; Skvortsov, Alexander M

    2013-02-01

    We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value U(c) corresponding to the adsorption transition scales as W(-1/ν), where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory U(c)≈(π(2)/24)(W+1/2)(-2) and in the best-fit equation for the MC simulation data U(c)=0.585(W+1/2)(-5/3). Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NU(c),U/U(c)). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value /=0.320±0.003 only at N~5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent φ(eff)(N). Strong corrections to scaling of order N(-0.5) are observed, and the extrapolated value φ=0.483±0.003 is found for all values of W. The strong correction to scaling effects found here explain why for smaller values of N, as used in most previous work, misleadingly large values of φ(eff)(N) were identified as the asymptotic value for the crossover exponent.

  9. Effects of finite volume on the K L – K S mass difference

    DOE PAGES

    Christ, N.  H.; Feng, X.; Martinelli, G.; ...

    2015-06-24

    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the Kmore » L – K S mass difference ΔM K and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less

  10. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David

    2015-11-01

    Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  12. Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods

    NASA Astrophysics Data System (ADS)

    Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco

    2015-04-01

    The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface resistivity. The Hessian of the regularization term is used as preconditioner which requires an additional PDE solution in each iteration step. As it turns out, the relevant PDEs are naturally formulated in the finite element framework. Using the domain decomposition method provided in Escript, the inversion scheme has been parallelized for distributed memory computers with multi-core shared memory nodes. We show numerical examples from simple layered models to complex 3D models and compare with the results from other methods. The inversion scheme is furthermore tested on a field data example to characterise localised freshwater discharge in a coastal environment.. References: L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306

  13. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time.

    PubMed

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.

  14. The new finite temperature Schrödinger equations with strong or weak interaction

    NASA Astrophysics Data System (ADS)

    Li, Heling; Yang, Bin; Shen, Hongjun

    2017-07-01

    Implanting the thoughtway of thermostatistics into quantum mechanics, we formulate new Schrödinger equations of multi-particle and single-particle respectively at finite temperature. To get it, the pure-state free energies and the microscopic entropy operators are introduced and meantime the pure-state free energies take the places of mechanical energies at finite temperature. The definition of microscopic entropy introduced by Wu was also revised, and the strong or weak interactions dependent on temperature are considered in multi-particle Schrödinger Equations. Based on the new Schrödinger equation at finite temperature, two simple cases were analyzed. The first one is concerning some identical harmonic oscillators in N lattice points and the other one is about N unrelated particles in three dimensional in finite potential well. From the results gotten, we conclude that the finite temperature Schrödinger equation is particularly important for mesoscopic systems.

  15. Many-body delocalization in a strongly disordered system with long-range interactions: Finite-size scaling

    NASA Astrophysics Data System (ADS)

    Burin, Alexander L.

    2015-03-01

    Many-body localization in a disordered system of interacting spins coupled by the long-range interaction 1 /Rα is investigated combining analytical theory considering resonant interactions and a finite-size scaling of exact numerical solutions with number of spins N . The numerical results for a one-dimensional system are consistent with the general expectations of analytical theory for a d -dimensional system including the absence of localization in the infinite system at α <2 d and a universal scaling of a critical energy disordering Wc∝N2/d -α d .

  16. An analysis for high Reynolds number inviscid/viscid interactions in cascades

    NASA Technical Reports Server (NTRS)

    Barnett, Mark; Verdon, Joseph M.; Ayer, Timothy C.

    1993-01-01

    An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena such as viscous-layer separation, shock/boundary-layer interaction, and trailing-edge/near-wake interaction in turbomachinery blade passages is needed as part of a comprehensive analytical blade design prediction system. Such an analysis is described. It uses an inviscid/viscid interaction approach, in which the flow in the outer inviscid region is assumed to be potential, and that in the inner or viscous-layer region is governed by Prandtl's equations. The inviscid solution is determined using an implicit, least-squares, finite-difference approximation, the viscous-layer solution using an inverse, finite-difference, space-marching method which is applied along the blade surfaces and wake streamlines. The inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure, which permits the prediction of boundary-layer separation and other strong-interaction phenomena. Results are presented for three cascades, with a range of inlet flow conditions considered for one of them, including conditions leading to large-scale flow separations. Comparisons with Navier-Stokes solutions and experimental data are also given.

  17. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  18. Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S.

    2013-01-15

    Obliquely propagating ion-acoustic soliatry waves are examined in a magnetized plasma composed of kappa distributed electrons and fluid ions with finite temperature. The Sagdeev potential approach is used to study the properties of finite amplitude solitary waves. Using a quasi-neutrality condition, it is possible to reduce the set of equations to a single equation (energy integral equation), which describes the evolution of ion-acoustic solitary waves in magnetized plasmas. The temperature of warm ions affects the speed, amplitude, width, and pulse duration of solitons. Both the critical and the upper Mach numbers are increased by an increase in the ion temperature.more » The ion-acoustic soliton amplitude increases with the increase in superthermality of electrons. For auroral plasma parameters, the model predicts the soliton speed, amplitude, width, and pulse duration, respectively, to be in the range of (28.7-31.8) km/s, (0.18-20.1) mV/m; (590-167) m, and (20.5-5.25) ms, which are in good agreement with Viking observations.« less

  19. Assessing the potential of quartz crystal microbalance to estimate water vapor transfer in micrometric size cellulose particles.

    PubMed

    Thoury-Monbrun, Valentin; Gaucel, Sébastien; Rouessac, Vincent; Guillard, Valérie; Angellier-Coussy, Hélène

    2018-06-15

    This study aims at assessing the use of a quartz crystal microbalance (QCM) coupled with an adsorption system to measure water vapor transfer properties in micrometric size cellulose particles. This apparatus allows measuring successfully water vapor sorption kinetics at successive relative humidity (RH) steps on a dispersion of individual micrometric size cellulose particles (1 μg) with a total acquisition duration of the order of one hour. Apparent diffusivity and water uptake at equilibrium were estimated at each step of RH by considering two different particle geometries in mass transfer modeling, i.e. sphere or finite cylinder, based on the results obtained from image analysis. Water vapor diffusivity values varied from 2.4 × 10 -14  m 2  s -1 to 4.2 × 10 -12  m 2  s -1 over the tested RH range (0-80%) whatever the model used. A finite cylinder or spherical geometry could be used equally for diffusivity identification for a particle size aspect ratio lower than 2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Modeling Physical Processes at the Nanoscale—Insight into Self-Organization of Small Systems (abstract)

    NASA Astrophysics Data System (ADS)

    Proykova, Ana

    2009-04-01

    Essential contributions have been made in the field of finite-size systems of ingredients interacting with potentials of various ranges. Theoretical simulations have revealed peculiar size effects on stability, ground state structure, phases, and phase transformation of systems confined in space and time. Models developed in the field of pure physics (atomic and molecular clusters) have been extended and successfully transferred to finite-size systems that seem very different—small-scale financial markets, autoimmune reactions, and social group reactions to advertisements. The models show that small-scale markets diverge unexpectedly fast as a result of small fluctuations; autoimmune reactions are sequences of two discontinuous phase transitions; and social groups possess critical behavior (social percolation) under the influence of an external field (advertisement). Some predicted size-dependent properties have been experimentally observed. These findings lead to the hypothesis that restrictions on an object's size determine the object's total internal (configuration) and external (environmental) interactions. Since phases are emergent phenomena produced by self-organization of a large number of particles, the occurrence of a phase in a system containing a small number of ingredients is remarkable.

  1. Microstructured optical fibers for terahertz waveguiding regime by using an analytical field model

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani

    2017-12-01

    Microstructured optical fibres (MOFs) are seen as novel optical waveguide for the potential applications in the terahertz (THz) band as they provide a flexible route towards THz waveguiding. Using the analytical field model (Sharma et al., 2014) developed for index-guiding MOFs with hexagonal lattice of circular air-holes in the photonic crystal cladding; we aim to study the propagation characteristics such as effective index, near and the far-field radiation patterns and its evolution from near-to-far-field domain, spot size, effective mode area, and the numerical aperture at the THz regime. Further, we present an analytical field expression for the next higher-order mode of the MOF for studying the modal properties at terahertz frequencies. Also, we investigate the mode cut-off conditions for identifying the single-mode operation range at THz frequencies. Emphasis is put on studying the coupling characteristics of MOF geometries for efficient mode coupling. Comparisons with available experimental and numerical simulation results, e.g., those based on the full-vector finite element method (FEM) and the finite-difference frequency-domain (FDFD) method have been included.

  2. Investigation of logarithmic spiral nanoantennas at optical frequencies

    NASA Astrophysics Data System (ADS)

    Verma, Anamika; Pandey, Awanish; Mishra, Vigyanshu; Singh, Ten; Alam, Aftab; Dinesh Kumar, V.

    2013-12-01

    The first study is reported of a logarithmic spiral antenna in the optical frequency range. Using the finite integration technique, we investigated the spectral and radiation properties of a logarithmic spiral nanoantenna and a complementary structure made of thin gold film. A comparison is made with results for an Archimedean spiral nanoantenna. Such nanoantennas can exhibit broadband behavior that is independent of polarization. Two prominent features of logarithmic spiral nanoantennas are highly directional far field emission and perfectly circularly polarized radiation when excited by a linearly polarized source. The logarithmic spiral nanoantenna promises potential advantages over Archimedean spirals and could be harnessed for several applications in nanophotonics and allied areas.

  3. Higher order temporal finite element methods through mixed formalisms.

    PubMed

    Kim, Jinkyu

    2014-01-01

    The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

  4. Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies.

    PubMed

    Liu, H; Genov, D A; Wu, D M; Liu, Y M; Steele, J M; Sun, C; Zhu, S N; Zhang, X

    2006-12-15

    A one-dimensional magnetic plasmon propagating in a linear chain of single split ring resonators is proposed. The subwavelength size resonators interact mainly through exchange of conduction current, resulting in stronger coupling as compared to the corresponding magneto-inductive interaction. Finite-difference time-domain simulations in conjunction with a developed analytical theory show that efficient energy transfer with signal attenuation of less then 0.57 dB/microm and group velocity higher than 1/4c can be achieved. The proposed novel mechanism of energy transport in the nanoscale has potential applications in subwavelength transmission lines for a wide range of integrated optical devices.

  5. The FEM-R-Matrix Approach: Use of Mixed Finite Element and Gaussian Basis Sets for Electron Molecule Collisions

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    For the calculation of electron molecule collision cross sections R-matrix methods automatically take advantage of the division of configuration space into an inner region (I) bounded by radius tau b, where the scattered electron is within the molecular charge cloud and the system is described by an correlated Configuration Interaction (CI) treatment in close analogy to bound state calculations, and an outer region (II) where the scattered electron moves in the long-range multipole potential of the target and efficient analytic methods can be used for solving the asymptotic Schroedinger equation plus boundary conditions.

  6. The diffusion approximation. An application to radiative transfer in clouds

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Barkstrom, B. R.

    1976-01-01

    It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.

  7. SPIREs: A Finite-Difference Frequency-Domain electromagnetic solver for inhomogeneous magnetized plasma cylinders

    NASA Astrophysics Data System (ADS)

    Melazzi, D.; Curreli, D.; Manente, M.; Carlsson, J.; Pavarin, D.

    2012-06-01

    We present SPIREs (plaSma Padova Inhomogeneous Radial Electromagnetic solver), a Finite-Difference Frequency-Domain (FDFD) electromagnetic solver in one dimension for the rapid calculation of the electromagnetic fields and the deposited power of a large variety of cylindrical plasma problems. The two Maxwell wave equations have been discretized using a staggered Yee mesh along the radial direction of the cylinder, and Fourier transformed along the other two dimensions and in time. By means of this kind of discretization, we have found that mode-coupling of fast and slow branches can be fully resolved without singularity issues that flawed other well-established methods in the past. Fields are forced by an antenna placed at a given distance from the plasma. The plasma can be inhomogeneous, finite-temperature, collisional, magnetized and multi-species. Finite-temperature Maxwellian effects, comprising Landau and cyclotron damping, have been included by means of the plasma Z dispersion function. Finite Larmor radius effects have been neglected. Radial variations of the plasma parameters are taken into account, thus extending the range of applications to a large variety of inhomogeneous plasma systems. The method proved to be fast and reliable, with accuracy depending on the spatial grid size. Two physical examples are reported: fields in a forced vacuum waveguide with the antenna inside, and forced plasma oscillations in the helicon radiofrequency range.

  8. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  9. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    PubMed Central

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-01-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol−1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning. PMID:24320250

  10. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    PubMed

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol(-1)). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.

  11. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    NASA Astrophysics Data System (ADS)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol-1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.

  12. Color Superconductivity and Charge Neutrality in Yukawa Theory

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Pangeni, Kamal; Windisch, Andreas

    2018-02-01

    It is generally believed that when Cooper pairing occurs between two different species of fermions, their Fermi surfaces become locked together so that the resultant state remains "neutral," with equal number densities of the two species, even when subjected to a chemical potential that couples to the difference in number densities. This belief is based on mean-field calculations in models with a zero-range interaction, where the anomalous self-energy is independent of energy and momentum. Following up on an early report of a deviation from neutrality in a Dyson-Schwinger calculation of color-flavor-locked quark matter, we investigate the neutrality of a two-species condensate using a Yukawa model which has a finite-range interaction. In a mean field calculation we obtain the full energy-momentum dependence of the self-energy and find that the energy dependence leads to a population imbalance in the Cooper-paired phase when it is stressed by a species-dependent chemical potential. This gives some support to the suggestion that the color-flavor-locked phase of quark matter might not be an insulator.

  13. Chiral symmetry restoration at finite temperature and chemical potential in the improved ladder approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Y.; Yoshida, Y.

    1997-02-01

    The chiral symmetry of QCD is studied at finite temperature and chemical potential using the Schwinger-Dyson equation in the improved ladder approximation. We calculate three order parameters: the vacuum expectation value of the quark bilinear operator, the pion decay constant, and the quark mass gap. We have a second order phase transition at the temperature T{sub c}=169 MeV along the zero chemical potential line, and a first order phase transition at the chemical potential {mu}{sub c}=598 MeV along the zero temperature line. We also calculate the critical exponents of the three order parameters. {copyright} {ital 1997} {ital The American Physicalmore » Society}« less

  14. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method

    PubMed Central

    Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2010-01-01

    The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592

  15. Customized shaping of vibration modes by acoustic metamaterial synthesis

    NASA Astrophysics Data System (ADS)

    Xu, Jiawen; Li, Shilong; Tang, J.

    2018-04-01

    Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.

  16. A conservative implicit finite difference algorithm for the unsteady transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Caradonna, F. X.

    1980-01-01

    An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.

  17. Two-dimensional potential flow past a smooth wall with partly constant curvature

    NASA Technical Reports Server (NTRS)

    Koppenfels, Werner Von

    1941-01-01

    The speed of a two-dimensional flow potential flow past a smooth wall, which evinces a finite curvature jump at a certain point and approximates to two arcs in the surrounding area, has a vertical tangent of inflection in the critical point as a function of the arc length of the boundary curve. This report looks at a general theorem of the local character of the conformal function at the critical point as well as the case of the finite curvature jump.

  18. Recent applications of the transonic wing analysis computer code, TWING

    NASA Technical Reports Server (NTRS)

    Subramanian, N. R.; Holst, T. L.; Thomas, S. D.

    1982-01-01

    An evaluation of the transonic-wing-analysis computer code TWING is given. TWING utilizes a fully implicit approximate factorization iteration scheme to solve the full potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations were analyzed, and the limits of applicability of this code was evaluated. Comparisons of computed results were made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative full potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations.

  19. Cluster properties of the one-dimensional lattice gas: the microscopic meaning of grand potential.

    PubMed

    Fronczak, Agata

    2013-02-01

    Using a concrete example, we demonstrate how the combinatorial approach to a general system of particles, which was introduced in detail in an earlier paper [Fronczak, Phys. Rev. E 86, 041139 (2012)], works and where this approach provides a genuine extension of results obtained through more traditional methods of statistical mechanics. We study the cluster properties of a one-dimensional lattice gas with nearest-neighbor interactions. Three cases (the infinite temperature limit, the range of finite temperatures, and the zero temperature limit) are discussed separately, yielding interesting results and providing alternative proof of known results. In particular, the closed-form expression for the grand partition function in the zero temperature limit is obtained, which results in the nonanalytic behavior of the grand potential, in accordance with the Yang-Lee theory.

  20. Variable-range-hopping magnetoresistance

    NASA Astrophysics Data System (ADS)

    Azbel, Mark Ya

    1991-03-01

    The hopping magnetoresistance R of a two-dimensional insulator with metallic impurities is considered. In sufficiently weak magnetic fields it increases or decreases depending on the impurity density n: It decreases if n is low and increases if n is high. In high magnetic fields B, it always exponentially increases with √B . Such fields yield a one-dimensional temperature dependence: lnR~1/ √T . The calculation provides an accurate leading approximation for small impurities with one eigenstate in their potential well. In the limit of infinitesimally small impurities, an impurity potential is described by a generalized function. This function, similar to a δ function, is localized at a point, but, contrary to a δ function in the dimensionality above 1, it has finite eigenenergies. Such functions may be helpful in the study of scattering and localization of any waves.

  1. First- and second-order metal-insulator phase transitions and topological aspects of a Hubbard-Rashba system

    NASA Astrophysics Data System (ADS)

    Marcelino, Edgar

    2017-05-01

    This paper considers a model consisting of a kinetic term, Rashba spin-orbit coupling and short-range Coulomb interaction at zero temperature. The Coulomb interaction is decoupled by a mean-field approximation in the spin channel using field theory methods. The results feature a first-order phase transition for any finite value of the chemical potential and quantum criticality for vanishing chemical potential. The Hall conductivity is also computed using the Kubo formula in a mean-field effective Hamiltonian. In the limit of infinite mass the kinetic term vanishes and all the phase transitions are of second order; in this case the spontaneous symmetry-breaking mechanism adds a ferromagnetic metallic phase to the system and features a zero-temperature quantization of the Hall conductivity in the insulating one.

  2. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2015-09-30

    of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation... acoustic parameters in the ocean. APPROACH 1) Finite Element Modeling for Range Dependent Waveguides: Finite element modeling is applied to a...roughness measurements for reverberation modeling . GLISTEN data provide insight into the role of biology on acoustic propagation and scattering

  3. Reynolds number effects on mixing due to topological chaos.

    PubMed

    Smith, Spencer A; Warrier, Sangeeta

    2016-03-01

    Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.

  4. Design and analysis of a new flux-intensifying permanent magnet brushless motor with multilayer flux barriers

    NASA Astrophysics Data System (ADS)

    Yang, Shen; Zhu, Xiaoyong; Xiang, Zixuan; Fan, Deyang; Wu, Wenye; Yin, Jianing

    2017-05-01

    This paper proposes a new flux-intensifying permanent magnet brushless motor for potential application in electric vehicles. The key of the proposed motor is to adopt the concept of flux-intensifying effect, thus the preferable flux-weakening ability and extended speed range can be achieved. The usage of segmented and relatively thinner permanent magnet (PM) in the proposed motor contributes to the increase of d-axis inductance Ld. In addition, the multilayer flux barriers along q-axis flux path will effectively decrease q-axis inductance Lq. As a result, the unique feature of Ld>Lq can be obtained, which is beneficial to extending the speed range of the proposed motor. Furthermore, the flux-intensifying effect can reduce the risk of irreversible demagnetization in PMs. The electromagnetic performances of the proposed motor are analyzed and investigated in details by using the finite element methods, which demonstrate the excellent flux-weakening capability and wide speed range can be achieved in the proposed FI-PMBL motor.

  5. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  6. Electron interactions in graphene through an effective Coulomb potential

    NASA Astrophysics Data System (ADS)

    Rodrigues, Joao N. B.; Adam, Shaffique

    A recent numerical work [H.-K. Tang et al, PRL 115, 186602 (2015)] considering graphene's π-electrons interacting through an effective Coulomb potential that is finite at short-distances, stressed the importance of the sp2 -electrons in determining the semimetal to Mott insulator phase transition in graphene. Some years ago, I. F. Herbut [PRL 97, 146401 (2006)] studied such a transition by mapping graphene's π-electrons into a Gross-Neveu model. From a different perspective, D. T. Son [PRB 75, 235423 (2007)] put the emphasis on the long-range interactions by modelling graphene as Dirac fermions interacting through a bare Coulomb potential. Here we build on these works and explore the phase diagram of Dirac fermions interacting through an effective Coulomb-like potential screened at short-distances. The interaction potential used allows for analytic results that controllably switch between the two perspectives above. This work was supported by the Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM medium-sized centre program) and by the Singapore Ministry of Education and Yale-NUS College (R-607-265-01312).

  7. An investigation of several numerical procedures for time-asymptotic compressible Navier-Stokes solutions

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.; Morris, D. J.; Blanchard, D. K.; Cooke, C. H.; Rubin, S. G.

    1975-01-01

    The status of an investigation of four numerical techniques for the time-dependent compressible Navier-Stokes equations is presented. Results for free shear layer calculations in the Reynolds number range from 1000 to 81000 indicate that a sequential alternating-direction implicit (ADI) finite-difference procedure requires longer computing times to reach steady state than a low-storage hopscotch finite-difference procedure. A finite-element method with cubic approximating functions was found to require excessive computer storage and computation times. A fourth method, an alternating-direction cubic spline technique which is still being tested, is also described.

  8. Electrostatic Estimation of Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models.

    PubMed

    Zimmermann, Nils E R; Hannah, Daniel C; Rong, Ziqin; Liu, Miao; Ceder, Gerbrand; Haranczyk, Maciej; Persson, Kristin A

    2018-02-01

    We report on a scheme for estimating intercalant jump-diffusion barriers that are typically obtained from demanding density functional theory-nudged elastic band calculations. The key idea is to relax a chain of states in the field of the electrostatic potential that is averaged over a spherical volume using different finite-size ion models. For magnesium migrating in typical intercalation materials such as transition-metal oxides, we find that the optimal model is a relatively large shell. This data-driven result parallels typical assumptions made in models based on Onsager's reaction field theory to quantitatively estimate electrostatic solvent effects. Because of its efficiency, our potential of electrostatics-finite ion size (PfEFIS) barrier estimation scheme will enable rapid identification of materials with good ionic mobility.

  9. Effects of Verb Familiarity on Finiteness Marking in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Abel, Alyson D.; Rice, Mabel L.; Bontempo, Daniel E.

    2015-01-01

    Purpose: Children with specific language impairment (SLI) have known deficits in the verb lexicon and finiteness marking. This study investigated a potential relationship between these 2 variables in children with SLI and 2 control groups considering predictions from 2 different theoretical perspectives, morphosyntactic versus morphophonological.…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chen, E-mail: chuang3@fsu.edu

    A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system’s density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, wemore » introduce an efficient iterative embedding potential solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the chemical potentials across subsystems. The solver is robust and efficient for several non-trivial examples, in all of which good quality spin-polarized embedding potentials were obtained. We also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) surface, which is related to the modeling of the heterogeneous catalysis involving iron, such as the Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform embedding simulations of some challenging material problems, such as the heterogeneous catalysis and the defects of complicated spin configurations in electronic materials.« less

  11. End point of a first-order phase transition in many-flavor lattice QCD at finite temperature and density.

    PubMed

    Ejiri, Shinji; Yamada, Norikazu

    2013-04-26

    Towards the feasibility study of the electroweak baryogenesis in realistic technicolor scenario, we investigate the phase structure of (2+N(f))-flavor QCD, where the mass of two flavors is fixed to a small value and the others are heavy. For the baryogenesis, an appearance of a first-order phase transition at finite temperature is a necessary condition. Using a set of configurations of two-flavor lattice QCD and applying the reweighting method, the effective potential defined by the probability distribution function of the plaquette is calculated in the presence of additional many heavy flavors. Through the shape of the effective potential, we determine the critical mass of heavy flavors separating the first-order and crossover regions and find it to become larger with N(f). We moreover study the critical line at finite density and the first-order region is found to become wider as increasing the chemical potential. Possible applications to real (2+1)-flavor QCD are discussed.

  12. Predictive Rate-Distortion for Infinite-Order Markov Processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2016-06-01

    Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.

  13. Construction of a three-dimensional finite element model of maxillary first molar and it's supporting structures

    PubMed Central

    Begum, M. Sameena; Dinesh, M. R.; Tan, Kenneth F. H.; Jairaj, Vani; Md Khalid, K.; Singh, Varun Pratap

    2015-01-01

    The finite element method (FEM) is a powerful computational tool for solving stress-strain problems; its ability to handle material inhomogeneity and complex shapes makes the FEM, the most suitable method for the analysis of internal stress levels in the tooth, periodontium, and alveolar bone. This article intends to explain the steps involved in the generation of a three-dimensional finite element model of tooth, periodontal ligament (PDL) and alveolar bone, as the procedure of modeling is most important because the result is based on the nature of the modeling systems. Finite element analysis offers a means of determining strain-stress levels in the tooth, ligament, and bone structures for a broad range of orthodontic loading scenarios without producing tissue damage. PMID:26538895

  14. Finite-time containment control of perturbed multi-agent systems based on sliding-mode control

    NASA Astrophysics Data System (ADS)

    Yu, Di; Ji, Xiang Yang

    2018-01-01

    Aimed at faster convergence rate, this paper investigates finite-time containment control problem for second-order multi-agent systems with norm-bounded non-linear perturbation. When topology between the followers are strongly connected, the nonsingular fast terminal sliding-mode error is defined, corresponding discontinuous control protocol is designed and the appropriate value range of control parameter is obtained by applying finite-time stability analysis, so that the followers converge to and move along the desired trajectories within the convex hull formed by the leaders in finite time. Furthermore, on the basis of the sliding-mode error defined, the corresponding distributed continuous control protocols are investigated with fast exponential reaching law and double exponential reaching law, so as to make the followers move to the small neighbourhoods of their desired locations and keep within the dynamic convex hull formed by the leaders in finite time to achieve practical finite-time containment control. Meanwhile, we develop the faster control scheme according to comparison of the convergence rate of these two different reaching laws. Simulation examples are given to verify the correctness of theoretical results.

  15. Entropy and long-range memory in random symbolic additive Markov chains

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2016-06-01

    The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.

  16. Entropy and long-range memory in random symbolic additive Markov chains.

    PubMed

    Melnik, S S; Usatenko, O V

    2016-06-01

    The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.

  17. DNA bubble dynamics as a quantum Coulomb problem.

    PubMed

    Fogedby, Hans C; Metzler, Ralf

    2007-02-16

    We study the dynamics of denaturation bubbles in double-stranded DNA. Demonstrating that the associated Fokker-Planck equation is equivalent to a Coulomb problem, we derive expressions for the bubble survival distribution W(t). Below Tm, W(t) is associated with the continuum of scattering states of the repulsive Coulomb potential. At Tm, the Coulomb potential vanishes and W(t) assumes a power-law tail with nontrivial dynamic exponents: the critical exponent of the entropy loss factor may cause a finite mean lifetime. Above Tm (attractive potential), the long-time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed.

  18. Impact of the Parameter Identification of Plastic Potentials on the Finite Element Simulation of Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.

    2007-04-01

    In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.

  19. Effects of Verb Familiarity on Finiteness Marking in Children With Specific Language Impairment

    PubMed Central

    Rice, Mabel L.; Bontempo, Daniel E.

    2015-01-01

    Purpose Children with specific language impairment (SLI) have known deficits in the verb lexicon and finiteness marking. This study investigated a potential relationship between these 2 variables in children with SLI and 2 control groups considering predictions from 2 different theoretical perspectives, morphosyntactic versus morphophonological. Method Children with SLI, age-equivalent, and language-equivalent (LE) control children (n = 59) completed an experimental sentence imitation task that generated estimates of children's finiteness accuracy under 2 levels of verb familiarity—familiar real verbs versus unfamiliar real verbs—in clausal sites marked for finiteness. Imitations were coded and analyzed for overall accuracy as well as finiteness marking and verb root imitation accuracy. Results Statistical comparisons revealed that children with SLI did not differ from LE children and were less accurate than age-equivalent children on all dependent variables: overall imitation, finiteness marking imitation, and verb root imitation accuracy. A significant Group × Condition interaction for finiteness marking revealed lower levels of accuracy on unfamiliar verbs for the SLI and LE groups only. Conclusions Findings indicate a relationship between verb familiarity and finiteness marking in children with SLI and younger controls and help clarify the roles of morphosyntax, verb lexicon, and morphophonology. PMID:25611349

  20. Entanglement and fluctuations in the XXZ model with power-law interactions

    NASA Astrophysics Data System (ADS)

    Frérot, Irénée; Naldesi, Piero; Roscilde, Tommaso

    2017-06-01

    We investigate the ground-state properties of the spin-1 /2 XXZ model with power-law-decaying (1 /rα ) interactions, which describe spins interacting with long-range transverse (XX) ferromagnetic interactions and longitudinal (Z) antiferromagnetic interactions, or hard-core bosons with long-range repulsion and hopping. The long-range nature of the couplings allows us to quantitatively study the spectral, correlation, and entanglement properties of the system by making use of linear spin-wave theory, supplemented with density-matrix renormalization group in one-dimensional systems. Our most important prediction is the existence of three distinct coupling regimes, depending on the decay exponent α and number of dimensions d : (1) a short-range regime for α >d +σc (where σc=1 in the gapped Néel antiferromagnetic phase exhibited by the XXZ model, and σc=2 in the gapless XY ferromagnetic phase), sharing the same properties as those of finite-range interactions (α =∞ ); (2) a long-range regime α

  1. Simple model for molecular scattering

    NASA Astrophysics Data System (ADS)

    Mehta, Nirav; Ticknor, Christopher; Hazzard, Kaden

    2017-04-01

    The collisions of ultracold molecules are qualitatively different from the collisions of ultracold atoms due to the high density of bimolecular resonances near the collision energy. We present results from a simple N-channel scattering model with square-well channel potentials and constant channel couplings (inside the well) designed to reproduce essential features of chaotic molecular scattering. The potential depths and channel splittings are tuned to reproduce the appropriate density of states for the short-range bimolecular collision complex (BCC), which affords a direct comparison of the resulting level-spacing distribution to that expected from random matrix theory (RMT), namely the so-called Wigner surmise. The density of states also sets the scale for the rate of dissociation from the BCC to free molecules, as approximated by transition state theory (TST). Our model affords a semi-analytic solution for the scattering amplitude in the open channel, and a determinantal equation for the eigenenergies of the short-ranged BCC. It is likely the simplest finite-ranged scattering model that can be compared to expectations from the approximations of RMT, and TST. The validity of these approximations has implications for the many-channel Hubbard model recently developed. This research was funded in part by the National Science Foundation under Grant No. NSF PHY-1125915.

  2. Finite element modeling and analysis of tires

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Andersen, C. M.

    1983-01-01

    Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.

  3. Finite-Time and -Size Scalings in the Evaluation of Large Deviation Functions. Numerical Analysis in Continuous Time

    NASA Astrophysics Data System (ADS)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provide a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to a selection rule that favors the rare trajectories of interest. However, such algorithms are plagued by finite simulation time- and finite population size- effects that can render their use delicate. Using the continuous-time cloning algorithm, we analyze the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of the rare trajectories. We use these scalings in order to propose a numerical approach which allows to extract the infinite-time and infinite-size limit of these estimators.

  4. A Comprehensive High Performance Predictive Tool for Fusion Liquid Metal Hydromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peter; Chhabra, Rupanshi; Munipalli, Ramakanth

    In Phase I SBIR project, HyPerComp and Texcel initiated the development of two induction-based MHD codes as a predictive tool for fusion hydro-magnetics. The newly-developed codes overcome the deficiency of other MHD codes based on the quasi static approximation by defining a more general mathematical model that utilizes the induced magnetic field rather than the electric potential as the main electromagnetic variable. The UCLA code is a finite-difference staggered-mesh code that serves as a supplementary tool to the massively-parallel finite-volume code developed by HyPerComp. As there is no suitable experimental data under blanket-relevant conditions for code validation, code-to-code comparisons andmore » comparisons against analytical solutions were successfully performed for three selected test cases: (1) lid-driven MHD flow, (2) flow in a rectangular duct in a transverse magnetic field, and (3) unsteady finite magnetic Reynolds number flow in a rectangular enclosure. The performed tests suggest that the developed codes are accurate and robust. Further work will focus on enhancing the code capabilities towards higher flow parameters and faster computations. At the conclusion of the current Phase-II Project we have completed the preliminary validation efforts in performing unsteady mixed-convection MHD flows (against limited data that is currently available in literature), and demonstrated flow behavior in large 3D channels including important geometrical features. Code enhancements such as periodic boundary conditions, unmatched mesh structures are also ready. As proposed, we have built upon these strengths and explored a much increased range of Grashof numbers and Hartmann numbers under various flow conditions, ranging from flows in a rectangular duct to prototypic blanket modules and liquid metal PFC. Parametric studies, numerical and physical model improvements to expand the scope of simulations, code demonstration, and continued validation activities have also been completed.« less

  5. Numerical Methods Using B-Splines

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Merriam, Marshal (Technical Monitor)

    1997-01-01

    The seminar will discuss (1) The current range of applications for which B-spline schemes may be appropriate (2) The property of high-resolution and the relationship between B-spline and compact schemes (3) Comparison between finite-element, Hermite finite element and B-spline schemes (4) Mesh embedding using B-splines (5) A method for the incompressible Navier-Stokes equations in curvilinear coordinates using divergence-free expansions.

  6. Corrections of the finite relativistic contributions to the synodic month period Earth-Moon range oscillations: Agreement between the geocentric and the solar-system barycentric inertial-frame calculations

    NASA Astrophysics Data System (ADS)

    Nordtvedt, Ken

    1993-04-01

    We have corrected our calculation of the finite general relativistic contribution to the synodic month period Earth-Moon range oscillation by including previously overlooked terms in the Moon's post-Newtonian equation of motion: the corrected result x(t)~=(3gSr2/c2) cos(ω-Ω)t agrees with the Shahid-Saless calculation which was performed in the geocentric frame. It is also pointed out that at the level of a few millimeters synodic month period amplitude, the Moon's orbit is polarized by the solar radiation pressure force on the Moon.

  7. Application of Laser Ranging and VLBI Data to a Study of Plate Tectonic Driving Forces

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The conditions under which changes in plate driving or resistive forces associated with plate boundary earthquakes are measurable with laser ranging or very long base interferometry were investigated. Aspects of plate forces that can be characterized by such measurements were identified. Analytic solutions for two dimensional stress diffusion in a viscoelastic plate following earthquake faulting on a finite fault, finite element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting, and quantitative constraints from modeling of global intraplate stress on the magnitude of deviatoric stress in the lithosphere are among the topics discussed.

  8. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  9. Terahertz detection of alcohol using a photonic crystal fiber sensor.

    PubMed

    Sultana, Jakeya; Islam, Md Saiful; Ahmed, Kawsar; Dinovitser, Alex; Ng, Brian W-H; Abbott, Derek

    2018-04-01

    Ethanol is widely used in chemical industrial processes as well as in the food and beverage industry. Therefore, methods of detecting alcohol must be accurate, precise, and reliable. In this content, a novel Zeonex-based photonic crystal fiber (PCF) has been modeled and analyzed for ethanol detection in terahertz frequency range. A finite-element-method-based simulation of the PCF sensor shows a high relative sensitivity of 68.87% with negligible confinement loss of 7.79×10 -12    cm -1 at 1 THz frequency and x -polarization mode. Moreover, the core power fraction, birefringence, effective material loss, dispersion, and numerical aperture are also determined in the terahertz frequency range. Owing to the simple fiber structure, existing fabrication methods are feasible. With the outstanding waveguiding properties, the proposed sensor can potentially be used in ethanol detection, as well as polarization-preserving applications of terahertz waves.

  10. Audiomagnetotelluric investigation of Snake Valley, eastern Nevada and western Utah

    USGS Publications Warehouse

    McPhee, Darcy K.; Pari, Keith; Baird, Frank

    2009-01-01

    As support for an exploratory well-drilling and hydraulic-testing program, AMT data were collected using a Geometrics Stratagem EH4 system along four profiles that extend roughly east-west from the southern Snake Range into Snake Valley. The profiles range from 3 to 5 kilometers in length, and station spacing was 200 to 400 meters. Two-dimensional inverse models were computed using the data from the transverse-electric (TE), transverse-magnetic (TM), and combined (TE+TM) mode using a conjugate gradient, finite-difference method. Interpretation of the 2-D AMT models defines several faults, some of which may influence ground-water flow in the basins, as well as identify underlying Paleozoic carbonate and clastic rocks and the thickness of basin-fill sediments. These AMT data and models, coupled with the geologic mapping and other surface geophysical methods, form the basis for identifying potential well sites and defining the subsurface structures and stratigraphy within Snake Valley.

  11. Electrostatic attraction of coupled Wigner crystals: finite temperature effects.

    PubMed

    Lau, A W; Pincus, P; Levine, D; Fertig, H A

    2001-05-01

    In this paper we present a unified physical picture for the electrostatic attraction between two coupled planar Wigner crystals at finite temperature. This model may facilitate our conceptual understanding of counterion-mediated attractions between (highly) similarly charged planes. By adopting an elastic theory, we show that the total attractive force between them can be (approximately) decomposed into a short-ranged and a long-ranged component. They are evaluated below the melting temperature of the Wigner crystals. In particular, we analyze the temperature dependence of the short-ranged attraction, arising from ground-state configuration, and we argue that thermal fluctuations may drastically reduce its strength. Also, the long-range force agrees exactly with that based on the charge-fluctuation approach. Furthermore, we take quantum contributions to the long-ranged (fluctuation-induced) attraction into account and show how the fractional power law, which scales as d(-7/2) for large interplanar distance d at zero temperature, crosses over to the classical regime d(-3) via an intermediate regime of d(-2).

  12. Infinite matter properties and zero-range limit of non-relativistic finite-range interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davesne, D.; Becker, P., E-mail: pbecker@ipnl.in2p3.fr; Pastore, A.

    2016-12-15

    We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin–orbit terms from the spin–isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin–orbit ofmore » the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.« less

  13. Development Of A Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Kwak, Dochan

    1993-01-01

    Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.

  14. Friedberg-Lee model at finite temperature and density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao Hong; CCAST; Yao Minjie

    2008-06-15

    The Friedberg-Lee model is studied at finite temperature and density. By using the finite temperature field theory, the effective potential of the Friedberg-Lee model and the bag constant B(T) and B(T,{mu}) have been calculated at different temperatures and densities. It is shown that there is a critical temperature T{sub C}{approx_equal}106.6 MeV when {mu}=0 MeV and a critical chemical potential {mu}{approx_equal}223.1 MeV for fixing the temperature at T=50 MeV. We also calculate the soliton solutions of the Friedberg-Lee model at finite temperature and density. It turns out that when T{<=}T{sub C} (or {mu}{<=}{mu}{sub C}), there is a bag constant B(T) [ormore » B(T,{mu})] and the soliton solutions are stable. However, when T>T{sub C} (or {mu}>{mu}{sub C}) the bag constant B(T)=0 MeV [or B(T,{mu})=0 MeV] and there is no soliton solution anymore, therefore, the confinement of quarks disappears quickly.« less

  15. The MUSIC algorithm for impedance tomography of small inclusions from discrete data

    NASA Astrophysics Data System (ADS)

    Lechleiter, A.

    2015-09-01

    We consider a point-electrode model for electrical impedance tomography and show that current-to-voltage measurements from finitely many electrodes are sufficient to characterize the positions of a finite number of point-like inclusions. More precisely, we consider an asymptotic expansion with respect to the size of the small inclusions of the relative Neumann-to-Dirichlet operator in the framework of the point electrode model. This operator is naturally finite-dimensional and models difference measurements by finitely many small electrodes of the electric potential with and without the small inclusions. Moreover, its leading-order term explicitly characterizes the centers of the small inclusions if the (finite) number of point electrodes is large enough. This characterization is based on finite-dimensional test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion centers. We show both the feasibility and limitations of this imaging technique via two-dimensional numerical experiments, considering in particular the influence of the number of point electrodes on the algorithm’s images.

  16. CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests

    NASA Technical Reports Server (NTRS)

    Brock, Joseph; Stern, Eric; Wilder, Michael

    2017-01-01

    A series of ballistic range tests were performed on a scaled model of the Supersonic Flight Demonstration Test (SFDT) intended to test the Supersonic Inflatable Aerodynamic Decelerator (SIAD) geometry. The purpose of these experiments were to provide aerodynamic coefficients of the vehicle to aid in mission and vehicle design. The experimental data spans the moderate Mach number range, $3.8-2.0$, with a total angle of attack ($alpha_T$) range, $10o-20o$. These conditions are intended to span the Mach-$alpha$ space for the majority of the SFDT experiment. In an effort to validate the predictive capabilities of Computational Fluid Dynamics (CFD) for free-flight aerodynamic behavior, numerical simulations of the ballistic range experiment are performed using the unstructured finite volume Navier-Stokes solver, US3D. Comparisons to raw vehicle attitude, and post-processed aerodynamic coefficients are made between simulated results and experimental data. The resulting comparisons for both raw model attitude and derived aerodynamic coefficients show good agreement with experimental results. Additionally, near body pressure field values for each trajectory simulated are investigated. Extracted surface and wake pressure data gives further insights into dynamic flow coupling leading to a potential mechanism for dynamic instability.

  17. Overrepresentation of extreme events in decision making reflects rational use of cognitive resources.

    PubMed

    Lieder, Falk; Griffiths, Thomas L; Hsu, Ming

    2018-01-01

    People's decisions and judgments are disproportionately swayed by improbable but extreme eventualities, such as terrorism, that come to mind easily. This article explores whether such availability biases can be reconciled with rational information processing by taking into account the fact that decision makers value their time and have limited cognitive resources. Our analysis suggests that to make optimal use of their finite time decision makers should overrepresent the most important potential consequences relative to less important, put potentially more probable, outcomes. To evaluate this account, we derive and test a model we call utility-weighted sampling. Utility-weighted sampling estimates the expected utility of potential actions by simulating their outcomes. Critically, outcomes with more extreme utilities have a higher probability of being simulated. We demonstrate that this model can explain not only people's availability bias in judging the frequency of extreme events but also a wide range of cognitive biases in decisions from experience, decisions from description, and memory recall. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-06-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less

  19. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

    NASA Astrophysics Data System (ADS)

    Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.

    2017-05-01

    We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

  20. Equilibrium charge distribution on a finite straight one-dimensional wire

    NASA Astrophysics Data System (ADS)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed

    2017-09-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.

  1. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  2. Mass Efficiency Considerations for Thermally Insulated Structural Skin of an Aerospace Vehicle

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An approximate equation was derived to predict the mass of insulation required to limit the maximum temperature reached by an insulated structure subjected to a transient heating pulse. In the course of the derivation two figures of merit were identified. One figure of merit correlates to the effectiveness of the heat capacity of the underlying structural material in reducing the amount of required insulation. The second figure of merit provides an indicator of the mass efficiency of the insulator material. An iterative, one dimensional finite element analysis was used to size the external insulation required to protect the structure at a single location on the Space Shuttle Orbiter and a reusable launch vehicle. Required insulation masses were calculated for a range of different materials for both structure and insulator. The required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10 to 20 percent over the range of parameters studied. Finite element results closely followed the trends indicated by both figures of merit.

  3. Singularity embedding method in potential flow calculations

    NASA Technical Reports Server (NTRS)

    Jou, W. H.; Huynh, H.

    1982-01-01

    The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.

  4. magnum.fe: A micromagnetic finite-element simulation code based on FEniCS

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter

    2013-11-01

    We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.

  5. Revised Thomas-Fermi approximation for singular potentials

    NASA Astrophysics Data System (ADS)

    Dufty, James W.; Trickey, S. B.

    2016-08-01

    Approximations for the many-fermion free-energy density functional that include the Thomas-Fermi (TF) form for the noninteracting part lead to singular densities for singular external potentials (e.g., attractive Coulomb). This limitation of the TF approximation is addressed here by a formal map of the exact Euler equation for the density onto an equivalent TF form characterized by a modified Kohn-Sham potential. It is shown to be a "regularized" version of the Kohn-Sham potential, tempered by convolution with a finite-temperature response function. The resulting density is nonsingular, with the equilibrium properties obtained from the total free-energy functional evaluated at this density. This new representation is formally exact. Approximate expressions for the regularized potential are given to leading order in a nonlocality parameter, and the limiting behavior at high and low temperatures is described. The noninteracting part of the free energy in this approximation is the usual Thomas-Fermi functional. These results generalize and extend to finite temperatures the ground-state regularization by R. G. Parr and S. Ghosh [Proc. Natl. Acad. Sci. U.S.A. 83, 3577 (1986), 10.1073/pnas.83.11.3577] and by L. R. Pratt, G. G. Hoffman, and R. A. Harris [J. Chem. Phys. 88, 1818 (1988), 10.1063/1.454105] and formally systematize the finite-temperature regularization given by the latter authors.

  6. Fluctuations in the quark-meson model for QCD with isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Kamikado, Kazuhiko; Strodthoff, Nils; von Smekal, Lorenz; Wambach, Jochen

    2013-01-01

    We study the two-flavor quark-meson (QM) model with the functional renormalization group (FRG) to describe the effects of collective mesonic fluctuations on the phase diagram of QCD at finite baryon and isospin chemical potentials, μB and μI. With only isospin chemical potential there is a precise equivalence between the competing dynamics of chiral versus pion condensation and that of collective mesonic and baryonic fluctuations in the quark-meson-diquark model for two-color QCD at finite baryon chemical potential. Here, finite μB = 3 μ introduces an additional dimension to the phase diagram as compared to two-color QCD, however. At zero temperature, the (μI, μ) plane of this phase diagram is strongly constrained by the "Silver Blaze problem." In particular, the onset of pion condensation must occur at μI =mπ / 2, independent of μ as long as μ +μI stays below the constituent quark mass of the QM model or the liquid-gas transition line of nuclear matter in QCD. In order to maintain this relation beyond mean field it is crucial to compute the pion mass from its timelike correlator with the FRG in a consistent way.

  7. The cosmic QCD phase transition with dense matter and its gravitational waves from holography

    NASA Astrophysics Data System (ADS)

    Ahmadvand, M.; Bitaghsir Fadafan, K.

    2018-04-01

    Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.

  8. Calculation of sheath and wake structure about a pillbox-shaped spacecraft in a flowing plasma

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1977-01-01

    A computer program was used for studies of the disturbed zones around bodies in flowing plasmas, particularly spacecraft and their associated sheaths and wakes. The program solved a coupled Poisson-Vlasov system of nonlinear partial differential integral equations to obtain distributions of electric potential and ion and electron density about a finite length cylinder in a plasma flow at arbitrary ion Mach numbers. The approach was applicable to a larger range of parameters than other available approaches. In sample calculations, bodies up to 100 Debye lengths in radius were treated, that is, larger than any previously treated realistically. Applications were made to in-situ satellite experiments.

  9. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    NASA Astrophysics Data System (ADS)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  10. Elastic transducers incorporating finite-length optical paths

    NASA Astrophysics Data System (ADS)

    Peters, Kara J.; Washabaugh, Peter D.

    1995-08-01

    Frequently, when designing a structure to incorporate integrated sensors, one sacrifices the stiffness of the system to improve sensitivity. However, the use of interferometric displacement sensors that tessellate throughout the volume of a structure has the potential to allow the precision and range of the component measurement to scale with the geometry of the device rather than the maximum strain in the structure. The design of stiff structures that measure all six resultant-load components is described. In addition, an advanced torsion sensor and a linear acceleration transducer are also discussed. Finally, invariant paths are presented that allow the in situ integrity of a structural volume to be monitored with a single pair of displacement sensors.

  11. Thermodynamics of the relativistic Fermi gas in D dimensions

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.; Piña, Omar

    2017-09-01

    The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a "phase transition", qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a "normal" phase, to a phase where the gas compressibility grows as a power law of the temperature.

  12. An analysis of the nucleon spectrum from lattice partially-quenched QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Armour; Allton, C. R.; Leinweber, Derek B.

    2010-09-01

    The chiral extrapolation of the nucleon mass, Mn, is investigated using data coming from 2-flavour partially-quenched lattice simulations. The leading one-loop corrections to the nucleon mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value ofmore » Mn in agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.« less

  13. The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Wen; Yang, Zhaoqing; Copping, Andrea E.

    : As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3Dmore » sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.« less

  14. The Electric Potential of a Macromolecule in a Solvent: A Fundamental Approach

    NASA Astrophysics Data System (ADS)

    Juffer, André H.; Botta, Eugen F. F.; van Keulen, Bert A. M.; van der Ploeg, Auke; Berendsen, Herman J. C.

    1991-11-01

    A general numerical method is presented to compute the electric potential for a macromolecule of arbitrary shape in a solvent with nonzero ionic strength. The model is based on a continuum description of the dielectric and screening properties of the system, which consists of a bounded internal region with discrete charges and an infinite external region. The potential obeys the Poisson equation in the internal region and the linearized Poisson-Boltzmann equation in the external region, coupled through appropriate boundary conditions. It is shown how this three-dimensional problem can be presented as a pair of coupled integral equations for the potential and the normal component of the electric field at the dielectric interface. These equations can be solved by a straightforward application of boundary element techniques. The solution involves the decomposition of a matrix that depends only on the geometry of the surface and not on the positions of the charges. With this approach the number of unknowns is reduced by an order of magnitude with respect to the usual finite difference methods. Special attention is given to the numerical inaccuracies resulting from charges which are located close to the interface; an adapted formulation is given for that case. The method is tested both for a spherical geometry, for which an exact solution is available, and for a realistic problem, for which a finite difference solution and experimental verification is available. The latter concerns the shift in acid strength (pK-values) of histidines in the copper-containing protein azurin on oxidation of the copper, for various values of the ionic strength. A general method is given to triangulate a macromolecular surface. The possibility is discussed to use the method presented here for a correct treatment of long-range electrostatic interactions in simulations of solvated macromolecules, which form an essential part of correct potentials of mean force.

  15. Directions for computational mechanics in automotive crashworthiness

    NASA Technical Reports Server (NTRS)

    Bennett, James A.; Khalil, T. B.

    1993-01-01

    The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.

  16. Directions for computational mechanics in automotive crashworthiness

    NASA Astrophysics Data System (ADS)

    Bennett, James A.; Khalil, T. B.

    1993-08-01

    The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.

  17. Reynolds number effects on mixing due to topological chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Spencer A.; Warrier, Sangeeta

    2016-03-15

    Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for threemore » different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.« less

  18. Assessment of a hybrid finite element-transfer matrix model for flat structures with homogeneous acoustic treatments.

    PubMed

    Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck

    2014-05-01

    Modeling complex vibroacoustic systems including poroelastic materials using finite element based methods can be unfeasible for practical applications. For this reason, analytical approaches such as the transfer matrix method are often preferred to obtain a quick estimation of the vibroacoustic parameters. However, the strong assumptions inherent within the transfer matrix method lead to a lack of accuracy in the description of the geometry of the system. As a result, the transfer matrix method is inherently limited to the high frequency range. Nowadays, hybrid substructuring procedures have become quite popular. Indeed, different modeling techniques are typically sought to describe complex vibroacoustic systems over the widest possible frequency range. As a result, the flexibility and accuracy of the finite element method and the efficiency of the transfer matrix method could be coupled in a hybrid technique to obtain a reduction of the computational burden. In this work, a hybrid methodology is proposed. The performances of the method in predicting the vibroacoutic indicators of flat structures with attached homogeneous acoustic treatments are assessed. The results prove that, under certain conditions, the hybrid model allows for a reduction of the computational effort while preserving enough accuracy with respect to the full finite element solution.

  19. Role of electron-phonon coupling in finite-temperature dielectric functions of Au, Ag, and Cu

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yang, Jia-Yue; Zhang, Shangyu; Liu, Linhua

    2017-09-01

    Realistic representation of finite temperature dielectric functions of noble metals is crucial in describing the optical properties of advancing applications in plasmonics and optical metamaterials. However, the atomistic origins of the temperature dependence of noble metals' dielectric functions still lack full explanation. In this paper, we implement electronic structure calculations as well as ellipsometry experiments to study the finite temperature dielectric functions of noble metals Au, Ag, and Cu. Theoretically, the intraband dielectric function is described by the Drude model, of which the important quantity electron lifetime is obtained by considering the electron-phonon, electron-electron, and electron-surface scattering mechanism. The electron-phonon coupling is key to determining the temperature dependence of electron lifetime and intraband dielectric function. For the interband dielectric function, it arises from the electronic interband transition. Due to the limitation of incorporating electron-phonon coupling into the interband transition scheme, the temperature dependence of the interband dielectric function is mainly determined by the thermal expansion effect. Experimentally, variable angle spectroscopic ellipsometry measures the dielectric functions of Au and Ag over the temperature range of 300-700 K and spectral range of 2-20 µm. Those experimental measurements are consistent with theoretical results and thus verify the theoretical models for the finite temperature dielectric function.

  20. Some calculations of transonic potential flow for the NACA 64A006 airfoil with oscillating flap

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Bland, S. R.

    1978-01-01

    A method for calculating the transonic flow over steady and oscillating airfoils was developed by Isogai. It solves the full potential equation with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. In this paper the method is described in general terms, and results are compared with experimental data for both steady flow and for oscillations at several values of reduced frequency. Good agreement for static pressures is shown for subcritical speeds, with increasing deviation as Mach number is increased into the supercritical speed range. Fair agreement with experiment was obtained at high reduced frequencies with larger deviations at low reduced frequencies.

  1. Conditions where random phase approximation becomes exact in the high-density limit

    NASA Astrophysics Data System (ADS)

    Morawetz, Klaus; Ashokan, Vinod; Bala, Renu; Pathak, Kare Narain

    2018-04-01

    It is shown that, in d -dimensional systems, the vertex corrections beyond the random phase approximation (RPA) or G W approximation scales with the power d -β -α of the Fermi momentum if the relation between Fermi energy and Fermi momentum is ɛf˜pfβ and the interacting potential possesses a momentum power law of ˜p-α . The condition d -β -α <0 specifies systems where RPA is exact in the high-density limit. The one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum Monte Carlo simulations.

  2. Numerical simulation using vorticity-vector potential formulation

    NASA Technical Reports Server (NTRS)

    Tokunaga, Hiroshi

    1993-01-01

    An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the computational method. We present the computational method and apply the present method to computations of flows in a square cavity at large Reynolds number in order to investigate its effectiveness.

  3. Analysis of superconducting electromagnetic finite elements based on a magnetic vector potential variational principle

    NASA Technical Reports Server (NTRS)

    Schuler, James J.; Felippa, Carlos A.

    1991-01-01

    Electromagnetic finite elements are extended based on a variational principle that uses the electromagnetic four potential as primary variable. The variational principle is extended to include the ability to predict a nonlinear current distribution within a conductor. The extension of this theory is first done on a normal conductor and tested on two different problems. In both problems, the geometry remains the same, but the material properties are different. The geometry is that of a 1-D infinite wire. The first problem is merely a linear control case used to validate the new theory. The second problem is made up of linear conductors with varying conductivities. Both problems perform well and predict current densities that are accurate to within a few ten thousandths of a percent of the exact values. The fourth potential is then removed, leaving only the magnetic vector potential, and the variational principle is further extended to predict magnetic potentials, magnetic fields, the number of charge carriers, and the current densities within a superconductor. The new element produces good results for the mean magnetic field, the vector potential, and the number of superconducting charge carriers despite a relatively high system condition number. The element did not perform well in predicting the current density. Numerical problems inherent to this formulation are explored and possible remedies to produce better current predicting finite elements are presented.

  4. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  5. Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.

    1980-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.

  6. Improved finite difference schemes for transonic potential calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Osher, S.; Whitlow, W., Jr.

    1984-01-01

    Engquist and Osher (1980) have introduced a finite difference scheme for solving the transonic small disturbance equation, taking into account cases in which only compression shocks are admitted. Osher et al. (1983) studied a class of schemes for the full potential equation. It is proved that these schemes satisfy a new discrete 'entropy inequality' which rules out expansion shocks. However, the conducted analysis is restricted to steady two-dimensional flows. The present investigation is concerned with the adoption of a heuristic approach. The full potential equation in conservation form is solved with the aid of a modified artificial density method, based on flux biasing. It is shown that, with the current scheme, expansion shocks are not possible.

  7. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Aquino, N.

    2008-01-01

    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…

  8. Evaluation of an improved finite-element thermal stress calculation technique

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1982-01-01

    A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.

  9. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  10. Finite length filters with maximally confined spectral power

    NASA Technical Reports Server (NTRS)

    Knight, J. W.; Newman, C. E.

    1975-01-01

    The problem of finding a function which, in addition to being zero outside a specified range in x-space, has its spectral power well confined to a certain range in k-space is solved numerically. Properties of the solutions are also discussed.

  11. Practical aspects of prestack depth migration with finite differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ober, C.C.; Oldfield, R.A.; Womble, D.E.

    1997-07-01

    Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less

  12. Dynamical transition for a particle in a squared Gaussian potential

    NASA Astrophysics Data System (ADS)

    Touya, C.; Dean, D. S.

    2007-02-01

    We study the problem of a Brownian particle diffusing in finite dimensions in a potential given by ψ = phi2/2 where phi is Gaussian random field. Exact results for the diffusion constant in the high temperature phase are given in one and two dimensions and it is shown to vanish in a power-law fashion at the dynamical transition temperature. Our results are confronted with numerical simulations where the Gaussian field is constructed, in a standard way, as a sum over random Fourier modes. We show that when the number of Fourier modes is finite the low temperature diffusion constant becomes non-zero and has an Arrhenius form. Thus we have a simple model with a fully understood finite size scaling theory for the dynamical transition. In addition we analyse the nature of the anomalous diffusion in the low temperature regime and show that the anomalous exponent agrees with that predicted by a trap model.

  13. Proper time regularization and the QCD chiral phase transition

    PubMed Central

    Cui, Zhu-Fang; Zhang, Jin-Li; Zong, Hong-Shi

    2017-01-01

    We study the QCD chiral phase transition at finite temperature and finite quark chemical potential within the two flavor Nambu–Jona-Lasinio (NJL) model, where a generalization of the proper-time regularization scheme is motivated and implemented. We find that in the chiral limit the whole transition line in the phase diagram is of second order, whereas for finite quark masses a crossover is observed. Moreover, if we take into account the influence of quark condensate to the coupling strength (which also provides a possible way of how the effective coupling varies with temperature and quark chemical potential), it is found that a CEP may appear. These findings differ substantially from other NJL results which use alternative regularization schemes, some explanation and discussion are given at the end. This indicates that the regularization scheme can have a dramatic impact on the study of the QCD phase transition within the NJL model. PMID:28401889

  14. Finite element model for MOI applications using A-V formulation

    NASA Astrophysics Data System (ADS)

    Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.

    2001-04-01

    Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.

  15. Coupling Finite Element and Meshless Local Petrov-Galerkin Methods for Two-Dimensional Potential Problems

    NASA Technical Reports Server (NTRS)

    Chen, T.; Raju, I. S.

    2002-01-01

    A coupled finite element (FE) method and meshless local Petrov-Galerkin (MLPG) method for analyzing two-dimensional potential problems is presented in this paper. The analysis domain is subdivided into two regions, a finite element (FE) region and a meshless (MM) region. A single weighted residual form is written for the entire domain. Independent trial and test functions are assumed in the FE and MM regions. A transition region is created between the two regions. The transition region blends the trial and test functions of the FE and MM regions. The trial function blending is achieved using a technique similar to the 'Coons patch' method that is widely used in computer-aided geometric design. The test function blending is achieved by using either FE or MM test functions on the nodes in the transition element. The technique was evaluated by applying the coupled method to two potential problems governed by the Poisson equation. The coupled method passed all the patch test problems and gave accurate solutions for the problems studied.

  16. Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.

    PubMed

    Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter

    2018-06-01

    We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.

  17. Mathematical modeling of influence of ion size effects in an electrolyte in a nanoslit with overlapped EDL

    NASA Astrophysics Data System (ADS)

    Rajni, Kumar, Prashant

    2017-10-01

    Many nanofluidic systems are being used in a wide range of applications due to advances in nanotechnology. Due to nanoscale size of the system, the physics involved in the electric double layer and consequently the different phenomena related to it are different than those at microscale. The Poisson-Boltzmann equation governing the electric double layer in the system has many shortcomings such as point sized ions. The inclusion of finite size of ions give rise to various electrokinetic phenomena. Electrocapillarity is one such phenomena where the size effect plays an important role. Theeffect of asymmetric finite ion sizes in nano-confinement in the view of osmotic pressure and electrocapillarity is analyzed. As the confinement width of the system becomes comparable with the Debye length, the overlapped electric double layer (EDL) is influenced and significantly deformed by the steric effects. The osmotic pressure from the modified Poisson-Boltzmann equation in nanoslit is obtained. Due to nonlinear nature of the modified PB equation, the solution is obtained through numerical method. Afterwards, the electrocapillarity due to the steric effect is analyzed under constant surface potential condition at the walls of the nanoslit along with the flat interface assumption.

  18. An investigation into the impact of cryogenic environment on mechanical stresses in FRP composites

    NASA Astrophysics Data System (ADS)

    Fifo, O.; Basu, B.

    2015-07-01

    Fibre reinforced polymer (FRP) composites are fast becoming a highly utilised engineering material for high performance applications due to their light weight and high strength. Carbon fibre and other high strength fibres are commonly used in design of aerospace structures, wind turbine blades, etc. and potentially for propellant tanks of launch vehicles. For the aforementioned fields of application, stability of the material is essential over a wide range of temperature particularly for structures in hostile environments. Many studies have been conducted, experimentally, over the last decade to investigate the mechanical behaviour of FRP materials at varying subzero temperature. Likewise, tests on aging and cycling effect (room to low temperature) on the mechanical response of FRP have been reported. However, a relatively lesser focused area has been the mechanical behaviour of FRP composites under cryogenic environment. This article reports a finite element method of investigating the changes in the mechanical characteristics of an FRP material when temperature based analysis falls below zero. The simulated tests are carried out using a finite element package with close material properties used in the cited literatures. Tensile test was conducted and the results indicate that the mechanical responses agree with those reported in the literature sited.

  19. Dispersion characteristics of plasmonic waveguides for THz waves

    NASA Astrophysics Data System (ADS)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  20. The effect of pits of different sizes on ultrasonic shear wave signals

    NASA Astrophysics Data System (ADS)

    Howard, Richard; Cegla, Frederic

    2018-04-01

    The use of 0-degree shear waves in NDE and SHM has become more commonplace as the disadvantage of coupling has been eliminated by permanent sensor installations or the use of non-contact transducers, such as EMATs. While the effect of rough surfaces and flat bottom holes on shear waves has been studied in depth, the effect of more complex geometries, such as pitting, has not. In this work, 3D finite element simulations are used to explore the reflection and scattering characteristics of shear bulk waves from pits. Specifically, three scenarios have been investigated, the effect on shear waves of: a sloped backwall; pitting directly under the transducer; and the effect of pits with variable pit position. High speed GPU finite element models enabled a wide range of pit radii and positions to be modeled. Hemispherical pits were used throughout. Key findings of the study are that the anisotropic effects that are clearly visible on sloped reflecting surfaces can also be measured on pits that are located not directly below the center of a shear wave transducer. These anisotropic effects are due to the nature of shear wave polarization. This can potentially be used for better defect characterization purposes.

  1. Development of methods for predicting large crack growth in elastic-plastic work-hardening materials in fully plastic conditions

    NASA Technical Reports Server (NTRS)

    Ford, Hugh; Turner, C. E.; Fenner, R. T.; Curr, R. M.; Ivankovic, A.

    1995-01-01

    The objects of the first, exploratory, stage of the project were listed as: (1) to make a detailed and critical review of the Boundary Element method as already published and with regard to elastic-plastic fracture mechanics, to assess its potential for handling present concepts in two-dimensional and three-dimensional cases. To this was subsequently added the Finite Volume method and certain aspects of the Finite Element method for comparative purposes; (2) to assess the further steps needed to apply the methods so far developed to the general field, covering a practical range of geometries, work hardening materials, and composites: to consider their application under higher temperature conditions; (3) to re-assess the present stage of development of the energy dissipation rate, crack tip opening angle and J-integral models in relation to the possibilities of producing a unified technology with the previous two items; and (4) to report on the feasibility and promise of this combined approach and, if appropriate, make recommendations for the second stage aimed at developing a generalized crack growth technology for its application to real-life problems.

  2. Microscopic predictions of fission yields based on the time dependent GCM formalism

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-03-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  3. Analysis of limited-diffractive and limited-dispersive X-waves generated by finite radial waveguides

    NASA Astrophysics Data System (ADS)

    Fuscaldo, Walter; Pavone, Santi C.; Valerio, Guido; Galli, Alessandro; Albani, Matteo; Ettorre, Mauro

    2016-05-01

    In this work, we analyze the spatial and temporal features of electromagnetic X-waves propagating in free space and generated by planar radiating apertures. The performance of ideal X-waves is discussed and compared to practical cases where the important effects related to the finiteness of the radiating aperture and the wavenumber dispersion are taken into account. In particular, a practical device consisting of a radial waveguide loaded with radiating slots aligned along a spiral path is considered for the practical case in the millimeter-wave range. A common mathematical framework is defined for a precise comparison of the spatiotemporal properties and focusing capabilities of the generated X-wave. It is clearly shown that the fractional bandwidth of the radiating aperture has a key role in the longitudinal confinement of an X-wave in both ideal and practical cases. In addition, the finiteness of the radiating aperture as well as the wavenumber dispersion clearly affect both the transverse and the longitudinal profiles of the generated radiation as it travels beyond the depth-of-field of the generated X-wave. Nevertheless, the spatiotemporal properties of the X-wave are preserved even in this "dispersive-finite" case within a defined region and duration related to the nondiffractive range and fractional bandwidth of the spectral components of the generated X-wave. The proposed analysis may open new perspectives for the efficient generation of X-waves over finite radiating apertures at millimeter waves where the dispersive behavior of realistic devices is no longer negligible.

  4. A multidimensional finite element method for CFD

    NASA Technical Reports Server (NTRS)

    Pepper, Darrell W.; Humphrey, Joseph W.

    1991-01-01

    A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.

  5. Effects of adaptive refinement on the inverse EEG solution

    NASA Astrophysics Data System (ADS)

    Weinstein, David M.; Johnson, Christopher R.; Schmidt, John A.

    1995-10-01

    One of the fundamental problems in electroencephalography can be characterized by an inverse problem. Given a subset of electrostatic potentials measured on the surface of the scalp and the geometry and conductivity properties within the head, calculate the current vectors and potential fields within the cerebrum. Mathematically the generalized EEG problem can be stated as solving Poisson's equation of electrical conduction for the primary current sources. The resulting problem is mathematically ill-posed i.e., the solution does not depend continuously on the data, such that small errors in the measurement of the voltages on the scalp can yield unbounded errors in the solution, and, for the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions to such problems could be obtained, neurologists would gain noninvasive accesss to patient-specific cortical activity. Access to such data would ultimately increase the number of patients who could be effectively treated for pathological cortical conditions such as temporal lobe epilepsy. In this paper, we present the effects of spatial adaptive refinement on the inverse EEG problem and show that the use of adaptive methods allow for significantly better estimates of electric and potential fileds within the brain through an inverse procedure. To test these methods, we have constructed several finite element head models from magneteic resonance images of a patient. The finite element meshes ranged in size from 2724 nodes and 12,812 elements to 5224 nodes and 29,135 tetrahedral elements, depending on the level of discretization. We show that an adaptive meshing algorithm minimizes the error in the forward problem due to spatial discretization and thus increases the accuracy of the inverse solution.

  6. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posch, H.A.; Hoover, W.G.; Kum, O.

    1995-08-01

    We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequilibrium molecular dynamics and smooth-particle applied mechanics. The time-reversible {ital microscopic} equations of motion are isomorphic to the smooth-particle description of inviscid {ital macroscopic} continuum mechanics. The corresponding microscopic particle interactions are relatively weak and long ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic,more » even at high density. For the soft Lucy potential which we use in the present work, nearly all the system energy is potential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosities can be understood, in terms of a simple weak-scattering model, and that this understanding is useful in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.« less

  7. Simulations of potential future conditions in the cache critical groundwater area, Arkansas

    USGS Publications Warehouse

    Rashid, Haveen M.; Clark, Brian R.; Mahdi, Hanan H.; Rifai, Hanadi S.; Al-Shukri, Haydar J.

    2015-01-01

    A three-dimensional finite-difference model for part of the Mississippi River Valley alluvial aquifer in the Cache Critical Groundwater Area of eastern Arkansas was constructed to simulate potential future conditions of groundwater flow. The objectives of this study were to test different pilot point distributions to find reasonable estimates of aquifer properties for the alluvial aquifer, to simulate flux from rivers, and to demonstrate how changes in pumping rates for different scenarios affect areas of long-term water-level declines over time. The model was calibrated using the parameter estimation code. Additional calibration was achieved using pilot points with regularization and singular value decomposition. Pilot point parameter values were estimated at a number of discrete locations in the study area to obtain reasonable estimates of aquifer properties. Nine pumping scenarios for the years 2011 to 2020 were tested and compared to the simulated water-level heads from 2010. Hydraulic conductivity values from pilot point calibration ranged between 42 and 173 m/d. Specific yield values ranged between 0.19 and 0.337. Recharge rates ranged between 0.00009 and 0.0006 m/d. The model was calibrated using 2,322 hydraulic head measurements for the years 2000 to 2010 from 150 observation wells located in the study area. For all scenarios, the volume of water depleted ranged between 5.7 and 23.3 percent, except in Scenario 2 (minimum pumping rates), in which the volume increased by 2.5 percent.

  8. Spray Combustion Modeling with VOF and Finite-Rate Chemistry

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Wang, Ten-See

    1996-01-01

    A spray atomization and combustion model is developed based on the volume-of-fluid (VOF) transport equation with finite-rate chemistry model. The gas-liquid interface mass, momentum and energy conservation laws are modeled by continuum surface force mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed range flows. The objectives of the present study are: (1) to develop and verify the fractional volume-of-fluid (VOF) cell partitioning approach into a predictor-corrector algorithm to deal with multiphase (gas-liquid) free surface flow problems; (2) to implement the developed unified algorithm in a general purpose computational fluid dynamics (CFD) code, Finite Difference Navier-Stokes (FDNS), with droplet dynamics and finite-rate chemistry models; and (3) to demonstrate the effectiveness of the present approach by simulating benchmark problems of jet breakup/spray atomization and combustion. Modeling multiphase fluid flows poses a significant challenge because a required boundary must be applied to a transient, irregular surface that is discontinuous, and the flow regimes considered can range from incompressible to highspeed compressible flows. The flow-process modeling is further complicated by surface tension, interfacial heat and mass transfer, spray formation and turbulence, and their interactions. The major contribution of the present method is to combine the novel feature of the Volume of Fluid (VOF) method and the Eulerian/Lagrangian method into a unified algorithm for efficient noniterative, time-accurate calculations of multiphase free surface flows valid at all speeds. The proposed method reformulated the VOF equation to strongly couple two distinct phases (liquid and gas), and tracks droplets on a Lagrangian frame when spray model is required, using a unified predictor-corrector technique to account for the non-linear linkages through the convective contributions of VOF. The discontinuities within the sharp interface will be modeled as a volume force to avoid stiffness. Formations of droplets, tracking of droplet dynamics and modeling of the droplet breakup/evaporation, are handled through the same unified predictor-corrector procedure. Thus the new algorithm is non-iterative and is flexible for general geometries with arbitrarily complex topology in free surfaces. The FDNS finite-difference Navier-Stokes code is employed as the baseline of the current development. Benchmark test cases of shear coaxial LOX/H2 liquid jet with atomization/combustion and impinging jet test cases are investigated in the present work. Preliminary data comparisons show good qualitative agreement between data and the present analysis. It is indicative from these results that the present method has great potential to become a general engineering design analysis and diagnostics tool for problems involving spray combustion.

  9. Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis

    NASA Astrophysics Data System (ADS)

    Royston, Thomas J.; Yazicioglu, Yigit; Loth, Francis

    2003-02-01

    The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the buried sources are formulated and compared with numerical finite element simulations and experimental studies on finite dimension phantom models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium model agree well with numerically obtained ``exact'' half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.

  10. Surface cracks in a plate of finite width under tension or bending

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Boduroglu, H.

    1984-01-01

    The problem of a finite plate containing collinear surface cracks is considered and solved by using the line spring model with plane elasticity and Reissner's plate theory. The main focus is on the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors in an effort to provide extensive numerical results which may be useful in applications. Some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks, and two corner cracks for wide range of relative dimensions. Particularly in corner cracks, the agreement with the finite element solution is surprisingly very good. The results are obtained for semi-elliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.

  11. Surface cracks in a plate of finite width under extension or bending

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Boduroglu, H.

    1984-01-01

    In this paper the problem of a finite plate containing collinear surface cracks is considered. The problem is solved by using the line spring model with plane elasticity and Reissner's plate theory. The main purpose of the study is to investigate the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors and to provide extensive numerical results which may be useful in applications. First, some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks and two corner cracks for wide range of relative dimensions. Particularly in corner cracks the agreement with the finite element solution is surprisingly very good. The results are obtained for semielliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.

  12. Optimization of block-floating-point realizations for digital controllers with finite-word-length considerations.

    PubMed

    Wu, Jun; Hu, Xie-he; Chen, Sheng; Chu, Jian

    2003-01-01

    The closed-loop stability issue of finite-precision realizations was investigated for digital controllers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.

  13. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    NASA Astrophysics Data System (ADS)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  14. Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading

    NASA Astrophysics Data System (ADS)

    Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.

    2017-12-01

    Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.

  15. Finite-amplitude pressure waves in the radial mode of a cylinder

    NASA Technical Reports Server (NTRS)

    Kubo, I.; Moore, F. K.

    1972-01-01

    A numerical study of finite-strength, isentropic pressure waves transverse to the axis of a circular cylinder was made for the radial resonant mode. The waves occur in a gas otherwise at rest, filling the cylinder. A method of characteristics was used for the numerical solution. For small but finite amplitudes, calculations indicate the existence of waves of permanent potential form. For larger amplitudes, a shock is indicated to occur. The critical value of the initial amplitude parameter in the power series is found to be 0.06 to 0.08, under various types of initial conditions.

  16. Finite element analysis of two disk rotor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Harsh Kumar

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding amore » relationship between natural whirl frequencies and rotation of the rotor.« less

  17. Plasticity - Theory and finite element applications.

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Levine, H. S.

    1972-01-01

    A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.

  18. An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1988-01-01

    An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.

  19. Finite-difference simulation of transonic separated flow using a full potential boundary layer interaction approach

    NASA Technical Reports Server (NTRS)

    Van Dalsem, W. R.; Steger, J. L.

    1983-01-01

    A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.

  20. Effect of grid transparency and finite collector size on determining ion temperature and density by the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Troy, B. E., Jr.; Maier, E. J.

    1975-01-01

    The effects of the grid transparency and finite collector size on the values of thermal ion density and temperature determined by the standard RPA (retarding potential analyzer) analysis method are investigated. The current-voltage curves calculated for varying RPA parameters and a given ion mass, temperature, and density are analyzed by the standard RPA method. It is found that only small errors in temperature and density are introduced for an RPA with typical dimensions, and that even when the density error is substantial for nontypical dimensions, the temperature error remains minimum.

  1. Majorana bound states in the finite-length chain

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2015-08-01

    Recent experiments investigating edge states in ferromagnetic atomic chains on superconducting substrate are analyzed. In particular, finite size effects are considered. It is shown how the energy of the Majorana bound state depends on the length of the chain, as well as on the parameters of the model. Oscillations of the energy of the bound edge state in the chain as a function of the length of the chain, and as a function of the applied voltage (or the chemical potential) are studied. In particular, it has been shown that oscillations can exist only for some values of the effective potential.

  2. Simulation of miniature endplate potentials in neuromuscular junctions by using a cellular automaton

    NASA Astrophysics Data System (ADS)

    Avella, Oscar Javier; Muñoz, José Daniel; Fayad, Ramón

    2008-01-01

    Miniature endplate potentials are recorded in the neuromuscular junction when the acetylcholine contents of one or a few synaptic vesicles are spontaneously released into the synaptic cleft. Since their discovery by Fatt and Katz in 1952, they have been among the paradigms in neuroscience. Those potentials are usually simulated by means of numerical approaches, such as Brownian dynamics, finite differences and finite element methods. Hereby we propose that diffusion cellular automata can be a useful alternative for investigating them. To illustrate this point, we simulate a miniature endplate potential by using experimental parameters. Our model reproduces the potential shape, amplitude and time course. Since our automaton is able to track the history and interactions of each single particle, it is very easy to introduce non-linear effects with little computational effort. This makes cellular automata excellent candidates for simulating biological reaction-diffusion processes, where no other external forces are involved.

  3. Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems

    NASA Technical Reports Server (NTRS)

    Chen, Hsin-Chu; He, Ai-Fang

    1993-01-01

    The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.

  4. Thermocapillary flow contribution to dropwise condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-11-01

    With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.

  5. Critical insight into the influence of the potential energy surface on fission dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazurek, K.; Grand Accelerateur National d'Ions Lourds; Schmitt, C.

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. Whenmore » utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.« less

  6. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn; Liu, Xing; Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu

    We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fouriermore » transforms are the beams themselves.« less

  7. Mean-Potential Law in Evolutionary Games

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  8. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.

    PubMed

    Keegan, Lindsay; Dushoff, Jonathan

    2014-05-01

    The basic reproductive number, R0, provides a foundation for evaluating how various factors affect the incidence of infectious diseases. Recently, it has been suggested that, particularly for vector-transmitted diseases, R0 should be modified to account for the effects of finite host population within a single disease transmission generation. Here, we use a transmission factor approach to calculate such "finite-population reproductive numbers," under the assumption of homogeneous mixing, for both vector-borne and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-population reproductive numbers for both host-to-host and vector-to-vector generations, assuming that the vector population is effectively infinite. We find simple, interpretable formulas for all three of these quantities. In the direct case, we find that finite-population reproductive numbers diverge from R0 before R0 reaches half of the population size. In the vector-transmitted case, we find that the host-to-host number diverges at even lower values of R0, while the vector-to-vector number diverges very little over realistic parameter ranges.

  9. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  10. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2017-08-17

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  11. General formulation of long-range degree correlations in complex networks

    NASA Astrophysics Data System (ADS)

    Fujiki, Yuka; Takaguchi, Taro; Yakubo, Kousuke

    2018-06-01

    We provide a general framework for analyzing degree correlations between nodes separated by more than one step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions are introduced to fully describe long-range degree correlations with respect to degrees k and k' of two nodes and shortest path length l between them. We present general relations among these probability distributions and clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by the finite-size effect, the functional forms of these probability distributions for random networks are analytically evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to real-world networks.

  12. A generalized plasma dispersion function for electron damping in tokamak plasmas

    DOE PAGES

    Berry, L. A.; Jaeger, E. F.; Phillips, C. K.; ...

    2016-10-14

    Radio frequency wave propagation in finite temperature, magnetized plasmas exhibits a wide range of physics phenomena. The plasma response is nonlocal in space and time, and numerous modes are possible with the potential for mode conversions and transformations. Additionally, diffraction effects are important due to finite wavelength and finite-size wave launchers. Multidimensional simulations are required to describe these phenomena, but even with this complexity, the fundamental plasma response is assumed to be the uniform plasma response with the assumption that the local plasma current for a Fourier mode can be described by the Stix conductivity. But, for plasmas with non-uniformmore » magnetic fields, the wave vector itself is nonlocal. When resolved into components perpendicular (k ) and parallel (k ||) to the magnetic field, locality of the parallel component can easily be violated when the wavelength is large. The impact of this inconsistency is that estimates of the wave damping can be incorrect (typically low) due to unresolved resonances. For the case of ion cyclotron damping, this issue has already been addressed by including the effect of parallel magnetic field gradients. In this case, a modified plasma response (Z function) allows resonance broadening even when k || = 0, and this improves the convergence and accuracy of wave simulations. In our paper, we extend this formalism to include electron damping and find improved convergence and accuracy for parameters where electron damping is dominant, such as high harmonic fast wave heating in the NSTX-U tokamak, and helicon wave launch for off-axis current drive in the DIII-D tokamak.« less

  13. In vitro human epidermal permeation of nicotine from electronic cigarette refill liquids and implications for dermal exposure assessment.

    PubMed

    Frasch, H Frederick; Barbero, Ana M

    2017-11-01

    Nicotine plus flavorings in a propylene glycol (PG) vehicle are the components of electronic cigarette liquids (e-liquids), which are vaporized and inhaled by the user. Dermal exposure to nicotine and e-liquids may occur among workers in mixing and filling of e-cigarettes in the manufacturing process. Inadvertent skin contact among consumers is also a concern. In vitro nicotine permeation studies using heat-separated human epidermis were performed with surrogate and two commercial e-liquids, neat and aqueous nicotine donor formulations. Steady-state fluxes (J ss ), and lag times (t lag ) were measured for each formulation. In addition, transient (4 h) exposure and finite dose (1-10 μl/cm 2 ) experiments were undertaken using one commercial e-liquid. Average J ss (μg/cm 2 /h) from formulations were: nicotine in PG (24 mg/ml): 3.97; commercial e-liquid containing menthol (25 mg/ml nicotine): 10.2; commercial e-liquid containing limonene (25 mg/ml nicotine): 23.7; neat nicotine: 175. E-liquid lag times ranged from 5 to 10 h. Absorbed fraction of nicotine from finite doses was ≈0.3 at 48 h. The data were applied to transient exposure and finite dose dermal exposure assessment models and to a simple pharmacokinetic model. Three illustrative exposure scenarios demonstrate use of the data to predict systemic uptake and plasma concentrations from dermal exposure. The data demonstrate the potential for significant nicotine absorption through skin contact with e-cigarette refill solutions and the neat nicotine used to mix them.

  14. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. © IMechE 2016.

  15. Finite micro-tab system for load control on a wind turbine

    NASA Astrophysics Data System (ADS)

    Bach, A. B.; Lennie, M.; Pechlivanoglou, G.; Nayeri, C. N.; Paschereit, C. O.

    2014-06-01

    Finite micro-tabs have been investigated experimentally to evaluate the potential for load control on wind turbines. Two dimensional full span, as well as multiple finite tabs of various aspect ratios have been studied on an AH93W174 airfoil at different chord wise positions. A force balance was used to measure the aerodynamic loads. Furthermore, the wake vortex system consisting of the Karman vortex street as well as the tab tip vortices was analyzed with a 12-hole probe and hot wire anemometry. Finally, conventional oil paint as well as a quantitative digital flow analysis technique called SMARTviz were used to visualize the flow around the finite tab configurations. Results have shown that the devices are an effective solution to alleviate the airfoils overall load. The influence of the tab height, tab position as well as the finite tab aspect ratio on the lift and lift to drag ratio have been evaluated. It could be shown, that the lift difference can either be varied by changing the tab height as well as by altering the aspect ratio of the finite tabs. The drag of a two-dimensional flap is directly associated with the vortex street, while in the case of the finite tab, the solidity ratio of the tabs has the strongest effect on the drag. Therefore, the application of a finite tab system showed to improve the lift to drag ratio.

  16. Finite-Time Destruction of Entanglement and Non-Locality by Environmental Influences

    NASA Astrophysics Data System (ADS)

    Ann, Kevin; Jaeger, Gregg

    2009-07-01

    Entanglement and non-locality are non-classical global characteristics of quantum states important to the foundations of quantum mechanics. Recent investigations have shown that environmental noise, even when it is entirely local in influence, can destroy both of these properties in finite time despite giving rise to full quantum state decoherence only in the infinite time limit. These investigations, which have been carried out in a range of theoretical and experimental situations, are reviewed here.

  17. Enhanced CAX Architecture, Design and Methodology - SPHINX (Architecture, definition et methodologie ameliorees des exercices assistes par ordinateur (CAX) - SPHINX)

    DTIC Science & Technology

    2016-08-01

    REPORT TR-MSG-106 Enhanced CAX Architecture, Design and Methodology – SPHINX (Architecture, définition et méthodologie améliorées des exercices...STO TECHNICAL REPORT TR-MSG-106 Enhanced CAX Architecture, Design and Methodology – SPHINX (Architecture, définition et méthodologie...transition, application and field-testing, experimentation and a range of related scientific activities that include systems engineering, operational

  18. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE PAGES

    Grayver, Alexander V.; Kolev, Tzanio V.

    2015-11-01

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  19. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayver, Alexander V.; Kolev, Tzanio V.

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  20. Strain-energy-release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; Obrien, T. K.

    1987-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtural crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  1. Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan

    The absorption spectrum of the MnO$_{4}$$^{-}$ ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high computational demands. Therefore, implicit solvent models are usually employed. Here we show that implicit solvent models are not sufficiently accurate to model the solvent shift of MnO$_{4}$$^{-}$, and we analyze the origins of their failure. We obtain the correct solvent shift for MnO$_{4}$$^{-}$ in aqueous solution by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO$_{4}$$^{-}$ absorption spectrum, whose assignment has been elusive.

  2. Properties of the spindle-to-cusp transition in extensional capsule dynamics

    NASA Astrophysics Data System (ADS)

    Dodson, W. R., III; Dimitrakopoulos, P.

    2014-05-01

    Our earlier letter (Dodson W. R. III and Dimitrakopoulos P., Phys. Rev. Lett., 101 (2008) 208102) revealed that a (strain-hardening) Skalak capsule in a planar extensional Stokes flow develops for stability reasons steady-state shapes whose edges from spindled become cusped with increasing flow rate owing to a transition of the edge tensions from tensile to compressive. A bifurcation in the steady-state shapes was also found (i.e. existence of both spindled and cusped edges for a range of high flow rates) by implementing different transient processes, owing to the different evolution of the membrane tensions. In this paper we show that the bifurcation range is wider at higher viscosity ratio (owing to the lower transient membrane tensions accompanied the slower capsule deformation starting from the quiescent capsule shape), while it contracts and eventually disappears as the viscosity ratio decreases. The spindle-to-cusp transition is shown to represent a self-similar finite-time singularity formation which for real capsules with very small but finite thickness is expected to be an apparent singularity, i.e. formation of very large (but finite) positive and negative edge curvatures.

  3. Improving the Lieb-Robinson Bound for Long-Range Interactions

    NASA Astrophysics Data System (ADS)

    Matsuta, Takuro; Koma, Tohru; Nakamura, Shu

    2017-02-01

    We improve the Lieb-Robinson bound for a wide class of quantum many-body systems with long-range interactions decaying by power law. As an application, we show that the group velocity of information propagation grows by power law in time for such systems, whereas systems with short-range interactions exhibit a finite group velocity as shown by Lieb and Robinson.

  4. Nonconservative and reverse spectral transfer in Hasegawa-Mima turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, P.W.; Newman, D.E.

    1993-01-01

    The dual cascade is generally represented as a conservative cascade of enstrophy to short wavelengths through an enstrophy similarity range and an inverse cascade of energy to long wavelengths through an energy similarity range. This picture, based on a proof due to Kraichnan [Phys. Fluids 10, 1417 (1967)], is found to be significantly modified for a spectra of finite extent. Dimensional arguments and direct measurement of spectral flow in Hasegawa-Mima turbulence indicate that for both the energy and enstrophy cascades, transfer of the conserved quantity is accompanied by a nonconservative transfer of the other quantity. The decrease of a givenmore » invariant (energy or enstrophy) in the nonconservative transfer in one similarity range is balanced by the increase of that quantity in the other similarity range, thus maintaining net invariance. The increase or decrease of a given invariant quantity in one similarity range depends on the injection scale and is consistent with that quantity being carried in a self-similar transfer of the other invariant quantity. This leads, in an inertial range of finite size, to some energy being carried to small scales and some enstrophy being carried to large scales.« less

  5. Nonconservative and reverse spectral transfer in Hasegawa--Mima turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, P.W.; Newman, D.E.

    1993-07-01

    The dual cascade is generally represented as a conservative cascade of enstrophy to short wavelengths through an enstrophy similarity range and an inverse cascade of energy to long wavelengths through an energy similarity range. This picture, based on a proof due to Kraichnan [Phys. Fluids [bold 10], 1417 (1967)], is found to be significantly modified for spectra of finite extent. Dimensional arguments and direct measurement of spectral flow in Hasegawa--Mima turbulence indicate that for both the energy and enstrophy cascades, transfer of the conserved quantity is accompanied by a nonconservative transfer of the other quantity. The decrease of a givenmore » invariant (energy or enstrophy) in the nonconservative transfer in one similarity range is balanced by the increase of that quantity in the other similarity range, thus maintaining net invariance. The increase or decrease of a given invariant quantity in one similarity range depends on the injection scale and is consistent with that quantity being carried in a self-similar transfer of the other invariant quantity. This leads, in an inertial range of finite size, to some energy being carried to small scales and some enstrophy being carried to large scales.« less

  6. Determination of ankle external fixation stiffness by expedited interactive finite element analysis.

    PubMed

    Nielsen, Jonathan K; Saltzman, Charles L; Brown, Thomas D

    2005-11-01

    Interactive finite element analysis holds the potential to quickly and accurately determine the mechanical stiffness of alternative external fixator frame configurations. Using as an example Ilizarov distraction of the ankle, a finite element model and graphical user interface were developed that provided rapid, construct-specific information on fixation rigidity. After input of specific construct variables, the finite element software determined the resulting tibial displacement for a given configuration in typically 15s. The formulation was employed to investigate constructs used to treat end-stage arthritis, both in a parametric series and for five specific clinical distraction cases. Parametric testing of 15 individual variables revealed that tibial half-pins were much more effective than transfixion wires in limiting axial tibial displacement. Factors most strongly contributing to stiffening the construct included placing the tibia closer to the fixator rings, and mounting the pins to the rings at the nearest circumferential location to the bone. Benchtop mechanical validation results differed inappreciably from the finite element computations.

  7. Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers

    NASA Astrophysics Data System (ADS)

    Li, Gangqiang; Zhu, Zheng H.; Ruel, Stephane; Meguid, S. A.

    2017-08-01

    This paper developed a new multiphysics finite element method for the elastodynamic analysis of space debris deorbit by a bare flexible electrodynamic tether. Orbital motion limited theory and dynamics of flexible electrodynamic tethers are discretized by the finite element method, where the motional electric field is variant along the tether and coupled with tether deflection and motion. Accordingly, the electrical current and potential bias profiles of tether are solved together with the tether dynamics by the nodal position finite element method. The newly proposed multiphysics finite element method is applied to analyze the deorbit dynamics of space debris by electrodynamic tethers with a two-stage energy control strategy to ensure an efficient and stable deorbit process. Numerical simulations are conducted to study the coupled effect between the motional electric field and the tether dynamics. The results reveal that the coupling effect has a significant influence on the tether stability and the deorbit performance. It cannot be ignored when the libration and deflection of the tether are significant.

  8. Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    PubMed Central

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108

  9. Extended finite element method with simplified spherical harmonics approximation for the forward model of optical molecular imaging.

    PubMed

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.

  10. Benchmark study of ionization potentials and electron affinities of armchair single-walled carbon nanotubes using density functional theory

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Hu, Zhubin; Jiang, Yanrong; He, Xiao; Sun, Zhenrong; Sun, Haitao

    2018-05-01

    The intrinsic parameters of carbon nanotubes (CNTs) such as ionization potential (IP) and electron affinity (EA) are closely related to their unique properties and associated applications. In this work, we demonstrated the success of optimal tuning method based on range-separated (RS) density functionals for both accurate and efficient prediction of vertical IPs and electron affinities (EAs) of a series of armchair single-walled carbon nanotubes C20n H20 (n  =  2–6) compared to the high-level IP/EA equation-of-motion coupled-cluster method with single and double substitutions (IP/EA-EOM-CCSD). Notably, the resulting frontier orbital energies (–ε HOMO and –ε LUMO) from the tuning method exhibit an excellent approximation to the corresponding IPs and EAs, that significantly outperform other conventional density functionals. In addition, it is suggested that the RS density functionals that possess both a fixed amount of exact exchange in the short-range and a correct long-range asymptotic behavior are suitable for calculating electronic structures of finite-sized CNTs. Next the performance of density functionals for description of various molecular properties such as chemical potential, hardness and electrophilicity are assessed as a function of tube length. Thanks to the efficiency and accuracy of this tuning method, the related behaviors of much longer armchair single-walled CNTs until C200H20 were studied. Lastly, the present work is proved to provide an efficient theoretical tool for future materials design and reliable characterization of other interesting properties of CNT-based systems.

  11. Quantum critical environment assisted quantum magnetometer

    NASA Astrophysics Data System (ADS)

    Jaseem, Noufal; Omkar, S.; Shaji, Anil

    2018-04-01

    A central qubit coupled to an Ising ring of N qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of N values.

  12. A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.

    1993-01-01

    This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).

  13. Computing diffusivities from particle models out of equilibrium

    NASA Astrophysics Data System (ADS)

    Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia

    2018-04-01

    A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.

  14. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.

    PubMed

    Somodi, P K; Twitchett-Harrison, A C; Midgley, P A; Kardynał, B E; Barnes, C H W; Dunin-Borkowski, R E

    2013-11-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p-n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p-n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. © 2013 Elsevier B.V. All rights reserved.

  15. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    PubMed

    Przybytek, Michal; Helgaker, Trygve

    2013-08-07

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.

  16. From progressive to finite deformation, and back: the universal deformation matrix

    NASA Astrophysics Data System (ADS)

    Provost, A.; Buisson, C.; Merle, O.

    2003-04-01

    It is widely accepted that any finite strain recorded in the field may be interpreted in terms of the simultaneous combination of a pure shear component with one or several simple shear components. To predict strain in geological structures, approximate solutions may be obtained by multiplying successive small increments of each elementary strain component. A more rigorous method consists in achieving the simultaneous combination in the velocity gradient tensor but solutions already proposed in the literature are valid for special cases only and cannot be used, e.g., for the general combination of a pure shear component and six elementary simple shear components. In this paper, we show that the combination of any strain components is as simple as a mouse click, both analytically and numerically. The finite deformation matrix is given by L=exp(L.Δt) where L.Δt is the time-integrated velocity gradient tensor. This method makes it possible to predict finite strain for any combination of strain components. Reciprocally, L.Δt=ln(D) , which allows to unravel the simplest deformation history that might be liable for a given finite deformation. Given the strain ellipsoid only, it is still possible to constrain the range of compatible deformation matrices and thus the range of strain component combinations. Interestingly, certain deformation matrices, though geologically sensible, have no real logarithm so cannot be explained by a deformation history implying strain rate components with constant proportions, what implies significant changes of the stress field during the history of deformation. The study as a whole opens the possibility for further investigations on deformation analysis in general, the method could be used wathever the configuration is.

  17. Reflection of solar radiation by a cylindrical cloud

    NASA Technical Reports Server (NTRS)

    Smith, G. L.

    1989-01-01

    Potential applications of an analytic method for computing the solar radiation reflected by a cylindrical cloud are discussed, including studies of radiative transfer within finite clouds and evaluations of these effects on other clouds and on remote sensing problems involving finite clouds. The pattern of reflected sunlight from a cylindrical cloud as seen at a large distance has been considered and described by the bidirectional function method for finite cloud analysis, as previously studied theoretically for plane-parallel atmospheres by McKee and Cox (1974); Schmetz and Raschke (1981); and Stuhlmann et al. (1985). However, the lack of three-dimensional radiative transfer solutions for anisotropic scattering media have hampered theoretical investigations of bidirectional functions for finite clouds. The present approach permits expression of the directional variation of the radiation field as a spherical harmonic series to any desired degree and order.

  18. Evaluation of the use of a singularity element in finite element analysis of center-cracked plates

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Gross, B.; Srawley, J., E.

    1972-01-01

    Two different methods are applied to the analyses of finite width linear elastic plates with central cracks. Both methods give displacements as a primary part of the solution. One method makes use of Fourier transforms. The second method employs a coarse mesh of triangular second-order finite elements in conjunction with a single singularity element subjected to appropriate additional constraints. The displacements obtained by these two methods are in very good agreement. The results suggest considerable potential for the use of a cracked element for related crack problems, particularly in connection with the extension to nonlinear material behavior.

  19. Application of a data base management system to a finite element model

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1980-01-01

    In today's software market, much effort is being expended on the development of data base management systems (DBMS). Most commercially available DBMS were designed for business use. However, the need for such systems within the engineering and scientific communities is becoming apparent. A potential DBMS application that appears attractive is the handling of data for finite element engineering models. The applications of a commercially available, business-oriented DBMS to a structural engineering, finite element model is explored. The model, DBMS, an approach to using the DBMS, advantages and disadvantages are described. Plans for research on a scientific and engineering DBMS are discussed.

  20. The impact of finite-area inhomogeneities on resistive and Hall measurement

    NASA Astrophysics Data System (ADS)

    Koon, Daniel

    2013-03-01

    I derive an iterative expression for the electric potential in an otherwise homogeneous thin specimen as the result of a finite-area inhomogeneity in either the direct conductance, the Hall conductance, or both. This expression extends to the finite-area regime the calculation of the effect of such inhomogeneities on the measurement error in the sheet resistance and Hall sheet resistance. I then test these results on the exactly-solvable case of a circular inhomogeneity equally distant from the four electrodes of either a square four-point-probe array on an infinitely large conducting specimen or a circular van der Pauw specimen with symmetrically-placed electrodes.

  1. Directed motion of vortices and annihilation of vortex-antivortex pairs in finite-gap superconductors via hot-lattice routes

    NASA Astrophysics Data System (ADS)

    Gulian, Ellen D.; Melkonyan, Gurgen G.; Gulian, Armen M.

    2017-07-01

    Using finite gap, time-dependent Ginzburg-Landau equations, generalized to include non-thermal phonons, we report numerical simulations of vortex nucleation, propagation, and annihilation in thin, finite strips of magnetic-impurity free, perfectly homogeneous superconductors. When a steady electric current passes through the strip with either surface defects or nonequilibrium phonon sources (e.g., local ;hotspots;), periodic vortex generation and annihilation is observed even in the absence of external magnetic fields. Local pulses of electric field are produced upon annihilation. The injected phonon lines steer the vortices during their motion within the strip, potentially allowing control of the annihilation site.

  2. Performance of low-rank QR approximation of the finite element Biot-Savart law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D A; Fasenfest, B J

    2006-01-12

    We are concerned with the computation of magnetic fields from known electric currents in the finite element setting. In finite element eddy current simulations it is necessary to prescribe the magnetic field (or potential, depending upon the formulation) on the conductor boundary. In situations where the magnetic field is due to a distributed current density, the Biot-Savart law can be used, eliminating the need to mesh the nonconducting regions. Computation of the Biot-Savart law can be significantly accelerated using a low-rank QR approximation. We review the low-rank QR method and report performance on selected problems.

  3. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  4. Two-Nucleon Systems in a Finite Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul

    2014-11-01

    I present the formalism and methodology for determining the nucleon-nucleon scattering parameters from the finite volume spectra obtained from lattice quantum chromodynamics calculations. Using the recently derived energy quantization conditions and the experimentally determined scattering parameters, the bound state spectra for finite volume systems with overlap with the 3S1-3D3 channel are predicted for a range of volumes. It is shown that the extractions of the infinite-volume deuteron binding energy and the low-energy scattering parameters, including the S-D mixing angle, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with spatial extentsmore » L satisfying fm <~ L <~ 14 fm.« less

  5. Sacroiliac joint stability: Finite element analysis of implant number, orientation, and superior implant length.

    PubMed

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2018-03-18

    To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System ® ). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.

  6. Sacroiliac joint stability: Finite element analysis of implant number, orientation, and superior implant length

    PubMed Central

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2018-01-01

    AIM To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. METHODS An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System®). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. RESULTS Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. CONCLUSION Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results. PMID:29564210

  7. A study of the response of nonlinear springs

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Knott, T. W.; Johnson, E. R.

    1991-01-01

    The various phases to developing a methodology for studying the response of a spring-reinforced arch subjected to a point load are discussed. The arch is simply supported at its ends with both the spring and the point load assumed to be at midspan. The spring is present to off-set the typical snap through behavior normally associated with arches, and to provide a structure that responds with constant resistance over a finite displacement. The various phases discussed consist of the following: (1) development of the closed-form solution for the shallow arch case; (2) development of a finite difference analysis to study (shallow) arches; and (3) development of a finite element analysis for studying more general shallow and nonshallow arches. The two numerical analyses rely on a continuation scheme to move the solution past limit points, and to move onto bifurcated paths, both characteristics being common to the arch problem. An eigenvalue method is used for a continuation scheme. The finite difference analysis is based on a mixed formulation (force and displacement variables) of the governing equations. The governing equations for the mixed formulation are in first order form, making the finite difference implementation convenient. However, the mixed formulation is not well-suited for the eigenvalue continuation scheme. This provided the motivation for the displacement based finite element analysis. Both the finite difference and the finite element analyses are compared with the closed form shallow arch solution. Agreement is excellent, except for the potential problems with the finite difference analysis and the continuation scheme. Agreement between the finite element analysis and another investigator's numerical analysis for deep arches is also good.

  8. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  9. FINITE EXPANSION METHOD FOR THE CALCULATION AND INTERPRETATION OF MOLECULAR ELECTROSTATIC POTENTIALS

    EPA Science Inventory

    Because it is useful to have the molecular electrostatic potential as an element in a complex scheme to assess the toxicity of large molecules, efficient and reliable methods are needed for the calculation and characterization of these potentials. A multicenter multipole expansio...

  10. Ethical considerations in resource allocation in a cochlear implant program.

    PubMed

    Westerberg, Brian D; Pijl, Sipke; McDonald, Michael

    2008-04-01

    To review processes of resource allocation and the ethical considerations relevant to the fair allocation of a limited number of cochlear implants to increasing numbers of potential recipients. Review of relevant considerations. Tertiary referral hospital. Editorial discussion of the ethical issues of resource allocation. Heterogeneity of audiometric thresholds, self-reported disability of hearing loss, age of the potential cochlear implant recipient, cost-effectiveness, access to resources, compliance with follow-up, social support available to the recipient, social consequences of hearing impairment, and other recipient-related factors. In a publicly funded health care system, there will always be a need for decision-making processes for allocation of finite fiscal resources. All candidates for cochlear implantation deserve fair consideration. However, they are a heterogeneous group in terms of needs and expected outcomes consisting of traditional and marginal candidates, with a wide range of benefit from acoustic amplification. We argue that implant programs should thoughtfully prioritize treatment on the basis of need and potential benefit. We reject queuing on the basis of "first-come, first-served" or on the basis of perceived social worth.

  11. Comparison of Nonlinear Random Response Using Equivalent Linearization and Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2000-01-01

    A recently developed finite-element-based equivalent linearization approach for the analysis of random vibrations of geometrically nonlinear multiple degree-of-freedom structures is validated. The validation is based on comparisons with results from a finite element based numerical simulation analysis using a numerical integration technique in physical coordinates. In particular, results for the case of a clamped-clamped beam are considered for an extensive load range to establish the limits of validity of the equivalent linearization approach.

  12. Dynamic modulus estimation and structural vibration analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.

    1998-11-18

    Often the dynamic elastic modulus of a material with frequency dependent properties is difficult to estimate. These uncertainties are compounded in any structural vibration analysis using the material properties. Here, different experimental techniques are used to estimate the properties of a particular elastomeric material over a broad frequency range. Once the properties are determined, various structures incorporating the elastomer are analyzed by an interactive finite element method to determine natural frequencies and mode shapes. Then, the finite element results are correlated with results obtained by experimental modal analysis.

  13. Finite Element Analysis of M15 and M19 Mines Under Wheeled Vehicle Load

    DTIC Science & Technology

    2008-03-01

    the plate statically. An implicit finite element option in a code called LSDYNA was used to model the pressure generated in the explosive by the...figure 4 for the M19 mines. Maximum pressure in the explosive for each mine calculated by LSDYNA code shown for a variety of plate sizes and weights...Director U.S. Army TRADOC Analysis Center-WSMR ATTN: ATRC-WSS-R White Sands Missile Range, NM 88002 Chemical Propulsion Information Agency ATTN

  14. Stress-intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1985-01-01

    The purpose of this paper is to present stress-intensity factors for a wide range of nearly semi-elliptical surface cracks in pipes and rods. The configurations were subjected to either remote tension or bending loads. For pipes, the ratio of crack depth to crack length (a/c) ranged from 0.6 to 1; the ratio of crack depth to wall thickness (a/t) ranged from 0.2 to 0.8; and the ratio of internal radius to wall thickness (R/t) ranged from 1 to 10. For rods, the ratio of crack depth to crack length also ranged from 0.6 to 1; and the ratio of crack depth to rod diameter (a/D) ranged from 0.05 to 0.35. These particular crack configurations were chosen to cover the range of crack shapes (a/c) that have been observed in experiments conducted on pipes and rods under tension and bending fatigue loads. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employed singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated using a nodal-force method.

  15. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine

    PubMed Central

    Pietak, Alexis; Levin, Michael

    2016-01-01

    Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and assist the development of specific interventions to achieve greater control of pattern during morphogenesis and remodeling. PMID:27458581

  16. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    NASA Astrophysics Data System (ADS)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirschner, Matthew S.; Ding, Wendu; Li, Yuxiu

    In this study, we demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result,more » change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Lastly, such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.« less

  18. Low-frequency instabilities and plasma turbulence

    NASA Technical Reports Server (NTRS)

    Ilic, D. B.

    1973-01-01

    A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.

  19. Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J. H.; Mauk, B. H.; Cohen, I. J.; Jaynes, A. N.; Craft, J. V.; Wilder, F. D.; Baker, D. N.; Reeves, G. D.; Gershman, D. J.; Avanov, L. A.; Dorelli, J. C.; Giles, B. L.; Pollock, C. J.; Schmid, D.; Nakamura, R.; Strangeway, R. J.; Russell, C. T.; Artemyev, A. V.; Runov, A.; Angelopoulos, V.; Spence, H. E.; Torbert, R. B.; Burch, J. L.

    2016-08-01

    We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at 7-9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from 130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

  20. Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com

    2015-04-07

    We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less

  1. Energy Limits of Electron Acceleration in the Plasma Sheet During Substorms: A Case Study with the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J. H.; Mauk, B. H.; Cohen, I. J.; Jaynes, A. N.; Craft, J. V.; Wilder, F. D.; Baker, D. N.; hide

    2016-01-01

    We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASAs Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at approx. 7-9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from approx. 130 keV to >500 keV, with each depolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

  2. Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang

    2015-01-01

    In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.

  3. Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation

    NASA Astrophysics Data System (ADS)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2018-05-01

    A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [hC 1,hC 2] . We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC 1 and hC 2, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.

  4. Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies.

    PubMed

    Stoykov, Nikolay S; Kuiken, Todd A; Lowery, Madeleine M; Taflove, Allen

    2003-09-01

    We present what we believe to be the first algorithms that use a simple scalar-potential formulation to model linear Debye and Lorentz dielectric dispersions at low frequencies in the context of finite-element time-domain (FETD) numerical solutions of electric potential. The new algorithms, which permit treatment of multiple-pole dielectric relaxations, are based on the auxiliary differential equation method and are unconditionally stable. We validate the algorithms by comparison with the results of a previously reported method based on the Fourier transform. The new algorithms should be useful in calculating the transient response of biological materials subject to impulsive excitation. Potential applications include FETD modeling of electromyography, functional electrical stimulation, defibrillation, and effects of lightning and impulsive electric shock.

  5. Mean-Potential Law in Evolutionary Games.

    PubMed

    Nałęcz-Jawecki, Paweł; Miękisz, Jacek

    2018-01-12

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  6. Steady-State Density Functional Theory for Finite Bias Conductances.

    PubMed

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  7. The square lattice Ising model on the rectangle II: finite-size scaling limit

    NASA Astrophysics Data System (ADS)

    Hucht, Alfred

    2017-06-01

    Based on the results published recently (Hucht 2017 J. Phys. A: Math. Theor. 50 065201), the universal finite-size contributions to the free energy of the square lattice Ising model on the L× M rectangle, with open boundary conditions in both directions, are calculated exactly in the finite-size scaling limit L, M\\to∞ , T\\to Tc , with fixed temperature scaling variable x\\propto(T/Tc-1)M and fixed aspect ratio ρ\\propto L/M . We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point T=Tc we confirm predictions from conformal field theory (Cardy and Peschel 1988 Nucl. Phys. B 300 377, Kleban and Vassileva 1991 J. Phys. A: Math. Gen. 24 3407). The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.

  8. Position-dependent mass, finite-gap systems, and supersymmetry

    NASA Astrophysics Data System (ADS)

    Bravo, Rafael; Plyushchay, Mikhail S.

    2016-05-01

    The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first-order supercharges from the kinetic term alone, while inclusion of the potential term allows us also to generate nonlinear supersymmetry with higher-order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lamé and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS2 -related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionless model with PDM exploited recently in the discussion of cosmological inflationary scenarios.

  9. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    NASA Astrophysics Data System (ADS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  11. Folding model analyses of 12C-12C and 16O-16O elastic scattering using the density-dependent LOCV-averaged effective interaction

    NASA Astrophysics Data System (ADS)

    Rahmat, M.; Modarres, M.

    2018-03-01

    The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.

  12. Combining extrapolation with ghost interaction correction in range-separated ensemble density functional theory for excited states

    NASA Astrophysics Data System (ADS)

    Alam, Md. Mehboob; Deur, Killian; Knecht, Stefan; Fromager, Emmanuel

    2017-11-01

    The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as μ-2 in the large range-separation-parameter μ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as μ-3) towards their pure wavefunction theory values (μ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) μ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.

  13. Localized N, {lambda}, {sigma}, and {xi} single-particle potentials in finite nuclei calculated with SU{sub 6} quark-model baryon-baryon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, M.; Fujiwara, Y.

    Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration onmore » predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.« less

  14. Finite Element Modeling, Simulation, Tools, and Capabilities at Superform

    NASA Astrophysics Data System (ADS)

    Raman, Hari; Barnes, A. J.

    2010-06-01

    Over the past thirty years Superform has been a pioneer in the SPF arena, having developed a keen understanding of the process and a range of unique forming techniques to meet varying market needs. Superform’s high-profile list of customers includes Boeing, Airbus, Aston Martin, Ford, and Rolls Royce. One of the more recent additions to Superform’s technical know-how is finite element modeling and simulation. Finite element modeling is a powerful numerical technique which when applied to SPF provides a host of benefits including accurate prediction of strain levels in a part, presence of wrinkles and predicting pressure cycles optimized for time and part thickness. This paper outlines a brief history of finite element modeling applied to SPF and then reviews some of the modeling tools and techniques that Superform have applied and continue to do so to successfully superplastically form complex-shaped parts. The advantages of employing modeling at the design stage are discussed and illustrated with real-world examples.

  15. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    PubMed

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  16. A Finite-Element Simulation of Galvanic Coupling Intra-Body Communication Based on the Whole Human Body

    PubMed Central

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-01-01

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz–5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication. PMID:23202010

  17. Three-dimensional finite element analysis and comparison of a new intramedullary fixation with interlocking intramedullary nail.

    PubMed

    Liu, Chang-cheng; Xing, Wen-zhao; Zhang, Ya-xing; Pan, Zheng-hua; Feng, Wen-ling

    2015-03-01

    This study was set to introduce a new intramedullary fixation, explore its biomechanical properties, and provide guidance for further biomechanical experiments. With the help of CT scans and finite element modeling software, finite element model was established for a new intramedullary fixation and intramedullary nailing of femoral shaft fractures in a volunteer adult. By finite element analysis software ANSYS 10.0, we conducted 235-2,100 N axial load, 200-1,000 N bending loads and 2-15 Nm torsional loading, respectively, and analyzed maximum stress distribution, size, and displacement of the fracture fragments of the femur and intramedullary nail. During the loading process, the maximum stress of our new intramedullary fixation were within the normal range, and the displacement of the fracture fragments was less than 1 mm. Our new intramedullary fixation exhibited mechanical reliability and unique advantages of anti-rotation, which provides effective supports during fracture recovery.

  18. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun

    2008-07-01

    Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.

  19. Protecting a quantum state from environmental noise by an incompatible finite-time measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasil, Carlos Alexandre; Castro, L. A. de; Napolitano, R. d. J.

    We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analyticalmore » predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.« less

  20. Range assessment in particle therapy based on prompt γ-ray timing measurements

    NASA Astrophysics Data System (ADS)

    Golnik, Christian; Hueso-González, Fernando; Müller, Andreas; Dendooven, Peter; Enghardt, Wolfgang; Fiedler, Fine; Kormoll, Thomas; Roemer, Katja; Petzoldt, Johannes; Wagner, Andreas; Pausch, Guntram

    2014-09-01

    Proton and ion beams open up new vistas for the curative treatment of tumors, but adequate technologies for monitoring the compliance of dose delivery with treatment plans in real time are still missing. Range assessment, meaning the monitoring of therapy-particle ranges in tissue during dose delivery (treatment), is a continuous challenge considered a key for tapping the full potential of particle therapies. In this context the paper introduces an unconventional concept of range assessment by prompt-gamma timing (PGT), which is based on an elementary physical effect not considered so far: therapy particles penetrating tissue move very fast, but still need a finite transit time—about 1-2 ns in case of protons with a 5-20 cm range—from entering the patient’s body until stopping in the target volume. The transit time increases with the particle range. This causes measurable effects in PGT spectra, usable for range verification. The concept was verified by proton irradiation experiments at the AGOR cyclotron, KVI-CART, University of Groningen. Based on the presented kinematical relations, we describe model calculations that very precisely reproduce the experimental results. As the clinical treatment conditions entail measurement constraints (e.g. limited treatment time), we propose a setup, based on clinical irradiation conditions, capable of determining proton range deviations within a few seconds of irradiation, thus allowing for a fast safety survey. Range variations of 2 mm are expected to be clearly detectable.

  1. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  2. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  3. Electric and magnetic superlattices in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Uddin, Salah; Chan, K. S.

    2016-01-01

    The properties of one dimensional Kronig-Penney type of periodic electric and vector potential on ABC-trilayer graphene superlattices are investigated. The energy spectra obtained with periodic vector potentials shows the emergence of extra Dirac points in the energy spectrum with finite energies. For identical barrier and well widths, the original as well as the extra Dirac points are located in the ky = 0 plane. An asymmetry between the barrier and well widths causes a shift in the extra Dirac points away from the ky = 0 plane. Extra Dirac points having same electron hole crossing energy as that of the original Dirac point as well as finite energy Dirac points are generated in the energy spectrum when periodic electric potential is applied to the system. By applying electric and vector potential together, the symmetry of the energy spectrum about the Fermi level is broken. A tunable band gap is induced in the energy spectrum by applying both electric and vector potential simultaneously with different barrier and well widths.

  4. Surface acoustic wave diffraction driven mechanisms in microfluidic systems.

    PubMed

    Fakhfouri, Armaghan; Devendran, Citsabehsan; Albrecht, Thomas; Collins, David J; Winkler, Andreas; Schmidt, Hagen; Neild, Adrian

    2018-06-26

    Acoustic forces arising from high-frequency surface acoustic waves (SAW) underpin an exciting range of promising techniques for non-contact manipulation of fluid and objects at micron scale. Despite increasing significance of SAW-driven technologies in microfluidics, the understanding of a broad range of phenomena occurring within an individual SAW system is limited. Acoustic effects including streaming and radiation force fields are often assumed to result from wave propagation in a simple planar fashion. The propagation patterns of a single SAW emanating from a finite-width source, however, cause a far richer range of physical effects. In this work, we seek a better understanding of the various effects arising from the incidence of a finite-width SAW beam propagating into a quiescent fluid. Through numerical and experimental verification, we present five distinct mechanisms within an individual system. These cause fluid swirling in two orthogonal planes, and particle trapping in two directions, as well as migration of particles in the direction of wave propagation. For a range of IDT aperture and channel dimensions, the relative importance of these mechanisms is evaluated.

  5. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system.

    PubMed

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  6. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  7. Piecewise linear approximation for hereditary control problems

    NASA Technical Reports Server (NTRS)

    Propst, Georg

    1987-01-01

    Finite dimensional approximations are presented for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems when a quadratic cost integral has to be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in case the cost integral ranges over a finite time interval as well as in the case it ranges over an infinite time interval. The arguments in the latter case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense. This feature is established using a vector-component stability criterion in the state space R(n) x L(2) and the favorable eigenvalue behavior of the piecewise linear approximations.

  8. The Finite-Surface Method for incompressible flow: a step beyond staggered grid

    NASA Astrophysics Data System (ADS)

    Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru

    2017-11-01

    We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.

  9. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Bertola, Marco; El, Gennady A.; Tovbis, Alexander

    2016-10-01

    Rogue waves appearing on deep water or in optical fibres are often modelled by certain breather solutions of the focusing nonlinear Schrödinger (fNLS) equation which are referred to as solitons on finite background (SFBs). A more general modelling of rogue waves can be achieved via the consideration of multiphase, or finite-band, fNLS solutions of whom the standard SFBs and the structures forming due to their collisions represent particular, degenerate, cases. A generalized rogue wave notion then naturally enters as a large-amplitude localized coherent structure occurring within a finite-band fNLS solution. In this paper, we use the winding of real tori to show the mechanism of the appearance of such generalized rogue waves and derive an analytical criterion distinguishing finite-band potentials of the fNLS equation that exhibit generalized rogue waves.

  10. Fulde–Ferrell superfluids in spinless ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo

    2018-06-01

    The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.

  11. POSTPROCESSING MIXED FINITE ELEMENT METHODS FOR SOLVING CAHN-HILLIARD EQUATION: METHODS AND ERROR ANALYSIS

    PubMed Central

    Wang, Wansheng; Chen, Long; Zhou, Jie

    2015-01-01

    A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures. PMID:27110063

  12. Volume dependence of baryon number cumulants and their ratios

    DOE PAGES

    Almási, Gábor A.; Pisarski, Robert D.; Skokov, Vladimir V.

    2017-03-17

    Here, we explore the influence of finite-volume effects on cumulants of baryon/quark number fluctuations in a nonperturbative chiral model. In order to account for soft modes, we use the functional renormalization group in a finite volume, using a smooth regulator function in momentum space. We compare the results for a smooth regulator with those for a sharp (or Litim) regulator, and show that in a finite volume, the latter produces spurious artifacts. In a finite volume there are only apparent critical points, about which we compute the ratio of the fourth- to the second-order cumulant of quark number fluctuations. Finally,more » when the volume is sufficiently small the system has two apparent critical points; as the system size decreases, the location of the apparent critical point can move to higher temperature and lower chemical potential.« less

  13. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.

    PubMed

    Chawla, A; Mukherjee, S; Karthikeyan, B

    2009-02-01

    The objective of this study is to identify the dynamic material properties of human passive muscle tissues for the strain rates relevant to automobile crashes. A novel methodology involving genetic algorithm (GA) and finite element method is implemented to estimate the material parameters by inverse mapping the impact test data. Isolated unconfined impact tests for average strain rates ranging from 136 s(-1) to 262 s(-1) are performed on muscle tissues. Passive muscle tissues are modelled as isotropic, linear and viscoelastic material using three-element Zener model available in PAMCRASH(TM) explicit finite element software. In the GA based identification process, fitness values are calculated by comparing the estimated finite element forces with the measured experimental forces. Linear viscoelastic material parameters (bulk modulus, short term shear modulus and long term shear modulus) are thus identified at strain rates 136 s(-1), 183 s(-1) and 262 s(-1) for modelling muscles. Extracted optimal parameters from this study are comparable with reported parameters in literature. Bulk modulus and short term shear modulus are found to be more influential in predicting the stress-strain response than long term shear modulus for the considered strain rates. Variations within the set of parameters identified at different strain rates indicate the need for new or improved material model, which is capable of capturing the strain rate dependency of passive muscle response with single set of material parameters for wide range of strain rates.

  14. Optimized norm-conserving Hartree-Fock pseudopotentials for plane-wave calculations

    NASA Astrophysics Data System (ADS)

    Al-Saidi, W. A.; Walter, E. J.; Rappe, A. M.

    2008-02-01

    We report Hartree-Fock (HF)-based pseudopotentials suitable for plane-wave calculations. Unlike typical effective core potentials, the present pseudopotentials are finite at the origin and exhibit rapid convergence in a plane-wave basis; the optimized pseudopotential method [A. M. Rappe , Phys. Rev. B 41, 1227 (1990)] improves plane-wave convergence. Norm-conserving HF pseudopotentials are found to develop long-range non-Coulombic behavior which does not decay faster than 1/r , and is nonlocal. This behavior, which stems from the nonlocality of the exchange potential, is remedied using a recently developed self-consistent procedure [J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005)]. The resulting pseudopotentials slightly violate the norm conservation of the core charge. We calculated several atomic properties using these pseudopotentials, and the results are in good agreement with all-electron HF values. The dissociation energies, equilibrium bond lengths, and frequencies of vibration of several dimers obtained with these HF pseudopotentials and plane waves are also in good agreement with all-electron results.

  15. Structural refinement of vitreous silica bilayers

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Wilson, Mark; Thorpe, M. F.

    The importance of glasses resides not only in their applications but in fundamental questions that they put forth. The continuous random network model can successfully describe the glass structure, but determining details, like ring statistics, has always been difficult using only diffraction data. But recent atomic images of 2D vitreous silica bilayers can offer valuable new insights which are hard to be observed directly in 3D silica models/experiments (for references see). However, the experimental results are prone to uncertainty in atomic positions, systematic errors, and being finite. We employ special boundary conditions developed for such networks to refine the experimental structures. We show the best structure can be found by using various potentials to maximize information gained from the experimental samples. We find a range of densities, the so-called flexibility window, in which tetrahedra are perfect. We compare results from simulations using harmonic potentials, MD with atomic polarizabilities included and DFT. We should thank David Drabold and Bishal Bhattarai for useful discussions. Support through NSF Grant # DMS 1564468 is gratefully acknowledged.

  16. Pair Potential That Reproduces the Shape of Isochrones in Molecular Liquids.

    PubMed

    Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C

    2016-08-18

    Many liquids have curves (isomorphs) in their phase diagrams along which structure, dynamics, and some thermodynamic quantities are invariant in reduced units. A substantial part of their phase diagrams is thus effectively one dimensional. The shapes of these isomorphs are described by a material-dependent function of density, h(ρ), which for real liquids is well approximated by a power law, ρ(γ). However, in simulations, a power law is not adequate when density changes are large; typical models, such as Lennard-Jones liquids, show that γ(ρ) ≡ d ln h(ρ)/d ln ρ is a decreasing function of density. This article presents results from computer simulations using a new pair potential that diverges at a nonzero distance and can be tuned to give a more realistic shape of γ(ρ). Our results indicate that the finite size of molecules is an important factor to take into account when modeling liquids over a large density range.

  17. An evaluation of four single element airfoil analytic methods

    NASA Technical Reports Server (NTRS)

    Freuler, R. J.; Gregorek, G. M.

    1979-01-01

    A comparison of four computer codes for the analysis of two-dimensional single element airfoil sections is presented for three classes of section geometries. Two of the computer codes utilize vortex singularities methods to obtain the potential flow solution. The other two codes solve the full inviscid potential flow equation using finite differencing techniques, allowing results to be obtained for transonic flow about an airfoil including weak shocks. Each program incorporates boundary layer routines for computing the boundary layer displacement thickness and boundary layer effects on aerodynamic coefficients. Computational results are given for a symmetrical section represented by an NACA 0012 profile, a conventional section illustrated by an NACA 65A413 profile, and a supercritical type section for general aviation applications typified by a NASA LS(1)-0413 section. The four codes are compared and contrasted in the areas of method of approach, range of applicability, agreement among each other and with experiment, individual advantages and disadvantages, computer run times and memory requirements, and operational idiosyncrasies.

  18. Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT.

    PubMed

    Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten

    2016-08-09

    The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

  19. Automated discovery and construction of surface phase diagrams using machine learning

    DOE PAGES

    Ulissi, Zachary W.; Singh, Aayush R.; Tsai, Charlie; ...

    2016-08-24

    Surface phase diagrams are necessary for understanding surface chemistry in electrochemical catalysis, where a range of adsorbates and coverages exist at varying applied potentials. These diagrams are typically constructed using intuition, which risks missing complex coverages and configurations at potentials of interest. More accurate cluster expansion methods are often difficult to implement quickly for new surfaces. We adopt a machine learning approach to rectify both issues. Using a Gaussian process regression model, the free energy of all possible adsorbate coverages for surfaces is predicted for a finite number of adsorption sites. Our result demonstrates a rational, simple, and systematic approachmore » for generating accurate free-energy diagrams with reduced computational resources. Finally, the Pourbaix diagram for the IrO 2(110) surface (with nine coverages from fully hydrogenated to fully oxygenated surfaces) is reconstructed using just 20 electronic structure relaxations, compared to approximately 90 using typical search methods. Similar efficiency is demonstrated for the MoS 2 surface.« less

  20. Many-body delocalization with random vector potentials

    NASA Astrophysics Data System (ADS)

    Cheng, Chen; Mondaini, Rubem

    In this talk we present the ergodic properties of excited states in a model of interacting fermions in quasi-one dimensional chains subjected to a random vector potential. In the non-interacting limit, we show that arbitrarily small values of this complex off-diagonal disorder triggers localization for the whole spectrum; the divergence of the localization length in the single particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. However, when short-ranged interactions are included, the localization is lost and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields. This research is financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. U1530401 and 11674021). RM also acknowledges support from NSFC (Grant No. 11650110441).

  1. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    NASA Astrophysics Data System (ADS)

    Pettit, J. R.; Walker, A. E.; Lowe, M. J. S.

    2015-03-01

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.

  2. A computational simulation of the effect of hemodilution on oxygen transport in middle cerebral artery vasospasm

    PubMed Central

    Chittiboina, Prashant; Guthikonda, Bharat; Wollblad, Christian; Conrad, Steven A

    2011-01-01

    Cerebral vasospasm after aneurysmal subarachnoid hemorrhage is a potentially severe sequel. The induction of hypertension, hypervolemia, and hemodilution is advocated for vasospasm, but it is unclear whether hemodilution confers any benefit. A finite element model of oxygen transport in the proximal middle cerebral artery (MCA) was used to evaluate the complex relationship among hematocrit, viscosity, oxygen content, and blood flow in the setting of vasospasm. A single-phase non-Newtonian finite element model based on three-dimensional incompressible Navier–Stokes equations was constructed of the M1 segment. The model was solved at vessel stenoses ranging from 0% to 90% and hematocrit from 0.2 to 0.6. A small area of poststenotic recirculation was seen with mild (30%) stenosis. Poststenotic eddy formation was noted with more severe (60% to 90%) stenosis. Volumetric flow was inversely related to hematocrit at mild stenosis (0% to 30%). With near-complete stenosis (90%), a paradoxical increase in flow was seen with increasing hematocrit. Oxygen transport across the segment was related to hematocrit at all levels of stenosis with increasing oxygen transport despite a reduction in blood flow, suggesting that with clinically significant vasospasm in the MCA, hemodilution does not improve oxygen transport, but to the contrary, that ischemia may be worsened. PMID:21629259

  3. Effect of Ply Orientation and Crack Location on SIFs in Finite Multilayers with Aligned Cracks

    NASA Astrophysics Data System (ADS)

    Chen, Linfeng; Pindera, Marek-Jerzy

    2008-02-01

    An exact elasticity solution is presented for arbitrarily laminated finite multilayers in a state of generalized plane deformation under horizontally pinned end constraints that are weakened by aligned cracks. Based on half-range Fourier series and the local/global stiffness matrix approach, the mixed boundary-value problem is reduced to Cauchy-type singular integral equations in the unknown displacement discontinuities. Solution to these equations is obtained using the approach developed by Erdogan and co-workers. Numerical results quantify the thus-far undocumented geometric and material effects on Mode I, II and III stress intensity factors in composite multilayers with interacting cracks under uniform vertical displacement. These effects include finite dimensions, crack location, material anisotropy due to a unidirectional fiber-reinforced layer/s orientation, and orientational grading.

  4. Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1983-01-01

    A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.

  5. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  6. Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2002-01-01

    Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.

  7. Initial dynamic load estimates during configuration design

    NASA Technical Reports Server (NTRS)

    Schiff, Daniel

    1987-01-01

    This analysis includes the structural response to shock and vibration and evaluates the maximum deflections and material stresses and the potential for the occurrence of elastic instability, fatigue and fracture. The required computations are often performed by means of finite element analysis (FEA) computer programs in which the structure is simulated by a finite element model which may contain thousands of elements. The formulation of a finite element model can be time consuming, and substantial additional modeling effort may be necessary if the structure requires significant changes after initial analysis. Rapid methods for obtaining rough estimates of the structural response to shock and vibration are presented for the purpose of providing guidance during the initial mechanical design configuration stage.

  8. Measurement-based quantum teleportation on finite AKLT chains

    NASA Astrophysics Data System (ADS)

    Fujii, Akihiko; Feder, David

    In the measurement-based model of quantum computation, universal quantum operations are effected by making repeated local measurements on resource states which contain suitable entanglement. Resource states include two-dimensional cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the honeycomb lattice. Recent studies suggest that measurements on one-dimensional systems in the Haldane phase teleport perfect single-qubit gates in the correlation space, protected by the underlying symmetry. As laboratory realizations of symmetry-protected states will necessarily be finite, we investigate the potential for quantum gate teleportation in finite chains of a bilinear-biquadratic Hamiltonian which is a generalization of the AKLT model representing the full Haldane phase.

  9. Axisymmetric analysis of a tube-type acoustic levitator by a finite element method.

    PubMed

    Hatano, H

    1994-01-01

    A finite element approach was taken for the study of the sound field and positioning force in a tube-type acoustic levitator. An axisymmetric model, where a rigid sphere is suspended on the tube axis, was introduced to model a cylindrical chamber of a levitation tube furnace. Distributions of velocity potential, magnitudes of positioning force, and resonance frequency shifts of the chamber due to the presence of the sphere were numerically estimated in relation to the sphere's position and diameter. Experiments were additionally made to compare with the simulation. The finite element method proved to be a useful tool for analyzing and designing the tube-type levitator.

  10. How Do Tissues Respond and Adapt to Stresses Around a Prosthesis? A Primer on Finite Element Stress Analysis for Orthopaedic Surgeons

    PubMed Central

    Brand, Richard A; Stanford, Clark M; Swan, Colby C

    2003-01-01

    Joint implant design clearly affects long-term outcome. While many implant designs have been empirically-based, finite element analysis has the potential to identify beneficial and deleterious features prior to clinical trials. Finite element analysis is a powerful analytic tool allowing computation of the stress and strain distribution throughout an implant construct. Whether it is useful depends upon many assumptions and details of the model. Since ultimate failure is related to biological factors in addition to mechanical, and since the mechanical causes of failure are related to load history, rather than a few loading conditions, chief among them is whether the stresses or strains under limited loading conditions relate to outcome. Newer approaches can minimize this and the many other model limitations. If the surgeon is to critically and properly interpret the results in scientific articles and sales literature, he or she must have a fundamental understanding of finite element analysis. We outline here the major capabilities of finite element analysis, as well as the assumptions and limitations. PMID:14575244

  11. Automated finite element modeling of the lumbar spine: Using a statistical shape model to generate a virtual population of models.

    PubMed

    Campbell, J Q; Petrella, A J

    2016-09-06

    Population-based modeling of the lumbar spine has the potential to be a powerful clinical tool. However, developing a fully parameterized model of the lumbar spine with accurate geometry has remained a challenge. The current study used automated methods for landmark identification to create a statistical shape model of the lumbar spine. The shape model was evaluated using compactness, generalization ability, and specificity. The primary shape modes were analyzed visually, quantitatively, and biomechanically. The biomechanical analysis was performed by using the statistical shape model with an automated method for finite element model generation to create a fully parameterized finite element model of the lumbar spine. Functional finite element models of the mean shape and the extreme shapes (±3 standard deviations) of all 17 shape modes were created demonstrating the robust nature of the methods. This study represents an advancement in finite element modeling of the lumbar spine and will allow population-based modeling in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Continuous condensation in nanogrooves

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  13. Measuring the band structures of periodic beams using the wave superposition method

    NASA Astrophysics Data System (ADS)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in the dispersion curve measured from the experiments were deduced to be a result of a combination of measurement noise, the different placement of the accelerometer with finite mass, and the torsional mode.

  14. 3-D analysis of a containment equipment hatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greimann, L.; Fanous, F.

    1985-01-01

    There are at least two models used to characterize the possible leakage of a containment during a severe accident: (1) the threshold model in which the containment is assumed to be leak-tight until certain pressure/temperature conditions are reached and a very large rupture occurs; and (2) the leak-before-break model in which small leak paths are hypothesized to develop at levels below the threshold. The objective of this work is to investigate the leak-before-break potential of a typical equipment hatch seal. The relative deformations of the sealing surfaces during pressurization are of interest, especially if any buckling of the hatch occurs.more » A three-dimensional finite element model of the equipment hatch assembly was developed. The model included: shell elements for the containment shell, containment stiffeners, penetration sleeve and hatch shell; prestressed bar elements for the swing bolts which hold the hatch closed; and interface elements for the sliding or opening which can occur at the seal surfaces. The nonlinear material properties were approximated by a piecewise linear curve with a proportional limit equal to one-half the yield strength. Geometric nonlinearities were also included in the model. As pressure increments were added to the finite element model, the seal surfaces tended to move together initially. The dominate observable behavior in this range was ''ovaling'' of the penetration sleeve relative to the hatch cover. Since the hatch itself tended to remain circular, there was a mismatch at the sealing surface. Friction reduces but does not eliminate this relative motion. As the containment reached a higher pressure level, the hatch began to buckle at the idealized imperfection. The finite element solution was incremented through the snapthrough. As this postbuckling occurred, additional seal interface distortion was observed.« less

  15. Discrete-to-continuum simulation approach to polymer chain systems: Subdiffusion, segregation, and chain folding

    NASA Astrophysics Data System (ADS)

    Foo, Grace M.; Pandey, R. B.

    1998-05-01

    A discrete-to-continuum approach is introduced to study the static and dynamic properties of polymer chain systems with a bead-spring chain model in two dimensions. A finitely extensible nonlinear elastic potential is used for the bond between the consecutive beads with the Lennard-Jones (LJ) potential with smaller (Rc=21/6σ=0.95) and larger (Rc=2.5σ=2.1) values of the upper cutoff for the nonbonding interaction among the neighboring beads. We find that chains segregate at temperature T=1.0 with Rc=2.1 and remain desegregated with Rc=0.95. At low temperature (T=0.2), chains become folded, in a ribbonlike conformation, unlike random and self-avoiding walk conformations at T=1.0. The power-law dependence of the rms displacements of the center of mass (Rc.m.) of the chains and their center node (Rcn) with time are nonuniversal, with the range of exponents ν1~=0.45-0.25 and ν2~=0.30-0.10, respectively. Both radius of gyration (Rg) and average bond length () decrease on increasing the range of interaction (Rc), consistent with the extended state in good solvent to collapsed state in poor solvent description of the polymer chains. Analysis of the radial distribution function supports these observations.

  16. How Sensitive Is the Carbon Budget Approach to Potential Carbon Cycle Changes?

    NASA Astrophysics Data System (ADS)

    Matthews, D.

    2014-12-01

    The recent development of global Earth-system models, which include dynamic representations of both physical climate and carbon cycle processes, has led to new insights about how the climate responds to human carbon dioxide emissions. Notably, several model analyses have now shown that global temperature responds linearly to cumulative CO2 emissions across a wide range of emissions scenarios. This implies that the timing of CO2 emissions does not affect the overall climate response, and allows a finite global carbon carbon budget to be defined for a given global temperature target. This linear climate response, however, emerges from the interaction of several non-linear processes and feedbacks involving how carbon sinks respond to changes in atmospheric CO2 and climate. In this presentation, I will give an overview of how carbon sinks and carbon cycle feedbacks contribute to the overall linearity of the climate response to cumulative emissions, and will assess how robust this relationship is to a range of possible changes in the carbon cycle, including (a) potential positive carbon cycle feedbacks that are not well represented in the current generation of Earth-system models and (b) negative emission scenarios resulting from possible technological strategies to remove CO2 from the atmosphere.

  17. Integral Equations and Scattering Solutions for a Square-Well Potential.

    ERIC Educational Resources Information Center

    Bagchi, B.; Seyler, R. G.

    1979-01-01

    Derives Green's functions and integral equations for scattering solutions subject to a variety of boundary conditions. Exact solutions are obtained for the case of a finite spherical square-well potential, and properties of these solutions are discussed. (Author/HM)

  18. Sufficient Condition for Finite-Time Singularity in a High-Symmetry Euler Flow

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Ng, C. S.

    1997-11-01

    The possibility of a finite-time singularity (FTS) with a smooth initial condition is considered in a high-symmetry Euler flow (the Kida flow). It has been shown recently [C. S. Ng and A. Bhattacharjee, Phys. Rev. E 54 1530, 1996] that there must be a FTS if the fourth order pressure derivative (p_xxxx) is always positive within a finite range X on the x-axis around the origin. This sufficient condition is now extended to the case when the range X is itself time-dependent. It is shown that a FTS must still exist even when X arrow 0 if the p_xxxx value at the origin is growing faster than X-2. It is tested statistically that p_xxxx at the origin is most probably positive for a Kida flow with random Fourier amplitudes and that it is generally growing as energy cascades to Fourier modes with higher wavenumbers k. The condition that p_xxxx grows faster than X-2 is found to be satisfied when the spectral index ν of the energy spectrum E(k) ∝ k^-ν of the random flow is less than 3.

  19. Experimental demonstrations in audible frequency range of band gap tunability and negative refraction in two-dimensional sonic crystal.

    PubMed

    Pichard, Hélène; Richoux, Olivier; Groby, Jean-Philippe

    2012-10-01

    The propagation of audible acoustic waves in two-dimensional square lattice tunable sonic crystals (SC) made of square cross-section infinitely rigid rods embedded in air is investigated experimentally. The band structure is calculated with the plane wave expansion (PWE) method and compared with experimental measurements carried out on a finite extend structure of 200 cm width, 70 cm depth and 15 cm height. The structure is made of square inclusions of 5 cm side with a periodicity of L = 7.5 cm placed inbetween two rigid plates. The existence of tunable complete band gaps in the audible frequency range is demonstrated experimentally by rotating the scatterers around their vertical axis. Negative refraction is then analyzed by use of the anisotropy of the equi-frequency surface (EFS) in the first band and of a finite difference time domain (FDTD) method. Experimental results finally show negative refraction in the audible frequency range.

  20. Modal density of rectangular structures in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Parrinello, A.; Ghiringhelli, G. L.

    2018-04-01

    A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.

  1. Project APhiD: A Lorenz-gauged A-Φ decomposition for parallelized computation of ultra-broadband electromagnetic induction in a fully heterogeneous Earth

    NASA Astrophysics Data System (ADS)

    Weiss, Chester J.

    2013-08-01

    An essential element for computational hypothesis testing, data inversion and experiment design for electromagnetic geophysics is a robust forward solver, capable of easily and quickly evaluating the electromagnetic response of arbitrary geologic structure. The usefulness of such a solver hinges on the balance among competing desires like ease of use, speed of forward calculation, scalability to large problems or compute clusters, parsimonious use of memory access, accuracy and by necessity, the ability to faithfully accommodate a broad range of geologic scenarios over extremes in length scale and frequency content. This is indeed a tall order. The present study addresses recent progress toward the development of a forward solver with these properties. Based on the Lorenz-gauged Helmholtz decomposition, a new finite volume solution over Cartesian model domains endowed with complex-valued electrical properties is shown to be stable over the frequency range 10-2-1010 Hz and range 10-3-105 m in length scale. Benchmark examples are drawn from magnetotellurics, exploration geophysics, geotechnical mapping and laboratory-scale analysis, showing excellent agreement with reference analytic solutions. Computational efficiency is achieved through use of a matrix-free implementation of the quasi-minimum-residual (QMR) iterative solver, which eliminates explicit storage of finite volume matrix elements in favor of "on the fly" computation as needed by the iterative Krylov sequence. Further efficiency is achieved through sparse coupling matrices between the vector and scalar potentials whose non-zero elements arise only in those parts of the model domain where the conductivity gradient is non-zero. Multi-thread parallelization in the QMR solver through OpenMP pragmas is used to reduce the computational cost of its most expensive step: the single matrix-vector product at each iteration. High-level MPI communicators farm independent processes to available compute nodes for simultaneous computation of multi-frequency or multi-transmitter responses.

  2. Numerical solution of nonlinear partial differential equations of mixed type. [finite difference approximation

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1976-01-01

    A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.

  3. A users guide for A344: A program using a finite difference method to analyze transonic flow over oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.

    1979-01-01

    The design and usage of a pilot program for calculating the pressure distributions over harmonically oscillating airfoils in transonic flow are described. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equations for small disturbances. The steady velocity potential which must be obtained from some other program, was required for input. The unsteady equation, as solved, is linear with spatially varying coefficients. Since sinusoidal motion was assumed, time was not a variable. The numerical solution was obtained through a finite difference formulation and either a line relaxation or an out of core direct solution method.

  4. Finite area method for nonlinear conical flows

    NASA Technical Reports Server (NTRS)

    Sritharan, S. S.; Seebass, A. R.

    1982-01-01

    A fully conservative finite area method for the computation of steady inviscid flow about general conical bodies at incidence is described. The procedure utilizes the potential approximation and implements a body conforming mesh generator. The conical potential is assumed to have its best linear variation inside each mesh cell and a secondary interlocking cell system is used to establish the flux balance required to conserve mass. In the supersonic regions the scheme is desymmetrized by adding appropriate artificial viscosity in conservation form. The algorithm is nearly an order of a magnitude faster than present Euler methods and predicts known results accurately and qualitative features such as nodal point lift off correctly. Results are compared with those of other investigations.

  5. An efficient finite element technique for sound propagation in axisymmetric hard wall ducts carrying high subsonic Mach number flows

    NASA Technical Reports Server (NTRS)

    Tag, I. A.; Lumsdaine, E.

    1978-01-01

    The general non-linear three-dimensional equation for acoustic potential is derived by using a perturbation technique. The linearized axisymmetric equation is then solved by using a finite element algorithm based on the Galerkin formulation for a harmonic time dependence. The solution is carried out in complex number notation for the acoustic velocity potential. Linear, isoparametric, quadrilateral elements with non-uniform distribution across the duct section are implemented. The resultant global matrix is stored in banded form and solved by using a modified Gauss elimination technique. Sound pressure levels and acoustic velocities are calculated from post element solutions. Different duct geometries are analyzed and compared with experimental results.

  6. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  7. Survival probability of a truncated radial oscillator subject to periodic kicks

    NASA Astrophysics Data System (ADS)

    Tanabe, Seiichi; Watanabe, Shinichi; Saif, Farhan; Matsuzawa, Michio

    2002-03-01

    Classical and quantum survival probabilities are compared for a truncated radial oscillator undergoing impulsive interactions with periodic laser pulses represented here as kicks. The system is truncated in the sense that the harmonic potential is made valid only within a finite range; the rest of the space is treated as a perfect absorber. Exploring extended values of the parameters of this model [Phys. Rev. A 63, 052721 (2001)], we supplement discussions on classical and quantum features near resonances. The classical system proves to be quasi-integrable and preserves phase-space area despite the momentum transfered by the kicks, exhibiting simple yet rich phase-space features. A geometrical argument reveals quantum-classical correspondence in the locations of minima in the paired survival probabilities while the ``ionization'' rates differ due to quantum tunneling.

  8. Study on launch scheme of space-net capturing system.

    PubMed

    Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.

  9. Behavior of a nuclear steel containment equipment hatch at large strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanous, F.; Greimann, L.

    1988-05-01

    During a severe accident, buckling of a steel containment hatch door, large deformation and ovaling of the hatch sleeve are potential causes of mismatch at the sealing surface which can result in a leakage path. A three-dimensional nonlinear finite element analysis of a typical steel containment/sleeve/hatch assembly that includes containment stiffeners, pretensioned swing bolts, and hatch door geometric imperfection is presented. The analysis was carried out to the nonlinear range up to large strains. The results indicated that the buckling load occurs at pressure, far above that which causes gross yielding of the shell plate. Although buckling of the hatchmore » door increased the relative motions of the hatch sleeve and the hatch door, the motions remained sufficiently small to prevent leakage.« less

  10. APPLE - An aeroelastic analysis system for turbomachines and propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral

    1992-01-01

    This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).

  11. Finite-sized one-dimensional silica microstructures (rods): Synthesis, assembly, and applications

    DOE PAGES

    Sharma, Jaswinder

    2017-01-28

    Colloidal silica structures are highly important for applications ranging from surface modifications such as superhydrophobic, oleophobic, icephobic, and anti-biofouling coatings, as reinforcements in polymer-ceramic or metal-matrix composites, and phonon management. In addition to various types of silica structures, a unique structure silica rods has been synthesized by employing the emulsion droplets made by dissolving polyvinlypyrrolidone in pentanol. While a significant progress has been made in further modifying their shape and chemistry, in their assembly, and in their applications, however, no review article compiled the progress in this field. Furthermore, this minireview intends to highlight the development in the synthesis, assembly,more » and application of these rods, and discuss the remaining challenges for precise control of size and shape, possible solutions, and potential applications.« less

  12. The design of wideband metamaterial absorber at E band based on defect

    NASA Astrophysics Data System (ADS)

    Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.

    2018-01-01

    A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.

  13. Study on launch scheme of space-net capturing system

    PubMed Central

    Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187

  14. Finite-strain analysis of Metavolcano-sedimentary rocks at Gabel El Mayet area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2010-09-01

    Finite strain was estimated in the metavolcano-sedimentary rocks, which surround by serpentinites of Gabel El Mayet area. Finite strain shows a relationship to nappe contacts between the metavolcano-sedimentary rocks and serpentinite and sheds light on the nature of the subhorizontal foliation typical for the Gable Mayet shear zone. We used the Rf/ ϕ and Fry methods on feldspar porphyroclasts and mafic grains from 10 metasedimentary and six metavolcanic samples in Gabel El Mayet region. Our finite-strain data show that the metavolcano-sedimentary rocks were moderately deformed and axial ratios in the XZ section range from 1.9 to 3.9. The long axes of the finite-strain ellipsoids trend W/WNW in the north and W/WSW in the south of the Gabel El Mayet shear zone. Furthermore, the short axes are subvertical to a subhorizontal foliation. The strain magnitudes increase towards the tectonic contacts between the metavolcano-sedimentary rocks and serpentinite. The data indicate oblate strain symmetry in the metavolcano-sedimentary rocks. Hence, our strain data also indicate flattening strain. We assume that the metasedimentary and metavolcanics rocks have similar deformation behaviour. The fact that finite strain accumulated during the metamorphism indicates that the nappe contacts formed during the accumulation of finite strain and thus during thrusting. We conclude that the nappe contacts formed during progressive thrusting under brittle to semi-brittle deformation conditions by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the Gabel El Mayet shear zone.

  15. The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.

    PubMed

    Carson, Cantwell G; Levine, Jonathan S

    2016-09-01

    The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  16. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement.

    PubMed

    Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis

    2017-09-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.

  17. Anemone-like nanostructures for non-lithographic, reproducible, large-area, and ultra-sensitive SERS substrates

    NASA Astrophysics Data System (ADS)

    Daglar, Bihter; Demirel, Gokcen Birlik; Khudiyev, Tural; Dogan, Tamer; Tobail, Osama; Altuntas, Sevde; Buyukserin, Fatih; Bayindir, Mehmet

    2014-10-01

    The melt-infiltration technique enables the fabrication of complex nanostructures for a wide range of applications in optics, electronics, biomaterials, and catalysis. Here, anemone-like nanostructures are produced for the first time under the surface/interface principles of melt-infiltration as a non-lithographic method. Functionalized anodized aluminum oxide (AAO) membranes are used as templates to provide large-area production of nanostructures, and polycarbonate (PC) films are used as active phase materials. In order to understand formation dynamics of anemone-like structures finite element method (FEM) simulations are performed and it is found that wetting behaviour of the polymer is responsible for the formation of cavities at the caps of the structures. These nanostructures are examined in the surface-enhanced-Raman-spectroscopy (SERS) experiment and they exhibit great potential in this field. Reproducible SERS signals are detected with relative standard deviations (RSDs) of 7.2-12.6% for about 10 000 individual spots. SERS measurements are demonstrated at low concentrations of Rhodamine 6G (R6G), even at the picomolar level, with an enhancement factor of ~1011. This high enhancement factor is ascribed to the significant electric field enhancement at the cavities of nanostructures and nanogaps between them, which is supported by finite difference time-domain (FDTD) simulations. These novel nanostructured films can be further optimized to be used in chemical and plasmonic sensors and as a single molecule SERS detection platform.The melt-infiltration technique enables the fabrication of complex nanostructures for a wide range of applications in optics, electronics, biomaterials, and catalysis. Here, anemone-like nanostructures are produced for the first time under the surface/interface principles of melt-infiltration as a non-lithographic method. Functionalized anodized aluminum oxide (AAO) membranes are used as templates to provide large-area production of nanostructures, and polycarbonate (PC) films are used as active phase materials. In order to understand formation dynamics of anemone-like structures finite element method (FEM) simulations are performed and it is found that wetting behaviour of the polymer is responsible for the formation of cavities at the caps of the structures. These nanostructures are examined in the surface-enhanced-Raman-spectroscopy (SERS) experiment and they exhibit great potential in this field. Reproducible SERS signals are detected with relative standard deviations (RSDs) of 7.2-12.6% for about 10 000 individual spots. SERS measurements are demonstrated at low concentrations of Rhodamine 6G (R6G), even at the picomolar level, with an enhancement factor of ~1011. This high enhancement factor is ascribed to the significant electric field enhancement at the cavities of nanostructures and nanogaps between them, which is supported by finite difference time-domain (FDTD) simulations. These novel nanostructured films can be further optimized to be used in chemical and plasmonic sensors and as a single molecule SERS detection platform. Electronic supplementary information (ESI) available: SEM images of the AAO membrane and bare polymer film, FEM simulations of anemone-like polymeric nanopillars depending on the time and pressure, and detailed calculation of the enhancement factor both including experimental and theoretical approaches. See DOI: 10.1039/c4nr03909b

  18. Nonlinear crack analysis with finite elements

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Saleme, E.; Pifko, A.; Levine, H. S.

    1973-01-01

    The application of finite element techniques to the analytic representation of the nonlinear behavior of arbitrary two-dimensional bodies containing cracks is discussed. Specific methods are proposed using which it should be possible to obtain information concerning: the description of the maximum, minimum, and residual near-tip stress and strain fields; the effects of crack closure on the near-tip behavior of stress and strain fields during cyclic loading into the plastic range; the stress-strain and displacement field behavior associated with a nonstationary crack; and the effects of large rotation near the crack tip.

  19. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M. A.

    2004-05-01

    We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigted temperature range the correlation length exceeds the finite length also in the pure sample.

  20. [Analysis of a three-dimensional finite element model of atlas and axis complex fracture].

    PubMed

    Tang, X M; Liu, C; Huang, K; Zhu, G T; Sun, H L; Dai, J; Tian, J W

    2018-05-22

    Objective: To explored the clinical application of the three-dimensional finite element model of atlantoaxial complex fracture. Methods: A three-dimensional finite element model of cervical spine (FEM/intact) was established by software of Abaqus6.12.On the basis of this model, a three-dimensional finite element model of four types of atlantoaxial complex fracture was established: C(1) fracture (Jefferson)+ C(2) fracture (type Ⅱfracture), Jefferson+ C(2) fracture(type Ⅲfracture), Jefferson+ C(2) fracture(Hangman), Jefferson+ stable C(2) fracture (FEM/fracture). The range of motion under flexion, extension, lateral bending and axial rotation were measured and compared with the model of cervical spine. Results: The three-dimensional finite element model of four types of atlantoaxial complex fracture had the same similarity and profile.The range of motion (ROM) of different segments had different changes.Compared with those in the normal model, the ROM of C(0/1) and C(1/2) in C(1) combined Ⅱ odontoid fracture model in flexion/extension, lateral bending and rotation increased by 57.45%, 29.34%, 48.09% and 95.49%, 88.52%, 36.71%, respectively.The ROM of C(0/1) and C(1/2) in C(1) combined Ⅲodontoid fracture model in flexion/extension, lateral bending and rotation increased by 47.01%, 27.30%, 45.31% and 90.38%, 27.30%, 30.0%.The ROM of C(0/1) and C(1/2) in C(1) combined Hangman fracture model in flexion/extension, lateral bending and rotation increased by 32.68%, 79.34%, 77.62% and 60.53%, 81.20%, 21.48%, respectively.The ROM of C(0/1) and C(1/2) in C(1) combined axis fracture model in flexion/extension, lateral bending and rotation increased by 15.00%, 29.30%, 8.47% and 37.87%, 75.57%, 8.30%, respectively. Conclusions: The three-dimensional finite element model can be used to simulate the biomechanics of atlantoaxial complex fracture.The ROM of atlantoaxial complex fracture is larger than nomal model, which indicates that surgical treatment should be performed.

  1. Optical spectroscopic characterization of human meniscus biomechanical properties

    NASA Astrophysics Data System (ADS)

    Ala-Myllymäki, Juho; Danso, Elvis K.; Honkanen, Juuso T. J.; Korhonen, Rami K.; Töyräs, Juha; Afara, Isaac O.

    2017-12-01

    This study investigates the capacity of optical spectroscopy in the visible (VIS) and near-infrared (NIR) spectral ranges for estimating the biomechanical properties of human meniscus. Seventy-two samples obtained from the anterior, central, and posterior locations of the medial and lateral menisci of 12 human cadaver joints were used. The samples were subjected to mechanical indentation, then traditional biomechanical parameters (equilibrium and dynamic moduli) were calculated. In addition, strain-dependent fibril network modulus and permeability strain-dependency coefficient were determined via finite-element modeling. Subsequently, absorption spectra were acquired from each location in the VIS (400 to 750 nm) and NIR (750 to 1100 nm) spectral ranges. Partial least squares regression, combined with spectral preprocessing and transformation, was then used to investigate the relationship between the biomechanical properties and spectral response. The NIR spectral region was observed to be optimal for model development (83.0%≤R2≤90.8%). The percentage error of the models are: Eeq (7.1%), Edyn (9.6%), Eɛ (8.4%), and Mk (8.9%). Thus, we conclude that optical spectroscopy in the NIR range is a potential method for rapid and nondestructive evaluation of human meniscus functional integrity and health in real time during arthroscopic surgery.

  2. Advances in three-dimensional field analysis and evaluation of performance parameters of electrical machines

    NASA Astrophysics Data System (ADS)

    Sivasubramaniam, Kiruba

    This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is explored and implemented.

  3. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control parameters of the algorithm, i.e. the maximum count of ratios, the minimum relative group-size of data points belonging to each ratio has to be defined. Computation of the models can be done with statistical software. In this study Leisch and Grün's flexmix package [2] for the statistical open-source software R was applied. A code example is available in the electronic supplementary material of Kappel et al. [1]. In order to demonstrate the usefulness of finite mixture models in fields dealing with the computation of multiple isotope ratios in mixed samples, a transparent example based on simulated data is presented and problems regarding small group-sizes are illustrated. In addition, the application of finite mixture models to isotope ratio data measured in uranium oxide particles is shown. The results indicate that finite mixture models perform well in computing isotope ratios relative to traditional estimation procedures and can be recommended for more objective and straightforward calculation of isotope ratios in geochemistry than it is current practice. [1] S. Kappel, S. Boulyga, L. Dorta, D. Günther, B. Hattendorf, D. Koffler, G. Laaha, F. Leisch and T. Prohaska: Evaluation Strategies for Isotope Ratio Measurements of Single Particles by LA-MC-ICPMS, Analytical and Bioanalytical Chemistry, 2013, accepted for publication on 2012-12-18 (doi: 10.1007/s00216-012-6674-3) [2] B. Grün and F. Leisch: Fitting finite mixtures of generalized linear regressions in R. Computational Statistics & Data Analysis, 51(11), 5247-5252, 2007. (doi:10.1016/j.csda.2006.08.014)

  4. Survival of charged ρ condensation at high temperature and density

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yu, Lang; Huang, Mei

    2016-02-01

    The charged vector ρ mesons in the presence of external magnetic fields at finite temperature T and chemical potential μ have been investigated in the framework of the Nambu-Jona-Lasinio model. We compute the masses of charged ρ mesons numerically as a function of the magnetic field for different values of temperature and chemical potential. The self-energy of the ρ meson contains the quark-loop contribution, i.e. the leading order contribution in 1/Nc expansion. The charged ρ meson mass decreases with the magnetic field and drops to zero at a critical magnetic field eBc, which indicates that the charged vector meson condensation, i.e. the electromagnetic superconductor can be induced above the critical magnetic field. Surprisingly, it is found that the charged ρ condensation can even survive at high temperature and density. At zero temperature, the critical magnetic field just increases slightly with the chemical potential, which indicates that charged ρ condensation might occur inside compact stars. At zero density, in the temperature range 0.2-0.5 GeV, the critical magnetic field for charged ρ condensation is in the range of 0.2-0.6 GeV2, which indicates that a high temperature electromagnetic superconductor might be created at LHC. Supported by the NSFC (11275213, 11261130311) (CRC 110 by DFG and NSFC), CAS Key Project (KJCX2-EW-N01), and Youth Innovation Promotion Association of CAS. L.Yu is Partially Supported by China Postdoctoral Science Foundation (2014M550841)

  5. Soft network materials with isotropic negative Poisson's ratios over large strains.

    PubMed

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  6. Finite-element lattice Boltzmann simulations of contact line dynamics

    NASA Astrophysics Data System (ADS)

    Matin, Rastin; Krzysztof Misztal, Marek; Hernández-García, Anier; Mathiesen, Joachim

    2018-01-01

    The lattice Boltzmann method has become one of the standard techniques for simulating a wide range of fluid flows. However, the intrinsic coupling of momentum and space discretization restricts the traditional lattice Boltzmann method to regular lattices. Alternative off-lattice Boltzmann schemes exist for both single- and multiphase flows that decouple the velocity discretization from the underlying spatial grid. The current study extends the applicability of these off-lattice methods by introducing a finite element formulation that enables simulating contact line dynamics for partially wetting fluids. This work exemplifies the implementation of the scheme and furthermore presents benchmark experiments that show the scheme reduces spurious currents at the liquid-vapor interface by at least two orders of magnitude compared to a nodal implementation and allows for predicting the equilibrium states accurately in the range of moderate contact angles.

  7. Stress and Microstructure Evolution during Transient Creep of Olivine at 1000 and 1200 °C

    NASA Astrophysics Data System (ADS)

    Thieme, M.; Demouchy, S. A.; Mainprice, D.; Barou, F.; Cordier, P.

    2017-12-01

    As the major constituent of Earth's upper mantle, olivine largely determines its physical properties. In the past, deformation experiments were usually run until steady state or to a common value of finite strain. Additionally, few studies were performed on polycrystalline aggregates at low to intermediate temperatures (<1100 °C). For the first time, we study the mechanical response and correlated microstructure as a function of incremental finite strains. Deformation experiments were conducted in uniaxial compression in an internally heated gas-medium deformation apparatus at temperatures of 1000 and 1200 °C, at strain rates of 10-5s-1 and under 300 MPa of confining pressure. Sample volumes are large with > 1.2 cm3. Finite strains range from 0.1 to 8.6 % and corresponding differential stresses range from 71 to 1073 MPa. Deformed samples were characterized by high resolution electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD maps with step sizes as low as 0.05 µm were aquired for the first time without introducing artifacts. The grain size ranges from 1.8 to 2.3 µm, with no significant change in between samples. Likewise, the texture and texture strength (J- and BA-index), grain shape and aspect ratio, density of geometrically necessary dislocations, grain orientation spread, subgrain boundary spacing and misorientation do not change significantly as a function of finite strain or temperature. The dislocation distribution is highly heterogeneous, with some grains remaining dislocation free. TEM shows grain boundaries acting as low activity sites for dislocation nucleation. Even during early mechanical steady state, plasticity seems not to affect grains in unfavorable orientations. We find no confirmation of dislocation entanglements or increasing dislocation densities being the reason for strain hardening during transient creep. This suggests other, yet not understood, mechanisms affecting the strength of deformed olivine. Futhermore, we will map disclinations (rotational topological defects) to estimate their contribution to the transient deformation regime.

  8. Pressure spectra from single-snapshot tomographic PIV

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Avallone, Francesco; Pröbsting, Stefan; Ragni, Daniele; Scarano, Fulvio

    2018-03-01

    The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor's hypothesis (TH) of frozen turbulence and vortex-in-cell (VIC) simulation. Finite time marching of the measured instantaneous velocity fields is performed using TH and VIC. Pressure is calculated from the resulting velocity time series. Because of the theoretical limitations, the finite time marching can be performed until the measured flow structures are convected out of the measurement volume. This provides a lower limit of resolvable frequency range. An upper limit is given by the spatial resolution of the measurements. Finite time-marching approaches are applied to low-repetition-rate tomographic PIV data of the flow past a straight trailing edge at 10 m/s. Reference results of the power spectral density and coherence are obtained from surface pressure transducers. In addition, the results are compared to state-of-the-art experimental data obtained from time-resolved tomographic PIV performed at 10 kHz. The time-resolved approach suffers from low spatial resolution and limited maximum acquisition frequency because of hardware limitations. Additionally, these approaches strongly depend upon the time kernel length chosen for pressure evaluation. On the other hand, the finite time-marching approaches make use of low-repetition-rate tomographic PIV measurements that offer higher spatial resolution. Consequently, increased accuracy of the power spectral density and coherence of pressure fluctuations are obtained in the high-frequency range, in comparison to the time-resolved measurements. The approaches based on TH and VIC are found to perform similarly in the high-frequency range. At lower frequencies, TH is found to underestimate coherence and intensity of the pressure fluctuations in comparison to time-resolved PIV and the microphone reference data. The VIC-based approach, on the other hand, returns results on the order of the reference.

  9. Finite-element grid improvement by minimization of stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1989-01-01

    A new and simple method of finite-element grid improvement is presented. The objective is to improve the accuracy of the analysis. The procedure is based on a minimization of the trace of the stiffness matrix. For a broad class of problems this minimization is seen to be equivalent to minimizing the potential energy. The method is illustrated with the classical tapered bar problem examined earlier by Prager and Masur. Identical results are obtained.

  10. Finite-element grid improvement by minimization of stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1987-01-01

    A new and simple method of finite-element grid improvement is presented. The objective is to improve the accuracy of the analysis. The procedure is based on a minimization of the trace of the stiffness matrix. For a broad class of problems this minimization is seen to be equivalent to minimizing the potential energy. The method is illustrated with the classical tapered bar problem examined earlier by Prager and Masur. Identical results are obtained.

  11. 3-D Acoustic Scattering from 2-D Rough Surfaces Using A Parabolic Equation Model

    DTIC Science & Technology

    2013-12-01

    Frequency Acoustic Propagation in Shallow Water.” Journal of Oceanic Engineering, September 2011: 1–10. Liu, Jin Yuan, Chen Fen Huang, and Ping Chang...loss values at a constant depth. .............................52  xi LIST OF ACRONYMS AND ABBREVIATIONS FD Finite Difference MMPE Monterey...2013). First, at each range step ( xi ), the 3-D field is transformed from cross-range spatial variable (y) to cross-range wavenumber variable (ky

  12. Water clusters adsorbed on polycyclic aromatic hydrocarbons: Energetics and conformational dynamics

    NASA Astrophysics Data System (ADS)

    Simon, Aude; Spiegelman, Fernand

    2013-05-01

    In this work, we present some classical molecular dynamics (MD) simulations and finite temperature infrared (IR) spectra of water clusters adsorbed on coronene (C24H12), a compact polycyclic aromatic hydrocarbon (PAH). The potential energy surface is obtained within the self-consistent-charge density-functional based tight-binding approach with modifications insuring the correct description of water-water and water-PAH interactions. This scheme is benchmarked for the minimal energy structures of (C24H12)(H2O)n (n = 3-10) against density-functional theory (DFT) calculations and for the low-energy isomers of (H2O)6 and (C6H6)(H2O)3 against correlated wavefunction and DFT calculations. A detailed study of the low energy isomers of (C24H12)(H2O)3, 6 complexes is then provided. On-the-fly Born-Oppenheimer MD simulations are performed in the temperature T range 10-350 K for (C24H12)(H2O)n (n = 3-7) complexes. The description of the evolution of the systems with T is provided with emphasis on (C24H12)(H2O)n (n = 3,6). For T in the range 50-150 K, isomerisation processes are observed and when T increases, a solid-to-liquid phase-change like behavior is shown. The desorption of one water molecule is frequently observed at 300 K. The isomerisation processes are evidenced on the finite temperature IR spectra and the results are presented for (C24H12)(H2O)n (n = 3,6). A signature for the edge-coordination of the water cluster on the PAH is also proposed.

  13. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    PubMed

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  14. Analysis of corner cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.

    1995-01-01

    Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.

  15. Second order accurate finite difference approximations for the transonic small disturbance equation and the full potential equation

    NASA Technical Reports Server (NTRS)

    Mostrel, M. M.

    1988-01-01

    New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.

  16. Finite element dynamic analysis on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  17. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg

    2016-08-15

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the realmore » time propagation can be a challenge.« less

  18. A study of unstable rock failures using finite difference and discrete element methods

    NASA Astrophysics Data System (ADS)

    Garvey, Ryan J.

    Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex mine models. These combined numerical tools may be applied in future studies to design primary and secondary supports in bump-prone conditions, evaluate retreat mining cut sequences, asses pillar de-stressing techniques, or perform backanalyses on unstable failures in select mining layouts.

  19. Fermi-edge exciton-polaritons in doped semiconductor microcavities with finite hole mass

    NASA Astrophysics Data System (ADS)

    Pimenov, Dimitri; von Delft, Jan; Glazman, Leonid; Goldstein, Moshe

    2017-10-01

    The coupling between a 2D semiconductor quantum well and an optical cavity gives rise to combined light-matter excitations, the exciton-polaritons. These were usually measured when the conduction band is empty, making the single polariton physics a simple single-body problem. The situation is dramatically different in the presence of a finite conduction-band population, where the creation or annihilation of a single exciton involves a many-body shakeup of the Fermi sea. Recent experiments in this regime revealed a strong modification of the exciton-polariton spectrum. Previous theoretical studies concerned with nonzero Fermi energy mostly relied on the approximation of an immobile valence-band hole with infinite mass, which is appropriate for low-mobility samples only; for high-mobility samples, one needs to consider a mobile hole with large but finite mass. To bridge this gap, we present an analytical diagrammatic approach and tackle a model with short-ranged (screened) electron-hole interaction, studying it in two complementary regimes. We find that the finite hole mass has opposite effects on the exciton-polariton spectra in the two regimes: in the first, where the Fermi energy is much smaller than the exciton binding energy, excitonic features are enhanced by the finite mass. In the second regime, where the Fermi energy is much larger than the exciton binding energy, finite mass effects cut off the excitonic features in the polariton spectra, in qualitative agreement with recent experiments.

  20. One-Dimensional Spacecraft Formation Flight Testbed for Terrestrial Charged Relative Motion Experiments

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.

    Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial charge shielding of space-based plasmas to the electrostatic screening in the laboratory atmosphere.

Top