Science.gov

Sample records for finite temperature field

  1. Quantum fields versus strings at finite temperature

    SciTech Connect

    Osorio, M.A.R. . Lyman Lab. of Physics)

    1992-07-20

    In this paper, the authors study some aspects of the relationship between the one-loop free energy of closed superstrings computed as a sum over the free energies of the quantum field present in the string (the analog model) and the modular invariant expression of the same quantity. In particular, by getting a generalized duality relation for the integrand of the modular invariant expression for the free energy of closed superstrings and using a regularization procedure, the authors connect the contribution to the vacuum energy from the bosonic degrees of freedom in the analog model (one half of the total number) with the coefficient governing the high temperature behavior of the free energy. The authors also study the physical meaning of this regularization and the role played by the left-right constraint defining the physical fields in the light-cone gauge.

  2. Electromagnetic field at finite temperature: A first order approach

    NASA Astrophysics Data System (ADS)

    Casana, R.; Pimentel, B. M.; Valverde, J. S.

    2006-10-01

    In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  3. Spinor field theory at finite temperature in the early Universe

    NASA Astrophysics Data System (ADS)

    Banerjee, N.; Mallik, S.

    1992-01-01

    We consider the Dirac field on a spatially flat Robertson-Walker space-time. We find the exact expression for the Dirac propagator for an arbitrary scale factor in the real-time formulation of finite-temperature field theory. The mode functions used in the construction satisfy uncoupled ordinary differential equations.

  4. Casimir effect for the Higgs field at finite temperature

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2017-08-01

    In early 1970, it was postulated that there exists a zero spin quantum field, called Higgs field, that is present in all universe. The potential energy of the Higgs field is transferred to particles. Hence they acquire mass. These ideas were essential in fulfilling the basic need for a particle, called Higgs, with mass. These particles are called Higgs particles with spin zero with its mass to be ˜125 GeV. This raises the question as to its physical effects. If these particles are present, will they exhibit a Casimir effect and also obey the Stefan-Boltzmann Law? Assuming the dynamics of this field, will these effects change with temperature. The present calculation uses thermo field dynamics formalism to calculate temperature effects.

  5. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach.

    PubMed

    Borrelli, Raffaele; Gelin, Maxim F

    2016-12-14

    Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.

  6. Finite temperature scalar field theory in the early universe

    SciTech Connect

    Leutwyler, H.; Mallik, S. )

    1991-01-01

    The authors study a scalar Higgs field in an expanding Robertson-Walker geometry, using the real time formulation of Semenoff and Weiss. It is shown that the density matrix associated with the Hamiltonian at a sharp time describes a state for which perturbation theory is not renormalizable and an alternative, renormalizable characterization of thermal equilibrium is given. They calculate the thermal quantum fluctuations surrounding a classical field and discuss the characteristic time scales occurring in the evolution of a scalar field from an initial radiation dominated phase of thermal equilibrium to an unstable, inflationary de Sitter phase.

  7. Finite-Temperature Micromagnetism

    SciTech Connect

    Skomski, R; Kumar, P; Hadjipanayis, GC; Sellmyer, DJ

    2013-07-01

    It is investigated how magnetic hysteresis is affected by finite-temperature excitations, using soft regions in hard-magnetic matrices as model systems. In lowest order, magnetization processes are described by the traditional approach of using finite-temperature materials constants such as K-1(T). Nanoscale excitations are usually small perturbations. For example, a Bloch summation over all magnon wave vectors shows that remanence is slightly enhanced, because long-wavelength excitations are suppressed. However, a reverse magnetic field enhances the effect of thermal excitations and causes a small reduction of the coercivity. To describe such effects, we advocate micromagnetic calculations where finite-temperature fluctuations are treated as small corrections to the traditional approach, as contrasted to full-scale Monte Carlo simulations.

  8. Finite temperature Casimir effect for massless Majorana fermions in a magnetic field

    SciTech Connect

    Erdas, Andrea

    2011-01-15

    The zeta function regularization technique is used to study the finite temperature Casimir effect for a massless Majorana fermion field confined between parallel plates and satisfying bag boundary conditions. A magnetic field perpendicular to the plates is included. An expression for the zeta function is obtained, which is exact to all orders in the magnetic field strength, temperature and plate distance. The zeta function is used to calculate the Helmholtz free energy of the Majorana field and the pressure on the plates, in the case of weak magnetic field and strong magnetic field. In both cases, simple analytic expressions are obtained for the free energy and pressure which are very accurate and valid for all values of the temperature and plate distance.

  9. Confinement at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Cardoso, Nuno; Bicudo, Pedro; Cardoso, Marco

    2017-05-01

    We show the flux tubes produced by static quark-antiquark, quark-quark and quark-gluon charges at finite temperature. The sources are placed on the lattice with fundamental and adjoint Polyakov loops. We compute the squared strengths of the chromomagnetic and chromoelectric fields above and below the critical temperature. Our results are for pure gauge SU(3) gauge theory, they are invariant and all computations are done with GPUs using CUDA.

  10. Aether field in extra dimensions: Stefan-Boltzmann law and Casimir effect at finite temperature

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2017-01-01

    The Lorentz and C P T symmetries are not violated at the highest laboratory energies available. However these symmetries may be violated at Planck scale. A particular development is to investigate the breakdown of Lorentz and C P T symmetries by introducing an aether field that exhibits nonzero vacuum expectation value along the fifth dimension. The interactions of the aether field with scalar, electromagnetic, and fermions fields are analyzed. The Stefan-Boltzmann law and Casimir effect at finite temperature are calculated using the Thermo Field Dynamics formalism.

  11. Simulation on Temperature Field of Radiofrequency Lesions System Based on Finite Element Method

    NASA Astrophysics Data System (ADS)

    Xiao, D.; Qian, L.; Qian, Z.; Li, W.

    2011-01-01

    This paper mainly describes the way to get the volume model of damaged region according to the simulation on temperature field of radiofrequency ablation lesion system in curing Parkinson's disease based on finite element method. This volume model reflects, to some degree, the shape and size of the damaged tissue during the treatment with all tendencies in different time or core temperature. By using Pennes equation as heat conduction equation of radiofrequency ablation of biological tissue, the author obtains the temperature distribution field of biological tissue in the method of finite element for solving equations. In order to establish damage models at temperature points of 60°C, 65°C, 70°C, 75°C, 80°C, 85°C and 90 °C while the time points are 30s, 60s, 90s and 120s, Parkinson's disease model of nuclei is reduced to uniform, infinite model with RF pin at the origin. Theoretical simulations of these models are displayed, focusing on a variety of conditions about the effective lesion size on horizontal and vertical. The results show the binary complete quadratic non-linear joint temperature-time models of the maximum damage diameter and maximum height. The models can comprehensively reflect the degeneration of target tissue caused by radio frequency temperature and duration. This lay the foundation for accurately monitor of clinical RF treatment of Parkinson's disease in the future.

  12. Low-field diamagnetic response of granular superconductors at finite temperatures

    SciTech Connect

    Auletta, C.; Raiconi, G. ); De Luca, R.; Pace, S. )

    1994-05-01

    We study the low-field diamagnetic response of granular superconductors at finite temperatures by means of a simple two-dimensional Josephson-junction array. The temperature effects are taken into account by inserting white-noise current sources in parallel to the resistively shunted junction circuit models of the Josephson junctions of the network. By this analysis we argue that a simplified one-dimensional description of the equivalent circuit, proposed by the authors for cylindrical granular superconductors, is still valid even in the presence of thermally activated flux jumps. A flux-creep picture for intergranular flux motion follows.

  13. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy.

  14. An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields.

    PubMed

    Jones, R E; Zimmerman, J A; Oswald, J; Belytschko, T

    2011-01-12

    In this work we apply a material-frame, kernel-based estimator of continuum fields to atomic data in order to estimate the J-integral for the analysis of an atomically sharp crack at finite temperatures. Instead of the potential energy appropriate for zero temperature calculations, we employ the quasi-harmonic free energy as an estimator of the Helmholtz free energy required by the Eshelby stress in isothermal conditions. We employ the simplest of the quasi-harmonic models, the local harmonic model of LeSar and co-workers, and verify that it is adequate for correction of the zero temperature J-integral expression for various deformation states for our Lennard-Jones test material. We show that this method has the properties of: consistency among the energy, stress and deformation fields; path independence of the contour integrals of the Eshelby stress; and excellent correlation with linear elastic fracture mechanics theory.

  15. An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields

    NASA Astrophysics Data System (ADS)

    Jones, R. E.; Zimmerman, J. A.; Oswald, J.; Belytschko, T.

    2011-01-01

    In this work we apply a material-frame, kernel-based estimator of continuum fields to atomic data in order to estimate the J-integral for the analysis of an atomically sharp crack at finite temperatures. Instead of the potential energy appropriate for zero temperature calculations, we employ the quasi-harmonic free energy as an estimator of the Helmholtz free energy required by the Eshelby stress in isothermal conditions. We employ the simplest of the quasi-harmonic models, the local harmonic model of LeSar and co-workers, and verify that it is adequate for correction of the zero temperature J-integral expression for various deformation states for our Lennard-Jones test material. We show that this method has the properties of: consistency among the energy, stress and deformation fields; path independence of the contour integrals of the Eshelby stress; and excellent correlation with linear elastic fracture mechanics theory.

  16. Non-analyticity of the induced Carroll-Field-Jackiw term at finite temperature

    NASA Astrophysics Data System (ADS)

    Assunção, J. F.; Mariz, T.; Petrov, A. Yu.

    2016-11-01

    In this paper, we discuss the behavior of the Carroll-Field-Jackiw (CFJ) coefficient kμ arising due to integration over massive fermions, and the modification suffered by its topological structure in the finite-temperature case. Our study is based on the imaginary time formalism and summation over the Matsubara frequencies. We demonstrate that the self-energy of photon is non-analytic for the small-kμ limit, i.e., the static limit (k_0=0,k→ 0) and the long-wavelength limit (k_0→ 0,k= 0) do not commute, while the tensorial structure of the CFJ term holds in both limits.

  17. Finite-temperature electron correlations in the framework of a dynamic local-field correction

    SciTech Connect

    Schweng, H.K.; Boehm, H.M. )

    1993-07-15

    The quantum-mechanical version of the Singwi-Tosi-Land-Sjoelander (STLS) approximation is applied to finite temperatures. This approximation has two main advantages. First, it includes a dynamic local-field correction and second, it gives positive values for the pair-distribution function in the short-range region at zero temperature. This is even valid for rather low densities. After a description of the numerical difficulties arising with the use of a dynamic approximation, the results for the static-structure factor and the pair-distribution function are discussed thoroughly. Detailed work is performed on the static part of the local-field correction, with special emphasis put on the investigation of its structure. A peak is found at a wave vector [ital q][approx]2.8 (in units of the Fermi wave vector) for small temperatures, which tends towards higher values of [ital q] with increasing temperature. This peak causes an attractive particle-hole interaction in a certain [ital q] region and thus gives rise to the appearance of a charge-density wave. A parametric description is given for the static local-field correction in order to simplify further applications. Furthermore, the exchange-and-correlation free energy is considered. The results are compared with the STLS results and with the modified convolution approach.

  18. QUARKONIUM AT FINITE TEMPERATURE.

    SciTech Connect

    UMEDA, T.

    2006-06-09

    Lattice QCD studies on charmonium at finite temperature are presented After a discussion about problems for the Maximum Entropy Method applied to finite temperature lattice QCD, I show several results on charmonium spectral functions. The 'wave function' of charmonium is also discussed to study the spatial correlation between quark and anti-quark in deconfinement phase.

  19. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    PubMed

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  20. Magnetic field effects on the static quark potential at zero and finite temperature

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco

    2016-11-01

    We investigate the static Q Q ¯ potential at zero and finite temperature in the presence of a constant and uniform external magnetic field B →, for several values of the lattice spacing and for different orientations with respect to B →. As a byproduct, we provide continuum limit extrapolated results for the string tension, the Coulomb coupling and the Sommer parameter at T =0 and B =0 . We confirm the presence in the continuum of a B -induced anisotropy, regarding essentially the string tension, for which it is of the order of 15% at |e |B ˜1 GeV2 and would suggest, if extrapolated to larger fields, a vanishing string tension along the magnetic field for |e |B ≳4 GeV2. The angular dependence for |e |B ≲1 GeV2 can be nicely parametrized by the first allowed term in an angular Fourier expansion, corresponding to a quadrupole deformation. Finally, for T ≠0 , the main effect of the magnetic field is a general suppression of the string tension, leading to a early loss of the confining properties: this happens even before the appearance of inverse magnetic catalysis in the chiral condensate, supporting the idea that the influence of the magnetic field on the confining properties is the leading effect originating the decrease of Tc as a function of B .

  1. Particle-number projection in the finite-temperature mean-field approximation

    NASA Astrophysics Data System (ADS)

    Fanto, P.; Alhassid, Y.; Bertsch, G. F.

    2017-07-01

    Finite-temperature mean-field theories, such as the Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) theories, are formulated in the grand-canonical ensemble, and their applications to the calculation of statistical properties of nuclei such as level densities require a reduction to the canonical ensemble. In a previous publication [Y. Alhassid et al., Phys. Rev. C 93, 044320 (2016), 10.1103/PhysRevC.93.044320], it was found that ensemble-reduction methods based on the saddle-point approximation are not reliable in cases in which rotational symmetry or particle-number conservation is broken. In particular, the calculated HFB canonical entropy can be unphysical as a result of the inherent violation of particle-number conservation. In this work, we derive a general formula for exact particle-number projection after variation in the HFB approximation, assuming that the HFB Hamiltonian preserves time-reversal symmetry. This formula reduces to simpler known expressions in the HF and Bardeen-Cooper-Schrieffer (BCS) limits of the HFB. We apply this formula to calculate the thermodynamic quantities needed for level densities in the heavy nuclei 162Dy, 148Sm, and 150Sm. We find that the exact particle-number projection gives better physical results and is significantly more computationally efficient than the saddle-point methods. However, the fundamental limitations caused by broken symmetries in the mean-field approximation are still present.

  2. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    NASA Astrophysics Data System (ADS)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  3. LATTICE QCD AT FINITE TEMPERATURE.

    SciTech Connect

    PETRECZKY, P.

    2005-03-12

    I review recent progress in lattice QCD at finite temperature. Results on the transition temperature will be summarized. Recent progress in understanding in-medium modifications of interquark forces and quarkonia spectral functions at finite temperatures is discussed.

  4. Antioscillons from bubble collisions at finite temperature

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2014-04-01

    We study the role of the topology of bubbles at finite temperatures plays on collisions and the existence of new field configurations. We show that in the case of false vacuum decay at finite temperature, the cylindrical symmetry of bubbles admits a new exotic field with negative energies, the antiperiodic "twisted" field. New field configurations arise generically, not only at finite temperatures but whenever a cluster of bubbles resulting from collisions form nontrivial topologies. The interaction of both configurations induces instabilites on the bubble. Collisions of bubbles occupied by the new fields can lead to the emergence of new structures, named antioscillons.

  5. Anomalies in curved spacetime at finite temperature

    SciTech Connect

    Boschi-Filho, H. Departamento de Fisica e Quimica, Universidade Estadual Paulista, Campus de Guaratingueta, 12500 Guaratingueta, Caixa Postal 205 Sao Paulo ); Natividade, C.P. )

    1992-12-15

    We discuss the problem of the breakdown of conformal and gauge symmetries at finite temperature in curved-spacetime background, when the changes in the background are gradual, in order to have a well-defined quantum field theory at finite temperature. We obtain the expressions for Seeley's coefficients and the heat-kernel expansion in this regime. As applications, we consider the self-interacting [lambda][phi][sup 4] and chiral Schwinger models in curved backgrounds at finite temperature.

  6. Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields

    SciTech Connect

    Sadooghi, N.; Anaraki, K. Sohrabi

    2008-12-15

    Using the general structure of the vacuum polarization tensor {pi}{sub {mu}}{sub {nu}}(k{sub 0},k) in the infrared (IR) limit, k{sub 0}{yields}0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k{sub 0}{yields}0, k{yields}0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for {alpha}{yields}0, the improved ring potential consists of a term proportional to T{sup 4}{alpha}{sup 5/2}, in addition to the expected T{sup 4}{alpha}{sup 3/2} term arising from the static limit. Here, {alpha} is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li{sub 2}(-(2{alpha}/{pi})(eB/m{sup 2})). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.

  7. Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions

    SciTech Connect

    Eab, C. H.; Lim, S. C.; Teo, L. P.

    2007-08-15

    This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed.

  8. Spin glass in a field: a new zero-temperature fixed point in finite dimensions.

    PubMed

    Angelini, Maria Chiara; Biroli, Giulio

    2015-03-06

    By using real-space renormalization group (RG) methods, we show that spin glasses in a field display a new kind of transition in high dimensions. The corresponding critical properties and the spin-glass phase are governed by two nonperturbative zero-temperature fixed points of the RG flow. We compute the critical exponents and discuss the RG flow and its relevance for three-dimensional systems. The new spin-glass phase we discovered has unusual properties, which are intermediate between the ones conjectured by droplet and full replica symmetry-breaking theories. These results provide a new perspective on the long-standing debate about the behavior of spin glasses in a field.

  9. Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields: Experiment and model

    NASA Astrophysics Data System (ADS)

    Vanderbemden, Ph.; Hong, Z.; Coombs, T. A.; Denis, S.; Ausloos, M.; Schwartz, J.; Rutel, I. B.; Hari Babu, N.; Cardwell, D. A.; Campbell, A. M.

    2007-05-01

    Crossed-magnetic-field effects on bulk high-temperature superconductors have been studied both experimentally and numerically. The sample geometry investigated involves finite-size effects along both (crossed-)magnetic-field directions. The experiments were carried out on bulk melt-processed Y-Ba-Cu-O single domains that had been premagnetized with the applied field parallel to their shortest direction (i.e., the c axis) and then subjected to several cycles of the application of a transverse magnetic field parallel to the sample ab plane. The magnetic properties were measured using orthogonal pickup coils, a Hall probe placed against the sample surface, and magneto-optical imaging. We show that all principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law and in which the current density flows perpendicularly to the plane within which the two components of magnetic field are varied. The results of this study suggest that the suppression of the magnetic moment under the action of a transverse field can be predicted successfully by ignoring the existence of flux-free configurations or flux-cutting effects. These investigations show that the observed decay in magnetization results from the intricate modification of current distribution within the sample cross section. The current amplitude is altered significantly only if a field-dependent critical current density Jc(B) is assumed. Our model is shown to be quite appropriate to describe the cross-flow effects in bulk superconductors. It is also shown that this model does not predict any saturation of the magnetic induction, even after a large number (˜100) of transverse field cycles. These features are shown to be consistent with the experimental data.

  10. Holographic trace anomaly at finite temperature

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Nam, Siyoung; Park, Chanyong

    2017-01-01

    Using the holographic renormalization, we investigate the finite temperature and size effect to the energy-momentum tensor of the dual field theory and its renormalization group (RG) flow. Following the anti-de Sitter/conformal field theory correspondence, the dual field theory of the AdS space is well known to be a conformal field theory that has no nontrivial RG flow. Holographically, that theory can be lifted to a finite temperature version by considering a AdS black hole solution. Because the black hole horizon associated with temperature is dimensionful, it breaks the boundary conformal symmetry and leads to a nontrivial RG flow. In this work, we investigate the finite temperature and size correction to a strongly interacting conformal field theory along the Wisonian renormalization group flow.

  11. Electroweak relaxation from finite temperature

    NASA Astrophysics Data System (ADS)

    Hardy, Edward

    2015-11-01

    We study theories which naturally select a vacuum with parametrically small Electroweak Scale due to finite temperature effects in the early universe. In particular, there is a scalar with an approximate shift symmetry broken by a technically natural small coupling to the Higgs, and a temperature dependent potential. As the temperature of the universe drops, the scalar follows the minimum of its potential altering the Higgs mass squared parameter. The scalar also has a periodic potential with amplitude proportional to the Higgs expectation value, which traps it in a vacuum with a small Electroweak Scale. The required temperature dependence of the potential can occur through strong coupling effects in a hidden sector that are suppressed at high temperatures. Alternatively, it can be generated perturbatively from a one-loop thermal potential. In both cases, for the scalar to be displaced, a hidden sector must be reheated to temperatures significantly higher than the visible sector. However this does not violate observational constraints provided the hidden sector energy density is transferred to the visible sector without disrupting big bang nucleosynthesis. We also study how the mechanism can be implemented when the visible sector is completed to the Minimal Supersymmetric Standard Model at a high scale. Models with a UV cutoff of 10 TeV and no fields taking values over a range greater than 1012 GeV are possible, although the scalar must have a range of order 108 times the effective decay constant in the periodic part of its potential.

  12. Finite-temperature scaling at the quantum critical point of the Ising chain in a transverse field

    NASA Astrophysics Data System (ADS)

    Haelg, Manuel; Huvonen, Dan; Guidi, Tatiana; Quintero-Castro, Diana Lucia; Boehm, Martin; Regnault, Louis-Pierre; Zheludev, Andrey

    2015-03-01

    Inelastic neutron scattering is used to study the finite-temperature scaling behavior of spin correlations at the quantum critical point in an experimental realization of the one-dimensional Ising model in a transverse field. The target compound is the well-characterized, anisotropic and bond-alternating Heisenberg spin-1 chain material NTENP. The validity and the limitations of the dynamic structure factor scaling are tested, discussed and compared to theoretical predictions. For this purpose neutron data have been collected on the three-axes spectrometers IN14 at ILL and FLEXX at HZB as well as on the time of flight multi-chopper spectrometer LET at ISIS. In addition to the general statement about quantum criticality and universality, present study also reveals new insight into the properties of the spin chain compound NTENP in particular.

  13. Strings at finite temperature

    SciTech Connect

    Arago C. de; Bazeia, D.; Eboli, O.J.P.; Marques, G.C.

    1985-12-15

    We obtain a semiclassical evaluation of the temperature for which the free energy of the strings of spontaneously broken scalar electrodynamics vanishes. We argue that, above this temperature, these objects should play a significant physical role.

  14. Role of dissipation in biasing the vacuum selection in quantum field theory at finite temperature

    SciTech Connect

    Freire, F.; Achucarro, A.; Antunes, N.D.; Salmi, P.

    2005-08-15

    We study the symmetry breaking pattern of an O(4) symmetric model of scalar fields, with both charged and neutral fields, interacting with a photon bath. Nagasawa and Brandenberger argued that in favorable circumstances the vacuum manifold would be reduced from S{sup 3} to S{sup 1}. Here it is shown that a selective condensation of the neutral fields, that are not directly coupled to photons, can be achieved in the presence of a minimal external dissipation, i.e. not related to interactions with a bath. This should be relevant in the early universe or in heavy-ion collisions where dissipation occurs due to expansion.

  15. Quantum memories at finite temperature

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin J.; Loss, Daniel; Pachos, Jiannis K.; Self, Chris N.; Wootton, James R.

    2016-10-01

    To use quantum systems for technological applications one first needs to preserve their coherence for macroscopic time scales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum memory. An attractive scenario is the construction of passive storage of quantum information with minimal active support. Indeed, passive protection is the basis of robust and scalable classical technology, physically realized in the form of the transistor and the ferromagnetic hard disk. The discovery of an analogous quantum system is a challenging open problem, plagued with a variety of no-go theorems. Several approaches have been devised to overcome these theorems by taking advantage of their loopholes. The state-of-the-art developments in this field are reviewed in an informative and pedagogical way. The main principles of self-correcting quantum memories are given and several milestone examples from the literature of two-, three- and higher-dimensional quantum memories are analyzed.

  16. Covariant mean-field calculations of finite-temperature nuclear matter

    SciTech Connect

    R. J. Furnstahl; Brian D. Serot

    1990-01-01

    Hot nuclear matter is studied in the framework of quantum hadrodynamics. General principles of covariant thermodynamics and thermodynamic consistency are discussed, and these principles are illustrated by computing nuclear matter properties in an arbitrary reference frame, using the mean-field approximation to the Walecka model. The results are shown to be Lorentz covariant, and thermodynamic consistency is demonstrated by proving the equality of the ‘‘thermodynamic’’ and ‘‘hydrostatic’’ pressures. The mean-field results are used in a simple hydrodynamic picture to discuss the phenomenology of heavy-ion collisions and astrophysical systems, with an emphasis on new features that arise in a covariant approach.

  17. Thermal radiation fields in time-dependent linear media at finite temperature

    NASA Astrophysics Data System (ADS)

    Ryeol Choi, Jeong

    2013-10-01

    The properties of thermal radiation fields in linear media which have time-dependent parameters are investigated on the basis of the invariant operator method. For quantum mechanical description of the electromagnetic waves whose amplitude and/or frequency vary with time, we introduce a quadratic invariant operator that is constructed according to its exact definition. The density operator of the system, being considered signal plus noise, is obtained via maximization of the entropy. The expectation values of the energy operator, the Hamiltonian, and the invariant operator are obtained in the thermal state and their thermal behaviours are illustrated in detail. It is shown that the fluctuations of the electric and the magnetic fields do not depend on signal plus noise and dissipate with time due to the conductivity in media. Our theory of wave propagation in time-varying media is applied to describe the biophoton signal in order to promote the understanding of our developments.

  18. Hadronic matter at finite temperature and density within an effective relativistic mean-field model

    NASA Astrophysics Data System (ADS)

    Lavagno, A.

    2012-10-01

    We study hot and dense hadronic matter by means of an effective relativistic mean-field model with the inclusion of the full octet of baryons, the Δ-isobar degrees of freedom and the lightest pseudoscalar and vector mesons. These last particles are considered by taking into account an effective chemical potential and an effective mass depending on the self-consistent interaction between baryons. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number, electric charge fraction and zero net strangeness.

  19. Finite temperature instability for compactification

    SciTech Connect

    Accetta, F.S.; Kolb, E.W.

    1986-03-01

    We consider finite temperature effects upon theories with extra dimensions compactified via vacuum stress energy (Casimir) effects. For sufficiently high temperature, a static configuration for the internal space is impossible. At somewhat lower temperatures, there is an instability due to thermal fluctuations of radius of the compact dimensions. For both cases, the Universe can evolve to a de Sitter-like expansion of all dimensions. Stability to late times constrains the initial entropy of the universe. 28 refs., 1 fig., 2 tabs.

  20. Finite element analysis of the temperature field in laser cladding of Ni-based powders on teeth surfaces of the helical gear

    NASA Astrophysics Data System (ADS)

    Chen, L.; Liu, S.; Tao, R.; Liu, D.; Lou, D.; Bennett, P.

    2016-09-01

    The temperature field formed in the process of laser cladding of worn teeth surfaces of the gear shaft is simulated by the finite element analysis software. Isothermal lines inside the tooth are obtained. Simulated results are compared with experimental data. Recommendations are given on improvement of the cladding technology to provide a durable continuous coating.

  1. Evidence for a Finite-Temperature Insulator.

    PubMed

    Ovadia, M; Kalok, D; Tamir, I; Mitra, S; Sacépé, B; Shahar, D

    2015-08-27

    In superconductors the zero-resistance current-flow is protected from dissipation at finite temperatures (T) by virtue of the short-circuit condition maintained by the electrons that remain in the condensed state. The recently suggested finite-T insulator and the "superinsulating" phase are different because any residual mechanism of conduction will eventually become dominant as the finite-T insulator sets-in. If the residual conduction is small it may be possible to observe the transition to these intriguing states. We show that the conductivity of the high magnetic-field insulator terminating superconductivity in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero conductance at T < 0.04 K. We discuss our results in the light of theories that lead to a finite-T insulator.

  2. Theories with Extra Dimensions at Finite Temperature

    SciTech Connect

    Gruzza, Alessia

    2005-10-12

    In 5-dimensional theories on multiply-connected manifolds the fifth component of the gauge fields can be identified with the Higgs field. We consider the Hosotani mechanism on S1/Z2 orbifold with an SU(2) gauge group. When A5 gets a VEV the gauge symmetry is completely broken. The VEV is undetermined at the tree level but a potential is generated at one loop. Finite temperature effects on the effective potential are studied.

  3. Schwinger pair production at finite temperature

    NASA Astrophysics Data System (ADS)

    Medina, Leandro; Ogilvie, Michael C.

    2017-03-01

    Thermal corrections to Schwinger pair production are potentially important in particle physics, nuclear physics and cosmology. However, the lowest-order contribution, arising at one loop, has proved difficult to calculate unambiguously. We show that this thermal correction may be calculated for charged scalars using the worldline formalism, where each term in the decay rate is associated with a worldline instanton. We calculate all finite-temperature worldline instantons, their actions and fluctuation prefactors, thus determining the complete one-loop decay rate at finite temperature. The thermal contribution to the decay rate becomes nonzero at a threshold temperature T =e E /2 m , above which it dominates the zero-temperature result. This is the lowest of an infinite set of thresholds at T =n e E /2 m . The decay rate is singular at each threshold as a consequence of the failure of the quadratic approximation to the worldline path integral. We argue that higher-order effects will make the decay rates finite everywhere and model those effects by the inclusion of hard thermal loop damping rates. We also demonstrate that the formalism developed here generalizes to the case of finite-temperature pair production in inhomogeneous fields.

  4. Mechanical instability at finite temperature

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoming; Mendoza, Carlos I.; Souslov, Anton; Lubensky, Tom C.

    2013-03-01

    Rigidity transitions have been well studied in a wide range of athermal systems such as jammed packings and diluted lattices, in which the balance between the number of degrees of freedom and constraints generally determines the onset of mechanical instability, as predicted by Maxwell. The effects of thermal fluctuations on these transitions, however, have not yet been systematically studied. Characterizing rigidity transitions at finite temperature is very important to the understanding of fundamental problems such as the relation between the glass transition and jamming. We report an analytic study of a finite-temperature rigidity transition in the square lattice. At zero temperature, this lattice exhibits a continuous transition between the square phase and a phase composed of rhombic cells as the nonlinear potential connecting next-nearest-neighbors vary. At nonzero-temperature, diverging vibrational entropy associated with the floppy modes play a very important role in selecting the phase and determining the order of the transition. We calculate the phase diagram of this system and identify interesting behaviors such as negative thermal expansion. This work was supported in part by the NSF under Grants DMR-0804900, DMR-1104707

  5. Majorana dynamical mean-field study of spin dynamics at finite temperatures in the honeycomb Kitaev model

    NASA Astrophysics Data System (ADS)

    Yoshitake, Junki; Nasu, Joji; Kato, Yasuyuki; Motome, Yukitoshi

    2017-07-01

    A prominent feature of quantum spin liquids is fractionalization of the spin degree of freedom. Fractionalized excitations have their own dynamics in different energy scales, and hence, affect finite-temperature (T ) properties in a peculiar manner even in the paramagnetic state harboring the quantum spin liquid state. We here present a comprehensive theoretical study of the spin dynamics in a wide T range for the Kitaev model on a honeycomb lattice, whose ground state is a quantum spin liquid. In this model, the fractionalization occurs to break up quantum spins into itinerant matter fermions and localized Z2 fluxes, which results in two crossovers at very different T scales. Extending the previous study for the isotropic coupling case [J. Yoshitake, J. Nasu, and Y. Motome, Phys. Rev. Lett. 117, 157203 (2016), 10.1103/PhysRevLett.117.157203], we calculate the dynamical spin structure factor S (q ,ω ) , the NMR relaxation rate 1 /T1 , and the magnetic susceptibility χ while changing the anisotropy in the exchange coupling constants, by using the dynamical mean-field theory based on a Majorana fermion representation. We describe the details of the methodology including the continuous-time quantum Monte Carlo method for computing dynamical spin correlations and the maximum entropy method for analytic continuation. We confirm that the combined method provides accurate results in a wide T range including the region where the spins are fractionalized. We find that also in the anisotropic cases the system exhibits peculiar behaviors below the high-T crossover whose temperature is comparable to the average of the exchange constants: S (q ,ω ) shows an inelastic response at the energy scale of the averaged exchange constant, 1 /T1 continues to grow even though the equal-time spin correlations are saturated and almost T independent, and χ deviates from the Curie-Weiss behavior. In particular, when the exchange interaction in one direction is stronger than the other two

  6. Nuclear matter properties in the relativistic mean-field theory at finite temperature with interaction between sigma-omega mesons

    SciTech Connect

    Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.

    2010-05-21

    We study the nuclear matter properties in the regime of high temperatures using a relativistic mean-field theory. Contrasting with the usual linear Walecka model, we include the sigma-omega meson coupling in order to investigate the role of this interaction in the nucleon effective mass behavior. Some numerical results are presented and discussed.

  7. A simplified finite element model for numerical simulation of temperature field and optimization of parameters in single crystal growth by optical floating zone technique

    NASA Astrophysics Data System (ADS)

    Yan, Yinzhou; Shi, Mengjie; Wang, Qiang; Jiang, Yijian

    2017-06-01

    Optical floating zone (OFZ) is one of the most extensively used techniques to grow a variety of bulk crystals, especially single crystals of metal oxides. Although the growth parameters have been identified to be the nature of feed rod, lamp power, rotation rate, growth atmosphere and gas pressure, etc., few studies revealed the effects of these parameters on temperature field during crystal growth in image furnaces. It is well known that the temperature gradient is the driving force for float zone crystal growth. Therefore, it is essential to obtain the major growth parameters affecting OFZ temperature field. In this work, a simplified finite element (FE) model was developed for numerical simulation of temperature field during OFZ crystal growth. The effects of major growth parameters (i.e. lamp power, lamp filament, and molten zone geometry) on temperature field during OFZ crystal growth were hence identified theoretically and validated experimentally. According to the numerical calculation, the growth parameters were optimized and high-quality TiO2 single crystal was grown in practice. Prospectively, the FE model presented in this work can be applied to optimize growth parameters for other crystals as well as opens up new opportunities to understand the physical process of OFZ crystal growth in a simple and scientific way.

  8. Frontiers of finite temperature lattice QCD

    NASA Astrophysics Data System (ADS)

    Borsányi, Szabolcs

    2017-03-01

    I review a selection of recent finite temperature lattice results of the past years. First I discuss the extension of the equation of state towards high temperatures and finite densities, then I show recent results on the QCD topological susceptibility at high temperatures and highlight its relevance for dark matter search.

  9. Ferromagnetism in metals at finite temperatures

    SciTech Connect

    Gyorffy, B.L.; Staunton, J.B.; Stocks, G.M.

    1984-01-01

    The conventional spin-polarized band theory is well known to give a reasonable description of the magnetic ground states of metals. Here it is generalized to finite temperatures. The resulting theory is the first first-principles theory of the ferromagnetic phase transition in metals. It is a mean-field theory. For iron we find T/sub c/ = 1250 K and chi/sup -1/(q = 0) follows a Curie-Weiss law. We also report on our results for the wave-vector dependent susceptibility chi(q) which is a measure of magnetic short-range order above T/sub c/.

  10. Lorentz violation in Bhabha scattering at finite temperature

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2017-06-01

    Corrections to the Bhabha scattering cross section, due to Lorentz violation, at finite temperature are calculated. The vertex interaction between fermions and photons is modified by introducing the Lorentz violation, for the Standard Model extension, from C P T odd nonminimal coupling. The finite temperature corrections are calculated using the thermo field dynamics formalism. The Lorentz violation corrections are presented for zero to high temperatures.

  11. Parity-Violating in e - e + Scattering at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Chekerker, M.; Santos, A. F.; Khanna, Faqir C.; Ladrem, M.

    2017-09-01

    Parity violation implies that physics laws are not invariant under spatial coordinate reversal. Electron-positron scattering is a process that displays parity violation. Using the Thermo Field Dynamics formalism this scattering at finite temperature is analyzed. The transition amplitude is calculated as a function of temperature. The parity violation at very high temperatures tend to go to zero.

  12. LARGE volume string compactifications at finite temperature

    SciTech Connect

    Anguelova, Lilia; Calò, Vincenzo; Cicoli, Michele E-mail: v.calo@qmul.ac.uk

    2009-10-01

    We present a detailed study of the finite-temperature behaviour of the LARGE Volume type IIB flux compactifications. We show that certain moduli can thermalise at high temperatures. Despite that, their contribution to the finite-temperature effective potential is always negligible and the latter has a runaway behaviour. We compute the maximal temperature T{sub max}, above which the internal space decompactifies, as well as the temperature T{sub *}, that is reached after the decay of the heaviest moduli. The natural constraint T{sub *} < T{sub max} implies a lower bound on the allowed values of the internal volume V. We find that this restriction rules out a significant range of values corresponding to smaller volumes of the order V ∼ 10{sup 4}l{sub s}{sup 6}, which lead to standard GUT theories. Instead, the bound favours values of the order V ∼ 10{sup 15}l{sub s}{sup 6}, which lead to TeV scale SUSY desirable for solving the hierarchy problem. Moreover, our result favours low-energy inflationary scenarios with density perturbations generated by a field, which is not the inflaton. In such a scenario, one could achieve both inflation and TeV-scale SUSY, although gravity waves would not be observable. Finally, we pose a two-fold challenge for the solution of the cosmological moduli problem. First, we show that the heavy moduli decay before they can begin to dominate the energy density of the Universe. Hence they are not able to dilute any unwanted relics. And second, we argue that, in order to obtain thermal inflation in the closed string moduli sector, one needs to go beyond the present EFT description.

  13. QED effective action at finite temperature and density

    NASA Astrophysics Data System (ADS)

    Elmfors, Per; Persson, David; Skagerstam, Bo-Sture

    1993-07-01

    Results are presented of calculations of the QED effective action at finite temperature and density to all orders in an external homogeneous and time-independent magnetic field, in the weak coupling limit. The free energy, obtained explicitly, exhibits the expected de Haas-van Alphen oscillations. An effective coupling at finite temperature and density is derived in a closed form and is compared with renormalization group results.

  14. PROGRESS IN LATTICE QCD AT FINITE TEMPERATURE.

    SciTech Connect

    PETRECZKY,P.

    2007-02-11

    I review recent developments in lattice QCD at finite temperature, including the determination of the transition temperature T{sub c}, equation of state and different static screening lengths. The lattice data suggest that at temperatures above 1.5T{sub c} the quark gluon plasma can be considered as gas consisting of quarks and gluons.

  15. Finite temperature effective potential in a Kaluza-Klein universe

    SciTech Connect

    Roy, P. )

    1990-01-20

    The authors evaluate the finite temperature one-loop effective potential for scalar fields in Kaluza-Klein universe consisting of the product of a space with open Robertson-Walker metric and the N sphere S{sup N}. The one-loop effective potential has been computed in both high and low temperature limits.

  16. Entropic uncertainty relation at finite temperature

    NASA Technical Reports Server (NTRS)

    Abe, Sumiyoshi; Suzuki, Norikazu

    1992-01-01

    We discussed how much information is lost when a particle is in equilibrium with the thermal reservoir of temperature T = 1/beta. The universal temperature correction to the r.h.s. of U(X,P:psi) greater than or = 1 + ln(pi) is determined. For this purpose, it is convenient to employ the framework of thermo-field dynamics (TFD). This formulation of finite-temperature (T not = 0) quantum theory utilizes the doubled Hilbert space, the normal operator (A) acting on the objective space, and its corresponding tildian operator on the fictitious space. The physical probability density associated with the measurement of the normal operator, A, is given, and the information entropy at T not = 0 is defined. The results describe how the thermal disturbance effects in S sub X or S sub P (delta X or delta P) can be suppressed by squeezing with keeping U = S sub X + S sub P (delta X x delta P) its minimum value.

  17. A note on powers in finite fields

    NASA Astrophysics Data System (ADS)

    Aabrandt, Andreas; Lundsgaard Hansen, Vagn

    2016-08-01

    The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In this connection, it is of interest to know criteria for the existence of squares and other powers in arbitrary finite fields. Making good use of polynomial division in polynomial rings over finite fields, we have examined a classical criterion of Euler for squares in odd prime fields, giving it a formulation that is apt for generalization to arbitrary finite fields and powers. Our proof uses algebra rather than classical number theory, which makes it convenient when presenting basic methods of applied algebra in the classroom.

  18. Strange stars at finite temperature

    NASA Astrophysics Data System (ADS)

    Ray, Subharthi; Bagchi, Manjari; Dey, Jishnu; Dey, Mira

    2006-03-01

    We calculate strange star properties, using large Nc approximation with built-in chiral symmetry restoration (CSM). We used a relativistic Hartree Fock meanfield approximation method, using a modi.ed Richardson potential with two scale parameters Λ and Λ', to find a new set of equation of state (EOS) for strange quark matter. We take the effect of temperature (T) on gluon mass, in addition to the usual density dependence, and find that the transition T from hadronic matter to strange matter is 80 MeV. Therefore formation of strange stars may be the only signal for formation of QGP with asymptotic freedom (AF) and CSM.

  19. Emergent kink statistics at finite temperature

    DOE PAGES

    Lopez-Ruiz, Miguel Angel; Yepez-Martinez, Tochtli; Szczepaniak, Adam; ...

    2017-07-25

    In this paper we use 1D quantum mechanical systems with Higgs-like interaction potential to study the emergence of topological objects at finite temperature. Two different model systems are studied, the standard double-well potential model and a newly introduced discrete kink model. Using Monte-Carlo simulations as well as analytic methods, we demonstrate how kinks become abundant at low temperatures. These results may shed useful insights on how topological phenomena may occur in QCD.

  20. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  1. A Note on Powers in Finite Fields

    ERIC Educational Resources Information Center

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard

    2016-01-01

    The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In…

  2. A Note on Powers in Finite Fields

    ERIC Educational Resources Information Center

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard

    2016-01-01

    The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In…

  3. Higher-derivative Lorentz-breaking terms in extended QED at the finite temperature

    NASA Astrophysics Data System (ADS)

    Celeste, A.; Mariz, T.; Nascimento, J. R.; Petrov, A. Yu.

    2016-03-01

    In this paper we discuss finiteness and ambiguities of the higher-derivative Lorentz-breaking terms in extended QED with a magnetic coupling at the finite temperature. We find that, besides the higher-derivative Carroll-Field-Jackiw-like term and Myers-Pospelov term, many extra terms arise in a finite temperature case but these terms vanish in high temperature limit. Moreover, the contributions for the nonminimal coupling will dominate at large temperatures.

  4. Finite temperature mechanical instability in disordered lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Leyou; Mao, Xiaoming

    Mechanical instability takes different forms in various ordered and disordered systems, and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We used this theory to study two disordered lattices: randomly diluted triangular lattice and randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T = 0 . We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G ~T 1 / 2 , whereas the square lattice shows G ~T 2 / 3 . We discuss generic scaling laws for finite T mechanical instabilities and relate to experimental systems including jamming and glass transitions.

  5. LATTICE QCD AT FINITE TEMPERATURE AND DENSITY.

    SciTech Connect

    BLUM,T.; CREUTZ,M.; PETRECZKY,P.

    2004-02-24

    With the operation of the RHIC heavy ion program, the theoretical understanding of QCD at finite temperature and density has become increasingly important. Though QCD at finite temperature has been extensively studied using lattice Monte-Carlo simulations over the past twenty years, most physical questions relevant for RHIC (and future) heavy ion experiments remain open. In lattice QCD at finite temperature and density there have been at least two major advances in recent years. First, for the first time calculations of real time quantities, like meson spectral functions have become available. Second, the lattice study of the QCD phase diagram and equation of state have been extended to finite baryon density by several groups. Both issues were extensively discussed in the course of the workshop. A real highlight was the study of the QCD phase diagram in (T, {mu})-plane by Z. Fodor and S. Katz and the determination of the critical end-point for the physical value of the pion mass. This was the first time such lattice calculations at, the physical pion mass have been performed. Results by Z Fodor and S. Katz were obtained using a multi-parameter re-weighting method. Other determinations of the critical end point were also presented, in particular using a Taylor expansion around {mu} = 0 (Bielefeld group, Ejiri et al.) and using analytic continuation from imaginary chemical potential (Ph. de Forcrand and O. Philipsen). The result based on Taylor expansion agrees within errors with the new prediction of Z. Fodor and S. Katz, while methods based on analytic continuation still predict a higher value for the critical baryon density. Most of the thermodynamics studies in full QCD (including those presented at this workshop) have been performed using quite coarse lattices, a = 0.2-0.3 fm. Therefore one may worry about cutoff effects in different thermodynamic quantities, like the transition temperature T{sub tr}. At the workshop U. Heller presented a study of the transition

  6. Skyrmion Approach to Finite Density and Temperature

    NASA Astrophysics Data System (ADS)

    Park, Byung-Yoon; Riska, D. O.

    We review an approach, developed over the past few years, to describe hadronic matter at finite density and temperature, whose underlying theoretical framework is the Skyrme model, an effective low energy theory rooted in large Nc QCD. In this approach matter is described by various crystal structures of skyrmions, classical topological solitons carrying baryon number, from which conventional baryons appear by quantization. Chiral and scale symmetries play a crucial role in the dynamics as described by pion, dilaton and vector meson degrees of freedom. When compressed or heated skyrmion matter describes a rich phase diagram which has strong connections with the confinement/deconfinement phase transition.

  7. Chaotic dynamics of a magnetic particle at finite temperature

    NASA Astrophysics Data System (ADS)

    Suarez, O. J.; Laroze, D.; Martínez-Mardones, J.; Altbir, D.; Chubykalo-Fesenko, O.

    2017-01-01

    In this work, we study nonlinear aspects of the deterministic spin dynamics of an anisotropic single-domain magnetic particle at finite temperature modeled by the Landau-Lifshitz-Bloch equation. The magnetic field has two components: a constant term and a term involving a harmonic time modulation. The dynamical behavior of the system is characterized with the Lyapunov exponents and by means of bifurcation diagrams and Fourier spectra. In particular, we explore the effects of the magnitude and frequency of the applied magnetic field, finding that the system presents multiple transitions between regular and chaotic states when varying the control parameters. We also address the temperature dependence and evidence that it plays an important role in these transitions, almost suppressing the chaotic behavior close to the Curie temperature. Finally, we find that the system has hyperchaotic states for specific values of field and temperature.

  8. Friedberg-Lee model at finite temperature and density

    NASA Astrophysics Data System (ADS)

    Mao, Hong; Yao, Minjie; Zhao, Wei-Qin

    2008-06-01

    The Friedberg-Lee model is studied at finite temperature and density. By using the finite temperature field theory, the effective potential of the Friedberg-Lee model and the bag constant B(T) and B(T,μ) have been calculated at different temperatures and densities. It is shown that there is a critical temperature TC≃106.6 MeV when μ=0 MeV and a critical chemical potential μ≃223.1 MeV for fixing the temperature at T=50 MeV. We also calculate the soliton solutions of the Friedberg-Lee model at finite temperature and density. It turns out that when T⩽TC (or μ⩽μC), there is a bag constant B(T) [or B(T,μ)] and the soliton solutions are stable. However, when T>TC (or μ>μC) the bag constant B(T)=0 MeV [or B(T,μ)=0 MeV] and there is no soliton solution anymore, therefore, the confinement of quarks disappears quickly.

  9. Coherence and decoherence processes of a harmonic oscillator coupled with finite temperature field: Exact eigenbasis solution of Kossakowski-Linblad's equation

    NASA Astrophysics Data System (ADS)

    Tay, Buang Ann

    The eigenvalue problem of Kossakowski-Linblad's kinetic equation associated with the reduced density matrix of a harmonic oscillator interacting with a thermal bath in equilibrium is solved. The solution gives rise to a complete orthogonal eigenbasis endowed with Hilbert space structure that has a weighted norm. We find that the eigenfunctions at finite temperature can be obtained from the eigenfunction at zero temperature through a hyperbolic rotation on the position variables. This transformation enables the extension of the simple harmonic oscillator density matrix to that of a finite temperature. We further investigate the decay of these extended states under our dissipative kinetic equation. Furthermore, the Hilbert space structure enables the proof of a H -theorem in this system. We apply the eigenbasis expansion of an initial state to analyze decoherence as well as coherence processes. We find that coherence process occurs at a longer time scale compared to decoherence process. The time scales of both processes are estimated with the eigenbasis expansion. In the same way we analyze the evolution of the coherent state. We show that in addition to the ordinary decay time, we found another time scale which is defined by the time when the motion of the peak of the coherent state become comparative to the width of the coherent state. In contrast to the ordinary decay time this new relaxation time depends on the initial value of the momentum of the oscillator. We also find that our eigenbasis is applicable to a class of non-linear interactions, with a slight extension of the form of transport coefficients due to the non-linear interactions.

  10. Magnetic Elements at Finite Temperature and Large Deviation Theory

    NASA Astrophysics Data System (ADS)

    Kohn, R. V.; Reznikoff, M. G.; vanden-Eijnden, E.

    2005-08-01

    We investigate thermally activated phenomena in micromagnetics using large deviation theory and concepts from stochastic resonance. We give a natural mathematical definition of finite-temperature astroids, finite-temperature hysteresis loops, etc. Generically, these objects emerge when the (generalized) Arrhenius timescale governing the thermally activated barrier crossing event of magnetic switching matches the timescale at which the magnetic element is pulsed or ramped by an external field; in the special and physically relevant case of multiple-pulse experiments, on the other hand, short-time switching can lead to non-Arrhenius behavior. We show how large deviation theory can be used to explain some properties of the astroids, like their shrinking and sharpening as the number of applied pulses is increased. We also investigate the influence of the dynamics, in particular the relative importance of the gyromagnetic and the damping terms. Finally, we discuss some issues and open questions regarding spatially nonuniform magnetization.

  11. QCD nature of dark energy at finite temperature: Cosmological implications

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Katırcı, N.

    2016-05-01

    The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of Λ CDM and observations at late time.

  12. Instability of flat space at finite temperature

    SciTech Connect

    Gross, D.J.; Perry, M.J.; Yaffe, L.G.

    1982-01-15

    The instabilities of quantum gravity are investigated using the path-integral formulation of Einstein's theory. A brief review is given of the classical gravitational instabilities, as well as the stability of flat space. The Euclidean path-integral representation of the partition function is employed to discuss the instability of flat space at finite temperature. Semiclassical, or saddle-point, approximations are utilized. We show how the Jeans instability arises as a tachyon in the graviton propagator when small perturbations about hot flat space are considered. The effect due to the Schwarzschild instanton is studied. The small fluctuations about this instanton are analyzed and a negative mode is discovered. This produces, in the semiclassical approximation, an imaginary part of the free energy. This is interpreted as being due to the metastability of hot flat space to nucleate black holes. These then evolve by evaporation or by accretion of thermal gravitons, leading to the instability of hot flat space. The nucleation rate of black holes is calculated as a function of temperature.

  13. Finite-temperature phase transitions in the ionic Hubbard model

    NASA Astrophysics Data System (ADS)

    Kim, Aaram J.; Choi, M. Y.; Jeon, Gun Sang

    2014-04-01

    We investigate paramagnetic metal-insulator transitions in the infinite-dimensional ionic Hubbard model at finite temperatures. By means of the dynamical mean-field theory with an impurity solver of the continuous-time quantum Monte Carlo method, we show that an increase in the interaction strength brings about a crossover from a band insulating phase to a metallic one, followed by a first-order transition to a Mott insulating phase. The first-order transition turns into a crossover above a certain critical temperature, which becomes higher as the staggered lattice potential is increased. Further, analysis of the temperature dependence of the energy density discloses that the intermediate metallic phase is a Fermi liquid. It is also found that the metallic phase is stable against strong staggered potentials even at very low temperatures.

  14. Achieving sub-shot-noise sensing at finite temperatures

    NASA Astrophysics Data System (ADS)

    Mehboudi, Mohammad; Correa, Luis A.; Sanpera, Anna

    2016-10-01

    We investigate sensing of magnetic fields using quantum spin chains at finite temperature and exploit quantum phase crossovers to improve metrological bounds on the estimation of the chain parameters. In particular, we start by analyzing the X X spin chain. The magnetic sensitivity of this system is dictated by its magnetic susceptibility, which scales extensively (linearly) in the number of spins N . We introduce an iterative feed-forward protocol that actively exploits features of quantum phase crossovers to enable superextensive scaling of the magnetic sensitivity. Furthermore, we provide experimentally realistic observables to saturate the quantum metrological bounds. Finally, we extend our analysis on magnetic sensing to the Heisenberg X Y spin chain.

  15. Finite temperature effects on the neutrino decoupling in the early Universe

    SciTech Connect

    Fornengo, N. |; Kim, C.W. |; Song, J.

    1997-10-01

    Leading finite temperature effects on the neutrino decoupling temperature in the early Universe have been studied. We have incorporated modifications of the dispersion relation and the phase space distribution due to the presence of particles in the heat bath at a temperature of around 1 MeV. Since both the expansion rate of the Universe and the interaction rate of a neutrino are reduced by finite temperature effects, it is necessary to calculate thermal corrections as precisely as possible in order to find the net effect on the neutrino decoupling temperature. We have performed such a calculation by using finite temperature field theory. It has been shown that the finite temperature effects increase the neutrino decoupling temperature by 4.4{percent}, the largest contribution coming from the modification of the phase space due to the thermal bath. {copyright} {ital 1997} {ital The American Physical Society}

  16. Galilean covariance, Casimir effect and Stefan-Boltzmann law at finite temperature

    NASA Astrophysics Data System (ADS)

    Ulhoa, S. C.; Santos, A. F.; Khanna, Faqir C.

    2017-06-01

    The Galilean covariance, formulated in 5-dimensions space, describes the nonrelativistic physics in a way similar to a Lorentz covariant quantum field theory being considered for relativistic physics. Using a nonrelativistic approach the Stefan-Boltzmann law and the Casimir effect at finite temperature for a particle with spin zero and 1/2 are calculated. The thermo field dynamics is used to include the finite temperature effects.

  17. Physical properties of a soliton black hole at finite temperature

    NASA Astrophysics Data System (ADS)

    Pan, Rong-Shi; Su, Ru-Keng

    1992-03-01

    It is shown that the nontopological scalar black hole suggested by Friedberg, Lee, and Pang is dynamically stable at finite temperature. The heat capacity of a scalar soliton black hole is positive. The physical properties of a scalar black hole at finite temperature are discussed.

  18. Optimization of finite-size errors in finite-temperature calculations of unordered phases

    NASA Astrophysics Data System (ADS)

    Iyer, Deepak; Srednicki, Mark; Rigol, Marcos

    It is common knowledge that the microcanonical, canonical, and grand canonical ensembles are equivalent in thermodynamically large systems. Here, we study finite-size effects in the latter two ensembles. We show that contrary to naive expectations, finite-size errors are exponentially small in grand canonical ensemble calculations of translationally invariant systems in unordered phases at finite temperature. Open boundary conditions and canonical ensemble calculations suffer from finite-size errors that are only polynomially small in the system size. We further show that finite-size effects are generally smallest in numerical linked cluster expansions. Our conclusions are supported by analytical and numerical analyses of classical and quantum systems.

  19. Optimization of finite-size errors in finite-temperature calculations of unordered phases

    NASA Astrophysics Data System (ADS)

    Iyer, Deepak; Srednicki, Mark; Rigol, Marcos

    2015-06-01

    It is common knowledge that the microcanonical, canonical, and grand-canonical ensembles are equivalent in thermodynamically large systems. Here, we study finite-size effects in the latter two ensembles. We show that contrary to naive expectations, finite-size errors are exponentially small in grand canonical ensemble calculations of translationally invariant systems in unordered phases at finite temperature. Open boundary conditions and canonical ensemble calculations suffer from finite-size errors that are only polynomially small in the system size. We further show that finite-size effects are generally smallest in numerical linked cluster expansions. Our conclusions are supported by analytical and numerical analyses of classical and quantum systems.

  20. Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets

    NASA Astrophysics Data System (ADS)

    Shinozaki, Misako; Hoshino, Shintaro; Masaki, Yusuke; Kishine, Jun-ichiro; Kato, Yusuke

    2016-07-01

    We study a three-dimensional (3d) classical chiral helimagnet at finite temperatures through analysis of a spin Hamiltonian, which is defined on a simple cubic lattice and consists of the Heisenberg exchange, monoaxial Dzyaloshinskii-Moriya interactions, and the Zeeman energy due to a magnetic field applied in the plane perpendicular to the helical axis. We take account of the quasi-two-dimensionality of the known monoaxial chiral helimagnet CrNb3S6 and we adopt three methods: (i) a conventional mean-field (MF) analysis, which we call the 3dMF method, (ii) a hybrid method called the 2dMC-1dMF method, which is composed of a classical Monte Carlo (MC) simulation and a MF approximation applied respectively to the intra- and interlayer interactions, and (iii) a simple-MC simulation (3dMC) at zero field. The temperature dependence of the magnetization calculated by the 3dMF method shows a cusp-like structure similar to that observed in experiments. In the absence of a magnetic field, both 2dMC-1dMF and 3dMC yield similar values of the transition temperature. The 2dMC-1dMF method provides a quantitative description of the thermodynamic properties, even under an external field, at an accessible numerical cost.

  1. Algebraic complexities and algebraic curves over finite fields

    PubMed Central

    Chudnovsky, D. V.; Chudnovsky, G. V.

    1987-01-01

    We consider the problem of minimal (multiplicative) complexity of polynomial multiplication and multiplication in finite extensions of fields. For infinite fields minimal complexities are known [Winograd, S. (1977) Math. Syst. Theory 10, 169-180]. We prove lower and upper bounds on minimal complexities over finite fields, both linear in the number of inputs, using the relationship with linear coding theory and algebraic curves over finite fields. PMID:16593816

  2. Thermophysical properties of iridium at finite temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2016-11-01

    The bulk properties of materials in an extreme environment such as high temperature and high pressure can be understood by studying anharmonic effects due to the vibration of lattice ions and thermally excited electrons. In this spirit, in the present paper, anharmonic effects are studied by using the recently proposed mean-field potential (MFP) approach and Mermin functional which arise due to the vibration of lattice ions and thermally excited electrons, respectively. The MFP experienced by a wanderer atom in the presence of surrounding atoms is constructed in terms of cold energy using the local form of the pseudopotential. We have calculated the temperature variation of several thermophysical properties in an extreme environment up to melting temperature. The results of our calculations are in excellent agreement with the experimental findings as well as the theoretical results obtained by using first principle methods. We conclude that presently used conjunction scheme (MFP+pseudopotential) is simple computationally, transparent physically, and accurate in the sense that the results generated are comparable and sometimes better than the results obtained by first principle methods. Local pseudopotential used is transferable to extreme environment without adjusting its parameters. Project supported by the Department of Science and Technology-Fund for Improvement of Science and Technology Infrastructure Project (DST-FIST) (Level 1) of Department of Sciences and Technology (DST), New Delhi (Grant No. SR/FST/PST-001/2006).

  3. Correlation effects on a topological insulator at finite temperatures

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuneya; Fujimoto, Satoshi; Kawakami, Norio

    2012-03-01

    We analyze the effects of the local Coulomb interaction on a topological band insulator (TBI) by applying the dynamical mean-field theory to a generalized Bernevig-Hughes-Zhang model having electron correlations. It is elucidated how the correlation effects modify electronic properties in the TBI phase at finite temperatures. In particular, the band inversion character of the TBI inevitably leads to the large reduction of the spectral gap via the renormalization effect, which results in the strong temperature dependence of the spin Hall conductivity. We clarify that a quantum phase transition from the TBI to a trivial Mott insulator, if it is nonmagnetic, is of first order with a hysteresis. This is confirmed via the interaction dependence of the double occupancy and the spectral function. A magnetic instability is also addressed. All these results imply that the spectral gap does not close at the transition.

  4. Infinite finitely generated fields are biinterpretable with {{N}}

    NASA Astrophysics Data System (ADS)

    Scanlon, Thomas

    2008-07-01

    Using the work of several other mathematicians, principally the results of Poonen refining the work of Pop that algebraic independence is definable within the class of finitely generated fields and of Rumely that the ring of rational integers is uniformly interpreted in global fields, and a theorem on the definability of valuations on function fields of curves, we show that each infinite finitely generated field considered in the ring language is parametrically biinterpretable with {N} . As a consequence, for any finitely generated field there is a first-order sentence in the language of rings which is true in that field but false in every other finitely generated field and, hence, Pop's conjecture that elementarily equivalent finitely generated fields are isomorphic is true.

  5. Damping of Ultrasoft Fermions in Finite Temperature QED

    SciTech Connect

    Bouakaz, K.; Abada, A.

    2008-04-21

    We calculate the fermion damping rates to second order in powers of the external momentum in the context of QED at finite temperature using the hard-thermal-loop summation scheme. We find the coefficients of zeroth and first orders finite whereas that of second order logarithmically infrared sensitive. The calculation is done in covariant gauge and the result is independent of gauge fixing.

  6. PHD TUTORIAL: Finite-temperature models of Bose Einstein condensation

    NASA Astrophysics Data System (ADS)

    Proukakis, Nick P.; Jackson, Brian

    2008-10-01

    The theoretical description of trapped weakly interacting Bose-Einstein condensates is characterized by a large number of seemingly very different approaches which have been developed over the course of time by researchers with very distinct backgrounds. Newcomers to this field, experimentalists and young researchers all face a considerable challenge in navigating through the 'maze' of abundant theoretical models, and simple correspondences between existing approaches are not always very transparent. This tutorial provides a generic introduction to such theories, in an attempt to single out common features and deficiencies of certain 'classes of approaches' identified by their physical content, rather than their particular mathematical implementation. This tutorial is structured in a manner accessible to a non-specialist with a good working knowledge of quantum mechanics. Although some familiarity with concepts of quantum field theory would be an advantage, key notions, such as the occupation number representation of second quantization, are nonetheless briefly reviewed. Following a general introduction, the complexity of models is gradually built up, starting from the basic zero-temperature formalism of the Gross-Pitaevskii equation. This structure enables readers to probe different levels of theoretical developments (mean field, number conserving and stochastic) according to their particular needs. In addition to its 'training element', we hope that this tutorial will prove useful to active researchers in this field, both in terms of the correspondences made between different theoretical models, and as a source of reference for existing and developing finite-temperature theoretical models.

  7. Jamming of soft spheres at finite temperature : a granular experiment

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Dauchot, Olivier; Behringer, Robert

    2012-02-01

    At large packing fraction, disordered packings of particles with repulsive contact interactions jam into a rigid state where they withstand finite shear stresses before yielding. For frictionless particles and at zero temperature, the jamming transition coincides with the onset of iso-staticity and many geometrical and mechanical properties scale with the distance to the jamming point. What are the vestige of jamming at finite temperature and how jamming impacts the thermodynamics of glasses remain open issues. We address these questions experimentally by investigating the dynamics of both the density field and the force network of an horizontally shaken bi-disperse packing of photo-elastic disks. The average number of contact clearly displays an abrupt transition which we interpret as the jamming transition. Besides, dynamical heterogeneities are observed and their amplitude exhibits a maximum, which, in turn, signs a dynamical transition. We discuss in detail the interplay between these two transitions and how they depend on the particle softness and amplitude of the horizontal vibration.

  8. THE TWO-LEVEL MODEL AT FINITE-TEMPERATURE

    SciTech Connect

    Goodman, A.L.

    1980-07-01

    The finite-temperature HFB cranking equations are solved for the two-level model. The pair gap, moment of inertia and internal energy are determined as functions of spin and temperature. Thermal excitations and rotations collaborate to destroy the pair correlations. Raising the temperature eliminates the backbending effect and improves the HFB approximation.

  9. Finite Temperature Deconfining Transition in the BRST Formalism

    NASA Astrophysics Data System (ADS)

    Hata, H.; Taniguchi, Y.

    1995-04-01

    We present a toy model study of the high temperature deconfining transition in Yang-Mills theory as a breakdown of the confinement condition proposed y Kugo and Ojima. Our toy model is a kind of topological field theory obtained from the Yang-Mills theory by taking the limit of vanishing gauge coupling constant gYM --> 0, and therefore the gauge field Aμ is constrained to the pure-gauge configuration Aμ = g†partialμg. At zero temperature this model has been known to satisfy the confinement condition of Kugo and Ojima which requires the absence of the massless Nambu-Goldstone-like mode coupled to the BRST-exact color current. In the finite temperature case based on the real-time formalism, our model in 3 + 1 dimensions is reduced, by the Parisi-Sourlas mechanism, the the ``sum'' of chiral models in 1 + 1 dimensions with various boundary conditions of the group element g(t, x) at the ends of the time contour. We analyze the effective potential of the SU(2) model and find that the deconfining transition in fact occurs due to the contribution of the sectors with non-periodic boundary conditions.

  10. Improved Algorithm For Finite-Field Normal-Basis Multipliers

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1989-01-01

    Improved algorithm reduces complexity of calculations that must precede design of Massey-Omura finite-field normal-basis multipliers, used in error-correcting-code equipment and cryptographic devices. Algorithm represents an extension of development reported in "Algorithm To Design Finite-Field Normal-Basis Multipliers" (NPO-17109), NASA Tech Briefs, Vol. 12, No. 5, page 82.

  11. Energy spectra of finite temperature superfluid helium-4 turbulence

    SciTech Connect

    Kivotides, Demosthenes

    2014-10-15

    A mesoscopic model of finite temperature superfluid helium-4 based on coupled Langevin-Navier-Stokes dynamics is proposed. Drawing upon scaling arguments and available numerical results, a numerical method for designing well resolved, mesoscopic calculations of finite temperature superfluid turbulence is developed. The application of model and numerical method to the problem of fully developed turbulence decay in helium II, indicates that the spectral structure of normal-fluid and superfluid turbulence is significantly more complex than that of turbulence in simple-fluids. Analysis based on a forced flow of helium-4 at 1.3 K, where viscous dissipation in the normal-fluid is compensated by the Lundgren force, indicate three scaling regimes in the normal-fluid, that include the inertial, low wavenumber, Kolmogorov k{sup −5/3} regime, a sub-turbulence, low Reynolds number, fluctuating k{sup −2.2} regime, and an intermediate, viscous k{sup −6} range that connects the two. The k{sup −2.2} regime is due to normal-fluid forcing by superfluid vortices at high wavenumbers. There are also three scaling regimes in the superfluid, that include a k{sup −3} range that corresponds to the growth of superfluid vortex instabilities due to mutual-friction action, and an adjacent, low wavenumber, k{sup −5/3} regime that emerges during the termination of this growth, as superfluid vortices agglomerate between intense normal-fluid vorticity regions, and weakly polarized bundles are formed. There is also evidence of a high wavenumber k{sup −1} range that corresponds to the probing of individual-vortex velocity fields. The Kelvin waves cascade (the main dynamical effect in zero temperature superfluids) appears to be damped at the intervortex space scale.

  12. SU (N ) Fermi liquid at finite temperature

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Ho; Yip, S.-K.

    2017-03-01

    We consider the thermodynamic potential Ω of an N component Fermi gas with a short-range interaction obeying SU (N ) symmetry. We analyze especially the nonanalytic part of Ω in the temperature T at low T . We examine the temperature range where one can observe this T4lnT contribution and discuss how it can be extracted experimentally.

  13. Finite-temperature Casimir effect in the presence of nonlinear dielectrics

    SciTech Connect

    Kheirandish, Fardin; Soltani, Morteza; Amooghorban, Ehsan

    2011-03-15

    Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations to coupling functions are determined. Finally, the Casimir energy and force in the presence of a nonlinear medium at finite temperature are calculated.

  14. Finite-size test for the finite-temperature chiral phase transition in lattice QCD

    SciTech Connect

    Fukugita, M.; Mino, H.; Okawa, M.; Ukawa, A. Faculty of Engineering, Yamanashi University, Kofu National Laboratory for High Energy Physics , Ibaraki Institute of Physics, University of Tsukuba, Ibaraki )

    1990-08-13

    A finite-size test was carried out for the finite-temperature chiral phase transition in QCD for flavor number {ital N}{sub {ital f}}=4 and 2 on a lattice with four time slices using the Kogut-Susskind quark action at quark mass of 0.025 in lattice units. All the evidence supports a first-order transition for {ital N}{sub {ital f}}=4. For {ital N}{sub {ital f}}=2, however, the data on spatial lattice up to 12{sup 3} fail to yield convincing finite-size signatures for a first-order transition at this quark mass.

  15. Finite size induces crossover temperature in growing spin chains

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, Julian; Suchecki, Krzysztof; Hołyst, Janusz A.

    2014-01-01

    We introduce a growing one-dimensional quenched spin model that bases on asymmetrical one-side Ising interactions in the presence of external field. Numerical simulations and analytical calculations based on Markov chain theory show that when the external field is smaller than the exchange coupling constant J there is a nonmonotonous dependence of the mean magnetization on the temperature in a finite system. The crossover temperature Tc corresponding to the maximal magnetization decays with system size, approximately as the inverse of the Lambert W function. The observed phenomenon can be understood as an interplay between the thermal fluctuations and the presence of the first cluster determined by initial conditions. The effect exists also when spins are not quenched but fully thermalized after the attachment to the chain. By performing tests on real data we conceive the model is in part suitable for a qualitative description of online emotional discussions arranged in a chronological order, where a spin in every node conveys emotional valence of a subsequent post.

  16. Finite size induces crossover temperature in growing spin chains.

    PubMed

    Sienkiewicz, Julian; Suchecki, Krzysztof; Hołyst, Janusz A

    2014-01-01

    We introduce a growing one-dimensional quenched spin model that bases on asymmetrical one-side Ising interactions in the presence of external field. Numerical simulations and analytical calculations based on Markov chain theory show that when the external field is smaller than the exchange coupling constant J there is a nonmonotonous dependence of the mean magnetization on the temperature in a finite system. The crossover temperature Tc corresponding to the maximal magnetization decays with system size, approximately as the inverse of the Lambert W function. The observed phenomenon can be understood as an interplay between the thermal fluctuations and the presence of the first cluster determined by initial conditions. The effect exists also when spins are not quenched but fully thermalized after the attachment to the chain. By performing tests on real data we conceive the model is in part suitable for a qualitative description of online emotional discussions arranged in a chronological order, where a spin in every node conveys emotional valence of a subsequent post.

  17. GENERAL: Fluctuation of Mesoscopic RLC Circuit at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yan; Wang, Ji-Suo; Fan, Hong-Yi

    2008-09-01

    We consider the fluctuation of mesoscopic RLC circuit at finite temperature since a resistance always produces Joule heat when the circuit is working. By virtue of the thermo Geld dynamics and the coherent thermo state representation we show that the quantum mechanical zero-point fluctuations of both charge and current increase with the rising temperature and the resistance value.

  18. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams

    SciTech Connect

    Manzolaro, M. Andrighetto, A.; Meneghetti, G.; Vivian, G.; D’Agostini, F.

    2016-02-15

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 10{sup 13} fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed.

  19. Finite anticanonical transformations in field-antifield formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.

    2015-06-01

    We study the role of arbitrary (finite) anticanonical transformations in the field-antifield formalism and the gauge-fixing procedure based on the use of these transformations. The properties of the generating functionals of the Green functions subjected to finite anticanonical transformations are considered.

  20. Equation of state for QCD at finite temperature and density. Resummation versus lattice data

    SciTech Connect

    Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Su, Nan

    2016-01-22

    The perturbative series for finite-temperature field theories has very poor convergence properties and one needs a way to reorganize it. In this talk, I review two ways of reorganizing the perturbative series for field theories at finite temperature and chemical potential, namely hard-thermal-loop perturbation theory (HTLpt) and dimensional reduction (DR). I will present results for the pressure, trace anomaly, speed of sound, and the quark susceptibilities from a 3-loop HTLpt calculation and for the quark susceptibilities using DR at four loops. A careful comparison with available lattice data shows good agreement for a number of physical quantities.

  1. Variational Equation for Quantum Number Projection at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Tanabe, Kosai; Nakada, Hitoshi

    2008-04-01

    To describe phase transitions in a finite system at finite temperature, we develop a formalism of the variation-after-projection (VAP) of quantum numbers based on the thermofield dynamics (TFD). We derive a new Bardeen-Cooper-Schrieffer (BCS)-type equation by variating the free energy with approximate entropy without violating Peierls inequality. The solution to the new BCS equation describes the S-shape in the specific heat curve and the superfluid-to-normal phase transition caused by the temperature effect. It simulates the exact quantum Monte Carlo results well.

  2. Feynman parametrization and Mellin summation at finite temperature

    SciTech Connect

    Ayala, Alejandro; Piccinelli, Gabriella; Tejeda-Yeomans, Maria Elena

    2008-11-01

    We show that the Mellin summation technique (MST) is a well-defined and useful tool to compute loop integrals at finite temperature in the imaginary-time formulation of thermal field theory, especially when interested in the infrared limit of such integrals. The method makes use of the Feynman parametrization which has been claimed to have problems when the analytical continuation from discrete to arbitrary complex values of the Matsubara frequency is performed. We show that without the use of the MST, such problems are not intrinsic to the Feynman parametrization but instead, they arise as a result of (a) not implementing the periodicity brought about by the possible values taken by the discrete Matsubara frequencies before the analytical continuation is made and (b) to the changing of the original domain of the Feynman parameter integration, which seemingly simplifies the expression but in practice introduces a spurious end point singularity. Using the MST, there are no problems related to the implementation of the periodicity but instead, care has to be taken when the sum of denominators of the original amplitude vanishes. We apply the method to the computation of loop integrals appearing when the effects of external weak magnetic fields on the propagation of scalar particles is considered.

  3. Enforcing causality in nonrelativistic equations of state at finite temperature

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos; Prakash, Madappa

    2017-05-01

    We present a thermodynamically consistent method by which equations of state based on nonrelativistic potential models can be modified so that they respect causality at high densities, both at zero and finite temperature (entropy). We illustrate the application of the method by using the high-density phase parametrization of the well-known Akmal-Pandharipande-Ravenhall model in its pure neutron matter configuration as an example. We also show that, for models with only contact interactions, the adiabatic speed of sound is independent of the temperature in the limit of very large temperature. This feature is approximately valid for models with finite-range interactions as well, insofar as the temperature dependence they introduce to the Landau effective mass is weak. In addition, our study reveals that in first-principle nonrelativistic models of hot and dense matter, contributions from higher-than-two-body interactions must be screened at high density to preserve causality.

  4. Lee-Wick standard model at finite temperature

    NASA Astrophysics Data System (ADS)

    Lebed, Richard F.; Long, Andrew J.; TerBeek, Russell H.

    2013-10-01

    The Lee-Wick Standard Model at temperatures near the electroweak scale is considered, with the aim of studying the electroweak phase transition. While Lee-Wick theories possess states of negative norm, they are not pathological but instead are treated by imposing particular boundary conditions and using particular integration contours in the calculation of S-matrix elements. It is not immediately clear how to extend this prescription to formulate the theory at finite temperature; we explore two different pictures of finite-temperature Lee-Wick theories, and calculate the thermodynamic variables and the (one-loop) thermal effective potential. We apply these results to study the Lee-Wick Standard Model and find that the electroweak phase transition is a continuous crossover, much like in the Standard Model. However, the high-temperature behavior is modified due to cancellations between thermal corrections arising from the negative- and positive-norm states.

  5. Finite-temperature magnetism in bcc Fe under compression.

    PubMed

    Sha, Xianwei; Cohen, R E

    2010-09-22

    We investigate the contributions of finite-temperature magnetic fluctuations to the thermodynamic properties of bcc Fe as functions of pressure. First, we apply a tight-binding total-energy model parameterized to first-principles linearized augmented plane-wave computations to examine various ferromagnetic, anti-ferromagnetic, and noncollinear spin spiral states at zero temperature. The tight-binding data are fit to a generalized Heisenberg Hamiltonian to describe the magnetic energy functional based on local moments. We then use Monte Carlo simulations to compute the magnetic susceptibility, the Curie temperature, heat capacity, and magnetic free energy. Including the finite-temperature magnetism improves the agreement with experiment for the calculated thermal expansion coefficients.

  6. Quantum Monte Carlo finite temperature electronic structure of quantum dots

    NASA Astrophysics Data System (ADS)

    Leino, Markku; Rantala, Tapio T.

    2002-08-01

    Quantum Monte Carlo methods allow a straightforward procedure for evaluation of electronic structures with a proper treatment of electronic correlations. This can be done even at finite temperatures [1]. We test the Path Integral Monte Carlo (PIMC) simulation method [2] for one and two electrons in one and three dimensional harmonic oscillator potentials and apply it in evaluation of finite temperature effects of single and coupled quantum dots. Our simulations show the correct finite temperature excited state populations including degeneracy in cases of one and three dimensional harmonic oscillators. The simulated one and two electron distributions of a single and coupled quantum dots are compared to those from experiments and other theoretical (0 K) methods [3]. Distributions are shown to agree and the finite temperature effects are discussed. Computational capacity is found to become the limiting factor in simulations with increasing accuracy. Other essential aspects of PIMC and its capability in this type of calculations are also discussed. [1] R.P. Feynman: Statistical Mechanics, Addison Wesley, 1972. [2] D.M. Ceperley, Rev.Mod.Phys. 67, 279 (1995). [3] M. Pi, A. Emperador and M. Barranco, Phys.Rev.B 63, 115316 (2001).

  7. Neoclassical Radial Electric Field and Transport with Finite Orbits

    SciTech Connect

    Wang, W. X.; Hinton, F. L.; Wong, S. K.

    2001-07-30

    Neoclassical transport in a toroidal plasma with finite ion orbits is studied, including for the first time the self-consistent radial electric field. Using a low-noise {delta}f particle simulation, we demonstrate that a deep electric-field well develops in a region with a steep density gradient, because of the self-collision--driven ion flux. We find that the electric field agrees with the standard neoclassical expression, when the toroidal rotation is zero, even for a steep density gradient. Ion thermal transport is modified by the electric-field well in a way which is consistent with the orbit squeezing effect, but smoothed by the finite orbits.

  8. Charmed mesons at finite temperature and chemical potential

    NASA Astrophysics Data System (ADS)

    Serna, Fernando E.; Krein, Gastão

    2017-03-01

    We compute the masses of the pseudoscalar mesons π+, K0 and D+ at finite temperature and baryon chemical potential. The computations are based on a symmetry-preserving Dyson-Schwinger equation treatment of a vector-vector four quark contact interaction. The results found for the temperature dependence of the meson masses are in qualitative agreement with lattice QCD data and QCD sum rules calculations. The chemical potential dependence of the masses provide a novel prediction of the present computation.

  9. Schwinger pair production at finite temperature in QED

    SciTech Connect

    Kim, Sang Pyo; Lee, Hyun Kyu; Yoon, Yongsung

    2009-02-15

    We use the evolution operator method to find the Schwinger pair-production rate at finite temperature in scalar and spinor QED by counting the vacuum production, the induced production, and the stimulated annihilation from the initial ensemble. It is shown that the pair-production rate for each state is factorized into the mean number at zero temperature and the initial thermal distribution for bosons and fermions.

  10. Surface temperatures in sliding systems - A finite element analysis

    NASA Technical Reports Server (NTRS)

    Kennedy, F. E., Jr.

    1980-01-01

    Finite element equations are developed for studying surface temperatures resulting from frictional heating in sliding systems. The equations include the effect of velocity of moving components, an effect which is found to be quite significant, even at low sliding velocities. A program was written using the equations and it was applied to the study of surface temperatures in two different sliding systems: dry or boundary lubricated sleeve bearings and a labyrinth gas path seal configuration. Very good agreement was achieved between analytical predictions using the program and experimental temperature measurements. The program was used to study the influence of various material parameters on surface temperatures in the two sliding systems.

  11. Continuous Time Finite State Mean Field Games

    SciTech Connect

    Gomes, Diogo A.; Mohr, Joana Souza, Rafael Rigao

    2013-08-01

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games.

  12. A generalized algorithm to design finite field normal basis multipliers

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1986-01-01

    Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field.

  13. Standard Model Extension and Casimir effect for fermions at finite temperature

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2016-11-01

    Lorentz and CPT symmetries are foundations for important processes in particle physics. Recent studies in Standard Model Extension (SME) at high energy indicate that these symmetries may be violated. Modifications in the lagrangian are necessary to achieve a hermitian hamiltonian. The fermion sector of the standard model extension is used to calculate the effects of the Lorentz and CPT violation on the Casimir effect at zero and finite temperature. The Casimir effect and Stefan-Boltzmann law at finite temperature are calculated using the thermo field dynamics formalism.

  14. A note on the pulay force at finite temperatures

    SciTech Connect

    Niklasson, Anders M N

    2008-01-01

    Pulay's original expression for the basis-set dependent adjustment term to the Hellmann-Feynman force in electronic structure theory, which occurs for nonorthogonal local basis-set representations, is based on the idempotency condition of a pure ensemble. At finite electronic temperatures with a fractional occupation of the states, the conventional expression of the Pulay force is therefore no longer valid. Here we derive a simple and computationally efficient expression for a generalized Pulay force, which is suitable for large-scale ab initio simulations at finite electronic temperatures using local nonorthogonal basis-set representations. The generalized Pulay force expression is given in terms of the temperature-dependent density matrix. For the construction of the density matrix, we propose a recursive Fermi operator expansion algorithm that automatically converges to the correct chemical potential.

  15. Fractional Talbot field and of finite gratings: compact analytical formulation.

    PubMed

    Arrizón, V; Rojo-Velázquez, G

    2001-06-01

    We present a compact analytical formulation for the fractional Talbot effect at the paraxial domain of a finite grating. Our results show that laterally shifted distorted images of the grating basic cell form the Fresnel field at a fractional Talbot plane of the grating. Our formulas give the positions of those images and show that they are given by the convolution of the nondistorted cells (modulated by a quadratic phase factor) with the Fourier transform of the finite-grating pupil.

  16. Phase transition in finite density and temperature lattice QCD

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Chen, Ying; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Meng, Xiang-Fei; Zhang, Jian-Bo

    2015-06-01

    We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of β and ma at the lattice size 24 × 122 × 6. The calculation was done in the Taylor expansion formalism. We are able to calculate the first and second order derivatives of ≤ft< {\\bar{\\psi} \\psi } \\right> in both isoscalar and isovector channels. With the first derivatives being small, we find that the second derivatives are sizable close to the phase transition and that the magnitude of \\bar{\\psi} \\psi decreases under the influence of finite chemical potential in both channels. Supported by National Natural Science Foundation of China (11335001, 11105153, 11405178), Projects of International Cooperation and Exchanges NSFC (11261130311)

  17. Finite Temperature Quasicontinuum: Molecular Dynamics without all the Atoms

    SciTech Connect

    Dupuy, L; Tadmor, E B; Miller, R E; Phillips, R

    2005-02-02

    Using a combination of statistical mechanics and finite-element interpolation, the authors develop a coarse-grained (CG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The new approach is significantly more efficient than MD and generalizes earlier work on the quasi-continuum method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of the critical stress to nucleate dislocations under the indenter.

  18. Huge Casimir effect at finite temperature in electromagnetic Rindler space.

    PubMed

    Zhao, Tian-Ming; Miao, Rong-Xin

    2011-12-01

    We investigate the Casimir effect at a finite temperature in the electromagnetic Rindler space, and we find that the Casimir energy is proportional to T(4)/d(2) in the high-temperature limit, where T ≈ 27 °C is the temperature and d ≈ 100 nm is a small cutoff. We propose to make metamaterials to mimic the Rindler space and measure the predicted Casimir effect. Because the parameters of metamaterials we proposed are quite simple, this experiment would be easily implemented in the laboratory. © 2011 Optical Society of America

  19. BCS instability and finite temperature corrections to tachyon mass in intersecting D1-branes

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sudipto Paul; Sarkar, Swarnendu; Sathiapalan, B.

    2014-09-01

    A holographic description of BCS superconductivity is given in [1]. This model was constructed by insertion of a pair of D8-branes on a D4-background. The spectrum of intersecting D8-branes has tachyonic modes indicating an instability which is identified with the BCS instability in superconductors. Our aim is to study the stability of the intersecting branes under finite temperature effects. Many of the technical aspects of this problem are captured by a simpler problem of two intersecting D1-branes on flat background. In the simplified set-up we compute the one-loop finite temperature corrections to the tree-level tachyon mass-squared-squared using the frame-work of SU(2) Yang-Mills theory in (1 + 1)-dimensions. We show that the one-loop two-point functions are ultraviolet finite due to cancellation of ultraviolet divergence between the amplitudes containing bosons and fermions in the loop. The amplitudes are found to be infrared divergent due to the presence of massless fields in the loops. We compute the finite temperature mass-squared correction to all the massless fields and use these temperature dependent masses-squared to compute the tachyonic mass-squared correction. We show numerically the existence of a transition temperature at which the effective mass-squared of the tree-level tachyons becomes zero, thereby stabilizing the brane configuration.

  20. Ab Initio Finite-Temperature Electronic Absorption Spectrum of Formamide.

    PubMed

    Besley, Nicholas A; Doltsinis, Nikos L

    2006-11-01

    A combination of Car-Parrinello molecular dynamics (CP-MD) and high-level ab initio quantum chemical calculations has been used to calculate the electronic absorption spectrum of formamide at finite temperatures. Thermally broadened spectra have been obtained by averaging over a large number of single-point multireference configuration interaction excitation energies calculated for geometries sampled from a CP-MD simulation. Electronic excitation spectra of possible contaminants ammonia and formamidic acid have also been computed. Ammonia exhibits a strong peak in the shoulder region of the experimental formamide spectrum at 6.5 eV, and formamidic acid has a strong absorption above 7.5 eV. The calculations reproduce the shape of the experimental absorption spectrum, in particular, the low-energy shoulder of the main peak, and demonstrate how finite-temperature electronic absorption spectra can be computed from first principles.

  1. Spin-polarised band theory at finite temperatures

    SciTech Connect

    Gyorffy, B.L.; Kollar, J.; Pindor, A.J.; Staunton, J.; Stocks, G.M.; Winter, H.

    1983-01-01

    Starting from a Spin-Density functional description of electrons in a potentially ferromagnetic metal and the notion of temporarily broken ergodicity, a method is derived for performing finite temperature spin-polarized band theory with random local moment orientations. Formally, it is based on the KKR-CPA theory for randomly distributed spin-polarized scattering centers on a regular lattice. It is shown how the theory can lead to finite moments above the transition temperature, T/sub c/, and a Curie-Weiss law. We discuss the results of self-consistent spin-polarized KKR-CPA calculations in the disordered local moment (DLM) state for Fe, Co, Ni, and Cr.

  2. An analysis of temperature effect in a finite journal bearing with spatial tilt and viscous dissipation

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Mullen, R. L.; Hendricks, R. C.

    1984-01-01

    The analysis presented herein deals with the evaluation of the pressure, velocity, and temperature profiles in a finite-length plane journal bearing. The geometry of the case under study consists of a spatially tilted shaft. The two-dimensional Reynolds equation accounts for the variation of the clearance gap h with x and z and is used to model the pressure field. The latter is solved for a variety of shaft tilt angles and then used to calculate the two-dimensional flow field. Finally, the flow field is used in the energy equation to solve for the film temperature profile, when the effect of viscous dissipation is taken into account.

  3. An analysis of temperature effect in a finite journal bearing with spatial tilt and viscous dissipation

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Mullen, R. L.; Hendricks, R. C.

    1984-01-01

    The analysis presented herein deals with the evaluation of the pressure, velocity, and temperature profiles in a finite-length plane journal bearing. The geometry of the case under study consists of a spatially tilted shaft. The two-dimensional Reynolds equation accounts for the variation of the clearance gap h with x and z and is used to model the pressure field. The latter is solved for a variety of shaft tilt angles and then used to calculate the two-dimensional flow field. Finally, the flow field is used in the energy equation to solve for the film temperature profile, when the effect of viscous dissipation is taken into account.

  4. Grain dryer temperature field analysis

    NASA Astrophysics Data System (ADS)

    Li, Shizhuang; Cao, Shukun; Meng, Wenjing; Ma, Lingran

    2017-09-01

    Taking into account the drying process in the hot air temperature on the grain temperature has a great impact, and grain temperature and determines the quality of food after baking, so in order to ensure that the grain drying temperature in the safe range, the use of ANSYS FLUENT module of grain The temperature field was simulated in the drying process. The horizontal spacing of the angle box was 200mm and the vertical spacing was 240mm. At this time, the grain temperature distribution was more uniform and the drying was more adequate.

  5. Socio-economic applications of finite state mean field games.

    PubMed

    Gomes, Diogo; Velho, Roberto M; Wolfram, Marie-Therese

    2014-11-13

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments, which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems.

  6. Analysis of temperature rise for piezoelectric transformer using finite-element method.

    PubMed

    Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo

    2006-08-01

    Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.

  7. Mean-field theory of spin-glasses with finite coordination number

    NASA Technical Reports Server (NTRS)

    Kanter, I.; Sompolinsky, H.

    1987-01-01

    The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.

  8. Mean-field theory of spin-glasses with finite coordination number

    NASA Technical Reports Server (NTRS)

    Kanter, I.; Sompolinsky, H.

    1987-01-01

    The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.

  9. A Theory of the Magnetovolume Effect at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro

    1981-06-01

    The Liberman-Pettifor virial theorem is extended to the finite temperatures, and the expressions for the spontaneous volume magnetostriction and the electronic contribution to the thermal expansion coefficient are given by using the functional integral method within the static approximation. The temperature variations of these quantities are determined mainly by the amplitude of the local magnetic moment and the s-d charge transfer. Two types of the thermal expansion, the αFe type and the Weiss model type, appear within the CPA-LSA and their properties are examined and discussed.

  10. On the fate of the Standard Model at finite temperature

    NASA Astrophysics Data System (ADS)

    Rose, Luigi Delle; Marzo, Carlo; Urbano, Alfredo

    2016-05-01

    In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically — both at zero and finite temperature — the bounce equation, thus providing an accurate description of the thermal tunneling. Assuming a maximum temperature in the early Universe of the order of 1018 GeV, we find that the instability bound excludes values of the top mass M t ≳ 173 .6 GeV, with M h ≃ 125 GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.

  11. Finite amplitude nonlinear drift waves in a spatially inhomogeneous degenerate plasma with Landau quantization and electron temperature corrections

    NASA Astrophysics Data System (ADS)

    Shaukat, Muzzamal I.; Masood, W.; Shah, H. A.; Iqbal, M. J.; Mirza, Arshad M.

    2016-10-01

    In the present investigation, linear and nonlinear electrostatic drift waves in the presence of trapped electrons with quantizing magnetic field and finite electron temperature effects in dense plasmas have been studied. The linear dispersion relation of the ion drift wave has been derived and it has been found that the Landau quantization and finite temperature effects significantly alter the linear propagation characteristics of the wave under consideration. Employing the Sagdeev potential approach, the formation of finite amplitude drift solitary structures has been investigated in the presence of a quantizing magnetic field for both fully and partially degenerate plasmas. Both compressive and rarefactive drift solitary structures have been obtained for different values of quantizing magnetic field and finite electron temperature effects. The theoretical results obtained have been analyzed numerically for the parameters typically found in white dwarfs.

  12. Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity.

    PubMed

    Chang, Isaac

    2003-05-08

    Few finite element models (FEM) have been developed to describe the electric field, specific absorption rate (SAR), and the temperature distribution surrounding hepatic radiofrequency ablation probes. To date, a coupled finite element model that accounts for the temperature-dependent electrical conductivity changes has not been developed for ablation type devices. While it is widely acknowledged that accounting for temperature dependent phenomena may affect the outcome of these models, the effect has not been assessed. The results of four finite element models are compared: constant electrical conductivity without tissue perfusion, temperature-dependent conductivity without tissue perfusion, constant electrical conductivity with tissue perfusion, and temperature-dependent conductivity with tissue perfusion. The data demonstrate that significant errors are generated when constant electrical conductivity is assumed in coupled electrical-heat transfer problems that operate at high temperatures. These errors appear to be closely related to the temperature at which the ablation device operates and not to the amount of power applied by the device or the state of tissue perfusion. Accounting for temperature-dependent phenomena may be critically important in the safe operation of radiofrequency ablation device that operate near 100 degrees C.

  13. Quantum coherence of spin-boson model at finite temperature

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Xu, Jing-Bo

    2017-02-01

    We investigate the dynamical behavior of quantum coherence in spin-boson model, which consists of a qubit coupled to a finite-temperature bosonic bath with power-law spectral density beyond rotating wave approximation, by employing l1-norm as well as quantum relative entropy. It is shown that the temperature of bosonic bath and counter-rotating terms significantly affect the decoherence rate in sub-Ohmic, Ohmic and super-Ohmic baths. At high temperature, we find the counter-rotating terms of spin-boson model are able to increase the decoherence rate for sub-Ohmic baths, however, for Ohmic and super-Ohmic baths, the counter-rotating terms tend to decrease the value of decoherence rate. At low temperature, we find the counter-rotating terms always play a positive role in preserving the qubit's quantum coherence regardless of sub-Ohmic, Ohmic and super-Ohmic baths.

  14. Finite temperature static charge screening in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Akbari-Moghanjoughi, M.

    2016-07-01

    The shielding potential around a test charge is calculated, using the linearized quantum hydrodynamic formulation with the statistical pressure and Bohm potential derived from finite temperature kinetic theory, and the temperature effects on the force between ions is assessed. The derived screening potential covers the full range of electron degeneracy in the equation of state of the plasma electrons. An attractive force between shielded ions in an arbitrary degenerate plasma exists below a critical temperature and density. The effect of the temperature on the screening potential profile qualitatively describes the ion-ion bound interaction strength and length variations. This may be used to investigate physical properties of plasmas and in molecular-dynamics simulations of fermion plasma. It is further shown that the Bohm potential including the kinetic corrections has a profound effect on the Thomson scattering cross section in quantum plasmas with arbitrary degeneracy.

  15. Two-Element Generation of Unitary Groups Over Finite Fields

    DTIC Science & Technology

    2013-01-31

    like to praise my Lord and Savior, Jesus Christ , for allowing me this opportunity to work on a Ph.D in mathematics, and for His sustaining grace...Ishibashi’s original result. The paper’s main theorem will show that all unitary groups over finite fields of odd characteristic are generated by only two

  16. Finite-element-analysis of fields radiated from ICRF antenna

    NASA Astrophysics Data System (ADS)

    Yamanaka, K.; Sugihara, R.

    1984-04-01

    In several simple geometries, electromagnetic fields radiated from a loop antennas, on which a current oscillately flows across the static magnetic field are calculated by the finite element method (FEM) as well as by analytic methods in a cross section of a plasma cylinder. A finite wave number along the static magnetic field is assumed. Good agreement between FEM and the analytic solutions is obtained, which indicates the accuracy of FEM solutions. The method is applied to calculations of fields from a half turn antenna and reasonable results are obtained. It is found that a straightforward application of FEM to problems in an anisotropic medium may bring about erroneous results and that an appropriate coordinate transformation is needed for FEM become applicable.

  17. Nonlinear temperature dependent failure analysis of finite width composite laminates

    NASA Technical Reports Server (NTRS)

    Nagarkar, A. P.; Herakovich, C. T.

    1979-01-01

    A quasi-three dimensional, nonlinear elastic finite element stress analysis of finite width composite laminates including curing stresses is presented. Cross-ply, angle-ply, and two quasi-isotropic graphite/epoxy laminates are studied. Curing stresses are calculated using temperature dependent elastic properties that are input as percent retention curves, and stresses due to mechanical loading in the form of an axial strain are calculated using tangent modulii obtained by Ramberg-Osgood parameters. It is shown that curing stresses and stresses due to tensile loading are significant as edge effects in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is predicted by examining individual stress contributions to the tensor polynomial.

  18. Finite-temperature mechanical instability in disordered lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Leyou; Mao, Xiaoming

    2016-02-01

    Mechanical instability takes different forms in various ordered and disordered systems and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We use this theory to study two disordered lattices: a randomly diluted triangular lattice and a randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T =0 . We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G ˜T1 /2 , whereas the square lattice shows G ˜T2 /3 . We discuss generic scaling laws for finite-T mechanical instabilities and relate them to experimental systems.

  19. Finite-temperature spin polarization in half-metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Dowben, P. A.; Skomski, R.

    2003-05-01

    The temperature dependence of the spin polarization of half-metallic ferromagnets is investigated. A unitary spinor transformation shows that the corresponding spin mixing goes beyond finite-temperature smearing of the Fermi level, leading to a nonzero density of states in the gap of the insulating spin channel. As a consequence, the resistance ratio of the two spin channels changes from infinity to some finite value and, in a strict sense, half-metallic ferromagnetism is limited to zero temperature. Bloch-type spin waves and crystal imperfections contribute to the density of states in the gap but only partly explain the pronounced changes at about 0.2TC observed in various half-metallic magnets. In the case of NiMnSb, the spin structure depends on a nearly dispersionless transverse optical mode that occurs at about 28 meV. In terms of 3kBT, this corresponds to 103 K—very close to the temperature at which there is a dramatic loss in the Ni and Mn magnetization in NiMnSb. Similar modes exist in other potential half-metallic systems.

  20. Finite-temperature screening of U (1) fractons

    NASA Astrophysics Data System (ADS)

    Pretko, Michael

    2017-09-01

    We investigate the finite-temperature screening behavior of three-dimensional U (1 ) spin-liquid phases with fracton excitations. Several features are shared with the conventional U (1 ) spin liquid. The system can exhibit spin-liquid physics over macroscopic length scales at low temperatures, but screening effects eventually lead to a smooth finite-temperature crossover to a trivial phase at sufficiently large distances. However, unlike more conventional U (1 ) spin liquids, we find that complete low-temperature screening of fractons requires not only very large distances, but also very long time scales. At the longest time scales, a charged disturbance (fracton) will acquire a screening cloud of other fractons, resulting in only short-range correlations in the system. At intermediate time scales, on the other hand, a fracton can only be partially screened by a cloud of mobile excitations, leaving weak power-law correlations in the system. Such residual power-law correlations may be a useful diagnostic in an experimental search for U (1 ) fracton phases.

  1. A finite different field solver for dipole modes

    SciTech Connect

    Nelson, E.M.

    1992-08-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL.

  2. Normal basis of finite field GF(2 super m)

    NASA Technical Reports Server (NTRS)

    Pei, D. Y.; Wang, C. C.; Omura, J. K.

    1986-01-01

    Massey and Omura (1981) recently developed a new multiplication algorithm for Galois fields based on the normal basis representation. This algorithm shows a much simpler way to perform multiplication in finite field than the conventional method. The necessary and sufficient conditions are presented for an element to generate a normal basis in the field GF(2 super m), where m = 2 super k p super n and p super n has two as a primitive root. This result provides a way to find a normal basis in the field.

  3. Finite size and finite temperature studies of the osp(1|2) spin chain

    NASA Astrophysics Data System (ADS)

    Tavares, T. S.; Ribeiro, G. A. P.

    2017-08-01

    We studied a quantum spin chain invariant by the superalgebra osp (1 | 2). We derived non-linear integral equations for the row-to-row transfer matrix eigenvalue in order to analyze its finite size scaling behavior and we determined its central charge. We also studied the thermodynamical properties of the spin chain via non-linear integral equations for the quantum transfer matrix eigenvalue. We numerically solved these NLIE and evaluated the specific heat and magnetic susceptibility. The analytical low temperature analysis was performed providing the effective central charge. The computed values are in agreement with the numerical predictions in the literature.

  4. A finite element Poisson solver for gyrokinetic particle simulations in a global field aligned mesh

    SciTech Connect

    Nishimura, Y. . E-mail: nishimuy@uci.edu; Lin, Z.; Lewandowski, J.L.V.; Ethier, S.

    2006-05-20

    A new finite element Poisson solver is developed and applied to a global gyrokinetic toroidal code (GTC) which employs the field aligned mesh and thus a logically non-rectangular grid in a general geometry. Employing test cases where the analytical solutions are known, the finite element solver has been verified. The CPU time scaling versus the matrix size employing portable, extensible toolkit for scientific computation (PETSc) to solve the sparse matrix is promising. Taking the ion temperature gradient modes (ITG) as an example, the solution from the new finite element solver has been compared to the solution from the original GTC's iterative solver which is only efficient for adiabatic electrons. Linear and nonlinear simulation results from the two different forms of the gyrokinetic Poisson equation (integral form and the differential form) coincide each other. The new finite element solver enables the implementation of advanced kinetic electron models for global electromagnetic simulations.

  5. Properties of the sigma meson at finite temperature

    NASA Astrophysics Data System (ADS)

    Ibarra, J. R. Morones; Aguirre, A. J. Garza; Flores-Baez, Francisco V.

    2015-12-01

    We study the changes of the mass and width of the sigma meson in the framework of the Linear Sigma Model at finite temperature, in the one-loop approximation. We have found that as the temperature increases, the mass of sigma shifts down. We have also analyzed the σ-spectral function and we observe an enhancement at the threshold which is a signature of partial restoration of chiral symmetry, also interpreted as a tendency to chiral phase transition. Additionally, we studied the width of the sigma, when the threshold enhancement takes place, for different values of the sigma mass. We found that there is a brief enlargement followed by an abrupt fall in the width as the temperature increases, which is also related with the restoration of chiral symmetry and an indication that the sigma is a bound state of two pions.

  6. Sideband Rabi spectroscopy of finite-temperature trapped Bose gases

    NASA Astrophysics Data System (ADS)

    Allard, Baptiste; Fadel, Matteo; Schmied, Roman; Treutlein, Philipp

    2016-04-01

    We use Rabi spectroscopy to explore the low-energy excitation spectrum of a finite-temperature Bose gas of rubidium atoms across the phase transition to a Bose-Einstein condensate (BEC). To record this spectrum, we coherently drive the atomic population between two spin states. A small relative displacement of the spin-specific trapping potentials enables sideband transitions between different motional states. The intrinsic nonlinearity of the motional spectrum, mainly originating from two-body interactions, makes it possible to resolve and address individual excitation lines. Together with sensitive atom counting, this constitutes a feasible technique to count single excited atoms of a BEC and to determine the temperature of nearly pure condensates. As an example, we show that for a nearly pure BEC of N =800 atoms the first excited state has a population of less than five atoms, corresponding to an upper bound on the temperature of 30 nK .

  7. Baryon number fluctuations at finite temperature and density

    NASA Astrophysics Data System (ADS)

    Fu, Wei-jie; Pawlowski, Jan M.; Rennecke, Fabian; Schaefer, Bernd-Jochen

    2016-12-01

    We investigate baryon number fluctuations for finite temperature and density in two-flavor QCD. This is done within a QCD-improved low-energy effective theory in an extension of the approach put forward by Fu and Pawlowski [Phys. Rev. D 92, 116006 (2015), 10.1103/PhysRevD.92.116006 and Phys. Rev. D 93, 091501 (2016), 10.1103/PhysRevD.93.091501]. In the present work, we aim to improve the predictive power of this approach for large temperatures and, in partitular, large densities, that is, for small collision energies. This is achieved by taking into account the full frequency dependence of the quark dispersion. This ensures the necessary Silver Blaze property of finite density QCD for the first time, which so far was only implemented approximately. Moreover, we show that Polyakov-loop fluctuations have a sizeable impact at large temperatures and density. The results for the kurtosis of baryon number fluctuations are compared to previous effective theory results, lattice results, and recent experimental data from STAR.

  8. Magnetization and susceptibility of a parabolic InAs quantum dot with electron-electron and spin-orbit interactions in the presence of a magnetic field at finite temperature

    NASA Astrophysics Data System (ADS)

    Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok

    2016-11-01

    The magnetization and susceptibility of a two-electron parabolic quantum dot are studied in the presence of electron-electron and spin-orbit interactions as a function of magnetic field and temperature. The spin-orbit interactions are treated by a unitary transformation and an exactly soluble parabolic interaction model is considered to mimic the electron-electron interaction. The theory is finally applied to an InAs quantum dot. Magnetization and susceptibility are calculated using canonical ensemble approach. Our results show that Temperature has no effect on magnetization and susceptibility in the diamagnetic regime whereas electron-electron interaction reduces them. The temperature however reduces the height of the paramagnetic peak. The Rashba spin-orbit interaction is shown to shift the paramagnetic peak towards higher magnetic fields whereas the Dresselhaus spin-orbit interaction shifts it to the lower magnetic field side. Spin-orbit interaction has no effect on magnetization and susceptibility at larger temperatures.

  9. Engineering autonomous error correction in stabilizer codes at finite temperature

    NASA Astrophysics Data System (ADS)

    Freeman, C. Daniel; Herdman, C. M.; Whaley, K. B.

    2017-07-01

    We present an error-correcting protocol that enhances the lifetime of stabilizer code-based qubits which are susceptible to the creation of pairs of localized defects (due to stringlike error operators) at finite temperature, such as the toric code. The primary tool employed is periodic application of a local, unitary operator, which exchanges defects and thereby translates localized excitations. Crucially, the protocol does not require any measurements of stabilizer operators and therefore can be used to enhance the lifetime of a qubit in the absence of such experimental resources.

  10. Nonlocal microscopic theory of Casimir forces at finite temperature

    SciTech Connect

    Despoja, V.; Marusic, L.

    2011-04-15

    The interaction energy between two metallic slabs in the retarded limit at finite temperature is expressed in terms of surface polariton propagators for separate slabs, avoiding the usual matching procedure, with both diamagnetic and paramagnetic excitations included correctly. This enables appropriate treatment of arbitrary electron density profiles and fully nonlocal electronic response, including both collective and single-particle excitations. The results are verified by performing the nonretarded and long-wavelength (local) limits and showing that they reduce to the previously obtained expressions. Possibilities for practical use of the theory are explored by applying it to calculation of various contributions to the Casimir energy between two silver slabs.

  11. Toward a unified description of spin incoherent behavior at zero and finite temperatures

    NASA Astrophysics Data System (ADS)

    Soltanieh-Ha, Mohammad; Feiguin, Adrian

    2013-03-01

    While the basic theoretical understanding of spin-charge separation in one-dimension, known as ``Luttinger liquid theory'', has existed for some time, recently a previously unidentified regime of strongly interacting one-dimensional systems at finite temperature came to light: The ``spin-incoherent Luttinger liquid'' (SILL). This occurs when the temperature is larger than the characteristic spin energy scale. I will show that the spin-incoherent state can be written exactly as a generalization of Ogata and Shiba's factorized wave function in an enlarged Hilbert space, using the so-called ``thermo-field formalism.'' Interestingly, this wave-function can also describe the *ground-state* of other model Hamiltonians, such as t-J ladders, and the Kondo lattice. This allows us to develop a unified formalism to describe SILL physics both at zero, and finite temperatures.

  12. Toward a unified description of spin incoherent behavior at zero and finite temperatures

    NASA Astrophysics Data System (ADS)

    Soltanieh-Ha, Mohammad; Feiguin, Adrian

    2012-02-01

    While the basic theoretical understanding of spin-charge separation in one-dimension, known as ``Luttinger liquid theory'', has existed for some time, recently a previously unidentified regime of strongly interacting one-dimensional systems at finite temperature came to light: The ``spin-incoherent Luttinger liquid'' (SILL). This occurs when the temperature is larger than the characteristic spin energy scale. I will show that the spin-incoherent state can be written exactly as a generalization of Ogata and Shiba's factorized wave function in an enlarged Hilbert space, using the so-called ``thermo-field formalism.'' Interestingly, this wave-function can also describe the *ground-state* of other model Hamiltonians, such as t-J ladders, and the Kondo lattice. This allows us to develop a unified formalism to describe SILL physics both at zero, and finite temperatures.

  13. Prediction of the bulk temperature in spur gears based on finite element temperature analysis

    NASA Technical Reports Server (NTRS)

    Patir, N.; Cheng, H. S.

    1977-01-01

    The temperature distribution in spur gears operating in a state of thermal equilibrium is solved by using a finite element method. The effects of various dimensionless parameters on bulk temperature are shown. A table is provided which can be used to predict the bulk temperature on gear teeth, once the heat transfer coefficients and frictional heat input is estimated. Theoretical results for estimating heat transfer coefficients and frictional heat are also summarized.

  14. Computing Gravitational Fields of Finite-Sized Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2005-01-01

    A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.

  15. Macroscopic quantum entanglement of a Kondo cloud at finite temperature.

    PubMed

    Lee, S-S B; Park, Jinhong; Sim, H-S

    2015-02-06

    We propose a variational approach for computing the macroscopic entanglement in a many-body mixed state, based on entanglement witness operators, and compute the entanglement of formation (EoF), a mixed-state generalization of the entanglement entropy, in single- and two-channel Kondo systems at finite temperature. The thermal suppression of the EoF obeys power-law scaling at low temperature. The scaling exponent is halved from the single- to the two-channel system, which is attributed, using a bosonization method, to the non-Fermi liquid behavior of a Majorana fermion, a "half" of a complex fermion, emerging in the two-channel system. Moreover, the EoF characterizes the size and power-law tail of the Kondo screening cloud of the single-channel system.

  16. Topological order, entanglement, and quantum memory at finite temperature

    SciTech Connect

    Mazac, Dalimil Hamma, Alioscia

    2012-09-15

    We compute the topological entropy of the toric code models in arbitrary dimension at finite temperature. We find that the critical temperatures for the existence of full quantum (classical) topological entropy correspond to the confinement-deconfinement transitions in the corresponding Z{sub 2} gauge theories. This implies that the thermal stability of topological entropy corresponds to the stability of quantum (classical) memory. The implications for the understanding of ergodicity breaking in topological phases are discussed. - Highlights: Black-Right-Pointing-Pointer We calculate the topological entropy of a general toric code in any dimension. Black-Right-Pointing-Pointer We find phase transitions in the topological entropy. Black-Right-Pointing-Pointer The phase transitions coincide with the appearance of quantum/classical memory.

  17. Finite-temperature vortex dynamics in Bose-Einstein condensates

    SciTech Connect

    Jackson, B.; Proukakis, N. P.; Barenghi, C. F.; Zaremba, E.

    2009-05-15

    We study the dynamics of a vortex in an atomic Bose-condensed gas at finite temperature within the Zaremba-Nikuni-Griffin formalism. In a harmonically trapped pancake-shaped condensate, an off-centered vortex is known to decay by spiraling out toward the edge of the condensate. We quantify the dependence of this decay on temperature, atomic collisions, and thermal cloud rotation. Near the trap center where the density varies slowly, we show that our numerical results agree with the predictions of the Hall-Vinen phenomenological friction force model used to describe quantized vorticity in superfluid systems. Our result thus clarifies the microscopic origin of the friction and provides an ab initio determination of its value.

  18. Baryon number dissipation at finite temperature in the standard model

    SciTech Connect

    Mottola, E. ); Raby, S. . Dept. of Physics); Starkman, G. . Dept. of Astronomy)

    1990-01-01

    We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, {gamma} is given in terms of real time correlation functions of the operator E{center dot}B, and is directly proportional to the sphaleron transition rate, {Gamma}: {gamma} {preceq} n{sub f}{Gamma}/T{sup 3}. Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs.

  19. Electronic structure of 3d metals at finite temperatures

    SciTech Connect

    Delgadillo, I.; Gollisch, H.; Feder, R.

    1996-07-01

    A theoretical approach to the electronic structure of crystalline solids at finite temperature has been developed on the basis of the adiabatic approximation. For any given temperature, correlated ion core displacement configurations on large clusters with periodic boundary conditions are determined such that they are consistent with experimental phonon dispersion relations. Total and {ital k}{searrow}-resolved densities of states are obtained by a tight-binding recursion method for each configuration followed by a configurational average. In the case of ferromagnetic crystals, the above treatment is augmented by including the influence of spin fluctuations. The local magnetic moments associated with the atomic sites are assumed to fluctuate subject to an average magnetization and a short-range order specific for the given temperature. The spin-resolved electronic structure for temperatures up to the Curie temperature and beyond can thus be obtained. Numerical calculations are performed on Cu and Ni and the results compared to experimental photoemission data. {copyright} {ital 1996 American Institute of Physics.}

  20. Finite ion temperature effects on scrape-off layer turbulence

    SciTech Connect

    Mosetto, Annamaria Halpern, Federico D.; Jolliet, Sébastien; Loizu, Joaquim; Ricci, Paolo

    2015-01-15

    Ion temperature has been measured to be of the same order, or higher, than the electron temperature in the scrape-off layer (SOL) of tokamak machines, questioning its importance in determining the SOL turbulent dynamics. Here, we present a detailed analysis of finite ion temperature effects on the linear SOL instabilities, such as the resistive and inertial branches of drift waves and ballooning modes, and a discussion of the properties of the ion temperature gradient (ITG) instability in the SOL, identifying the η{sub i}=L{sub n}/L{sub T{sub i}} threshold necessary to drive the mode unstable. The non-linear analysis of the SOL turbulent regimes by means of the gradient removal theory is performed, revealing that the ITG plays a negligible role in limited SOL discharges, since the ion temperature gradient is generally below the threshold for driving the mode unstable. It follows that the resistive ballooning mode is the prevailing turbulence regime for typical limited SOL parameters. The theoretical estimates are confirmed by non-linear flux-driven simulations of SOL plasma dynamics.

  1. Comparative analysis of finite field-dependent BRST transformations

    NASA Astrophysics Data System (ADS)

    Moshin, P. Yu.; Reshetnyak, A. A.

    2017-03-01

    We review our recent study [1-6], introducing the concept of finite field-dependent BRST and BRST-antiBRST transformations for gauge theories and investigating their properties. An algorithm of exact calculation for the Jacobian of a respective change of variables in the path integral is presented. Applications to the Yang-Mills theory, in view of infra-red (Gribov) peculiarities, are discussed.

  2. The sound field in a finite cylindrical shell

    NASA Technical Reports Server (NTRS)

    Junger, M. C.

    1985-01-01

    The sound field excited by vibrating boundaries in a finite cylindrical space, e.g., in a cylindrical shell, differs from the pressure distribution in an infinite cylindrical shell of comparable structural wavelength by the pressure diffracted by the end caps. The latter pressure component is comparable in magnitude to the pressure generated by the vibrating cylindrical boundary, but does not introduce additional resonances or antiresonances. Finally, a third pressure component associated with end cap vibrations is formulated.

  3. Finite element analysis of the thermal field in the rotor during induction motor start-up

    SciTech Connect

    Cannistra, G.; Labini, M.S.

    1996-04-01

    This article investigates the transient thermal field that occurs in the squirrel cage during motor start-up. First, the rotor currents occurring during start-up and the corresponding Joule losses are determined. Then the temperature distribution is calculated in the critical points of the rotor, instant by instant, by the finite element method. The study has been carried out on a motor whose shaft is connected to an operating machine having a remarkable gyratory moment, and the finite element analysis under transient state conditions has been made by means of a package entirely produced at the Department of Electrotechnics and Electronics of the Polytechnic of Bari.

  4. A stabilized finite element method for finite-strain three-field poroelasticity

    NASA Astrophysics Data System (ADS)

    Berger, Lorenz; Bordas, Rafel; Kay, David; Tavener, Simon

    2017-07-01

    We construct a stabilized finite-element method to compute flow and finite-strain deformations in an incompressible poroelastic medium. We employ a three-field mixed formulation to calculate displacement, fluid flux and pressure directly and introduce a Lagrange multiplier to enforce flux boundary conditions. We use a low order approximation, namely, continuous piecewise-linear approximation for the displacements and fluid flux, and piecewise-constant approximation for the pressure. This results in a simple matrix structure with low bandwidth. The method is stable in both the limiting cases of small and large permeability. Moreover, the discontinuous pressure space enables efficient approximation of steep gradients such as those occurring due to rapidly changing material coefficients or boundary conditions, both of which are commonly seen in physical and biological applications.

  5. Scattering amplitudes over finite fields and multivariate functional reconstruction

    NASA Astrophysics Data System (ADS)

    Peraro, Tiziano

    2016-12-01

    Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.

  6. Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature

    SciTech Connect

    Rudd, R E; Broughton, J Q

    2005-05-30

    Coarse-grained molecular dynamics (CGMD) is a technique developed as a concurrent multiscale model that couples conventional molecular dynamics (MD) to a more coarse-grained description of the periphery. The coarse-grained regions are modeled on a mesh in a formulation that generalizes conventional finite element modeling (FEM) of continuum elasticity. CGMD is derived solely from the MD model, however, and has no continuum parameters. As a result, it provides a coupling that is smooth and provides control of errors that arise at the coupling between the atomistic and coarse-grained regions. In this article, we elaborate on the formulation of CGMD, describing in detail how CGMD is applied to anharmonic solids and finite temperature simulations. As tests of CGMD, we present in detail the calculation of the phonon spectra for solid argon and tantalum in 3D, demonstrating how CGMD provides a better description of the elastic waves than that provided by FEM. We also present elastic wave scattering calculations that show the elastic wave scattering is more benign in CGMD than FEM. We also discuss the dependence of scattering on the properties of the mesh. We introduce a rigid approximation to CGMD that eliminates internal relaxation, similar to the Quasicontinuum technique, and compare it to the full CGMD.

  7. Electrostatic attraction of coupled Wigner crystals: finite temperature effects.

    PubMed

    Lau, A W; Pincus, P; Levine, D; Fertig, H A

    2001-05-01

    In this paper we present a unified physical picture for the electrostatic attraction between two coupled planar Wigner crystals at finite temperature. This model may facilitate our conceptual understanding of counterion-mediated attractions between (highly) similarly charged planes. By adopting an elastic theory, we show that the total attractive force between them can be (approximately) decomposed into a short-ranged and a long-ranged component. They are evaluated below the melting temperature of the Wigner crystals. In particular, we analyze the temperature dependence of the short-ranged attraction, arising from ground-state configuration, and we argue that thermal fluctuations may drastically reduce its strength. Also, the long-range force agrees exactly with that based on the charge-fluctuation approach. Furthermore, we take quantum contributions to the long-ranged (fluctuation-induced) attraction into account and show how the fractional power law, which scales as d(-7/2) for large interplanar distance d at zero temperature, crosses over to the classical regime d(-3) via an intermediate regime of d(-2).

  8. Atomic and electronic structure of germanium clusters at finite temperature using finite difference methods

    SciTech Connect

    Chelikowsky, J.R.; Oeguet, S.; Jing, X.; Wu, K.; Stathopoulos, A.; Saad, Y.

    1996-12-31

    Determining the electronic and structural properties of semiconductor clusters is one of the outstanding problems in materials science. The existence of numerous structures with nearly identical energies makes it very difficult to determine a realistic ground state structure. Moreover, even if an effective procedure can be devised to predict the ground state structure, questions can arise about the relevancy of the structure at finite temperatures. Kinetic effects and non-equilibrium structures may dominate the structural configurations present in clusters created under laboratory conditions. The authors illustrate theoretical techniques for predicting the structure and electronic properties of small germanium clusters. Specifically, they illustrate that the detailed agreement between theoretical and experimental features can be exploited to identify the relevant isomers present under experimental conditions.

  9. Finite-temperature simulations of the scissors mode in Bose-Einstein condensed gases.

    PubMed

    Jackson, B; Zaremba, E

    2001-09-03

    The dynamics of a trapped Bose-condensed gas at finite temperatures is described by a generalized Gross-Pitaevskii equation for the condensate order parameter and a semiclassical kinetic equation for the thermal cloud, solved using N-body simulations. The two components are coupled by mean fields as well as collisional processes that transfer atoms between the two. We use this scheme to investigate scissors modes in anisotropic traps as a function of temperature. Frequency shifts and damping rates of the condensate mode are extracted, and are found to be in good agreement with recent experiments.

  10. Symmetry breaking in noncommutative finite temperature λphi4 theory with a nonuniform ground state

    NASA Astrophysics Data System (ADS)

    Hernández, J. M.; Ramírez, C.; Sánchez, M.

    2014-05-01

    We consider the CJT effective action at finite temperature for a noncommutative real scalar field theory, with noncommutativity among space and time variables. We study the solutions of a stripe type nonuniform background, which depends on space and time. The analysis in the first approximation shows that such solutions appear in the planar limit, but also under normal anisotropic noncommutativity. Further we show that the transition from the uniform ordered phase to the non uniform one is first order and that the critical temperature depends on the nonuniformity of the ground state.

  11. Variational tensor network renormalization in imaginary time: Benchmark results in the Hubbard model at finite temperature

    NASA Astrophysics Data System (ADS)

    Czarnik, Piotr; Rams, Marek M.; Dziarmaga, Jacek

    2016-12-01

    A Gibbs operator e-β H for a two-dimensional (2D) lattice system with a Hamiltonian H can be represented by a 3D tensor network, with the third dimension being the imaginary time (inverse temperature) β . Coarse graining the network along β results in a 2D projected entangled-pair operator (PEPO) with a finite bond dimension. The coarse graining is performed by a tree tensor network of isometries. They are optimized variationally to maximize the accuracy of the PEPO as a representation of the 2D thermal state e-β H. The algorithm is applied to the two-dimensional Hubbard model on an infinite square lattice. Benchmark results at finite temperature are obtained that are consistent with the best cluster dynamical mean-field theory and power-series expansion in the regime of parameters where they yield mutually consistent results.

  12. 3-D Finite Element Analyses of the Egan Cavern Field

    SciTech Connect

    Klamerus, E.W.; Ehgartner, B.L.

    1999-02-01

    Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.

  13. Finite field-dependent symmetries in perturbative quantum gravity

    SciTech Connect

    Upadhyay, Sudhaker

    2014-01-15

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.

  14. Finite field-energy and interparticle potential in logarithmic electrodynamics

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Helayël-Neto, José

    2014-03-01

    We pursue an investigation of logarithmic electrodynamics, for which the field energy of a point-like charge is finite, as happens in the case of the usual Born-Infeld electrodynamics. We also show that, contrary to the latter, logarithmic electrodynamics exhibits the feature of birefringence. Next, we analyze the lowest-order modifications for both logarithmic electrodynamics and for its non-commutative version, within the framework of the gauge-invariant path-dependent variables formalism. The calculation shows a long-range correction (-type) to the Coulomb potential for logarithmic electrodynamics. Interestingly enough, for its non-commutative version, the interaction energy is ultraviolet finite. We highlight the role played by the new quantum of length in our analysis.

  15. Finite- to zero-range relativistic mean-field interactions

    SciTech Connect

    Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2008-03-15

    We study the relation between the finite-range (meson-exchange) and zero-range (point-coupling) representations of effective nuclear interactions in the relativistic mean-field framework. Starting from the phenomenological interaction DD-ME2 with density-dependent meson-nucleon couplings, we construct a family of point-coupling effective interactions for different values of the strength parameter of the isoscalar-scalar derivative term. In the meson-exchange picture this corresponds to different values of the {sigma}-meson mass. The parameters of the isoscalar-scalar and isovector-vector channels of the point-coupling interactions are adjusted to nuclear matter and ground-state properties of finite nuclei. By comparing results for infinite and semi-infinite nuclear matter, ground-state masses, charge radii, and collective excitations, we discuss constraints on the parameters of phenomenological point-coupling relativistic effective interaction.

  16. Kinetic model of trapped finite-temperature binary condensates

    NASA Astrophysics Data System (ADS)

    Edmonds, M. J.; Lee, K. L.; Proukakis, N. P.

    2015-01-01

    We construct a nonequilibrium theory for the dynamics of two interacting finite-temperature atomic Bose-Einstein condensates and use it to numerically estimate the relative rates of the arising collisional processes near equilbrium. The condensates are described by dissipative Gross-Pitaevskii equations, coupled to quantum Boltzmann equations for the thermal atoms. The density-density interactions between atoms in different components facilitate a number of transport processes of relevance to sympathetic cooling: in particular, considering realistic miscible and immiscible trapped atomic 87Rb-41K and 87Rb-85Rb condensate mixtures, we highlight the dominance of an intercomponent scattering process associated with collisional "exchange" of condensed and thermal atoms between the components close to equilibrium.

  17. Lattice QCD at finite temperature and density from Taylor expansion

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Patrick

    2017-01-01

    In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.

  18. Dynamics of a finite temperature Bose gas in atomtronic devices

    NASA Astrophysics Data System (ADS)

    Colussi, Victor; Holland, Murray; Anderson, Dana Z.

    2014-05-01

    We investigate the problem of modeling atomtronic devices that utilize the nonequilibrium dynamics of a finite temperature Bose-condensed gas placed underneath an atom chip to mimic the properties of classical circuit elements. Our model consists of the full dynamics of the condensate and thermal cloud. The thermal cloud is treated semiclassically, in the spirit of the ZNG method (Zaremba, Nikuni and Griffin.) However, we develop a novel procedure to account for collisions between the condensate and thermal cloud which evaluates collision rates directly. We present the results of this model compared to two experiments: the atomtronic battery and transistor [arXiv:1208.3109v2]. Also presented are predictions for more complex circuit elements. This work is funded by the NSF Physics Frontier Center at JILA and by the Air Force Office of Scientific Research.

  19. Exciton-polariton Josephson junctions at finite temperatures.

    PubMed

    Lebedev, M E; Dolinina, D A; Hong, Kuo-Bin; Lu, Tien-Chang; Kavokin, A V; Alodjants, A P

    2017-08-25

    We consider finite temperature effects in a non-standard Bose-Hubbard model for an exciton- polariton Josephson junction (JJ) that is characterised by complicated potential energy landscapes (PEL) consisting of sets of barriers and wells. We show that the transition between thermal activation (classical) and tunneling (quantum) regimes exhibits universal features of the first and second order phase transition (PT) depending on the PEL for two polariton condensates that might be described as transition from the thermal to the quantum annealing regime. In the presence of dissipation the relative phase of two condensates exhibits non-equilibrium PT from the quantum regime characterized by efficient tunneling of polaritons to the regime of permanent Josephson or Rabi oscillations, where the tunneling is suppressed, respectively. This analysis paves the way for the application of coupled polariton condensates for the realisation of a quantum annealing algorithm in presently experimentally accessible semiconductor microcavities possessing high (10(5) and more) Q-factors.

  20. Finite-temperature corrections in the dilated chiral quark model

    SciTech Connect

    Kim, Y.; Lee, Hyun Kyu |; Rho, M. |

    1995-03-01

    We calculate the finite-temperature corrections in the dilated chiral quark model using the effective potential formalism. Assuming that the dilaton limit is applicable at some short length scale, we interpret the results to represent the behavior of hadrons in dense and hot matter. We obtain the scaling law, f{sub {pi}}(T)/f{sub {pi}} = m{sub Q}(T)/m{sub Q} {approx_equal} m{sub {sigma}}(T)/m{sub {sigma}}while we argue, using PCAC, that pion mass does not scale within the temperature range involved in our Lagrangian. It is found that the hadron masses and the pion decay constant drop faster with temperature in the dilated chiral quark model than in the conventional linear sigma model that does not take into account the QCD scale anomaly. We attribute the difference in scaling in heat bath to the effect of baryonic medium on thermal properties of the hadrons. Our finding would imply that the AGS experiments (dense and hot matter) and the RHIC experiments (hot and dilute matter) will ``see`` different hadron properties in the hadronization exit phase.

  1. Separation of finite electron temperature effect on plasma polarimetry.

    PubMed

    Imazawa, Ryota; Kawano, Yasunori; Kusama, Yoshinori

    2012-12-01

    This study demonstrates the separation of the finite electron temperature on the plasma polarimetry in the magnetic confined fusion plasma for the first time. Approximate solutions of the transformed Stokes equation, including the relativistic effect, suggest that the orientation angle, θ, and ellipticity angle, ε, of polarization state have different dependency on the electron density, n(e), and the electron temperature, T(e), and that the separation of n(e) and T(e) from θ and ε is possible in principle. We carry out the equilibrium and kinetic reconstruction of tokamak plasma when the central electron density was 10(20) m(-3), and the central electron temperatures were 5, 10, 20, and 30 keV. For both cases when a total plasma current, I(p), is known and when I(p) is unknown, the profiles of plasma current density, j(φ), n(e), and T(e) are successfully reconstructed. The reconstruction of j(φ) without the information of I(p) indicates the new method of I(p) measurement applicable to steady state operation of tokamak.

  2. Separation of finite electron temperature effect on plasma polarimetry

    SciTech Connect

    Imazawa, Ryota; Kawano, Yasunori; Kusama, Yoshinori

    2012-12-15

    This study demonstrates the separation of the finite electron temperature on the plasma polarimetry in the magnetic confined fusion plasma for the first time. Approximate solutions of the transformed Stokes equation, including the relativistic effect, suggest that the orientation angle, {theta}, and ellipticity angle, {epsilon}, of polarization state have different dependency on the electron density, n{sub e}, and the electron temperature, T{sub e}, and that the separation of n{sub e} and T{sub e} from {theta} and {epsilon} is possible in principle. We carry out the equilibrium and kinetic reconstruction of tokamak plasma when the central electron density was 10{sup 20} m{sup -3}, and the central electron temperatures were 5, 10, 20, and 30 keV. For both cases when a total plasma current, I{sub p}, is known and when I{sub p} is unknown, the profiles of plasma current density, j{sub {phi}}, n{sub e}, and T{sub e} are successfully reconstructed. The reconstruction of j{sub {phi}} without the information of I{sub p} indicates the new method of I{sub p} measurement applicable to steady state operation of tokamak.

  3. OBTAINING POTENTIAL FIELD SOLUTIONS WITH SPHERICAL HARMONICS AND FINITE DIFFERENCES

    SciTech Connect

    Toth, Gabor; Van der Holst, Bart; Huang Zhenguang

    2011-05-10

    Potential magnetic field solutions can be obtained based on the synoptic magnetograms of the Sun. Traditionally, a spherical harmonics decomposition of the magnetogram is used to construct the current- and divergence-free magnetic field solution. This method works reasonably well when the order of spherical harmonics is limited to be small relative to the resolution of the magnetogram, although some artifacts, such as ringing, can arise around sharp features. When the number of spherical harmonics is increased, however, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. We discuss here two approaches that can mitigate or completely avoid these problems: (1) remeshing the magnetogram onto a grid with uniform resolution in latitude and limiting the highest order of the spherical harmonics to the anti-alias limit; (2) using an iterative finite difference algorithm to solve for the potential field. The naive and the improved numerical solutions are compared for actual magnetograms and the differences are found to be rather dramatic. We made our new Finite Difference Iterative Potential-field Solver (FDIPS) a publicly available code so that other researchers can also use it as an alternative to the spherical harmonics approach.

  4. Finite Difference Elastic Wave Field Simulation On GPU

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Zhang, W.

    2011-12-01

    Numerical modeling of seismic wave propagation is considered as a basic and important aspect in investigation of the Earth's structure, and earthquake phenomenon. Among various numerical methods, the finite-difference method is considered one of the most efficient tools for the wave field simulation. However, with the increment of computing scale, the power of computing has becoming a bottleneck. With the development of hardware, in recent years, GPU shows powerful computational ability and bright application prospects in scientific computing. Many works using GPU demonstrate that GPU is powerful . Recently, GPU has not be used widely in the simulation of wave field. In this work, we present forward finite difference simulation of acoustic and elastic seismic wave propagation in heterogeneous media on NVIDIA graphics cards with the CUDA programming language. We also implement perfectly matched layers on the graphics cards to efficiently absorb outgoing waves on the fictitious edges of the grid Simulations compared with the results on CPU platform shows reliable accuracy and remarkable efficiency. This work proves that GPU can be an effective platform for wave field simulation, and it can also be used as a practical tool for real-time strong ground motion simulation.

  5. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  6. Finite hedging in field theory models of interest rates.

    PubMed

    Baaquie, Belal E; Srikant, Marakani

    2004-03-01

    We use path integrals to calculate hedge parameters and efficacy of hedging in a quantum field theory generalization of the Heath, Jarrow, and Morton [Robert Jarrow, David Heath, and Andrew Morton, Econometrica 60, 77 (1992)] term structure model, which parsimoniously describes the evolution of imperfectly correlated forward rates. We calculate, within the model specification, the effectiveness of hedging over finite periods of time, and obtain the limiting case of instantaneous hedging. We use empirical estimates for the parameters of the model to show that a low-dimensional hedge portfolio is quite effective.

  7. Finite field-dependent symmetry in the Thirring model

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker; Ganai, Prince A.

    2016-06-01

    In this paper, we consider a D-dimensional massive Thirring model with (2finite field-dependent parameter. Further we compute the Jacobian of functional measure under such an extended transformation. Remarkably, we find that such a Jacobian extends the BRST exact part of the action which leads to a mapping between different gauges. We illustrate this with the help of the Lorentz and R_ξ gauges. We also discuss the results in the Batalin-Vilkovisky framework.

  8. Spin dependent correlations in a homogeneous electron gas at finite temperature

    SciTech Connect

    Arora, Priya; Moudgil, R. K.; Kumar, Krishan

    2016-05-23

    We have studied theoretically the magnetic structure factor of a three-dimensional homogeneous electron gas at finite temperature. The spin density response function has been derived using the Singwi-Tosi-Land-Sjolander (STLS) theory that incorporates the correlation effects through spin anti-symmetric local field correction factor. The numerical results so obtained are compared against the recent path-integral Monte Carlo Simulation data of Brown et al. in the warm-dense regime for various temperature values. We find almost exact agreement at small temperature for different coupling parameter (r{sub s}) values. However, with increasing temperature and decreasing density, there has been observed noticeable disagreement with simulation results. This is attributed to the known failure of the STLS theory in dealing separately with the spin-resolved correlation functions.

  9. Finite-element technique applied to heat conduction in solids with temperature dependent thermal conductivity

    NASA Technical Reports Server (NTRS)

    Aguirre-Ramirez, G.; Oden, J. T.

    1969-01-01

    Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH

  10. Finite-temperature hydrodynamics for one-dimensional Bose gases: Breathing-mode oscillations as a case study

    NASA Astrophysics Data System (ADS)

    Bouchoule, I.; Szigeti, S. S.; Davis, M. J.; Kheruntsyan, K. V.

    2016-11-01

    We develop a finite-temperature hydrodynamic approach for a harmonically trapped one-dimensional quasicondensate and apply it to describe the phenomenon of frequency doubling in the breathing-mode oscillations of the quasicondensate momentum distribution. The doubling here refers to the oscillation frequency relative to the oscillations of the real-space density distribution, invoked by a sudden confinement quench. By constructing a nonequilibrium phase diagram that characterizes the regime of frequency doubling and its gradual disappearance, we find that this crossover is governed by the quench strength and the initial temperature rather than by the equilibrium-state crossover from the quasicondensate to the ideal Bose gas regime. The hydrodynamic predictions are supported by the results of numerical simulations based on a finite-temperature c -field approach and extend the utility of the hydrodynamic theory for low-dimensional quantum gases to the description of finite-temperature systems and their dynamics in momentum space.

  11. Aspects of renormalization in finite-density field theory

    SciTech Connect

    Fitzpatrick, A. Liam; Torroba, Gonzalo; Wang, Huajia

    2015-05-26

    We study the renormalization of the Fermi surface coupled to a massless boson near three spatial dimensions. For this, we set up a Wilsonian RG with independent decimation procedures for bosons and fermions, where the four-fermion interaction “Landau parameters” run already at tree level. Our explicit one-loop analysis resolves previously found obstacles in the renormalization of finite-density field theory, including logarithmic divergences in nonlocal interactions and the appearance of multilogarithms. The key aspects of the RG are the above tree-level running, and a UV-IR mixing between virtual bosons and fermions at the quantum level, which is responsible for the renormalization of the Fermi velocity. We apply this approach to the renormalization of 2 k F singularities, and to Fermi surface instabilities in a companion paper, showing how multilogarithms are properly renormalized. We end with some comments on the renormalization of finite-density field theory with the inclusion of Landau damping of the boson.

  12. A systematic study of finite field-dependent BRST-BV transformations in Sp(2) extended field-antifield formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Bering, Klaus; Lavrov, Peter M.; Tyutin, Igor V.

    2014-11-01

    In the framework of Sp(2) extended Lagrangian field-antifield BV formalism, we study systematically the role of finite field-dependent BRST-BV transformations. We have proved that the Jacobian of a finite BRST-BV transformation is capable of generating arbitrary finite change of the gauge-fixing function in the path integral.

  13. GPU and APU computations of Finite Time Lyapunov Exponent fields

    NASA Astrophysics Data System (ADS)

    Conti, Christian; Rossinelli, Diego; Koumoutsakos, Petros

    2012-03-01

    We present GPU and APU accelerated computations of Finite-Time Lyapunov Exponent (FTLE) fields. The calculation of FTLEs is a computationally intensive process, as in order to obtain the sharp ridges associated with the Lagrangian Coherent Structures an extensive resampling of the flow field is required. The computational performance of this resampling is limited by the memory bandwidth of the underlying computer architecture. The present technique harnesses data-parallel execution of many-core architectures and relies on fast and accurate evaluations of moment conserving functions for the mesh to particle interpolations. We demonstrate how the computation of FTLEs can be efficiently performed on a GPU and on an APU through OpenCL and we report over one order of magnitude improvements over multi-threaded executions in FTLE computations of bluff body flows.

  14. Temperature field for radiative tomato peeling

    NASA Astrophysics Data System (ADS)

    Cuccurullo, G.; Giordano, L.

    2017-01-01

    Nowadays peeling of tomatoes is performed by using steam or lye, which are expensive and polluting techniques, thus sustainable alternatives are searched for dry peeling and, among that, radiative heating seems to be a fairly promising method. This paper aims to speed up the prediction of surface temperatures useful for realizing dry-peeling, thus a 1D-analytical model for the unsteady temperature field in a rotating tomato exposed to a radiative heating source is presented. Since only short times are of interest for the problem at hand, the model involves a semi-infinite slab cooled by convective heat transfer while heated by a pulsating heat source. The model being linear, the solution is derived following the Laplace Transform method. A 3D finite element model of the rotating tomato is introduced as well in order to validate the analytical solution. A satisfactory agreement is attained. Therefore, two different ways to predict the onset of the peeling conditions are available which can be of help for proper design of peeling plants. Particular attention is paid to study surface temperature uniformity, that being a critical parameter for realizing an easy tomato peeling.

  15. Finite-Temperature Conductivity and Magnetoconductivity of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Zhou; Shen, Shun-Qing

    2014-04-01

    The electronic transport experiments on topological insulators exhibit a dilemma. A negative cusp in magnetoconductivity is widely believed as a quantum transport signature of the topological surface states, which are immune from localization and exhibit the weak antilocalization. However, the measured conductivity drops logarithmically when lowering temperature, showing a typical feature of the weak localization as in ordinary disordered metals. Here, we present a conductivity formula for massless and massive Dirac fermions as a function of magnetic field and temperature, by taking into account the electron-electron interaction and quantum interference simultaneously. The formula reconciles the dilemma by explicitly clarifying that the temperature dependence of the conductivity is dominated by the interaction, while the magnetoconductivity is mainly contributed by the quantum interference. The theory paves the road to quantitatively study the transport in topological insulators, and can be extended to other two-dimensional Dirac-like systems, such as graphene, transition metal dichalcogenides, and silicene.

  16. (Pseudo)scalar charmonium in finite temperature QCD

    SciTech Connect

    Dominguez, C. A.; Loewe, M.; Rojas, J. C.; Zhang, Y.

    2011-02-01

    The hadronic parameters of pseudoscalar ({eta}{sub c}) and scalar ({chi}{sub c}) charmonium are determined at finite temperature from Hilbert moment QCD sum rules. These parameters are the hadron mass, leptonic decay constant, total width, and continuum threshold (s{sub 0}). Results for s{sub 0}(T) in both channels indicate that s{sub 0}(T) starts approximately constant, and then it decreases monotonically with increasing T until it reaches the QCD threshold, s{sub th}=4m{sub Q}{sup 2}, at a critical temperature T=T{sub c{approx_equal}}180 MeV interpreted as the deconfinement temperature. The other hadronic parameters behave qualitatively similarly to those of the J/{psi}, as determined in this same framework. The hadron mass is essentially constant, the total width is initially independent of T, and after T/T{sub c{approx_equal}}0.80 it begins to increase with increasing T up to T/T{sub c{approx_equal}}0.90(0.95) for {chi}{sub c} ({eta}{sub c}), and subsequently it decreases sharply up to T{approx_equal}0.94(0.99)T{sub c}, for {chi}{sub c} ({eta}{sub c}), beyond which the sum rules are no longer valid. The decay constant of {chi}{sub c} at first remains basically flat up to T{approx_equal}0.80T{sub c}, then it starts to decrease up to T{approx_equal}0.90T{sub c}, and finally it increases sharply with increasing T. In the case of {eta}{sub c} the decay constant does not change up to T{approx_equal}0.80T{sub c} where it begins a gentle increase up to T{approx_equal}0.95T{sub c} beyond which it increases dramatically with increasing T. This behavior contrasts with that of light-light and heavy-light quark systems, and it suggests the survival of the {eta}{sub c} and the {chi}{sub c} states beyond the critical temperature, as already found for the J/{psi} from similar QCD sum rules. These conclusions are very stable against changes in the critical temperature in the wide range T{sub c}=180-260 MeV.

  17. A systematic study of finite BRST-BV transformations in field-antifield formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.

    2014-11-01

    We study systematically finite BRST-BV transformations in the field-antifield formalism. We present explicitly their Jacobians and the form of a solution to the compensation equation determining the functional field dependence of finite Fermionic parameters, necessary to generate arbitrary finite change of gauge-fixing functions in the path integral.

  18. Single-bubble sonoluminescence as Dicke superradiance at finite temperature

    NASA Astrophysics Data System (ADS)

    Aparicio Alcalde, M.; Quevedo, H.; Svaiter, N. F.

    2014-12-01

    Sonoluminescence is a process in which a strong sound field is used to produce light in liquids. We explain sonoluminescence as a phase transition from ordinary fluorescence to a superradiant phase. We consider a spin-boson model composed of a single bosonic mode and an ensemble of N identical two-level atoms. We assume that the whole system is in thermal equilibrium with a reservoir at temperature β-1. We show that, in a ultrastrong-coupling regime, between the two-level atoms and the electromagnetic field it is possible to have a cooperative interaction of the molecules of the gas in the interior of the bubble with the field, generating sonoluminescence.

  19. (H2O)20 Water Clusters at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Parkkinen, P.; Riikonen, S.; Halonen, L.

    2013-10-01

    We have performed an exhaustive study of energetics of (H2O)20 clusters. Our goal is to study the role that various free-energy terms play in this popular model system and see their effects on the distribution of the (H2O)20 clusters and in the infrared spectrum at finite temperatures. In more detail, we have studied the electronic ground-state structure energy and its long-range correlation (dispersion) part, vibrational zero-point corrections, vibrational entropy, and proton configurational entropy. Our results indicate a delicate competition between the energy terms; polyhedral water clusters are destabilized by dispersion interaction, while vibrational terms (zero-point and entropic) together with proton disorder entropy favor them against compact structural motifs, such as the pentagonal edge- or face-sharing prisms. Apart from small water clusters, our results can be used to understand the influence of these energy terms in water/ice systems in general. We have also developed energy expressions as a function of both earlier proposed and novel hydrogen-bond connectivity parameters for prismatic water clusters.

  20. Unusual finite size effects on critical temperature in fcc Ising antiferromagnets

    NASA Astrophysics Data System (ADS)

    Pommier, J.; Diep, H. T.; Ghazali, A.; Lallemand, P.

    1988-04-01

    A new multispin coding technique is presented for Monte Carlo simulation of antiferromagnetic Ising spin systems on an fcc lattice. The nearest- and next-nearest-neighbor interactions J1 and J2 are included. This technique allows a considerable gain in CPU time and computer memory. As a first application, we have studied samples of 4L3 spins with L up to 48. An unusual behavior of the critical temperature with increasing L is found in the case of nearest-neighbor interaction in zero field. Finite size effects on the locations of tricrical points in the (T,J2/J1) plane are discussed.

  1. Microcanonical determination of effective-spin models for finite-temperature QCD

    NASA Astrophysics Data System (ADS)

    Gocksch, A.; Ogilvie, M.

    1985-04-01

    The microcanonical-reorganization-group techniques developed by Creutz, et al. (1984) are applied to computer-simulation effective-spin models for finite-temperature QCD in SU(3) gauge theory. The effective-spin-model coupling coefficient J is plotted against the gauge-field coupling coefficient lambda; the results are compared with the predictions of strong-coupling (Green and Karsch, 1984) and weak-coupling (Kadanoff, 1977) theory; and the implications of the transition to a new phase of deconfined quarks and gluons for cosmology are indicated.

  2. Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael

    2016-03-01

    In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.

  3. Universality of temperature-dependent effects in finite many-fermion systems

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Dussel, G. G.; Zuker, A. P.

    1989-12-01

    The temperature dependence of the specific heat for a finite system of fermions is investigated for some simple models. It is found that finite-size effects produce a maximum in the specific heat at a temperature Tc that has a universal value when scaled by the appropriate characteristic energy.

  4. Finite temperature quantum critical transport near the Mott transition

    NASA Astrophysics Data System (ADS)

    Terletska, Hanna; Dobrosavljevic, Vladimir

    2010-03-01

    We use Dynamical Mean-Field Theory to study incoherent transport above the critical end-point temperature Tc of the single band Hubbard model at half-filling. By employing an eigenvalue analysis for the free energy functional, we are able to precisely identify the crossover temperature T*(U) separating the Fermi liquid and the Mott insulating regimes. Our calculations demonstrate that a broad parameter range exist around the crossover line, where the family of resistivity curves displays simple scaling behavior. This is interpreted as a manifestation of quantum criticality controlled by the T=0 Mott transition, which is ``interrupted'' by the emergence of the coexistence dome at T < Tc . We argue that in situations where the critical temperature Tc is significantly reduced, so that the coexistence region is reduced or even absent (as in two-band, particle-hole asymmetric models, where this is found even in the clean d->∞ limit [1, 2]), similar critical scaling properties should persist down to much lower temperatures, resembling quantum critical transport similar to that found in a number of experiments [2]. [1] A. Amaricci, G. Sordi, and M. J. Rosenberg, Phys. Rev. Lett. 101, 146403 (2008) [2] A. Camjayi, K. Haule, V. Dobrosavljevic, and G. Kotliar, Nature Physics, 4, 932 (2008)

  5. Thermal field theory of bosonic gases with finite-range effective interaction

    NASA Astrophysics Data System (ADS)

    Cappellaro, A.; Salasnich, L.

    2017-03-01

    We study a dilute and ultracold Bose gas of interacting atoms by using an effective field theory which takes into account the finite-range effects of the interatomic potential. Within the formalism of functional integration from the grand canonical partition function, we derive beyond-mean-field analytical results which depend on both the scattering length and the effective range of the interaction. In particular, we calculate the equation of state of the bosonic system as a function of these interaction parameters both at zero and finite temperature including one-loop Gaussian fluctuation. In the case of zero-range effective interaction, we explicitly show that, due to quantum fluctuations, the bosonic system is thermodynamically stable only for very small values of the gas parameter. We find that a positive effective range above a critical threshold is necessary to remove the thermodynamical instability of the uniform configuration. Remarkably, also for relatively large values of the gas parameter, our finite-range results are in quite good agreement with recent zero-temperature Monte Carlo calculations obtained with hard-sphere bosons.

  6. FINITE ELEMENT MODEL FOR TIDES AND CURRENTS WITH FIELD APPLICATIONS.

    USGS Publications Warehouse

    Walters, Roy A.

    1988-01-01

    A finite element model, based upon the shallow water equations, is used to calculate tidal amplitudes and currents for two field-scale test problems. Because tides are characterized by line spectra, the governing equations are subjected to harmonic decomposition. Thus the solution variables are the real and imaginary parts of the amplitude of sea level and velocity rather than a time series of these variables. The time series is recovered through synthesis. This scheme, coupled with a modified form of the governing equations, leads to high computational efficiency and freedom from excessive numerical noise. Two test-cases are presented. The first is a solution for eleven tidal constituents in the English Channel and southern North Sea, and three constituents are discussed. The second is an analysis of the frequency response and tidal harmonics for south San Francisco Bay.

  7. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  8. Systolic multipliers for finite fields GF(2 exp m)

    NASA Technical Reports Server (NTRS)

    Yeh, C.-S.; Reed, I. S.; Truong, T. K.

    1984-01-01

    Two systolic architectures are developed for performing the product-sum computation AB + C in the finite field GF(2 exp m) of 2 exp m elements, where A, B, and C are arbitrary elements of GF(2 exp m). The first multiplier is a serial-in, serial-out one-dimensional systolic array, while the second multiplier is a parallel-in, parallel-out two-dimensional systolic array. The first multiplier requires a smaller number of basic cells than the second multiplier. The second multiplier needs less average time per computation than the first multiplier, if a number of computations are performed consecutively. To perform single computations both multipliers require the same computational time. In both cases the architectures are simple and regular and possess the properties of concurrency and modularity. As a consequence, they are well suited for use in VLSI systems.

  9. Finite-temperature and finite-time scaling of the directed polymer free energy with respect to its geometrical fluctuations.

    PubMed

    Agoritsas, Elisabeth; Bustingorry, Sebastian; Lecomte, Vivien; Schehr, Grégory; Giamarchi, Thierry

    2012-09-01

    We study the fluctuations of the directed polymer in 1+1 dimensions in a Gaussian random environment with a finite correlation length ξ and at finite temperature. We address the correspondence between the geometrical transverse fluctuations of the directed polymer, described by its roughness, and the fluctuations of its free energy, characterized by its two-point correlator. Analytical arguments are provided in favor of a generic scaling law between those quantities, at finite time, nonvanishing ξ, and explicit temperature dependence. Numerical results are in good agreement both for simulations on the discrete directed polymer and on a continuous directed polymer (with short-range correlated disorder). Applications to recent experiments on liquid crystals are discussed.

  10. The new finite temperature Schrödinger equations with strong or weak interaction

    NASA Astrophysics Data System (ADS)

    Li, Heling; Yang, Bin; Shen, Hongjun

    2017-07-01

    Implanting the thoughtway of thermostatistics into quantum mechanics, we formulate new Schrödinger equations of multi-particle and single-particle respectively at finite temperature. To get it, the pure-state free energies and the microscopic entropy operators are introduced and meantime the pure-state free energies take the places of mechanical energies at finite temperature. The definition of microscopic entropy introduced by Wu was also revised, and the strong or weak interactions dependent on temperature are considered in multi-particle Schrödinger Equations. Based on the new Schrödinger equation at finite temperature, two simple cases were analyzed. The first one is concerning some identical harmonic oscillators in N lattice points and the other one is about N unrelated particles in three dimensional in finite potential well. From the results gotten, we conclude that the finite temperature Schrödinger equation is particularly important for mesoscopic systems.

  11. Magnetized liquid 3He at finite temperature: A variational calculation approach

    NASA Astrophysics Data System (ADS)

    Bordbar, Gholam Hossein; Mohammadi Sabet, Mohammad Taghi

    2016-08-01

    Using the spin-dependent (SD) and spin-independent (SI) correlation functions, we have investigated the properties of liquid 3He in the presence of magnetic field at finite temperature. Our calculations have been done using the variational method based on cluster expansion of the energy functional. Our results show that the low field magnetic susceptibility obeys Curie law at high temperatures. This behavior is in a good agreement with the experimental data as well as the molecular field theory results in which the spin dependency has been introduced in correlation function. Reduced susceptibility as a function of temperature as well as reduced temperature has been also investigated, and again we have seen that the spin-dependent correlation function leads to a good agreement with the experimental data. The Landau parameter, F0a, has been calculated, and for this parameter, a value about - 0.75 has been found in the case of spin-spin correlation. In the case of spin-independent correlation function, this value is about - 0.7. Therefore, inclusion of spin dependency in the correlation function leads to a more compatible value of F0a with experimental data. The magnetization and susceptibility of liquid 3He have also been investigated as a function of magnetic field. Our results show a downward curvature in magnetization of system with spin-dependent correlation for all densities and relevant temperatures. A metamagnetic behavior has been observed as a maximum in susceptibility versus magnetic field, when the spin-spin correlation has been considered. This maximum occurs at 45T ≤ B ≤ 100T for all densities and temperatures. This behavior has not been observed in the case of spin-independent correlation function.

  12. Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong

    2010-07-01

    This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.

  13. Finite temperature QCD with two flavors of nonperturbatively improved Wilson fermions

    SciTech Connect

    Bornyakov, V.G.; Chernodub, M.N.; Ichie, H.; Mori, Y.; Nakamura, Y.; Suzuki, T.; Koma, Y.; Polikarpov, M.I.; Uvarov, P.V.; Veselov, A.I.; Schierholz, G.; Slavnov, A. A.; Stueben, H.

    2005-06-01

    We study QCD with two flavors of nonperturbatively improved Wilson fermions at finite temperature on the 16{sup 3}8 lattice. We determine the transition temperature at lattice spacing as small as a{approx}0.12 fm, and study string breaking below the finite temperature transition. We find that the static potential can be fitted by a two-state ansatz, including a string state and a two-meson state. We investigate the role of Abelian monopoles at finite temperature.

  14. Finite field methods for the supercell modeling of charged insulator/electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Sprik, Michiel

    2016-12-01

    Surfaces of ionic solids interacting with an ionic solution can build up charge by exchange of ions. The surface charge is compensated by a strip of excess charge at the border of the electrolyte forming an electric double layer. These electric double layers are very hard to model using the supercell's methods of computational condensed phase science. The problem arises when the solid is an electric insulator (as most ionic solids are) permitting a finite interior electric field over the width of the slab representing the solid in the supercell. The slab acts as a capacitor. The stored charge is a deficit in the solution failing to compensate fully for the solid surface charge. Here, we show how these problems can be overcome using the finite field methods developed by Stengel, Spaldin, and Vanderbilt [Nat. Phys. 5, 304 (2009), 10.1038/nphys1185]. We also show how the capacitance of the double layer can be computed once overall electric neutrality of the double layer is restored by application of a finite macroscopic field E or alternatively by zero electric displacement D . The method is validated for a classical model of a solid-electrolyte interface using the finite-temperature molecular dynamics adaptation of the constant field method presented previously [C. Zhang and M. Sprik, Phys. Rev. B 93, 144201 (2016), 10.1103/PhysRevB.93.144201]. Because ions in electrolytes can diffuse across supercell boundaries, this application turns out to be a critical illustration of the multivaluedness of polarization in periodic systems.

  15. Integrand Reduction Reloaded: Algebraic Geometry and Finite Fields

    NASA Astrophysics Data System (ADS)

    Sameshima, Ray D.; Ferroglia, Andrea; Ossola, Giovanni

    2017-01-01

    The evaluation of scattering amplitudes in quantum field theory allows us to compare the phenomenological prediction of particle theory with the measurement at collider experiments. The study of scattering amplitudes, in terms of their symmetries and analytic properties, provides a theoretical framework to develop techniques and efficient algorithms for the evaluation of physical cross sections and differential distributions. Tree-level calculations have been known for a long time. Loop amplitudes, which are needed to reduce the theoretical uncertainty, are more challenging since they involve a large number of Feynman diagrams, expressed as integrals of rational functions. At one-loop, the problem has been solved thanks to the combined effect of integrand reduction, such as the OPP method, and unitarity. However, plenty of work is still needed at higher orders, starting with the two-loop case. Recently, integrand reduction has been revisited using algebraic geometry. In this presentation, we review the salient features of integrand reduction for dimensionally regulated Feynman integrals, and describe an interesting technique for their reduction based on multivariate polynomial division. We also show a novel approach to improve its efficiency by introducing finite fields. Supported in part by the National Science Foundation under Grant PHY-1417354.

  16. Quasi-two-dimensional Fermi gases at finite temperatures

    NASA Astrophysics Data System (ADS)

    Fischer, Andrea M.; Parish, Meera M.

    2014-12-01

    We consider a Fermi gas with short-range attractive interactions that is confined along one direction by a tight harmonic potential. For this quasi-two-dimensional (quasi-2D) Fermi gas, we compute the pressure equation of state, radiofrequency spectrum, and the superfluid critical temperature Tc using a mean-field theory that accounts for all the energy levels of the harmonic confinement. Our calculation for Tc provides a natural generalization of the Thouless criterion to the quasi-2D geometry, and it correctly reduces to the 3D expression derived from the local density approximation in the limit where the confinement frequency ωz→0 . Furthermore, our results suggest that Tc can be enhanced by relaxing the confinement and perturbing away from the 2D limit.

  17. QCD phase structure at finite temperature in three-flavor random matrix theory

    SciTech Connect

    Arai, Ryoichi; Yoshinaga, Naotaka

    2009-07-01

    The QCD phase structure is studied at finite temperature in a three-flavor random matrix model formulated with nonzero quark chemical potentials. In the case of no flavor mixing, we analytically obtain temperature dependent critical chemical potentials for finite quark masses. Numerical results show that the QCD phase diagram as a function of temperature is qualitatively in agreement with the prediction of the Nambu-Jona-Lasinio model.

  18. Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature.

    PubMed

    Filinov, V S; Fortov, V E; Bonitz, M; Moldabekov, Zh

    2015-03-01

    The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a/aB--the ratio of the mean interparticle distance to the Bohr radius--approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N=33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4, and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5, both RPIMC and DPIMC are problematic due to the increased fermion sign problem.

  19. The effect of finite temperature and chemical potential on nucleon properties in the logarithmic quark sigma model

    NASA Astrophysics Data System (ADS)

    Abu-Shady, M.; Abu-Nab, A.

    2015-12-01

    The logarithmic quark sigma model is applied to study the nucleon properties at finite temperature and chemical potential. The field equations have been solved numerically in the mean-field approximation by using the extended iteration method at finite temperature and baryon chemical potential. Baryon properties are investigated, such as the hedgehog mass, the magnetic moments of the proton and neutron, and the pion-nucleon coupling constant. We find that the hedgehog mass and the magnetic moments of the proton and neutron increase with increasing temperature and chemical potential, while the pion-nucleon coupling constant decreases. A comparison with the original sigma model and QCD sum rules is presented. We conclude that the logarithmic quark sigma model successfully describes baryon properties of a hot and dense medium.

  20. Finite-temperature Casimir force between perfectly metallic corrugated surfaces

    SciTech Connect

    Sarabadani, Jalal; Miri, MirFaez

    2011-09-15

    We study the Casimir force between two corrugated plates due to thermal fluctuations of a scalar field. For arbitrary corrugations and temperature T, we provide an analytical expression for the Casimir force, which is exact to second order in the corrugation amplitude. We study the specific case of two sinusoidally corrugated plates with corrugation wavelength {lambda}, lateral displacement b, and mean separation H. We find that the lateral Casimir force is F{sub l}(T,H)sin(2{pi}b/{lambda}). In other words, at all temperatures, the lateral force is a sinusoidal function of the lateral shift. In the limit {lambda}>>H, F{sub l}(T{yields}{infinity},H){proportional_to}k{sub B}TH{sup -4}{lambda}{sup -1}. In the opposite limit {lambda}<

  1. Drift-Alfven instabilities of a finite beta plasma shear flow along a magnetic field

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-02-01

    It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows.

  2. Induced fermionic current by a magnetic flux in a cosmic string spacetime at finite temperature

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, Eugênio R.; Saharian, Aram A.; Mohammadi, Azadeh

    2016-01-01

    Here we analyze the finite temperature expectation values of the charge and current densities for a massive fermionic quantum field with nonzero chemical potential μ, induced by a magnetic flux running along the axis of an idealized cosmic string. These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. Specifically the charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current and it is an odd periodic function of the magnetic flux and an even function of the chemical potential. Both analyzed are developed for the cases where |μ| is smaller than the mass of the field quanta m.

  3. Finite-temperature decoherence of spin states in a {Cu3} single molecular magnet

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Wang, Xiaoqun; Liu, Chen; Zhu, Shiqun

    2013-01-01

    We investigate the quantum evolution of spin states of a single molecular magnet in a local electric field. The decoherence of a {Cu3} single molecular magnet weakly coupled to a thermal bosonic environment can be analysed by the spin-boson model. Using the finite-temperature time-convolutionless quantum master equation, we obtain the analytical expression of the reduced density matrix of the system in the secular approximation. The suppressed and revived dynamical behaviour of the spin states are presented by the oscillation of the chirality spin polarization on the time scale of the correlation time of the environment. The quantum decoherence can be effectively restrained with the help of the manipulation of a local electric field and the environment spectral density function. Under the influence of the dissipation, the pointer states measured by the von Neumann entropy are calculated to manifest the entanglement property of the system-environment model.

  4. Relativistic mean field models for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia

    In this dissertation we have created theoretical models for finite nuclei, nuclear matter, and neutron stars within the framework of relativistic mean field (RMF) theory, and we have used these models to investigate the elusive isovector sector and related physics, in particular, the neutron-skin thickness of heavy nuclei, the nuclear symmetry energy, and the properties of neutron stars. To build RMF models that incorporate collective excitations in finite nuclei in addition to their ground-state properties, we have extended the non-relativistic sum rule approach to the relativistic domain. This allows an efficient estimate of giant monopole energies. Moreover, we have combined an exact shell-model-like approach with the mean-field calculation to describe pairing correlations in open-shell nuclei. All the ingredients were then put together to establish the calibration scheme. We have also extended the transformation between model parameters and pseudo data of nuclear matter within the RMF context. Performing calibration in this pseudo data space can not only facilitate the searching algorithm but also make the pseudo data genuine model predictions. This calibration scheme is also supplemented by a covariance analysis enabling us to extract the information content of a model, including theoretical uncertainties and correlation coefficients. A series of RMF models subject to the same isoscalar constraints but one differing isovector assumption were then created using this calibration scheme. By comparing their predictions of the nuclear matter equation of state to both experimental and theoretical constraints, we found that a small neutron skin of about 0.16 fm in Pb208 is favored, indicating that the symmetry energy should be soft. To obtain stronger evidence, we proceeded to examine the evolution of the isotopic chains in both oxygen and calcium. Again, it was found that the model with such small neutron skin and soft symmetry energy can best describe both isotopic

  5. Finite field of view effects on inversion of limb thermal emission observations. [balloon sounding of stratosphere

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Conrath, B. J.; Kunde, V. G.; Maguire, W. C.

    1985-01-01

    It is pointed out that the technique of thermal emission spectroscopy provides an effective means for remote sounding of stratospheric temperature structure and constituent distributions. One procedure for measuring the stratospheric infrared spectrum involves the conduction of observations along ray paths tangent to the stratospheric limb. Thermal emission limb tangent observations have certain advantages compared to other types of observations. The techniques for determining temperature and trace gas distributions from limb thermal emission radiances are based on the assumption that the bulk of opacity lies near the tangent point. Ideally, the field of view (FOV) of the observing instrument should be very small. The effect of a finite FOV is to reduce the spatial resolution of the retrieved temperature and constituent profiles. The present investigation is concerned with the effects of the FOV on the inversion of infrared thermal emission measurements for balloon platforms. Attention is given to a convenient method for determining the weighting functions.

  6. Extracting signatures of quantum criticality in the finite-temperature behavior of many-body systems

    NASA Astrophysics Data System (ADS)

    Cuccoli, Alessandro; Taiti, Alessio; Vaia, Ruggero; Verrucchi, Paola

    2007-08-01

    We face the problem of detecting and featuring footprints of quantum criticality in the finite-temperature behavior of quantum many-body systems. Our strategy is that of comparing the phase diagram of a system displaying a T=0 quantum phase transition with that of its classical limit, in order to single out the genuinely quantum effects. To this aim, we consider the one-dimensional Ising model in a transverse field: while the quantum S=1/2 Ising chain is exactly solvable and extensively studied, results for the classical limit (S→∞) of such model are lacking, and we supply them here. They are obtained numerically, via the transfer-matrix method, and their asymptotic low-temperature behavior is also derived analytically by self-consistent spin-wave theory. We draw the classical phase diagram according to the same procedure followed in the quantum analysis, and the two phase diagrams are found unexpectedly similar: Three regimes are detected also in the classical case, each characterized by a functional dependence of the correlation length on temperature and field analogous to that of the quantum model. What discriminates the classical from the quantum case are the different values of the exponents entering such dependencies, a consequence of the different nature of zero-temperature quantum fluctuations with respect to the thermal ones.

  7. Electric Field Screening by the Proximity of Two Knife-Edge Field Emitters of Finite Width

    NASA Astrophysics Data System (ADS)

    Wong, P.; Tang, W.; Lau, Y. Y.; Hoff, B.

    2015-11-01

    Field emitter arrays have the potential to provide high current density, low voltage operation, and high pulse repetition for radar and communication. It is well known that packing density of the field emitter arrays significantly affect the emission current. Previously we calculated analytically the electric field profile of two-dimensional knife-edge cathodes with arbitrary separation by using a Schwarz-Christoffel transformation. Here we extend this previous work to include the finite width of two identical emitters. From the electric field profile, the field enhancement factor, thereby the severity of the electric field screening, are determined. It is found that for two identical emitters with finite width, the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h / a and h / r , where h is the height of the knife-edge cathode, 2a is the distance between the cathodes, and 2 r represents their width. Particle-in-cell simulations are performed to compare with the analytical results on the emission current distribution. P. Y. Wong was supported by a Directed Energy Summer Scholar internship at Air Force Research Laboratory, Kirtland AFB, and by AFRL Award No. FA9451-14-1-0374.

  8. Numerical reproduction of screening-current-induced fields in HTS tape windings using finite element method

    NASA Astrophysics Data System (ADS)

    Okabe, Yuma; Honda, Tomokazu; Kajikawa, Kazuhiro

    2017-07-01

    The screening-current-induced fields in one of the high temperature superconducting (HTS) coils fabricated previously with coated conductors are evaluated numerically by using a one-dimensional finite element method, in which only the perpendicular component of a current vector potential is considered due to a very thin superconductor layer in the coated conductor. It is assumed that the voltage-current characteristics in the superconductor layer can be expressed by the critical state or n-value model, in which the field-dependent critical current density is also taken into account. The numerically calculated results of the screening-current-induced fields are compared with the experimental results carried out previously.

  9. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.

    PubMed

    Liu, Haihu; Valocchi, Albert J; Zhang, Yonghao; Kang, Qinjun

    2013-01-01

    A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. The model is first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and satisfactory agreement is obtained between numerical results and theoretical predictions.

  10. On the existence of finite amplitude, transverse Alfven waves in the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Sari, J. W.

    1977-01-01

    Interplanetary magnetic field data from the Mariner 10 spacecraft were examined for evidence of small and finite amplitude transverse Alfven waves, general finite amplitude Alfven waves, and magnetosonic waves. No evidence for transverse Alfven waves was found. Instead, the field fluctuations were found to be dominated by the general finite amplitude Alfven wave. Such wave modes correspond to non-plane-wave solutions of the nonlinear magnetohydrodynamic equations.

  11. Temperature field study of hot water circulation pump shaft system

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.

  12. BCS-BEC crossover at finite temperature in the broken-symmetry phase

    NASA Astrophysics Data System (ADS)

    Pieri, P.; Pisani, L.; Strinati, G. C.

    2004-09-01

    The BCS-BEC crossover is studied in a systematic way in the broken-symmetry phase between zero temperature and the critical temperature. This study bridges two regimes where quantum and thermal fluctuations are, respectively, important. The theory is implemented on physical grounds, by adopting a fermionic self-energy in the broken-symmetry phase that represents fermions coupled to superconducting fluctuations in weak coupling and to bosons described by the Bogoliubov theory in strong coupling. This extension of the theory beyond mean field proves important at finite temperature, to connect with the results in the normal phase. The order parameter, the chemical potential, and the single-particle spectral function are calculated numerically for a wide range of coupling and temperature. This enables us to assess the quantitative importance of superconducting fluctuations in the broken-symmetry phase over the whole BCS-BEC crossover. Our results are relevant to the possible realizations of this crossover with high-temperature cuprate superconductors and with ultracold fermionic atoms in a trap.

  13. Slave-particle approach to the finite-temperature properties of ultracold Bose gases in optical lattices

    SciTech Connect

    Lu Xiancong; Yu Yue; Li Jinbin

    2006-04-15

    By using slave particle (slave boson and slave fermion) techniques on the Bose-Hubbard model, we study the finite temperature properties of ultracold Bose gases in optical lattices. The phase diagrams at finite temperature are depicted by including different types of slave particles and the effect of the finite types of slave particles is estimated. The superfluid density is evaluated using the Landau second order phase transition theory. The atom density, excitation spectrum, and dispersion curve are also computed at various temperatures, and how the Mott-insulator evolves as the temperature increases is demonstrated. For most quantities to be calculated, we find that there are no qualitative differences in using the slave boson or the slave fermion approaches. However, when studying the stability of the mean field state, we find that in contrast to the slave fermion approach, the slave boson mean field state is not stable. Although the slave boson mean field theory gives a qualitatively correct phase boundary, it corresponds to a local maximum of Landau free energy and cannot describe the second order phase transition because the coefficient a{sub 4} of the fourth order term is always negative in the free energy expansion.

  14. Modeling Finite Faults Using the Adjoint Wave Field

    NASA Astrophysics Data System (ADS)

    Hjörleifsdóttir, V.; Liu, Q.; Tromp, J.

    2004-12-01

    Time-reversal acoustics, a technique in which an acoustic signal is recorded by an array of transducers, time-reversed, and retransmitted, is used, e.g., in medical therapy to locate and destroy gallstones (for a review see Fink, 1997). As discussed by Tromp et al. (2004), time-reversal techniques for locating sources are closely linked to so-called `adjoint methods' (Talagrand and Courtier, 1987), which may be used to evaluate the gradient of a misfit function. Tromp et al. (2004) illustrate how a (finite) source inversion may be implemented based upon the adjoint wave field by writing the change in the misfit function, δ χ, due to a change in the moment-density tensor, δ m, as an integral of the adjoint strain field ɛ x,t) over the fault plane Σ : δ χ = ∫ 0T∫_Σ ɛ x,T-t) :δ m(x,t) d2xdt. We find that if the real fault plane is located at a distance δ h in the direction of the fault normal hat n, then to first order an additional factor of ∫ 0T∫_Σ δ h (x) ∂ n ɛ x,T-t):m(x,t) d2xdt is added to the change in the misfit function. The adjoint strain is computed by using the time-reversed difference between data and synthetics recorded at all receivers as simultaneous sources and recording the resulting strain on the fault plane. In accordance with time-reversal acoustics, all the resulting waves will constructively interfere at the position of the original source in space and time. The level of convergence will be deterimined by factors such as the source-receiver geometry, the frequency of the recorded data and synthetics, and the accuracy of the velocity structure used when back propagating the wave field. The terms ɛ x,T-t) and ∂ n ɛ x,T-t):m(x,t) can be viewed as sensitivity kernels for the moment density and the faultplane location respectively. By looking at these quantities we can make an educated choice of fault parametrization given the data in hand. The process can then be repeated to invert for the best source model, as

  15. RF coil optimization: evaluation of B1 field homogeneity using field histograms and finite element calculations.

    PubMed

    Li, S; Yang, Q X; Smith, M B

    1994-01-01

    Two-dimensional (2D) finite element analysis has been used to solve the full set of Maxwell's equations for the 2D magnetic field of radiofrequency (RF) coils. The field histogram method has been applied to evaluate and optimize the magnetic field homogeneity of some commonly used RF coils: the saddle coil, the slotted tube resonator, the multiple elements coil and the birdcage resonator, as well as the radial plate coil. Each coil model represents a cross-section of an infinitely long cylinder. The optimum configuration of each of these five RF coils is suggested. It was found that field homogeneity is more strongly dependent on the coil's window angle than on any other parameter. Additionally, eddy currents in the coil's conductive elements distort the current and magnetic field distribution. The frequency dependence of this eddy current distortion is analyzed and discussed.

  16. Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures.

    PubMed

    Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J; Katzgraber, Helmut G

    2016-09-01

    We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.

  17. Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures

    NASA Astrophysics Data System (ADS)

    Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J.; Katzgraber, Helmut G.

    2016-09-01

    We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.

  18. REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.

    SciTech Connect

    UMEDA, T.; MATSUFURU, H.

    2005-07-25

    We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

  19. Finite-temperature phase structure of lattice QCD with Wilson quark action

    SciTech Connect

    Aoki, S.; Ukawa, A.; Umemura, T.

    1996-02-01

    The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. {copyright} {ital 1996 The American Physical Society.}

  20. The Master Equation for Two-Level Accelerated Systems at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Tomazelli, J. L.; Cunha, R. O.

    2016-10-01

    In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.

  1. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  2. Holographic geometry of cMERA for quantum quenches and finite temperature

    NASA Astrophysics Data System (ADS)

    Mollabashi, Ali; Naozaki, Masahiro; Ryu, Shinsei; Takayanagi, Tadashi

    2014-03-01

    We study the time evolution of cMERA (continuous MERA) under quantum quenches in free field theories. We calculate the corresponding holographic metric using the proposal in arXiv:1208.3469 and confirm that it qualitatively agrees with its gravity dual given by a half of the AdS black hole spacetime, argued by Hartman and Maldacena in arXiv:1303.1080. By doubling the cMERA for the quantum quench, we give an explicit construction of finite temperature cMERA. We also study cMERA in the presence of chemical potential and show that there is an enhancement of metric in the infrared region corresponding to the Fermi energy.

  3. Hedgehog loops and finite-temperature transition in Yang-Mills theory

    SciTech Connect

    Belavin, V. A.; Kozlov, I. E.; Chernodub, M. N.

    2009-02-15

    The dynamics of non-Abelian gauge theory can be described not only in terms of local gauge fields but also in terms of nonlocal gauge-invariant variables known as Wilson loops. In Wilson loop space, specific trajectories (defects) are considered on which Wilson loop operators take values in the center of the underlying gauge group. It is shown that, at finite temperature, the density of static (thermal) defects in the Euclidean formulation of Yang-Mills theory is sensitive to the thermodynamic phase transition: numerical calculations reveal that, in contrast to the gluon-plasma phase, where the defect density is high, the density of static defects is very low in the confining phase.

  4. Brownian motion and finite approximations of quantum systems over local fields

    NASA Astrophysics Data System (ADS)

    Bakken, Erik Makino; Digernes, Trond; Weisbart, David

    We give a stochastic proof of the finite approximability of a class of Schrödinger operators over a local field, thereby completing a program of establishing in a non-Archimedean setting corresponding results and methods from the Archimedean (real) setting. A key ingredient of our proof is to show that Brownian motion over a local field can be obtained as a limit of random walks over finite grids. Also, we prove a Feynman-Kac formula for the finite systems, and show that the propagator at the finite level converges to the propagator at the infinite level.

  5. Metallic magnetism at finite temperatures studied by relativistic disordered moment description: Theory and applications

    NASA Astrophysics Data System (ADS)

    Deák, A.; Simon, E.; Balogh, L.; Szunyogh, L.; dos Santos Dias, M.; Staunton, J. B.

    2014-06-01

    We develop a self-consistent relativistic disordered local moment (RDLM) scheme aimed at describing finite-temperature magnetism of itinerant metals from first principles. Our implementation in terms of the Korringa-Kohn-Rostoker multiple-scattering theory and the coherent potential approximation allows us to relate the orientational distribution of the spins to the electronic structure, thus a self-consistent treatment of the distribution is possible. We present applications for bulk bcc Fe, L10-FePt, and FeRh ordered in the CsCl structure. The calculations for Fe show significant variation of the local moments with temperature, whereas according to the mean-field treatment of the spin fluctuations the Curie temperature is overestimated. The magnetic anisotropy of FePt alloys is found to depend strongly on intermixing between nominally Fe and Pt layers, and it shows a power-law behavior as a function of magnetization for a broad range of chemical disorder. In the case of FeRh we construct a lattice constant vs temperature phase diagram and determine the phase line of metamagnetic transitions based on self-consistent RDLM free-energy curves.

  6. Monte Carlo analysis for finite-temperature magnetism of Nd2Fe14B permanent magnet

    NASA Astrophysics Data System (ADS)

    Toga, Yuta; Matsumoto, Munehisa; Miyashita, Seiji; Akai, Hisazumi; Doi, Shotaro; Miyake, Takashi; Sakuma, Akimasa

    2016-11-01

    We investigate the effects of magnetic inhomogeneities and thermal fluctuations on the magnetic properties of a rare-earth intermetallic compound, Nd2Fe14B . The constrained Monte Carlo method is applied to a Nd2Fe14B bulk system to realize the experimentally observed spin reorientation and magnetic anisotropy constants KmA(m =1 ,2 ,4 ) at finite temperatures. Subsequently, it is found that the temperature dependence of K1A deviates from the Callen-Callen law, K1A(T ) ∝M (T) 3 , even above room temperature, TR˜300 K , when the Fe (Nd) anisotropy terms are removed to leave only the Nd (Fe) anisotropy terms. This is because the exchange couplings between Nd moments and Fe spins are much smaller than those between Fe spins. It is also found that the exponent n in the external magnetic field Hext response of barrier height FB=FB0(1-Hext/H0) n is less than 2 in the low-temperature region below TR, whereas n approaches 2 when T >TR , indicating the presence of Stoner-Wohlfarth-type magnetization rotation. This reflects the fact that the magnetic anisotropy is mainly governed by the K1A term in the T >TR region.

  7. Influence of finite volume and magnetic field effects on the QCD phase diagram

    NASA Astrophysics Data System (ADS)

    Magdy, Niseem; Csanád, M.; Lacey, Roy A.

    2017-02-01

    The 2 + 1 SU(3) Polyakov linear sigma model is used to investigate the respective influence of a finite volume and a magnetic field on the quark-hadron phase boundary in the plane of baryon chemical potential ({μ }B) versus temperature (T) of the quantum chromodynamics (QCD) phase diagram. The calculated results indicate sizable shifts of the quark-hadron phase boundary to lower values of ({μ }B {and} T) for increasing magnetic field strength, and an opposite shift to higher values of ({μ }B {and} T) for decreasing system volume. Such shifts could have important implications for the extraction of the thermodynamic properties of the QCD phase diagram from heavy ion data.

  8. A VLSI architecture for performing finite field arithmetic with reduced table look-up

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.; Reed, I. S.

    1986-01-01

    A new table look-up method for finding the log and antilog of finite field elements has been developed by N. Glover. In his method, the log and antilog of a field element is found by the use of several smaller tables. The method is based on a use of the Chinese Remainder Theorem. The technique often results in a significant reduction in the memory requirements of the problem. A VLSI architecture is developed for a special case of this new algorithm to perform finite field arithmetic including multiplication, division, and the finding of an inverse element in the finite field.

  9. A VLSI architecture for performing finite field arithmetic with reduced table look-up

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.; Reed, I. S.

    1986-01-01

    A new table look-up method for finding the log and antilog of finite field elements has been developed by N. Glover. In his method, the log and antilog of a field element is found by the use of several smaller tables. The method is based on a use of the Chinese Remainder Theorem. The technique often results in a significant reduction in the memory requirements of the problem. A VLSI architecture is developed for a special case of this new algorithm to perform finite field arithmetic including multiplication, division, and the finding of an inverse element in the finite field.

  10. Infrared features of unquenched finite temperature lattice Landau gauge QCD

    SciTech Connect

    Furui, Sadataka; Nakajima, Hideo

    2007-09-01

    The color diagonal and color antisymmetric ghost propagators slightly above T{sub c} of N{sub f}=2 MILC 24{sup 3}x12 lattices are measured and compared with zero-temperature unquenched N{sub f}=2+1 MILC{sub c} 20{sup 3}x64 and MILC{sub f} 28{sup 3}x96 lattices and zero-temperature quenched 56{sup 4} {beta}=6.4 and 6.45 lattices. The expectation value of the color antisymmetric ghost propagator {phi}{sup c}(q) is zero, but its Binder cumulant, which is consistent with that of N{sub c}{sup 2}-1 dimensional Gaussian distribution below T{sub c}, decreases above T{sub c}. Although the color diagonal ghost propagator is temperature independent, the l{sup 1} norm of the color antisymmetric ghost propagator is temperature dependent. The expectation value of the ghost condensate observed at zero-temperature unquenched configuration is consistent with 0 in T>T{sub c}. We also measure transverse, magnetic, and electric gluon propagator and extract gluon screening masses. The running coupling measured from the product of the gluon dressing function and the ghost dressing function are almost temperature independent, but the effect of A{sup 2} condensate observed at zero temperature is consistent with 0 in T>T{sub c}. The transverse gluon dressing function at low temperature has a peak in the infrared at low temperature, but it becomes flatter at high temperature. The magnetic gluon propagator at high momentum depends on the temperature. These data imply that the magnetic gluon propagator and the color antisymmetric ghost propagator are affected by the presence of dynamical quarks, and there are strong nonperturbative effects through the temperature-dependent color antisymmetric ghost propagator.

  11. The topological susceptibility in finite temperature QCD and axion cosmology

    DOE PAGES

    Petreczky, Peter; Schadler, Hans-Peter; Sharma, Sayantan

    2016-10-06

    We study the topological susceptibility in 2+1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, Nτ=6,8,10 and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250MeV. While for temperatures above 250MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant and themore » oscillation temperature if indeed the QCD axion is a possible dark matter candidate.« less

  12. The topological susceptibility in finite temperature QCD and axion cosmology

    NASA Astrophysics Data System (ADS)

    Petreczky, Peter; Schadler, Hans-Peter; Sharma, Sayantan

    2016-11-01

    We study the topological susceptibility in 2 + 1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, Nτ = 6 , 8 , 10 and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250 MeV. While for temperatures above 250 MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant and the oscillation temperature if indeed the QCD axion is a possible dark matter candidate.

  13. 3D temperature field reconstruction using ultrasound sensing system

    NASA Astrophysics Data System (ADS)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  14. Finite-temperature fidelity and von Neumann entropy in the honeycomb spin lattice with quantum Ising interaction

    NASA Astrophysics Data System (ADS)

    Dai, Yan-Wei; Shi, Qian-Qian; Cho, Sam Young; Batchelor, Murray T.; Zhou, Huan-Qiang

    2017-06-01

    The finite-temperature phase diagram is obtained for an infinite honeycomb lattice with spin-1 /2 Ising interaction J by using thermal-state fidelity and the von Neumann entropy based on the infinite projected entangled pair state algorithm with ancillas. The tensor network representation of the fidelity, which is defined as an overlap measurement between two thermal states, is presented for thermal states on the honeycomb lattice. We show that the fidelity per lattice site and the von Neumann entropy can capture the phase transition temperatures for an applied magnetic field, consistent with the transition temperatures obtained via the transverse magnetizations, which indicates that a continuous phase transition occurs in the system. In the temperature-magnetic field plane, the phase boundary for finite temperature is found to be well approximated by the functional form (kBTc) 2+hc2/2 =a J2 with a single numerical fitting coefficient a =2.298 (7 ) , where Tc and hc are the critical temperature and field with Boltzmann constant kB. The critical temperature in the absence of magnetic field is estimated as kBTc/J =√{a }≃1.516 (2 ) , compared with the exact result kBTc/J =1.51865 ⋯ . For the quantum state at zero temperature, this phase boundary function gives the critical field estimate hc/J =√{2 a }≃2.144 (3 ) , compared to the known value hc/J =2.13250 (4 ) calculated from a cluster Monte Carlo approach.

  15. Second-order magnetic critical points at finite magnetic fields: Revisiting Arrott plots

    NASA Astrophysics Data System (ADS)

    Bustingorry, S.; Pomiro, F.; Aurelio, G.; Curiale, J.

    2016-06-01

    The so-called Arrott plot, which consists in plotting H /M against M2, with H the applied magnetic field and M the magnetization, is used to extract valuable information in second-order magnetic phase transitions. Besides, it is widely accepted that a negative slope in the Arrott plot is indicative of a first-order magnetic transition. This is known as the Banerjee criterion. In consequence, the zero-field transition temperature T* is reported as the characteristic first-order transition temperature. By carefully analyzing the mean-field Landau model used for studying first-order magnetic transitions, we show in this work that T* corresponds in fact to a triple point where three first-order lines meet. More importantly, this analysis reveals the existence of two symmetrical second-order critical points at finite magnetic field (Tc,±Hc) . We then show that a modified Arrott plot can be used to obtain information about these second-order critical points. To support this idea we analyze experimental data on La2 /3Ca1 /3MnO3 and discuss an estimate for the location of the triple point and the second-order critical points.

  16. Theoretical analysis of the coupling effect for the seepage field, stress field, and temperature field in underground coal gasification

    SciTech Connect

    Yang, L.H.

    2005-10-01

    In this article, the derivative control equations of the simultaneous mathematical models on the temperature field, stress field of coal and rock mass, and the seepage field of retort gases in the gasification panel were established. The finite element form of the three-fields coupling problem for gas-solid solutions by means of a six-node triangular element was deduced. The numerical analysis software for three-fields coupling was developed. Combined with the calculation example, the mechanism of the thermodynamic effect was illustrated. The impact of the heating effect on the measured value and the simulated value of the seepage field, stress field, and displacement field was discussed and analyzed at length.

  17. [Dynamics of charge transfer along an oligonucleotide at finite temperature].

    PubMed

    Lakhno, V D; Fialko, N S

    2004-01-01

    The quantum-statistical approach was used to describe the charge transfer in nucleotide sequences. The results of numerical modeling for hole transfer in the GTTGGG sequence with background temperature noise are given. It was shown that, since guanine has an oxidation potential lower than thymine, the hole created at the G donor in this sequence passes through the thymine barrier into the guanine triplet (acceptor) at a time of approximately 10 ps at a temperature of 37 degrees C.

  18. A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1999-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.

  19. Optimal Use of Finite Land Resources. Field Test Version.

    ERIC Educational Resources Information Center

    Mills, Stephen R.; And Others

    This module, a component of a larger teaching model, seeks to present several concepts to the teacher. It seeks to develop awareness and understanding of use of finite land resources including types of land use and abuse; stewardship of land resources; natural systems functioning; human system demands on the natural environment; carrying capacity;…

  20. Motion of a single hole in a quantum antiferromagnet at finite temperatures

    SciTech Connect

    Igarashi, J. ); Fulde, P. )

    1993-07-01

    Motion of a single hole is studied at finite temperatures in the [ital t]-[ital J] model on a slave-fermion Schwinger-boson representation. The spin fluctuation is treated with the mean-field theory of Arovas and Auerbach. The Green's function for the slave fermion is calculated within the self-consistent Born approximation. A sharp quasiparticle peak is found to be separated from a broad spectrum of incoherence in the spectral function for low temperatures. The Green's function for the physical hole is calculated by taking account of the multiple scattering between the slave fermion and the Schwinger boson. A bound state of the slave fermion and the Schwinger boson is found at low temperatures, suggesting that the spin and the charge cannot be separated into a simple form. The energy of the bound state is minimized at momenta ([plus minus][pi]/2, [plus minus][pi]/2), indicating that a small pocketlike Fermi surface is formed around the momenta for low concentrations of dopant holes.

  1. Topological edge Mott insulating state in two dimensions at finite temperatures: Bulk and edge analysis

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuneya; Kawakami, Norio

    2016-08-01

    We study a bilayer Kane-Mele-Hubbard model with lattice distortion and interlayer spin exchange interaction under cylinder geometry. Our analysis based on real-space dynamical mean field theory with continuous-time quantum Monte Carlo demonstrates the emergence of a topological edge Mott insulating (TEMI) state which hosts gapless edge modes only in collective spin excitations. This is confirmed by the numerical calculations at finite temperatures for the spin-Hall conductivity and the single-particle excitation spectrum; the spin-Hall conductivity is almost quantized, σspinx y˜2 (e /2 π ) , predicting gapless edge modes carrying the spin current, while the helical edge modes in the single-particle spectrum are gapped out with respecting symmetry. It is clarified how the TEMI state evolves from the ordinary spin-Hall insulating state with increasing the Hubbard interaction at a given temperature and then undergoes a phase transition to a trivial Mott insulating state. With a bosonization approach at zero temperature, we further address which collective modes host gapless edge modes in the TEMI state.

  2. Fatigue life prediction for finite ratchetting of bellows at cryogenic temperatures

    SciTech Connect

    Skoczen, B.; Kurtyka, T.; Brunet, J.C.; Poncet, A.

    1997-06-01

    The expansion bellows, used in the magnet interconnections of the Large Hadron Collider (LHC), are designed for severe service conditions (cryogenic temperatures, high internal pressure, large cyclic deflections). According to the results of the material research, a stainless steel of grade AISI 316 exhibits a high ductility at cryogenic temperatures. This results in the development of the plastic strain fields in the bellows wall, subjected to cyclic loadings, and to failure after a comparatively low number of cycles. In the present work the progressive deformation (ratchetting) of bellows subjected to a sustained load (internal pressure) and to a superimposed cyclic deflection programme at cryogenic temperatures is examined. In order to estimate the number of cycles to failure a generalized Manson-Coffin equation was developed. The model is based on two parameters: the ratchetting induced mean plastic strain and the plastic strain amplitude. The material model is based on the bilinear elastic-plastic response with kinematic hardening. The cyclic hardening and the evolution of the material model parameters (yield strength and hardening modulus) are accounted for. The finite element simulation of the initial 20 cycles leads to an estimation of the accumulated plastic strains and enables the calculation of the fatigue life of the bellows. An experimental stand for cryogenic fatigue tests is also presented and the first verification tests are reported.

  3. Finite-Temperature Spin Dynamics in a Perturbed Quantum Critical Ising Chain with an E8 Symmetry

    NASA Astrophysics Data System (ADS)

    Wu, Jianda; Kormos, Márton; Si, Qimiao

    2014-12-01

    A spectrum exhibiting E8 symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E8 description for CoNb2O6 .

  4. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach

    NASA Astrophysics Data System (ADS)

    Xin, Xian-yin; Qin, Si-xue; Liu, Yu-xin

    2014-10-01

    We investigate the quark number fluctuations up to the fourth order in the matter composed of two light flavor quarks with isospin symmetry and at finite temperature and finite chemical potential using the Dyson-Schwinger equation approach of QCD. In order to solve the quark gap equation, we approximate the dressed quark-gluon vertex with the bare one and adopt both the Maris-Tandy model and the infrared constant (Qin-Chang) model for the dressed gluon propagator. Our results indicate that the second, third, and fourth order fluctuations of net quark number all diverge at the critical endpoint (CEP). Around the CEP, the second order fluctuation possesses obvious pump while the third and fourth order ones exhibit distinct wiggles between positive and negative. For the Maris-Tandy model and the Qin-Chang model, we give the pseudocritical temperature at zero quark chemical potential as Tc=146 MeV and 150 MeV, and locate the CEP at (μEq,TE)=(120,124) MeV and (124,129) MeV, respectively. In addition, our results manifest that the fluctuations are insensitive to the details of the model, but the location of the CEP shifts to low chemical potential and high temperature as the confinement length scale increases.

  5. Decay of a Yukawa fermion at finite temperature and applications to leptogenesis

    SciTech Connect

    Kiessig, Clemens P.; Pluemacher, Michael; Thoma, Markus H.

    2010-08-01

    We calculate the decay rate of a Yukawa fermion in a thermal bath using finite-temperature cutting rules and effective Green's functions according to the hard thermal loop resummation technique. We apply this result to the decay of a heavy Majorana neutrino in leptogenesis. Compared to the usual approach where thermal masses are inserted into the kinematics of final states, we find that deviations arise through two different leptonic dispersion relations. The decay rate differs from the usual approach by more than 1 order of magnitude in the temperature range which is interesting for the weak washout regime. We discuss how to arrive at consistent finite-temperature treatments of leptogenesis.

  6. Reprint of : Single-electron coherence: Finite temperature versus pure dephasing

    NASA Astrophysics Data System (ADS)

    Moskalets, Michael; Haack, Géraldine

    2016-08-01

    We analyze a coherent injection of single electrons on top of the Fermi sea in two situations, at finite-temperature and in the presence of pure dephasing. Both finite-temperature and pure dephasing change the property of the injected quantum states from pure to mixed. However, we show that the temperature-induced mixedness does not alter the coherence properties of these single-electron states. In particular two such mixed states exhibit perfect antibunching while colliding at an electronic wave splitter. This is in striking difference with the dephasing-induced mixedness which suppresses antibunching. On the contrary, a single-particle shot noise is suppressed at finite temperatures but is not affected by pure dephasing. This work therefore extends the investigation of the coherence properties of single-electron states to the case of mixed states and clarifies the difference between different types of mixedness.

  7. Variational calculation for the equation of state of nuclear matter at finite temperatures

    NASA Astrophysics Data System (ADS)

    Kanzawa, H.; Oyamatsu, K.; Sumiyoshi, K.; Takano, M.

    2007-07-01

    An equation of state (EOS) for uniform nuclear matter is constructed at zero and finite temperatures with the variational method starting from the realistic nuclear Hamiltonian composed of the Argonne V18 and UIX potentials. The energy is evaluated in the two-body cluster approximation with the three-body-force contribution treated phenomenologically so as to reproduce the empirical saturation conditions. The obtained energies for symmetric nuclear matter and neutron matter at zero temperature are in fair agreement with those by Akmal, Pandharipande and Ravenhall, and the maximum mass of the neutron star is 2.2M. At finite temperatures, a variational method by Schmidt and Pandharipande is employed to evaluate the free energy, which is used to derive various thermodynamic quantities of nuclear matter necessary for supernova simulations. The result of this variational method at finite temperatures is found to be self-consistent.

  8. Finite-temperature perturbation theory for the random directed polymer problem

    SciTech Connect

    Korshunov, S. E.; Geshkenbein, V. B.; Blatter, G.

    2013-09-15

    We study the random directed polymer problem-the short-scale behavior of an elastic string (or polymer) in one transverse dimension subject to a disorder potential and finite temperature fluctuations. We are interested in the polymer short-scale wandering expressed through the displacement correlator Left-Pointing-Angle-Bracket [{delta}u(X)]{sup 2} Right-Pointing-Angle-Bracket , with {delta}u(X) being the difference in the displacements at two points separated by a distance X. While this object can be calculated at short scales using the perturbation theory in higher dimensions d > 2, this approach becomes ill-defined and the problem turns out to be nonperturbative in the lower dimensions and for an infinite-length polymer. In order to make progress, we redefine the task and analyze the wandering of a string of a finite length L. At zero temperature, we find that the displacement fluctuations Left-Pointing-Angle-Bracket [{delta}u(X)]{sup 2} Right-Pointing-Angle-Bracket {proportional_to} LX{sup 2} depend on L and scale with the square of the segment length X, which differs from a straightforward Larkin-type scaling. The result is best understood in terms of a typical squared angle Left-Pointing-Angle-Bracket {alpha}{sup 2} Right-Pointing-Angle-Bracket {proportional_to} L, where {alpha} = {partial_derivative}{sub x}u, from which the displacement scaling for the segment X follows naturally, Left-Pointing-Angle-Bracket [{delta}u(X)]{sup 2} Right-Pointing-Angle-Bracket {proportional_to} Left-Pointing-Angle-Bracket {alpha}{sup 2} Right-Pointing-Angle-Bracket X{sup 2}. At high temperatures, thermal fluctuations smear the disorder potential and the lowest-order results for disorder-induced fluctuations in both the displacement field and the angle vanish in the thermodynamic limit L {yields} {infinity}. The calculation up to the second order allows us to identify the regime of validity of the perturbative approach and provides a finite expression for the displacement

  9. Near-field-far-field transition of a finite line source using incoherent light: A student laboratory experiment

    NASA Astrophysics Data System (ADS)

    Yan, Xincheng; Yu, Yixin; Shen, Louis; Wanser, Keith H.

    1995-01-01

    A simple experiment employing low cost apparatus is presented which demonstrates the falloff of intensity with distance and the transition from the near field to the far field of a line source filament incandescent light bulb. A derivation of the Poynting vector as a function of the distance away from the filament is presented which shows an exact correspondence to the derivation for the electric field from a finite line charge source in electrostatics. The experimental data of power vs distance from the filament show an inverse first power of the distance falloff in the near field, with a smooth transition to an inverse square law behavior in the far field, in good agreement with the theoretical expression when corrections for the measured angular response of the detector are included. The experiment provides an illustration of the inverse square law falloff of intensity at large distances from the source, experience with simple concepts and techniques of optical radiometry and incoherent light sources, and the analogy between incoherent light sources and electrostatics in an undergraduate laboratory. An additional short experiment provides an illustration of electrical-to-optical power conversion efficiency and temperature dependent resistance associated with electron-phonon scattering in metals. A derivation of isotropic, unpolarized elementary radiators from anisotropic dipole radiation is presented in the Appendix.

  10. Finite-temperature magnetism of FeRh compounds

    NASA Astrophysics Data System (ADS)

    Polesya, S.; Mankovsky, S.; Ködderitzsch, D.; Minár, J.; Ebert, H.

    2016-01-01

    The temperature dependent stability of the magnetic phases of FeRh were investigated by means of total energy calculations with magnetic disorder treated within the uncompensated disordered local moment approach. In addition, Monte Carlo simulations based on the extended Heisenberg model have been performed, using exchange coupling parameters obtained from first principles. The crucial role and interplay of two factors in the metamagnetic transition in FeRh has been revealed, namely the dependence of the Fe-Fe exchange coupling parameters on the temperature-governed degree of magnetic disorder in the system and the stabilizing nature of the induced magnetic moment on Rh-sites. An important observation is the temperature dependence of these two competing factors.

  11. Breakdown of nonlinear elasticity in amorphous solids at finite temperatures

    NASA Astrophysics Data System (ADS)

    Procaccia, Itamar; Rainone, Corrado; Shor, Carmel A. B. Z.; Singh, Murari

    2016-06-01

    It is known [H. G. E. Hentschel et al., Phys. Rev. E 83, 061101 (2011), 10.1103/PhysRevE.83.061101] that amorphous solids at zero temperature do not possess a nonlinear elasticity theory: besides the shear modulus, which exists, none of the higher order coefficients exist in the thermodynamic limit. Here we show that the same phenomenon persists up to temperatures comparable to that of the glass transition. The zero-temperature mechanism due to the prevalence of dangerous plastic modes of the Hessian matrix is replaced by anomalous stress fluctuations that lead to the divergence of the variances of the higher order elastic coefficients. The conclusion is that in amorphous solids elasticity can never be decoupled from plasticity: the nonlinear response is very substantially plastic.

  12. Surface boiling - an "obvious" explanation for the observed limiting temperature of finite nuclei

    NASA Astrophysics Data System (ADS)

    Tõke, J.

    2012-07-01

    Limits of stability of nuclear systems are explored within the framework of a finite-range interacting Fermi gas model and microcanonical thermodynamics in Thomas-Fermi approximation. It is found that with increasing excitation energy, infinite systems become unstable against volume boiling, while finite systems become subject to surface boiling, providing a natural explanation for the observed saturationlike patterns, or limiting temperature, in caloric curves. Boiling patterns of iso-asymmetric matter are discussed.

  13. Equation of State of Structured Matter at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Yasutake, N.; Tatsumi, T.

    We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.

  14. Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing

    SciTech Connect

    Martins, R. A.

    2007-08-15

    The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string, through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.

  15. Chemical Relaxation Times in a Hadron Gas at Finite Temperature

    SciTech Connect

    Goity, Jose

    1993-07-01

    The relaxation time of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations.Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of 10^3 fm at temperatures around 100 MeV.As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.

  16. Stretching helical nano-springs at finite temperature

    NASA Astrophysics Data System (ADS)

    Wada, H.; Netz, R. R.

    2007-03-01

    Using dynamic simulations and analytic methods, we study the elastic response of a helical filament subject to uniaxial tension over a wide range of bend and twist persistence length. A low-pitch helix at low temperatures exhibits a stretching instability and the force-extension curve consists of a sequence of spikes. At elevated temperature (i.e. small persistence lengths) the helix melts and a pronounced force plateau is obtained in the fixed-extension ensemble. The torque boundary condition significantly affects the resulting elastic properties.

  17. Vortex reconnections in atomic condensates at finite temperature

    NASA Astrophysics Data System (ADS)

    Allen, A. J.; Zuccher, S.; Caliari, M.; Proukakis, N. P.; Parker, N. G.; Barenghi, C. F.

    2014-07-01

    The study of vortex reconnections is an essential ingredient of understanding superfluid turbulence, a phenomenon recently also reported in trapped atomic Bose-Einstein condensates. In this work we show that, despite the established dependence of vortex motion on temperature in such systems, vortex reconnections are actually temperature independent on the typical length and time scales of atomic condensates. Our work is based on a dissipative Gross-Pitaevskii equation for the condensate, coupled to a semiclassical Boltzmann equation for the thermal cloud (the Zaremba-Nikuni-Griffin formalism). Comparison to vortex reconnections in homogeneous condensates further shows reconnections to be insensitive to the inhomogeneity in the background density.

  18. Fluctuations of conserved charges at finite temperature from lattice QCD

    NASA Astrophysics Data System (ADS)

    Borsányi, Szabolcs; Fodor, Zoltán; Katz, Sándor D.; Krieg, Stefan; Ratti, Claudia; Szabó, Kálman

    2012-01-01

    We present the full results of the Wuppertal-Budapest lattice QCD collaboration on flavor diagonal and non-diagonal quark number susceptibilities with 2 + 1 staggered quark flavors, in a temperature range between 125 and 400 MeV. The light and strange quark masses are set to their physical values. Lattices with N t = 6, 8, 10, 12, 16 are used. We perform a continuum extrapolation of all observables under study. A Symanzik improved gauge and a stout-link improved staggered fermion action is utilized. All results are compared to the Hadron Resonance Gas model predictions: good agreement is found in the temperature region below the transition.

  19. Finite-temperature scaling of trace distance discord near criticality in spin diamond structure

    PubMed Central

    Cheng, W. W.; Wang, X. Y.; Sheng, Y. B.; Gong, L. Y.; Zhao, S. M.; Liu, J. M.

    2017-01-01

    In this work we explore the quantum correlation quantified by trace distance discord as a measure to analyze the quantum critical behaviors in the Ising-XXZ diamond structure at finite temperatures. It is found that the first-order derivative of the trace distance discord exhibits a maximum around the critical point at finite temperatures. By analyzing the finite-temperature scaling behavior, we show that such a quantum correlation can detect exactly the quantum phase transitions from the entan-gled state in ferrimagnetic phase to an unentangled state in ferrimagnetic phase or to an unentangled state in ferromagnetic phase. The results also indicate that the above two kinds of transitions can be distinguished by the different finite-temperature scaling behaviors. Moreover, we find that the trace distance discord, in contrast to other typical quantum correlations (e.g., concurrence, quantum discord and Hellinger distance), may be more reliable to exactly spotlight the critical points of this model at finite temperatures under certain situations. PMID:28198404

  20. Finite-temperature scaling of trace distance discord near criticality in spin diamond structure

    NASA Astrophysics Data System (ADS)

    Cheng, W. W.; Wang, X. Y.; Sheng, Y. B.; Gong, L. Y.; Zhao, S. M.; Liu, J. M.

    2017-02-01

    In this work we explore the quantum correlation quantified by trace distance discord as a measure to analyze the quantum critical behaviors in the Ising-XXZ diamond structure at finite temperatures. It is found that the first-order derivative of the trace distance discord exhibits a maximum around the critical point at finite temperatures. By analyzing the finite-temperature scaling behavior, we show that such a quantum correlation can detect exactly the quantum phase transitions from the entan-gled state in ferrimagnetic phase to an unentangled state in ferrimagnetic phase or to an unentangled state in ferromagnetic phase. The results also indicate that the above two kinds of transitions can be distinguished by the different finite-temperature scaling behaviors. Moreover, we find that the trace distance discord, in contrast to other typical quantum correlations (e.g., concurrence, quantum discord and Hellinger distance), may be more reliable to exactly spotlight the critical points of this model at finite temperatures under certain situations.

  1. Quantum-Shell Corrections to the Finite-Temperature Thomas-Fermi-Dirac Statistical Model of the Atom

    SciTech Connect

    Ritchie, A B

    2003-07-22

    Quantum-shell corrections are made directly to the finite-temperature Thomas-Fermi-Dirac statistical model of the atom by a partition of the electronic density into bound and free components. The bound component is calculated using analytic basis functions whose parameters are chosen to minimize the energy. Poisson's equation is solved for the modified density, thereby avoiding the need to solve Schroedinger's equation for a self-consistent field. The shock Hugoniot is calculated for aluminum: shell effects characteristic of quantum self-consistent field models are fully captures by the present model.

  2. Finite temperature magnetism in Gd: evidence against a Stoner behavior.

    PubMed

    Maiti, K; Malagoli, M C; Dallmeyer, A; Carbone, C

    2002-04-22

    The temperature dependence of the rare-earth valence bands has been regarded as a realization of the Stoner behavior. The exchange splitting of the electronic states appears to scale as the magnetic order parameter for Ttemperature dependence, which clearly contrasts with the interpretation of previous experimental results. The spin-resolved photoemission data demonstrate the inadequacy of the Stoner model to the description of magnetism in rare earths.

  3. Chiral phase transition in QED3 at finite temperature

    NASA Astrophysics Data System (ADS)

    Yin, Pei-Lin; Xiao, Hai-Xiao; Wei, Wei; Feng, Hong-Tao; Zong, Hong-Shi

    2016-12-01

    In the framework of Dyson-Schwinger equations, we employ two kinds of criteria (one kind is the chiral condensate, the other kind is thermodynamic quantities, such as the pressure, the entropy, and the specific heat) to investigate the nature of chiral phase transitions in QED3 for different fermion flavors. It is found that the chiral phase transitions in QED3 for different fermion flavors are all typical second-order phase transitions; the critical temperature and order of the chiral phase transition obtained from the chiral condensate and susceptibility are the same with that obtained by the thermodynamic quantities, which means that they are equivalent in describing the chiral phase transition; the critical temperature decreases as the number of fermion flavors increases and there is a boundary that separates the Tc-Nf plane into chiral symmetry breaking and restoration regions.

  4. Isospin Mixing in 80Zr: From Finite to Zero Temperature

    NASA Astrophysics Data System (ADS)

    Ceruti, S.; Camera, F.; Bracco, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Bocchi, G.; Bottoni, S.; Brambilla, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Mentana, A.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Pullia, A.; Riboldi, S.; Wieland, O.; Birkenbach, B.; Bazzacco, D.; Ciemala, M.; Désesquelles, P.; Eberth, J.; Farnea, E.; Görgen, A.; Gottardo, A.; Hess, H.; Judson, D. S.; Jungclaus, A.; Kmiecik, M.; Korten, W.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Modamio, V.; Montanari, D.; Myalski, S.; Napoli, D.; Quintana, B.; Reiter, P.; Recchia, F.; Rosso, D.; Sahin, E.; Salsac, M. D.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.; Zieblinski, M.

    2015-11-01

    The isospin mixing was deduced in the compound nucleus 80Zr at an excitation energy of E*=54 MeV from the γ decay of the giant dipole resonance. The reaction 40Ca + 40Ca at Ebeam=136 MeV was used to form the compound nucleus in the isospin I =0 channel, while the reaction 37Cl + 44Ca at Ebeam=95 MeV was used as the reference reaction. The γ rays were detected with the AGATA demonstrator array coupled with LaBr3 :Ce detectors. The temperature dependence of the isospin mixing was obtained and the zero-temperature value deduced. The isospin-symmetry-breaking correction δC used for the Fermi superallowed transitions was extracted and found to be consistent with β -decay data.

  5. Numerical tests of the gauge/gravity duality conjecture for D0-branes at finite temperature and finite N

    NASA Astrophysics Data System (ADS)

    Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun

    2016-10-01

    According to the gauge/gravity duality conjecture, the thermodynamics of gauge theory describing D-branes corresponds to that of black branes in superstring theory. We test this conjecture directly in the case of D0-branes by applying Monte Carlo methods to the corresponding gauge theory, which takes the form of the Banks-Fischler-Shenker-Susskind (BFSS) matrix quantum mechanics. In particular, we take the continuum limit by extrapolating the UV cutoff to infinity. First we perform simulations at large N so that string loop corrections can be neglected on the gravity side. Our results for the internal energy exhibit the temperature dependence consistent with the prediction including the α' corrections. Next we perform simulations at small N but at lower temperature so that the α' corrections can be neglected on the gravity side. Our results are consistent with the prediction including the leading string loop correction, which suggests that the conjecture holds even at finite N .

  6. Approximate quasi-isodynamicity at a finite aspect ratio in a stellarator vacuum magnetic field

    SciTech Connect

    Mikhailov, M. I.; Nührenberg, J. Zille, R.

    2015-12-15

    A stellarator vacuum field is found in which, at a finite aspect ratio (A ≈ 40), the contours of the second adiabatic invariant of nearly all particles reflected inside that surface are poloidally closed.

  7. A truncated quasiharmonic method for free energy calculations and finite-temperature applications

    NASA Astrophysics Data System (ADS)

    Chen, Yan Yu; Chen, Chuin Shan

    2012-12-01

    Harmonic-based finite-temperature calculation methods play an important role in the study of thermodynamic properties of materials. In this study, we propose a truncated quasiharmonic (TQH) method to approximate the Helmholtz free energy by truncating the high-order terms of finite-temperature vibrational energy. To evaluate the efficacy of the TQH method against other established finite-temperature methods, i.e. the quasiharmonic (QH), the modified local harmonic (MLH) and the local quasiharmonic (LQH) methods, analysis of a homogeneous and vacancy-containing atomic system is performed with each method and compared. We found that the TQH method provides improved accuracy over the MLH and LQH methods for a system containing defects while requiring less computational time than the QH method to achieve convergence.

  8. Simulation and analysis on the flow field of the low temperature mini-type cold store

    NASA Astrophysics Data System (ADS)

    Hao, X. H.; Ju, Y. L.

    2011-07-01

    The understanding of the flow field inside the cold store is very important to food storage at low temperatures. In this paper, the CFD simulation on the flow field for low temperature cold store with air forced supply mode is presented. The turbulence flow of three-dimensional steady incompressible viscous fluid is analyzed using finite volume method and standard K-ɛ two-equation. The temperature and velocity fields of this cold store are simulated, analyzed and compared. The simulation results show that the velocity and temperature fields are evidently influenced by the cross section from the ground, and the optimal cross section is also given in this paper.

  9. Two characteristic temperatures for a Bose-Einstein condensate of a finite number of particles

    SciTech Connect

    Idziaszek, Z.; Rzazewski, K.

    2003-09-01

    We consider two characteristic temperatures for a Bose-Einstein condensate, which are related to certain properties of the condensate statistics. We calculate them for an ideal gas confined in power-law traps and show that they approach the critical temperature in the limit of large number of particles. The considered characteristic temperatures can be useful in the studies of Bose-Einstein condensates of a finite number of atoms indicating the point of a phase transition.

  10. Ab-initio structural search in solid oxygen at high pressure: from zero to finite temperature

    NASA Astrophysics Data System (ADS)

    Cogollo-Olivo, B. H.; Montoya, J. A.

    2016-08-01

    The crystal structure of solid oxygen in the terapascal (TPa) regime has been investigated with Density Functional Theory and the Random Search algorithm at zero temperature. We also considered the effect of the entropy at finite temperatures using the QuasiHarmonic Approximation, and we found that the regime of stability of solid oxygen differs strongly from the results predicted at zero temperature. Finally, we provide some insights of oxygen as a chalcogen element.

  11. Finite temperature inelastic mean free path and quasiparticle lifetime in graphene

    NASA Astrophysics Data System (ADS)

    Li, Qiuzi; Das Sarma, S.

    2013-02-01

    We adopt the GW and random phase approximations to study finite temperature effects on the inelastic mean free path and quasiparticle lifetime by directly calculating the imaginary part of the finite temperature self-energy induced by electron-electron interaction in extrinsic and intrinsic graphene. In particular, we provide the density-dependent leading order temperature correction to the inelastic scattering rate for both single-layer and double-layer graphene systems. We find that the inelastic mean free path is strongly influenced by finite-temperature effects. We present the similarity and the difference between graphene with linear chiral band dispersion and conventional two-dimensional electron systems with parabolic band dispersion. We also compare the calculated finite temperature inelastic scattering length with the elastic scattering length due to Coulomb disorder and comment on the prospects for quantum interference effects showing up in low-density graphene transport. We also carry out inelastic scattering calculation for electron-phonon interaction, which by itself gives rather long carrier mean free paths and lifetimes since the deformation potential coupling is weak in graphene, and therefore electron-phonon interaction contributes significantly to the inelastic scattering only at relatively high temperatures.

  12. Time-dependent correlations in quantum magnets at finite temperature

    NASA Astrophysics Data System (ADS)

    Fauseweh, B.; Groitl, F.; Keller, T.; Rolfs, K.; Tennant, D. A.; Habicht, K.; Uhrig, G. S.

    2016-11-01

    In this Rapid Communication we investigate the time dependence of the gap mode of copper nitrate at various temperatures. We combine state-of-the-art theoretical calculations with high precision neutron resonance spin-echo measurements to understand the anomalous decoherence effects found previously in this material. It is shown that the time domain offers a complementary view on this phenomenon, which allows us to directly compare experimental data and theoretical predictions without the need of further intensive data analysis, such as (de)convolution.

  13. Finite-temperature fluid–insulator transition of strongly interacting 1D disordered bosons

    PubMed Central

    Michal, Vincent P.; Aleiner, Igor L.; Altshuler, Boris L.; Shlyapnikov, Georgy V.

    2016-01-01

    We consider the many-body localization–delocalization transition for strongly interacting one-dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator–fluid transitions at any finite temperature when varying the interaction strength. At weak interactions, an increase in the interaction strength leads to insulator → fluid transition, and, for large interactions, there is a reentrance to the insulator regime. It is feasible to experimentally verify these predictions by tuning the interaction strength with the use of Feshbach or confinement-induced resonances, for example, in 7Li or 39K. PMID:27436894

  14. Spin transport in the XXZ chain at finite temperature and momentum.

    PubMed

    Steinigeweg, Robin; Brenig, Wolfram

    2011-12-16

    We investigate the role of momentum for the transport of magnetization in the spin-1/2 Heisenberg chain above the isotropic point at finite temperature and momentum. Using numerical and analytical approaches, we analyze the autocorrelations of density and current and observe a finite region of the Brillouin zone with diffusive dynamics below a cutoff momentum, and a diffusion constant independent of momentum and time, which scales inversely with anisotropy. Lowering the temperature over a wide range, starting from infinity, the diffusion constant is found to increase strongly while the cutoff momentum for diffusion decreases. Above the cutoff momentum diffusion breaks down completely.

  15. Role of barrier layer on dielectric function of graphene double layer system at finite temperature

    NASA Astrophysics Data System (ADS)

    Patel, Digish K.; Ambavale, Sagar K.; Prajapati, Ketan; Sharma, A. C.

    2016-05-01

    We have theoretically investigated the static dielectric function of graphene double layer system (GDLS) at finite temperatures within the random phase approximation. GDLS has been suspended on a substrate and barrier layer of three different materials; h-BN, Al2O3 and HfO2 has been introduced between two graphene sheets of GDLS. We have reported dependence of the overall dielectric function of GDLS on interlayer distance and the effect of the dielectric environment at finite temperatures. Results show close relation between changing environment and behavior of dielectric constant of GDLS.

  16. Design and Finite Temperature Aspects of Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Blakie, Peter

    2003-05-01

    The control and manipulation of Bose-Einstein condensates with optical lattices is a major current interest in cold atom research, and is an important component in proposals for quantum computing with neutral atoms. A condensate loaded into an optical lattice can be described by a Bose-Hubbard Hamiltonian and presents a unique opportunity for investigating aspects of many-body physics in a controlled manner, as typified by a recent experimental investigation where the quantum phase transition of atoms from a superfluid to Mott-insulating state was observed [1]. In this talk we consider the interference of three co-planar equal frequency light fields, which are far detuned from atomic resonance. Atoms within the region of the light field overlap will experience a periodic light shift potential that forms a two-dimensional optical lattice. We demonstrate the range of possible geometries for this type of lattice, obtainable by varying the propagation directions of the light fields. From band structure calculations we show how the tunneling rates can be manipulated to control the effective number of nearest neighbors. We discuss possible applications of this work to cold atom research. In the second part of this talk we consider recent experiments done in collaboration with Morsch et al. [2] investigating the non-adiabatic loading of a condensate into an optical lattice. We discuss the dephasing mechanisms and preliminary results in developing a model for the long time dynamically behavior. [1] M. Greiner, O. Mandel, T.Esslinger, T.W. Hansch and I. Bloch, Nature 415, 2002. [2] O. Morsch, J.H. Müller, D. Ciampini, M. Cristiani, P.B. Blakie, C.J. Williams, P.S. Julienne and E. Arimondo. Cond-mat/0208162 (to appear in Phys. Rev. A)

  17. Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields

    NASA Astrophysics Data System (ADS)

    Milchev, Andrey; Müller, M.; Binder, K.; Landau, D. P.

    2003-09-01

    Theoretical predictions by Parry et al. for wetting phenomena in a wedge geometry are tested by Monte Carlo simulations. Simple cubic L×L×Ly Ising lattices with nearest neighbor ferromagnetic exchange and four free L×Ly surfaces, at which antisymmetric surface fields ±Hs act, are studied for a wide range of linear dimensions (4⩽L⩽320, 30⩽Ly⩽1000), in an attempt to clarify finite size effects on the wedge filling transition in this “double-wedge” geometry. Interpreting the Ising model as a lattice gas, the problem is equivalent to a liquid-gas transition in a pore with quadratic cross section, where two walls favor the liquid and the other two walls favor the gas. For temperatures T below the bulk critical temperature Tc this boundary condition (where periodic boundary conditions are used in the y direction along the wedges) leads to the formation of two domains with oppositely oriented magnetization and separated by an interface. For L,Ly→∞ and T larger than the filling transition temperature Tf(Hs), this interface runs from the one wedge where the surface planes with a different sign of the surface field meet (on average) straight to the opposite wedge, so that the average magnetization of the system is zero. For Tfield -Hs meet (then the total magnetization m of the system is positive) or to the opposite wedge (then m<0). The distance l0 of the interface midpoint from the wedges is studied as T→Tf(Hs) from below, as is the corresponding behavior of the magnetization and its moments. We consider the variation of l0 for T>Tf(Hs) as a function of a bulk field and find that the associated exponents agree with theoretical predictions. The correlation length ξy in the y direction along the wedges is also studied, and we find no transition for finite L and Ly→∞. For L→∞ the prediction l0∝(Hsc-Hs)-1/4 is verified, where Hsc(T) is the inverse function

  18. Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields.

    PubMed

    Milchev, Andrey; Müller, M; Binder, K; Landau, D P

    2003-09-01

    Theoretical predictions by Parry et al. for wetting phenomena in a wedge geometry are tested by Monte Carlo simulations. Simple cubic LxLxL(y) Ising lattices with nearest neighbor ferromagnetic exchange and four free LxL(y) surfaces, at which antisymmetric surface fields +/-H(s) act, are studied for a wide range of linear dimensions (4finite size effects on the wedge filling transition in this "double-wedge" geometry. Interpreting the Ising model as a lattice gas, the problem is equivalent to a liquid-gas transition in a pore with quadratic cross section, where two walls favor the liquid and the other two walls favor the gas. For temperatures T below the bulk critical temperature T(c) this boundary condition (where periodic boundary conditions are used in the y direction along the wedges) leads to the formation of two domains with oppositely oriented magnetization and separated by an interface. For L,L(y)--> infinity and T larger than the filling transition temperature T(f)(H(s)), this interface runs from the one wedge where the surface planes with a different sign of the surface field meet (on average) straight to the opposite wedge, so that the average magnetization of the system is zero. For Tfield -H(s) meet (then the total magnetization m of the system is positive) or to the opposite wedge (then m<0). The distance l(0) of the interface midpoint from the wedges is studied as T-->T(f)(H(s)) from below, as is the corresponding behavior of the magnetization and its moments. We consider the variation of l(0) for T>T(f)(H(s)) as a function of a bulk field and find that the associated exponents agree with theoretical predictions. The correlation length xi(y) in the y direction along the wedges is also studied, and we find no transition for finite L and L(y)--> infinity. For L--> infinity the prediction l(0) proportional

  19. A Riemann-Hilbert formulation for the finite temperature Hubbard model

    NASA Astrophysics Data System (ADS)

    Cavaglià, Andrea; Cornagliotto, Martina; Mattelliano, Massimo; Tateo, Roberto

    2015-06-01

    Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.

  20. Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature

    SciTech Connect

    Kestner, J. P.; Das Sarma, S.

    2010-09-15

    The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/T{sub F}, exhibiting a maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system, the zero-sound mode may propagate at experimentally attainable temperatures.

  1. Finite element study of plate buckling induced by spatial temperature gradients

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Kolenski, James D.; Marino, Robert P.

    1993-01-01

    Finite element analyses of thermal buckling of thin metallic plates with prescribed spatial temperature distributions are described. Thermally induced compressive membrane stresses and transverse plate displacement imperfections initiate plates buckling. A finite element formulation based on von Karman plate theory is presented. The resulting nonlinear equations are solved for incremental temperature increases by Newton-Raphson iteration. The computational method is used to investigate the buckling response of rectangular plates with steady and unsteady spatially varying temperature distributions. The role of initial plate imperfections and temperature distributions on the nonlinear response of plate displacements and stresses is described. The relatively high levels of stress induced by spatial temperature gradients should be considered carefully in the postbuckling design of panels for aerospace vehicles subjected to combined mechanical and thermal loads.

  2. Finite element study of plate buckling induced by spatial temperature gradients

    SciTech Connect

    Thornton, E.A.; Kolenski, J.D.; Marino, R.P.

    1993-01-01

    Finite element analyses of thermal buckling of thin metallic plates with prescribed spatial temperature distributions are described. Thermally induced compressive membrane stresses and transverse plate displacement imperfections initiate plates buckling. A finite element formulation based on von Karman plate theory is presented. The resulting nonlinear equations are solved for incremental temperature increases by Newton-Raphson iteration. The computational method is used to investigate the buckling response of rectangular plates with steady and unsteady spatially varying temperature distributions. The role of initial plate imperfections and temperature distributions on the nonlinear response of plate displacements and stresses is described. The relatively high levels of stress induced by spatial temperature gradients should be considered carefully in the postbuckling design of panels for aerospace vehicles subjected to combined mechanical and thermal loads. 31 refs.

  3. Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics Driven by Soft Vibration Modes

    SciTech Connect

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina; Yong-Hyun, Kim

    2013-01-01

    It is widely accepted that room-temperature hydrogen storage on nanostructured or porous materials requires enhanced dihydrogen adsorption. In this work we reveal that room-temperature hydrogen storage is possible not only by the enhanced adsorption, but also by making use of the vibrational free energy from soft vibration modes. These modes exist for example in the case of metallo-porphyrin-incorporated graphenes (M-PIGs) with out-of-plane ( buckled ) metal centers. There, the in-plane potential surfaces are flat because of multiple-orbital-coupling between hydrogen molecules and the buckled-metal centers. This study investigates the finite-temperature adsorption/desorption thermodynamics of hydrogen molecules adsorbed on M-PIGs by employing first-principles total energy and vibrational spectrum calculations. Our results suggest that the current design strategy for room-temperature hydrogen storage materials should be modified by explicitly taking finite-temperature vibration thermodynamics into account.

  4. Asymmetry of the dimension-two gluon condensate: The finite temperature case

    SciTech Connect

    Vercauteren, David; Verschelde, Henri

    2010-10-15

    In this paper, we continue the work begun in a previous article. We compute, in the formalism of local composite operators, the value of the asymmetry in the dimension two condensate for finite temperatures. We find a positive value for the asymmetry, which disappears when the temperature is increased. We also compute the value of the full dimension two condensate for higher temperatures, and we find that it decreases in absolute value, finally disappearing for sufficiently high temperature. We also comment on the temperature dependence of the electric and magnetic components of the condensate separately. We compare our results with the corresponding lattice date found by Chernodub and Ilgenfritz.

  5. Finite temperature quantum embedding theories for correlated systems

    NASA Astrophysics Data System (ADS)

    Zgid, Dominika; Gull, Emanuel

    2017-02-01

    The cost of the exact solution of the many-electron problem is believed to be exponential in the number of degrees of freedom, necessitating approximations that are controlled and accurate but numerically tractable. In this paper, we show that one of these approximations, the self-energy embedding theory (SEET), is derivable from a universal functional and therefore implicitly satisfies conservation laws and thermodynamic consistency. We also show how other approximations, such as the dynamical mean field theory and its combinations with many-body perturbation theory, can be understood as a special case of SEET and discuss how the additional freedom present in SEET can be used to obtain systematic convergence of results.

  6. Occupation number and fluctuations in the finite-temperature Bose-Hubbard model

    SciTech Connect

    Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.

    2004-07-01

    We study the occupation numbers and number fluctuations of ultracold atoms in deep optical lattices for finite-temperatures within the Bose-Hubbard model. Simple analytical expressions for the mean occupation number and number fluctuations are obtained in the weak-hopping regime using an interpolation between results from different perturbation approaches in the Mott-insulator and superfluid phases. With this approach the magnitude of number fluctuations under a wide range of experimental conditions can be estimated and the properties of the finite-temperature phase diagram can be studied. These analytical results are compared to exact one-dimensional numerical calculations using a finite temperature variant of the density-matrix renormalization group (DMRG) method and found to have a high degree of accuracy. We find very good agreement, also in the crossover 'thermal' region. We also analyze the influence of finite temperature on the behavior of the system in the vicinity of the zero-temperature phase transition, in one, two, and three dimensions.

  7. Dissipative soliton protocols in semiconductor microcavities at finite temperatures

    NASA Astrophysics Data System (ADS)

    Karpov, D. V.; Savenko, I. G.; Flayac, H.; Rosanov, N. N.

    2015-08-01

    We consider exciton polaritons in a semiconductor microcavity with a saturable absorber in the growth direction of the heterostructure. This feature promotes additional nonlinear losses of the system with the emergence of bistability of the condensate particles number on the nonresonant (electrical or optical) excitation intensity. Furthermore, we demonstrate a new type of bright spatial dissipative exciton-polariton soliton which emerges in the equilibrium between the regions with different particle density. We develop protocols of soliton creation and destruction. The switch to a solitonlike behavior occurs if the cavity is exposed by a short strong laser pulse with certain energy and duration. We estimate the characteristic times of soliton switch on and off and the time of return to the initial cycle. In particular, we demonstrate surprising narrowing of the spatial profile of the soliton and its vanishing at certain temperature due to interaction of the system with the thermal bath of acoustic phonons. We also address the role of polariton-polariton interaction (Kerr-like nonlinearity) on formation of dissipative solitons and show that the soliton may exist both in its presence and its absence.

  8. U(1) slave-particle study of the finite-temperature doped Hubbard model in one and two dimensions

    SciTech Connect

    Ribeiro, P.; Sacramento, P.D.; Araujo, M.A.N.

    2011-05-15

    Research Highlights: > Mean-field U(1) slave-particle description of Hubbard model. > Fractionalized phases at finite-temperature in Hubbard model. > Spectral function of 1d and 2d Hubbard model. - Abstract: One-dimensional systems have unusual properties such as fractionalization of degrees of freedom. The occurrence of similar phenomena in higher dimensional systems has been considered in the literature for the description of quantum spin liquids and some non-fermi liquid phases. In this work we construct a mean field (MF) theory of the Hubbard model which is based on a representation of the electronic fields that explicitly introduces a separation of the charge and spin degrees of freedom (the so-called Zou-Anderson transformation) and study the finite-temperature phase diagram for the Hubbard chain and square lattice. The mean field variables are defined along the links of the underlying lattice. We obtain the spectral function and identify the regions of higher spectral weight with the fractionalized fermionic (spin) and bosonic (charge) excitations.

  9. Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation

    NASA Astrophysics Data System (ADS)

    Tanaka, Shigenori

    2016-12-01

    Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ =0 , the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant rs≤100 ), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ ≈1 ), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of rs and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable

  10. Multipole excitations in hot nuclei within the finite temperature quasiparticle random phase approximation framework

    NASA Astrophysics Data System (ADS)

    Yüksel, E.; Colò, G.; Khan, E.; Niu, Y. F.; Bozkurt, K.

    2017-08-01

    The effect of temperature on the evolution of the isovector dipole and isoscalar quadrupole excitations in 68Ni and 120Sn nuclei is studied within the fully self-consistent finite temperature quasiparticle random phase approximation framework, based on the Skyrme-type SLy5 energy density functional. The new low-energy excitations emerge due to the transitions from thermally occupied states to the discretized continuum at finite temperatures, whereas the isovector giant dipole resonance is not strongly impacted by the increase of temperature. The radiative dipole strength at low energies is also investigated for the 122Sn nucleus, becoming compatible with the available experimental data when the temperature is included. In addition, both the isoscalar giant quadrupole resonance and low-energy quadrupole states are sensitive to the temperature effect: while the centroid energies decrease in the case of the isoscalar giant quadrupole resonance, the collectivity of the first 2+ state is quenched and the opening of new excitation channels fragments the low-energy strength at finite temperatures.

  11. Electronic chemical response indexes at finite temperature in the canonical ensemble

    SciTech Connect

    Franco-Pérez, Marco E-mail: jlgm@xanum.uam.mx Gázquez, José L. E-mail: jlgm@xanum.uam.mx; Vela, Alberto E-mail: jlgm@xanum.uam.mx

    2015-07-14

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  12. Electronic chemical response indexes at finite temperature in the canonical ensemble.

    PubMed

    Franco-Pérez, Marco; Gázquez, José L; Vela, Alberto

    2015-07-14

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  13. Finite Temperature Properties of Mixed Diamond Chain with Spins 1 and 1/2

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi; Suzuki, Hidenori

    2009-08-01

    We formulate statistical mechanics for a mixed diamond chain with spins 1 and 1/2. Owing to a series of conservation laws, any eigenstate of this system is decomposed into eigenstates of finite odd-length spin-1 chains. The ground state undergoes five quantum phase transitions with varying λ, a parameter that controls frustration. We evaluated the residual entropy and Curie constant which characterize each phase and phase boundary at low temperatures. We further find various characteristic finite-temperature properties such as the nonmonotonic temperature dependence of magnetic susceptibility, the multipeak structure in the λ-dependence of entropy, the plateau-like temperature dependence of entropy and the multipeak structure of specific heat.

  14. Finite-temperature behavior of an interspecies fermionic superfluid with population imbalance

    SciTech Connect

    Guo Hao; Chien, C.-C.; He Yan; Levin, K.; Chen Qijin

    2009-07-15

    We determine the superfluid transition temperature T{sub c} and related finite temperature phase diagrams for the entire BCS-Bose-Einstein-condensation crossover in a three-dimensional homogeneous mixture of {sup 6}Li and {sup 40}K atoms with population imbalance. Our work is motivated by the recent observation of an interspecies Feshbach resonance. Pairing fluctuation effects, which significantly reduce T{sub c} from the onset temperature for pairing (T*), provide reasonable estimates of T{sub c} and indicate that the interspecies superfluid phase should be accessible in future experiments. Although a homogeneous polarized superfluid is not stable in the ground state near unitarity, our phase diagrams show that it stabilizes at finite temperature.

  15. Finite-temperature phase transitions in lattice QCD with Langevin simulation

    SciTech Connect

    Fukugita, M.; Ukawa, A.

    1988-09-15

    This article presents the result of Langevin simulation studies of finite-temperature behavior of QCD for a various number of flavor species. Most of the simulations employ an 8/sup 3/ x 4 lattice. A full description is made of the data and the identification problem of a first-order phase transition. The systematic bias problem is also investigated.

  16. The finite temperature behaviour of lattice QCD with moderate to large quark masses

    SciTech Connect

    Sinclair, D.K.

    1988-01-01

    Simulations of lattice QCD with 4 flavours of staggered quarks were performed using the Hybrid algorithm on a 12/sup 3/ /times/ 4 lattice. For quark masses greater than or equal to.1 (lattice units) the finite temperature transition did not appear to be first order. 6 refs., 3 figs.

  17. Kaon condensation in the linear sigma model at finite density and temperature

    SciTech Connect

    Tran Huu Phat; Nguyen Van Long; Nguyen Tuan Anh; Le Viet Hoa

    2008-11-15

    Basing on the Cornwall-Jackiw-Tomboulis effective action approach we formulate a theoretical formalism for studying kaon condensation in the linear sigma model at finite density and temperature. We derive the renormalized effective potential in the Hartree-Fock approximation, which preserves the Goldstone theorem. This quantity is then used to consider physical properties of kaon matter.

  18. Meson properties in a nonlocal SU(3) chiral quark model at finite temperature

    SciTech Connect

    Contrera, G. A.; Gomez Dumm, D.; Scoccola, N. N.

    2010-11-12

    Finite temperature meson properties are studied in the context of a nonlocal SU(3) quark model which includes flavor mixing and the coupling of quarks to the Polyakov loop (PL). We analyze the behavior of scalar and pseudoscalar meson masses and mixing angles, as well as quark-meson couplings and pseudoscalar meson decay constants.

  19. Lattice models for granular-like velocity fields: finite-size effects

    NASA Astrophysics Data System (ADS)

    Plata, C. A.; Manacorda, A.; Lasanta, A.; Puglisi, A.; Prados, A.

    2016-09-01

    Long-range spatial correlations in the velocity and energy fields of a granular fluid are discussed in the framework of a 1d lattice model. The dynamics of the velocity field occurs through nearest-neighbour inelastic collisions that conserve momentum but dissipate energy. A set of equations for the fluctuating hydrodynamics of the velocity and energy mesoscopic fields give a first approximation for (i) the velocity structure factor and (ii) the finite-size correction to the Haff law, both in the homogeneous cooling regime. At a more refined level, we have derived the equations for the two-site velocity correlations and the total energy fluctuations. First, we seek a perturbative solution thereof, in powers of the inverse of system size. On the one hand, when scaled with the granular temperature, the velocity correlations tend to a stationary value in the long time limit. On the other hand, the scaled standard deviation of the total energy diverges, that is, the system shows multiscaling. Second, we find an exact solution for the velocity correlations in terms of the spectrum of eigenvalues of a certain matrix. The results of numerical simulations of the microscopic model confirm our theoretical results, including the above described multiscaling phenomenon.

  20. String effects and the distribution of the glue in static mesons at finite temperature

    SciTech Connect

    Bakry, A. S.; Leinweber, D. B.; Moran, P. J.; Williams, A. G.; Sternbeck, A.

    2010-11-01

    The distribution of the gluon action density in mesonic systems is investigated at finite temperature. The simulations are performed in quenched QCD for two temperatures below the deconfinement phase. Unlike the gluonic profiles displayed at T=0, the action-density isosurfaces display a prolate-spheroid-like shape. The curved width profile of the flux tube is found to be consistent with the prediction of the free bosonic string model at large distances.

  1. Low-temperature study of the magnetic properties of finite atomic chains

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. V.

    2016-05-01

    A simple method for the calculation of the spontaneous remagnetization time and magnetization curves of atomic finite-length ferromagnetic chains at a low temperature within the Heisenberg model has been proposed. The applicability limits of the method have been studied. It has been shown that the proposed method gives results being in good agreement with the kinetic Monte Carlo simulation results. Formulas obtained within our model can also be used to determine the lower bound for the Curie temperature.

  2. Vibrations of rectangular plates with moderately large initial deflections at elevated temperatures using finite element method

    NASA Technical Reports Server (NTRS)

    Gray, C. C.

    1990-01-01

    A finite-element formulation is developed for the free vibration of rectangular plates which are under the influence of moderately large stress-free initial deflections and large thermal deflections. The von Karman nonlinear strain-displacement relations are used to account for the thermal deflections. The plates are thin, isotropic, and Hookean in nature. The temperature imposed on the plate is assumed to be constant through the thickness of the plate. Uniform and sinusoidal temperature distributions are studied. The material properties of the plates are temperature-dependent due to the relatively high temperatures imposed on the plates.

  3. Temperature field in rubber vibration isolators

    NASA Astrophysics Data System (ADS)

    Abdulhadi, M. Issa

    1985-02-01

    The temperature field inside a vibrating rubber solid cylinder is investigated. The rubber cylinder, a specimen of a vibration isolator rubber (Neoprene GR), is subjected to a repeatedly cyclic compressive force by means of an electrodynamic shaker. In the experimental investigation the temperatures at 16 different locations inside the cylinder have been measured by means of copper-constantan thermocouples. After the estimation of the heat generated per unit volume per unit time with the help of the estimated damping and stiffness coefficients of rubber, one can attempt the solution of the heat conduction equation describing the temperature field inside the rubber specimen. The values of the temperature found from the analytical investigation compare fairly well with the experimental measurements.

  4. Pressure and Temperature Sensitive Paint Field System

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Faulcon, Nettie D.; Carmine, Michael T.; Burkett, Cecil G.; Pritchard, Daniel W.; Oglesby, Donald M.

    2004-01-01

    This report documents the Pressure and Temperature Sensitive Paint Field System that is used to provide global surface pressure and temperature measurements on models tested in Langley wind tunnels. The system was developed and is maintained by Global Surface Measurements Team personnel of the Data Acquisition and Information Management Branch in the Research Facilities Services Competency. Descriptions of the system hardware and software are presented and operational procedures are detailed.

  5. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    SciTech Connect

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L.; Banyai, Douglas; Savaikar, Madhusudan A.; Jaszczak, John A.; Yap, Yoke Khin

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (insitu STM-TEM). Ultimately, as suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.

  6. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors.

    PubMed

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L; Banyai, Douglas; Savaikar, Madhusudan A; Jaszczak, John A; Yap, Yoke Khin

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (in-situ STM-TEM). As suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.

  7. An algorithm to design finite field multipliers using a self-dual normal basis

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1987-01-01

    Finite field multiplication is central in the implementation of some error-correcting coders. Massey and Omura have presented a revolutionary design for multiplication in a finite field. In their design, a normal base is utilized to represent the elements of the field. The concept of using a self-dual normal basis to design the Massey-Omura finite field multiplier is presented. Presented first is an algorithm to locate a self-dual normal basis for GF(2 sup m) for odd m. Then a method to construct the product function for designing the Massey-Omura multiplier is developed. It is shown that the construction of the product function base on a self-dual basis is simpler than that based on an arbitrary normal base.

  8. Temperature Gradient Field Theory of Nucleation

    NASA Astrophysics Data System (ADS)

    Das, S.; Ain, W. Q.; Azhari, A.; Prasada Rao, A. K.

    2016-02-01

    According to the proposed theory, ceramic particles present in molten metal, lose heat at a slower rate than the metallic liquid during cooling. Such condition results in the formation of a spherical thermal gradient field (TGF) around each particle. Hence, the interstitials (low temperature) of such TGFs are the regions to reach the nucleation temperature first, owing to low energy barrier than the liquid-particle interface (higher temperature). Analytics also indicate that the nucleation rate is higher at the TGF interstitials, than at the liquid-particle interface. Such TGF network results in simultaneous nucleation throughout the system, resulting in grain refinement.

  9. Coherent tunneling of atoms from Bose-condensed gases at finite temperatures

    NASA Astrophysics Data System (ADS)

    Luxat, David L.; Griffin, Allan

    2002-04-01

    Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear-response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-Einstein condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett, and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u2 and v2 amplitudes.

  10. Performance Calculation of High Temperature Superconducting Hysteresis Motor Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konar, G.; Chakraborty, N.; Das, J.

    Hysteresis motors being capable of producing a steady torque at low speeds and providing good starting properties at loaded condition became popular among different fractional horse power electrical motors. High temperature superconducting materials being intrinsically hysteretic are suitable for this type of motor. In the present work, performance study of a 2-pole, 50 Hz HTS hysteresis motor with conventional stator and HTS rotor has been carried out numerically using finite element method. The simulation results confirm the ability of the segmented HTS rotor with glued circular sectors to trap the magnetic field as high as possible compared to the ferromagnetic rotor. Also the magnetization loops in the HTS hysteresis motor are obtained and the corresponding torque and AC losses are calculated. The motor torque thus obtained is linearly proportional to the current which is the common feature of any hysteresis motor. Calculations of torques, current densities etc are done using MATLAB program developed in-house and validated using COMSOL Multiphysics software. The simulation result shows reasonable agreement with the published results.

  11. Finite temperature performance of hard-soft composite nanomagnets and its dependence on geometry structure of composites

    NASA Astrophysics Data System (ADS)

    Belemuk, A. M.; Chui, S. T.

    2013-01-01

    We study with finite temperature Monte Carlo simulation under periodic boundary conditions remanence, coercivity, and energy product behavior of exchanged-coupled hard and soft alternating layers. We compare multilayer properties with that of a composite composed of cube inclusions of hard phase embedded into a soft matrix. The easy axis of the hard (SmCo5) and soft (FeCo) phases is parallel to the layers and the applied magnetic field. We find a significant increase of the energy product for the multilayer structure as compared with that of the cube structure. In the former case, the switching occurs as a result of a two-step demagnetization process, realizing the concept of exchange-spring behavior, when first the soft layers gradually rotate to the direction of applied field, and then the hard phase layers rotate. In the latter case, we find a significant lowering of the remanent magnetization with increasing soft magnet content than anticipated. This is due to the boundary mismatch of magnetization on the hard/soft interface. We investigate this mismatch as a function of the soft phase content and temperature. The boundary mismatch significantly affects the finite temperature energy product of composites.

  12. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Aquino, N.

    2008-01-01

    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…

  13. Review of finite fields: Applications to discrete Fourier, transforms and Reed-Solomon coding

    NASA Technical Reports Server (NTRS)

    Wong, J. S. L.; Truong, T. K.; Benjauthrit, B.; Mulhall, B. D. L.; Reed, I. S.

    1977-01-01

    An attempt is made to provide a step-by-step approach to the subject of finite fields. Rigorous proofs and highly theoretical materials are avoided. The simple concepts of groups, rings, and fields are discussed and developed more or less heuristically. Examples are used liberally to illustrate the meaning of definitions and theories. Applications include discrete Fourier transforms and Reed-Solomon coding.

  14. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Aquino, N.

    2008-01-01

    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…

  15. A software framework for solving bioelectrical field problems based on finite elements.

    PubMed

    Sachse, F B; Cole, M J; Stinstra, J G

    2006-01-01

    Computational modeling and simulation can provide important insights into the electrical and electrophysiological properties of cells, tissues, and organs. Commonly, the modeling is based on Maxwell's and Poisson's equations for electromagnetic and electric fields, respectively, and numerical techniques are applied for field calculation such as the finite element and finite differences methods. Focus of this work are finite element methods, which are based on an element-wise discretization of the spatial domain. These methods can be classified on the element's geometry, e.g. triangles, tetrahedrons and hexahedrons, and the underlying interpolation functions, e.g. polynomials of various order. Aim of this work is to describe finite element-based approaches and their application to extend the problem-solving environment SCIRun/BioPSE. Finite elements of various types were integrated and methods for interpolation and integration were implemented. General methods for creation of finite element system matrices and boundary conditions were incorporated. The extension provides flexible means for geometric modeling, physical simulation, and visualization with particular application in solving bioelectric field problems.

  16. B to D(D*)e{nu}{sub e} transitions at finite temperature in QCD

    SciTech Connect

    Azizi, K.; Er, N.

    2010-05-01

    In this article, we work out the properties of the B, D, and D* mesons as well as the B{yields}D(D*)e{nu}{sub e} decay properties at finite temperature QCD. The behavior of the masses, decay constants and widths of the B, D, and D* mesons in terms of the temperature is studied. The temperature dependency of the form factors responsible for such decays are also obtained. These temperature-dependent form factors are used to investigate the variation of the branching ratios with respect to the temperature. It is shown that the branching ratios do not change up to T/T{sub c}=0.3, however they start to diminish with increasing the temperature after this region and vanish at the critical or deconfinement temperature.

  17. A numerical study of the temperature field in a cooled radial turbine rotor

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1977-01-01

    The three dimensional temperature distribution in the cooled rotor of a radial inflow turbine is determined numerically using the finite element method. Through this approach, the complicated geometries of the hot rotor and coolant passage surfaces are handled easily, and the temperatures are determined without loss of accuracy at these convective boundaries. Different cooling techniques with given coolant to primary flow ratios are investigated, and the corresponding rotor temperature fields are presented for comparison.

  18. Impact of finite temperatures on the transport properties of Gd from first principles

    NASA Astrophysics Data System (ADS)

    Chadova, K.; Mankovsky, S.; Minár, J.; Ebert, H.

    2017-03-01

    Finite-temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems, besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming from the magnetic degrees of freedom must be taken into account. A first-principle scheme which treats all these scattering effects on equal footing was recently suggested within the framework of the multiple scattering formalism. Employing the alloy analogy model treated by means of the CPA, thermal lattice vibrations and spin fluctuations are effectively taken into account. In the present work the temperature dependence of the longitudinal resistivity and the anomalous Hall effect in the strongly correlated metal Gd is considered. The comparison with experiments demonstrates that the proposed numerical scheme does provide an adequate description of the electronic transport at finite temperatures.

  19. Finite-temperature pairing re-entrance in the drip-line nucleus 48Ni

    NASA Astrophysics Data System (ADS)

    Belabbas, Mohamed; Li, Jia Jie; Margueron, Jérôme

    2017-08-01

    Finite-temperature Hartree-Fock-Bogoliubov theory using Skyrme interactions and relativistic Hartree-Fock effective Lagrangians predicts 48Ni as being a possible candidate for the finite-temperature pairing re-entrance phenomenon. For this proton-drip-line nucleus, proton resonant states are expected to contribute substantially to pairing correlations and the two predicted critical temperatures are Tc 1˜0.08 -0.2 MeV and Tc 2˜0.7 -0.9 MeV. It is also shown that pairing re-entrance modifies the proton single-particle energies around the Fermi level, as well as occupation numbers and quasiparticle levels. The understanding of pairing re-entrance in 48Ni presently challenges our understanding of exotic matter under extreme conditions.

  20. Finite temperature expansion dynamics of Bose-Einstein condensates in ring traps

    NASA Astrophysics Data System (ADS)

    Roy, Arko; Angom, D.

    2017-08-01

    We explore the effects of finite temperature on the dynamics of Bose-Einstein condensates (BECs) after it is released from the confining potential. In addition, we examine the variation in the expansion dynamics of the BECs as the confining potential is transformed from a multiply to a simply connected geometry. To include the effects of finite temperatures we use the frozen thermal cloud approximation, and observe unique features of the condensate density distribution when released from the confining potential. We find that at T ≠ 0, during the initial stages of expansion, the multiply connected condensate has more pronounced interference rings compared to the case of zero temperature. Such difference in the dynamical evolution is also evident for simply connected condensates.

  1. Superhigh moduli and tension-induced phase transition of monolayer gamma-boron at finite temperatures

    PubMed Central

    Zhao, Junhua; Yang, Zhaoyao; Wei, Ning; Kou, Liangzhi

    2016-01-01

    Two dimensional (2D) gamma-boron (γ-B28) thin films have been firstly reported by the experiments of the chemical vapor deposition in the latest study. However, their mechanical properties are still not clear. Here we predict the superhigh moduli (785 ± 42 GPa at 300 K) and the tension-induced phase transition of monolayer γ-B28 along a zigzag direction for large deformations at finite temperatures using molecular dynamics (MD) simulations. The new phase can be kept stable after unloading process at these temperatures. The predicted mechanical properties are reasonable when compared with our results from density functional theory. This study provides physical insights into the origins of the new phase transition of monolayer γ-B28 at finite temperatures. PMID:26979283

  2. Effects of interactions on dynamic correlations of hard-core bosons at finite temperatures

    NASA Astrophysics Data System (ADS)

    Fauseweh, Benedikt; Uhrig, Götz S.

    2017-09-01

    We investigate how dynamic correlations of hard-core bosonic excitation at finite temperature are affected by additional interactions besides the hard-core repulsion which prevents them from occupying the same site. We focus especially on dimerized spin systems, where these additional interactions between the elementary excitations, triplons, lead to the formation of bound states, relevant for the correct description of scattering processes. In order to include these effects quantitatively, we extend the previously developed Brückner approach to include also nearest-neighbor (NN) and next-nearest neighbor (NNN) interactions correctly in a low-temperature expansion. This leads to the extension of the scalar Bethe-Salpeter equation to a matrix-valued equation. As an example, we consider the Heisenberg spin ladder to illustrate the significance of the additional interactions on the spectral functions at finite temperature, which are proportional to inelastic neutron scattering rates.

  3. Finite-temperature twisted-untwisted transition of the kagome lattice

    NASA Astrophysics Data System (ADS)

    Bedi, Deshpreet; Rocklin, D. Zeb; Mao, Xiaoming

    Mechanical instability governs many fascinating phenomena in nature, including jamming, glass transitions, and structural phase transitions. Although mechanical instability in athermal systems is well understood, how thermal fluctuations modify such transitions remains largely unexplored. Recent studies reveal that, due to the large number of floppy modes that emerge at mechanical instability, intriguing new phenomena occur, such as fluctuation-driven first-order transitions and order-by-disorder. In this talk, we present an analytic study of the finite-temperature rigidity transition for the kagome lattice. Our model exhibits a zero-temperature continuous twisted-untwisted transition as the sign of the next-nearest-neighbor spring constant changes. At finite temperature, we show that the divergent contribution of floppy modes to the vibrational entropy renormalizes this spring constant, resulting in a first-order transition. We also propose an experimental manifestation of this transition in the system of self-assembling triblock Janus particles.

  4. Finite temperature effect on mechanical properties of graphene sheets with various grain boundaries

    NASA Astrophysics Data System (ADS)

    Yong, Ge; Hong-Xiang, Sun; Yi-Jun, Guan; Gan-He, Zeng

    2016-06-01

    The mechanical properties of graphene sheets with various grain boundaries are studied by molecular dynamics method at finite temperatures. The finite temperature reduces the ultimate strengths of the graphenes with different types of grain boundaries. More interestingly, at high temperatures, the ultimate strengths of the graphene with the zigzag-orientation grain boundaries at low tilt angles exhibit different behaviors from those at lower temperatures, which is determined by inner initial stress in grain boundaries. The results indicate that the finite temperature, especially the high one, has a significant effect on the ultimate strength of graphene with grain boundaries, which gives a more in-depth understanding of their mechanical properties and could be useful for potential graphene applications. Project supported by the Nation Natural Science Foundation of China (Grant Nos. 11347219 and 11404147), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140519), the Training Project of Young Backbone Teacher of Jiangsu University, the Advanced Talents of Jiangsu University, China (Grant No. 11JDG118), the Practice Innovation Training Program Projects for Industrial Center of Jiangsu University, China, and the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201308).

  5. Factors Influencing Temperature Fields during Combustion Reactions

    DTIC Science & Technology

    2014-05-20

    Block 13 ARO Report Number Block 13: Supplementary Note © 2014 . Published in Propellants, Explosives, Pyrotechnics , Vol. Ed. 0 39, (3) (2014), (, (3...DOl : 10.1 002/prep .201300154 Propellants, Explosives, Pyrotechnics Factors Influencing Temperature Fields during Combustion Reactions Keerti...energetic formulations, in- cluding pyrotechnics , explosives, and propellants. One ap- proach was to add particulate media to conventional high explosives

  6. A variational approach to coarse-graining of equilibrium and non-equilibrium atomistic description at finite temperature

    SciTech Connect

    Kulkarni, Y; Knap, J; Ortiz, M

    2007-04-26

    The aim of this paper is the development of equilibrium and non-equilibrium extensions of the quasicontinuum (QC) method. We first use variational mean-field theory and the maximum-entropy formalism for deriving approximate probability distribution and partition functions for the system. The resulting probability distribution depends locally on atomic temperatures defined for every atom and the corresponding thermodynamic potentials are explicit and local in nature. The method requires an interatomic potential as the sole empirical input. Numerical validation is performed by simulating thermal equilibrium properties of selected materials using the Lennard-Jones pair potential and the EAM potential and comparing with molecular dynamics results as well as experimental data. The max-ent variational approach is then taken as a basis for developing a three-dimensional non-equilibrium finite temperature extension of the quasicontinuum method. This extension is accomplished by coupling the local temperature-dependent free energy furnished by the max-ent approximation scheme to the heat equation in a joint thermo-mechanical variational setting. Results for finite-temperature nanoindentation tests demonstrate the ability of the method to capture non-equilibrium transport properties and differentiate between slow and fast indentation.

  7. On finite element implementation and computational techniques for constitutive modeling of high temperature composites

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.

    1989-01-01

    The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.

  8. Fermionic spectral functions in backreacting p-wave superconductors at finite temperature

    NASA Astrophysics Data System (ADS)

    Giordano, G. L.; Grandi, N. E.; Lugo, A. R.

    2017-04-01

    We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CF T correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the "peak-dip-hump" structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.

  9. Meson spectral functions at finite temperature and isospin density with the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Wang, Ziyue; Zhuang, Pengfei

    2017-07-01

    The pion superfluid and the corresponding Goldstone and soft modes are investigated in a two-flavor quark-meson model with a functional renormalization group. By solving the flow equations for the effective potential and the meson two-point functions at finite temperature and isospin density, the critical temperature for the superfluid increases sizeably in comparison with solving the flow equation for the potential only. The spectral function for the soft mode shows clearly a transition from meson gas to quark gas with increasing temperature and a crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer pairing of quarks with increasing isospin density.

  10. An improved classical mapping method for homogeneous electron gases at finite temperature

    SciTech Connect

    Liu, Yu; Wu, Jianzhong

    2014-08-14

    We introduce a modified classical mapping method to predict the exchange-correlation free energy and the structure of homogeneous electron gases (HEG) at finite temperature. With the classical map temperature parameterized on the basis of the quantum Monte Carlo simulation data for the correlation energy and exact results at high and low temperature limits, the new theoretical procedure greatly improves the classical mapping method for correlating the energetic properties HEG over a broad range of thermodynamic conditions. Improvement can also be identified in predicting the long-range components of the spin-averaged pair correlation functions.

  11. Fast Digital Correlations and Transforms Using Finite Field Techniques

    DTIC Science & Technology

    1979-12-01

    Signal Processing, Vol. ASSP-26, No. 6, December 1978. 14. I. S. Reed and T. K. Truong, "Fast Mersenne - Prime Transforms for Digital Filtering," Proceeding...Theorem for Computing Primitive Elements in the Field of Complex Integers Mersenne Prime ," (to be published) IEEE Trans. Acoustics, Speech, and Signal...Letters, Vol. 14, No. 15, 20th July, 1978. 20. I. S. Reed, T. K. Truong and R. L. Miller, "Correction to Fast Mersenne Prime Transforms for Digital

  12. Towards the Finite Temperature Gluon Propagator in Landau Gauge Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Maas, A.

    2003-12-01

    Yang-Mills theories undergo a deconfining phase transition at a critical temperature. In lattice calculations the temporal Wilson loop and. Z3 order parameter show above this temperature a behavior typical of deconfinement. A quantity of interest in the study of this transition is the gluon propagator and its evolution with temperature. This contribution describes the current status of an investigation of the finite temperature gluon propagator in Landau gauge. It analyzes the high temperature case. The resulting equations are compared to the corresponding ones of three-dimensional Yang-Mills theory. Under certain assumptions it is found that a kind of spatial "confinement" is still present, even at very high temperatures.

  13. Initial and apparent temperatures of finite nuclear systems - a quantum statistical thermodynamics study.

    NASA Astrophysics Data System (ADS)

    Majka; Staszel, P.; Natowitz, J. B.; Cibor, J.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Wada, R.; Zhao, Y.

    1996-10-01

    Quantum statistical thermodynamics has been used to calculate the number of available states and their occupation for fermions and bosons at temperature, T_in, of finite nuclear sytems. An apparent temperature of these systems, T_app, has been calculated from double yield ratios of two isotope pairs. The importance of employing the quantum statistics when high densities and/or low temperatures are involved is shown. However, at high temperatures and low densities, the system behaves as a Maxwell-Boltzmann gas. Sequental decays of fragments from excited states influence the double yield ratio observable, causing problems with the temperature extraction. The model has been applied to study the high temperature branch of the "caloric curve".

  14. Finite Element Analysis of Cross Rolling on AISI 304 Stainless Steel: Prediction of Stress and Strain Fields

    NASA Astrophysics Data System (ADS)

    Rout, Matruprasad; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Studies on the effect of strain path during rolling has been carried out for a long time, but the same has not been done using Finite Element Analysis (FEA). Change in strain path affects the state variables in the rolled plate like stress, strain, temperature etc. In the current work, Finite Element Analysis for cross rolling of AISI 304 austenitic stainless steel has been carried out by rotating the plate by 90° in between the passes. To analyze stress and strain fields in the material for cross rolling, a full 3D model of work-roll and plate has been developed using rigid-viscoplastic finite element method. The stress and strain fields, considering von-Mises yield criteria, are calculated by using updated Lagrangian method. In addition to these, the model also calculates the normal pressure and strain rate distribution in the plate during cross rolling. The nature of the variations of stress and strain fields in the plate, predicted by the model, is in good agreement with the previously published works for unidirectional rolling.

  15. Magnetospheric Whistler Mode Ray Tracing with the Inclusion of Finite Electron and Ion Temperature

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.

    2015-12-01

    Ray tracing is an important technique for the study of whistler mode wave propagation in the Earth's magnetosphere. In numerical ray tracing the trajectory of a wave packet is calculated at each point in space by solving the Haselgrove equations, assuming a smooth, loss-less medium with no mode coupling. Previous work on ray tracing has assumed a cold plasma environment with negligible electron and ion temperatures. In this work we present magnetospheric whistler mode wave ray tracing results with the inclusion of finite ion and electron temperature. The inclusion of finite temperature effects makes the fourth order dispersion relation become sixth order. We compare our results with the work done by previous researchers for cold plasma environments, using two near earth space models (NGO and GCPM). Inclusion of finite temperature closes the otherwise open refractive index surface near the lower hybrid resonance frequency and affects the magnetospheric reflection of whistler waves. We also asses the main changes in the ray trajectory and implications for cyclotron resonance wave particle interactions including energetic particle precipitation.

  16. Aspects of finite field-dependent symmetry in SU(2) Cho-Faddeev-Niemi decomposition

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2013-11-01

    In this Letter we consider SU(2) Yang-Mills theory analyzed in Cho-Faddeev-Niemi variables which remains invariant under local gauge transformations. The BRST symmetries of this theory are generalized by making the infinitesimal parameter finite and field-dependent. Further, we show that under appropriate choices of finite and field-dependent parameter, the gauge-fixing and ghost terms corresponding to Landau as well as maximal Abelian gauge for such Cho-Faddeev-Niemi decomposed theory appear naturally within functional integral through Jacobian calculation.

  17. Nucleon spectral function at finite temperature and the onset of superfluidity in nuclear matter

    SciTech Connect

    Alm, T.; Roepke, G.; Schnell, A.; Kwong, N.H.; Koehler, H.S.

    1996-05-01

    Nucleon self-energies and spectral functions are calculated at the saturation density of symmetric nuclear matter at finite temperatures. In particular, the behavior of these quantities at temperatures above and close to the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the singularity in the thermodynamic {ital T} matrix at the critical temperature for superfluidity (Thouless criterion) reflects in the self-energy and correspondingly in the spectral function. The real part of the on-shell self-energy (optical potential) shows an anomalous behavior for momenta near the Fermi momentum and temperatures close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the self-energy derived from the {ital K} matrix of Brueckner theory is also calculated. It is found that there is no pairing singularity in the imaginary part of the self-energy in this case, which is due to the neglect of hole-hole scattering in the {ital K} matrix. From the self-energy the spectral function and the occupation numbers for finite temperatures are calculated. {copyright} {ital 1996 The American Physical Society.}

  18. Statistical physics of elastoplastic steady states in amorphous solids: finite temperatures and strain rates.

    PubMed

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar; Zylberg, Jacques

    2010-09-01

    The effect of finite temperature T and finite strain rate γ on the statistical physics of plastic deformations in amorphous solids made of N particles is investigated. We recognize three regimes of temperature where the statistics are qualitatively different. In the first regime the temperature is very low, Ttemperature and increasing strain rate, since the plastic events are still dominated by the mechanical instabilities (seen as an eigenvalue of the Hessian matrix going to zero), and the effect of temperature is only to facilitate the transition. A third regime occurs above the second crossover temperature T(max)(γ) where stress fluctuations become dominated by thermal noise. Throughout the paper we demonstrate that scaling concepts are highly relevant for the problem at hand, and finally we present a scaling theory that is able to collapse the data for all the values of temperatures and strain rates, providing us with a high degree of predictability.

  19. Temperature Distribution in Two-Dimensional Electron Gases under a Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Endo, Akira; Fujita, Kazuhiro; Hasegawa, Yasuhiro; Hatano, Naomichi; Nakamura, Hiroaki; Shirasaki, Ryōen; Yonemitsu, Kenji

    2011-05-01

    Two-dimensional electron gases having an electrochemical potential gradient under a magnetic field are numerically examined using the finite-difference method. The temperature, voltage, electric current, and heat flux are calculated from transport equations describing thermoelectric and thermomagnetic effects, namely the Hall, Nernst, Ettingshausen, and Righi-Leduc effects. The results show that a magnetic field distorts equipotential lines and generates an uneven temperature distribution. In particular, a part of the system is found to become colder than the temperature of the heat baths. The cooling effect under a strong magnetic field is due primarily to the Ettingshausen and Hall effects.

  20. Finite element analysis of the TPX toroidal field coil system

    SciTech Connect

    Myatt, R.L.

    1994-07-01

    A structural analysis of the Tokamak Physics Experiment (TPX) toroidal field (TF) coil system is presented. The large-scale structural behavior of the superconducting 16-coil magnet is simulated with a 3-D, cyclically-symmetric, two-coil, ANSYS model. The computer model is used to determine the displacement and stress state of the smeared winding pack and support structure, and to perform various structural evaluations. Approximating the detailed stress in the winding pack constituents based on smeared stress results and analytically derived component stress multipliers is discussed. The effectiveness of friction between wedged TF cases to help restrain out-of-plane electromagnetic forces is also considered. A stress evaluation of the conductor, insulation and structure is presented based on the TPX structural design criteria.

  1. Finite element analysis of the TPX toroidal field coil system

    NASA Astrophysics Data System (ADS)

    Myatt, R. Leonard

    1994-07-01

    A structural analysis of the Tokamak Physics Experiment (TPX) toroidal field (TF) coil system is presented. The large-scale structural behavior of the superconducting 16-coil magnet is simulated with a 3-D, cyclically-symmetric, two-coil, ANSYS (1) model. The computer model is used to determine the displacement and stress state of the smeared winding pack and support structure, and to perform various structural evaluations. Approximating the detailed stresses in the winding pack constituents based on smeared stress results and analytically derived component stress multipliers is discussed. The effectiveness of friction between wedged TF cases to help restrain out-of-plane electromagnetic forces is also considered. A stress evaluation of the conductor, insulation and structure is presented based on the TPX structural design criteria.

  2. Analyses of the temperature field of traveling-wave rotary ultrasonic motors.

    PubMed

    Lu, Xiaolong; Hu, Junhui; Zhao, Chunsheng

    2011-12-01

    In this paper, the transient and steady-state temperature field of a traveling-wave rotary ultrasonic motor is analyzed by the finite element method, based on a theoretical model of power loss of this motor in rated operation. Using this model, the temperature field of this motor is calculated and the effects of the heat conductivity of friction material, motor size, ambient temperature, and pressure on the temperature field are estimated. The calculated temperature distribution and transient temperature change agree with the experimental results. The variation of heat conductivity of the friction material has little effect on the minimum temperature in the motor but this variation seriously affects the maximum temperature in the motor when the heat conductivity of the friction material is lower than 0.5 W/(m°C). Two indices are defined to express the non-uniformity of temperature field and how quickly the temperature field reaches its steady state for traveling-wave ultrasonic motors of different sizes. It is found that traveling-wave ultrasonic motors with different sizes have different nonuniformity of temperature field and take different amounts of time to reach thermal steady state. The maximum temperature rise is lower when the ambient temperature is higher; the maximum temperature increases as the vacuum degree increases and it is not affected by the vacuum degree when the vacuum degree is too high (<10(-3) Pa).

  3. Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor

    ERIC Educational Resources Information Center

    Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui

    2010-01-01

    A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…

  4. Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor

    ERIC Educational Resources Information Center

    Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui

    2010-01-01

    A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…

  5. Finite-temperature dynamics of vortices in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Gautam, S.; Roy, Arko; Mukerjee, Subroto

    2014-01-01

    We study the dynamics of a single vortex and a pair of vortices in quasi two-dimensional Bose-Einstein condensates at finite temperatures. To this end, we use the stochastic Gross-Pitaevskii equation, which is the Langevin equation for the Bose-Einstein condensate. For a pair of vortices, we study the dynamics of both the vortex-vortex and vortex-antivortex pairs, which are generated by rotating the trap and moving the Gaussian obstacle potential, respectively. Due to thermal fluctuations, the constituent vortices are not symmetrically generated with respect to each other at finite temperatures. This initial asymmetry coupled with the presence of random thermal fluctuations in the system can lead to different decay rates for the component vortices of the pair, especially in the case of two corotating vortices.

  6. Proposal for measuring the finite-temperature Drude weight of integrable systems

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Prosen, T.; Heidrich-Meisner, F.

    2017-02-01

    Integrable models such as the spin-1/2 Heisenberg chain, the Lieb-Liniger, or the one-dimensional Hubbard model are known to avoid thermalization, which was also demonstrated in several quantum-quench experiments. Another dramatic consequence of integrability is the zero-frequency anomaly in transport coefficients, which results in ballistic finite-temperature transport, despite the presence of strong interactions. While this aspect of nonergodic dynamics has been known for a long time, there has so far not been any unambiguous experimental realization thereof. We make a concrete proposal for the observation of ballistic transport via local quantum-quench experiments in fermionic quantum-gas microscopes. Such an experiment would also unveil the coexistence of ballistic and diffusive transport channels in one and the same system and provide a means of measuring finite-temperature Drude weights. The connection between local quenches and linear-response functions is established via time-dependent Einstein relations.

  7. Measurements of Finite Dust Temperature Effects in the Dispersion Relation of the Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Snipes, Erica; Williams, Jeremiah

    2009-04-01

    A dusty plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of these charged microparticles gives rise to new plasma wave modes, including the dust acoustic wave. Recent measurements [1, 2] of the dispersion relationship for the dust acoustic wave in a glow discharge have shown that finite temperature effects are observed at higher values of neutral pressure. Other work [3] has shown that these effects are not observed at lower values of neutral pressure. We present the results of ongoing work examining finite temperature effects in the dispersion relation as a function of neutral pressure. [4pt] [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [0pt] [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [0pt] [3] T. Trottenberg, D. Block, and A. Piel, Phys. Plasmas 13, 042105 (2006).

  8. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    SciTech Connect

    Christov, Ivan P.

    2016-08-15

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  9. Exact nonequilibrium dynamics of finite-temperature Tonks-Girardeau gases

    NASA Astrophysics Data System (ADS)

    Atas, Y. Y.; Gangardt, D. M.; Bouchoule, I.; Kheruntsyan, K. V.

    2017-04-01

    Describing finite-temperature nonequilibrium dynamics of interacting many-particle systems is a notoriously challenging problem in quantum many-body physics. Here we provide an exact solution to this problem for a system of strongly interacting bosons in one dimension in the Tonks-Girardeau regime of infinitely strong repulsive interactions. Using the Fredholm determinant approach and the Bose-Fermi mapping, we show how the problem can be reduced to a single-particle basis, wherein the finite-temperature effects enter the solution via an effective "dressing" of the single-particle wave functions by the Fermi-Dirac occupation factors. We demonstrate the utility of our approach and its computational efficiency in two nontrivial out-of-equilibrium scenarios: collective breathing-mode oscillations in a harmonic trap and collisional dynamics in the Newton's cradle setting involving real-time evolution in a periodic Bragg potential.

  10. Finite temperature dynamics of spin-1/2 chains with symmetry breaking interactions

    NASA Astrophysics Data System (ADS)

    Manmana, Salvatore R.; Tiegel, Alexander C.; Pruschke, Thomas; Honecker, Andreas

    I will discuss recent developments for flexible matrix product state (MPS) approaches to calculate finite-temperature spectral functions of low-dimensional strongly correlated quantum systems. The main focus will be on a Liouvillian formulation. The resulting algorithm does not specifically depend on the MPS formulation, but is applicable for any wave function based approach which can provide a purification of the density matrix, opening the way for further developments of numerical methods. Based on MPS results for various spin chains, in particular systems with Dzyaloshinskii-Moriya interactions caused by spin-orbit coupling and dimerized chains, I will discuss how symmetry breaking interactions change the nature of the finite-temperature dynamic spin structure factor obtained in ESR and neutron scattering experiments. We acknowledge funding by the Helmholtz Virtual Institute ``New States of Matter and Their Excitations''.

  11. DNA-Cryptography-Based Obfuscated Systolic Finite Field Multiplier for Secure Cryptosystem in Smart Grid

    NASA Astrophysics Data System (ADS)

    Chen, Shaobo; Chen, Pingxiuqi; Shao, Qiliang; Basha Shaik, Nazeem; Xie, Jiafeng

    2017-05-01

    The elliptic curve cryptography (ECC) provides much stronger security per bits compared to the traditional cryptosystem, and hence it is an ideal role in secure communication in smart grid. On the other side, secure implementation of finite field multiplication over GF(2 m ) is considered as the bottle neck of ECC. In this paper, we present a novel obfuscation strategy for secure implementation of systolic field multiplier for ECC in smart grid. First, for the first time, we propose a novel obfuscation technique to derive a novel obfuscated systolic finite field multiplier for ECC implementation. Then, we employ the DNA cryptography coding strategy to obfuscate the field multiplier further. Finally, we obtain the area-time-power complexity of the proposed field multiplier to confirm the efficiency of the proposed design. The proposed design is highly obfuscated with low overhead, suitable for secure cryptosystem in smart grid.

  12. Elementary excitations for the one-dimensional Hubbard model at finite temperatures

    NASA Astrophysics Data System (ADS)

    Tomiyama, A.; Suga, S.; Okiji, A.

    1997-07-01

    The elementary excitations for the one-dimensional Hubbard model at finite temperatures are studied with the use of the Bethe ansatz solution. The formulation is based on the method of Yang and Yang, which was developed for the one-dimensional boson systems with the 0953-8984/9/27/014/img1-function type interaction. The dispersion relations and the excitation spectrums are obtained numerically for the charge and the spin degrees of freedom.

  13. The Quantum Hall Effect in Finite Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sondhi, Shivaji Lal

    In the theory of the Quantum Hall Effect it is often technically and conceptually convenient to ignore terms in the Hamiltonian that scatter electrons between different Landau levels. Physically, this is equivalent to assuming the presence of an infinite magnetic field. This dissertation consists of three studies which move beyond this approximation. The first study considers the effects of including Landau level mixing on the structure of the quasiparticles and on the ground state correlation functions. By means of perturbation theory in the interactions and by using the Landau-Ginzburg theory of the Hall Effect it is shown that for Coulomb (1/r) interactions the asymptotic long distance behavior of the charge and current profiles of the quasiparticles and of the correlation functions becomes algebraic when Landau level mixing is included and is therefore greatly altered from the exponential behavior in the infinite field limit. Among the consequences is that the quasiparticle charge in experimental geometries is not quantized as precisely as the Hall conductance. The long range of the quasiparticle current distribution makes the angular momentum of an isolated quasiparticle ill-defined and thus appears to rule out a spin-statistics connection in the Hall Effect. The second study is concerned with the Quantum Hall Effect at odd integer filling factors, and at nu = 1/3 and 1/5, in a parameter space characterized by an arbitrary ratio of the Zeeman gap to the typical interaction energy. It is shown that the system is incompressible, even when the Zeeman gap vanishes. However the quasiparticles are very different in different regimes. When the Zeeman gap is large they are microscopic but in the limit of a vanishing Zeeman gap they are Skyrmions--spatially unbounded distortions of the spin density. Exact asymptotic results for the size, spin and energy of these excitations at small Zeeman energies are presented. The last study examines the problem of rigorously

  14. Isolating Majorana fermions with finite Kitaev nanowires and temperature: Universality of the zero-bias conductance

    NASA Astrophysics Data System (ADS)

    Campo, V. L.; Ricco, L. S.; Seridonio, A. C.

    2017-07-01

    The zero-bias peak (ZBP) is understood as the definite signature of a Majorana bound state (MBS) when attached to a semi-infinite Kitaev nanowire (KNW) nearby zero temperature. However, such characteristics concerning the realization of the KNW constitute a profound experimental challenge. We explore theoretically a QD connected to a topological KNW of finite size at nonzero temperatures and show that overlapped MBSs of the wire edges can become effectively decoupled from each other and the characteristic ZBP can be fully recovered if one tunes the system into the leaked Majorana fermion fixed point. At very low temperatures, the MBSs become strongly coupled. We derive universal features of the conductance as a function of the temperature and the relevant crossover temperatures. Our findings offer additional guides to identify signatures of MBSs in solid state setups.

  15. Electrosurgical vessel sealing tissue temperature: experimental measurement and finite element modeling.

    PubMed

    Chen, Roland K; Chastagner, Matthew W; Dodde, Robert E; Shih, Albert J

    2013-02-01

    The temporal and spatial tissue temperature profile in electrosurgical vessel sealing was experimentally measured and modeled using finite element modeling (FEM). Vessel sealing procedures are often performed near the neurovascular bundle and may cause collateral neural thermal damage. Therefore, the heat generated during electrosurgical vessel sealing is of concern among surgeons. Tissue temperature in an in vivo porcine femoral artery sealed using a bipolar electrosurgical device was studied. Three FEM techniques were incorporated to model the tissue evaporation, water loss, and fusion by manipulating the specific heat, electrical conductivity, and electrical contact resistance, respectively. These three techniques enable the FEM to accurately predict the vessel sealing tissue temperature profile. The averaged discrepancy between the experimentally measured temperature and the FEM predicted temperature at three thermistor locations is less than 7%. The maximum error is 23.9%. Effects of the three FEM techniques are also quantified.

  16. Heavy quark potential at finite temperature from gauge-string duality

    SciTech Connect

    Boschi-Filho, Henrique; Braga, Nelson R. F.; Ferreira, Cristine N.

    2006-10-15

    A static string in an AdS Schwarzschild space is dual to a heavy quark-antiquark pair in a gauge theory at high temperature. This space is nonconfining in the sense that the energy is finite for infinite quark-antiquark separation. We introduce an infrared cutoff in this space and calculate the corresponding string energy. We find a deconfining phase transition at a critical temperature T{sub C}. Above T{sub C}, the string tension vanishes representing the deconfined phase. Below T{sub C}, we find a linear confining behavior for large quark-antiquark separation. This simple phenomenological model leads to the appropriate zero temperature limit, corresponding to the Cornell potential and also describes a thermal deconfining phase transition. However, the temperature corrections to the string tension do not recover the expected results for low temperatures.

  17. Application of the Coupled Finite Element-Combined Field Integral Equation Technique (FEICFIE) to the Radiation Problem

    NASA Technical Reports Server (NTRS)

    Jamnejad, V.; Cwik, T.; Zuffada, C.

    1994-01-01

    A coupled finite element-combined field integral equation technique was originally developed for solving scattering problems involving inhomogeneous objects of arbitrary shape and large dimensions in wavelength.

  18. Predicting optimal finite field strengths for calculating the first and second hyperpolarizabilities using simple molecular descriptors

    NASA Astrophysics Data System (ADS)

    Mohammed, Ahmed A. K.; Limacher, Peter A.; Ayers, Paul W.

    2017-08-01

    The finite field method was used to calculate the static first and second hyperpolarizabilities (β and γ) for organic molecules. The dependence of β and γ on the applied electric field strength was investigated and used to determine the optimal field strength for each individual molecule. For γ, we designed a protocol that uses the maximum atomic distance within the molecule along the direction of the applied field to estimate optimal field strengths. However, β is nearly independent of the descriptors we considered, and largely depends on the composition (e.g., the presence of certain functional groups) of the molecule.

  19. Stream temperature investigations: field and analytic methods

    USGS Publications Warehouse

    Bartholow, J.M.

    1989-01-01

    Alternative public domain stream and reservoir temperature models are contrasted with SNTEMP. A distinction is made between steady-flow and dynamic-flow models and their respective capabilities. Regression models are offered as an alternative approach for some situations, with appropriate mathematical formulas suggested. Appendices provide information on State and Federal agencies that are good data sources, vendors for field instrumentation, and small computer programs useful in data reduction.

  20. Higher-order Fourier analysis over finite fields and applications

    NASA Astrophysics Data System (ADS)

    Hatami, Pooya

    Higher-order Fourier analysis is a powerful tool in the study of problems in additive and extremal combinatorics, for instance the study of arithmetic progressions in primes, where the traditional Fourier analysis comes short. In recent years, higher-order Fourier analysis has found multiple applications in computer science in fields such as property testing and coding theory. In this thesis, we develop new tools within this theory with several new applications such as a characterization theorem in algebraic property testing. One of our main contributions is a strong near-equidistribution result for regular collections of polynomials. The densities of small linear structures in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate the average, it suffices to know the joint distribution of the polynomials applied to the linear forms. We prove a near-equidistribution theorem that describes these distributions for the group F(n/p) when p is a fixed prime. This fundamental fact was previously known only under various extra assumptions about the linear forms or the field size. We use this near-equidistribution theorem to settle a conjecture of Gowers and Wolf on the true complexity of systems of linear forms. Our next application is towards a characterization of testable algebraic properties. We prove that every locally characterized affine-invariant property of functions f : F(n/p) → R with n∈ N, is testable. In fact, we prove that any such property P is proximity-obliviously testable. More generally, we show that any affine-invariant property that is closed under subspace restrictions and has "bounded complexity" is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low

  1. Exact sum rules for vector channel at finite temperature and their application to lattice QCD analysis

    NASA Astrophysics Data System (ADS)

    Satow, Daisuke; Gubler, Philipp

    2017-03-01

    We derive three exact sum rules for the spectral function of the electromagnetic current with zero spatial momentum at finite temperature. Possible applications of the three sum rules to lattice computations of the spectral function and transport coefficients are also discussed: We propose an ansatz for the spectral function that can be applied to all three sum rules and fit it to available lattice data of the Euclidean vector correlator above the critical temperature. As a result, we obtain estimates for both the electrical conductivity σ and the second order transport coefficient τJ.

  2. Sound propagation in a Bose-Einstein condensate at finite temperatures

    SciTech Connect

    Meppelink, R.; Koller, S. B.; Straten, P. van der

    2009-10-15

    We study the propagation of a density wave in a magnetically trapped Bose-Einstein condensate at finite temperatures. The thermal cloud is in the hydrodynamic regime and the system is therefore described by the two-fluid model. A phase-contrast imaging technique is used to image the cloud of atoms and allows us to observe small density excitations. The propagation of the density wave in the condensate is used to determine the speed of sound as a function of the temperature. We find the speed of sound to be in good agreement with calculations based on the Landau two-fluid model.

  3. Temperature dependence of coulomb drag between finite-length quantum wires.

    PubMed

    Peguiron, J; Bruder, C; Trauzettel, B

    2007-08-24

    We evaluate the Coulomb drag current in two finite-length Tomonaga-Luttinger-liquid wires coupled by an electrostatic backscattering interaction. The drag current in one wire shows oscillations as a function of the bias voltage applied to the other wire, reflecting interferences of the plasmon standing waves in the interacting wires. In agreement with this picture, the amplitude of the current oscillations is reduced with increasing temperature. This is a clear signature of non-Fermi-liquid physics because for coupled Fermi liquids the drag resistance is always expected to increase as the temperature is raised.

  4. Dynamical Simulation of Sound Propagation in a Highly Elongated Trapped Bose Gas at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Arahata, E.; Nikuni, T.

    2013-05-01

    We study sound propagation in a Bose-condensed gas confined in a highly elongated harmonic trap at finite temperatures. Our analysis is based on Zaremba-Nikuni-Griffin (ZNG) formalism, which consists of Gross-Pitaevskii equation for the condensate and the kinetic equation for a thermal cloud. We extend ZNG formalism to deal with a highly-anisotropic trap potential, and use it to simulate sound propagation in the two fluid hydrodynamic regime. We use the trap parameters for the experiment that has reported second sound propagation. Our simulation results show that propagation of two sound pulses corresponding to first and second sound can be observed in an intermediate temperature.

  5. A study of symmetry restoration at finite temperature in the O(4) model using anisotropic lattices

    NASA Astrophysics Data System (ADS)

    Gavai, R. V.; Heller, U. M.; Karsch, F.; Plache, B.; Neuhaus, T.

    Results of investigations of the O(4) spin model at finite temperature using anisotropic lattices are presented. In both the large N approximation and the numerical simulations using the Wolff cluster algorithm we find that the ratio of the symmetry restoration temperature TSR to the Higgs mass mH is independent of the anisotropy. We obtain a lower bound of 0.59 ± 0.04 for the ratio, T SR/m H, at m H ⋍ 0.5 , which is lowered furhter by about 10% at m Ha ⋍ 1 .

  6. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    SciTech Connect

    Jamshidian, M.; Thamburaja, P.; Rabczuk, T.

    2016-12-15

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.

  7. Implications of Poincaré symmetry for thermal field theories in finite-volume

    NASA Astrophysics Data System (ADS)

    Giusti, Leonardo; Meyer, Harvey B.

    2013-01-01

    The analytic continuation to an imaginary velocity i ξ of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. Writing the Boltzmann factor as [InlineEquation not available: see fulltext.], the Poincaré invariance underlying a relativistic theory implies a dependence of the free-energy on L 0 and the shift ξ only through the combination [InlineEquation not available: see fulltext.]. This in turn implies a set of Ward identities, some of which were previously derived by us, among the correlators of the energy-momentum tensor. In the infinite-volume limit they lead to relations among the cumulants of the total energy distribution and those of the momentum, i.e. they connect the energy and the momentum distributions in the canonical ensemble. In finite volume the Poincaré symmetry translates into exact relations among partition functions and correlation functions defined with different sets of (generalized) periodic boundary conditions. They have interesting applications in lattice field theory. In particular, they offer Ward identities to renormalize non-perturbatively the energy-momentum tensor and novel ways to compute thermodynamic potentials. At fixed bare parameters they also provide a simple method to vary the temperature in much smaller steps than with the standard procedure.

  8. A stochastic-field description of finite-size spiking neural networks

    PubMed Central

    Longtin, André

    2017-01-01

    Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity—the density of active neurons per unit time—is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics. PMID:28787447

  9. A stochastic-field description of finite-size spiking neural networks.

    PubMed

    Dumont, Grégory; Payeur, Alexandre; Longtin, André

    2017-08-01

    Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity-the density of active neurons per unit time-is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.

  10. Finite-temperature charge transport in the one-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Jin, F.; Steinigeweg, R.; Heidrich-Meisner, F.; Michielsen, K.; De Raedt, H.

    2015-11-01

    We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model for which the charge Drude weight decays exponentially with system size, as expected for a nonintegrable model. We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse mass ratio of η ≳0.25 .

  11. Finite-temperature Dicke phase transition of a Bose-Einstein condensate in an optical cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanwei; Lian, Jinling; Liang, J.-Q.; Chen, Gang; Zhang, Chuanwei; Jia, Suotang

    2013-01-01

    In this paper we investigate the finite-temperature properties of a Bose-Einstein condensate (BEC)-cavity system with a strong nonlinear atom-photon interaction by means of a functional path-integral approach. It is shown that the experimentally observed phase diagram [Baumann, Guerlin, Brennecke, and Esslinger, Nature (London)NATUAS0028-083610.1038/nature09009 464, 1301 (2010)] can be better explained in our finite-temperature theory. More importantly, we identify a new dynamical unstable phase in this experiment. By tuning various experimental parameters, we reveal some rich temperature-driven phase diagrams and, in particular, predict a four-phase coexistence point. Finally, we find analytically that the specific heat in the superradiant phase increases exponentially at lower temperatures. Moreover, it has a large jump at the temperature-driven critical point where the superradiant-normal phase transition occurs. As a result, we argue that the specific heat can serve as a powerful tool to probe the thermodynamic properties of the BEC-cavity system.

  12. Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Drut, Joaquín E.; Magierski, Piotr

    2008-08-01

    The quantum Monte Carlo method for spin- (1)/(2) fermions at finite temperature is formulated for dilute systems with an s -wave interaction. The motivation and the formalism are discussed along with descriptions of the algorithm and various numerical issues. We report on results for the energy, entropy, and chemical potential as a function of temperature. We give upper bounds on the critical temperature Tc for the onset of superfluidity, obtained by studying the finite-size scaling of the condensate fraction. All of these quantities were computed for couplings around the unitary regime in the range -0.5⩽(kFa)-1⩽0.2 , where a is the s -wave scattering length and kF is the Fermi momentum of a noninteracting gas at the same density. In all cases our data are consistent with normal Fermi gas behavior above a characteristic temperature T0>Tc , which depends on the coupling and is obtained by studying the deviation of the caloric curve from that of a free Fermi gas. For Tctemperature results for the energy and the pairing gap are shown and compared with Green-function Monte Carlo results by other groups.

  13. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  14. Ultrasound simulation of real-time temperature estimation during radiofrequency ablation using finite element models.

    PubMed

    Daniels, M J; Jiang, J; Varghese, T

    2008-03-01

    Radiofrequency ablation is the most common minimally invasive therapy used in the United States to treat hepatocellular carcinoma and liver metastases. The ability to perform real-time temperature imaging while a patient is undergoing ablation therapy may help reduce the high recurrence rates following ablation therapy. Ultrasound echo signals undergo time shifts with increasing temperature due to sound speed and thermal expansion, which are tracked using both 1D cross correlation and 2D block matching based speckle tracking methods. In this paper, we present a quantitative evaluation of the accuracy and precision of temperature estimation using the above algorithms on both simulated and experimental data. A finite element analysis simulation of radiofrequency ablation of hepatic tissue was developed. Finite element analysis provides a method to obtain the exact temperature distribution along with a mapping of the tissue displacement due to thermal expansion. These local displacement maps were combined with the displacement due to speed of sound changes and utilized to generate ultrasound radiofrequency frames at specified time increments over the entire ablation procedure. These echo signals provide an ideal test-bed to evaluate the performance of both speckle tracking methods, since the estimated temperature results can be compared directly to the exact finite element solution. Our results indicate that the 1D cross-correlation (CC) method underestimates the cumulative displacement by 0.20mm, while the underestimation with 2D block matching (BM) is about 0.14 mm after 360 s of ablation. The 1D method also overestimates the size of the ablated region by 5.4% when compared to 2.4% with the 2D method after 720 s of ablation. Hence 2D block matching provides better tracking of temperature variations when compared to the 1D cross-correlation method over the entire duration of the ablation procedure. In addition, results obtained using 1D cross-correlation diverge from

  15. A finite-temperature Hartree-Fock code for shell-model Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Mehlhaff, J. M.

    2016-10-01

    The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.

  16. Collective modes of a one-dimensional trapped atomic Bose gas at finite temperatures

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Xianlong, Gao; Liu, Xia-Ji

    2014-07-01

    We theoretically investigate collective modes of a one-dimensional (1D) interacting Bose gas in a harmonic tras at finite temperatures, by using a variational approach and the local density approximation. We find that the temperature dependence of collective mode frequencies is notably different in the weakly and strongly interacting regimes. Therefore, the experimental measurement of collective modes could provide a sensitive probe for different quantum phases of a 1D trapped Bose gas, realized by tuning the interatomic interaction strength and temperature. Our prediction on the temperature dependence of the breathing mode frequency is in good qualitative agreement with an earlier experimental measurement for a weakly interacting 1D Bose gas of rubidium-87 atoms in harmonic traps [Moritz et al., Phys. Rev. Lett. 91, 250402 (2003), 10.1103/PhysRevLett.91.250402].

  17. Casimir effect for parallel plates involving massless Majorana fermions at finite temperature

    SciTech Connect

    Cheng Hongbo

    2010-08-15

    We study the Casimir effect for parallel plates with massless Majorana fermions obeying the bag boundary conditions at finite temperature. The thermal influence will modify the effect. It is found that the sign of the Casimir energy remains negative if the product of the plate distance and the temperature is larger than a special value, otherwise the energy will change to positive. The Casimir energy rises with the stronger thermal influence. We show that the attractive Casimir force between two parallel plates becomes greater with increasing temperature. In the case of the piston system involving the same Majorana fermions with the same boundary conditions, the attractive force on the piston will be weaker in higher-temperature surroundings.

  18. Finite-temperature effects on conductance modulation by local doping in graphene with multiple magnetic barriers

    NASA Astrophysics Data System (ADS)

    Myoung, Nojoon; Lidorikis, Elefterios

    2015-12-01

    The electronic and transport properties of graphene modulated by magnetic barrier arrays are derived at finite temperatures. Prominent conductance gaps, originating from quantum interference effects are found in the periodic array case. When a structural defect is inserted in the array, sharp defect modes of high conductance appear within the conductance gaps. These modes are shifted by local doping in the defect region, resulting in large contrast in the ballistic conductance of graphene sheet. In general it is found that sensitivity is strongly dependent on temperature due to smoothing out of the defect-induced peaks and transport gaps. This temperature dependence, however, offers the added capability for sub-mK temperature sensing resolution, and thus an opportunity towards ultra-sensitive combined electrochemical-calorimetric sensing.

  19. Finite temperature and the Polyakov loop in the covariant variational approach to Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Quandt, Markus; Reinhardt, Hugo

    2017-03-01

    We extend the covariant variational approach for Yang-Mills theory in Landau gauge to non-zero temperatures. Numerical solutions for the thermal propagators are presented and compared to high-precision lattice data. To study the deconfinement phase transition, we adapt the formalism to background gauge and compute the effective action of the Polyakov loop for the colour groups SU(2) and SU(3). Using the zero-temperature propagators as input, all parameters are fixed at T = 0 and we find a clear signal for a deconfinement phase transition at finite temperatures, which is second order for SU(2) and first order for SU(3). The critical temperatures obtained are in reasonable agreement with lattice data.

  20. The possibility of detection of finite temperature stripe ordering in 2D spinless Falicov-Kimball model

    NASA Astrophysics Data System (ADS)

    Dȩbski, Lech

    2016-03-01

    This paper announces a possibility of detection of finite-temperature stripe ordering in the two-dimensional Falicov-Kimball model at half-filling by extensive Monte Carlo simulations. Moreover, the tools to study orderings and to detect phase transition temperatures are presented. The use of Binder's cumulant is supplemented by finite-size magnetization profiles not analyzed previously in this context. Continuous character of phase transitions is announced. Analyses proving the existence of more complicated phases of finite-temperature stripe ordering than the checkerboard one conclude the paper.

  1. Dynamical properties of the sine-Gordon quantum spin magnet Cu-PM at zero and finite temperature

    NASA Astrophysics Data System (ADS)

    Tiegel, Alexander C.; Honecker, Andreas; Pruschke, Thomas; Ponomaryov, Alexey; Zvyagin, Sergei A.; Feyerherm, Ralf; Manmana, Salvatore R.

    2016-03-01

    The material copper pyrimidine dinitrate (Cu-PM) is a quasi-one-dimensional spin system described by the spin-1/2 X X Z Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions. Based on numerical results obtained by the density-matrix renormalization group, exact diagonalization, and accompanying electron spin resonance (ESR) experiments we revisit the spin dynamics of this compound in an applied magnetic field. Our calculations for momentum and frequency-resolved dynamical quantities give direct access to the intensity of the elementary excitations at both zero and finite temperature. This allows us to study the system beyond the low-energy description by the quantum sine-Gordon model. We find a deviation from the Lorentz invariant dispersion for the single-soliton resonance. Furthermore, our calculations only confirm the presence of the strongest boundary bound state previously derived from a boundary sine-Gordon field theory, while composite boundary-bulk excitations have too low intensities to be observable. Upon increasing the temperature, we find a temperature-induced crossover of the soliton and the emergence of new features, such as interbreather transitions. The latter observation is confirmed by our ESR experiments on Cu-PM over a wide range of the applied field.

  2. Polarization-current-based, finite-difference time-domain, near-to-far-field transformation.

    PubMed

    Zeng, Yong; Moloney, Jerome V

    2009-05-15

    A near-to-far-field transformation algorithm for three-dimensional finite-difference time-domain is presented in this Letter. This approach is based directly on the polarization current of the scatterer, not the scattered near fields. It therefore eliminates the numerical errors originating from the spatial offset of the E and H fields, inherent in the standard near-to-far-field transformation. The proposed method is validated via direct comparisons with the analytical Lorentz-Mie solutions of plane waves scattered by large dielectric and metallic spheres with strong forward-scattering lobes.

  3. Finite Element Treatment of Vortex States in 3D Cubic Superconductors in a Tilted Magnetic Field

    NASA Astrophysics Data System (ADS)

    Peng, Lin; Cai, Chuanbing

    2017-03-01

    The time-dependent Ginzburg-Landau equations have been solved numerically by a finite element analysis for superconducting samples with a cubic shape in a tilted magnetic field. We obtain different vortex patterns as a function of the external magnetic field. With a magnetic field not parallel to the x- or y-axis, the vortices attempt to change their orientation accordingly. Our analysis of the corresponding changes in the magnetic response in different directions can provide information not only about vorticity but also about the three-dimensional vortex arrangement, even about the very subtle changes for the superconducting samples with a cubic shape in a tilted magnetic field.

  4. Electromagnetic induction by finite wavenumber source fields in 2-D lateral heterogeneities - The transverse electric mode

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1984-01-01

    Electromagnetic induction in a laterally homogeneous earth is analyzed in terms of a source field with finite dimensions. Attention is focused on a time-varying two-dimensional current source directed parallel to the strike of a two-dimensional anomalous structure within the earth, i.e., the E-parallel mode. The spatially harmonic source field is expressed as discontinuities in the magnetic (or electric) field of the current in the source. The model is applied to describing the magnetic gradients across megatectonic features, and may be used to predict the magnetic fields encountered by a satellite orbiting above the ionosphere.

  5. Finite-element analysis of nonlinear conduction problems subject to moving fields

    NASA Technical Reports Server (NTRS)

    Padovan, J.

    1980-01-01

    Through the use of a space-time warp, specialized moving finite elements are developed that can be employed to generate a nonlinear heat conduction model for situations involving traveling boundary and heat generation fields superposed on an initial state. To facilitate the solution of the resulting nonlinear finite-element formulation, a multilevel heuristic iterative solution strategy is developed. In order to demonstrate the versatility and accuracy of the moving elements and their associated nonlinear solution strategy, the results of several numerical experiments are presented.

  6. Characterization of the nonlinear propagation of diffracting, finite amplitude ultrasonic fields

    NASA Astrophysics Data System (ADS)

    Wallace, Kirk Dennis

    The scope of this thesis is to investigate the nonlinear physics fundamental to the progressive distortion of a bounded finite amplitude ultrasonic beam. Emphasis is placed on the experimental characterization of the spatial dependence in harmonic frequency content for a finite amplitude ultrasonic field generated by a narrowband bounded source. Asymptotic forms of the Burgers equation are considered to facilitate analysis of finite amplitude measurements (Fubini solution) and simulation of strongly shocked waveforms (Fay solution). The impact of the Kramers-Kronig dispersion relationship on shock wave evolution in media with frequency dependent power law attenuation is demonstrated. A numerical simulation tool incorporating the complete form of the nonlinear Burgers equation into a linear angular spectrum description of the three dimensional ultrasonic field is developed and presented. Experimental validation of the numerical simulation tool is achieved through comparison with a series of detailed hydrophone measurements of the finite amplitude ultrasonic field generated by a clinical echocardiographic imaging system. Once validated, the simulation tool is used to assist the design and motivation of experimental measurements of intrinsic acoustic parameters in liquid mixtures. A novel experimental technique is utilized to determine both nonlinear and linear acoustic parameters in mixtures of isopropyl alcohol and water.

  7. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    NASA Astrophysics Data System (ADS)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic – thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  8. Electromagnetic field distribution calculation in solenoidal inductively coupled plasma using finite difference method

    SciTech Connect

    Li, W. P.; Liu, Y.; Long, Q.; Chen, D. H.; Chen, Y. M.

    2008-10-15

    The electromagnetic field (both E and B fields) is calculated for a solenoidal inductively coupled plasma (ICP) discharge. The model is based on two-dimensional cylindrical coordinates, and the finite difference method is used for solving Maxwell equations in both the radial and axial directions. Through one-turn coil measurements, assuming that the electrical conductivity has a constant value in each cross section of the discharge tube, the calculated E and B fields rise sharply near the tube wall. The nonuniform radial distributions imply that the skin effect plays a significant role in the energy balance of the stable ICP. Damped distributions in the axial direction show that the magnetic flux gradually dissipates into the surrounding space. A finite difference calculation allows prediction of the electrical conductivity and plasma permeability, and the induction coil voltage and plasma current can be calculated, which are verified for correctness.

  9. Neural field simulator: two-dimensional spatio-temporal dynamics involving finite transmission speed

    PubMed Central

    Nichols, Eric J.; Hutt, Axel

    2015-01-01

    Neural Field models (NFM) play an important role in the understanding of neural population dynamics on a mesoscopic spatial and temporal scale. Their numerical simulation is an essential element in the analysis of their spatio-temporal dynamics. The simulation tool described in this work considers scalar spatially homogeneous neural fields taking into account a finite axonal transmission speed and synaptic temporal derivatives of first and second order. A text-based interface offers complete control of field parameters and several approaches are used to accelerate simulations. A graphical output utilizes video hardware acceleration to display running output with reduced computational hindrance compared to simulators that are exclusively software-based. Diverse applications of the tool demonstrate breather oscillations, static and dynamic Turing patterns and activity spreading with finite propagation speed. The simulator is open source to allow tailoring of code and this is presented with an extension use case. PMID:26539105

  10. The weight hierarchies and chain condition of a class of codes from varieties over finite fields

    NASA Technical Reports Server (NTRS)

    Wu, Xinen; Feng, Gui-Liang; Rao, T. R. N.

    1996-01-01

    The generalized Hamming weights of linear codes were first introduced by Wei. These are fundamental parameters related to the minimal overlap structures of the subcodes and very useful in several fields. It was found that the chain condition of a linear code is convenient in studying the generalized Hamming weights of the product codes. In this paper we consider a class of codes defined over some varieties in projective spaces over finite fields, whose generalized Hamming weights can be determined by studying the orbits of subspaces of the projective spaces under the actions of classical groups over finite fields, i.e., the symplectic groups, the unitary groups and orthogonal groups. We give the weight hierarchies and generalized weight spectra of the codes from Hermitian varieties and prove that the codes satisfy the chain condition.

  11. Finite-temperature Yang-Mills theory in the Hamiltonian approach in Coulomb gauge from a compactified spatial dimension

    NASA Astrophysics Data System (ADS)

    Heffner, J.; Reinhardt, H.

    2015-04-01

    Yang-Mills theory is studied at finite temperature within the Hamiltonian approach in Coulomb gauge by means of the variational principle using a Gaussian-type Ansatz for the vacuum wave functional. Temperature is introduced by compactifying one spatial dimension. As a consequence the finite-temperature behavior is encoded in the vacuum wave functional calculated on the spatial manifold R2×S1(L ) where L-1 is the temperature. The finite-temperature equations of motion are obtained by minimizing the vacuum energy density to two-loop order. We show analytically that these equations yield the correct zero-temperature limit while at infinite temperature they reduce to the equations of the 2 +1 -dimensional theory in accordance with dimensional reduction. The resulting propagators are compared to those obtained from the grand canonical ensemble where an additional Ansatz for the density matrix is required.

  12. Chiral restoration of strong coupling QCD at finite temperature and baryon density

    NASA Astrophysics Data System (ADS)

    Fromm, Michael

    2009-04-01

    The strong coupling limit (β=0) of lattice QCD with staggered fermions enjoys the same non-perturbative properties as continuum QCD, namely confinement and chiral symmetry breaking. In contrast to the situation at weak coupling, the sign problem which appears at finite density can be brought under control for a determination of the full (μ,T) phase diagram by Monte Carlo simulations. Further difficulties with efficiency and ergodicity of the simulations, especially at the strongly first-order, low-T, finite-μ transition, are addressed respectively with a worm algorithm and multicanonical sampling. Our simulations reveal sizeable corrections to the old results of Karsch and Mütter. Comparison with analytic mean-field determinations of the phase diagram shows discrepancies of O(10) in the location of the QCD critical point.

  13. Dynamics of Nonplanar Quantized Vortex Rings Before Reconnection at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Andryushchenko, V. A.; Kondaurova, L. P.; Nemirovskii, S. K.

    2017-03-01

    The paper presents a numerical study of the dynamics of nonplanar quantized vortices at finite temperatures on their route to reconnection. We perform numerical simulations using the vortex filament method, solving the full Biot-Savart equation at a wide range of temperatures and initial conditions. We consider the dynamics of the two rings, lying initially in different planes and at different distances. The angles between planes are taken as equal to 30°, 45°, 60°, and 90°. It is observed that the temperature and the initial position of the vortices strongly affect the dynamics of the vortices on their route to reconnection. However, when the distances between the vertices of the vortices become smaller than the distances satisfying the Schwarz reconnection criterion, the dynamics of the system change drastically, and this trend is universal. The universality is expressed in the shapes and velocities of the vertices of the vortices.

  14. Finite temperature spin-dynamics and phase transitions in spin-orbital models

    SciTech Connect

    Chen, C.-C.

    2010-04-29

    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.

  15. Expansion of one-dimensional lattice hard-core bosons at finite temperature

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Rigol, Marcos

    2017-03-01

    We develop an exact approach to study the quench dynamics of hard-core bosons initially in thermal equilibrium in one-dimensional lattices. This approach is used to study the sudden expansion of thermal states after confining potentials are switched off. We find that a dynamical fermionization of the momentum distribution occurs at all temperatures. This phenomenon is studied for low initial site occupations, for which the expansion of the cloud is self-similar. In this regime, the occupation of the natural orbitals allows one to distinguish hard-core bosons from noninteracting fermions. We also study the free expansion of initial Mott insulating domains at finite temperature and show that the emergence of off-diagonal one-body correlations is suppressed gradually with increasing temperature. Surprisingly, the melting of the Mott domain is accompanied by an effective cooling of the system. We explain this phenomenon analytically using an equilibrium description based on an emergent local Hamiltonian.

  16. Dynamics of Nonplanar Quantized Vortex Rings Before Reconnection at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Andryushchenko, V. A.; Kondaurova, L. P.; Nemirovskii, S. K.

    2017-06-01

    The paper presents a numerical study of the dynamics of nonplanar quantized vortices at finite temperatures on their route to reconnection. We perform numerical simulations using the vortex filament method, solving the full Biot-Savart equation at a wide range of temperatures and initial conditions. We consider the dynamics of the two rings, lying initially in different planes and at different distances. The angles between planes are taken as equal to 30°, 45°, 60°, and 90°. It is observed that the temperature and the initial position of the vortices strongly affect the dynamics of the vortices on their route to reconnection. However, when the distances between the vertices of the vortices become smaller than the distances satisfying the Schwarz reconnection criterion, the dynamics of the system change drastically, and this trend is universal. The universality is expressed in the shapes and velocities of the vertices of the vortices.

  17. Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice.

    PubMed

    Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo

    2016-04-29

    The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature T_{D}. At T_{D}, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near T_{D}.

  18. High temperature superconducting axial field magnetic coupler: realization and test

    NASA Astrophysics Data System (ADS)

    Belguerras, L.; Mezani, S.; Lubin, T.; Lévêque, J.; Rezzoug, A.

    2015-09-01

    Contactless torque transmission through a large airgap is required in some industrial applications in which hermetic isolation is necessary. This torque transmission usually uses magnetic couplers, whose dimension strongly depends on the airgap flux density. The use of high temperature superconducting (HTS) coils to create a strong magnetic field may constitute a solution to reduce the size of the coupler. It is also possible to use this coupler to replace a torque tube in transmitting the torque produced by a HTS motor to its load. This paper presents the detailed construction and tests of an axial field HTS magnetic coupler. Pancake coils have been manufactured from BSCCO tape and used in one rotor of the coupler. The second rotor is mainly composed of NdFeB permanent magnets. Several tests have been carried out showing that the constructed coupler is working properly. A 3D finite element (FE) model of the studied coupler has been developed. Airgap magnetic field and torque measurements have been carried out and compared to the FE results. It has been shown that the measured and the computed quantities are in satisfactory agreement.

  19. Gaussian fluctuations in the two-dimensional BCS-BEC crossover: finite temperature properties

    NASA Astrophysics Data System (ADS)

    Bighin, G.; Salasnich, L.

    2016-02-01

    The role of fluctuations is enhanced in lower dimensionality systems: in a two dimensions off- diagonal long-range order is destroyed by the fluctuations at any finite temperature, drastically modifying the critical properties with respect to the three-dimensional counterpart. Recently two-dimensional systems of interacting fermions have been the subject of Montecarlo studies and experimental investigations, in particular an ultracold gas of attractive fermions with a widely tunable interaction due to a Feshbach resonance has been realized and the Berezinskii- Kosterlitz-Thouless transition has been observed. The present work deals with the theoretical description of an ultracold Fermi gas: we discuss the role of Gaussian fluctuations of the order parameter in the equation of state, in particular we take into account the first sound velocity, showing that the inclusion of order parameter fluctuations is needed in order to get the correct composite-boson limit in the strong-coupling regime. The theory is also compared with experimental data. Finally we focus on the superfluid density in the weak-coupling, intermediate and strong-coupling regimes at finite temperature, through which the Berezinskii-Kosterlitz-Thouless critical temperature is obtained.

  20. Path Integral Monte Carlo finite-temperature electronic structure of quantum dots

    NASA Astrophysics Data System (ADS)

    Leino, Markku; Rantala, Tapio T.

    2003-03-01

    Quantum Monte Carlo methods allow a straightforward procedure for evaluation of electronic structures with a proper treatment of electronic correlations. This can be done even at finite temperatures [1]. We apply the Path Integral Monte Carlo (PIMC) simulation method [2] for one and two electrons in a single and double quantum dots. With this approach we evaluate the electronic distributions and correlations, and finite temperature effects on those. Temperature increase broadens the one-electron distribution as expected. This effect is smaller for correlated electrons than for single ones. The simulated one and two electron distributions of a single and two coupled quantum dots are also compared to those from experiments and other theoretical (0 K) methods [3]. Computational capacity is found to become the limiting factor in simulations with increasing accuracy. This and other essential aspects of PIMC and its capability in this type of calculations are also discussed. [1] R.P. Feynman: Statistical Mechanics, Addison Wesley, 1972. [2] D.M. Ceperley, Rev.Mod.Phys. 67, 279 (1995). [3] M. Pi, A. Emperador and M. Barranco, Phys.Rev.B 63, 115316 (2001).

  1. A finite-temperature Monte Carlo algorithm for network forming materials

    NASA Astrophysics Data System (ADS)

    Vink, Richard L. C.

    2014-03-01

    Computer simulations of structure formation in network forming materials (such as amorphous semiconductors, glasses, or fluids containing hydrogen bonds) are challenging. The problem is that large structural changes in the network topology are rare events, making it very difficult to equilibrate these systems. To overcome this problem, Wooten, Winer, and Weaire [Phys. Rev. Lett. 54, 1392 (1985)] proposed a Monte Carlo bond-switch move, constructed to alter the network topology at every step. The resulting algorithm is well suited to study networks at zero temperature. However, since thermal fluctuations are ignored, it cannot be used to probe the phase behavior at finite temperature. In this paper, a modification of the original bond-switch move is proposed, in which detailed balance and ergodicity are both obeyed, thereby facilitating a correct sampling of the Boltzmann distribution for these systems at any finite temperature. The merits of the modified algorithm are demonstrated in a detailed investigation of the melting transition in a two-dimensional 3-fold coordinated network.

  2. Phase diagrams of the Bose-Fermi-Hubbard model at finite temperature.

    PubMed

    Mysakovych, T S

    2010-09-08

    The phase transitions at finite temperatures in the systems described by the Bose-Fermi-Hubbard model are investigated in this work in the framework of the self-consistent random phase approximation. The case of the hard-core bosons is considered and the pseudospin formalism is used. The density-density correlator is calculated in the random phase approximation and the possibilities of transitions from superfluid to supersolid phases are investigated. It is shown that the transitions between uniform and charge-ordered phases can be of the second or the first order, depending on the system parameters.

  3. Noninteracting fermions at finite temperature in a d -dimensional trap: Universal correlations

    NASA Astrophysics Data System (ADS)

    Dean, David S.; Le Doussal, Pierre; Majumdar, Satya N.; Schehr, Grégory

    2016-12-01

    We study a system of N noninteracting spinless fermions trapped in a confining potential, in arbitrary dimensions d and arbitrary temperature T . The presence of the confining trap breaks the translational invariance and introduces an edge where the average density of fermions vanishes. Far from the edge, near the center of the trap (the so-called "bulk regime"), where the fermions do not feel the curvature of the trap, physical properties of the fermions have traditionally been understood using the local density (or Thomas-Fermi) approximation. However, these approximations drastically fail near the edge where the density vanishes and thermal and quantum fluctuations are thus enhanced. The main goal of this paper is to show that, even near the edge, novel universal properties emerge, independently of the details of the shape of the confining potential. We present a unified framework to investigate both the bulk and the edge properties of the fermions. We show that for large N , these fermions in a confining trap, in arbitrary dimensions and at finite temperature, form a determinantal point process. As a result, any n -point correlation function, including the average density profile, can be expressed as an n ×n determinant whose entry is called the kernel, a central object for such processes. Near the edge, we derive the large-N scaling form of the kernels, parametrized by d and T . In d =1 and T =0 , this reduces to the so-called Airy kernel, that appears in the Gaussian unitary ensemble (GUE) of random matrix theory. In d =1 and T >0 we show a remarkable connection between our kernel and the one appearing in the (1 +1 )-dimensional Kardar-Parisi-Zhang equation at finite time. Consequently, our result provides a finite-T generalization of the Tracy-Widom distribution, that describes the fluctuations of the position of the rightmost fermion at T =0 , or those of the largest single-fermion momentum. In d >1 and T ≥0 , while the connection to GUE no longer holds

  4. Computing ferrite core losses at high frequency by finite elements method including temperature influence

    SciTech Connect

    Ahmed, B.; Ahmad, J.; Guy, G.

    1994-09-01

    A finite elements method coupled with the Preisach model of hysteresis is used to compute-the ferrite losses in medium power transformers (10--60 kVA) working at relatively high frequencies (20--60 kHz) and with an excitation level of about 0.3 Tesla. The dynamic evolution of the permeability is taken into account. The simple and doubly cubic spline functions are used to account for temperature effects respectively on electric and on magnetic parameters of the ferrite cores. The results are compared with test data obtained with 3C8 and B50 ferrites at different frequencies.

  5. Finite Larmor radius effects on the coupled trapped electron and ion temperature gradient modes

    SciTech Connect

    Sandberg, I.; Isliker, H.; Pavlenko, V. P.

    2007-09-15

    The properties of the coupled trapped electron and toroidal ion temperature gradient modes are investigated using the standard reactive fluid model and taking rigorously into account the effects attributed to the ion polarization drift and to the drifts associated with the lowest-order finite ion Larmor radius effects. In the flat density regime, where the coupling between the modes is relatively weak, the properties of the unstable modes are slightly modified through these effects. For the peak density regions, where the coupling of the modes is rather strong, these second-order drifts determine the spectra of the unstable modes near the marginal conditions.

  6. Casimir effect at finite temperature for pure-photon sector of the minimal Standard Model Extension

    SciTech Connect

    Santos, A.F.; Khanna, Faqir C.

    2016-12-15

    Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.

  7. The finite element simulation of high-temperature magnesium AZ31 sheet forming

    NASA Astrophysics Data System (ADS)

    Verma, Ravi; Hector, Louis G.; Krajewski, Paul E.; Taleff, Eric M.

    2009-08-01

    Finite element (FE) simulations will be vitally important to advancing magnesium alloy sheet forming technologies for vehicle component manufacturing. Although magnesium alloy sheet has been successfully formed into complex components at high temperatures, material constitutive model development for FE simulations has not kept pace with the needs of forming process design. This article describes the application of a new material constitutive model in FE simulations for hot forming of magnesium AZ31 alloy sheet. Simulations of forming both simple geometries from laboratory studies and complex parts from production trials are presented and compared with experimental results.

  8. Casimir effect at finite temperature for pure-photon sector of the minimal Standard Model Extension

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2016-12-01

    Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.

  9. Properties of the t 1 - t 2 one-dimensional Hubbard model at finite temperature

    NASA Astrophysics Data System (ADS)

    Kim, SungKun; Lee, Hunpyo

    2017-08-01

    The one-dimensional t 1 - t 2 half-filled Hubbard model is considered at finite temperatures T within a dynamical cluster approximation (DCA) with N c = 24 in combination with a semiclassical approximation (SCA) impurity solver. The SCA approach accounts for long-range spatial fluctuations, where exact numerical impurity solvers can not capture due to computational expense, even though dynamical fluctuations are freezing. Therefore, it can consider both frequency- and momentum-resolved physical properties beyond the DCA with small cluster in combination with exact impurity solvers. By the computation of the static spin-spin correlation, the density of states, and the double occupancy, we examine the description of the frustrated one-dimensional systems at finite T within given approximations. We confirm not only the interaction-driven metal-insulator transition in the regions of t 2/ t 1 > 0.5, but also the commensurate-incommensurate transition by tunning t 2/ t 1 in the strong interaction region. We also observe finite T-driven metal-insulator transition.

  10. Linear and nonlinear finite element analysis of laminated composite structures at high temperatures

    NASA Astrophysics Data System (ADS)

    Wilt, Thomas Edmund

    The use of composite materials in aerospace applications, particularly engine components, is becoming more prevalent due to the materials high strength, yet low weight. In addition to thermomechanical deformation response, life prediction and damage modeling analysis is also required to assess the component's service life. These complex and computationally intensive analyses require the development of simple, efficient and robust finite element analysis capabilities. A simple robust finite element which can effectively model the multi-layer composite material is developed. This will include thermal gradient capabilities necessary for a complete thermomechanical analysis. In order to integrate the numerically stiff rate dependent viscoplastic equations, efficient, stable numerical algorithms are developed. In addition, consistent viscoplastic/plastic tangent matrices will also be formulated. The finite element is formulated based upon a generalized mixed variational principle with independently assumed displacements and layer number independent strains. A unique scheme utilizing nodal temperatures is used to model a linear thermal gradient through the thickness of the composite. The numerical integration algorithms are formulated in the context of a fully implicit backward Euler scheme. The consistent tangent matrices arise directly from the formulation. The multi-layer composite finite element demonstrates good performance in terms of static displacement and stress predictions, and dynamic response. Also, the element appears to be relatively insensitive to mesh distortions. The robustness and efficiency of the fully implicit integration algorithms is effectively demonstrated in the numerical results. That is, large time steps and a significant reduction in global iterations, as a direct result of utilizing the consistent tangent matrices, is shown.

  11. Finite-element study of strain field in strained-Si MOSFET.

    PubMed

    Liu, H H; Duan, X F; Xu, Q X

    2009-02-01

    The strain field in the channel of a p-type metal-oxide-semiconductor field effect transistor fabricated by integrating Ge pre-amorphization implantation for source/drain regions is evaluated using a finite-element method combining with large angle convergent-beam electron diffraction (LACBED). The finite-element calculation shows that there is a very large compressive strain in the top layer of the channel region caused by a low dose of Ge ion implantation in the source and drain extension regions. Moreover, a transition region is formed in the bottom of the channel region and the top of the Si substrate. These calculation results are in good agreement with the LACBED experiments.

  12. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices

    PubMed Central

    Busch, Martin HJ; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich HW

    2005-01-01

    Background Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. Methods This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. Results The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR

  13. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.

    PubMed

    Inglis, Stephen; Melko, Roger G

    2013-01-01

    We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.

  14. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    NASA Astrophysics Data System (ADS)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  15. A heuristic for the distribution of point counts for random curves over a finite field

    PubMed Central

    Achter, Jeffrey D.; Erman, Daniel; Kedlaya, Kiran S.; Wood, Melanie Matchett; Zureick-Brown, David

    2015-01-01

    How many rational points are there on a random algebraic curve of large genus g over a given finite field ? We propose a heuristic for this question motivated by a (now proven) conjecture of Mumford on the cohomology of moduli spaces of curves; this heuristic suggests a Poisson distribution with mean q+1+1/(q−1). We prove a weaker version of this statement in which g and q tend to infinity, with q much larger than g. PMID:25802415

  16. Topology optimization of a magnetic field in a three-dimensional finite region

    NASA Astrophysics Data System (ADS)

    Ziolkowski, Marcin

    2012-06-01

    This article describes the method of magnetic field topology optimization in an axisymmetric three-dimensional finite region. It is assumed that the region of interest is surrounded by a cylindrical solenoid with an electrical current. The solenoid's inner and outer surfaces are built-up by rotating plane Bezier curves around the symmetry axis. As a global minimizer a genetic algorithm method is used. Optimal configurations are provided under given constraints.

  17. Finite field-dependent BRST-anti-BRST transformations: Jacobians and application to the Standard Model

    NASA Astrophysics Data System (ADS)

    Yu. Moshin, Pavel; Reshetnyak, Alexander A.

    2016-07-01

    We continue our research1-4 and extend the class of finite BRST-anti-BRST transformations with odd-valued parameters λa, a = 1, 2, introduced in these works. In doing so, we evaluate the Jacobians induced by finite BRST-anti-BRST transformations linear in functionally-dependent parameters, as well as those induced by finite BRST-anti-BRST transformations with arbitrary functional parameters. The calculations cover the cases of gauge theories with a closed algebra, dynamical systems with first-class constraints, and general gauge theories. The resulting Jacobians in the case of linearized transformations are different from those in the case of polynomial dependence on the parameters. Finite BRST-anti-BRST transformations with arbitrary parameters induce an extra contribution to the quantum action, which cannot be absorbed into a change of the gauge. These transformations include an extended case of functionally-dependent parameters that implies a modified compensation equation, which admits nontrivial solutions leading to a Jacobian equal to unity. Finite BRST-anti-BRST transformations with functionally-dependent parameters are applied to the Standard Model, and an explicit form of functionally-dependent parameters λa is obtained, providing the equivalence of path integrals in any 3-parameter Rξ-like gauges. The Gribov-Zwanziger theory is extended to the case of the Standard Model, and a form of the Gribov horizon functional is suggested in the Landau gauge, as well as in Rξ-like gauges, in a gauge-independent way using field-dependent BRST-anti-BRST transformations, and in Rξ-like gauges using transverse-like non-Abelian gauge fields.

  18. Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth; Hansen, Ole

    2014-10-01

    We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.

  19. Application of the Finite Elemental Analysis to Modeling Temperature Change of the Vaccine in an Insulated Packaging Container during Transport.

    PubMed

    Ge, Changfeng; Cheng, Yujie; Shen, Yan

    2013-01-01

    This study demonstrated an attempt to predict temperatures of a perishable product such as vaccine inside an insulated packaging container during transport through finite element analysis (FEA) modeling. In order to use the standard FEA software for simulation, an equivalent heat conduction coefficient is proposed and calculated to describe the heat transfer of the air trapped inside the insulated packaging container. The three-dimensional, insulated packaging container is regarded as a combination of six panels, and the heat flow at each side panel is a one-dimension diffusion process. The transit-thermal analysis was applied to simulate the heat transition process from ambient environment to inside the container. Field measurements were carried out to collect the temperature during transport, and the collected data were compared to the FEA simulation results. Insulated packaging containers are used to transport temperature-sensitive products such as vaccine and other pharmaceutical products. The container is usually made of an extruded polystyrene foam filled with gel packs. World Health Organization guidelines recommend that all vaccines except oral polio vaccine be distributed in an environment where the temperature ranges between +2 to +8 °C. The primary areas of concern in designing the packaging for vaccine are how much of the foam thickness and gel packs should be used in order to keep the temperature in a desired range, and how to prevent the vaccine from exposure to freezing temperatures. This study uses numerical simulation to predict temperature change within an insulated packaging container in vaccine cold chain. It is our hope that this simulation will provide the vaccine industries with an alternative engineering tool to validate vaccine packaging and project thermal equilibrium within the insulated packaging container.

  20. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    DOE PAGES

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; ...

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under variousmore » bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (insitu STM-TEM). Ultimately, as suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.« less

  1. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    PubMed Central

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L.; Banyai, Douglas; Savaikar, Madhusudan A.; Jaszczak, John A.; Yap, Yoke Khin

    2016-01-01

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (in-situ STM-TEM). As suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending. PMID:26846587

  2. Finite-size critical scaling in Ising spin glasses in the mean-field regime

    NASA Astrophysics Data System (ADS)

    Aspelmeier, T.; Katzgraber, Helmut G.; Larson, Derek; Moore, M. A.; Wittmann, Matthew; Yeo, Joonhyun

    2016-03-01

    We study in Ising spin glasses the finite-size effects near the spin-glass transition in zero field and at the de Almeida-Thouless transition in a field by Monte Carlo methods and by analytical approximations. In zero field, the finite-size scaling function associated with the spin-glass susceptibility of the Sherrington-Kirkpatrick mean-field spin-glass model is of the same form as that of one-dimensional spin-glass models with power-law long-range interactions in the regime where they can be a proxy for the Edwards-Anderson short-range spin-glass model above the upper critical dimension. We also calculate a simple analytical approximation for the spin-glass susceptibility crossover function. The behavior of the spin-glass susceptibility near the de Almeida-Thouless transition line has also been studied, but here we have only been able to obtain analytically its behavior in the asymptotic limit above and below the transition. We have also simulated the one-dimensional system in a field in the non-mean-field regime to illustrate that when the Imry-Ma droplet length scale exceeds the system size one can then be erroneously lead to conclude that there is a de Almeida-Thouless transition even though it is absent.

  3. The effect of finite field size on classification and atmospheric correction

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1981-01-01

    The atmospheric effect on the upward radiance of sunlight scattered from the Earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. For a given atmospheric turbidity, the atmospheric effect on classification of surface features is much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface do not account for the nonuniformity of the surface have only a slight effect on the classification accuracy; in other cases the classification accuracy descreases. The radiances above finite fields were computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) was used to test the effect of the size of the background reflectance and the optical thickness of the atmosphere on classification accuracy. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, have to be developed to improve significantly the classification accuracy.

  4. Finite-temperature scaling close to Ising-nematic quantum critical points in two-dimensional metals

    NASA Astrophysics Data System (ADS)

    Punk, Matthias

    2016-11-01

    We study finite-temperature properties of metals close to an Ising-nematic quantum critical point in two spatial dimensions. In particular we show that at any finite temperature there is a regime where order parameter fluctuations are characterized by a dynamical critical exponent z =2 , in contrast to z =3 found at zero temperature. Our results are based on a simple Eliashberg-type approach, which gives rise to a boson self-energy proportional to Ω /γ (T ) at small momenta, where γ (T ) is the temperature dependent fermion scattering rate. These findings might shed some light on recent Monte Carlo simulations at finite temperature, where results consistent with z =2 were found.

  5. Finite-temperature calculations of the Compton profile of Be, Li, and Si

    NASA Astrophysics Data System (ADS)

    Klevak, E.; Vila, F. D.; Kas, J. J.; Rehr, J. J.; Seidler, G. T.

    2016-12-01

    High resolution inelastic x-ray scattering experiments are widely used to study the electronic and chemical properties of materials under a range of conditions, from ambient temperature to the warm dense matter regime. We use the real-space multiple scattering (RSMS) Green's function formalism coupled with density functional theory molecular dynamics (DFT-MD) to study thermal effects on the Compton profile (CP) of disordered systems. The RSMS method is advantageous for calculations of highly disordered, aperiodic systems because it places no restriction on symmetry. As a test, we apply our approach to thermally disordered Be, Li, and Si in both liquid and solid phases. We find good agreement with experimental and other theoretical results, showing that the real-space multiple scattering approach coupled with DFT-MD is an efficient and reliable method for calculating the CP of disordered systems at finite temperatures.

  6. Universality in one-dimensional fermions at finite temperature: Density, pressure, compressibility, and contact

    NASA Astrophysics Data System (ADS)

    Hoffman, M. D.; Javernick, P. D.; Loheac, A. C.; Porter, W. J.; Anderson, E. R.; Drut, J. E.

    2015-03-01

    We present finite-temperature, lattice Monte Carlo calculations of the particle number density, compressibility, pressure, and Tan's contact of an unpolarized system of short-range, attractively interacting spin-1/2 fermions in one spatial dimension, i.e., the Gaudin-Yang model. In addition, we compute the second-order virial coefficients for the pressure and the contact, both of which are in excellent agreement with the lattice results in the low-fugacity regime. Our calculations yield universal predictions for ultracold atomic systems with broad resonances in highly constrained traps. We cover a wide range of couplings and temperatures and find results that support the existence of a strong-coupling regime in which the thermodynamics of the system is markedly different from the noninteracting case. We compare and contrast our results with identical systems in higher dimensions.

  7. Efimov effect for heteronuclear three-body systems at positive scattering length and finite temperature

    NASA Astrophysics Data System (ADS)

    Emmons, Samuel B.; Kang, Daekyoung; Acharya, Bijaya; Platter, Lucas

    2017-09-01

    We study the recombination process of three atoms scattering into an atom and diatomic molecule in heteronuclear mixtures of ultracold atomic gases with large and positive interspecies scattering length at finite temperature. We calculate the temperature dependence of the three-body recombination rates by extracting universal scaling functions that parametrize the energy dependence of the scattering matrix. We compare our results to experimental data for the 40K-87Rb mixture and make a prediction for 6Li-87Rb . We find that contributions from higher partial wave channels significantly impact the total rate and, in systems with particularly large mass imbalance, can even obliterate the recombination minima associated with the Efimov effect.

  8. Bloch-Nordsieck thermometers: one-loop exponentiation in finite temperature QED

    NASA Astrophysics Data System (ADS)

    Gupta, Sourendu; Indumathi, D.; Mathews, Prakash; Ravindran, V.

    1996-02-01

    We study the scattering of hard external particles in a heat bath in a real-time formalism for finite temperature QED. We investigate the distribution of the 4-momentum difference of initial and final hard particles in a fully covariant manner when the scale of the process, Q, is much larger than the temperature, T. Our computations are valid for all T subject to this constraint. We exponentiate the leading infra-red term at one-loop order through a resummation of soft (thermal) photon emissions and absorptions. For T > 0, we find that tensor structures arise which are not present at T = 0. These cant' thermal signatures. As a result, external particles can serve as thermometers introduced into the heat bath. We investigate the phase space origin of log( Q/ m) and log ( Q/ T) teens.

  9. Competition between fermions and bosons in nuclear matter at low densities and finite temperatures

    NASA Astrophysics Data System (ADS)

    Mabiala, J.; Zheng, H.; Bonasera, A.; Kohley, Z.; Yennello, S. J.

    2016-12-01

    We derive the free energy for fermions and bosons from fragmentation data. Inspired by the symmetry and pairing energy of the Weizsäcker mass formula, we obtain the free energy of fermions (nucleons) and bosons (alphas and deuterons) using Landau's free-energy approach. We confirm previously obtained results for fermions and show that the free energy for α particles is negative and close to the free energy for ideal Bose gases and in perfect agreement with the free energy of an interacting Bose gas under the repulsive Coulomb force. Deuterons behave more similarly to fermions (positive free energy) rather than bosons, which is probably due to their low binding energy. We show that the α -particle fraction is dominant at all temperatures and densities explored in this work. This is consistent with their negative free energy, which favors clusterization of nuclear matter into α particles at subsaturation densities and finite temperatures.

  10. Finite grid radius and thickness effects on retarding potential analyzer measured suprathermal electron density and temperature

    NASA Technical Reports Server (NTRS)

    Knudsen, William C.

    1992-01-01

    The effect of finite grid radius and thickness on the electron current measured by planar retarding potential analyzers (RPAs) is analyzed numerically. Depending on the plasma environment, the current is significantly reduced below that which is calculated using a theoretical equation derived for an idealized RPA having grids with infinite radius and vanishingly small thickness. A correction factor to the idealized theoretical equation is derived for the Pioneer Venus (PV) orbiter RPA (ORPA) for electron gasses consisting of one or more components obeying Maxwell statistics. The error in density and temperature of Maxwellian electron distributions previously derived from ORPA data using the theoretical expression for the idealized ORPA is evaluated by comparing the densities and temperatures derived from a sample of PV ORPA data using the theoretical expression with and without the correction factor.

  11. Magnetovolume effect and finite-temperature theory of magnetism in transition metals and alloys

    NASA Astrophysics Data System (ADS)

    Kakehashi, Y.

    1990-01-01

    A review of recent developments in the theory of magnetovolume effects based on the Liberman-Pettifor virial theorem is presented. The general expression of the electronic contribution to the thermal expansion is shown to cover a wide range of magnetovolume effects from the insulator to the weak ferromagnets. It consists of the positive term proportional to the specific heat and a term proportional to the temperature derivative of the amplitude of the local moment. By using the single-site spin fluctuation theory (SSF) the Fe-Ni as well as Fe3Pt invar alloys are shown to be understood from this viewpoint. The local environment effects and the electron correlations at finite temperatures improve the difficulties in the SSF.

  12. Magnetovolume effect and finite-temperature theory of magnetism in transition metals and alloys

    NASA Astrophysics Data System (ADS)

    Kakehashi, Y.

    1989-10-01

    A review of recent developments in the theory of magnetovolume effects based on the Liberman-Pettifor virial theorem is presented. The general expression of the electronic contribution to the thermal expansion is shown to cover a wide range of magnetovolume effects from the insulator to the weak ferromagnets. It consists of the positive term proportional to the specific heat and a term proportional to the temperature derivative of the amplitude of the local moment. By using the single-site spin fluctuation theory (SSF) the Fe-Ni as well as Fe 3Pt invar alloys are shown to be understood from this viewpoint. The local environment effects and the electron correlations at finite temperatures improve the difficulties in the SSF.

  13. Exact vector channel sum rules at finite temperature and their applications to lattice QCD data analysis

    NASA Astrophysics Data System (ADS)

    Gubler, Philipp; Satow, Daisuke

    2016-11-01

    We derive three exact sum rules for the spectral function of the electromagnetic current with zero spatial momentum at finite temperature. Two of them are derived in this paper for the first time. We explicitly check that these sum rules are satisfied in the weak coupling regime and examine which sum rule is sensitive to the transport peak in the spectral function at low energy or the continuum at high energy. Possible applications of the three sum rules to lattice computations of the spectral function and transport coefficients are also discussed: we propose an Ansatz for the spectral function that can be applied to all three sum rules and fit it to available lattice data of the Euclidean vector correlator above the critical temperature. As a result, we obtain estimates for both the electrical conductivity σ and the second-order transport coefficient τJ .

  14. Effect of the particular temperature field on a National Ignition Facility deformable mirror

    NASA Astrophysics Data System (ADS)

    Bian, Qi; Huang, Lei; Ma, Xingkun; Xue, Qiao; Gong, Mali

    2016-09-01

    The changes caused by temperature in the surface shape of a deformable mirror used at the National Ignition Facility has been investigated previously. In this paper the temperature induced surface shape under different temperature fields is further studied. We find that the changes of the peak and valley (PV) or root-mean-square (RMS) value rely on the temperature gradient as well as the difference between the mirror and the environment with a certain rule. This work analyzes these quantitative relationship, using the finite element method. Some experiments were carried out to verify the analysis results. The conclusion provides guidance to minimize the effect of the temperature field on the surface shape. Considerations about how to improve the temperature induced faceplate in actual work are suggested finally.

  15. Room Temperature Silicene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  16. Projected entangled pair states at finite temperature: Iterative self-consistent bond renormalization for exact imaginary time evolution

    NASA Astrophysics Data System (ADS)

    Czarnik, Piotr; Dziarmaga, Jacek

    2015-07-01

    A projected entangled pair state (PEPS) with ancillas can be evolved in imaginary time to obtain thermal states of a strongly correlated quantum system on a two-dimensional lattice. Every application of a Suzuki-Trotter gate multiplies the PEPS bond dimension D by a factor k . It has to be renormalized back to the original D . In order to preserve the accuracy of the Suzuki-Trotter (ST) decomposition, the renormalization in principle has to take into account full environment made of the new tensors with the bond dimension k ×D . Here, we propose a self-consistent renormalization procedure operating with the original bond dimension D , but without compromising the accuracy of the ST decomposition. The iterative procedure renormalizes the bond using full environment made of renormalized tensors with the bond dimension D . After every renormalization, the new renormalized tensors are used to update the environment, and then the renormalization is repeated again and again until convergence. As a benchmark application, we obtain thermal states of the transverse field quantum Ising model on a square lattice, both infinite and finite, evolving the system across a second-order phase transition at finite temperature.

  17. Effects of a finite number of particles on the thermodynamic properties of a harmonically trapped ideal charged Bose gas in a constant magnetic field

    NASA Astrophysics Data System (ADS)

    Duan-Liang, Xiao; Meng-Yun, Lai; Xiao-Yin, Pan

    2016-01-01

    We investigate the thermodynamic properties of an ideal charged Bose gas confined in an anisotropic harmonic potential and a constant magnetic field. Using an accurate density of states, we calculate analytically the thermodynamic potential and consequently various intriguing thermodynamic properties, including the Bose-Einstein transition temperature, the specific heat, magnetization, and the corrections to these quantities due to the finite number of particles are also given explicitly. In contrast to the infinite number of particles scenarios, we show that those thermodynamic properties, particularly the Bose-Einstein transition temperature depends upon the strength of the magnetic field due to the finiteness of the particle numbers, and the collective effects of a finite number of particles become larger when the particle number decreases. Moreover, the magnetization varies with the temperature due to the finiteness of the particle number while it keeps invariant in the thermodynamic limit N → ∞. Project supported by the National Natural Science Foundation of China (Grant No. 11375090), and the K. C. Wong Magna Foundation of Ningbo University, China.

  18. Finite-temperature time-dependent variation with multiple Davydov states.

    PubMed

    Wang, Lu; Fujihashi, Yuta; Chen, Lipeng; Zhao, Yang

    2017-03-28

    The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare calculated real-time quantum dynamics of the spin-boson model with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.

  19. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures.

    PubMed

    Franco-Pérez, Marco; Gázquez, José L; Ayers, Paul W; Vela, Alberto

    2015-10-21

    We extend the definition of the electronic chemical potential (μe) and chemical hardness (ηe) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μe. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (-I), positive (-A), and zero values of the fractional charge (-(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  20. Meson properties at finite temperature in a three flavor nonlocal chiral quark model with Polyakov loop

    SciTech Connect

    Contrera, G. A.; Dumm, D. Gomez; Scoccola, Norberto N.

    2010-03-01

    We study the finite temperature behavior of light scalar and pseudoscalar meson properties in the context of a three-flavor nonlocal chiral quark model. The model includes mixing with active strangeness degrees of freedom, and takes care of the effect of gauge interactions by coupling the quarks with the Polyakov loop. We analyze the chiral restoration and deconfinement transitions, as well as the temperature dependence of meson masses, mixing angles and decay constants. The critical temperature is found to be T{sub c{approx_equal}}202 MeV, in better agreement with lattice results than the value recently obtained in the local SU(3) PNJL model. It is seen that above T{sub c} pseudoscalar meson masses get increased, becoming degenerate with the masses of their chiral partners. The temperatures at which this matching occurs depend on the strange quark composition of the corresponding mesons. The topological susceptibility shows a sharp decrease after the chiral transition, signalling the vanishing of the U(1){sub A} anomaly for large temperatures.

  1. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    SciTech Connect

    Franco-Pérez, Marco E-mail: jlgm@xanum.uam.mx; Gázquez, José L. E-mail: jlgm@xanum.uam.mx; Ayers, Paul W.; Vela, Alberto

    2015-10-21

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  2. Computer simulation of trails on a square lattice. II. Finite temperatures and the collapse transition

    NASA Astrophysics Data System (ADS)

    Meirovitch, H.; Lim, H. A.

    1989-04-01

    We study by the scanning simulation method trails on a square lattice at finite temperatures. This method constitutes a very efficient tool since it enables one to obtain results at many temperatures from a single sample generated at any given temperature. The tricritical temperature at which the collapse transition occurs is -ɛ/kBTt=1.086+/-0.002. The tricritical exponents of the trail shape and its free energy are, respectively, νt=0.569+/-0.008 and γt=1.133+/-0.024 (95% confidence limits). They are equal within the error bars to the exact values of self-attracting self-avoiding walks (SAW's). However, the crossover exponent φt=0.807+/-0.005 is significantly larger than the exact value 0.423 of SAW's. We also carry out a detailed scaling analysis near Tt and demonstrate that the various properties scale as predicted by theory. At sufficiently low temperatures (T<=Tt) the persistence length appears to be ~1.

  3. A high-order finite deformation phase-field approach to fracture

    NASA Astrophysics Data System (ADS)

    Weinberg, Kerstin; Hesch, Christian

    2017-07-01

    Phase-field approaches to fracture allow for convenient and efficient simulation of complex fracture pattern. In this paper, two variational formulations of phase-field fracture, a common second-order model and a new fourth-order model, are combined with a finite deformation ansatz for general nonlinear materials. The material model is based on a multiplicative decomposition of the principal stretches in a tensile and a compressive part. The excellent performance of the new approach is illustrated in classical numerical examples.

  4. The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field

    NASA Astrophysics Data System (ADS)

    Merdan, Ziya; Kürkçü, Cihan; Öztürk, Mustafa K.

    2014-12-01

    The four-dimensional ferromagnetic Ising model in external magnetic field is simulated on the Creutz cellular automaton algorithm using finite-size lattices with linear dimension 4 ≤ L ≤ 8. The critical temperature value of infinite lattice, Tc χ ( ∞ ) = 6 , 680 (1) obtained for h = 0 agrees well with the values T c ( ∞ ) ≈ 6.68 obtained previously using different methods. Moreover, h = 0.00025 in our work also agrees with all the results obtained from h = 0 in the literature. However, there are no works for h ≠ 0 in the literature. The value of the field critical exponent (δ = 3.0136(3)) is in good agreement with δ = 3 which is obtained from scaling law of Widom. In spite of the finite-size scaling relations of | M L ( t ) | and χ L ( t ) for 0 ≤ h ≤ 0.001 are verified; however, in the cases of 0.0025 ≤ h ≤ 0.1 they are not verified.

  5. On the effects of grid ill-conditioning in three dimensional finite element vector potential magnetostatic field computations

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1990-01-01

    The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.

  6. On the effects of grid ill-conditioning in three dimensional finite element vector potential magnetostatic field computations

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1990-01-01

    The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.

  7. Anisotropic Turbulent Advection of a Passive Vector Field: Effects of the Finite Correlation Time

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2016-02-01

    The turbulent passive advection under the environment (velocity) field with finite correlation time is studied. Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is investigated by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and prescribed pair correlation function. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to nontrivial fixed points of the RG equations and depend on the relation between the exponents in the energy energy spectrum ɛ ∝ k⊥1-ξ and the dispersion law ω ∝ k⊥2-η . The corresponding anomalous exponents are associated with the critical dimensions of tensor composite operators built solely of the passive vector field itself. In contrast to the well-known isotropic Kraichnan model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. Due to the presence of the anisotropy in the model, all multiloop diagrams are equal to zero, thus this result is exact.

  8. Topological susceptibility in finite temperature (2 +1 )-flavor QCD using gradient flow

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yusuke; Kanaya, Kazuyuki; Suzuki, Hiroshi; Umeda, Takashi; WHOT-QCD Collaboration

    2017-03-01

    We compute the topological charge and its susceptibility in finite temperature (2 +1 )-flavor QCD on the lattice applying a gradient flow method. With the Iwasaki gauge action and nonperturbatively O (a ) -improved Wilson quarks, we perform simulations on a fine lattice with a ≃0.07 fm at a heavy u , d quark mass with mπ/mρ≃0.63 , but approximately physical s quark mass with mηss/mϕ≃0.74 . In a temperature range from T ≃174 MeV (Nt=16 ) to 697 MeV (Nt=4 ), we study two topics on the topological susceptibility. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Because the two definitions are related by chiral Ward-Takahashi identities, their equivalence is not trivial for lattice quarks which violate the chiral symmetry explicitly at finite lattice spacings. The gradient flow method enables us to compute them without being bothered by the chiral violation. We find a good agreement between the two definitions with Wilson quarks. The other is a comparison with a prediction of the dilute instanton gas approximation, which is relevant in a study of axions as a candidate of the dark matter in the evolution of the Universe. We find that the topological susceptibility shows a decrease in T which is consistent with the predicted χt(T )∝(T /Tpc)-8 for three-flavor QCD even at low temperature Tpc

  9. A regularized finite-element digital image correlation for irregular displacement field

    NASA Astrophysics Data System (ADS)

    Yang, Reng-cai

    2014-05-01

    A nonlinear Tikhonov regularization scheme is developed to tackle the ill-posed finite-element digital image correlation, which aims to measure the displacement field from consequent digital images before and after deformation. The goal of this algorithm is to resolve the displacement field with fine and irregular structure without deteriorated by the measuring errors due to its ill-posedness. A Newton-type method is employed to linearize the nonlinear problem iteratively, then the Tikhonov regularization is applied to the linearized problem, with the regularization parameter adaptively chosen by the L-curve method. The proposed algorithm is verified by computer simulated input images with a priori displacement field. The result shows that it is capable of resolving displacement field with very fine structure in a reasonable accuracy.

  10. Anisotropic Finite Element Modeling Based on a Harmonic Field for Patient-Specific Sclera

    PubMed Central

    Zheng, Wanqiu; Zou, Beiji

    2017-01-01

    Purpose. This study examined the influence of anisotropic material for human sclera. Method. First, the individual geometry of patient-specific sclera was reproduced from a laser scan. Then, high quality finite element modeling of individual sclera was performed using a convenient automatic hexahedral mesh generator based on harmonic field and integrated with anisotropic material assignment function. Finally, comparison experiments were designed to investigate the effects of anisotropy on finite element modeling of sclera biomechanics. Results. The experimental results show that the presented approach can generate high quality anisotropic hexahedral mesh for patient-specific sclera. Conclusion. The anisotropy shows significant differences for stresses and strain distribution and careful consideration should be given to its use in biomechanical FE studies. PMID:28271067

  11. A defect corrected finite element approach for the accurate evaluation of magnetic fields on unstructured grids

    NASA Astrophysics Data System (ADS)

    Römer, Ulrich; Schöps, Sebastian; De Gersem, Herbert

    2017-04-01

    In electromagnetic simulations of magnets and machines, one is often interested in a highly accurate and local evaluation of the magnetic field uniformity. Based on local post-processing of the solution, a defect correction scheme is proposed as an easy to realize alternative to higher order finite element or hybrid approaches. Radial basis functions (RBFs) are key for the generality of the method, which in particular can handle unstructured grids. Also, contrary to conventional finite element basis functions, higher derivatives of the solution can be evaluated, as required, e.g., for deflection magnets. Defect correction is applied to obtain a solution with improved accuracy and adjoint techniques are used to estimate the remaining error for a specific quantity of interest. Significantly improved (local) convergence orders are obtained. The scheme is also applied to the simulation of a Stern-Gerlach magnet currently in operation.

  12. One-electron singular spectral features of the 1D Hubbard model at finite magnetic field

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Čadež, T.

    2017-01-01

    The momentum, electronic density, spin density, and interaction dependences of the exponents that control the (k , ω)-plane singular features of the σ = ↑ , ↓ one-electron spectral functions of the 1D Hubbard model at finite magnetic field are studied. The usual half-filling concepts of one-electron lower Hubbard band and upper Hubbard band are defined in terms of the rotated electrons associated with the model Bethe-ansatz solution for all electronic density and spin density values and the whole finite repulsion range. Such rotated electrons are the link of the non-perturbative relation between the electrons and the pseudofermions. Our results further clarify the microscopic processes through which the pseudofermion dynamical theory accounts for the one-electron matrix elements between the ground state and excited energy eigenstates.

  13. Length and temperature dependence of the mechanical properties of finite-size carbyne

    NASA Astrophysics Data System (ADS)

    Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.

    2017-09-01

    Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.

  14. Determination of the temperature distribution in skin using a finite element model

    NASA Astrophysics Data System (ADS)

    Andersen, Thim N.; Jessen, Niels-Christian; Arendt-Nielsen, Lars

    2000-06-01

    When applying noxious heat stimuli to human skin in the study of the pain system, one of the main problems is not to cause permanent damage. A better understanding of the temperature distribution and the propagation of heat, i.e. heat flux, in human skin is thus needed. In order to investigate these problems thoroughly, we have developed a 3-dimensional finite element model (FEM) 4-layer of human skin. The model is kept simple for better understanding of the boundary problems. The water content in each layer is used for determining the thermal properties. It is therefore not a homogenous structure. In this model the stratum corneum has been included with lower water content than in the epidermis. Simulations shows that the surface temperature reaches high levels whereas the temperature in the deeper structure is much lower. Thermal and optical constants found in the literature was applied. Heat propagation downwards and outwards from the source has been investigated to understand of the accumulation of energy in the boundary between two layers. Prediction of the heat flux at boundary between the epidermis and dermis shows that for repetitive stimulation there is a risk of exceeding the threshold temperature of 65 degrees Celsius for irreversible damage.

  15. Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Chu, Peng-Cheng; Li, Xiao-Hua; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang

    2017-08-01

    We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β -equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β -equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model.

  16. Superfluid to Normal Fluid Phase Transition in the Bose Gas Trapped in Two-Dimensional Optical Lattices at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Pires, M. O. C.; de Passos, E. J. V.

    2017-02-01

    We develop the Hartree-Fock-Bogoliubov theory at finite temperature for Bose gas trapped in the two-dimensional optical lattice with the on-site energy low enough that the gas presents superfluid properties. We obtain the condensate density as function of the temperature neglecting the anomalous density in the thermodynamics equation. The condensate fraction provides two critical temperature. Below the temperature T_{C1}, there is one condensate fraction. Above two condensate fractions merger up to the critical temperature T_{C2}. At temperatures larger than T_{C2}, the condensate fraction is null and, therefore, the gas is normal fluid. We resume by a finite-temperature phase diagram where three domains can be identified: the normal fluid, the superfluid with one stable condensate fraction and the superfluid with two condensate fractions being unstable one of them.

  17. Finite element modelling of acoustic singularities with application to near and far field propeller noise

    NASA Astrophysics Data System (ADS)

    Eversman, W.; Steck, J. E.

    1984-10-01

    Numerical formulations and results are presented which expand on recent developments in the finite element modelling of acoustic volume sources and acoustic dipoles. It is shown that with a suitable structuring of the acoustic field equations, it is possible to include monopoles and dipoles within the same analysis framework as has been extensively used for interior duct acoustics and for duct inlet radiation problems. This allows the extension of the finite element modelling method to include the noise sources in such applications as propellers enclosed in a duct or in free space with mean flows. The necessary structuring of the acoustic field equations is shown, and example calculations are given for the case of one-dimensional sources and body forces in the presence of mean flow, two-dimensional sources, axial body forces, and transverse body forces in the presence of uniform mean flow. Three dimensional non axial sources and dipoles are modelled as the Fourier sum of axially symmetric solutions without the necessity of introducing 'singular elements'. It is further demonstrated that distributions of singularities can be readily modelled, and an example is given of the computation of the near and far field radiation of a propeller. Comparison of the far field radiation directivity is made with the Gutin theory.

  18. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    SciTech Connect

    Deng, B. H.; Kinley, J. S.; Schroeder, J.

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  19. Finite-temperature dynamics and thermal intraband magnon scattering in Haldane spin-one chains

    NASA Astrophysics Data System (ADS)

    Becker, J.; Köhler, T.; Tiegel, A. C.; Manmana, S. R.; Wessel, S.; Honecker, A.

    2017-08-01

    The antiferromagnetic spin-one chain is considerably one of the most fundamental quantum many-body systems, with symmetry-protected topological order in the ground state. Here, we present results for its dynamical spin structure factor at finite temperatures, based on a combination of exact numerical diagonalization, matrix-product-state calculations, and quantum Monte Carlo simulations. Open finite chains exhibit a subgap band in the thermal spectral functions, indicative of localized edge states. Moreover, we observe the thermal activation of a distinct low-energy continuum contribution to the spin spectral function with an enhanced spectral weight at low momenta and its upper threshold. This emerging thermal spectral feature of the Haldane spin-one chain is shown to result from intraband magnon scattering due to the thermal population of the single-magnon branch, which features a large bandwidth-to-gap ratio. These findings are discussed with respect to possible future studies on spin-one chain compounds based on inelastic neutron scattering.

  20. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later Shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modeled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  1. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modelled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  2. Geometric multigrid to accelerate the solution of the quasi-static electric field problem by tetrahedral finite elements.

    PubMed

    Hollaus, K; Weiss, B; Magele, Ch; Hutten, H

    2004-02-01

    The acceleration of the solution of the quasi-static electric field problem considering anisotropic complex conductivity simulated by tetrahedral finite elements of first order is investigated by geometric multigrid.

  3. Ab Initio Thermodynamic Results for the Degenerate Electron Gas at Finite Temperature.

    PubMed

    Schoof, T; Groth, S; Vorberger, J; Bonitz, M

    2015-09-25

    The uniform electron gas at finite temperature is of key relevance for many applications in dense plasmas, warm dense matter, laser excited solids, and much more. Accurate thermodynamic data for the uniform electron gas are an essential ingredient for many-body theories, in particular, density-functional theory. Recently, first-principles restricted path integral Monte Carlo results became available, which, however, had to be restricted to moderate degeneracy, i.e., low to moderate densities with r_{s}=r[over ¯]/a_{B}≳1. Here we present novel first-principles configuration path integral Monte Carlo results for electrons for r_{s}≤4. We also present quantum statistical data within the e^{4} approximation that are in good agreement with the simulations at small to moderate r_{s}.

  4. Finite-temperature phase transitions in lattice QCD for general number of flavors

    SciTech Connect

    Fukugita, M.; Ohta, S.; Ukawa, A.

    1988-01-18

    Finite-temperature transitions in lattice QCD are studied for various numbers of flavors in the range 1less than or equal toN/sub f/less than or equal to18 on an 8/sup 3/ x 4 lattice by the Langevin simulation technique. It is found that the weakening of the transition at intermediate quark mass is a general feature for N/sub f/greater than or equal to2, but that the smoothing out of the transition observed for N/sub f/ = 2--4 does not occur for large numbers of flavors (N/sub f/greater than or equal to20). For N/sub f/ = 1 the transition weakens toward small quark mass m/sub q/ but remains first order down to m/sub q/a = 0.05.

  5. Self-consistent theory of a Bose-Einstein condensate with impurity at finite temperature

    NASA Astrophysics Data System (ADS)

    Boudjemâa, Abdelâali

    2015-01-01

    We study the properties of Bose-Einstein condensate-impurity mixtures at finite temperatures employing the Balian-Vénéroni variational principle. The method leads to a set of coupled nonlinear equations of motion for the condensate and its normal and anomalous fluctuations on the one hand, and for the impurity on the other. We show that the obtained equations satisfy the energy and number conserving laws. Useful analytic expressions for the chemical potential and the radius of both the condensate and anomalous components are derived in the framework of the Thomas-Fermi approximation in a d-dimensional regime. The effects of the impurity on these quantities are discussed.

  6. Formation of Vortex Lattices in Superfluid Bose Gases at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Arahata, E.; Nikuni, T.

    2016-05-01

    We study the dynamics of a rotating trapped Bose-Einstein condensate (BEC) at finite temperatures. Using the Zaremba-Nikuni-Griffin formalism, based on a generalized Gross-Pitaevskii equation for the condensate coupled to a semiclassical kinetic equation for a thermal cloud, we numerically simulate vortex lattice formation in the presence of a time-dependent rotating trap potential. At low rotation frequency, the thermal cloud undergoes rigid body rotation, while the condensate exhibits irrotational flow. Above a certain threshold rotation frequency, vortices penetrate into the condensate and form a vortex lattice. Our simulation result clearly indicates a crucial role for the thermal cloud, which triggers vortex lattice formation in the rotating BEC.

  7. Finite-Temperature Phase Diagram of the d=3 tJ Model with Quenched Disorder

    NASA Astrophysics Data System (ADS)

    Berker, A. Nihat; Hinczewski, Michael

    2008-03-01

    We study a quenched disordered d=3 tJ Hamiltonian with static vacancies as a model of nonmagnetic impurities in high-Tc materials.[1,2] Using a position-space renormalization-group approach, we calculate the evolution of the finite-temperature phase diagram with impurity concentration p, and find several features with close experimental parallels: away from half-filling we see the rapid destruction of a spin-singlet liquid phase (analogous to the superconducting phase in cuprates) which is eliminated for p >=0.05; in the same region for these dilute impurity concentrations we observe an enhancement of antiferromagnetism. The antiferromagnetic phase near half-filling is robust against impurity addition, and disappears only for p >=0.40. [1] M. Hinczewski and A.N. Berker, Eur. Phys. J. B 51, 461 (2006). [2] M. Hinczewski and A.N. Berker, arXiv:cond-mat/0607171v1 [cond-mat.str-el].

  8. Dynamical Hartree-Fock-Bogoliubov theory of vortices in Bose-Einstein condensates at finite temperature

    SciTech Connect

    Wild, B. G.; Hutchinson, D. A. W.

    2011-06-15

    We present a method utilizing the continuity equation for the condensate density to make predictions of the precessional frequency of single off-axis vortices and of vortex arrays in Bose-Einstein condensates at finite temperature. We also present an orthogonalized Hartree-Fock-Bogoliubov (HFB) formalism. We solve the continuity equation for the condensate density self-consistently with the orthogonalized HFB equations and find stationary solutions in the frame rotating at this frequency. As an example of the utility of this formalism we obtain time-independent solutions for quasi-two-dimensional rotating systems in the corotating frame. We compare these results with time-dependent predictions where we simulate stirring of the condensate.

  9. Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature.

    PubMed

    Dornheim, Tobias; Schoof, Tim; Groth, Simon; Filinov, Alexey; Bonitz, Michael

    2015-11-28

    The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for N = 33 electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, rs=r¯/aB≳1. These data have been complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present results from an independent third method-the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results to both aforementioned methods. While we find excellent agreement with CPIMC, where results are available, we observe deviations from RPIMC that are beyond the statistical errors and increase with density.

  10. Recent Findings on Whistler Mode Raytracing with the Inclusion of Finite Electron and Ion Temperature

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Malaspina, D.; Jaynes, A. N.

    2016-12-01

    Whistler mode wave propagation plays a significant role in the energy dynamics of the earth's magnetosphere. Whistler mode wave trajectories can be predicted using numerical ray tracing, which tracks the power flow path of the wave by solving the Haselgrove equations. Ray trajectories are seen to be significantly modified with the inclusion of finite electron and ion temperature at different frequencies. The effect is most prominent near the lower hybrid resonance frequency. In this work we focus on waves launched around L = 4, both inside and outside the plasmapause boundary. We observe that when the electron and ion temperature are taken into consideration, whistler mode wave energy is predicted to be largely confined to a region just inside the plasmapause boundary. This effect is not seen in under the cold plasma assumption. Our numerical predictions on wave energy confinement show qualitative agreement with Van Allen probe data. In addition we compare the differences in the confinement regions at different Magnetic Local Times (MLT) and also with different temperature profiles.

  11. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures?

    PubMed

    Heit, Yonaton N; Beran, Gregory J O

    2016-08-01

    Molecular crystals expand appreciably upon heating due to both zero-point and thermal vibrational motion, yet this expansion is often neglected in molecular crystal modeling studies. Here, a quasi-harmonic approximation is coupled with fragment-based hybrid many-body interaction calculations to predict thermal expansion and finite-temperature thermochemical properties in crystalline carbon dioxide, ice Ih, acetic acid and imidazole. Fragment-based second-order Möller-Plesset perturbation theory (MP2) and coupled cluster theory with singles, doubles and perturbative triples [CCSD(T)] predict the thermal expansion and the temperature dependence of the enthalpies, entropies and Gibbs free energies of sublimation in good agreement with experiment. The errors introduced by neglecting thermal expansion in the enthalpy and entropy cancel somewhat in the Gibbs free energy. The resulting ∼ 1-2 kJ mol(-1) errors in the free energy near room temperature are comparable to or smaller than the errors expected from the electronic structure treatment, but they may be sufficiently large to affect free-energy rankings among energetically close polymorphs.

  12. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    PubMed

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  13. Nonlinear dynamics of beam-plasma instability in a finite magnetic field

    NASA Astrophysics Data System (ADS)

    Bogdankevich, I. L.; Goncharov, P. Yu.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-06-01

    The nonlinear dynamics of beam-plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam-plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ω B p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.

  14. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    NASA Astrophysics Data System (ADS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-04-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  15. A Finite Element Propagation Model for Extracting Normal Incidence Impedance in Nonprogressive Acoustic Wave Fields

    NASA Astrophysics Data System (ADS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1996-04-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme were computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressive wave environment such as that usually encountered in a commercial aircraft engine and in most laboratory settings.

  16. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  17. GPU-based volume visualization from high-order finite element fields.

    PubMed

    Nelson, Blake; Kirby, Robert M; Haimes, Robert

    2014-01-01

    This paper describes a new volume rendering system for spectral/hp finite-element methods that has as its goal to be both accurate and interactive. Even though high-order finite element methods are commonly used by scientists and engineers, there are few visualization methods designed to display this data directly. Consequently, visualizations of high-order data are generally created by first sampling the high-order field onto a regular grid and then generating the visualization via traditional methods based on linear interpolation. This approach, however, introduces error into the visualization pipeline and requires the user to balance image quality, interactivity, and resource consumption. We first show that evaluation of the volume rendering integral, when applied to the composition of piecewise-smooth transfer functions with the high-order scalar field, typically exhibits second-order convergence for a wide range of high-order quadrature schemes, and has worst case first-order convergence. This result provides bounds on the ability to achieve high-order convergence to the volume rendering integral. We then develop an algorithm for optimized evaluation of the volume rendering integral, based on the categorization of each ray according to the local behavior of the field and transfer function. We demonstrate the effectiveness of our system by running performance benchmarks on several high-order fluid-flow simulations.

  18. Finite size corrections to scaling of the formation probabilities and the Casimir effect in the conformal field theories

    NASA Astrophysics Data System (ADS)

    Rajabpour, M. A.

    2016-12-01

    We calculate formation probabilities of the ground state of the finite size quantum critical chains using conformal field theory (CFT) techniques. In particular, we calculate the formation probability of one interval in the finite open chain and also formation probability of two disjoint intervals in a finite periodic system. The presented formulas can be also interpreted as the Casimir energy of needles in particular geometries. We numerically check the validity of the exact CFT results in the case of the transverse field Ising chain.

  19. Simulation of Satellite Observations of Induced Magnetic Fields using Scripted Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Ribaudo, J. T.; Constable, C.; Parker, R. L.

    2009-12-01

    Scripted finite element methods allow flexible investigations of the influence of asymmetric external source fields and 3-dimensional (3D) internal electrical conductivity structure in the problem of global geomagnetic depth sounding. Our forward modeling is performed in the time and frequency domains via FlexPDE, a commercial finite element modeling package, and the technique has been validated against known solutions to 3D steady state and time-dependent problems. The induction problem is formulated in terms of the magnetic vector potential and electric scalar potential, and mesh density is managed both explicitly and through adaptive mesh refinement. We investigate the effects of 3D Earth conductivity on both satellite and ground-based magnetic field observations in the form of a geographically varying conductance map of the crust and oceans overlying a radially symmetric core and mantle. This map is used in conjunction with a novel boundary condition based on Ampere's Law to model variable near-surface induction without the computational expense of a 3D crust/ocean mesh and is valid for magnetic signals in the frequency range of interest for satellite induction studies. The simulated external magnetic field is aligned with Earth's magnetic pole, rather than its rotational pole, and increases in magnitude along the Earth/Sun axis. Earth rotates through this field with a period of 24 hours. Electromagnetic c-responses estimated from satellite data under the assumption that the primary and induced fields are dipolar in structure are known to be biased with respect to local time. We investigate the influence of Earth's rotation through the non-uniform external field on these c-responses, to determine whether this can explain the observed local time bias.

  20. A pipeline design of a fast prime factor DFT on a finite field

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, In-Shek; Shao, H. M.; Reed, Irving S.; Shyu, Hsuen-Chyun

    1988-01-01

    A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.