Science.gov

Sample records for finite width mirrors

  1. Finite element analysis to evaluate optical mirror deformations

    NASA Astrophysics Data System (ADS)

    Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Villalobos-Mendoza, B.

    2015-10-01

    In this work we describe the use of Finite Element Analysis software to simulate the deformations of an optical mirror. We use Finite Element Method software as a tool to simulate the mirror deformations assuming that it is a thin plate that can be mechanically tensed or compressed; the Finite Element Analysis give us information about the displacements of the mirror from an initial position and the tensions that remains in the surface. The information obtained by means of Finite Element Analysis can be easily exported to a coordinate system and processed in a simulation environment. Finally, a ray-tracing subroutine is used in the obtained data giving us information in terms of aberration coefficients. We present some results of the simulations describing the followed procedure.

  2. Neoclassical toroidal plasma viscosity with effects of finite banana width for finite aspect ratio tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Sabbagh, S. A.

    2016-07-01

    Theory for neoclassical toroidal plasma viscosity has been developed to model transport phenomena, especially, toroidal plasma rotation for tokamaks with broken symmetry. Theoretical predictions are in agreement with the results of the numerical codes in the large aspect ratio limit. The theory has since been extended to include effects of finite aspect ratio and finite plasma β. Here, β is the ratio of the plasma thermal pressure to the magnetic field pressure. However, there are cases where the radial wavelength of the self-consistent perturbed magnetic field strength B on the perturbed magnetic surface is comparable to the width of the trapped particles, i.e., bananas. To accommodate those cases, the theory for neoclassical toroidal plasma viscosity is further extended here to include the effects of the finite banana width. The extended theory is developed using the orbit averaged drift kinetic equation in the low collisionality regimes. The results of the theory can now be used to model plasma transport, including toroidal plasma rotation, in real finite aspect ratio, and finite plasma β tokamaks with the radial wavelength of the perturbed symmetry breaking magnetic field strength comparable to or longer than the banana width.

  3. Coating thermal noise of a finite-size cylindrical mirror

    NASA Astrophysics Data System (ADS)

    Somiya, Kentaro; Yamamoto, Kazuhiro

    2009-05-01

    Thermal noise of a mirror is one of the limiting noise sources in the high-precision measurement such as gravitational-wave detection, and the modeling of thermal noise has been developed and refined over a decade. In this paper, we present a derivation of coating thermal noise of a finite-size cylindrical mirror based on the fluctuation-dissipation theorem. The result agrees to a previous result with an infinite-size mirror in the limit of large thickness, and also agrees to an independent result based on the modal-expansion method with a thin-mirror approximation. Our study will play an important role not only to accurately estimate the thermal-noise level of gravitational-wave detectors but also to help in analyzing thermal noise in quantum-measurement experiments with lighter mirrors.

  4. Invariantly propagating dissolution fingers in finite-width systems

    NASA Astrophysics Data System (ADS)

    Dutka, Filip; Szymczak, Piotr

    2016-04-01

    Dissolution fingers are formed in porous medium due to positive feedback between transport of reactant and chemical reactions [1-4]. We investigate two-dimensional semi-infinite systems, with constant width W in one direction. In numerical simulations we solve the Darcy flow problem combined with advection-dispersion-reaction equation for the solute transport to track the evolving shapes of the fingers and concentration of reactant in the system. We find the stationary, invariantly propagating finger shapes for different widths of the system, flow and reaction rates. Shape of the reaction front, turns out to be controlled by two dimensionless numbers - the (width-based) Péclet number PeW = vW/Dφ0 and Damköhler number DaW = ksW/v, where k is the reaction rate, s - specific reactive surface area, v - characteristic flow rate, D - diffusion coefficient of the solute, and φ0 - initial porosity of the rock matrix. Depending on PeW and DaW stationary shapes can be divided into seperate classes, e.g. parabolic-like and needle-like structures, which can be inferred from theoretical predictions. In addition we determine velocity of propagating fingers in time and concentration of reagent in the system. Our simulations are compared with natural forms (solution pipes). P. Ortoleva, J. Chadam, E. Merino, and A. Sen, Geochemical self-organization II: the reactive-infiltration instability, Am. J. Sci, 287, 1008-1040 (1987). M. L. Hoefner, and H. S. Fogler. Pore evolution and channel formation during flow and reaction in porous media, AIChE Journal 34, 45-54 (1988). C. E. Cohen, D. Ding, M. Quintard, and B. Bazin, From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization, Chemical Engineering Science 63, 3088-3099 (2008). P. Szymczak and A. J. C. Ladd, Reactive-infiltration nstabilities in rocks. Part II: Dissolution of a porous matrix, J. Fluid Mech. 738, 591-630 (2014).

  5. Finite-width currents, magnetic shear, and the current-driven ion-cyclotron instability

    NASA Technical Reports Server (NTRS)

    Bakshi, P.; Ganguli, G.; Palmadesso, P.

    1983-01-01

    Our earlier results that non-local effects due to even a small magnetic shear produce a significant reduction of the growth rate of the ion cyclotron instability driven by a uniform current are now generalized to finite width currents. Externally prescribed as well as self-consistent shears are considered. If the current width Lc exceeds the shear length Ls, the previous results are recovered. Shear becomes less effective with reduction of Lc, and for typical parameters, the growth rate attains its (shearless) local value for Lc/Ls approximately less than 10 to the minus 2. Non-local effects of the finite current width itself come into play if Lc is further reduced to a few ion Larmor radii and can quench the instability. Previously announced in STAR as N83-28996

  6. Finite width coplanar waveguide patch antenna with vertical fed through interconnect

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.; Shalkhauser, Kurt A.; Owens, Jonathan; Demarco, James; Leen, Joan; Sturzebecher, Dana

    1996-01-01

    The paper presents the design, fabrication and characterization of a finite width Coplanar waveguide (FCPW) patch antenna and a FCPW-to-FCPW vertical interconnect. The experimental results demonstrate the antenna and interconnect performance. A scheme to integrate an eight element FCPW patch array with MMIC phase shifters and amplifiers using vertical interconnects is described. The antenna module has potential applications in an advanced satellite to ground transmit phased array at K-Band.

  7. Spin-polarized electron-hole quantum bilayers: finite layer width and mass-asymmetric effects

    NASA Astrophysics Data System (ADS)

    Gangadhar Nayak, Mukesh; Saini, Lalit Kumar

    2013-03-01

    The influence of mass-asymmetry and finite layer width in phase-transition from the liquid-state to the density-modulated ground-state of the spin-polarized electron-hole quantum bilayers (EHBL) is explored within the Singwi, Tosi, Land and Sjölander (qSTLS) approach. At the same number density of electrons and holes, in addition to the stronger interlayer correlations, the mass-asymmetry also shows stronger intralayer correlations in the hole layer than that of the electron layer. This change in the behaviour of correlations affects the ground-state of the spin-polarized EHBL system. Interestingly, we notice the enhancement of critical density for the onset of Wigner crystallization as compared to the recent results of spin-polarized mass-symmetric EHBL system. Pair-correlation function and local-field correction factor show a strong in-phase oscillations at the instability region. Further, we find that the inclusion of finite layer width weakens the intralayer correlations. As a result, the critical density for Wigner crystallization is lowered. The present results are compared with the recent results of spin-polarized (and unpolarized) mass-symmetric EHBL with zero (finite) layer width. Contribution to the Topical Issue "Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials", edited by Maria Antonietta Loi, Jasper Knoester and Paul H. M. van Loosdrecht.

  8. Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance

    NASA Astrophysics Data System (ADS)

    Liang, Zhichun; Crepeau, Richard H.; Freed, Jack H.

    2005-12-01

    Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.

  9. Electric Field Screening by the Proximity of Two Knife-Edge Field Emitters of Finite Width

    NASA Astrophysics Data System (ADS)

    Wong, P.; Tang, W.; Lau, Y. Y.; Hoff, B.

    2015-11-01

    Field emitter arrays have the potential to provide high current density, low voltage operation, and high pulse repetition for radar and communication. It is well known that packing density of the field emitter arrays significantly affect the emission current. Previously we calculated analytically the electric field profile of two-dimensional knife-edge cathodes with arbitrary separation by using a Schwarz-Christoffel transformation. Here we extend this previous work to include the finite width of two identical emitters. From the electric field profile, the field enhancement factor, thereby the severity of the electric field screening, are determined. It is found that for two identical emitters with finite width, the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h / a and h / r , where h is the height of the knife-edge cathode, 2a is the distance between the cathodes, and 2 r represents their width. Particle-in-cell simulations are performed to compare with the analytical results on the emission current distribution. P. Y. Wong was supported by a Directed Energy Summer Scholar internship at Air Force Research Laboratory, Kirtland AFB, and by AFRL Award No. FA9451-14-1-0374.

  10. Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method

    NASA Astrophysics Data System (ADS)

    Wu, Shun-Der; Glytsis, Elias N.

    2002-10-01

    The effects of finite number of periods (FNP) and finite incident beams on the diffraction efficiencies of holographic gratings are investigated by the finite-difference frequency-domain (FDFD) method. Gratings comprising 20, 15, 10, 5, and 3 periods illuminated by TE and TM incident light with various beam sizes are analyzed with the FDFD method and compared with the rigorous coupled-wave analysis (RCWA). Both unslanted and slanted gratings are treated in transmission as well as in reflection configurations. In general, the effect of the FNP is a decrease in the diffraction efficiency with a decrease in the number of periods of the grating. Similarly, a decrease in incident-beam width causes a decrease in the diffraction efficiency. Exceptions appear in off-Bragg incidence in which a smaller beam width could result in higher diffraction efficiency. For beam widths greater than 10 grating periods and for gratings with more than 20 periods in width, the diffraction efficiencies slowly converge to the values predicted by the RCWA (infinite incident beam and infinite-number-of-periods grating) for both TE and TM polarizations. Furthermore, the effects of FNP holographic gratings on their diffraction performance are found to be comparable to their counterparts of FNP surface-relief gratings. 2002 Optical Society of America

  11. PIC simulations of the trapped electron filamentation instability in finite-width electron plasma waves

    NASA Astrophysics Data System (ADS)

    Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.

    2012-10-01

    We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.

  12. Low Loss, Finite Width Ground Plane, Thin Film Microstrip Lines on Si Wafers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Margomenos, Alexandros; Katehi, Linda P. B.

    1999-01-01

    Si RFICs on standard, 2 Omega-cm. Si wafers require novel transmission lines to reduce the loss caused by the resistive substrate. One such transmission line is commonly called Thin Film Microstrip (TFMS), which is created by depositing a metallic ground plane, thin insulating layers, and the microstrip lines on the Si wafer. Thus, the electric fields are isolated from the Si wafer. In this paper, it is shown through experimental results that the ground plane of TFMS may be finite width and comparable to the strip width in size while still achieving low loss on 2 Omega-cm Si. Measured effective permittivity shows that the field interaction with the Si wafer is small.

  13. Effects of finite laser pulse width on two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Leng, Xuan; Yue, Shuai; Weng, Yu-Xiang; Song, Kai; Shi, Qiang

    2017-01-01

    We combine the hierarchical equations of motion method and the equation-of-motion phase-matching approach to calculate two-dimensional electronic spectra of model systems. When the laser pulse is short enough, the current method reproduces the results based on third-order response function calculations in the impulsive limit. Finite laser pulse width is found to affect both the peak positions and shapes, as well as the time evolution of diagonal and cross peaks. Simulations of the two-color two-dimensional electronic spectra also show that, to observe quantum beats in the diagonal and cross peaks, it is necessary to excite the related excitonic states simultaneously.

  14. Coupling Between Microstrip Lines With Finite Width Ground Plane Embedded in Thin Film Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Manos M.; Papapolymerou, John

    2003-01-01

    Three-dimensional (3D) interconnects built upon multiple layers of polyimide are required for constructing 3D circuits on CMOS (low resistivity) Si wafers, GaAs, and ceramic substrates. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines a r e susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements a r e used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions. Furthermore, it is shown that coupled microstrip lines establish a slotline type mode between the two ground planes and a dielectric waveguide type mode, and that the via holes recommended here eliminate these two modes.

  15. Domain walls in finite-width nanowires with interfacial Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    DeJong, M. D.; Livesey, K. L.

    2017-02-01

    It is widely known that the interfacial Dzyaloshinskii-Moriya interaction (DMI) may stabilize Néel walls rather than Bloch walls in magnetic thin films. When the DMI is weak, it results in a "tilted" Bloch wall. However, for most applications, domain walls are in nanowires rather than thin films. Here we present a semianalytic two-parameter calculation for the static domain wall in a nanowire of finite width and thickness, with DMI. The DMI strength that is needed to force a Néel wall is smaller in nanowires than in films due to demagnetizing energy. Even nanowires that are hundreds of nanometers wide may have different domain wall solutions than thin films and so their finite size must be considered. The impact of this result on current experiments is briefly discussed. We extend the model to show that applying a weak magnetic field allows the domain wall type to be tuned.

  16. Finite width of the optical event horizon and enhancement of analog Hawking radiation

    NASA Astrophysics Data System (ADS)

    Vinish, Y.; Fleurov, V.

    2016-08-01

    Coherent light propagating in a bulk Kerr nonlinear defocusing medium obeys nonlinear Schrödinger (NLS) equation, which is similar to the Gross-Pitaevskii equation for Bose-Einstein condensates (BECs). An equivalent hydrodynamic approach allows one to consider propagation of light as a flow of an equivalent “luminous fluid.” An analog optical event horizon can be formed when the flow velocity of this fluid equals the local sound velocity, determined by the nonlinear term in the NLS equation. The analog event horizon is characterized by a finite width, also determined by the nonlinearity length, or by the healing length in Bose-Einstein condensates. The various eigenmodes of fluctuations are found in the immediate vicinity of the event horizon and the scattering matrix due to the finite width horizon is calculated to be within the leading order corrections in the nonlinearity length. The Hawking radiation is found to be enhanced with respect to that of a Planck’s black body spectrum and is characterized by the emissivity greater than one. A procedure of paraxial quantization of the fluctuation field is discussed and its connection to the conventional quantization of the electromagnetic field is demonstrated. Quantum fluctuations of the electric field energy and those of its flow are calculated.

  17. Effect of finite detector-element width on the spatial-frequency-dependent detective quantum efficiency

    NASA Astrophysics Data System (ADS)

    Cunningham, Ian A.; Westmore, Michael S.; Fenster, Aaron

    1995-05-01

    Image blur in digital imaging systems results from both the spatial spreading of quanta representing the image in the detector system and from the integration of quanta over the finite detector element width. Linear-systems theory has often been used to describe these blurring mechanisms as a convolution, implying the existence of a corresponding modulation transfer function (MTF) in the spatial-frequency domain. This also implies that the resulting noise- power spectrum (NPS) is modified by the square of the blurring MTF. This deterministic approach correctly describes the effect of each blurring mechanism on the overall system MTF, but does not correctly describe image noise characteristics. This is because the convolution is a deterministic calculation, and neglects the statistical properties of the image quanta. Rabbani et al. developed an expression for the NPS following a stochastic spreading mechanism that correctly accounts for these statistical properties. Use of their results requires a modification in how we should interpret the convolution theorem. We suggest the use of a `stochastic' convolution operator, that uses the Rabbani equation for the NPS rather than the deterministic result. This approach unifies the description of both image blur and image noise into a single linear-systems framework. This method is then used to develop expressions for the signal, NPS, DQE, and pixel SNR for a hypothetical digital detector design that includes the effects of conversion to secondary quanta, stochastic spreading of the secondary quanta, and a finite detector-element width.

  18. Kinetic Simulations of the Self-Focusing and Dissipation of Finite-Width Electron Plasma Waves

    SciTech Connect

    Winjum, B. J.; Berger, R. L.; Chapman, T.; Banks, J. W.; Brunner, S.

    2013-09-01

    Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γTPMI divided by the loss rate of field energy νE to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γTPMIE~1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].

  19. Finite-width Laplacian sum rules for 2++ tensor glueball in the instanton vacuum model

    NASA Astrophysics Data System (ADS)

    Chen, Junlong; Liu, Jueping

    2017-01-01

    The more carefully defined and more appropriate 2++ tensor glueball current is a S Uc(3 ) gauge-invariant, symmetric, traceless, and conserved Lorentz-irreducible tensor. After Lorentz decomposition, the invariant amplitude of the correlation function is abstracted and calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. In addition to taking the perturbative contribution into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width three resonances is adopted. The properties of the 2++ tensor glueball are investigated via a family of the QCD Laplacian sum rules for the invariant amplitude. The values of the mass, decay width, and coupling constants for the 2++ resonance in which the glueball fraction is dominant are obtained.

  20. Coupling Between CPW and Slotline Modes in Finite Ground CPW with Unequal Ground Plane Widths

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Williams, W. D. (Technical Monitor); Tentzeris, Emmanouil M.

    2002-01-01

    The coupling between the desired CPW mode and the unwanted, slotline, mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Method of Moment analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. Introduction: Finite ground coplanar waveguide (FGC) is often used in low cost Monolithic Microwave Integrated Circuits (MMICs) because of its many advantages over microstrip and conventional CoPlanar Waveguide (CPW). It is uniplanar, which facilitates easy connection of series and shunt elements without via holes, supports a low loss, quasi-TEM mode over a wide frequency band, and since the ground planes are electrically and physically narrow, typically less than lambda/5 wide where lambda is the guided wavelength, they reduce the circuit size and the influence of higher order modes. However, they still support the parasitic slotline mode that plagues all CPW transmission lines.

  1. The transmission correlation in the QSO Ly(alpha) forest produced by finite width lines

    NASA Astrophysics Data System (ADS)

    Zuo, Lin; Bond, J. Richard

    1994-03-01

    The transmission of a quasar spectrum (flux divided by the continuum) is correlated because of the finite width of absorption lines. We describe a technique for calculating the transmission correlation function produced by randomly distributed lines. We also introduce straightforward procedure for measuring the pixel-pixel transmission correlation function xipp directly from observed quasar spectra. We apply the method to 12 Sargent, Boksenberg, & Steidel Quasi-Stellar Objects (QSO) spectra and compare these with theoretical transmission correlation functions and with xipp measured from computer-simulated quasar spectra of Ly(alpha) forest models with Poisson-distributed lines. The simulations are designed to mimic the observed spectrum as closely as possible, with the same wavelength sampling, instrumental resolution, continuum and noise properties. The comparisons with line distributions that are power laws in column density and redshift, and Gaussians in line width b reveal an excess in the observed xipp at Delta(v) is approximately or equal to 150 km/s, if we adopt the Carswell et al. (1991) parameters for the Gaussian (mean b0 = 30 km/s, dispersion sigmab = 10 km/s). One possibility is that the Ly(alpha) forest lines are actually clustered at velocity separation scales Delta(v) is approximately or equal to 150 km/s. Another possibility we explore is that the b-distribution has more large b clouds and a larger dispersion. We find the observed xipp is barely consistent with b0 = 40 km/s and sigmab = 25 km/s. We show that the measured xipp is relatively insensitive to the noise level and to errors in the continuum determination, unlike the traditional line counting methods, where the outcome is quite vulnerable to both. It also requires no line deblending and thus offers a powerful tool for extracting information from the crowded Ly(alpha) forest.

  2. Contributions of the low-latitude boundary layer to the finite width magnetotail convection model

    NASA Technical Reports Server (NTRS)

    Spence, H. E.; Kivelson, M. G.

    1993-01-01

    Convection of plasma within the terrestrial nightside plasma sheet contributes to the structure and, possibly, the dynamical evolution of the magnetotail. In order to characterize the steady state convection process, we have extended the finite tail width model of magnetotail plasma sheet convection. The model assumes uniform plasma sources and accounts for both the duskward gradient/curvature drift and the earthward E x B drift of ions in a two-dimensional magnetic geometry. During periods of slow convection (i.e., when the cross-tail electric potential energy is small relative to the source plasma's thermal energy), there is a significant net duskward displacement of the pressure-bearing ions. The electrons are assumed to be cold, and we argue that this assumption is appropriate for plasma sheet parameters. We generalize solutions previously obtained along the midnight meridian to describe the variation of the plasma pressure and number density across the width of the tail. For a uniform deep-tail source of particles, the plasma pressure and number density are unrealistically low along the near-tail dawn flank. We therefore add a secondary source of plasma originating from the dawnside low-latitude boundary layer (LLBL). The dual plasma sources contribute to the plasma pressure and number density throughout the magnetic equatorial plane. Model results indicate that the LLBL may be a significant source of near-tail central plasma sheet plasma during periods of weak convection. The model predicts a cross-tail pressure gradient from dawn to dusk in the near magnetotail. We suggest that the plasma pressure gradient is balanced in part by an oppositely directed magnetic pressure gradient for which there is observational evidence. Finally, the pressure to number density ratio is used to define the plasma 'temperature.' We stress that such quantities as temperature and polytropic index must be interpreted with care as they lose their nominal physical significance in

  3. Finite element analysis of low-cost membrane deformable mirrors for high-order adaptive optics

    NASA Astrophysics Data System (ADS)

    Winsor, Robert S.; Sivaramakrishnan, Anand; Makidon, Russell B.

    1999-10-01

    We demonstrate the feasibility of glass membrane deformable mirror (DM) support structures intended for very high order low-stroke adaptive optics systems. We investigated commercially available piezoelectric ceramics. Piezoelectric tubes were determined to offer the largest amount of stroke for a given amount of space on the mirror surface that each actuator controls. We estimated the minimum spacing and the maximum expected stroke of such actuators. We developed a quantitative understanding of the response of a membrane mirror surface by performing a Finite Element Analysis (FEA) study. The results of the FEA analysis were used to develop a design and fabrication process for membrane deformable mirrors of 200 - 500 micron thicknesses. Several different values for glass thickness and actuator spacing were analyzed to determine the best combination of actuator stoke and surface deformation quality. We considered two deformable mirror configurations. The first configuration uses a vacuum membrane attachment system where the actuator tubes' central holes connect to an evacuated plenum, and atmospheric pressure holds the membrane against the actuators. This configuration allows the membrane to be removed from the actuators, facilitating easy replacement of the glass. The other configuration uses precision bearing balls epoxied to the ends of the actuator tubes, with the glass membrane epoxied to the ends of the ball bearings. While this kind of DM is not serviceable, it allows actuator spacings of 4 mm, in addition to large stroke. Fabrication of a prototype of the latter kind of DM was started.

  4. Effect of Finite-Ion-Banana-Width on the Polarization Contribution to the Neoclassical Tearing Modes Evolution

    NASA Astrophysics Data System (ADS)

    Qu, Hongpeng; Peng, Xiaodong; Shen, Yong; Wang, Aike; Hao, Guangzhou; Hu, Shilin

    2014-12-01

    In the previous analytical description of the neoclassical polarization current effect on the neoclassical tearing modes (NTMs), it is usually assumed that the magnetic island is much larger than the finite-ion-banana-width (FBW). This assumption is questionable when the experimentally observed seed island width of the NTMs is comparable to the FBW. We introduce a simple and direct theoretical method to investigate the FBW effect on the neoclassical polarization contribution to the NTM evolution in collisional plasmas. The results show that, the FBW effect can strongly modify the neoclassical polarization current profile near the island separatrix, and thus weaken its probably stabilizing effect on the NTMs.

  5. Coupling Between Microstrip Lines with Finite Width Ground Plane Embedded in Polyimide Layers for 3D-MMICs on Si

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Emmanouil M.; Papapolymerou, John; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/millimeter-wave integrated circuits on complementary metal oxide semiconductor (CMOS) (low resistivity) Si wafers. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements are used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions.

  6. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker-Planck code

    NASA Astrophysics Data System (ADS)

    Petrov, Yu V.; Harvey, R. W.

    2016-11-01

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker-Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit to the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.

  7. Finite element and wavefront error analysis of the primary mirror of an experimental telescope with reverse engineering

    NASA Astrophysics Data System (ADS)

    Huang, Bo-Kai; Huang, Po-Hsuan

    2016-09-01

    This paper presents the finite element and wavefront error analysis with reverse engineering of the primary mirror of a small space telescope experimental model. The experimental space telescope with 280mm diameter primary mirror has been assembled and aligned in 2011, but the measured system optical performance and wavefront error did not achieve the goal. In order to find out the root causes, static structure finite element analysis (FEA) has been applied to analyze the structure model of the primary mirror assembly. Several assuming effects which may cause deformation of the primary mirror have been proposed, such as gravity effect, flexures bonding effect, thermal expansion effect, etc. According to each assuming effect, we establish a corresponding model and boundary condition setup, and the numerical model will be analyzed by finite element method (FEM) software and opto-mechanical analysis software to obtain numerical wavefront error and Zernike polynomials. Now new assumption of the flexures bonding effect is proposed, and we adopt reverse engineering to verify this effect. Finally, the numerically synthetic system wavefront error will be compared with measured system wavefront error of the telescope. By analyzing and realizing these deformation effects of the primary mirror, the opto-mechanical design and telescope assembly workmanship will be refined, and improve the telescope optical performance.

  8. Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips.

    PubMed

    Gómez-Díaz, J S; Esquius-Morote, M; Perruisseau-Carrier, J

    2013-10-21

    An approach to couple free-space waves and non-resonant plasmons propagating along graphene strips is proposed based on the periodic modulation of the graphene strip width. The solution is technologically very simple, scalable in frequency, and provides customized coupling angle and intensity. Moreover, the coupling properties can be dynamically controlled at a fixed frequency via the graphene electrical field effect, enabling advanced and flexible plasmon excitation-detection strategies. We combine a previously derived scaling law for graphene strips with leaky-wave theory borrowed from microwaves to achieve rigorous and efficient modeling and design of the structure. In particular we analytically derive its dispersion, predict its coupling efficiency and radiated field structure, and design strip configurations able to fulfill specific coupling requirements. The proposed approach and developed methods are essential to the recent and fundamental problem of the excitation-detection of non-resonant plasmons propagating along a continuous graphene strip, and could pave the way to smart all-graphene sensors and transceivers.

  9. Finite and Infinite Width Stokes Layers in a Power-Law Fluid

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen; Pritchard, David; McArdle, Catriona

    2011-11-01

    Self-similar solutions for the oscillatory boundary layer (the ``Stokes layer'') in a semi-infinite power-law fluid bounded by an oscillating wall (the so-called Stokes problem) are obtained and analysed. These semi-analytical solutions differ qualitatively from the classical solution for a Newtonian fluid, both in the non-sinusoidal form of the velocity oscillations and in the manner at which their amplitude decays with distance from the wall. In particular, for shear-thickening fluids the velocity reaches zero at a finite distance from the wall, and for shear-thinning fluids it decays algebraically with distance, in contrast to the exponential decay for a Newtonian fluid. We demonstrate numerically that these self-similar solutions provide a good approximation to the flow driven by a sinusoidally oscillating wall. Further details can be found in the recent paper by D. Pritchard, C. R. McArdle and S. K. Wilson entitled ``The Stokes boundary layer for a power-law fluid,'' in Journal of Non-Newtonian Fluid Mechanics 166, 745-753 (2011).

  10. Application of the Finite Orbit Width Version of the CQL3D Code to Transport of Fast Ions

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2016-10-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code now includes the ``fully'' neoclassical version in which the diffusion and advection processes are averaged over actual drift orbits, rather than using a 1st-order expansion. Incorporation of Finite-Orbit-Width (FOW) effects results in neoclassical radial transport caused by collisions, RF wave heating and by toroidal electric field (radial pinch). We apply the CQL3D-full-FOW code to study the thermalization and radial transport of high-energy particles, such as alpha-particles produced by fusion in ITER or deuterons from NBI in NSTX, under effect of their interaction with auxiliary RF waves. A particular attention is given to visualization of transport in 3D space of velocity +major-radius coordinates. Supported by USDOE Grants FC02-01ER54649, FG02-04ER54744, and SC0006614.

  11. Non-perturbative modelling of energetic particle effects on resistive wall mode: Anisotropy and finite orbit width

    SciTech Connect

    Liu, Yueqiang Chapman, I. T.; Hao, G. Z.; Wang, Z. R.; Menard, J. E.; Okabayashi, M.; Strait, E. J.; Turnbull, A.

    2014-05-15

    A non-perturbative magnetohydrodynamic-kinetic hybrid formulation is developed and implemented into the MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)] that takes into account the anisotropy and asymmetry [Graves et al., Nature Commun. 3, 624 (2012)] of the equilibrium distribution of energetic particles (EPs) in particle pitch angle space, as well as first order finite orbit width (FOW) corrections for both passing and trapped EPs. Anisotropic models, which affect both the adiabatic and non-adiabatic drift kinetic energy contributions, are implemented for both neutral beam injection and ion cyclotron resonant heating induced EPs. The first order FOW correction does not contribute to the precessional drift resonance of trapped particles, but generally remains finite for the bounce and transit resonance contributions, as well as for the adiabatic contributions from asymmetrically distributed passing particles. Numerical results for a 9MA steady state ITER plasma suggest that (i) both the anisotropy and FOW effects can be important for the resistive wall mode stability in ITER plasmas; and (ii) the non-perturbative approach predicts less kinetic stabilization of the mode, than the perturbative approach, in the presence of anisotropy and FOW effects for the EPs. The latter may partially be related to the modification of the eigenfunction of the mode by the drift kinetic effects.

  12. Application of the Finite Orbit Width Version of the CQL3D Code to NBI +RF Heating of NSTX Plasma

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2015-11-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code has been upgraded to include Finite-Orbit-Width (FOW) effects. The calculations can be done either with a fast Hybrid-FOW option or with a slower but neoclassically complete full-FOW option. The banana regime neoclassical radial transport appears naturally in the full-FOW version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R, Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The full-FOW version is applied to simulation of ion heating in NSTX plasma. It is demonstrated that it can describe the physics of transport phenomena in plasma with auxiliary heating, in particular, the enhancement of the radial transport of ions by RF heating and the occurrence of the bootstrap current. Because of the bounce-averaging on the FPE, the results are obtained in a relatively short computational time. A typical full-FOW run time is 30 min using 140 MPI cores. Due to an implicit solver, calculations with a large time step (tested up to dt = 0.5 sec) remain stable. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  13. A Parametric Finite-Element Model for Evaluating Segmented Mirrors with Discrete, Edgewise Connectivity

    NASA Technical Reports Server (NTRS)

    Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip

    2011-01-01

    Since future astrophysics missions require space telescopes with apertures of at least 10 meters, there is a need for on-orbit assembly methods that decouple the size of the primary mirror from the choice of launch vehicle. One option is to connect the segments edgewise using mechanisms analogous to damped springs. To evaluate the feasibility of this approach, a parametric ANSYS model that calculates the mode shapes, natural frequencies, and disturbance response of such a mirror, as well as of the equivalent monolithic mirror, has been developed. This model constructs a mirror using rings of hexagonal segments that are either connected continuously along the edges (to form a monolith) or at discrete locations corresponding to the mechanism locations (to form a segmented mirror). As an example, this paper presents the case of a mirror whose segments are connected edgewise by mechanisms analogous to a set of four collocated single-degree-of-freedom damped springs. The results of a set of parameter studies suggest that such mechanisms can be used to create a 15-m segmented mirror that behaves similarly to a monolith, although fully predicting the segmented mirror performance would require incorporating measured mechanism properties into the model. Keywords: segmented mirror, edgewise connectivity, space telescope

  14. Mirror profile optimization for nano-focusing KB mirror

    SciTech Connect

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-06-23

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 {mu}rad, peak-to-valley, compared to the bent slope of 3000 {mu}rad.

  15. Anastigmatic three-mirror telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D. G. (Inventor)

    1978-01-01

    A three-mirror telescope for extraterrestrial observations is described. An ellipsoidal primary mirror, a hyperbolic secondary mirror, and an ellipsoidal tertiary mirror, produce an image in a conveniently located finite plane for viewing.

  16. CONTROL OF LASER RADIATION PARAMETERS: Study of the spectral width of intermode beats and optical spectrum of an actively mode-locked three-mirror semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zakharyash, Valerii F.; Kashirsky, Aleksandr V.; Klementyev, Vasilii M.; Kuznetsov, Sergei A.; Pivtsov, V. S.

    2005-09-01

    Various oscillation regimes of an actively mode-locked semiconductor laser are studied experimentally. Two types of regimes are found in which the minimal spectral width (~3.5 kHz) of intermode beats is achieved. The width of the optical spectrum of modes is studied as a function of their locking and the feedback coefficients. The maximum width of the spectrum is ~3.7 THz.

  17. Inclusion of diamagnetic drift effect in the matching method using finite-width inner region for stability analysis of magnetohydrodynamic modes

    SciTech Connect

    Furukawa, M.; Tokuda, S.

    2012-10-15

    A matching method using a finite-width inner region is extended for stability analysis of magnetohydrodynamic mode including diamagnetic drift effect. The inclusion of the diamagnetic drift effect is accomplished by a newly developed ordering scheme in the outer region. The ordering scheme enables us to derive a hierarchy of generalized Newcomb equations. Higher-order equations give us correction of outer solution due to the diamagnetic drift effect as well as inertia and resistivity. By this correction, the accuracy of the dispersion relation is improved. Several numerical results are presented to demonstrate good performance of the matching method. Dropping the diamagnetic drift effect in the outer region leads to less accurate results.

  18. Experience of validation and tuning of turbulence models as applied to the problem of boundary layer separation on a finite-width wedge

    NASA Astrophysics Data System (ADS)

    Babulin, A. A.; Bosnyakov, S. M.; Vlasenko, V. V.; Engulatova, M. F.; Matyash, S. V.; Mikhailov, S. V.

    2016-06-01

    Modern differential turbulence models are validated by computing a separation zone generated in the supersonic flow past a compression wedge lying on a plate of finite width. The results of three- and two-dimensional computations based on the ( q-ω), SST, and Spalart-Allmaras turbulence models are compared with experimental data obtained for 8°, 25°, and 45° wedges by A.A. Zheltovodov at the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences. An original law-of-the-wall boundary condition and modifications of the SST model intended for improving the quality of the computed separation zone are described.

  19. Dynamic characteristics of double-barrier nanostructures with asymmetric barriers of finite height and widths in a strong ac electric field

    SciTech Connect

    Chuenkov, V. A.

    2013-12-15

    The theory of the interaction of a monoenergetic flow of injected electrons with a strong high-frequency ac electric field in resonant-tunneling diode (RTD) structures with asymmetric barriers of finite height and width is generalized. In the quasi-classical approximation, electron wavefunctions and tunneling functions in the quantum well and barriers are found. Analytical expressions for polarization currents in RTDs are derived in both the general case and in a number of limiting cases. It is shown that the polarization currents and radiation power in RTDs with asymmetric barriers strongly depend on the ratio of the probabilities of electron tunneling through the emitter and collector barriers. In the quantum mode, when δ = ε − ε{sub r} = ħω ≪ Γ (ε is the energy of electrons injected in the RTD, ħ is Planck’s constant, ω is the ac field frequency, ε{sub r} and Γ are the energy and width of the resonance level, respectively), the active polarization current in a field of E ≈ 2.8ħω/ea (e is the electron charge and a is the quantum-well width) reaches a maximum equal in magnitude to 84% of the direct resonant current, if the probability of electron tunneling through the emitter barrier is much higher than that through the collector barrier. The radiation-generation power at frequencies of ω = 10{sup 12}–10{sup 13} s{sup −1} can reach 10{sup 5}–10{sup 6} W/cm{sup 2} in this case.

  20. An Investigation into the Response of a Micro Electro Mechanical Compound Pivot Mirror Using Finite Element Modeling

    SciTech Connect

    GASS, FAWN R.; DOHNER, JEFFREY L.

    2002-01-01

    This report is a presentation of modeling and simulation work for analyzing three designs of Micro Electro Mechanical (MEM) Compound Pivot Mirrors (CPM). These CPMs were made at Sandia National Laboratories using the SUMMiT{trademark} process. At 75 volts and above, initial experimental analysis of fabricated mirrors showed tilt angles of up to 7.5 degrees for one design, and 5 degrees for the other two. Nevertheless, geometric design models predicted higher tilt angles. Therefore, a detailed study was conducted to explain why lower tilt angles occurred and if design modifications could be made to produce higher tilt angles at lower voltages. This study showed that the spring stiffnesses of the CPMs were too great to allow for desired levels of rotation at lower levels of voltage. To produce these lower stiffnesses, a redesign is needed.

  1. Expansions for infinite or finite plane circular time-reversal mirrors and acoustic curtains for wave-field-synthesis.

    PubMed

    Mellow, Tim; Kärkkäinen, Leo

    2014-03-01

    An acoustic curtain is an array of microphones used for recording sound which is subsequently reproduced through an array of loudspeakers in which each loudspeaker reproduces the signal from its corresponding microphone. Here the sound originates from a point source on the axis of symmetry of the circular array. The Kirchhoff-Helmholtz integral for a plane circular curtain is solved analytically as fast-converging expansions, assuming an ideal continuous array, to speed up computations and provide insight. By reversing the time sequence of the recording (or reversing the direction of propagation of the incident wave so that the point source becomes an "ideal" point sink), the curtain becomes a time reversal mirror and the analytical solution for this is given simultaneously. In the case of an infinite planar array, it is demonstrated that either a monopole or dipole curtain will reproduce the diverging sound field of the point source on the far side. However, although the real part of the sound field of the infinite time-reversal mirror is reproduced, the imaginary part is an approximation due to the missing singularity. It is shown that the approximation may be improved by using the appropriate combination of monopole and dipole sources in the mirror.

  2. Focusing a helium atom beam using a quantum-reflection mirror

    NASA Astrophysics Data System (ADS)

    Schewe, H. Christian; Zhao, Bum Suk; Meijer, Gerard; Schöllkopf, Wieland

    2009-11-01

    We demonstrate one-dimensional (1D) focusing of a thermal helium atom beam by quantum reflection from a cylindrical concave quartz mirror at near-grazing incidence. The smallest width of the focus achieved is 1.8 μm, essentially limited by spherical aberration. The various effects that contribute to the finite focal width have been investigated. We propose to apply near-grazing reflection from two concave elliptical mirrors in a Kirkpatrick-Baez arrangement for two-dimensional (2D) focusing of a helium atom beam, paving the way for a helium atom microprobe.

  3. Large hybrid membrane mirrors

    NASA Astrophysics Data System (ADS)

    Sohn, Erika; Ruiz Schneider, Elfego; Ferreira, Alejandra

    2003-01-01

    The trend to minimize the thickness in optical mirrors has led to several practical limits in their fabrication and operation. The design of a flexible membrane mirror segment, which overcomes most of these limitations and can be conformed to giant segmented primary mirrors, is presented. The segment consists of a lightweight multi-layer hybrid structure, which will permit precise active control of the reflecting surface by means of a continuous elastic medium interface with embedded pneumatic actuators. Conceptual designs, finite element analysis model simulations and experimental results are included.

  4. Can the Magnetopause, Viewed as Thin Layer, be Kelvin-Helmholtz Stable, and yet be Unstable When Examined as a Continuous Transition of Finite Width?

    NASA Astrophysics Data System (ADS)

    Bender, L.; Farrugia, C. J.; Gratton, F. T.; Gnavi, G.

    2002-12-01

    According to incompressible MHD theory, when the magnetopause is approximated by a tangential discontinuity, the perturbations are Kelvin-Helmholtz (KH) stable when the following relation is satisfied: \\begin{equation} \\rho_{0,1}(V_{\\kappa,1})^2+\\rho_{0,2}(V_{\\kappa,2})^2<(4\\pi)^{-1})[(B_{\\kappa,1})^2+(B_{\\kappa,2})^2]. Here the indices 1,2 refer to quantities on either side of the magnetopause, ρ 0 is the plasma density, and Vκ , Bκ are the projections of plasma velocity V and magnetic field B on the direction of the wave vector k, respectively. An example of a continuous velocity profile with finite thickness Δ that can be solved analytically and for which condition (1) is satisfied is presented. Yet the configuration is KH unstable and it becomes stable only in the limit Δ -> 0. Using hyperbolic tangent profiles for ρ 0, V, and B, and solving the stability problem numerically with parameters typical of the dayside magnetopause, we show cases of unstable configurations, all of them stable according to (1). This possibility, as far as we know, has passed unnoticed in the literature. The theory applies to subsonic regions of the dayside magnetopause. In this region the neglect of compressibility effects on the equations of the main branch of the KH instability is justified. Work supported by NASA Living with a Star grant NAG 5-10883, Wind grant NAG 5 - 11803, UBACyT grant X059, and a postdoc fellowship of Fundación Bunge y Born.

  5. Virtual Mirrors

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90 degrees to each other and two parallel mirrors. Optical phenomena…

  6. Virtual Mirrors

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90° to each other and two parallel mirrors. Optical phenomena of this complexity are most easily approached by the Method of Virtual Mirrors.

  7. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  8. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  9. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  10. Chiral mirrors

    SciTech Connect

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  11. Micromachined mirrors

    NASA Astrophysics Data System (ADS)

    Conant, Robert Alan

    This dissertation discusses the fundamental limits of scanning mirror design, focusing on the limitations due to the interaction between mechanical properties (mirror flatness and dynamic deformation), and optical properties (beam divergence and optical resolution). The performance criteria for both resonant-scanning mirrors and steady-state, beam-positioning mirrors are related to the mirror geometries, desired optical resolution, material properties, and mechanical resonant frequencies. The optical resolution of the scanning mirror is linearly dependent on the mirror length, so longer mirrors should provide higher-resolution scanners. However, when undergoing an angular acceleration mirrors exhibit dynamic deformation, which is shown to be proportional to the fifth power of the length. Two different implementations of MEMS scanning mirrors are presented: polysilicon surface-micromachined mirrors and a new design we call the Staggered Torsional Electrostatic Combdrive (STEC) micromirror. The surface-micromachined mirrors are shown to be capable of reliable operation, but they have significant performance limitations caused by the limited thickness obtainable with the LPCVD-polysilicon structures. Calculations show that surface-micromachined mirrors of thickness 1.5 mum and diameter 550 mum are only capable of scanning +/-10 degrees at 251 Hz while retaining diffraction-limited optical performance. The STEC micromirrors, designed to overcome the limitations of the surface-micromachined mirrors, are capable of much higher-speed scanning (up to 61 kHz) without performance-limiting dynamic deformation of the mirror surface. The STEC micromirror fabrication process is extended to create Tensile Optical Surface (TOS) micromirrors---mirrors with thick silicon rib support structures and thin membranes that provide the reflective surface. An application of scanning mirrors is presented: a raster-scanning video display. This demonstration uses two surface

  12. Mirror agnosia.

    PubMed

    Ramachandran, V S; Altschuler, E L; Hillyer, S

    1997-05-22

    Normal people rarely confuse the mirror image of an object with a real object so long as they realize they are looking into a mirror. We report a new neurological sign, 'mirror agnosia', following right parietal lesions in which this ability is severely compromised. We studied four right hemisphere stroke patients who had left visual field 'neglect'. i.e. they were indifferent to objects in their left visual field even though they were not blind. We then placed a vertical parasagittal mirror on each patients' right so that they could clearly see the reflection of objects placed in the (neglected) visual field. When shown a candy or pen on their left, the patients kept banging their hand into the mirror or groped behind it attempting to grab the reflection; they did not reach for the real object on the left, even though they were mentally quite lucid and knew they were looking into a mirror. Remarkably, all four patients kept complaining that the object was 'in the mirror', 'outside my reach' or 'behind the mirror'. Thus, even the patients' ability to make simple logical inferences about mirrors has been selectively warped to accommodate the strange new sensory world that they now inhabit. The finding may have implications for understanding how the brain creates representations of mirror reflections.

  13. Mirror agnosia.

    PubMed Central

    Ramachandran, V S; Altschuler, E L; Hillyer, S

    1997-01-01

    Normal people rarely confuse the mirror image of an object with a real object so long as they realize they are looking into a mirror. We report a new neurological sign, 'mirror agnosia', following right parietal lesions in which this ability is severely compromised. We studied four right hemisphere stroke patients who had left visual field 'neglect'. i.e. they were indifferent to objects in their left visual field even though they were not blind. We then placed a vertical parasagittal mirror on each patients' right so that they could clearly see the reflection of objects placed in the (neglected) visual field. When shown a candy or pen on their left, the patients kept banging their hand into the mirror or groped behind it attempting to grab the reflection; they did not reach for the real object on the left, even though they were mentally quite lucid and knew they were looking into a mirror. Remarkably, all four patients kept complaining that the object was 'in the mirror', 'outside my reach' or 'behind the mirror'. Thus, even the patients' ability to make simple logical inferences about mirrors has been selectively warped to accommodate the strange new sensory world that they now inhabit. The finding may have implications for understanding how the brain creates representations of mirror reflections. PMID:9178535

  14. Final Technical Report for SBIR entitled Four-Dimensional Finite-Orbit-Width Fokker-Planck Code with Sources, for Neoclassical/Anomalous Transport Simulation of Ion and Electron Distributions

    SciTech Connect

    Harvey, R. W.; Petrov, Yu. V.

    2013-12-03

    Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code which has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker

  15. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  16. A method of measuring the amplitude-modulated vacuum field near a conducting mirror

    NASA Technical Reports Server (NTRS)

    Youn, Sun-Hyun; Lee, Jai-Hyung; Chang, Joon-Sung

    1994-01-01

    Electromagnetic fields of the vacuum mode near a conducting mirror are modified with respect to those in free space, with their amplitudes having a sinusoidal spatial dependence from the mirror. Therefore if we combine this spatially amplitude-modulated vacuum field mode and intense coherent light with a beam splitter, we may detect this fluctuation of the vacuum mode in a homodyne detection scheme. It will give a new method to produce squeezed states of light with a single mirror placed close to an unused port of a beam splitter. We show that the amplitude fluctuation of the combined light can be reduced by a factor of 2 below that of the coherent light. We also discuss the limitations due to the finite line width of the laser and the effective absorption length of the photodiodes.

  17. Magic Mirrors

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    "Magic mirrors" were so named because, when they were positioned to throw a reflected patch of sunlight on a nearby wall, this area contained an outline of a design cast on the back of the (bronze) mirror. Investigations begun in the 19th century showed that this was a response to heavy localized pressures exerted on the face of the thin mirror…

  18. Slumped mirrors

    NASA Astrophysics Data System (ADS)

    Pteancu, Mircea; Dragan, Dorin; Dragan, Olivier; Miron, Andrei; Stanescu, Octavian

    2008-02-01

    The authors discusse the construction of slumped mirrors, their fabrication and testing (polishing and lapping). An important topic of the discussion is thermal fabrication of mirrors by using of matrixes. One of the authors of the entry is combining astronomy and aquariums construction.

  19. Why momentum width matters for atom interferometry with Bragg pulses

    NASA Astrophysics Data System (ADS)

    Szigeti, S. S.; Debs, J. E.; Hope, J. J.; Robins, N. P.; Close, J. D.

    2012-02-01

    We theoretically consider the effect of the atomic source's momentum width on the efficiency of Bragg mirrors and beamsplitters and, more generally, on the phase sensitivity of Bragg pulse atom interferometers. By numerical optimization, we show that an atomic cloud's momentum width places a fundamental upper bound on the maximum transfer efficiency of a Bragg mirror pulse, and furthermore limits the phase sensitivity of a Bragg pulse atom interferometer. We quantify these momentum width effects, and precisely compute how mirror efficiencies and interferometer phase sensitivities vary as functions of Bragg order and source type. Our results and methodology allow for an efficient optimization of Bragg pulses and the comparison of different atomic sources, and will help in the design of large momentum transfer Bragg mirrors and beamsplitters for use in atom-based inertial sensors.

  20. Einstein's Mirror

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  1. Quantum radiation force on the moving mirror of a cavity, with Dirichlet and Neumann boundary conditions for a vacuum, finite temperature, and a coherent state

    SciTech Connect

    Alves, Danilo T.; Silva, Hector O.; Lima, Mateus G.; Granhen, Edney R.

    2010-01-15

    We consider a real massless scalar field inside a cavity with a moving mirror in a two-dimensional spacetime, satisfying the Dirichlet or Neumann boundary condition at the instantaneous position of the boundaries, for an arbitrary and relativistic law of motion. Considering an arbitrary initial field state, we show that the exact value of the energy density in the cavity can be obtained by tracing back a sequence of null lines, connecting the value of the energy density at the given spacetime point to a certain known value of the energy density at a point in the region where the initial field modes are not affected by the boundary motion. We obtain the particular formulas for the energy density of the field and the quantum force acting on the boundaries for a vacuum, thermal, and a coherent state. We thus generalize a previous result in literature, where this problem is approached for only one mirror. For the particular cases of vacuum and Dirichlet boundary condition, nonrelativistic velocities, or in the limit of large length of the cavity, our results coincide with those found in the literature.

  2. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  3. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  4. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  5. Problems in Nonlinear Acoustics: Pulsed Finite Amplitude Sound Beams, Nonlinear Propagation of Sound in Layered Media, Time Domain Solutions for Focused Sound Beams, Focusing of Sound with an Ellipsoidal Mirror, and Modeling Finite Amplitude Propagation in Waveguides.

    DTIC Science & Technology

    1991-08-01

    Introduction of an article by Hamilton and TenCate . 5 In a real ocean environment, however, not only does sound penetrate the ocean bottom, but the...F. Hamilton and J. A. TenCate , "Finite amplitude sound near cutoff in higher-order modes of a rectangular duct," J. Acoust. Soc. Am. 84, 327-334

  6. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  7. Double arch mirror study. Part 2: Engineering analysis report

    NASA Technical Reports Server (NTRS)

    Iraninejad, B.; Vukobratovich, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, class mirror for infrared, astronomical telescopes was developed. A 50 cm, fused silica mirror was modified for use in a new mount configuration. The flexures and the finite element analysis of the mirror stresses are reported.

  8. Conicoid Mirrors

    ERIC Educational Resources Information Center

    Castano, Diego J.; Hawkins, Lawrence C.

    2011-01-01

    The first-order equation relating object and image location for a mirror of arbitrary conic-sectional shape is derived. It is also shown that the parabolic reflecting surface is the only one free of aberration and only in the limiting case of distant sources. (Contains 3 figures.)

  9. Mirror Support

    NASA Technical Reports Server (NTRS)

    Baron, Richard L. (Inventor)

    2013-01-01

    Disclosed herein is a method of making a mirror support comprising a composite, the composite comprising a plurality of carbon nanotubes, wherein at least two of the plurality of carbon nanotubes are bonded to each other through a bridging moiety bound to each of the two carbon nanotubes, and a laminate comprising the composite.

  10. Mirror, Mirror, on the Wall.

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, M. Annette

    1998-01-01

    Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)

  11. Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Ma, Lingwei; Li, Jianghao; Zhang, Zhengjun

    2017-03-01

    We present a careful numerical study of nanoparticle (NP) faceting, highlighting the great influence of small morphological changes of NP-mirror cavities on near-field enhancement in the nanoparticle-on-mirror (NPOM) system. Using a 3D finite element method (FEM) plasmon mapping method, the active transverse cavity modes can be confirmed. For the dominant mode, we have found that, by increasing the facet width, the resonance can be tuned linearly to the red with little decrease of the peak near-field intensity. It is further demonstrated that by increasing the NP size, the near-field intensity can be strongly enhanced. Understanding of such extreme optics benefits significantly both the optimized design of potential plasmonic devices and the fundamental understanding of nano-optics. Collaborative experimental considerations are expected with the rapid development of nanotechnology.

  12. Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement.

    PubMed

    Huang, Yu; Ma, Lingwei; Li, Jianghao; Zhang, Zhengjun

    2017-03-10

    We present a careful numerical study of nanoparticle (NP) faceting, highlighting the great influence of small morphological changes of NP-mirror cavities on near-field enhancement in the nanoparticle-on-mirror (NPOM) system. Using a 3D finite element method (FEM) plasmon mapping method, the active transverse cavity modes can be confirmed. For the dominant mode, we have found that, by increasing the facet width, the resonance can be tuned linearly to the red with little decrease of the peak near-field intensity. It is further demonstrated that by increasing the NP size, the near-field intensity can be strongly enhanced. Understanding of such extreme optics benefits significantly both the optimized design of potential plasmonic devices and the fundamental understanding of nano-optics. Collaborative experimental considerations are expected with the rapid development of nanotechnology.

  13. Mirror monochromator

    SciTech Connect

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  14. Mirror systems

    SciTech Connect

    Howells, M.R.

    1985-12-01

    The physics of VUV and x-ray reflection is reviewed. The main functions of mirrors in synchrotron beamlines are stated briefly and include deflection, filtration, power absorption, formation of a real image of the source, focusing, and collimation. Methods of fabrication of optical surfaces are described. Types of imperfections are discussed, including, aberrations, surface figure inaccuracy, roughness, and degradation due to use. Calculation of the photon beam thermal load, including computer modelling, is considered. 50 refs., 7 figs. (LEW)

  15. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  16. Chinese "Magic" Mirrors.

    ERIC Educational Resources Information Center

    Swinson, Derek B.

    1992-01-01

    Chinese "magic" mirrors are made from bronze with the front side a mirror and the reverse side a molded image. When light is reflected from the mirror,the image on the reverse side appears. Discusses reflections of conventional mirrors, possible explanations for the magic mirror phenomenon, and applications of the phenomenon to…

  17. Diatomic predissociation line widths

    NASA Technical Reports Server (NTRS)

    Child, M. S.

    1973-01-01

    Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.

  18. On horizonless temperature with an accelerating mirror

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Yelshibekov, Khalykbek; Ong, Yen Chin

    2017-03-01

    A new solution of a unitary moving mirror is found to produce finite energy and emit thermal radiation despite the absence of an acceleration horizon. In the limit that the mirror approaches the speed of light, the model corresponds to a black hole formed from the collapse of a null shell. For speeds less than light, the black hole correspondence, if it exists, is that of a remnant.

  19. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  20. Size Optimization for Mirror Segments for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Biskach, Michael P.; McClelland, Ryan S.; Saha, Timo; Zhang, William W.

    2011-01-01

    The flight mirror assemblies (FMA) for X-ray telescopes similar to that of the International X-ray Observatory (IXO) concept consist of several thousands of individual mirror segments. The size, shape, and location of these mirrors affect many characteristics of the telescope design. Mission requirements among other factors in turn restrict mirror segment parameters such as thickness, axial- length, azimuthal span, and mass density. This paper provides an overview of the critical relationships relating to mirror segment size and configuration throughout the design and analysis of an X-ray mirror assembly. A computational analysis is presented in the form of ray tracing pairs of thin X-ray mirror segments of varying sizes aligned in gravity and supported using kinematic constraints with corresponding self weight distortions calculated using finite element analysis (FEA). The work in this paper may be used as a starting point for determining mirror segment sizes for X-ray missions like that of IXO and beyond.

  1. Mirror Neurons and Mirror-Touch Synesthesia.

    PubMed

    Linkovski, Omer; Katzin, Naama; Salti, Moti

    2016-05-30

    Since mirror neurons were introduced to the neuroscientific community more than 20 years ago, they have become an elegant and intuitive account for different cognitive mechanisms (e.g., empathy, goal understanding) and conditions (e.g., autism spectrum disorders). Recently, mirror neurons were suggested to be the mechanism underlying a specific type of synesthesia. Mirror-touch synesthesia is a phenomenon in which individuals experience somatosensory sensations when seeing someone else being touched. Appealing as it is, careful delineation is required when applying this mechanism. Using the mirror-touch synesthesia case, we put forward theoretical and methodological issues that should be addressed before relying on the mirror-neurons account.

  2. Rigorous theory on elliptical mirror focusing for point scanning microscopy.

    PubMed

    Liu, Jian; Tan, Jiubin; Wilson, Tony; Zhong, Cien

    2012-03-12

    A rigorous elliptical mirror focusing formula based on spherical wave transformation is derived as a kind of imaging technique with high NA for potential applications in molecule imaging, spectroscopy and industrial artifact microscopy. An apodization factor is given and used to compare the energy conversation rules in lens transmission and parabolic and elliptical mirror reflections. Simulation results indicate that the axial HFWHM of elliptical and parabolic mirrors is about 80% of the corresponding HFWHM of lens in case of NA = 1 and φs = 0, and the side lobe noise is also slightly lower than that of lens, but the transverse HFWHM of mirrors is comparatively wider despite the width of main lobe is still smaller. In comparison with parabolic mirror based system, an elliptical mirror based system is potentially promising in aberration control of incident beam when the aperture of mirror is enlarged to adapt a large stage or specimen container at a small beam shading ratio.

  3. Solar simulator mirror refurbishment

    NASA Technical Reports Server (NTRS)

    Leverton, W. R.

    1974-01-01

    Solar simulator mirrors were refurbished. Two different refurbishment methods were employed. In the first, the electroformed mirror replica was removed from the casting and replaced with a new mirror replica. In the second, only the aluminized surface, with its protective overcoat, was removed from the mirror and replaced after cleaning of the nickel surface.

  4. Large thin adaptive x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  5. Supersymmetric defect models and mirror symmetry

    SciTech Connect

    Hook, Anson; Kachru, Shamit; Torroba, Gonzalo

    2013-11-01

    We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.

  6. Design of bipod flexures for space mirror

    NASA Astrophysics Data System (ADS)

    Chu, Chang-bo; Li, Ying-cai; Chai, Wen-yi; Fan, Xue-wu

    2011-08-01

    Bipod flexures are used in many high-precision space mirror mount applications. The flexures are used to provide moment isolation for the mirror to minimize surface figure distortion resulting from mount assembly error or distortion of the mount temperature-change-induced. In this paper, we developed a bipod flexure for the Zerodur primary mirror with diameter 520 mm and thickness 70 mm. The characteristic of the bipod flexure is the two-strip flexure on the top and bottom of each leg. By those, the bending stress in mirror resulting from the mount assembly is remarkably reduced. Thanking to a semi-open structure with small mouth and big stomach in the back and a six parts symmetrical honeycomb structure for the primary mirror, using the FEA (Finite Element Analysis) method we analyze that how the axial and circumferential locations of the three bipod flexures impact mirror surface figure and gain the better result after optimization. In the design of the detail bipod flexures, thickness of the blade is analyzed and compared; also we achieve an optimization design. The two results demonstrate that the bipod flexures could keep the precision of the mirror surface figure under the load of external force and thermal constraints and meanwhile they could keep stability of structure.

  7. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, Thomas C.

    1995-01-01

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis.

  8. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  9. Quality evaluation of spaceborne SiC mirrors (I): analytical examination of the effects on mirror accuracy by variation in the thermal expansion property of the mirror surface.

    PubMed

    Kotani, Masaki; Imai, Tadashi; Katayama, Haruyoshi; Yui, Yukari; Tange, Yoshio; Kaneda, Hidehiro; Nakagawa, Takao; Enya, Keigo

    2013-07-10

    The Japan Aerospace Exploration Agency has studied a large-scale lightweight mirror constructed of reaction-bonded silicon carbide-based material as a key technology in future astronomical and earth observation missions. The authors selected silicon carbide as the promising candidate due to excellent characteristics of specific stiffness and thermal stability. One of the most important technical issues for large-scale ceramic components is the uniformity of the material's property, depending on part and processing. It might influence mirror accuracy due to uneven thermal deformation. The authors conducted systematic case studies for the conditions of CTE by finite element analysis to know the typical influence of material property nonuniformity on mirror accuracy and consequently derived a comprehensive empirical equation for the series of CTE's main factors. In addition, the authors computationally reproduced the mirror accuracy profile of a small prototype mirror shown in cryogenic testing and hereby verified wide-range practical computational evaluation technology of mirror accuracy.

  10. Lightweight Mirror Developments

    NASA Astrophysics Data System (ADS)

    Genet, Russell; Aurigema, Andrew; Badger, Steve; Bartels, Mel; Brodhacker, K. Lisa; Canestrari, Rodolfo; Chen, Peter; Connelley, Mike; Davis, David; Ghigo, Mauro; Jones, Greg; Liu, Tong; Mendex, Eric; Pareschi, Giovanni; Richardson, Terry; Rowe, David; Schmidt, Josh; Shah, Kiran; Villasenor, Efrain

    2009-05-01

    One goal of the Alt-Az Initiative is the development of transportable 1.5 meter class research telescopes. To this end, several Initiative members are developing lightweight, low cost, primary mirrors. Both multiple and single mirror telescope configurations are being considered. Thin meniscus mirrors are being slumped, and approaches for actively correcting these thin mirrors are being investigated. Sandwich mirrors with glass spacers and others with Foamglas cores are under development. Nanocomposite, polyurethane, and glass replica mirrors, which do not require optical grinding or figuring during production, are being evaluated. Finally, spin-cast polymer mirrors are being explored. Although several of these mirror developments are still very experimental, and some may only be useful in optically undemanding applications such as on-axis aperture near IR photometry or low resolution spectroscopy, it is our hope that these efforts will enable the development of transportable, low cost, lightweight, 1.5 meter class telescopes.

  11. Lightweight Zerodur Mirror Technology

    DTIC Science & Technology

    1982-10-01

    17 September 1981 Contract Expiration Date: 15 May 1982 Short Title of Work: Lightweight Zerodur Mirror Technology Program Code Number: 1LIO Period of...iepRA LIGHTWEIGHT ZERODUR MIRROR TECHNOLOGY 21 Sep 81 - 21 May 82 1. PERFORMING 0,10. REPORT NUMWERn 15512 7: AUTHOR(*J S. CONTRACT OR GRANT NUMSER[JlII...1S. KIEV WORDS (Continue on reverse aide If necesery 1nd Identify b? block nwi nhm ) Zerodur Lightweight Mirrors Mirror Blank Fabrication Frit

  12. Durable solar mirror films

    DOEpatents

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  13. The Width of a Proof

    ERIC Educational Resources Information Center

    Hanna, Gila

    2014-01-01

    This paper's aim is to discuss the concept of width of a proof put forward by Timothy Gowers. It explains what this concept means and attempts to show how it relates to other concepts discussed in the existing literature on proof and proving. It also explores how the concept of width of a proof might be used productively in the mathematics…

  14. Phase width reduction project summary

    SciTech Connect

    Clark, D.J.; Xie, Z.Q.; McMahan, M. A.

    1999-11-01

    The purpose of the phase width reduction project, 1993--96, was to reduce the phase width of the 88-Inch Cyclotron beam on target from 5--10 ns to 1--2 ns for certain experiments, such as Gammasphere, which use time-of-flight identification. Since reducing the phase width also reduces beam intensity, tuning should be done to also optimize the transmission. The Multi-turn Collimator slits in the cyclotron center region were used to collimate the early turns radially, thus reducing the phase width from about 5 ns to 1--2 ns FWHM for a Gammasphere beam. The effect of the slits on phase width was verified with a Fast Faraday Cup and with particle and gamma-ray detectors in the external beamline.

  15. Semitransparency effects in the moving mirror model for Hawking radiation

    SciTech Connect

    Nicolaevici, Nistor

    2009-12-15

    We discuss the particle production due to a semitransparent mirror accelerating on the trajectories which simulate the Hawking effect. We find in accordance with a previous result 3 that the number of emitted particles up to infinite times remains finite, but in contrast to the cited paper, we obtain that for large, but finite reflectivities of the mirror, the radiated spectrum is Bose-Einstein and not Fermi-Dirac. We compare the beta coefficients {beta}({omega}{sup '},{omega}) for the perfectly reflecting and the semitransparency case and point out the differences in the sector of large frequencies {omega}{sup '}. For the perfect mirror, the source of the infinite number of particles are the frequencies {omega}{sup '}{yields}{infinity}, while for the semitransparent one this contribution is eliminated due to the cutoff effects introduced by the finite barrier energy of the mirror.

  16. Nonlinear Temperature Dependent Failure Analysis of Finite Width Composite Laminates.

    DTIC Science & Technology

    1979-12-01

    tangent modulii obtained by Ramberg-Osgood parameters. It is shown that a’ring stresses and stresses due to tensile loading are significant as edge ... effect in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is

  17. Multilayer active shell mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy

    2016-07-01

    A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (< 1.0 mm), lightweight (2.7 kg/m2), and have large actuation capabilities. These capabilities, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).

  18. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  19. Flute waves in a tandem mirror

    SciTech Connect

    Mikhailovskaya, L.V.

    1984-03-01

    Stability conditions are derived for flute waves in a short tandem mirror stabilized by end cells with a min B. The frequency spectrum of the flute waves is analyzed. Those conditions under which the resonant excitation of waves by ions and electrons must be taken into account are found. When end cells without a min B are added to a central mirror system, the system becomes destabilized as the result of resonant excitation of waves at a frequency near the precession frequency of ions having a finite energy distribution.

  20. Topology optimization design of space rectangular mirror

    NASA Astrophysics Data System (ADS)

    Qu, Yanjun; Wang, Wei; Liu, Bei; Li, Xupeng

    2016-10-01

    A conceptual lightweight rectangular mirror is designed based on the theory of topology optimization and the specific structure size is determined through sensitivity analysis and size optimization in this paper. Under the load condition of gravity along the optical axis, compared with the mirrors designed by traditional method using finite element analysis method, the performance of the topology optimization reflectors supported by peripheral six points are superior in lightweight ratio, structure stiffness and the reflective surface accuracy. This suggests that the lightweight method in this paper is effective and has potential value for the design of rectangular reflector.

  1. Optical fabrication of lightweighted 3D printed mirrors

    NASA Astrophysics Data System (ADS)

    Herzog, Harrison; Segal, Jacob; Smith, Jeremy; Bates, Richard; Calis, Jacob; De La Torre, Alyssa; Kim, Dae Wook; Mici, Joni; Mireles, Jorge; Stubbs, David M.; Wicker, Ryan

    2015-09-01

    Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.

  2. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  3. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  4. Plastic Deformation in Profile-Coated Elliptical KB Mirrors

    DOE PAGES

    Liu, Chian; Conley, R.; Qian, J.; ...

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now, precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si-, Au-, and Pt-coated KB mirrors under prolonged synchrotron X-ray radiation and low-temperature vacuum annealing will be discussed in terms of film stress relaxation and Si plastic deformation.

  5. Laser correcting mirror

    DOEpatents

    Sawicki, Richard H.

    1994-01-01

    An improved laser correction mirror (10) for correcting aberrations in a laser beam wavefront having a rectangular mirror body (12) with a plurality of legs (14, 16, 18, 20, 22, 24, 26, 28) arranged into opposing pairs (34, 36, 38, 40) along the long sides (30, 32) of the mirror body (12). Vector force pairs (49, 50, 52, 54) are applied by adjustment mechanisms (42, 44, 46, 48) between members of the opposing pairs (34, 36, 38, 40) for bending a reflective surface 13 of the mirror body 12 into a shape defining a function which can be used to correct for comatic aberrations.

  6. Width effects in transonic flow over a rectangular cavity

    DOE PAGES

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...

    2015-07-24

    A previous experiment by the present authors studied the flow over a finite-width rectangular cavity at freestream Mach numbers 1.5–2.5. In addition, this investigation considered the influence of three-dimensional geometry that is not replicated by simplified cavities that extend across the entire wind-tunnel test section. The latter configurations have the attraction of easy optical access into the depths of the cavity, but they do not reproduce effects upon the turbulent structures and acoustic modes due to the length-to-width ratio, which is becoming recognized as an important parameter describing the nature of the flow within narrower cavities.

  7. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  8. Fixed-Width Confidence Intervals in Linear Regression with Applications to the Johnson-Neyman Technique.

    ERIC Educational Resources Information Center

    Aitkin, Murray A.

    Fixed-width confidence intervals for a population regression line over a finite interval of x have recently been derived by Gafarian. The method is extended to provide fixed-width confidence intervals for the difference between two population regression lines, resulting in a simple procedure analogous to the Johnson-Neyman technique. (Author)

  9. Splayed mirror light pipes

    SciTech Connect

    Swift, P.D.

    2010-02-15

    An expression is given for the transmission of the rectangular-section mirror light pipe. The expression is used to model throughputs for simulated solar conditions over a calender year. It is found that the splaying of a mirror light pipe results in a significant increase in throughputs particularly in winter months. (author)

  10. Corticospinal mirror neurons.

    PubMed

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  11. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  12. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  13. Bronze rainbow hologram mirrors

    NASA Astrophysics Data System (ADS)

    Dawson, P.

    2006-02-01

    This project draws on holographic embossing techniques, ancient artistic conventions of bronze mirror design and modelling and casting processes to accomplish portraiture of reflection. Laser scanning, 3D computer graphics and holographic imaging are employed to enable a permanent 3D static holographic image to appear integrated with the real-time moving reflection of a viewer's face in a polished bronze disc. The disc and the figure which holds it (caryatid) are cast in bronze from a lost wax model, a technique which has been used for millennia to make personal mirrors. The Caryatid form of bronze mirror which went through many permutations in ancient Egyptian, Greece and Rome shows a plethora of expressive figure poses ranging from sleek nudes to highly embellished multifigure arrangements. The prototype of this series was made for Australian choreographer Graeme Murphy, Artistic Director of the Sydney Dance Company. Each subsequent mirror will be unique in figure and holographic imagery as arranged between artist and subject. Conceptually this project references both the modern experience of viewing mirrors retrieved from ancient tombs, which due to deterioration of the surface no longer reflect, and the functioning of Chinese Magic mirrors, which have the ability to project a predetermined image. Inspired by the metaphorical potential of these mirrors, which do not reflect the immediate reality of the viewer, this bronze hologram mirror series enables each viewer to reflect upon himself or herself observing simultaneously the holographic image and their own partially obliterated reflection.

  14. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  15. Mirror writing and handedness.

    PubMed

    Tucha, O; Aschenbrenner, S; Lange, K W

    2000-07-01

    It has been reported that left-handed subjects are better able to write in mirror-reversed script than right-handers (Tankle & Heilman, 1983). Vaid and Stiles Davis (1989) conducted studies which led them to contradict the supposed superiority of left-handers in this area. In these studies, left as well as right-handed subjects were examined under normal- and mirror-writing conditions. Both examinations included the analysis of writing time and the accuracy of mirror writing (error rates). Using a digitizing tablet, we examined normal- and mirror-writing performance of left-handers, right-handers, and left-handed subjects who habitually write with their right hand. Our results support the finding of Tankle and Heilman (1983) that left-handers perform better in mirror-writing tasks.

  16. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  17. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  18. Masses, widths, and leptonic widths of the higher upsilon resonances

    NASA Astrophysics Data System (ADS)

    Lovelock, D. M.; Horstkotte, J. E.; Klopfenstein, C.; Lee-Franzini, J.; Romero, L.; Schamberger, R. D.; Youssef, S.; Franzini, P.; Son, D.; Tuts, P. M.; Zhao, T.; Herb, S.; Dietl, H.; Eigen, G.; Fonseca, V.; Lorenz, E.; Mageras, G.; Han, K.; Imlay, R.; Metcalf, W.; Sreedhar, V.

    1985-02-01

    The masses, total widths, and leptonic widths of three triplet s-wave bb¯ states Υ(4S), Υ(5S), and Υ(6S) are determined from measurements of the e+e- annihilation cross section into hadrons for 10.55

  19. Relation between index finger width and hand width anthropometric measures.

    PubMed

    Komandur, Sashidharan; Johnson, Peter W; Storch, Richard L; Yost, Michael G

    2009-01-01

    Measures of hand and finger anthropometry are very important for designing many hand held devices as well as understanding anthropometric effects on the operation of such devices. Many historical datasets have measured and recorded gross hand dimensions but do not often record the finer dimensions of the hand such as finger anthropometry. Knowing the size and mass of fingers across genders can be critical to the design and operation of hand held devices. In this paper we compare two empirical linear models that predicts index finger width at the proximal interphalangeal (PIP) joint (a finger anthropometric measure) based on hand-width (hand anthropometric measure). This will be especially useful for deriving population measures of finger anthropometry from large historical data sets where only gross hand dimensions are available.

  20. Performance analysis of a mirror by numerical iterative method.

    PubMed

    Park, Kwijong; Cho, Myung; Lee, Dae-Hee; Moon, Bongkon

    2014-12-29

    Zernike polynomials are generally used to predict the optical performance of a mirror. However, it can also be done by a numerical iterative method. As piston, tip, tilt, and defocus (P.T.T.F) aberrations can be easily removed by optical alignment, we iteratively used a rotation transformation and a paraboloid graph subtraction for removal of the aberrations from a raw deformation of the optical surface through a Finite Element Method (FEM). The results of a 30 cm concave circular mirror corrected by the iterative method were almost the same as those yielded by Zernike polynomial fitting, and the computational time was fast. In addition, a concave square mirror whose surface area is π was analyzed in order to visualize the deformation maps of a general mirror aperture shape. The iterative method can be applicable efficiently because it does not depend on the mirror aperture shape.

  1. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  2. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  3. Controllable Mirror Devices

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A deformable Mirror Device (DMD) is a type of spatial light modulator in which mirrors fabricated monolithically on a silicon chip are deformed, or tilted, under electronic control to change the direction of light that falls upon the mirror. NASA and Texas Instruments (TI) have worked to develop this technology, which has subsequently been commercialized by TI. Initial application is the DMD 2000 Travel Information Printer for high speed, high volume printing of airline tickets and boarding passes. Other possible applications range from real-time object tracking to advanced industrial machine vision systems.

  4. NIF small mirror mount

    SciTech Connect

    McCarville, T

    1999-07-01

    A number of small mirror mounts have been identified that meet the stringent stability, wave front, and cleanliness standards of the NIF. These requirements are similar to those required in other performance critical optical design applications. Future design teams would conserve time and effort if recognized standards were established for mirror mount design and performance characteristics. Standards for stability, physical features, wave front distortion, and cleanliness would simplify the qualification process considerably. At this point such standards are not difficult to define, as the technical support work has been performed repeatedly by mirror mount consumers and suppliers.

  5. Mirror plasma apparatus

    DOEpatents

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  6. Lightweight mirror construction optimization

    NASA Astrophysics Data System (ADS)

    Mooney, J. T.; Allen, M. A.; Bolton, J.; Dahl, R. J.; Lintz, E. A.

    2015-10-01

    Large, lightweight mirrors are a critical component in space based imaging applications. These mirrors have traditionally required long manufacturing cycle times with associated high costs. In this paper, the key cost and schedule drivers for the production of large, lightweight mirrors will be reviewed along with enabling solutions that could provide significant cost and schedule reductions while maintaining the high quality performance required for these challenging applications. The technologies include advancements in replication, construction, and bonding. Initial feasibility tests and associated results will be presented.

  7. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Width. 658.15 Section 658.15 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width...

  8. The Rotating Mirror.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1981-01-01

    Discusses theory of the rotating mirror, its use in measuring the velocity of the electrical signal in wires, and the velocity of light. Concludes with a description of the manometric flame apparatus developed for analyzing sound waves. (SK)

  9. JWST Mirror Installation

    NASA Video Gallery

    The first six of 18 hexagonal shaped segments that will form NASA’s James Webb Space Telescope’s primary mirror for space observations were readied this week to begin final cryogenic testing at...

  10. The Athena Mirror

    NASA Astrophysics Data System (ADS)

    Wille, Eric

    2016-07-01

    The Athena mission (Advanced Telescope for High Energy Astrophysics) requires lightweight X-ray Wolter optics with a high angular resolution and large effective area. For achieving an effective area of 2 m^2 (at 1 keV) and an angular resolution of below 5 arcsec, the Silicon Pore Optics technology was developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the current design of the Athena mirror concentrating on the technology development status of the Silicon Pore Optics, ranging from the manufacturing of single mirror plates towards complete focusing mirror modules and their integration into the mirror structure.

  11. Predicting Print-thru for the Sub-scale Beryllium Mirror Demonstrator (SBMD)

    NASA Technical Reports Server (NTRS)

    Craig, Larry; J. Kevin Russell (Technical Monitor)

    2002-01-01

    This document presents a finite element method for predicting print-thru or quilting for a lightweight mirror in a low temperature environment. The mirror is represented with quadrilateral and triangular plate finite elements. The SBMD (Sub-scale Beryllium Mirror Demonstrator) is circular with a diameter of 50 cm and one flat side. The mirror structure is a thin-wall triangular cell core with a single facesheet. There is a 4 mm radius fillet between the facesheet and cell walls. It is made entirely of Beryllium. It is assumed that polishing the mirror surface creates a thin surface layer with different material properties. Finite element results are compared with measured values at cryogenic temperatures.

  12. Optical Performance Modeling of FUSE Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren

    2000-01-01

    We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence

  13. Mirror contamination in space I: mirror modelling

    NASA Astrophysics Data System (ADS)

    Krijger, J. M.; Snel, R.; van Harten, G.; Rietjens, J. H. H.; Aben, I.

    2014-10-01

    We present a comprehensive model that can be employed to describe and correct for degradation of (scan) mirrors and diffusers in satellite instruments that suffer from changing optical Ultraviolet to visible (UV-VIS) properties during their operational lifetime. As trend studies become more important, so does the importance of understanding and correcting for this degradation. This is the case not only with respect to the transmission of the optical components, but also with respect to wavelength, polarisation, or scan-angle effects. Our hypothesis is that mirrors in flight suffer from the deposition of a thin absorbing layer of contaminant, which slowly builds up over time. We describe this with the Mueller matrix formalism and Fresnel equations for thin multi-layer contamination films. Special care is taken to avoid the confusion often present in earlier publications concerning the Mueller matrix calculus with out-of-plane reflections. The method can be applied to any UV-VIS satellite instrument. We illustrate and verify our approach to the optical behaviour of the multiple scan mirrors of SCIAMACHY (onboard ENVISAT).

  14. Mirror Attachment For Borescope

    NASA Technical Reports Server (NTRS)

    Gearhart, John F.; Peloquin, James E.

    1994-01-01

    Attachment for articulated borescope provides views into small, normally inaccessible spaces. Simple small round mirror on extension arm welded to borescope head. Tilted at angle to axis of borescope head, mirror provides views sideways to borescope head. Disassembly of turbopump blades not necessary to enable fluorescent-penetrant-dye inspection. Attachment used to inspect difficult-to-reach internal parts of other assemblies. Also used for inspection with ordinary white light.

  15. Towards a better mirror

    NASA Technical Reports Server (NTRS)

    Hoffer, David

    1987-01-01

    Telesat's Getaway Special competition was designed to promote interest in space among high school students in Canada. The winning entry proposed the manufacture of mirrors in microgravity and to compare the optical properties of these mirrors with similar ones made on Earth. Telesat engineers designed and built the experiment which flew on the Atlantic shuttle on November 27, 1985. This paper outlines the design evolution, its implementation, the manufacture and test of the GAS and the results of the experiment.

  16. Lightweight design of the rectangular mirror using topology optimization

    NASA Astrophysics Data System (ADS)

    Xiang, Meng; Li, Fu

    2014-09-01

    That minimizing the mass of space optical remote sensor at the same time guaranteeing of structural rigidity and surface shape accuracy, became a new critical research topic. This paper achieves detailed design of meniscus rectangular lens body structure by taking the choice of materials, design of supporting structure and lightweight form of mirror into account. And we established lightweight concrete of the mirror under self-weight by the method of topological optimization design. For the optimization, we used a 3-D model of the rectangular mirror and calculated based on that making minimum weight of the mirror as an objective function constrained by the displacement of the mirror surface. Finally finite element analysis method was adopted to get the optimization results analyzed and compared with the traditional triangular lightweight model. Analysis results prove that: the new mirror is superior to the traditional model in surface accuracy and structural rigidity, PV value, RMS value and the lightweight rate. With enough high dynamic-static stiffness and thermal stability, this kind of mirror can meet the demand under the self-weight and the random vibration environment respectively. So this article puts forward a new idea in the lightweight design of rectangular mirror.

  17. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  18. Afocal two-mirror system

    NASA Astrophysics Data System (ADS)

    Puryaev, Daniil T.

    1993-06-01

    With mirrors of any aperture, the afocal two-mirror system has no spherical aberration. One mirror is spherical, and the other mirror is always an aspherical surface that is equidistant to the virtual parabolic mirror, the focal length of the latter being equal to the air separation between the mirrors. Therefore, a possibility exists of inspecting the aspherical surface shape by means of the known testing methods of the parabolic mirror. The system under consideration has some important technological advantages in comparison with the well-known Mersen system.

  19. Opto-Mechanics of the Constellation-X SXT Mirrors: Challenges in Mounting and Assembling the Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, WIlliam W.; Saha, Timo; Lehan, John P.; Mazzarella, James; Lozipone, Lawrence; Hong, Melinda; Byron, Glenn

    2008-01-01

    The Constellation-X Spectroscopy X-Ray Telescopes consists of segmented glass mirrors with an axial length of 200 mm, a width of up to 400 mm, and a thickness of 0.4 mm. To meet the requirement of less than 15 arc-second half-power diameter with the small thickness and relatively large size is a tremendous challenge in opto-mechanics. How shall we limit distortion of the mirrors due to gravity in ground tests, that arises from thermal stress, and that occurs in the process of mounting, affixing and assembling of these mirrors? In this paper, we will describe our current opto-mechanical approach to these problems. We will discuss, in particular, the approach and experiment where the mirrors are mounted vertically by first suspending it at two points.

  20. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  1. Helically linked mirror arrangement

    SciTech Connect

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average ..beta.. and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned.

  2. Physics of mirror systems

    SciTech Connect

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies.

  3. White Light Focusing Mirror

    NASA Astrophysics Data System (ADS)

    Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Sullivan, Michael; Chance, Mark; Abel, Don; Toomey, John; Hulbert, Steven

    2007-01-01

    The NSLS X28C white-light beamline is being outfitted with a focusing mirror in order to increase, as well as control, the x-ray intensity at the sample position. The new mirror is a 50 mm × 100 mm × 1100 mm single crystal silicon cylindrical 43.1mm radius substrate bendable to a toroid from infinite to 1200 m radius. The unique feature of this mirror system is the dual use of Indalloy 51 as both a mechanism for heat transfer and a buoyant support to negate the effects of gravity. The benefit of the liquid metal support is the ability to correct for minor slope errors that take the form of a parabola. A bobber mechanism is employed to displace the fluid under the mirror +/- 1.5 mm. This allows RMS slope error correction on the order of 2 urad. The unique mounting of the mirror ensures the contributions to slope error from errant mechanical stresses due to machining tolerances are virtually non-existent. After correction, the surface figure error (measured minus ideal) is <= 0.5 urad rms.

  4. Active optics for high-dynamic variable curvature mirrors.

    PubMed

    Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard R; Madec, Fabrice; Vives, Sébastien; Chardin, Elodie; Le Mignant, David; Cuby, Jean-Gabriel

    2009-10-01

    Variable curvature mirrors of large amplitude are designed by using finite element analysis. The specific case studied reaches at least a 800 mum sag with an optical quality better than lambda/5 over a 120 mm clear aperture. We highlight the geometrical nonlinearity and the plasticity effect.

  5. Model Uncertainty and Test of a Segmented Mirror Telescope

    DTIC Science & Technology

    2014-03-01

    For space telescopes this diameter is restricted by the payload shroud of the launch vehicle . Additionally, mirror weight can potentially exceed...and Steering (VISS) project and 2003 Satellite Ultraquiet Isolation Technology Experiment (SUITE), implementing vibration suppression through both...Aeronautics and Astronautics 61 Optical performance due to vibration can be predicted from finite element analysis and verified with system modal

  6. Smart materials optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas M.

    2014-08-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes embedded in an epoxy matrix. CNT/epoxy is a multifunctional or `smart' composite material that has sensing capabilities and can be made to incorporate self-actuation as well. Moreover, since the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and 3D printing. The technology therefore holds promise for development of a new generation of lightweight, compact `smart' telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics. We discuss possible paths for future development.

  7. Structural and optical properties for typical solid mirror shapes

    NASA Technical Reports Server (NTRS)

    Cho, Myung K.; Richard, Ralph M.

    1990-01-01

    A method is developed to determine the weight, center of gravity, areal properties, and mass inertial properties for typical mirrors. A number of support conditions were considered to examine optical surface deflections, surface quality, and fundamental natural frequency for single- and double-arch mirror shapes. Structural performance estimates were made with the NASTRAN program, and optical performances were evaluated with the FRINGE program, using an SXA 40-in mirror. To show the behavior of element types from the NASTRAN program, finite element validity and sensitivity studies were performed in optical model applications. Material parameters, contoured back shapes, and support locations are shown to have significant effects on structural and optical performances. Optimal support locations and support points are given. Fundamental natural frequencies for some shapes are found with the closed-form solution. The plate models results may not be acceptable for determining real mirror optical performances.

  8. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads.

  9. Diffraction Theory of Two-Mirror Echelette Resonators

    NASA Astrophysics Data System (ADS)

    Vlasov, S. N.; Koposova, E. V.

    2016-09-01

    We develop the theory of a two-mirror resonator, in which one mirror is an echelette diffraction grating. The diffraction loss related to the finite sizes of the mirrors, the loss determined by the existence of a mirror diffraction maximum of the grating (coupling loss), and the ohmic loss are taken into account. We show the possibility of constructing a resonator with one high-Q mode in a wide frequency band. This mode can be used as the working mode of a gyrotron operated at the second gyrofrequency harmonic, which interacts efficiently with the electron beam. We also demonstrate the possibility of frequency tuning of the resonator in a frequency band of 1%, while retaining the parameters which are satisfactory for gyrotron operation, and a high degree of resonator selectivity (i.e., the presence of a single mode).

  10. Thermal-mechanical behavior of high precision composite mirrors

    NASA Astrophysics Data System (ADS)

    Kuo, C. P.; Lou, M. C.; Rapp, D.

    1993-04-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.

  11. Unit moment analysis as a guide to mirror mount design

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Coronato, Patrick

    2015-09-01

    Unit moment analysis minimizes the computational overhead associated with mirror mount design. Since mirrors operate in the linear domain with respect to stress/strain, it is possible to use the principle of superposition to determine overall optical surface deflection from a variety of sources. Surface deflection is calculated by FEA (finite element analysis) when applying unit loads at single mounting point. Deflection coefficients relating moments with surface deflection can be derived from the results of this analysis. These deflection coefficients are then applied, using the principle of superposition, to find the maximum tolerable moments associated with the mirror mount. Finally, manufacturing tolerances as well as environmental effects can be included to determine the required mirror mount compliance. This design approach is applicable to a wide range of mounting types, including classical kinematic and flexure mounts.

  12. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Width, as an element of quality, does not apply to tobacco in strip form. (See Elements of Quality Chart... Heavy Fleshy Medium Thin Oil Lean Oily Rich Color intensity Pale Weak Moderate Strong Deep. Width... quality...

  13. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Width, as an element of quality, does not apply to tobacco in strip form. (See Elements of Quality Chart... Heavy Fleshy Medium Thin Oil Lean Oily Rich Color intensity Pale Weak Moderate Strong Deep. Width... quality...

  14. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  15. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  16. Transition Metal Switchable Mirror

    SciTech Connect

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  17. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  18. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  19. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  20. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  1. Paranal Receives New Mirror

    NASA Astrophysics Data System (ADS)

    2008-04-01

    A 4.1-metre diameter primary mirror, a vital part of the world's newest and fastest survey telescope, VISTA (the Visible and Infrared Survey Telescope for Astronomy) has been delivered to its new mountaintop home at Cerro Paranal, Chile. The mirror will now be coupled with a small camera for initial testing prior to installing the main camera in June. Full scientific operations are due to start early next year. VISTA will form part of ESO's Very Large Telescope facility. ESO PR Photo 10d/08 ESO PR Photo 10d/08 The VISTA Mirror The mirror arrived over the Easter weekend at the Paranal Observatory where the telescope is being assembled at an altitude of 2518m, in Chile's Atacama Desert. VISTA Project Manager Alistair McPherson from STFC's UK Astronomy Technology Centre (UK ATC) accompanied the mirror on its journey to Chile: "This is a major milestone for the VISTA project. The precious mirror was loaded on to a plane in a special cradle that used tennis balls to cushion it from impact for its arduous journey across three continents. " "The mirror had a difficult four-day journey, by air and by road. It arrived in perfect condition and now that it has been coated, we will install the mirror in the telescope with a small test camera for about four weeks testing. We plan to install the main camera in June," said the Project Scientist on VISTA, Will Sutherland of Queen Mary, University of London, UK. The VISTA 4.1-metre diameter primary mirror is the most strongly curved large mirror ever polished to such a precise and exacting surface accuracy - deviations from a perfect surface of less than 1/3000th of the thickness of a human hair. On arrival at Cerro Paranal it was safely craned into the telescope dome where it was washed and coated with a thin layer of protected silver in the facility's coating plant. Silver is the best metal for the purpose since it reflects over 98% of near-infrared light, better than the more commonly used aluminium. To date, the reflectivity

  2. Next Generation Lightweight Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William; Fitzgerald, Matthew; Stahl, Philip

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible.

  3. Next-Generation Lightweight Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, Phil

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible

  4. Next Generation Lightweight Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, H. Philip

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.

  5. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  6. Apparatus and process for removing a predetermined portion of reflective material from mirror

    DOEpatents

    Perry, Stephen J.; Steinmetz, Lloyd L.

    1994-01-01

    An apparatus and process are disclosed for removal of a stripe of soft reflective material of uniform width from the surface of a mirror by using a blade having a large included angle to inhibit curling of the blade during the cutting operation which could result in damage to the glass substrate of the mirror. The cutting blade is maintained at a low blade angle with respect to the mirror surface to produce minimal chipping along the cut edge and to minimize the force exerted on the coating normal to the glass surface which could deform the flat mirror. The mirror is mounted in a cutting mechanism containing a movable carriage on which the blade is mounted to provide very accurate straightness of the travel of the blade along the mirror.

  7. Thermal tuning of omnidirectional reflection bands in one-dimensional finite phononic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Zhaojiang

    2015-03-01

    This study investigates the temperature-tuned omnidirectional reflection (ODR) bands in a one-dimensional (1D) finite phononic crystal (PnC), formed by alternating layers of nitinol and epoxy. An analytical model, based on the transfer matrix method, is developed to study reflection and transmission characteristics of the acoustic waves including shear and compressional waves in a 1D PnC. Existence criteria and the sensitive and continuous temperature-tunability of ODR bands in the nitinol/epoxy PnC are demonstrated using the analyses of projected-band structures and reflection spectra. The width and location of the ODR bands shift markedly with temperature variations of nitinol across the phase transition from martensite to austenite. The effects of temperature, filling fraction of nitinol layers, and the Si clad layer on ODR bands are considered. The results will be of benefit in the design and optimization of thermal tuning of omnidirectional acoustic mirrors.

  8. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  9. Hexagonal Mirror Array

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  10. Hexagonal Mirror Array

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  11. Rearview Mirror Dimming Function

    ERIC Educational Resources Information Center

    Layton, William

    2011-01-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge. An alternate explanation is given.

  12. Secondary mirror support (LST)

    NASA Technical Reports Server (NTRS)

    Schmidt, E. E.

    1973-01-01

    Large structural mirror supports which meet the stiff requirements for launch and orbit operations in particular, dimensionally stable structures made of titanium alloy, can be manufactured with present day technology and at reasonable cost. With continuing research and development in this area, designs of astronomical telescopes and related earth observatory satellites should benefit from this knowledge.

  13. Rearview Mirror Dimming Function

    NASA Astrophysics Data System (ADS)

    Layton, William

    2011-12-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge.2 An alternate explanation is given below:

  14. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  15. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  16. Lattice QCD calculation of the {rho} meson decay width

    SciTech Connect

    Aoki, S.; Fukugita, M.; Ishikawa, K-I.; Okawa, M.; Ishizuka, N.; Kuramashi, Y.; Ukawa, A.; Yoshie, T.; Kanaya, K.; Namekawa, Y.; Sasaki, K.

    2007-11-01

    We present a lattice QCD calculation of the {rho} meson decay width via the P-wave scattering phase shift for the I=1 two-pion system. Our calculation uses full QCD gauge configurations for N{sub f}=2 flavors generated using a renormalization group improved gauge action and an improved Wilson fermion action on a 12{sup 3}x24 lattice at m{sub {pi}}/m{sub {rho}}=0.41 and the lattice spacing 1/a=0.92 GeV. The phase shift calculated with the use of the finite size formula for the two-pion system in the moving frame shows a behavior consistent with the existence of a resonance at a mass close to the vector meson mass obtained in spectroscopy. The decay width estimated from the phase shift is consistent with the experiment, when the quark mass is scaled to the realistic value.

  17. Cosmology with liquid mirror telescopes

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  18. Single-layer mirrors for advanced research light sources

    NASA Astrophysics Data System (ADS)

    Störmer, M.; Horstmann, C.; Siewert, F.; Scholze, F.; Krumrey, M.; Hertlein, F.; Matiaske, M.; Wiesmann, J.; Gaudin, J.

    2010-06-01

    X-ray mirrors are needed for beam guidance, beam alignment and monochromatisation at third-generation synchrotron light sources (PETRA III) and forthcoming Free-Electron Lasers (LCLS, European XFEL). Amorphous carbon coatings are currently used as total reflection mirrors at FLASH to guide the photon beam to the various beamlines. These coatings were prepared by means of magnetron sputtering. The new GKSS sputtering facility for the deposition of single and multilayer mirrors with a length of up to 1500 mm and a width of up to 120 mm is in operation. In this contribution we present the results of this new deposition system. A major advantage is that it is now possible to prepare one, two or more mirrors with similar properties over the whole deposition length. The mirror properties were investigated by means of X-ray reflectometry and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness and surface roughness. The uniformity of these properties over the whole deposition length of 1500 mm is demonstrated. The results obtained will be discussed and compared with former results.

  19. Single-layer mirrors for advanced research light sources

    SciTech Connect

    Stoermer, M.; Horstmann, C.; Siewert, F.; Hertlein, F.; Matiaske, M.; Wiesmann, J.; Gaudin, J.

    2010-06-23

    X-ray mirrors are needed for beam guidance, beam alignment and monochromatisation at third-generation synchrotron light sources (PETRA III) and forthcoming Free-Electron Lasers (LCLS, European XFEL). Amorphous carbon coatings are currently used as total reflection mirrors at FLASH to guide the photon beam to the various beamlines. These coatings were prepared by means of magnetron sputtering. The new GKSS sputtering facility for the deposition of single and multilayer mirrors with a length of up to 1500 mm and a width of up to 120 mm is in operation. In this contribution we present the results of this new deposition system. A major advantage is that it is now possible to prepare one, two or more mirrors with similar properties over the whole deposition length. The mirror properties were investigated by means of X-ray reflectometry and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness and surface roughness. The uniformity of these properties over the whole deposition length of 1500 mm is demonstrated. The results obtained will be discussed and compared with former results.

  20. Optimization design for the supporting system of 5m collimator primary mirror

    NASA Astrophysics Data System (ADS)

    Guan, Shaohua; Ma, Tianmeng; Zhang, Ming

    2016-10-01

    Primary mirror is an important component of collimator. The surface figure error of primary mirror is a critical factor affecting the imaging quality of collimator. Besides, the support system of primary mirror of collimator must be steady, while collimator need be moved safely as an elementary optical measuring tool. The support system of the primary mirror is composed of axial support and lateral support. Due to the axis of the primary mirror is horizontal when collimator working, the lateral support of the primary mirror has a far greater impact on the figure error of the primary mirror. In this paper, static structure analysis with finite element method is carried out for a 5m collimator primary mirror with V-block support under gravity load. With the analysis, the relationship between the structure parameters in primary mirror V-block support and the deformation of the primary mirror is built. With this relationship, the optimization parameters are found out to reduce the gravity deformation of the primary mirror.

  1. Status of the secondary mirrors (M2) for the Gemini 8-m telescopes

    NASA Astrophysics Data System (ADS)

    Knohl, Ernst-Dieter; Schoeppach, Armin; Pickering, Michael A.

    1998-08-01

    The 1-m diameter lightweight secondary mirrors (M2) for the Gemini 8-m telescopes will be the largest CVD-SiC mirrors ever produced. The design and manufacture of these mirrors is a very challenging task. In this paper we will discuss the mirror design, structural and mechanical analysis, and the CVD manufacturing process used to produce the mirror blanks. The lightweight design consist of a thin faceplate (4-mm) and triangular backstructure cells with ribs of varying heights. The main drivers in the design were weight (40 kg) and manufacturing limitations imposed on the backstructure cells and mirror mounts. Finite element modeling predicts that the mirror design will meet all of the Gemini M2 requirements for weight, mechanical integrity, resonances, and optical performance. Special design considerations were necessary to avoid stress concentration in the mounting areas and to meet the requirement that the mirror survive an 8-g earthquake. The highest risk step in the mirror blank manufacturing process is the near-net-shape CVD deposition of the thin, curved faceplate. Special tooling and procedures had to be developed to produce faceplates free of fractures, cracks, and stress during the cool-down from deposition temperature (1350 C) to room temperature. Due to time delay with the CVD manufacturing process in the meantime a backup solution from Zerodur has been started. This mirror is now in the advanced polishing process. Because the design of both mirrors is very similar an excellent comparison of both solutions is possible.

  2. The width of the plateaus of the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Groshev, Atanas; Scho¨n, Gerd

    1994-02-01

    We suggest that in high quality samples in the quantum Hall regime the interaction between localized states dominates over disorder effects. It leads to the formation of a Wigner crystal, which melts at a critical value ν c≈0.2 of the filling factor of the localized states. This leads to a finite width of the plateaus of the integer quantum Hall effect Δν=2ν c. This result describes well recent experimental data on single AlGaAs/GaAs heterojunctions (electron and hole gases) and double 2DEG systems.

  3. Surface finish quality of the outer AXAF mirror pair based on x ray measurements of the VETA-I

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Schwartz, Daniel A.; Szentgyorgyi, Andrew; Vanspeybroeck, Leon; Zhao, Ping

    1992-01-01

    We employ the X-ray measurements of the VETA-I taken at the X-Ray Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) to extract information about the surface finish quality of the outermost pair of AXAF mirrors. The particular measurements we consider are one dimensional scans of the core of the point response function (PRF) (full width half maximum (FWHM) scans), the encircled energy as a function of radius, and one dimensional scans of the wings of the PRF. We discuss briefly our ray trace model which incorporates the numerous effects present in the VETA-I test, such as the finite source distance, the size and shape of the X-ray source, the residual gravitational distortions of the optic, the despace of the VETA-I, and particulate contamination. We show how the data constrain the amplitude of mirror surface deviations for spatial frequencies greater than about 0.1 mm(exp -1). Constraints on the average amplitude of circumferential slope errors are derived as well.

  4. The width of fault zones in a brittle-viscous lithosphere: Strike-slip faults

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.

    1991-01-01

    A fault zone in an ideal brittle material overlying a very weak substrate could, in principle, consist of a single slip surface. Real fault zones have a finite width consisting of a number of nearly parallel slip surfaces on which deformation is distributed. The hypothesis that the finite width of fault zones reflects stresses due to quasistatic flow in the ductile substrate of a brittle surface layer is explored. Because of the simplicity of theory and observations, strike-slip faults are examined first, but the analysis can be extended to normal and thrust faulting.

  5. Mirror Image Agnosia

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Material and Methods:: Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Results: Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Discussion: Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles

  6. Congenital mirror movements.

    PubMed Central

    Schott, G D; Wyke, M A

    1981-01-01

    In this report are described seven patients assessed clinically and neuropsychologically in whom mirror movements affecting predominantly the hands occurred as a congenital disorder. These mirror movements, representing a specific type of abnormal synkinesia, may arise as a hereditary condition, in the presence of a recognisable underlying neurological abnormality, and sporadically, and the seven patients provide more or less satisfactory examples of each of these three groups. Despite the apparent uniformity of the disorder, the heterogeneity and variability may be marked, examples in some of our patients including the pronounced increase in tone that developed with arm movement, and the capacity for modulation of the associated movement by alteration of neck position and bio-feedback. Various possible mechanisms are considered; these include impaired cerebral inhibition of unwanted movements, and functioning of abnormal motor pathways. Emphasis has been placed on the putative role of the direct, crossed corticomotoneurone pathways and on the unilateral and bilateral cerebral events that precede movement. PMID:7288446

  7. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  8. Dynamic coherent backscattering mirror

    SciTech Connect

    Zeylikovich, I.; Xu, M.

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  9. Lightweight Substrates For Mirrors

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1991-01-01

    New substrate uses conventional quasi-isotropic fabric laminate with surfacing layer of carbon-fiber paper consisting of randomly oriented chopped carbon fibers. Layered structure of fabric and paper relatively easy to manufacture. When impregnated with carbon, structure rigid and stable. Substrates of this type made quite thin, thus keeping areal weights to minimum. Mirrors of this type made faster, and cost less, than predecessors.

  10. Joined Beryllium Mirror Demonstrator

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Parsonage, Tom; Burdine, Robert (Technical Monitor)

    2001-01-01

    Fabrications of large Beryllium optical components are fundamentally limited by available facility capabilities. To overcome this limitation, NASA funded Brush Wellman Corp to study a Be joining process. Four 76 mm diameters samples and a 0.5 mm diameter Joined Beryllium Mirror Demonstrator (JBMD) were fabricated. This presentation will review the fabrication of these samples and summarize the results of their cryogenic testing at MSFCs XRCF.

  11. Advanced Curvature Deformable Mirrors

    DTIC Science & Technology

    2010-09-01

    designs using just a glass wafer and a wafer of Carbon Fiber Reinforced Polymer ( CFRP ). In both cases minimum bend radius decreases and the resonant... matrix is consequently nearly diagonal. The long actuators at the outer edge of the deformable mirror are largely outside the working pupil so their...formal reconstruction of the wave front either explicitly or implicitly in the control matrix . The WFS-DM combination is acting like an analog computer

  12. Morphodynamics structures induced by variations of the channel width

    NASA Astrophysics Data System (ADS)

    Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo

    2014-05-01

    In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in

  13. Invariance of waveguide grating mirrors to lateral displacement phase shifts.

    PubMed

    Brown, Daniel; Friedrich, Daniel; Brückner, Frank; Carbone, Ludovico; Schnabel, Roman; Freise, Andreas

    2013-06-01

    We present a method to analyze the coupling of lateral displacements in nanoscale structures, in particular waveguide grating mirrors (WGMs), into the phase of a reflected Gaussian beam using a finite-difference time-domain simulation. Such phase noise is of interest for using WGMs in high-precision interferometry. We show that, to the precision of our simulations (10(-7) rad), waveguide mirrors do not couple lateral displacement into phase noise of a reflected beam and that WGMs are therefore not subject to the same stringent alignment requirements as previously proposed layouts using diffraction gratings.

  14. Perfect mirror transport protocol with higher dimensional quantum chains.

    PubMed

    Paz-Silva, Gerardo A; Rebić, Stojan; Twamley, Jason; Duty, Tim

    2009-01-16

    A globally controlled scheme for quantum transport is proposed. The scheme works on a 1D chain of nearest neighbor coupled systems of qudits (finite dimension), or qunats (continuous variable), taking any arbitrary initial quantum state of the chain and producing a final quantum state, which is perfectly spatially mirrored about the midpoint of the chain. As a particular novel application, the method can be used to transport continuous variable quantum states. A physical realization is proposed where it is shown how the quantum states of the microwave fields held in a chain of driven superconducting coplanar waveguides can experience quantum mirror transport when coupled by switchable Cooper pair boxes.

  15. Elastoconductivity as a probe of broken mirror symmetries

    SciTech Connect

    Hlobil, Patrik; Maharaj, Akash V.; Hosur, Pavan; Shapiro, M. C.; Fisher, I. R.; Raghu, S.

    2015-07-27

    We propose the possible detection of broken mirror symmetries in correlated two-dimensional materials by elastotransport measurements. Using linear response theory we calculate the“shear conductivity” Γ x x , x y , defined as the linear change of the longitudinal conductivity σ x x due to a shear strain ε x y . This quantity can only be nonvanishing when in-plane mirror symmetries are broken and we discuss how candidate states in the cuprate pseudogap regime (e.g., various loop current or charge orders) may exhibit a finite shear conductivity. We also provide a realistic experimental protocol for detecting such a response.

  16. Mirror agnosia and mirror ataxia constitute different parietal lobe disorders.

    PubMed

    Binkofski, F; Buccino, G; Dohle, C; Seitz, R J; Freund, H J

    1999-07-01

    We describe two new clinical syndromes, mirror agnosia and mirror ataxia, both characterized by the deficit of reaching for an object through a mirror in association with a lesion of either parietal lobe. Clinical investigation of 13 patients demonstrated that the impairments affected both sides of the body. In mirror agnosia, the patients always reached toward the virtual object in the mirror and they were not capable of changing their behavior even after presentation of the position of the object in real visual space. In mirror ataxia (resembling optic ataxia) although some patients initially tended to reach for the virtual object in the mirror, they soon learned to guide their arms toward the real object, all of them producing many directional errors. Both patient groups performed poorly on mental rotation, but only the patients with mirror agnosia were impaired in line orientation. Only 1 of the patients suffered from neglect and 3 from apraxia. Magnetic resonance imaging showed that in mirror agnosia the common zone of lesion overlap was scattered around the posterior angular gyrus/superior temporal gyrus and in mirror ataxia around the postcentral sulcus. We propose that both these clinical syndromes may represent different types of dissociation of retinotopic space and body scheme, or likewise, of allocentric and egocentric space normally adjusted in the parietal lobe.

  17. Replication of lightweight mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Ming Y.; Matson, Lawrence E.; Lee, Heedong; Chen, Chenggang

    2009-08-01

    The fabrication of lightweight mirror assemblages via a replication technique offers great potential for eliminating the high cost and schedule associated with the grinding and polishing steps needed for conventional glass or SiC mirrors. A replication mandrel is polished to an inverse figure shape and to the desired finish quality. It is then, coated with a release layer, the appropriate reflective layer, and followed by a laminate for coefficient of thermal expansion (CTE) tailorability and strength. This optical membrane is adhered to a mirror structural substrate with a low shrinkage, CTE tailored adhesive. Afterwards, the whole assembly is separated from the mandrel. The mandrel is then cleaned and reused for the next replication run. The ultimate goal of replication is to preserve the surface finish and figure of the optical membrane upon its release from the mandrel. Successful replication requires a minimization of the residual stresses within the optical coating stack, the curing stresses from the adhesive and the thermal stress resulting from CTE mismatch between the structural substrate, the adhesive, and the optical membrane. In this paper, the results on replicated trials using both metal/metal and ceramic/ceramic laminates adhered to light weighted structural substrates made from syntactic foams (both inorganic and organic) will be discussed.

  18. Material Assessment for ITER's Collective Thomson Scattering first mirror

    SciTech Connect

    Santos, R.; Policarpo, H.; Goncalves, B.; Varela, P.; Nonboel, E.; Klinkby, E.; Lauritzen, B.; Romanets, Y.; Luis, R.; Vaz, P.

    2015-07-01

    The International Thermonuclear Energy Reactor (ITER) Collective Thomson Scattering (CTS) system is a diagnostic instrument that measures plasma density and velocity through Thomson scattering of microwave radiation. Some of the key components of the CTS are quasi-optical mirrors that are used to produce astigmatic beam patterns, which have impact on the strength and spatial resolution of the diagnostic signal. The mirrors are exposed to neutron radiation, which may alter the quality of the signal received. In this work, three different materials (molybdenum (Mo), stainless steel 316 (SS-316) and tungsten (W)) are considered for the first mirror of the CTS. The objective is to access which of the material studied are best suited for this mirror, considering different neutron radiation loads simulated scenarios defined by ITER, based on the resultant stresses and temperature distributions. For it, the neutron irradiation, and subsequent heat-load on the mirrors are simulated using the Monte Carlo N-Particle (MCNP) code. Based on the MCNP heat-load results, transient thermal-structural Finite Element Analysis (FEA) of the mirror over a 400 s discharge, with and without cooling on the rear side, are conducted using in commercial FEA software ANSYS. Results show that of the tested materials Mo and W are the most suitable material for this application. Even though, this study does not yet consider the variation of the material properties with temperature, it presents a quick initial satisfactory assessment that may be considered in subsequent and more complex analysis. (authors)

  19. Two-mirror optical system with a small fold mirror

    NASA Astrophysics Data System (ADS)

    Liu, Xinping; Li, Yingcai; Yang, Jianfeng

    1998-09-01

    A new configuration of two-mirror optical system with a small fold mirror is presented in this paper. Consisting of a concave (positive power) primary mirror followed by a small flat mirror, a concave (positive power) secondary mirror, four lenses and a beam splitter, it gives the excellent image quality. A 1.5-m EFL, F/10 system of the upper configuration is designed over the 4 degree(s) field angle and 0.50 approximately 0.70 micrometers wavelength range. The aberrations have been highly corrected and the distortion is less than 0.3% over the field. The obscuration could be minimized by reducing primary radius of curvature and avoiding the spider that holds the small fold mirror.

  20. A spectrum of shadowed mirroring.

    PubMed

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy.

  1. Structural-optical integrated analysis on the large aperture mirror with active mounting

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyuan; Zhu, Jianqiang; Liu, Zhigang

    2016-11-01

    Deformation of the large aperture mirror caused by the external environment load seriously affects the optical performance of the optical system, and there is a limit to develop the shape quality of large aperture mirror with traditional mounting method. It is effective way to reduce the optical mirror distortion with active support method, and the structural-optical integrated method is the effective means to assess the merits of the mounting for large aperture mirror. Firstly, we proposes a new support scheme that uses specific boundary constraints on the large lens edges and imposes flexible torque to resist deformation induced by gravity to improve surface quantity of large aperture mirror. We calculate distortion of the large aperture mirror at the edges of the flexible torque respectively with the finite element method; secondly, we extract distortion value within clear aperture of the mirror with MATLAB, solve the corresponding Zernike polynomial coefficients; lastly, we obtain the peak-valley value (PV) and root mean square value (RMS) with optical-structural integrated analysis . The results for the 690x400x100mm mirror show that PV and RMS values within the clear aperture with 0.4MPa torques than the case without applying a flexible torque reduces 82.7% and 72.9% respectively. The active mounting on the edge of the large aperture mirror can greatly improve the surface quality of the large aperture mirror.

  2. Quantum corral resonance widths: lossy scattering as acoustics.

    PubMed

    Barr, Matthew C; Zaletel, Michael P; Heller, Eric J

    2010-09-08

    We present an approach to predicting extrinsic electron resonance widths within quantum corral nanostructures based on analogies with acoustics. Established quantum mechanical methods for calculating resonance widths, such as multiple scattering theory, build up the scattering atom by atom, ignoring the structure formed by the atoms, such as walls or enclosures. Conversely, particle-in-a-box models, assuming continuous walls, have long been successful in predicting quantum corral energy levels, but not resonance widths. In acoustics, partial reflection from walls and various enclosures has long been incorporated for determining reverberation times. Pursuing an exact analogy between the local density of states of a quantum corral and the acoustic impedance of a concert hall, we show electron lifetimes in nanoscopic structures of arbitrary convex shape are well accounted for by the Sabine formula for acoustic reverberation times. This provides a particularly compact and intuitive prescription for extrinsic finite lifetimes in a particle-in-a-box with leaky walls, including quantum corral atomic walls, given single particle scattering properties.

  3. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  4. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  5. Optical parametric loop mirror

    NASA Astrophysics Data System (ADS)

    Mori, K.; Morioka, T.; Saruwatari, M.

    1995-06-01

    A novel configuration for four-wave mixing (FWM) is proposed that offers the remarkable feature of inherently separating the FWM wave from the input pump and signal waves and suppressing their background amplified stimulated emission without optical filtering. In the proposed configuration, an optical parametric loop mirror, two counterpropagating FWM waves generated in a Sagnac interferometer interfere with a relative phase difference that is introduced deliberately. FWM frequency-conversion experiments in a polarization-maintaining fiber achieved more than 35 dB of input-wave suppression against the FWM wave.

  6. SXI Prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This final report describes the work performed from June 1993 to January 1995. The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule.

  7. Negative tandem mirror

    SciTech Connect

    Poulsen, P.; Allen, S.L.; Casper, T.A.; Grubb, D.P.; Jong, R.A.; Nexsen, W.E.; Porter, G.D.; Simonen, T.C.

    1981-11-30

    A tandem mirror configuration can be created by combining hot electron end cell plasmas with neutral beam pumping. A region of large negative potential formed in each end cell confines electrons in the central cell. The requirement of charge neutrality causes the central cell potential to become negative with respect to ground in order to confine ions as well as electrons. We discuss the method of producing and calculating the desired axial potential profile, and show the calculated axial potential profile and plasma parameters for a negative configuration of TMX-Upgrade.

  8. SXI prototype mirror mount

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  9. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  10. Poco Graphite Mirror Metrology Report

    NASA Technical Reports Server (NTRS)

    Kester, Thomas J.

    2005-01-01

    Recently a lightweight mirror technology was tested at Marshall Space Flight Center's Space Optic Manufacturing Technology Center (MSFC, SOMTC). The mirror is a Poco Graphite CVD Si clad SiC substrate. It was tested for cryogenic (cryo) survivability to 20deg Kelvin in SOMTC's X-ray Calibration and Cryogenic Test Facility. The surface figure of the mirror was measured before and after cry0 cycling. The test technique and results are discussed.

  11. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  12. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.

    PubMed

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  13. Control of micromachined deformable mirrors

    NASA Technical Reports Server (NTRS)

    Agronin, M. L.; Bartman, R.; Hadaegh, F. Y.; Kaiser, W.; Wang, P. K. C.

    1993-01-01

    A micromachined deformable mirror with pixelated electrostatic actuators is proposed. The paper begins with a physical description of the proposed mirror. Then a mathematical model in the form of a nonlinear partial differential equation describing the mirror surface deformations is derived. This model is used to derive the required voltages for the actuators to achieve a specified static deformation of the mirror surface. This is followed by the derivation of a static nonlinear feedback controller for achieving noninteracting actuation. Then the structure for a complete control system for wavefront correction is proposed. The paper concludes with a discussion of the physical implementation of the proposed control system.

  14. JWST Primary Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist

  15. Evolution and diversity of subduction zones controlled by slab width.

    PubMed

    Schellart, W P; Freeman, J; Stegman, D R; Moresi, L; May, D

    2007-03-15

    Subducting slabs provide the main driving force for plate motion and flow in the Earth's mantle, and geodynamic, seismic and geochemical studies offer insight into slab dynamics and subduction-induced flow. Most previous geodynamic studies treat subduction zones as either infinite in trench-parallel extent (that is, two-dimensional) or finite in width but fixed in space. Subduction zones and their associated slabs are, however, limited in lateral extent (250-7,400 km) and their three-dimensional geometry evolves over time. Here we show that slab width controls two first-order features of plate tectonics-the curvature of subduction zones and their tendency to retreat backwards with time. Using three-dimensional numerical simulations of free subduction, we show that trench migration rate is inversely related to slab width and depends on proximity to a lateral slab edge. These results are consistent with retreat velocities observed globally, with maximum velocities (6-16 cm yr(-1)) only observed close to slab edges (<1,200 km), whereas far from edges (>2,000 km) retreat velocities are always slow (<2.0 cm yr(-1)). Models with narrow slabs (< or =1,500 km) retreat fast and develop a curved geometry, concave towards the mantle wedge side. Models with slabs intermediate in width ( approximately 2,000-3,000 km) are sublinear and retreat more slowly. Models with wide slabs (> or =4,000 km) are nearly stationary in the centre and develop a convex geometry, whereas trench retreat increases towards concave-shaped edges. Additionally, we identify periods (5-10 Myr) of slow trench advance at the centre of wide slabs. Such wide-slab behaviour may explain mountain building in the central Andes, as being a consequence of its tectonic setting, far from slab edges.

  16. Mirror development for CTA

    NASA Astrophysics Data System (ADS)

    Förster, A.; Doro, M.; Brun, P.; Canestrari, R.; Chadwick, P.; Font, L.; Ghigo, M.; Lorenz, E.; Mariotti, M.; Michalowski, J.; Niemiec, J.; Pareschi, G.; Peyaud, B.; Seweryn, K.

    2009-08-01

    The Cherenkov Telescope Array (CTA), currently in its early design phase, is a proposed new project for groundbased gamma-ray astronomy with at least 10 times higher sensitivity than current instruments. CTA is planned to consist of several tens of large Imaging Atmospheric Cherenkov Telescopes (IACTs) with a combined reflective surface of up to 10,000 m2. The challenge for the future CTA array is to develop lightweight and cost efficient mirrors with high production rates, good longterm durability and adequate optical properties. The technologies currently under investigation comprise different methods of carbon fibre/epoxy based substrates, sandwich concepts with cold-slumped surfaces made of thin float glass and different structural materials like aluminum honeycomb, glass foam or PU foam inside, and aluminum sandwich structures with either diamond milled surfaces or reflective foils. The current status of the mirror development for CTA will be summarized together with investigations on the improvement of the reflective surfaces and their protection against degradation.

  17. Characterization of Finite Ground Coplanar Waveguide with Narrow Ground Planes

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Tentzeris, Emmanouil M.; Katehi, Linda P. B.

    1997-01-01

    Coplanar waveguide with finite width ground planes is characterized through measurements, conformal mapping, and the Finite Difference Time Domain (FDTD) technique for the purpose of determining the optimum ground plane width. The attenuation and effective permittivity of the lines are related to its geometry. It is found that the characteristics of the Finite Ground Coplanar line (FGC) are not dependent on the ground plane width if it is greater than twice the center conductor width, but less than lambda(sub d)/8. In addition, electromagnetic field plots are presented which show for the first time that electric fields in the plane of the substrate terminate on the outer edge of the ground plane, and that the magnitude of these fields is related to the ground plane width.

  18. Finite element analysis enhancement of cryogenic testing

    NASA Astrophysics Data System (ADS)

    Thiem, Clare D.; Norton, Douglas A.

    1991-12-01

    Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.

  19. Terrace width variations in complex lunar craters

    NASA Technical Reports Server (NTRS)

    Pearce, Steven J.; Melosh, H. J.

    1986-01-01

    The widths of terrace structures in complex craters on the moon are compared to existing theoretical models of their origin. Terrace widths in an individual crater increase monotonically outward toward the crater rim. Similarly, the width W of the terraces lying closest to the rim of a crater of diameter D increases monotonically, obeying a least-squares power-law relation WS (km) = 0.09D exp 0.87 km). A simple model of slumping that ignores inertial forces and assumes a constant bedrock yield strength is in good agreement with the observations.

  20. Development of lightweight mirror elements for the Euro50 mirrors

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Romeo, Robert C.; Shaffer, Joseph J.; Chen, Peter C.

    2004-07-01

    New, very large telescopes with apertures of 30, 50, and 100 meters are being proposed by the astronomical community. Superpolished or ultrapolished mirrors with low scattered light levels and the use of adaptive optics for near-diffraction-limited performance would make such large telescopes a turning point in astronomy. The secondary mirror for the Euro50 will be a four meter adaptive optic made of a low expansion graphite-filled cyanate ester resin composite produced using a replica transfer technique. We have made three 1/3rd meter diameter prototype composite adaptive optic mirrors of this cyanate ester composite material. Because of the embedded graphite fibers, the composite material has a measured expansion coefficient in the 10-8 range, as has Zerodur or ULE glass. It is very much lighter, more rugged and more economical than Zerodur or ULE, and can be fabricated in weeks, not months. The Zerodur mandrels upon which these replica transfer mirrors are made are superpolished using centrifugal elutriation, so the replica surface has an rms roughness of 0.6 to 0.8 nm. It thus scatters about an order of magnitude less light than typical conventionally polished astronomical mirrors. In adaptive optic mirrors with sub-mm thick faceplates the number of plies used is insufficient to produce an isotropic surface. For mirrors 2 mm thick, with more plies, the surfaces are isotropic, and the slight astigmatism sometimes resulting from the mesh in the ply can be corrected by actuators to make them attractive mirrors. They must be supported to maintain a good optical figure over a meter diameter mirror. The support requirement may be met by using a new type of mechanical/piezoelectric actuator adjustable to a fraction of a wavelength. The mechanical actuators have a coarse adjust of over an mm and a fine adjust of less than a wavelength of light. They can be used in series with a novel type of piezoelectric actuator for final static adjustment. The low voltage, up to 2

  1. Specifying the surface finish of x-ray mirrors

    SciTech Connect

    Church, E.L.; Takacs, P.Z.

    1993-12-31

    Our measurements of x-ray mirrors at Brookhaven indicate that the power spectral densities of their finish errors have inverse power-law or fractal forms, rather than being flat at low frequencies as is usually assumed. This paper reviews these data and discusses how this apparent divergent behavior leads to finite but unconventional effects in imaging. Results are then used to develop more rational and realistic surface-finish specifications.

  2. Bipartite Graphs of Large Clique-Width

    NASA Astrophysics Data System (ADS)

    Korpelainen, Nicholas; Lozin, Vadim V.

    Recently, several constructions of bipartite graphs of large clique-width have been discovered in the literature. In the present paper, we propose a general framework for developing such constructions and use it to obtain new results on this topic.

  3. Forming Mirrors on Composite Materials

    NASA Technical Reports Server (NTRS)

    Gauldin, R. E.; Ramohalli, K.

    1983-01-01

    Smooth coatings deposited on hard-to-polish substrates. Lightweight mirror, leaning against conventional glass mirror, consists of metallic relective layer on substrate coated with polyester resin. Smooth surface of polyester resin made by covering freshly applied resin with piece of smooth glass coated with release agent.

  4. Polishing technique for beryllium mirror

    NASA Technical Reports Server (NTRS)

    Froechtenigt, J. F.

    1976-01-01

    Performance tests, accomplished by inserting entire X ray telescope and polished mirror into vacuum line 67 m long and taking photographs of an X ray resolution source, indicate that polishing increases mirror efficiency from 0.06 percent for X rays at 0.8 nm and increases resolution from 15 to 3.75 arc-seconds.

  5. Eliminating mirror responses by instructions.

    PubMed

    Bardi, Lara; Bundt, Carsten; Notebaert, Wim; Brass, Marcel

    2015-09-01

    The observation of an action leads to the activation of the corresponding motor plan in the observer. This phenomenon of motor resonance has an important role in social interaction, promoting imitation, learning and action understanding. However, mirror responses not always have a positive impact on our behavior. An automatic tendency to imitate others can introduce interference in action execution and non-imitative or opposite responses have an advantage in some contexts. Previous studies suggest that mirror tendencies can be suppressed after extensive practice or in complementary joint action situations revealing that mirror responses are more flexible than previously thought. The aim of the present study was to gain insight into the mechanisms that allow response flexibility of motor mirroring. Here we show that the mere instruction of a counter-imitative mapping changes mirror responses as indexed by motor evoked potentials (MEPs) enhancement induced by transcranial magnetic stimulation (TMS). Importantly, mirror activation was measured while participants were passively watching finger movements, without having the opportunity to execute the task. This result suggests that the implementation of task instructions activates stimulus-response association that can overwrite the mirror representations. Our outcome reveals one of the crucial mechanisms that might allow flexible adjustments of mirror responses in different contexts. The implications of this outcome are discussed.

  6. Acoustic Models of Optical Mirrors

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2014-01-01

    Students form a more exact idea of the action of optical mirrors if they can observe the wave field being formed during reflection. For this purpose it is possible to organize model experiments with flexural waves propagating in thin elastic plates. The direct and round edges of the plates are used as models of plane, convex and concave mirrors.…

  7. Thermal conduction in a mirror-unstable plasma

    NASA Astrophysics Data System (ADS)

    Komarov, S. V.; Churazov, E. M.; Kunz, M. W.; Schekochihin, A. A.

    2016-07-01

    The plasma of galaxy clusters is subject to firehose and mirror instabilities at scales of order the ion Larmor radius. The mirror instability generates fluctuations of magnetic-field strength δB/B ˜ 1. These fluctuations act as magnetic traps for the heat-conducting electrons, suppressing their transport. We calculate the effective parallel thermal conductivity in the ICM in the presence of the mirror fluctuations for different stages of the evolution of the instability. The mirror fluctuations are limited in amplitude by the maximum and minimum values of the field strength, with no large deviations from the mean value. This key property leads to a finite suppression of thermal conduction at large scales. We find suppression down to ≈0.2 of the Spitzer value for the secular phase of the perturbations' growth, and ≈0.3 for their saturated phase. The effect operates in addition to other suppression mechanisms and independently of them. Globally, fluctuations δB/B ˜ 1 can be present on much larger scales, of the order of the scale of turbulent motions. However, we do not expect large suppression of thermal conduction by these, because their scale is considerably larger than the collisional mean free path of the ICM electrons. The obtained suppression of thermal conduction by a factor of ˜5 appears to be characteristic and potentially universal for a weakly collisional mirror-unstable plasma.

  8. Study on supporting force sensing and control during large aperture space mirror test

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Hu, Wenqi; Zheng, Liehua; Hao, Peiming

    2016-10-01

    During the machining of large aperture lightweight space mirror, the mirror figure consistency between ground test and space mission is a problem. In order to effectively control the supporting deformation effect on test results in gravity environment, in view of a 1.2-m space mirror with back blind holes, a supporting method for optical axis horizontal test is proposed, with this method, mirror under test is positioned by three center hole surfaces and supported by six external hole surfaces. The effect of deformation caused by different supporting force value, area and position is analyzed by finite element method, the simulation results show that this supporting method can control the mirror supporting deformation within PV0.035λ rms0.005λ. The actual supporting system uses soft expansion mandrel to control the mirror position and pneumatic lever to realize the floating support. In order to ensure that the support force can evenly distribute on the contact surface, a pressure mapping system is adopted to measure the interface pressure between the mirror blind holes and the soft supporting pads for the first time. This method can meet the test requirements of rms=1/40λ mirror and provides a technical support for high precision test of large aperture space mirror with back blind holes.

  9. Buildup studies of a tandem mirror reactor with inboard thermal barriers

    SciTech Connect

    Gryczkowski, G.E.; Gilmore, J.M.

    1980-10-09

    The build-up and quasi-steady state phases of the operation of the tandem mirror experiment, TMX, and of a tandem mirror machine with inboard thermal barriers, MFTF-B, have been simulated using a fluid model of the central cell and plug plasmas. The fluid model incorporates classical radial transport, three-dimensional cold gas transport in cylindrical geometry, and neutral beam transport corrected for finite-Larmor-orbit effects in both the central cell and yin yang end plugs.

  10. Shell Separation for Mirror Replication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.

  11. Modeling of biaxial gimbal-less MEMS scanning mirrors

    NASA Astrophysics Data System (ADS)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n < 10000) state space representation of the mirror dynamics with actuation voltages as system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  12. Electrons and Mirror Symmetry

    ScienceCinema

    Kumar, Krishna

    2016-07-12

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  13. Electrons and Mirror Symmetry

    SciTech Connect

    Kumar, Krishna

    2007-04-04

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  14. Resonance width distribution in RMT: Weak-coupling regime beyond Porter-Thomas

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.; Savin, Dmitry V.

    2015-05-01

    We employ the random matrix theory (RMT) framework to revisit the distribution of resonance widths in quantum chaotic systems weakly coupled to the continuum via a finite number M of open channels. In contrast to the standard first-order perturbation theory treatment we do not a priori assume the resonance widths being small compared to the mean level spacing. We show that to the leading order in weak coupling the perturbative χ^2M distribution of the resonance widths (in particular, the Porter-Thomas distribution at M = 1) should be corrected by a factor related to a certain average of the ratio of square roots of the characteristic polynomial (“spectral determinant”) of the underlying RMT Hamiltonian. A simple single-channel expression is obtained that properly approximates the width distribution also at large resonance overlap, where the Porter-Thomas result is no longer applicable.

  15. Mirror man: a case of skilled deliberate mirror writing.

    PubMed

    McIntosh, Robert D; De Lucia, Natascia; Della Sala, Sergio

    2014-01-01

    Mirror writing is a striking behaviour that is common in children and can reemerge in adults following brain damage. Skilled deliberate mirror writing has also been reported, but only anecdotally. We provide the first quantitative study of skilled deliberate mirror writing. K.B. can write forward or backward, vertically upright or inverted, with the hands acting alone or simultaneously. K.B. is predominantly left handed, but writes habitually with his right hand. Of his writing formats, his left hand mirror writing is by far the most similar in style to his normal handwriting. When writing bimanually, he performs better when his two hands make mirror-symmetrical movements to write opposite scripts than if they move in the same direction to write similar scripts. He has no special facility for reading mirrored text. These features are consistent with prior anecdotal cases and support a motor basis for K.B.'s ability, according to which his skilled mirror writing results from the left hand execution of a low-level motor program for a right hand abductive writing action. Our methods offer a novel framework for investigating the sharing of motor representations across effectors.

  16. The kinaesthetic mirror illusion: How much does the mirror matter?

    PubMed

    Chancel, Marie; Brun, Clémentine; Kavounoudias, Anne; Guerraz, Michel

    2016-06-01

    The reflection of a moving hand in a mirror positioned in the sagittal plane can create an illusion of symmetrical, bimanual movement. This illusion is implicitly presumed to be of visual origin. However, muscle proprioceptive afferents of the arm reflected in the mirror might also affect the perceived position and movement of the other arm. We characterized the relative contributions of visual and proprioceptive cues by performing two experiments. In Experiment 1, we sought to establish whether kinaesthetic illusions induced using the mirror paradigm would survive marked visual impoverishment (obtained by covering between 0 and 100 % of the mirror in 16 % steps). We found that the mirror illusion was only significantly influenced when the visual degradation was 84 % or more. In Experiment 2, we masked the muscle proprioceptive afferents of the arm reflected in the mirror by co-vibrating antagonistic muscles. We found that masking the proprioceptive afferents reduced the velocity of the illusory displacement of the other arm. These results confirm that the mirror illusion is not a purely visual illusion but emerges from a combination of congruent signals from the two arms, i.e. visual afferents from the virtually moving arm and proprioceptive afferents from the contralateral, moving arm.

  17. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  18. Generation-X mirror technology development plan and the development of adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William

    2009-08-01

    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  19. Variational approach for static mirror structures

    SciTech Connect

    Kuznetsov, E. A.; Passot, T.; Sulem, P. L.; Ruban, V. P.

    2015-04-15

    Anisotropic static plasma equilibria where the parallel and perpendicular pressures are only functions of the amplitude of the local magnetic field are shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that two-dimensional small-amplitude static magnetic holes constructed from a Grad-Shafranov type equation slightly below the (subcritical) mirror instability threshold identify with lump solitons of KPII equation, but turn out to be unstable. Differently, large-amplitude magnetic structures, which are stable as they realize a minimum of the free energy, are computed using a gradient method within two-dimensional numerical simulations where the regularizing effect of finite Larmor radius corrections is retained. Interestingly, these structures transform from stripes to bubbles when the angle of the magnetic field with the coordinate plane is increased.

  20. Plasma confinement experiments in the TMX tandem mirror. Paper IAEA-CN-38/F-1

    SciTech Connect

    Simonen, T.C.; Anderson, C.A.; Casper, T.A.

    1980-05-22

    Results from the new Tandem Mirror Experiment (TMX) are described. Tandem-mirror density and potential profiles are produced using end-plug neutral-beam injection and central-cell gas-fueling. TMX parameters are near those predicted theoretically. The end-plug electron temperature is higher than in the comparably sized single-mirror 2XIIB. Axial confinement of the finite-beta central-cell plasma is improved by the end plugs by as much as a factor of 9. In TMX, end-plug microinstability limits central-cell confinement in agreement with theory.

  1. Deformation analysis of a lightweight metal mirror

    NASA Astrophysics Data System (ADS)

    Zhou, Jianwei; Lin, Wumei; Liu, Guoqing; Xing, Tingwen

    2005-02-01

    The weight of the optical elements of a system used in the aviation and aerospace industry must be as light as possible, on condition that the imaging performance of the system satisfies user"s demand. However, optical elements will deform easily under internal or external pressure if it becomes thinner, and then influences the imaging performance of the whole optical system. In this paper, the main mirror of the Cassegrain system is studied with finite-element analysis (FEA) to predict its surface deformation through simulating its working conditions. The surface deformation is also tested and analyzed after machining and mounting. The obtained interferometric data, Zernike coefficients, is written into CODE V, an excellent software for designing optical systems, to analyze the imaging performance of the designed optical system. Through analyzing the deformation of the metal mirror it can be found that the maxima RMS change of the whole optical system is 0.0059λ, which is only 1.52 percent of the designed value. In the full field of view, the RMS error is less than 0.07λ, that means the imaging performance of the whole optical system is close to the diffraction limit.

  2. Mirror Numbers and Wigner's ``Unreasonable Effectiveness''

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander

    2006-04-01

    Wigner's ``unreasonable effectiveness of mathematics in physics'' can be augmented by concept of mirror number (MN). It is defined as digital string infinite in both directions. Example is ()5141327182() where first 5 digits is Pi ``spelled'' backward (``mirrored'') and last 5 digits is the beginning of decimal exp1 string. Let MN be constructed from two different transcendental (or algebraically irrational) numbers, set of such MNs is Cantor-uncountable. Most MNs have contain any finite digital sequence repeated infinitely many times. In spirit of ``Contact'' (C.Sagan) each normal MN contains ``Library of Babel'' of all possible texts and patterns (J.L.Borges). Infinite at both ends, MN do not have any numerical values and, contrary to numbers written in positional systems, all digits in MNs have equal weight -- sort of ``numerological democracy''. In Pythagorean-Platonic models (space-time and physical world originating from pure numbers) idea of MN resolves paradox of ``beginning'' (or ``end'') of time. Because in MNs all digits have equal status, (quantum) randomness leads to more uniform and fully ergodic phase trajectories (cf. F.Dyson, Infinite in All Directions) .

  3. Applying Alpha-Channeling to Mirror Machines

    SciTech Connect

    A.I. Zhmoginov and N.J. Fisch

    2012-03-16

    The α-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic α- particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefi t open-ended fusion devices. Here, the fundamental theory and practical aspects of α- channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the α-channeling mechanism. For practical implementation of the α -channeling effect in mirror geometry, suitable contained weakly-damped modes are identifi ed. In addition, the parameter space of candidate waves for implementing the α -channeling effect can be signi cantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the α-channeling wave to the fuel ions.

  4. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.

    PubMed

    Liu, Shutian; Hu, Rui; Li, Quhao; Zhou, Ping; Dong, Zhigang; Kang, Renke

    2014-12-10

    For the large-aperture space telescope, the lightweight primary mirror design with a high-quality optical surface is a critical and challenging issue. This work presents a topology optimization-based design procedure for a lightweight primary mirror and a new mirror configuration of a large-aperture space telescope is obtained through the presented design procedure. Inspired by the topology optimization method considering cast constraints, an optimization model for the configuration design of the mirror back is proposed, through which the distribution and the heights of the stiffeners on the mirror back can be optimized simultaneously. For the purpose of minimizing the optical surface deviation due to self-weight and polishing pressure loadings, the objective function is selected as to maximize the mirror structural stiffness, which can be achieved by minimizing the structural compliance. The total mass of the primary mirror is assigned as the constraint. In the application example, results of the optimized design topology for two kinds of mass constraints are presented. Executing the design procedure for specific requirements and postprocessing the topology obtained of the structure, a new mirror configuration with tree-like stiffeners and a multiple-arch back in double directions is proposed. A verification model is constructed to evaluate the design results and the finite element method is used to calculate the displacement of the mirror surface. Then the RMS deviation can be obtained after fitting the deformed surface by Zernike polynomials. The proposed mirror is compared with two classical mirrors in the optical performance, and the comparison results demonstrate the superiority of the new mirror configuration.

  5. Observational physics of mirror world

    NASA Technical Reports Server (NTRS)

    Khlopov, M. YA.; Beskin, G. M.; Bochkarev, N. E.; Pustilnik, L. A.; Pustilnik, S. A.

    1989-01-01

    The existence of the whole world of shadow particles, interacting with each other and having no mutual interactions with ordinary particles except gravity is a specific feature of modern superstring models, being considered as models of the theory of everything. The presence of shadow particles is the necessary condition in the superstring models, providing compensation of the asymmetry of left and right chirality states of ordinary particles. If compactification of additional dimensions retains the symmetry of left and right states, shadow world turns to be the mirror one, with particles and fields having properties strictly symmetrical to the ones of corresponding ordinary particles and fields. Owing to the strict symmetry of physical laws for ordinary and mirror particles, the analysis of cosmological evolution of mirror matter provides rather definite conclusions on possible effects of mirror particles in the universe. A general qualitative discussion of possible astronomical impact of mirror matter is given, in order to make as wide as possible astronomical observational searches for the effects of mirror world, being the unique way to test the existence of mirror partners of ordinary particles in the Nature.

  6. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  7. ULE design considerations for a 3m class light weighted mirror blank for E-ELT M5

    NASA Astrophysics Data System (ADS)

    Fox, Andrew; Hobbs, Tom; Edwards, Mary; Arnold, Matthew; Sawyer, Kent

    2016-07-01

    It is expected that the next generation of large ground based astronomical telescopes will need large fast-steering/tip-tilt mirrors made of ultra-lightweight construction. These fast-steering mirrors are used to continuously correct for atmospheric disturbances and telescope vibrations. An example of this is the European Extremely Large Telescope (E-ELT) M5 lightweight mirror, which is part of the Tip-Tilt/Field-Stabilization Unit. The baseline design for the E-ELT M5 mirror, as presented in the E-ELT Construction Proposal, is a closed-back ULE mirror with a lightweight core using square core cells. Corning Incorporated (Corning) has a long history of manufacturing lightweight mirror blanks using ULE in a closed-back construction, going back to the 1960's, and includes the Hubble Space Telescope primary mirror, Subaru Telescope secondary and tertiary mirrors, the Magellan I and II tertiary mirrors, and Kepler Space Telescope primary mirror, among many others. A parametric study of 1-meter class lightweight mirror designs showed that Corning's capability to seal a continuous back sheet to a light-weighted core structure provides superior mirror rigidity, in a near-zero thermal expansion material, relative to other existing technologies in this design space. Corning has investigated the parametric performance of several design characteristics for a 3-meter class lightweight mirror blank for the E-ELT M5. Finite Element Analysis was performed on several design scenarios to obtain weight, areal density, and first Eigen frequency. This paper presents an overview of Corning ULE and lightweight mirror manufacturing capabilities, the parametric performance of design characteristics for 1-meter class and 3-meter class lightweight mirrors, as well as the manufacturing advantages and disadvantages of those characteristics.

  8. Support optimization of the ring primary mirror of a 2m solar telescope

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Jin, Zhenyu; Liu, Zhong

    2016-08-01

    A special 2-m Ring Solar Telescope (2-m RST) is to be built by YNAO-Yunnan Astronomical Observatory, Kunming, China. Its distinct primary mirror is distinctively shaped in a ring with an outer diameter of 2.02 m and a ring width of 0.35 m. Careful calculation and optimization of the mirror support pattern have been carried out first of all to define optimum blank parameters in view of performance balance of support design, fabrication and cost. This paper is to review the special consideration and optimization of the support design for the unique ring mirror. Schott zerodur is the prevailing candidate for the primary mirror blank. Diverse support patterns with various blank thicknesses have been discussed by extensive calculation of axial support pattern of the mirror. We reached an optimum design of 36 axial supports for a blank thickness of 0.15 m with surface error of 5 nm RMS. Afterwards, lateral support scheme was figured out for the mirror with settled parameters. A classical push-and-pull scheme was used. Seeing the relative flexibility of the ring mirror, special consideration was taken to unusually set the acting direction of the support forces not in the mirror gravity plane, but along the gravity of the local virtual slices of the mirror blank. Nine couples of the lateral push-pull force are considered. When pointing to horizon, the mirror surface exhibits RMS error of 5 nm with three additional small force couples used to compensate for the predominant astigmatism introduced by lateral supports. Finally, error estimation has been performed to evaluate the surface degradation with introduced errors in support force and support position, respectively, for both axial and lateral supports. Monte Carlo approach was applied using unit seeds for amplitude and position of support forces. The comprehensive optimization and calculation suggests the support systems design meet the technic requirements of the ring mirror of the 2-m RST.

  9. LSST primary/tertiary monolithic mirror

    NASA Astrophysics Data System (ADS)

    Sebag, J.; Gressler, W.; Liang, M.; Neill, D.; Araujo-Hauck, C.; Andrew, J.; Angeli, G.; Cho, M.; Claver, C.; Daruich, F.; Gessner, C.; Hileman, E.; Krabbendam, V.; Muller, G.; Poczulp, G.; Repp, R.; Wiecha, O.; Xin, B.; Kenagy, K.; Martin, H. M.; Tuell, M. T.; West, S. C.

    2016-08-01

    At the core of the Large Synoptic Survey Telescope (LSST) three-mirror optical design is the primary/tertiary (M1M3) mirror that combines these two large mirrors onto one monolithic substrate. The M1M3 mirror was spin cast and polished at the Steward Observatory Mirror Lab at The University of Arizona (formerly SOML, now the Richard F. Caris Mirror Lab at the University of Arizona (RFCML)). Final acceptance of the mirror occurred during the year 2015 and the mirror is now in storage while the mirror cell assembly is being fabricated. The M1M3 mirror will be tested at RFCML after integration with its mirror cell before being shipped to Chile.

  10. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  11. Baryon Masses and Hadronic Decay Widths with Explicit Pionic Contributions

    NASA Astrophysics Data System (ADS)

    Schmidt, R. A.; Canton, L.; Plessas, W.; Schweiger, W.

    2017-03-01

    We report results from studies of baryon ground and resonant states by taking explicit mesonic degrees of freedom into account. We are following a relativistic coupled-channels approach relying on a Poincaré-invariant mass operator in matrix form. Generally, it corresponds to a bare particle that is coupled to a number of further mesonic channels. Here we present results, where the bare particle is either a bare nucleon or a bare Delta coupled to pion-nucleon and pion-Delta channels, respectively. For the pion-baryon vertices we employ coupling constants and form factors from different models in the literature. From the mass-operator eigenvalue equation we obtain the pion-dressing effects on the nucleon mass as well as the mass and pion-decay width of the Delta. The dressed masses become smaller than the bare ones, and a finite width of the Delta is naturally generated. The results are relevant for the construction of constituent-quark models for baryons, which have so far not included explicit mesonic degrees of freedom, but have rather relied on three-quark configurations only.

  12. The Variable Line Width of Achernar

    NASA Astrophysics Data System (ADS)

    Rivinius, Th.; Townsend, R. H. D.; Baade, D.; Carciofi, A. C.; Leister, N.; Štefl, S.

    2016-11-01

    Spectroscopic observations of Achernar over the past decades, have shown the photospheric line width, as measured by the rotational parameter v sin i, to vary in correlation with the emission activity. Here we present new observations, covering the most recent activity phase, and further archival data collected from the archives. The v sin i variation is confirmed. On the basis of the available data it cannot be decided with certainty whether the increased line width precedes the emission activity, i.e. is a signature of the ejection mechanism, or postdates it, which would make it a signature of re-accretion of some of the disk-material. However, the observed evidence leans towards the re-accretion hypothesis. Two further stars showing the effect of variable line width in correlation with emission activity, namely 66 Oph and π Aqr, are presented as well.

  13. Relative Width and Height of Handwritten Letter.

    PubMed

    Lizega Rika, Joseba

    2017-02-28

    This is an exploratory study that analyzes the width and the height of letters in two texts written by each of the 21 writers analyzed. After detrending the linear, text, and allograph trends, we proceeded to comparing the sizes obtained in different texts. The different detrended series were compared by means of correlation and t-test. According to the results regarding the width of letters, the texts of 19 of 21 writers correlated strongly, whereas the texts of two writers did not correlate with the limits of the threshold. With regard to the height of letters, texts written by between 18 and 21 writers of 21 writers correlated strongly, whereas texts that did not correlate were within the threshold value. Regarding both the width and the height of letters, of 21 writers, texts written by between 19 and 21 individuals were found to correlate strongly.

  14. Equivalent Widths in the Spectrum of Sirius

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Qiu, H. M.; Chen, Y. Q.; Li, Z. W.

    2000-02-01

    The equivalent widths of total 546 lines (26 elements are included) in the spectrum of the bright Am star Sirius from 380 to 930 nm are tabulated. The high-resolution, high signal-to-noise ratio spectrum was obtained with the Coudé Echelle Spectrograph attached to the 2.16 m telescope at Beijing Astronomical Observatory (Xinglong, China). Here we also give the results of the equivalent widths comparison between our measurements and those of Strom et al. and Sadakane & Ueta.

  15. The magic of relay mirrors

    NASA Astrophysics Data System (ADS)

    Duff, Edward A.; Washburn, Donald C.

    2004-09-01

    Laser weapon systems would be significantly enhanced with the addition of high altitude or space-borne relay mirrors. Such mirrors, operating alone with a directed energy source, or many in a series fashion, can be shown to effectively move the laser source to the last, so-called fighting mirror. This "magically" reduces the range to target and offers to enhance the performance of directed energy systems like the Airborne Laser and even ground-based or ship-based lasers. Recent development of high altitude airships will be shown to provide stationary positions for such relay mirrors thereby enabling many new and important applications for laser weapons. The technical challenges to achieve this capability are discussed.

  16. JWST Primary Mirror Installation Complete

    NASA Video Gallery

    Completing the assembly of the primary mirror, which took place at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is a significant milestone and the culmination of over a decade of desi...

  17. JWST Secondary Mirror Deploy Timelapse

    NASA Video Gallery

    Setting up NASA's James Webb Space Telescope's secondary mirror in space will require special arms that resemble a tripod that was recently demonstrated in a NASA cleanroom. TRT: 1:25 / Credit: NAS...

  18. Characterizing plasma mirrors near breakdown.

    PubMed

    Geissel, Matthias; Schollmeier, Marius S; Kimmel, Mark W; Rambo, Patrick K; Schwarz, Jens; Atherton, Briggs W; Brambrink, Erik

    2011-05-01

    Experiments dedicated to the characterization of plasma mirrors with a high energy, single shot short-pulse laser were performed at the 100 TW target area of the Z-Backlighter Facility at Sandia National Laboratories. A suite of beam diagnostics was used to characterize a high energy laser pulse with a large aperture through focus imaging setup. By varying the fluence on the plasma mirror around the plasma ignition threshold, critical performance parameters were determined and a more detailed understanding of the way in which a plasma mirror works could be deduced. It was found, that very subtle variations in the laser near field profile will have strong effects on the reflected pulse if the maximum fluence on the plasma mirror approaches the plasma ignition threshold.

  19. Morphing of Segmented Bimorph Mirrors

    NASA Astrophysics Data System (ADS)

    Rodrigues, Gonçalo; Bastaits, Renaud; Preumont, André

    2010-08-01

    Atmospheric turbulence compensation for the next generation of terrestrial telescopes (30-40 m diameter) will require deformable mirrors of increasing size and a number of actuators reaching several thousands. However, the mere extrapolation of existing designs leads to complicated and extremely expensive mirrors. This article discusses an alternative solution based on the use of segmented identical hexagonal bimorph mirrors. This allows to indefinitely increase the degree of correction while maintaining the first mechanical resonance at the level of a single segment, and shows an increase in price only proportional to the number of segments. Extensive simulations using random turbulent screens show that the segmentation produces only moderate reductions of the Strehl number, compared to a monolithic bimorph mirror with the same number of actuators (S = 0.86 instead of S = 0.89 in this study).

  20. Design considerations for mirror materials

    NASA Astrophysics Data System (ADS)

    Gulati, Suresh T.

    1996-11-01

    The key requirements for an optical mirror material include low density, high Young's modulus, low coefficient of thermal expansion, high thermal conductivity, and high diffusivity. Not included among these are fracture toughness and stress corrosion constant, which control slow crack growth and long-term reliability under static or dynamic loads during manufacturing and in-service. The reliability requirement becomes crucial as the mirror size increases and/or its mission takes on strategic importance. This paper compares the critical properties of three ultralow expansion materials, namely ULETM, Zerodur and AstrositallTM. It demonstrates how these properties affect the bending rigidity and safe allowable stress for the mirror subjected to different types of loading, namely: (i) its own weight and (ii) external load. An analysis of bending rigidity, bending stress, and safe allowable stress shows that mirror blanks of two different materials can be designed to be equivalent in terms of their rigidity without any weight penalty. The lower modulus and lightweight material like ULE glass requires about 10 percent higher thickness which reduces the bending stresses 20 percent compared to those in Zerodur or Astrositall mirrors of identical size. The lower stress, according to Power law fatigue model, is highly beneficial in that it improves the mechanical reliability of ULE mirror during manufacturing, transportation, installation and in-service by two orders of magnitude over that of Zerodur and Astrositall mirrors. The fatigue and fracture data for the three materials are used to estimate the safe allowable stress for facilitating mirror design from mechanical reliability point of view.

  1. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  2. Torque-while-turnaround scan mirror assembly

    NASA Technical Reports Server (NTRS)

    Starkus, C. J.

    1977-01-01

    A scan mirror assembly which is part of a thematic mapper system is described with emphasis on mechanical aspects of the design. Features of the oscillating scan mirror mechanism include: a low level of structural vibration for the impact energies involved in mirror oscillation and return of energy lost during impact to the mirror by applying torque during the instant of impact.

  3. Wavefront alignment research of segmented mirror synthetic aperture optical (SAO) system

    NASA Astrophysics Data System (ADS)

    Deng, Jian; An, Xiaoqiang; Tian, Hao

    2010-05-01

    Wavefront control technology and imaging experiment are introduced for a segmented mirror SAO system with deformable sub-mirrors. This system is a RC style with 300mm aperture, 4.5 F#, +/-0.4°FOV, 0.45~0.75μm wave band, and diffraction-limit design MTF. The primary mirror is composed by three sub-mirrors, with parabolic shape, and each deformable sub-mirror has 19 actuators to control and keep the surface shape, and 5 actuators to align sub-mirrors location in 5 degree of freedom. Interferometer is used to feed back and control exit wavefront error, and base on measurement and finite element analysis, location and quanitity of actuators are optimized, making the surface shape and misadjustment errors interact and compensate each other, and the synthetic system exit pupil wavefront error is controlled. The integrated exit pupil wavefront errors are gotten by ZYGO interferometer, and central FOV is 0.077λRMS, and edge FOV is 0.093λRMS. At the end, an imaging experiment is executed, and good results are obtained, which proves, the deformable sub-mirrors have the ability to meliorate alignment and the latter can retroact the former, and this relationship iterate make system exit pupil wavefront error convergence and improve segmented mirror SAO system imaging ability.

  4. Study on the support technology of the light-weighted mirror

    NASA Astrophysics Data System (ADS)

    Zhu, Nengbing; QI, Bo; Ren, Ge; Zhu, Fuyin; Ai, Zhiwei

    2016-10-01

    To reduce the surface deformation of a space remote sensor mirror in space environments, a flexible supporting structure of space mirror is designed to improve the surface accuracy of mirror under operating conditions, making the mirror in good thermal dimensional stability and the structure stiffness meet the requirements of mechanics at the same time. Using the finite element method to do simulation analysis about the surface accuracy and structural strength and dynamic stiffness of the mirror assembly under the force-heat coupling state. Simulation results show that the first-order natural frequency of the mirror component is 393.73Hz, and the RMS values of 1g gravity respectively reach 8.920nm, 1.856nm, 4.516nm; under 1g gravity and 4 degrees centigrade rising coupling state in three directions, the RMS values respectively reach 10.02nm, 3.312nm, 5.718nm, the results meet the design specifications requirement that the RMS value less than λ/50 (λ=632.8nm). Finally, the analysis of the random vibration was carried out on the mirror components, results show that the mirror and its supporting structure was designed reasonable which can meet the requirements of space applications.

  5. EAGLE: relay mirror technology development

    NASA Astrophysics Data System (ADS)

    Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.

    2002-06-01

    EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.

  6. Evolution of the mirror machine

    SciTech Connect

    Damm, C. C.

    1983-08-18

    The history of the magnetic-mirror approach to a fusion reactor is primarily the history of our understanding and control of several crucial physics issues, coupled with progress in the technology of heating and confining a reacting plasma. The basic requirement of an MHD-stable plasma equilibrium was achieved following the early introduction of minimum-B multipolar magnetic fields. In refined form, the same magnetic-well principle carries over to our present experiments and to reactor designs. The higher frequency microinstabilities, arising from the non-Maxwellian particle distributions inherent in mirror machines, have gradually come under control as theoretical prescriptions for distribution functions have been applied in the experiments. Even with stability, the classical plasma leakage through the mirrors posed a serious question for reactor viability until the principle of electrostatic axial stoppering was applied in the tandem mirror configuration. Experiments to test this principle successfully demonstrated the substantial improvement in confinement predicted. Concurrent with advances in mirror plasma physics, development of both high-power neutral beam injectors and high-speed vacuum pumping techniques has played a crucial role in ongoing experiments. Together with superconducting magnets, cryogenic pumping, and high-power radiofrequency heating, these technologies have evolved to a level that extrapolates readily to meet the requirements of a tandem mirror fusion reactor.

  7. Foil X-ray Mirrors

    NASA Astrophysics Data System (ADS)

    Serlemitsos, Peter J.; Soong, Yang

    1996-09-01

    Nested thin foil reflectors have made possible light weight, inexpensive and fast grazing incidence X-ray mirrors for astronomical spectroscopy over a broad band. These mirrors were developed at Goddard for the US Shuttle program and were flown on NASA's shuttleborne Astro-l mission in December 1990. Presently, the Japan/US collaborative spectroscopic mission ASCA, nearing its third year of successful operation in earth orbit, carries, four such mirrors, weighing less than 40 kg and giving total effective areas of ˜ 1200 and 420 cm2 at l and 8 keV respectively. The ˜ 420 kg observatory is the best possible example of how conical foil mirrors opened areas of research that could not have been otherwise addressed with available resources. In this paper, we will briefly review the development and performance of our first generation foil mirrors. We will also describe progress toward improving their imaging capability to prime them for use in future instruments. Such a goal is highly desirable, if not necessary for this mirror technology to remain competitive for future applications.

  8. QED with a spherical mirror

    SciTech Connect

    Hetet, G.; Blatt, R.; Slodicka, L.; Hennrich, M.; Glaetzle, A.

    2010-12-15

    We investigate the quantum electrodynamic (QED) properties of an atomic electron close to the focus of a spherical mirror. We first show that the spontaneous emission and excited-state level shift of the atom can be fully suppressed with mirror-atom distances of many wavelengths. A three-dimensional theory predicts that the spectral density of vacuum fluctuations can indeed vanish within a volume {lambda}{sup 3} around the atom, with the use of a far-distant mirror covering only half of the atomic emission solid angle. The modification of these QED atomic properties is also computed as a function of the mirror size, and large effects are found for only moderate numerical apertures. We also evaluate the long-distance ground-state energy shift (Casimir-Polder shift) and find that it scales as ({lambda}/R){sup 2} at the focus of a hemispherical mirror of radius R, as opposed to the well-known ({lambda}/R){sup 4} scaling law for an atom at a distance R from an infinite plane mirror. Our results are relevant for investigations of QED effects as well as free-space coupling to single atoms using high-numerical-aperture lenses.

  9. Actuators of 3-element unimorph deformable mirror

    NASA Astrophysics Data System (ADS)

    Fu, Tianyang; Ning, Yu; Du, Shaojun

    2016-10-01

    Kinds of wavefront aberrations exist among optical systems because of atmosphere disturbance, device displacement and a variety of thermal effects, which disturb the information of transmitting beam and restrain its energy. Deformable mirror(DM) is designed to adjust these wavefront aberrations. Bimorph DM becomes more popular and more applicable among adaptive optical(AO) systems with advantages in simple structure, low cost and flexible design compared to traditional discrete driving DM. The defocus aberration accounted for a large proportion of all wavefront aberrations, with a simpler surface and larger amplitude than others, so it is very useful to correct the defocus aberration effectively for beam controlling and aberration adjusting of AO system. In this study, we desired on correcting the 3rd and 10th Zernike modes, analyze the characteristic of the 3rd and 10th defocus aberration surface distribution, design 3-element actuators unimorph DM model study on its structure and deformation principle theoretically, design finite element models of different electrode configuration with different ring diameters, analyze and compare effects of different electrode configuration and different fixing mode to DM deformation capacity through COMSOL finite element software, compare fitting efficiency of DM models to the 3rd and 10th Zernike modes. We choose the inhomogeneous electrode distribution model with better result, get the influence function of every electrode and the voltage-PV relationship of the model. This unimorph DM is suitable for the AO system with a mainly defocus aberration.

  10. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  11. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  12. 14 CFR 121.115 - Route width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Route width. 121.115 Section 121.115 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Approval of Areas and Routes for Supplemental Operations §...

  13. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Route width. 121.95 Section 121.95 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Approval of Routes: Domestic and Flag Operations § 121.95 Route...

  14. Bounding the Higgs boson width through interferometry.

    PubMed

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  15. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  16. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.

  17. A theoretical study on using a fictional mirror to simplify the behavior of a volume Bragg grating in an optical cavity

    NASA Astrophysics Data System (ADS)

    Hsieh, Yu-Hua; Huang, Ching-Hsun; Chung, Te-yuan; Shy, Jow-Tsong

    2016-11-01

    A fictional mirror was proposed to describe the reflective behaviors of a volume Bragg grating (VBG) in an optical cavity. When a finite beam interacts with a VBG, the analytical forms of the location and the radius of curvature of the fictional mirror are derived. In addition, the longitudinal mode spacing of an optical cavity using a VBG as the cavity mirror is investigated theoretically and experimentally.

  18. Metamaterial mirrors in optoelectronic devices.

    PubMed

    Esfandyarpour, Majid; Garnett, Erik C; Cui, Yi; McGehee, Michael D; Brongersma, Mark L

    2014-07-01

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror (φ = π) to that of a perfect magnetic mirror (φ = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band.

  19. Optical design of systems with off-axis spherical mirrors

    NASA Astrophysics Data System (ADS)

    Malacara-Hernández, Daniel; Gomez-Vieyra, Armando

    2011-09-01

    The astigmatism in reflective imaging systems can be eliminated by a proper configuration. However, the spherical and coma are the main residual aberrations in third order theory, but the behavior of all aberrations is not yet fully The main aberration of classical off-axis reflecting systems is primary astigmatism. The astigmatism in off-axis spherical understood. Expressions for the wavefront aberrations in an off-axis spherical mirror are presented. These formulas are derived from the optical path difference between an ellipsoid and a sphere, assuming a relatively small pupil and a small angle of incidence as it will be described with detail. Using the principle of the optical path difference, we developed the mathematical expressions that describe the third order wavefront aberrations in a two spherical mirror system when the object is finite.

  20. Smart warping harnesses for active mirrors and stress polishing

    NASA Astrophysics Data System (ADS)

    Lemared, Sabri; Hugot, Emmanuel; Challita, Zalpha; Schnetler, Hermine; Kroes, Gabby; Marcos, Michel; Costille, Anne; Dohlen, Kjetil; Beuzit, Jean-Luc; Cuby, Jean-Gabriel

    2016-07-01

    We present two ways to generate or compensate for first order optical aberrations using smart warping harnesses. In these cases, we used the same methodology leading to replace a previous actuation system currently on-sky and to get a freeform mirror intended to a demonstrator. Starting from specifications, a warping harness is designed, followed by a meshing model in the finite elements software. For the two projects, two different ways of astigmatism generation are presented. The first one, on the VLT-SPHERE instrument, with a single actuator, is able to generate a nearly pure astigmatism via a rotating motorization. Two actuators are sufficient to produce the same aberration for the active freeform mirror, main part of the OPTICON-FAME project, in order to use stress-polishing method.

  1. Compact neutron imaging system using axisymmetric mirrors

    SciTech Connect

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  2. Testing Computability by Width Two OBDDs

    NASA Astrophysics Data System (ADS)

    Ron, Dana; Tsur, Gilad

    Property testing is concerned with deciding whether an object (e.g. a graph or a function) has a certain property or is “far” (for some definition of far) from every object with that property. In this paper we give lower and upper bounds for testing functions for the property of being computable by a read-once width-2 Ordered Binary Decision Diagram (OBDD), also known as a branching program, where the order of the variables is known. Width-2 OBDDs generalize two classes of functions that have been studied in the context of property testing - linear functions (over GF(2)) and monomials. In both these cases membership can be tested in time that is linear in 1/ɛ. Interestingly, unlike either of these classes, in which the query complexity of the testing algorithm does not depend on the number, n, of variables in the tested function, we show that (one-sided error) testing for computability by a width-2 OBDD requires Ω(log(n)) queries, and give an algorithm (with one-sided error) that tests for this property and performs tilde{O}(log(n)/ɛ) queries.

  3. SUPER MIRROR FABRICATION VIA ELECTROFORMING.

    SciTech Connect

    ULMER,M.P.; ALTKORN,R.; KRIEGER,A.; PARSIGNAULT,D.; CHUNG,Y.W.; WONG,M.S.; LAI,B.; MANCINI,D.; TAKACS,P.Z.; CHURCH,E.

    1997-07-27

    As part of a project to develop methods of placing highly reflective multilayer coatings on the inside of Wolter I mirrors, we have been pursuing a program of measuring flat mirrors. These flats have been produced and examined at various stages of the process we plan to use to fabricate multilayer coated Wolter I mirrors. The flats were measured via optical profiler, AFM, (both done at Brookhaven National Lab) and X-ray reflection (done at the Argonne National Lab (ANL) Advanced Photon Source (APS)). We report for the first time, to our knowledge, the successful placement of multilayers on an electroform by depositing the multilayers on a master and then electroforming onto this master and removing the multilayers, intact, on the electroform. This process is the one we plan to use to place multilayers on the inside of Wolter I optics.

  4. Alpha Channeling in Mirror Machines

    SciTech Connect

    Fisch N.J.

    2005-10-19

    Because of their engineering simplicity, high-β, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

  5. Metrology of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing

    2011-01-01

    For future x-ray astrophysics mission that demands optics with large throughput and excellent angular resolution, many telescope concepts build around assembling thin mirror segments in a Wolter I geometry, such as that originally proposed for the International X-ray Observatory. The arc-second resolution requirement posts unique challenges not just for fabrication, mounting but also for metrology of these mirror segments. In this paper, we shall discuss the metrology of these segments using normal incidence metrological method with interferometers and null lenses. We present results of the calibration of the metrology systems we are currently using, discuss their accuracy and address the precision in measuring near-cylindrical mirror segments and the stability of the measurements.

  6. Analysis and design of an adaptive lightweight satellite mirror

    NASA Astrophysics Data System (ADS)

    Duerr, Johannes K.; Honke, Robert; Alberti, Mathias V.; Sippel, Rudolf

    2002-07-01

    Future scientific space missions based on interferometric optical and infrared astronomical instruments are currently under development in the United States as well as in Europe. These instruments require optical path length accuracy in the order of a few nanometers across structural dimensions of several meters. This puts extreme demands on static and dynamic structural stability. It is expected that actively controlled, adaptive structures will increasingly have to be used for these satellite applications to overcome the limits of passive structural accuracy. Based on the evaluation of different piezo-active concepts presented two years ago analysis and design of an adaptive lightweight satellite mirror primarily made of carbon-fiber reinforced plastic with embedded piezoceramic actuators for shape control is being described. Simulation of global mirror performance takes different wavefront-sensors and controls for several cases of loading into account. In addition extensive finite-element optimization of various structural details has been performed. Local material properties of sub-assemblies or geometry effects at the edges of the structure are investigated with respect to their impact on mirror performance. One important result of the analysis was the lay-out of actuator arrays consisting of specifically designed and custom made piezoceramic actuators. Prototype manufacturing and testing of active sub-components is described in detail. The results obtained served as a basis for a final update of finite-element models. The paper concludes with an outline on manufacturing, testing, and space qualification of the prototype demonstrator of an actively controllable lightweight satellite mirror currently under way. The research work presented in this paper is part of the German industrial research project 'ADAPTRONIK'.

  7. Development and alignment for SiC mirror subsystem of a space-borne telescope

    NASA Astrophysics Data System (ADS)

    Feng, Liangjie; Wang, Wei; Ren, Guorui

    2016-10-01

    A Φ600mm SiC primary mirror subsystem of a space-borne Ritchey-Chretien telescope was designed. The open-back primary mirror was made of pressure-less sintering silicon carbide (SiC), light-weighted at a ratio of approximately 70%. Minimizing the optical surface astigmatism was critical for the mirror, the astigmatism is caused mainly by gravity effects, temperature variation and the bonding process. Three invar flexure bipods were fixed on the baseplate of the telescope at first, and the posture of the primary mirror was adjusted precisely for 0.2mm gap to the bipods. 3M 2216 B/A grey adhesive was then injected into the gap between the mirror and bipod flexure, the curing process was last 72 hours in the room temperature. So the mirror was affected only by curing stress of the adhesive during the assembly process. Structural strength and dynamic stiffness of the mirror subsystem in the thermal- structural coupling state were analyzed with finite element method. Analyzed results show that the optical surface distortion is less than 1/50λ at 632.8nm RMS with three points support and less than 1/200λ RMS with 2°C temperature variation because of the flexure support and compatible support and mirror material, The optical performance test with interferometer show that the optical surface distortion caused by the curing stress of the adhesive is less than 1/50λRMS, the overall optical surface of the primary mirror is less than 1/30λ rms, which met the critical requirements for the primary mirror of the telescope.

  8. Structural evaluation of candidate designs for the large space telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Soosaar, K.; Grin, R.; Furey, M.; Hamilton, J.

    1975-01-01

    Structural performance analyses were conducted on two candidate designs (Itek and Perkin-Elmer designs) for the large space telescope three-meter mirror. The mirror designs and the finite-element models used in the analyses evaluation are described. The results of the structural analyses for several different types of loading are presented in tabular and graphic forms. Several additional analyses are also reported: the evaluation of a mirror design concept proposed by the Boeing Co., a study of the global effects of local cell plate deflections, and an investigation of the fracture mechanics problems likely to occur with Cervit and ULE. Flexibility matrices were obtained for the Itek and Perkin-Elmer mirrors to be used in active figure control studies. Summary, conclusions, and recommendations are included.

  9. Fokker-Planck equation in mirror research

    SciTech Connect

    Post, R.F.

    1983-08-11

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror.

  10. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  11. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  12. Controllable objective with deformable mirrors

    SciTech Connect

    Agafonov, V V; Safronov, A G

    2004-03-31

    A new optical device - an objective with deformable mirrors and parameters controlled in the dynamic regime is proposed. The computer simulation of the objective is performed. The dependences of some parameters of the objective on the control voltage are determined. The simulation showed that the ranges of control of the rear focal segment and the focal distance for the objective with the focal distance 602 mm were 1057 and 340 mm, respectively, which is substantially greater than in the control of an equivalent deformable mirror. (laser applications and other topics in quantum electronics)

  13. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  14. Nonsupersymmetric Dualities from Mirror Symmetry

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia

    2017-01-01

    We study supersymmetry breaking perturbations of the simplest dual pair of (2 +1 )-dimensional N =2 supersymmetric field theories—the free chiral multiplet and N =2 super QED with a single flavor. We find dual descriptions of a phase diagram containing four distinct massive phases. The equivalence of the intervening critical theories gives rise to several nonsupersymmetric avatars of mirror symmetry: we find dualities relating scalar QED to a free fermion and Wilson-Fisher theories to both scalar and fermionic QED. Thus, mirror symmetry can be viewed as the multicritical parent duality from which these nonsupersymmetric dualities directly descend.

  15. NASA CONNECT: Algebra: Mirror, Mirror on the Universe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    'Algebra: Mirror, Mirror on the Universe' is the last of seven programs in the 1999-2000 NASA CONNECT series. Produced by NASA Langley Research Center's Office of Education, NASA CONNECT is an award-winning series of instructional programs designed to enhance the teaching of math, science and technology concepts in grades 5-8. NASA CONNECT establishes the 'connection' between the mathematics, science, and technology concepts taught in the classroom and NASA research. Each program in the series supports the national mathematics, science, and technology standards; includes a resource-rich teacher guide; and uses a classroom experiment and web-based activity to complement and enhance the math, science, and technology concepts presented in the program. NASA CONNECT is FREE and the programs in the series are in the public domain. Visit our web site and register. http://connect.larc.nasa.gov In 'Algebra: Mirror, Mirror on the Universe', students will learn how algebra is used to explore the universe.

  16. Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions

    NASA Technical Reports Server (NTRS)

    Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations

  17. Lightweight ZERODUR®: Validation of mirror performance and mirror modeling predictions

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA’s XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2m diameter, f/1.29 88% lightweighted SCHOTT lightweighted ZERODUR® mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR®. In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response (dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR® mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS), and summarize the outcome of NASA’s XRCF tests and model validations.

  18. Development of Individually Addressable Micro-Mirror-Arrays for Space Applications

    NASA Technical Reports Server (NTRS)

    Dutta, Sanghamitra B.; Ewin, Audrey J.; Jhabvala, Murzy; Kotecki, Carl A.; Kuhn, Jonathan L.; Mott, D. Brent

    2000-01-01

    We have been developing a 32 x 32 prototype array of individually addressable Micro-Mirrors capable of operating at cryogenic temperature for Earth and Space Science applications. Micro-Mirror-Array technology has the potential to revolutionize imaging and spectroscopy systems for NASA's missions of the 21st century. They can be used as programmable slits for the Next Generation Space Telescope, as smart sensors for a steerable spectrometer, as neutral density filters for bright scene attenuation etc. The, entire fabrication process is carried out in the Detector Development Laboratory at NASA, GSFC. The fabrication process is low temperature compatible and involves integration of conventional CMOS technology and surface micro-machining used in MEMS. Aluminum is used as the mirror material and is built on a silicon substrate containing the CMOS address circuit. The mirrors are 100 microns x l00 microns in area and deflect by +/- 10 deg induced by electrostatic actuation between two parallel plate capacitors. A pair of thin aluminum torsion straps allow the mirrors to tilt. Finite-element-analysis and closed form solutions using electrostatic and mechanical torque for mirror operation were developed and the results were compared with laboratory performance. The results agree well both at room temperature and at cryogenic temperature. The development demonstrates the first cryogenic operation of two-dimensional Micro-Mirrors with bi-state operation. Larger arrays will be developed meeting requirements for different science applications. Theoretical analysis, fabrication process, laboratory test results and different science applications will be described in detail.

  19. Design and analysis of an x-ray mirror assembly using the meta-shell approach

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.; Bonafede, Joseph A.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2016-07-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in highenergy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.

  20. Design and Analysis of an X-Ray Mirror Assembly Using the Meta-Shell Approach

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bonafede, Joseph; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.

  1. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.

    PubMed

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline

    2014-08-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition.

  2. Artifacts for Calibration of Submicron Width Measurements

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank; Grunthaner, Paula; Bryson, Charles, III

    2003-01-01

    Artifacts that are fabricated with the help of molecular-beam epitaxy (MBE) are undergoing development for use as dimensional calibration standards with submicron widths. Such standards are needed for calibrating instruments (principally, scanning electron microscopes and scanning probe microscopes) for measuring the widths of features in advanced integrated circuits. Dimensional calibration standards fabricated by an older process that involves lithography and etching of trenches in (110) surfaces of single-crystal silicon are generally reproducible to within dimensional tolerances of about 15 nm. It is anticipated that when the artifacts of the present type are fully developed, their critical dimensions will be reproducible to within 1 nm. These artifacts are expected to find increasing use in the semiconductor-device and integrated- circuit industries as the width tolerances on semiconductor devices shrink to a few nanometers during the next few years. Unlike in the older process, one does not rely on lithography and etching to define the critical dimensions. Instead, one relies on the inherent smoothness and flatness of MBE layers deposited under controlled conditions and defines the critical dimensions as the thicknesses of such layers. An artifact of the present type is fabricated in two stages (see figure): In the first stage, a multilayer epitaxial wafer is grown on a very flat substrate. In the second stage, the wafer is cleaved to expose the layers, then the exposed layers are differentially etched (taking advantage of large differences between the etch rates of the different epitaxial layer materials). The resulting structure includes narrow and well-defined trenches and a shelf with thicknesses determined by the thicknesses of the epitaxial layers from which they were etched. Eventually, it should be possible to add a third fabrication stage in which durable, electronically inert artifacts could be replicated in diamondlike carbon from a master made by

  3. Nonlinear mathematical model for a biaxial MOEMS scanning mirror

    NASA Astrophysics Data System (ADS)

    Ma, Yunfei; Davis, Wyatt O.; Ellis, Matt; Brown, Dean

    2010-02-01

    In this paper, a nonlinear mathematic model for Microvision's MOEMS scanning mirror is presented. The pixel placement accuracy requirement for scanned laser spot displays translates into a roughly 80dB signal to noise ratio, noise being a departure from the ideal trajectory. To provide a tool for understanding subtle nonidealities, a detailed nonlinear mathematical model is derived, using coefficients derived from physics, finite element analysis, and experiments. Twelve degrees of freedom parameterize the motion of a gimbal plate and a suspended micromirror; a thirteenth is the device temperature. Illustrations of the application of the model to capture subtleties about the device dynamics and transfer functions are presented.

  4. Genetics Home Reference: congenital mirror movement disorder

    MedlinePlus

    ... Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Congenital mirror movement disorder is a condition in which intentional movements of one side of the body are mirrored by involuntary movements ...

  5. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  6. [The ontogeny of the mirror neuron system].

    PubMed

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  7. Metallic waveguide mirrors in polymer film waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, S.; Giehl, A. R.; Renno, M.; Fouckhardt, H.

    2001-10-01

    A technology for the fabrication of metallic waveguide mirrors is developed. Plane and curved waveguide mirrors, the latter acting in the same way as cylindrical lenses, are realized in benzocyclobutene (BCB) film waveguides. The waveguide mirror structure is dry-etched into the BCB film waveguide. To enhance the reflectivity of the waveguide mirrors, the waveguide edge is metallized. The BCB film waveguide mirrors are characterized with respect to waveguide attenuation and mirror reflectivity. The waveguide attenuation of the processed BCB waveguide is 0.5 dB/cm. Ag-coated BCB waveguide mirrors show a reflectivity of 71%. The efficiency of total internal reflection (TIR, i.e. in the case without metallization) at the dry-etched waveguide edge is 74%. As an application of the BCB waveguide mirrors a hybrid integrated optical module for Fourier-optical transverse mode selection in broad area lasers (BAL) is proposed.

  8. The "Rear View Mirror" Approach.

    ERIC Educational Resources Information Center

    Nord, James R.

    1987-01-01

    The new interactive videodisk systems with augmented audio capabilities have great potential for improving the teaching of foreign languages. At present that potential is unfulfilled because the profession is following a "rear view mirror" approach to media use: first, to fixate current practice; second, to distribute it broadly; and last, to…

  9. Collodion technique of mirror cleaning

    NASA Technical Reports Server (NTRS)

    Tyndall, J. B.

    1970-01-01

    Cleaning method is modified by addition of a layer of cheesecloth between thin coatings of U.S.P. collodion. After drying, the collodion is peeled off by an even pull on the cheesecloth, leaving the mirror clean and ready for use.

  10. Baseline neoclassical scaling law on H-mode pedestal width from XGC0 kinetic simulation

    NASA Astrophysics Data System (ADS)

    Park, Gunyoung; Chang, C. S.; Ku, S.

    2009-11-01

    In the H-mode pedestal before the ELM onset, nonlocal neoclassical self-organization is an important physical effect, to set the baseline pedestal width scaling law. Deviation from the neoclassical scaling will define the anomalous scaling. The neoclassical self-organization includes effects from the self-consistent radial electric field shear, strong magnetic field shear, ion-orbit loss across the last closed magnetic surface, finite ion banana width, particle source from neutral ionization, heat flux from the core plasma, and collisional transport. XGC0 code is used to perform an inter-machine study of the neoclassical pedestal scaling law between two representative devices DIII-D (low-B, low collisionality) and C- Mod (high-B, high collisionality). Anomalous scaling component in the experimental pedestal width data will be separated out from the neoclassical component. Prediction for ITER pedestal will be attempted based upon the combined neoclassical (theoretical) and anomalous (empirical) scaling laws obtained in this study. This ion-electron study indicates that the neoclassical pedestal width is broader than the previous ion only study results, closer to experimental pedestal width.

  11. Finite-element models of continental extension

    NASA Technical Reports Server (NTRS)

    Lynch, H. David; Morgan, Paul

    1990-01-01

    Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.

  12. Mounting and Alignment of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  13. Simulation of Aluminum Micro-mirrors for Space Applications at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Kuhn, J. L.; Dutta, S. B.; Greenhouse, M. A.; Mott, D. B.

    2000-01-01

    Closed form and finite element models are developed to predict the device response of aluminum electrostatic torsion micro-mirrors fabricated on silicon substrate for space applications at operating temperatures of 30K. Initially, closed form expressions for electrostatic pressure arid mechanical restoring torque are used to predict the pull-in and release voltages at room temperature. Subsequently, a detailed mechanical finite element model is developed to predict stresses and vertical beam deflection induced by the electrostatic and thermal loads. An incremental and iterative solution method is used in conjunction with the nonlinear finite element model and closed form electrostatic equations to solve. the coupled electro-thermo-mechanical problem. The simulation results are compared with experimental measurements at room temperature of fabricated micro-mirror devices.

  14. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    SciTech Connect

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  15. A cryogenic 'set-and-forget' deformable mirror

    NASA Astrophysics Data System (ADS)

    Trines, Robin; Janssen, Huub; Paalvast, Sander; Teuwen, Maurice; Brandl, Bernhard; Rodenhuis, Michiel

    2016-07-01

    This paper discusses the development, realization and initial characterization of a demonstrator for a cryogenic 'set and forget' deformable mirror. Many optical and cryogenic infrared instruments on modern very and extremely large telescopes aim at diffraction-limited performance and require total wave front errors in the order of 50 nanometers or less. At the same time, their complex optical functionality requires either a large number of spherical mirrors or several complex free-form mirrors. Due to manufacturing and alignment tolerances, each mirror contributes static aberrations to the wave front. Many of these aberrations are not known in the design phase and can only be measured once the system has been assembled. A 'set-and-forget' deformable mirror can be used to compensate for these aberrations, making it especially interesting for systems with complex free-form mirrors or cryogenic systems where access to iterative realignment is very difficult or time consuming. The mirror with an optical diameter of 200 mm is designed to correct wave front aberrations of up to 2 μm root-mean square (rms). The shape of the wave front is approximated by the first 15 Zernike modes. Finite element analysis of the mirror shows a theoretically possible reduction of the wave front error from 2 μm to 53 nm rms. To produce the desired shapes, the mirror surface is controlled by 19 identical actuator modules at the back of the mirror. The actuator modules use commercially available Piezo-Knob actuators with a high technology readiness level (TRL). These provide nanometer resolution at cryogenic temperatures combined with high positional stability, and allow for the system to be powered off once the desired shape is obtained. The stiff design provides a high resonance frequency (>200 Hz) to suppress external disturbances. A full-size demonstrator of the deformable mirror containing 6 actuators and 13 dummy actuators is realized and characterized. Measurement results show that

  16. Investigating Starburst Galaxy Emission Line Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Meskhidze, Helen; Richardson, Chris T.

    2016-01-01

    Modeling star forming galaxies with spectral synthesis codes allows us to study the gas conditions and excitation mechanisms that are necessary to reproduce high ionization emission lines in both local and high-z galaxies. Our study uses the locally optimally-emitting clouds model to develop an atlas of starburst galaxy emission line equivalent widths. Specifically, we address the following question: What physical conditions are necessary to produce strong high ionization emission lines assuming photoionization via starlight? Here we present the results of our photoionization simulations: an atlas spanning 15 orders of magnitude in ionizing flux and 10 orders of magnitude in hydrogen density that tracks over 150 emission lines ranging from the UV to the near IR. Each simulation grid contains ~1.5x104 photoionization models calculated by supplying a spectral energy distribution, grain content, and chemical abundances. Specifically, we will be discussing the effects on the emission line equivalent widths of varying the metallicity of the cloud, Z = 0.2 Z⊙ to Z = 5.0 Z⊙, and varying the star-formation history, using the instantaneous and continuous evolution tracks and the newly released Starburst99 Geneva rotation tracks.

  17. Optical antennas with sinusoidal modulation in width.

    PubMed

    Dikken, Dirk Jan; Segerink, Frans B; Korterik, Jeroen P; Pfaff, Stefan S; Prangsma, Jord C; Herek, Jennifer L

    2016-08-08

    Small metal structures sustaining plasmon resonances in the optical regime are of great interest due to their large scattering cross sections and ability to concentrate light to subwavelength volumes. In this paper, we study the dipolar plasmon resonances of optical antennas with a constant volume and a sinusoidal modulation in width. We experimentally show that by changing the phase of the width-modulation, with a small 10 nm modulation amplitude, the resonance shifts over 160 nm. Using simulations we show how this simple design can create resonance shifts greater than 600 nm. The versatility of this design is further shown by creating asymmetric structures with two different modulation amplitudes, which we experimentally and numerically show to give rise to two resonances. Our results on both the symmetric and asymmetric antennas show the capability to control the localization of the fields outside the antenna, while still maintaining the freedom to change the antenna resonance wavelength. The antenna design we tested combines a large spectral tunability with a small footprint: all the antenna dimensions are factor 7 to 13 smaller than the wavelength, and hold potential as a design element in meta-surfaces for beam shaping.

  18. Pulse width modulation inverter with battery charger

    NASA Technical Reports Server (NTRS)

    Slicker, James M. (Inventor)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  19. Pulse width modulation inverter with battery charger

    DOEpatents

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  20. Removing Silicon Monoxide From Nickel Mirrors

    NASA Technical Reports Server (NTRS)

    Zaniewski, John J.

    1987-01-01

    Combination of polishing tool and polishing mixture used to remove adherent fragments of silicon monoxide protective coatings from nickel/aluminum mirrors without altering shapes or harming polishes of mirror surfaces. Polishing technique developed to prepare stained mirrors for recoating to restore high reflectance.

  1. Light Weight Silicon Mirrors for Space Instrumentation

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T.; Hill, Peter C.; Hagopian, John G.; Strojay, Carl R.; Miller, Timothy

    2012-01-01

    Each mirror is a monolithic structure from a single crystal of silicon. The mirrors are light weighted after the optical surface is ground and polished. Mirrors made during the initial phase of this work were typically 1/50 lambda or better (RMS at 633 n m)

  2. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  3. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  4. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  5. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  6. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  7. Tandem mirror next step conceptual design

    SciTech Connect

    Doggett, J.N.; Damm, C.C.; Bulmer, R.H.

    1980-10-14

    A study was made to define the features of the experimental mirror fusion device - The Tandem Mirror Next Step, or TMNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. We outline the project goals, describe some initial device parameters, and relate the technological requirements to ongoing development programs.

  8. Through the looking-glass: mirror reading.

    PubMed

    Duñabeitia, Jon Andoni; Molinaro, Nicola; Carreiras, Manuel

    2011-02-14

    At early stages of object identification we process correctly oriented and mirrored versions of an object similarly. However, in letter and word perception, such tolerance to mirror reversals is harmful for efficient reading. Do readers successfully develop blindness mechanisms for mirror-letters and words? We conducted two masked priming experiments while recording participants' electrophysiological brain responses to briefly presented primes including mirror-letters (Experiment 1) or to shortly presented mirror-words (Experiment 2). Results showed that the human visual word recognition system is not totally blind to mirror-letters and mirror-words, since the early stages of processing mirror-letters and mirror-words produced effects on target word recognition that were highly similar to the effects produced by identical primes (N250 component). In a posterior stage of processing (N400 epoch), the effect of mirror-letters and mirror-words was different from the effect of identical primes, even though reversed primes still elicited N400 priming effects different from unrelated primes. These results demonstrate that readers perceive mirror-letters and words as correct at initial stages of word recognition, and that the visual word recognition system's neural representation is grounded on basic principles that govern object perception.

  9. Development Of Model P-302 Beryllium Rotating Mirror Component In High Speed Streak Camera

    NASA Astrophysics Data System (ADS)

    Sang, Yongsheng

    1989-06-01

    This paper depicts the development and test of Model P-302 Beryllium Rotating Mirror Component used in Model WPG-30 or Model SJZ-15 Streak Camera. The mirror body is made of Hot lsostatic Pressing (HIP) Beryllium. The mirror reflective surface is made by replica film method and consists of 0.1 wave-length flatness beryllium substrate with an aluminum overcoating. Its reflectance is 83%. The cavity of the rotating mirror is not vacuumized. The rotor is strictly adjusted with the dynamic balance method. The turbine is driven by compressive-air and the maximum rotating speed in test is 5,833 rps. The size of the mirror body is 22.5X25 mmX8 mm (rotating diameter is 22.5 mm). Under examination of dynamic performance its writing rate is 15 km/s, the time resolution is 1.4 ns (0.01 mm slit width), the dynamic resolution in scanning direction is 28 line pairs/mm and the effective aperture at film is 1/10.6. The results for detonation experiments indicated that when its rotating speed was 5,000rps, the image density was suitable for measurement while using 36 DIN film. And the results also showed that the precision of measurement have been greatly improved as compared with the steel rotating mirror used before.

  10. Determination of γ -ray widths in 15N using nuclear resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Bemmerer, D.; Caciolli, A.; Fülöp, Zs.; Massarczyk, R.; Michelagnoli, C.; Reinhardt, T. P.; Schwengner, R.; Takács, M. P.; Ur, C. A.; Wagner, A.; Wagner, L.

    2015-07-01

    Background: The stable nucleus 15N is the mirror of 15O, the bottleneck in the hydrogen burning CNO cycle. Most of the 15N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler shift attenuation method in 15O. As a reference and for testing the method, level lifetimes in 15N have also been determined in the same experiment. Purpose: The latest compilation of 15N level properties dates back to 1991. The limited precision in some cases in the compilation calls for a new measurement to enable a comparison to the AGATA demonstrator data. The widths of several 15N levels have been studied with the NRF method. Method: The solid nitrogen compounds enriched in 15N have been irradiated with bremsstrahlung. The γ rays following the deexcitation of the excited nuclear levels were detected with four high-purity germanium detectors. Results: Integrated photon-scattering cross sections of 10 levels below the proton emission threshold have been measured. Partial γ -ray widths of ground-state transitions were deduced and compared to the literature. The photon-scattering cross sections of two levels above the proton emission threshold, but still below other particle emission energies have also been measured, and proton resonance strengths and proton widths were deduced. Conclusions: Gamma and proton widths consistent with the literature values were obtained, but with greatly improved precision.

  11. Kepler primary mirror assembly: FEA surface figure analyses and comparison to metrology

    NASA Astrophysics Data System (ADS)

    Zinn, John W.; Jones, George W.

    2007-09-01

    The Kepler primary mirror assembly (PMA), designed and fabricated by the Brashear Division of L-3 Communications (Brashear), consists of a 1.45 meter, lightweight, frit bonded, ULE mirror supported on a composite strut hexapod. During the early stages of fabrication, finite element analysis results are integrally combined with the in-process mirror metrology to determine the cryogenic, gravity free surface figure of the Kepler primary mirror. The successful operational design of the primary mirror assembly hinges upon the accurate estimation of the cryogenic figure. This paper describes a combined test and analysis approach developed by Brashear which yielded an analytical FEA cryogenic surface distortion within 8% of the actual measured rms surface. The primary mirror thermally induced surface distortion is strongly influenced by the nonlinear, strain rate dependent adhesive mechanical properties. Because of the difficulty in accurately characterizing and implementing the adhesive behavior, an optical test of a representative geometry is used to characterize the distortion caused by the adhesive and bond pad. By correlating FEA results to the optical results, an equivalent, linear elastic, adhesive stiffness is derived and used in the primary mirror assembly cryogenic FEA analysis. Additionally, during in-process metrology, the gravity induced FEA surface figure for each test configuration is numerically subtracted from the raw metrology data in order to estimate the gravity free figure. Thus, the accuracy of the final in-process mirror figure is dependent upon the accuracy of the FEA results which are subtracted. The in-process results are then compared to the final gravity free figure for the integrated primary mirror assembly which is obtained by averaging the metrology results for two diametrically opposed support orientations.

  12. Active Mirror Predictive and Requirements Verification Software (AMP-ReVS)

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.

    2012-01-01

    This software is designed to predict large active mirror performance at various stages in the fabrication lifecycle of the mirror. It was developed for 1-meter class powered mirrors for astronomical purposes, but is extensible to other geometries. The package accepts finite element model (FEM) inputs and laboratory measured data for large optical-quality mirrors with active figure control. It computes phenomenological contributions to the surface figure error using several built-in optimization techniques. These phenomena include stresses induced in the mirror by the manufacturing process and the support structure, the test procedure, high spatial frequency errors introduced by the polishing process, and other process-dependent deleterious effects due to light-weighting of the mirror. Then, depending on the maturity of the mirror, it either predicts the best surface figure error that the mirror will attain, or it verifies that the requirements for the error sources have been met once the best surface figure error has been measured. The unique feature of this software is that it ties together physical phenomenology with wavefront sensing and control techniques and various optimization methods including convex optimization, Kalman filtering, and quadratic programming to both generate predictive models and to do requirements verification. This software combines three distinct disciplines: wavefront control, predictive models based on FEM, and requirements verification using measured data in a robust, reusable code that is applicable to any large optics for ground and space telescopes. The software also includes state-of-the-art wavefront control algorithms that allow closed-loop performance to be computed. It allows for quantitative trade studies to be performed for optical systems engineering, including computing the best surface figure error under various testing and operating conditions. After the mirror manufacturing process and testing have been completed, the

  13. Device-width dependence of plateau width in quantum Hall states

    NASA Astrophysics Data System (ADS)

    Kawaji, S.; Hirakawa, K.; Nagata, M.

    1993-02-01

    Hall bar type devices having a total length of 2900 μm, a source and drain electrode width of 400 μm and different widths w ranging from 10 to 120 μm in its central 600 μm long part are fabricated from a GaAs/AlGaAs wafer with electron mobility of 21 m 2V -1s -1. The current at which the quantum Hall plateau for i=2 at B=9.7T at T=1.2K disappears is proportional to w. The average critical current density is Jcr=(1.6±0.2) A m -1

  14. Study Of Pre-Shaped Membrane Mirrors And Electrostatic Mirrors With Nonlinear-Optical Correction

    DTIC Science & Technology

    2002-01-01

    mirrors have been manufactured of glass-like material Zerodur with very low coefficient of linear expansion. They have a more light cellular construction...primary and flat secondary mirrors are both segmented ones. In the case of the primary mirror made of traditional materials such as Zerodur or fused...FINAL REPORT ISTC Project #2103p “Study of Pre-Shaped Membrane Mirrors and Electrostatic Mirrors with Nonlinear-Optical Correction” Manager

  15. Polarization aberrations of crossed folding mirrors

    NASA Astrophysics Data System (ADS)

    Crandall, David G.; Chipman, Russell A.

    1995-08-01

    Polarization aberrations due to varying polarization state across the field of view (FOV) are investigated for crossed folding mirrors. We define crossed mirrors as oriented in space such that s-polarized light incident on the first mirror is p-polarized at the second mirror. This completely compensates for polarization state changes at one point in the field of view. The resulting polarization aberrations are explored across the FOV using the example of aluminum mirrors overcoated with a 12 layer, highly reflective, dielectric stack. The polarization aberration is very low along a band across the field of view. For arbitrary points in the FOV, the retardance and diattenuation are slightly elliptical.

  16. Red cell distribution width and cancer

    PubMed Central

    Danese, Elisa

    2016-01-01

    Red cell distribution width (RDW) is an index which primarily reflects impaired erythropoiesis and abnormal red blood cell survival. In last years the interest in this marker has considerably grown and now a lot of data are available indicating that this simple and inexpensive parameter is a strong and independent risk factor for death in the general population. Moreover, several investigations have been performed to investigate the role of RDW in cardiovascular and thrombotic disorders. Contrarily, there are relatively few reports focusing on RDW in the area of oncology and to date none review have been performed in this specific field. As such, the aim of this narrative review is to summarize some interesting results obtained in studies performed in patients affected by solid and hematological tumors. Even if larger studies are needed before these preliminary findings can be generalized, it seems plausible to affirm that RDW can be useful by adding prognostic information in patients with oncologic disease. PMID:27867951

  17. Direct measurement of the W boson width

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; /Michigan U. /Northeastern U.

    2009-09-01

    We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W {yields} e{nu} candidates selected in 1 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron collider in p{bar p} collisions at {radical}s = 1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 {+-} 0.072 GeV, is in agreement with the predictions of the standard model and is the most precise direct measurement result from a single experiment to date.

  18. Direct measurement of the W boson width.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Andeen, T; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Leflat, A; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Montgomery, H E; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Wenger, A; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-12-04

    We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W --> enu candidate events. Data from approximately 1 fb(-1) of integrated luminosity recorded at square root of s = 1.96 TeV by the D0 detector at the Fermilab Tevatron pp collider are analyzed. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 +/- 0.072 GeV, is in agreement with the predictions of the standard model.

  19. Time-dependent Second Order Scattering Theory for Weather Radar with a Finite Beam Width

    NASA Technical Reports Server (NTRS)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood; Ito, Shigeo; Oguchi, Tomohiro

    2006-01-01

    Multiple scattering effects from spherical water particles of uniform diameter are studied for a W-band pulsed radar. The Gaussian transverse beam-profile and the rectangular pulse-duration are used for calculation. An second-order analytical solution is derived for a single layer structure, based on a time-dependent radiative transfer theory as described in the authors' companion paper. When the range resolution is fixed, increase in footprint radius leads to increase in the second order reflectivity that is defined as the ratio of the second order return to the first order one. This feature becomes more serious as the range increases. Since the spaceborne millimeter-wavelength radar has a large footprint radius that is competitive to the mean free path, the multiple scattering effect must be taken into account for analysis.

  20. Effects of Finite Current Channel Width on the Current Convective Instability.

    DTIC Science & Technology

    1985-03-05

    shown in Fig . (1). The plasma is assumed inhomogeneous along the north-south direction (x) and is assumed to support equilibrium currents along the...for the current and the density are given in Eqs. (53) and (54), respectively. The parameters used are the same as in Fig . 3. 2 p I . . . o . 0.4 0.3A...scale length is around 20 kms, then we see from Fig . 4, that the growth rate of smaller scale modes, say A - 1 km corresponding to k L - 100, is reduced

  1. Finite orbit width effect in ion collisional transport in TJ-II

    SciTech Connect

    Velasco, J. L.; Tarancon, A.; Castejon, F.

    2009-05-15

    The validity of the traditional local diffusive approach and of the use of monoenergetic calculations has been studied for the stellarator TJ-II [Alejaldre et al., Fusion Technol. 17, 131 (1990)]: it is shown to be doubtful, under some circumstances, even in a purely collisional description of transport. The diffusion in physical space starting from Dirac-delta-like initial conditions has been studied using the code Integrator of Stochastic Differential Equations for Plasmas by Castejon et al. [Plasma Phys. Controlled Fusion 49, 753 (2007)]. Particles may experience large radial excursions from their original magnetic surfaces in a single collisional time. The contribution of these particles to the flux may make it nondiffusive; non-Gaussian density distributions, characterized by long tails, are observed. In the velocity space, there are important variations in the average particle kinetic energy after one collision time. We discuss the effect of this fact over the calculation of monoenergetic transport coefficients and their convolution. A simple analysis based on Hurst exponents has shown nevertheless that the description of transport by means of a pinch term and an effective transport coefficient is more correct than expected.

  2. Global sound modes in mirror traps with anisotropic pressure

    SciTech Connect

    Skovorodin, D. I.; Zaytsev, K. V.; Beklemishev, A. D.

    2013-10-15

    Global oscillations of inhomogeneous plasma with frequencies close to the bounce frequency of ions in mirror traps have been studied. It has been shown that, in some cases, the sound can be reflected from the axial plasma inhomogeneity. The ideal magnetohydrodynamic (MHD) model with Chew-Goldberger-Low approximation has been utilized to determine conditions of existence of the standing waves in the mirror-confined plasma. Linearized wave equation for the longitudinal plasma oscillations in thin anisotropic inhomogeneous plasma with finite β has been derived. The wave equation has been treated numerically. The oscillations are studied for the case of the trap with partially filled loss-cone and the trap with sloshing ions. It has been shown that in cells of the multiple-mirror trap standing waves can exist. The frequency of the wave is of the order of the mean bounce-frequency of ions. In the trap with sloshing ions, the mode supported by the pressure of fast ions could exist. The results of oscillations observation in the experiment on the Gas Dynamic Trap have been presented.

  3. [What mirror neurons have revealed: revisited].

    PubMed

    Murata, Akira; Maeda, Kazutaka

    2014-06-01

    The first paper on mirror neurons was published in 1992. In the span of over two decades since then, much knowledge about the relationship between social cognitive function and the motor control system has been accumulated. Direct matching of visual actions and their corresponding motor representations is the most important functional property of mirror neuron. Many studies have emphasized intrinsic simulation as a core concept for mirror neurons. Mirror neurons are thought to play a role in social cognitive function. However, the function of mirror neurons in the macaque remains unclear, because such cognitive functions are limited or lacking in macaque monkeys. It is therefore important to discuss these neurons in the context of motor function. Rizzolatti and colleagues have stressed that the most important function of mirror neurons in macaques is recognition of actions performed by other individuals. I suggest that mirror neurons in the Macaque inferior pariental lobule might be correlated with body schema. In the parieto-premotor network, matching of corollary discharge and actual sensory feedback is an essential neuronal operation. Recently, neurons showing mirror properties were found in some cortical areas outside the mirror neuron system. The current work would revisit the outcomes of mirror neuron studies to discuss the function of mirror neurons in the monkey.

  4. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  5. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.

  6. Radius of curvature controlled mirror

    DOEpatents

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  7. Mirror symmetry for Enriques surfaces

    NASA Astrophysics Data System (ADS)

    Lakuriqi, Enkeleida

    In this thesis, we investigate three separate but related projects. In the first one, we describe the geometric backgrounds of Type II string theory which are given by Enriques surfaces and their mirrors. We also study the effect of various string dualities on such backgrounds, in particular phase change in Gauged Linear Sigma Models and mirror symmetry. In the second project, we investigate special Kahler geometry in order to find canonical coordinates on the moduli of generalised Calabi-Yau spaces and the associated (2, 2) superconformal field theories. In the third project, we develop a general technique for computing the massless spectrum of (0, 2) quantum field theory compactified on a proper stack or an orbifold. We produce general formulas for the contribution of the twisted sectors and compute specific examples of compactifications on gerbes on projective spaces and Calabi-Yau threefolds.

  8. On the numerical implementation of time-reversal mirrors for tomographic imaging

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Cupillard, Paul; Capdeville, Yann; Romanowicz, Barbara

    2014-03-01

    A general approach for constructing numerical equivalents of time-reversal mirrors is introduced. These numerical mirrors can be used to regenerate an original wavefield locally within a confined volume of arbitrary shape. Though time-reversal mirrors were originally designed to reproduce a time-reversed version of an original wavefield, the proposed method is independent of the time direction and can be used to regenerate a wavefield going either forward in time or backward in time. Applications to computational seismology and tomographic imaging of such local wavefield reconstructions are discussed. The key idea of the method is to directly express the source terms constituting the time-reversal mirror by introducing a spatial window function into the wave equation. The method is usable with any numerical method based on the discrete form of the wave equation, for example, with finite difference (FD) methods and with finite/spectral elements methods. The obtained mirrors are perfect in the sense that no additional error is introduced into the reconstructed wavefields apart from rounding errors that are inherent in floating-point computations. They are fully transparent as they do not interact with waves that are not part of the original wavefield and are permeable to these. We establish a link between some hybrid methods introduced in seismology, such as wave-injection, and the proposed time-reversal mirrors. Numerical examples based on FD and spectral elements methods in the acoustic, the elastic and the visco-elastic cases are presented. They demonstrate the accuracy of the method and illustrate some possible applications. An alternative implementation of the time-reversal mirrors based on the discretization of the surface integrals in the representation theorem is also introduced. Though it is out of the scope of the paper, the proposed method also apply to numerical schemes for modelling of other types of waves such as electro-magnetic waves.

  9. Oculometer focus and mirror control

    NASA Technical Reports Server (NTRS)

    Guy, W. J.

    1982-01-01

    An automatic focusing system designed around an ultrasonic range measurement is described. Besides maintaining the focus, subject distance is a by-product which could lighten the NOVA computational effort. An automatic head tracking unit is also discussed. It is intended to reduce the search time required when track is lost. An X-Y ultrasonic measurement is also made in this design to control the deflection mirrors.

  10. Suppression of the first flute mode in a long axisymmetric mirror system

    SciTech Connect

    Arsenin, V.V.

    1982-05-01

    The lowest mode of the flute instability of a plasma with ..beta..<<1 in a confinement system with a simple mirror field: the displacement of the plasma as a whole: can be suppressed if the confinement system is connected with another plasma-filled, axisymmetric, annular confinement system, so that there is a sharp maximum in B beyond the outer boundary of the bell-shaped plasma in the annular system. If the simple mirror is so long that all the other flute modes are stabilized by the finite-Larmor-radius effect, the plasma proves stable with respect to flute perturbations.

  11. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  12. Construction of Prototype Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.

  13. Study on methods of shape optimization and design of membrane mirror

    NASA Astrophysics Data System (ADS)

    Han, Su; Tan, Fanjiao; Wang, Dawei

    2016-10-01

    Based on the Karman's equation for circular thin plate and Qian's theory of membrane, the membrane mirror forming theory model is established. The effect of the high order disturbance for the shape of the membrane mirror is reduced by the way of variable thickness, so that the shape of the membrane is parabolic. The finite element method is used to verify the theory of the membrane mirror forming model. But the analysis results are not easy to convergence due to the flexibility characteristics of the membrane. So the reasonable solution parameters are necessary to ensure the correction of the finite element analysis result. The results show that the deviation between the finite element analysis and the theoretical results is small. The uniform thickness deviation is 0.73%, and the variable thickness deviation is 1.30%, thus the validity of the theoretical model is guaranteed. Then the membrane mirror design and optimization method is established on the basis of the theoretical model. Compare the theoretical surface and the optical design surface, and set the minimum root mean square error between the theoretical and the optical design surface as the optimization goal. The original shape and the surface shape control parameters of the membrane are optimized by using genetic algorithm. Finally, get the optimization model which can be used to optimize membrane mirror with any diameter. The genetic algorithm was used to optimize the thickness, boundary condition and the uniform loads. The result of membrane mirror accuracy is λ/4(λ=10um), which indicates that this membrane mirror can be applied in the infrared wavelength range for imaging. The main optimizing parameters are the variable thickness of the membrane, the boundary conditions and the surface loads. Finally, the optimization result of the membrane is the RMS<λ/4(λ=10μm), which indicates that the membrane can be used to long-wave infrared optical system. Based on the theory of mechanics of materials, this

  14. Changing step width alters lower extremity biomechanics during running.

    PubMed

    Brindle, Richard A; Milner, Clare E; Zhang, Songning; Fitzhugh, Eugene C

    2014-01-01

    Step width is a spatiotemporal parameter that may influence lower extremity biomechanics at the hip and knee joint. The purpose of this study was to determine the biomechanical response of the lower extremity joints to step width changes during running. Lower extremity data from 30 healthy runners, half of them male, were collected during running in three step width conditions: preferred, wide, and narrow. Dependent variables and step width were analyzed using a mixed model ANOVA and pairwise t-tests for post hoc comparisons. Step width was successfully altered in the wide and narrow conditions. Generally, frontal plane peak values decreased as step width increased from narrow to preferred to wide. Peak hip adduction and rearfoot eversion angles decreased as step width increased from narrow to wide. Peak knee abduction moment and knee abduction impulse also decreased as step width increased from narrow to wide. Although men and women ran differently, gender only influenced the effect of step width on peak rearfoot inversion moment. In conclusion, step width influences lower extremity biomechanics in healthy runners. When step width increased from narrow to wide, peak values of frontal plane variables decreased. In addition to previously reported changes at the rearfoot, the hip and knee joint biomechanics were also influenced by changes in step width.

  15. Common-pull, multiple-push, vacuum-activated telescope mirror cell.

    PubMed

    Ruiz, Elfego; Sohn, Erika; Salas, Luis; Luna, Esteban; Araiza-Durán, José A

    2014-11-20

    A new concept for push-pull active optics is presented, where the push-force is provided by means of individual airbag type actuators and a common force in the form of a vacuum is applied to the entire back of the mirror. The vacuum provides the pull-component of the system, in addition to gravity. Vacuum is controlled as a function of the zenithal angle, providing correction for the axial component of the mirror's weight. In this way, the push actuators are only responsible for correcting mirror deformations, as well as for supporting the axial mirror weight at the zenith, allowing for a uniform, full dynamic-range behavior of the system along the telescope's pointing range. This can result in the ability to perform corrections of up to a few microns for low-order aberrations. This mirror support concept was simulated using a finite element model and was tested experimentally at the 2.12 m San Pedro Mártir telescope. Advantages such as stress-free attachments, lighter weight, large actuator area, lower system complexity, and lower required mirror-cell stiffness could make this a method to consider for future large telescopes.

  16. X-ray beam expansion by the application of re-entrant surface profiles to deformable bimorph mirrors

    NASA Astrophysics Data System (ADS)

    Sutter, John P.; Alcock, Simon G.; Kashyap, Yogesh; Nistea, Ioana; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    Deformable, piezo bimorph mirrors are often used to expand X-ray beams to a continuous range of sizes. However, optical polishing errors present on all X-ray mirrors introduce striations into the reflected beam. To counteract them, reentrant surface modifications with alternating concave and convex curvature have been proposed and applied to mirrors of fixed shape or bimorph mirrors. For the latter, a new method of constructing re-entrant surface modifications on segments of unequal length is described. This allows the re-entrant modification required for a desired beam size at the focal point to be matched to the bimorph mirror's polishing errors, thus reducing the voltage variations. Optical profilometry using the Diamond-NOM showed that a 5-segment and a 7-segment modification could be suitably applied to a deformable bimorph mirror. X-ray tests showed that striations caused by the 5-segment modification in the beam at the focus are concentrated at the beam edges, while the beam center is left clear. This is in contrast to simple defocusing, in which a strong side shoulder appears. The 7-segment modification produces a pattern of evenly spaced striations. The intensity spikes seen with the re-entrant modifications are caused chiefly by the finite curvature of the mirror at the turning points. The question of whether deformable bimorph mirrors with different piezo response functions could sharpen the curvature changes will be investigated. Optimal modifications of continuous curvature, which could more realistically be applied, will be sought.

  17. Design and optimization for main support structure of a large-area off-axis three-mirror space camera.

    PubMed

    Wei, Lei; Zhang, Lei; Gong, Xiaoxue; Ma, Dong-Mei

    2017-02-01

    To ensure excellent dynamic and static performance of large-area, off-axis three-mirror anastigmat (TMA)-space cameras, and to realize a lighter weight for the entire system, a truss support structure design is applied in this study. In contrast to traditional methods, this paper adopts topology optimization based on the solid isotropic materials with penalization method on the truss structure design. Through reasonable object function and constraint choice, optimal topology results that have concerned the effect of gravity in the X, Y, and Z axis are achieved. Subsequently, the initial truss structure is designed based on the results and manufacturing technology. Moreover, to reduce the random vibration response of the secondary mirror and fold mirror without mechanical performance decline of the whole truss, a weighted optimization of truss size is proposed and the final truss structure is achieved. Finite element analysis and experiments have confirmed the reliability of the design and optimization method. The designed truss-structure camera maintains excellent static performance with the relative optical axis angle between the primary mirror and corresponding mirrors (secondary mirror and fold mirror) being less than 5.3 in. Dynamic performances, such as random and sinusoidal vibration responses, also met the requirements that the acceleration RMS value for mount points of the fold mirror should be less than 20 g and the primary frequency reached 97.2 Hz.

  18. High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing

    NASA Astrophysics Data System (ADS)

    Yan, Wensheng; Cumming, Benjamin P.; Gu, Min

    2015-07-01

    Micrometer-sized parabolic mirror arrays have significant applications in both light emitting diodes and solar cells. However, low fabrication throughput has been identified as major obstacle for the mirror arrays towards large-scale applications due to the serial nature of the conventional method. Here, the mirror arrays are fabricated by using a parallel laser direct-write processing, which addresses this barrier. In addition, it is demonstrated that the parallel writing is able to fabricate complex arrays besides simple arrays and thus offers wider applications. Optical measurements show that each single mirror confines the full-width at half-maximum value to as small as 17.8 μm at the height of 150 μm whilst providing a transmittance of up to 68.3% at a wavelength of 633 nm in good agreement with the calculation values.

  19. Mirror Metrology Using Nano-Probe Supports

    NASA Technical Reports Server (NTRS)

    Robinson, David; Hong, Maoling; Byron, Glenn; McClelland, Ryan; Chan, Kai-Wing

    2012-01-01

    Thin, lightweight mirrors are needed for future x-ray space telescopes in order to increase x-ray collecting area while maintaining a reduced mass and volume capable of being launched on existing rockets. However, it is very difficult to determine the undistorted shape of such thin mirrors because the mounting of the mirror during measurement causes distortion. Traditional kinematic mounts have insufficient supports to control the distortion to measurable levels and prevent the mirror from vibrating during measurement. Over-constrained mounts (non-kinematic) result in an unknown force state causing mirror distortion that cannot be determined or analytically removed. In order to measure flexible mirrors, it is necessary to over-constrain the mirror. Over-constraint causes unknown distortions to be applied to the mirror. Even if a kinematic constraint system can be used, necessary imperfections in the kinematic assumption can lead to an unknown force state capable of distorting the mirror. Previously, thicker, stiffer, and heavier mirrors were used to achieve low optical figure distortion. These mirrors could be measured to an acceptable level of precision using traditional kinematic mounts. As lighter weight precision optics have developed, systems such as the whiffle tree or hydraulic supports have been used to provide additional mounting supports while maintaining the kinematic assumption. The purpose of this invention is to over-constrain a mirror for optical measurement without causing unacceptable or unknown distortions. The invention uses force gauges capable of measuring 1/10,000 of a Newton attached to nano-actuators to support a thin x-ray optic with known and controlled forces to allow for figure measurement and knowledge of the undeformed mirror figure. The mirror is hung from strings such that it is minimally distorted and in a known force state. However, the hanging mirror cannot be measured because it is both swinging and vibrating. In order to

  20. Manufacturing Large Membrane Mirrors at Low Cost

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.

  1. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  2. Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Anucha, Konkanok; Ogawa, Yasuhiro; Kawata, Yuto; Ozaki, Masanori; Fukuda, Jun-ichi; Kikuchi, Hirotsugu

    2016-10-01

    The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110 ] direction for BP I and the [100 ] direction for BP II. Finite difference time domain and 4 ×4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110 ] and [100 ] directions, respectively.

  3. Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals.

    PubMed

    Yoshida, Hiroyuki; Anucha, Konkanok; Ogawa, Yasuhiro; Kawata, Yuto; Ozaki, Masanori; Fukuda, Jun-Ichi; Kikuchi, Hirotsugu

    2016-10-01

    The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110] direction for BP I and the [100] direction for BP II. Finite difference time domain and 4×4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110] and [100] directions, respectively.

  4. Development of the fast steering secondary mirror for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Won-Hyun; Muller, Gary; Johns, Matt; Hull, Charlie; Sheehan, Michael; Kern, Jonathan; Kim, Young Soo; Hansen, Eric; Kim, Seongdo

    2013-09-01

    The Giant Magellan Telescope (GMT) Fast Steering Secondary Mirror (FSM) is one of the GMT two Gregorian secondary mirrors. The FSM is 3.2 m in diameter and built as seven 1.06 m diameter circular segments. The conceiving philosophy used on the design of the FSM segment mirror is to minimize development and fabrication risks ensuring a set of secondary mirrors are available on schedule for telescope commissioning and early operations in a seeing limited mode, thereby mitigating risks associated with fabrication of the Adaptive Secondary Mirrors (ASM). This approach uses legacy design features from the Magellan Telescope secondary mirrors to reduce such risks. The final design of the substrate and support system configuration was optimized using finite element analyses and optical performance analyses. The optical performance predictions of the FSM are based on a substrate with a diameter of 1.058m (on-axis), 1.048m (off-axis), a depth of 120mm, and a face plate thickness of 20mm leading to a mass of approximately 90kg. The optical surface deformations, image qualities, and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances were evaluated. The results indicated that the GMT FSM mirror and its support system will favorably meet the optical performance goals for residual surface error and the FSM surface figure accuracy requirement defined by encircled energy in the focal plane. The mirror cell assembly analysis indicated an excellent dynamic stiffness which will support the goal of 20 Hz tip-tilt motion.

  5. Optimizing X-ray mirror thermal performance using matched profile cooling

    SciTech Connect

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas; Morton, Daniel S.; Srinivasan, Venkat; Stefan, Peter M.

    2015-08-07

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick–Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle is presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ~11belowthe requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.

  6. Optimizing X-ray mirror thermal performance using matched profile cooling.

    PubMed

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas; Morton, Daniel S; Srinivasan, Venkat; Stefan, Peter M

    2015-09-01

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick-Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle is presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ∼11 below the requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.

  7. Thread Graphs, Linear Rank-Width and Their Algorithmic Applications

    NASA Astrophysics Data System (ADS)

    Ganian, Robert

    The introduction of tree-width by Robertson and Seymour [7] was a breakthrough in the design of graph algorithms. A lot of research since then has focused on obtaining a width measure which would be more general and still allowed efficient algorithms for a wide range of NP-hard problems on graphs of bounded width. To this end, Oum and Seymour have proposed rank-width, which allows the solution of many such hard problems on a less restricted graph classes (see e.g. [3,4]). But what about problems which are NP-hard even on graphs of bounded tree-width or even on trees? The parameter used most often for these exceptionally hard problems is path-width, however it is extremely restrictive - for example the graphs of path-width 1 are exactly paths.

  8. A 15 W 1152 nm Raman fiber laser with 6 nm spectral width for Ho3+-doped crystal's pumping source

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyan; Jiang, Huawei

    2016-12-01

    A 11.5 W 1152 nm Raman fiber laser with 6 nm spectral width was demonstrated based on the resonator constructed with one fiber loop mirror and one fiber Bragg grating. By mans of experimental measurement and theoretical calculation, the reflectivity of the fiber loop mirror was confirmed as 0.93. The Yb3+-doped 1090 nm fiber length was about 5 m. When the maximum pumping power of 976 nm laser was 54.8 W, 32.2 W 1090 nm laser was obtained and the optical to optical conversion efficiency from 1090 nm to 1152 nm light was 48%. Finally, the 1152 nm Raman fiber laser was used for pumping Ho3+:LLF crystal, and the 1194 nm fluorescence emission peak was detected for the first time.

  9. Relationship between width of greater trochanters and width of iliac wings in tronchanteric bursitis.

    PubMed

    Viradia, Neal K; Berger, Alex A; Dahners, Laurence E

    2011-09-01

    Trochanteric bursitis is a common disorder that is characterized by inflammation of the bursa, superficial to the greater trochanter of the femur, leading to pain in the lateral hip, and often occurs because of acute trauma or repetitive friction involving the iliotibial band, the greater trochanter, and the bursa. In the study reported here, we hypothesized that the increased incidence of bursitis may be the result of the increased prominence of the trochanter in relation to the wings of the iliac crest. Distances between the outermost edges of trochanters and iliac wings were measured in 202 patients from the University of North Carolina Health Care System-101 without a known diagnosis and 101 with a clinical diagnosis of trochanteric bursitis. To determine significance, t tests for nonpaired data were used. Mean (SD) difference between trochanter and iliac wing widths was 28 (20) mm in the group diagnosed with trochanteric bursitis and 17 (18) mm in the control group. The difference between the groups in this regard was significant (P<.00005). In addition, mean (SD) ratio of trochanter widths to iliac wing widths was 1.09 (.06) in the bursitis group and 1.05 (.06) in the control group. The difference between these groups was significant (P<.0005) in this regard as well. Having trochanters wider in relation to iliac wings was associated with the diagnosis of trochanteric bursitis.

  10. Magnetic mirror fusion: status and prospects

    SciTech Connect

    Post, R.F.

    1980-02-11

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed.

  11. Deformable mirrors development program at ESO

    NASA Astrophysics Data System (ADS)

    Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus

    2016-07-01

    Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.

  12. Optical coherence tomography endoscopic probe based on a tilted MEMS mirror

    PubMed Central

    Duan, Can; Tanguy, Quentin; Pozzi, Antonio; Xie, Huikai

    2016-01-01

    This paper reports a compact microendoscopic OCT probe with an outer diameter of only 2.7 mm. The small diameter is enabled by a novel 2-axis scanning MEMS mirror with a preset 45° tilted angle. The tilted MEMS mirror is directly integrated on a silicon optical bench (SiOB). The SiOB provides mechanical support and electrical wiring to the mirror plate via a set of bimorph flexure, enabling a compact probe mount design without the requirement of a 45° slope, which is capable to dramatically reduce the probe size and ease the assembly process. Additionally, the SiOB also provides trenches with properly-designed opening widths for automatic alignment of the MEMS mirror, GRIN lens and optical fiber. The 45°-tilted MEMS mirror plate is actuated by four electrothermal bimorph actuators. The packaged 2.7 mm-diameter probe offers 2-axis side-view optical scanning with a large optical scan range of 40° at a low drive voltage of 5.5 Vdc in both axes, allowing a lateral scan area of 2.2 mm × 2.2 mm at a 3 mm working distance. High-resolution 2D and 3D OCT images of the IR card, ex vivo imaging of meniscus specimens and rat brain slices, in vivo imaging of the human finger and nail have been obtained with a TDOCT system. PMID:27699103

  13. Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica.

    PubMed

    Wlodarczyk, Krystian L; Thomson, Ian J; Baker, Howard J; Hall, Denis R

    2012-09-10

    We report a new technique for the rapid fabrication of microstripe cylindrical and toroidal mirrors with a high ratio (>10) of the two principal radii of curvature (RoC(1)/RoC(2)), and demonstrate their effectiveness as mode-selecting resonator mirrors for high-power planar waveguide lasers. In this process, the larger radius of curvature (RoC(1)) is determined by the planar or cylindrical shape of the fused silica substrate selected for laser processing, whilst the other (RoC(2)) is produced by controlled CO(2) laser-induced vaporization of the glass. The narrow stripe mirror aperture is achieved by applying a set of partially overlapped laser scans, with the incident laser power, the number of laser scans, and their spacing being used to control the curvature produced by laser evaporation. In this work, a 1 mm diameter laser spot is used to produce grooves of cylindrical/toroidal shape with 240 μm width and 16 mm length. After high reflectance coating, these grooves are found to provide excellent mode selectivity as resonator mirrors for a 150 μm core Yb:YAG planar waveguide laser, producing high brightness output at more than 300 W. The results show clearly that the laser-generated microstripe mirrors can improve the optical performance of high-power planar waveguide lasers when applied in a low-loss mode-selective resonator configuration.

  14. Alpha Channeling in Mirror Machines

    SciTech Connect

    Fisch, Nathaniel J.

    2014-07-16

    This Final Report for DE-FG02-06ER54851, Alpha Channeling in Mirror Machines, was in fact submitted on April 9, 2010. Some confusion arose because it was submitted as an initial progress report on a related grant, Alpha Channeling in Open- System Magnetic Devices. The original text is reproduced below, except that the publication record is undated. Note that the articles published in 2009 and 2010 reflect work in fact done under DE-FG02-06ER54851.

  15. Tandem mirror technology demonstration facility

    SciTech Connect

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  16. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  17. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, Jr., Charles Q.

    1981-01-01

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  18. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, C.Q. Jr.

    1980-01-28

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  19. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    DTIC Science & Technology

    2008-09-01

    Silicon Carbide Technologies for Lightweighted Aerospace Mirrors Lawrence E. Matson (1) Ming Y. Chen (1) Brett deBlonk (2) Iwona A...glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs...for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive

  20. White Light Holography Using Flexible Membrane Mirrors

    NASA Astrophysics Data System (ADS)

    Warren, D.; King, W.; Waddell, P.; Raptodimos, T.

    1988-06-01

    White light transmission holograms have been made using revolutionary flexible membrane concave mirrors of variable focal length. These mirrors are used as collimators to produce and project conjugate imagery for making white light holograms. The era of super large scale white light holography with undistorted imagery and large angular field of view is predicted, based on current results and the availability of very wide plastic sheets suitable for use as the reflective membrane of the flexible mirrors.

  1. Deformable mirror for short wavelength applications

    DOEpatents

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  2. Segmented Mirror Telescope Model and Simulation

    DTIC Science & Technology

    2011-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEGMENTED MIRROR TELESCOPE MODEL AND SIMULATION by Travis W. Axtell June 2011 Thesis Co...Mirror Telescope Model and Simulation Travis W. Axtell Naval Postgraduate School Monterey, CA 93943 Department of the Navy Approved for public release...Department of Defense or the U.S. Government. IRB Protocol Number: N/A The Segmented Mirror Telescope (SMT) housed at the Naval Postgraduate School is a

  3. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  4. ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror

    NASA Astrophysics Data System (ADS)

    Yang, De-Hua; Shao, Liang

    2008-09-01

    The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.

  5. Multilayer dielectric narrow band mangin mirror

    NASA Astrophysics Data System (ADS)

    Ahmed, K.; Khan, A. N.; Rauf, A.; Gul, A.

    2014-06-01

    The design of multilayer stack of dielectric films for narrow band mirror is developed using thin film coating software. The proposed design is materialized by employing thin film coating (PVD) method and reflectance in narrow band spectrum range is achieved. Thickness of high and low refractive index material is taken precisely up to nanometer level. The curved coated substrate is cemented with another K9 matching substrate that forms a Mangin mirror for wavelength 650nm. Narrow band mirrors with reflectivity more than 90% has been produced by properly stacking of 21 layers and advantage of the use of this type of mirror as an interference filter is discussed.

  6. Dynamical Casimir effect with δ -δ' mirrors

    NASA Astrophysics Data System (ADS)

    Silva, Jeferson Danilo L.; Braga, Alessandra N.; Alves, Danilo T.

    2016-11-01

    We calculate the spectrum and the total rate of created particles for a real massless scalar field in 1 +1 dimensions, in the presence of a partially transparent moving mirror simulated by a Dirac δ -δ' point interaction. We show that, for this model, a partially reflecting mirror can produce a larger number of particles in comparison with a perfect one. In the limit of a perfect mirror, our formulas recover those found in the literature for the particle creation by a moving mirror with a Robin boundary condition.

  7. Mounting with compliant cylinders for deformable mirrors.

    PubMed

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael

    2015-04-01

    A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.

  8. Topology optimization design of a space mirror

    NASA Astrophysics Data System (ADS)

    Liu, Jiazhen; Jiang, Bo

    2015-11-01

    As key components of the optical system of the space optical remote sensor, Space mirrors' surface accuracy had a direct impact that couldn't be ignored of the imaging quality of the remote sensor. In the future, large-diameter mirror would become an important trend in the development of space optical technology. However, a sharp increase in the mirror diameter would cause the deformation of the mirror and increase the thermal deformation caused by temperature variations. A reasonable lightweight structure designed to ensure the optical performance of the system to meet the requirements was required. As a new type of lightweight approach, topology optimization technology was an important direction of the current space optical remote sensing technology research. The lightweight design of rectangular mirror was studied. the variable density method of topology optimization was used. The mirror type precision of the mirror assemblies was obtained in different conditions. PV value was less than λ/10 and RMS value was less than λ/50(λ = 632.8nm). The results show that the entire The mirror assemblies can achieve a sufficiently high static rigidity, dynamic stiffness and thermal stability and has the capability of sufficient resistance to external environmental interference . Key words: topology optimization, space mirror, lightweight, space optical remote sensor

  9. Double curvature mirrors for linear concentrators

    NASA Astrophysics Data System (ADS)

    Lance, Tamir; Ackler, Harold; Finot, Marc

    2012-10-01

    Skyline Solar's medium concentration photovoltaic system uses quasi-parabolic mirrors and one axis tracking. Improvements in levelized cost of energy can be achieved by effective management of non-uniformity of the flux line on the panels. To reduce non uniformity of the flux line due to mirror to mirror gaps, Skyline developed a dual curvature mirror that stretches the flux line along the panel. Extensive modeling and experiments have been conducted to analyze the impact of this new design and to optimize the design.

  10. New schemes in the adjustment of bendable, elliptical mirrors using a long trace profiler

    SciTech Connect

    Rah, S.

    1997-08-01

    The Long Trace Profiler (LTP), an instrument for measuring the slope profile of long X-ray mirrors, has been used for adjusting bendable mirrors. Often an elliptical profile is desired for the mirror surface, since many synchrotron applications involve imaging a point source to a point image. Several techniques have been used in the past for adjusting the profile measured in height or slope of a bendable mirror. Underwood et al. have used collimated X-rays for achieving desired surface shape for bent glass optics. Non linear curve fitting using the simplex algorithm was later used to determine the best fit ellipse to the surface under test. A more recent method uses a combination of least squares polynomial fitting to the measured slope function in order to enable rapid adjustment to the desired shape. The mirror has mechanical adjustments corresponding to the first and second order terms of the desired slope polynomial, which correspond to defocus and coma, respectively. The higher order terms are realized by shaping the width of the mirror to produce the optimal elliptical surface when bent. The difference between desired and measured surface slope profiles allows us to make methodical adjustments to the bendable mirror based on changes in the signs and magnitudes of the polynomial coefficients. This technique gives rapid convergence to the desired shape of the measured surface, even when we have no information about the bender, other than the desired shape of the optical surface. Nonlinear curve fitting can be used at the end of the process for fine adjustments, and to determine the over all best fit parameters of the surface. This technique could be generalized to other shapes such as toroids.

  11. Development of the Global Width Database for Large Rivers

    NASA Astrophysics Data System (ADS)

    Yamazaki, Dai; O'Loughlin, Fiachra; Trigg, Mark A.; Miller, Zachary F.; Pavelsky, Tamlin M.; Bates, Paul D.

    2014-04-01

    River width is a fundamental parameter of river hydrodynamic simulations, but no global-scale river width database based on observed water bodies has yet been developed. Here we present a new algorithm that automatically calculates river width from satellite-based water masks and flow direction maps. The Global Width Database for Large Rivers (GWD-LR) is developed by applying the algorithm to the SRTM Water Body Database and the HydroSHEDS flow direction map. Both bank-to-bank river width and effective river width excluding islands are calculated for river channels between 60S and 60N. The effective river width of GWD-LR is compared with existing river width databases for the Congo and Mississippi Rivers. The effective river width of the GWD-LR is slightly narrower compared to the existing databases, but the relative difference is within ±20% for most river channels. As the river width of the GWD-LR is calculated along the river channels of the HydroSHEDS flow direction map, it is relatively straightforward to apply the GWD-LR to global and continental-scale river modeling.

  12. The uncanny mirror: a re-framing of mirror self-experience.

    PubMed

    Rochat, Philippe; Zahavi, Dan

    2011-06-01

    Mirror self-experience is re-casted away from the cognitivist interpretation that has dominated discussions on the issue since the establishment of the mirror mark test. Ideas formulated by Merleau-Ponty on mirror self-experience point to the profoundly unsettling encounter with one's specular double. These ideas, together with developmental evidence are re-visited to provide a new, psychologically and phenomenologically more valid account of mirror self-experience: an experience associated with deep wariness.

  13. One mirror beam steering: determination of steering mirror parameters from image pointing direction

    NASA Astrophysics Data System (ADS)

    Andersen, Torben B.; Granger, Zachary A.

    2016-09-01

    Mathematical models are used to establish the exact path of a beam reflected by a plane mirror in terms of the mirror geometry descriptors. In particular, the mirror geometry descriptors (tilt angles) are determined as functions of the beam path in image space. This is also useful for determining scan patterns when the mirror is used as a scanning device. These formulations are readily adaptable to commercially available ray tracing programs.

  14. Comparative analysis of deformable mirrors for ocular adaptive optics.

    PubMed

    Dalimier, Eugenie; Dainty, Chris

    2005-05-30

    We have evaluated the ability of three commercially available deformable mirrors to compensate the aberrations of the eye using a model for aberrations developed by Thibos, Bradley and Hong. The mirrors evaluated were a 37 actuator membrane mirror and 19 actuator piezo mirror (OKO Technologies) and a 35 actuator bimorph mirror (AOptix Inc). For each mirror, Zernike polynomials and typical ocular aberrated wavefronts were fitted with the mirror modes measured using a Twyman-Green interferometer. The bimorph mirror showed the lowest root mean square error, although the 19 actuator piezo device showed promise if extended to more actuators. The methodology can be used to evaluate new deformable mirrors as they become available.

  15. Barstow heliostat mirror glass characterization

    SciTech Connect

    Lind, M.A.; Buckwalter, C.Q.

    1980-09-01

    The technical analysis performed on the special run of low iron float glass procured from the Ford Glass Division for the ten megawatt solar thermal/electric pilot power plant to be constructed at Barstow, California is discussed. The topics that are addressed include the optical properties and the relative durability of the glass. Two optical parameters, solar transmittance and optical flatness, were measured as referenced in the specification and found to be better than the stated tolerances. The average solar transmittance exceeded 0.890 transmittance units. The glass also exhibited optical angular flatness deviations less than +-1.0 mrad as required. Both qualitative and quantitative accelerated weathering tests were performed on the glass in order to compare its durability to other soda lime float glass and alternate composition glasses of interest to the solar community. In both the quantitative leaching experiments and the more qualitative room temperature and elevated temperature water vapor exposure experiments the heliostat glass exhibited the same characteristics as the other soda-lime silicate float glasses. As a final test for mirroring compatability, selected samples of the production run of the glass were sent to four different commercial manufacturers for mirror coating. None of the manufacturers reported any difficulty silvering the glass. Based on the tests performed, the glass meets or exceeds all optical specifications for the Barstow heliostat field.

  16. Explaining mirror-touch synesthesia.

    PubMed

    Ward, Jamie; Banissy, Michael J

    2015-01-01

    Mirror-touch synesthesia (MTS) is the conscious experience of tactile sensations induced by seeing someone else touched. This paper considers two different, although not mutually exclusive, theoretical explanations and, in the final section, considers the relation between MTS and other forms of synesthesia and also other kinds of vicarious perception (e.g., contagious yawning). The Threshold Theory explains MTS in terms of hyper-activity within a mirror system for touch and/or pain. This offers a good account for some of the evidence (e.g., from fMRI) but fails to explain the whole pattern (e.g., structural brain differences outside of this system; performance on some tests of social cognition). The Self-Other Theory explains MTS in terms of disturbances in the ability to distinguish the self from others. This can be construed in terms of over-extension of the bodily self in to others, or as difficulties in the control of body-based self-other representations. In this account, MTS is a symptom of a broader cognitive profile. We suggest this meets the criteria for synesthesia, despite the proximal causal mechanisms remaining largely unknown, and that the tendency to localize vicarious sensory experiences distinguishes it from other kinds of seemingly related phenomena (e.g., non-localized affective responses to observing pain).

  17. ROSAT wide field camera mirrors.

    PubMed

    Willingale, R

    1988-04-15

    The ROSAT wide field camera (WFC) is an XUV telescope operating in the 12-250-eV energy band. The mirror system utilizes Wolter-Schwarzschild type I (WS I) grazing incidence optics with a focal length of 525 mm, comprised of three nested aluminum shells with an outermost diameter of 576 mm providing a geometric aperture area of 456 cm(2). The reflecting surfaces are electroless nickel plated and coated with gold to enhance their reflectivity in the XUV. The mirrors have undergone full aperture optical testing, narrow beam XUV testing, and full aperture XUV testing. Measurements of the reflectivity are compared to theoretical values derived from the optical constants of gold in the XUV range. Analysis of the focused distribution is used to estimate the surface roughness and figuring errors of the polished surfaces. The results are compared to the mechanical metrology data collected during manufacture of the shells and the power spectral density of the reflecting surfaces is found to have a power-law form.

  18. ROSAT Wide Field Camera Mirrors

    NASA Astrophysics Data System (ADS)

    Willingale, R.

    1988-08-01

    The ROSAT wide field camera (WFC) is an XUV telescope operating in the 12-250-eV energy band. The mirror system utilizes Wolter-Schwarzschild type I (WSI) grazing incidence optics with a focal length of 525 mm, comprised of three nested aluminum shells with an outermost diameter of 576 mm providing a geometric aperture area of 456 cm2. The reflecting surfaces are electroless nickel plated and coated with gold to enhance their reflectivity in the XUV. The mirrors have undergone full aperture optical testing, narrow beam XUV testing, and full aperture XUV testing. Measurements of the reflectivity are compared to theoretical values derived from the optical constants of gold in the XUV range. Analysis of the focused distribution is used to estimate the surface roughness and figuring errors of the polished surfaces. The results are compared to the mechanical metrology data collected during manufacture of the shells and the power spectral density of the reflecting surfaces is found to have a power-law form.

  19. FAME: freeform active mirror experiment

    NASA Astrophysics Data System (ADS)

    Aitink-Kroes, Gabby; Agócs, Tibor; Miller, Chris; Black, Martin; Farkas, Szigfrid; Lemared, Sabri; Bettonvil, Felix; Montgomery, David; Marcos, Michel; Jaskó, Attila; van Duffelen, Farian; Challita, Zalpha; Fok, Sandy; Kiaeerad, Fatemeh; Hugot, Emmanuel; Schnetler, Hermine; Venema, Lars

    2016-07-01

    FAME is a four-year project and part of the OPTICON/FP7 program that is aimed at providing a breakthrough component for future compact, wide field, high resolution imagers or spectrographs, based on both Freeform technology, and the flexibility and versatility of active systems. Due to the opening of a new parameter space in optical design, Freeform Optics are a revolution in imaging systems for a broad range of applications from high tech cameras to astronomy, via earth observation systems, drones and defense. Freeform mirrors are defined by a non-rotational symmetry of the surface shape, and the fact that the surface shape cannot be simply described by conicoids extensions, or off-axis conicoids. An extreme freeform surface is a significantly challenging optical surface, especially for UV/VIS/NIR diffraction limited instruments. The aim of the FAME effort is to use an extreme freeform mirror with standard optics in order to propose an integrated system solution for use in future instruments. The work done so far concentrated on identification of compact, fast, widefield optical designs working in the visible, with diffraction limited performance; optimization of the number of required actuators and their layout; the design of an active array to manipulate the face sheet, as well as the actuator design. In this paper we present the status of the demonstrator development, with focus on the different building blocks: an extreme freeform thin face sheet, the active array, a highly controllable thermal actuator array, and the metrology and control system.

  20. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.

  1. Plasma confinement apparatus using solenoidal and mirror coils

    DOEpatents

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  2. James Webb Space Telescope (JWST) Primary Mirror Material Selection

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee D.; Russell, Kevin; Texter, Scott

    2004-01-01

    The James Webb Space Telescope (JWST) conducted a phase down select process via the Advanced Mirror System Demonstrator (AMSD) project to assess the Technology Readiness Level of various candidate mirror materials. This process culminated in the selection of Beryllium as the JWST primary mirror material. This paper outlines the mirror evaluation process, defines the selection criteria and summarizes the candidate mirror's performances.

  3. Mirrors, Mirrors on the Wall...The Ubiquitous Multiple Reflection Error

    ERIC Educational Resources Information Center

    Lawson, Rebecca

    2012-01-01

    Participants decided when somebody, Janine, could see their face in a horizontal row of adjacent mirrors mounted flat on the same wall. They saw real mirrors and a shop-dummy representing Janine. Such coplanar mirrors reflect different, non-overlapping areas of a scene. However, almost everybody made an unexpected error: they claimed that Janine…

  4. Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers.

    PubMed

    Schwarz, Jens; Geissel, Matthias; Rambo, Patrick; Porter, John; Headley, Daniel; Ramsey, Marc

    2006-11-13

    An optical surface of variable concave parabolic shape and a clear aperture of 30 mm was created using two rings to deform a flat 50.8 mm diameter mirror. The deformable mirror assembly was modeled using finite element analysis software as well as analytical solutions. Measured parabolic surface deformation showed good agreement with those models. Mirror performance was quantitatively studied using an interferometer and focal lengths from hundreds of meters down to the meter scale have been achieved. In this publication, the deformable mirror has been applied to compensate on shot thermal lensing in 16 mm diameter and 25 mm diameter Nd:Phosphate glass rod amplifiers by using only a single actuator. The possibility to rapidly change focal lengths across two to three orders of magnitude has applications for remote sensing, such as laser induced breakdown spectroscopy, LIDAR, and control of laser filament formation.

  5. Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers

    NASA Astrophysics Data System (ADS)

    Schwarz, Jens; Geissel, Matthias; Rambo, Patrick; Porter, John; Headley, Daniel; Ramsey, Marc

    2006-11-01

    An optical surface of variable concave parabolic shape and a clear aperture of 30 mm was created using two rings to deform a flat 50.8 mm diameter mirror. The deformable mirror assembly was modeled using finite element analysis software as well as analytical solutions. Measured parabolic surface deformation showed good agreement with those models. Mirror performance was quantitatively studied using an interferometer and focal lengths from hundreds of meters down to the meter scale have been achieved. In this publication, the deformable mirror has been applied to compensate on shot thermal lensing in 16 mm diameter and 25 mm diameter Nd:Phosphate glass rod amplifiers by using only a single actuator. The possibility to rapidly change focal lengths across two to three orders of magnitude has applications for remote sensing, such as laser induced breakdown spectroscopy, LIDAR, and control of laser filament formation.

  6. Tandem mirror magnet system for the mirror fusion test facility

    SciTech Connect

    Bulmer, R.H.; Van Sant, J.H.

    1980-10-14

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper.

  7. The finite element analysis of zoom optical system with no moving parts

    NASA Astrophysics Data System (ADS)

    Shi, PuRui; Li, Lin; Huang, Yifan; Han, Xing; Ma, Bin

    2015-10-01

    For the method that active optical system achieves zoom by changing the surface of deformable mirror, the design of the brake, the rationality of the layout and the actual change of the surface are very critical issues. This paper presents a practical research idea and method. The finite element model of a deformable mirror was established based on finite element analysis software, and the analysis is achieved after configuring the brake method that needed. The feasibility of the drive scheme is verified through comparing the simulation results and the ideal surface. On this basis, the preliminary design of the core components of piezoelectric ceramic driving circuit brake is achieved.

  8. Design and analysis of an active optics system for a 4-m telescope mirror combining hydraulic and pneumatic supports

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Moreau, Vincent; Schumacher, Jean-Marc; Piérard, Maxime; Somja, Aude; Gloesener, Pierre; Flebus, Carlo

    2015-09-01

    AMOS has developed a hybrid active optics system that combines hydraulic and pneumatic properties of actuators to support a 4-m primary mirror. The mirror is intended to be used in the Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope) that will be installed by the National Solar Observatory (NSO) atop the Haleakala volcano in Hawaii. The mirror support design is driven by the needs of (1) minimizing the support-induced mirror distortions under telescope operating conditions, (2) shaping the mirror surface to the desired profile, and (3) providing a high stiffness against wind loads. In order to fulfill these requirements, AMOS proposes an innovative support design that consist of 118 axial actuators and 24 lateral actuators. The axial support is based on coupled hydraulic and pneumatic actuators. The hydraulic part is a passive system whose main function is to support the mirror weight with a high stiffness. The pneumatic part is actively controlled so as to compensate for low-order wavefront aberrations that are generated by the mirror support itself or by any other elements in the telescope optical chain. The performances of the support and its adequacy with the requirements are assessed with the help of a comprehensive analysis loop involving finite-element, thermal and optical modellings.

  9. Some geometric constraints on ring-width trend

    USGS Publications Warehouse

    Phipps, R.L.

    2005-01-01

    Simulations of tree rings from trees of undisturbed forest sites are used to describe natural, long-term width trends. Ring-width trends of canopy-sized white oak are simulated from regressions of BAI (ring area) data of real trees. Examples are given of a tree from a typical re-growth forest in Illinois and of a more slowly growing tree from an old-growth forest in Kentucky. The long-term width trend was simulated as being toward constant ring width regardless of growth rate of the tree. Conditions by which either increasing or decreasing ring-width trends could be simulated from the same linear BAI trend are examined. I conclude that curvilinear width trends, either increasing or decreasing, represent width adjustments to changes in growth rate (BAI trend) after which the width trend stabilizes to a near-constant value. Interpretation of ring-width trends of trees from undisturbed stands may be useful in assessing stand disturbance history. Copyright ?? 2005 by the Tree-Ring Society.

  10. Hemispheric superiority for processing a mirror image.

    PubMed

    Garren, R B; Gehlsen, G M

    1981-04-01

    39 adult subjects were administered a test using tachistoscopic half-field presentations to determine hemispheric dominance and a mirror-tracing task to determine if an hemispheric superiority exists for processing a mirror-image. The results indicate superiority of the nondominant hemisphere for this task.

  11. Corrected mirror systems with double reflection

    NASA Astrophysics Data System (ADS)

    Artyukhina, N. K.; Shkadarevich, A. P.

    2007-03-01

    We propose objectives consisting of two mirrors with central holes for passage of a light beam. The optical layout ensures multiple reflection of rays from both mirrors. We consider several approaches to calculating the design parameters for which three and four aberrations do not occur. The objectives can be used in optical devices operating in the UV and IR regions of the spectrum.

  12. Micromachined deformable mirrors for dynamic wavefront control

    NASA Astrophysics Data System (ADS)

    Bifano, Thomas; Bierden, Paul; Perreault, Julie

    2004-10-01

    The design, manufacture, and testing of optical quality surface micromachined deformable mirrors (DMs) is described. With such mirrors, the shape of the reflective surface can be modified dynami-cally to compensate for optical aberrations and thereby improve image resolution in telescopes or microscopes. Over several years, we have developed microelectromechanical system (MEMS) processing technologies that allow production of optical quality of surface micromachined mirrors. These process steps have been integrated with a commercial foundry process to produce deformable mirrors of unprecedented quality. The devices employ 140 electrostatic actuators. Measurements of their performance detailed in this paper include 2µm of useful stroke, 3nm position repeatability, >90% reflectivity, and flatness better than 20nm RMS. A chemo-mechanical polishing process has been used to improve surface quality of the mirrors, and a gold coating process has been developed to improve the reflectivity without introducing a significant amount of stress in the mirror mem-brane. An ion bombardment technique has been developed to flatten mirrors. These silicon based deformable mirrors have the potential to modulate spatial and temporal features of an optical wave-front, and have applications in imaging, beam-forming, and optical communication systems. Design considerations and performance evaluation of recently fabricated DMs are presented.

  13. LED structure with enhanced mirror reflectivity

    DOEpatents

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  14. Naive Optics: Acting on Mirror Reflections

    ERIC Educational Resources Information Center

    Hecht, Heiko; Bertamini, Marco; Gamer, Matthias

    2005-01-01

    It is known that naive observers have striking misconceptions about mirror reflections. In 5 experiments, this article systematically extends the findings to graphic stimuli, to interactive visual tasks, and finally to tasks involving real mirrors. The results show that the perceptual knowledge of nonexpert adults is far superior to their…

  15. Foil Panel Mirrors for Nonimaging Applications

    NASA Technical Reports Server (NTRS)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  16. Three-point spherical mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  17. Unbroken Mirror Neurons in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Fan, Yang-Teng; Decety, Jean; Yang, Chia-Yen; Liu, Ji-Lin; Cheng, Yawei

    2010-01-01

    Background: The "broken mirror" theory of autism, which proposes that a dysfunction of the human mirror neuron system (MNS) is responsible for the core social and cognitive deficits in individuals with autism spectrum disorders (ASD), has received considerable attention despite weak empirical evidence. Methods: In this electroencephalographic…

  18. Three-point spherical mirror mount

    DOEpatents

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  19. Technology for large tandem mirror experiments

    SciTech Connect

    Thomassen, K.I.

    1980-09-04

    Construction of a large tandem mirror (MFTF-B) will soon begin at Lawrence Livermore National Laboratory (LLNL). Designed to reach break-even plasma conditions, the facility will significantly advance the physics and technology of magnetic-mirror-based fusion reactors. This paper describes the objectives and the design of the facility.

  20. a Measurement of the Mass, Full Width, and Radiative Width of the Positive B(1237) Meson

    NASA Astrophysics Data System (ADS)

    Collick, Bruce David

    An experiment was performed at Fermi National Accelerator Laboratory to investigate the coherent production of mesons on nuclear targets (lead and copper). The experiment used and 200 GeV/c incident meson beam and a high resolution forward spectrometer consisting of proportional and drift chambers plus a liquid argon photon calorimeter. This thesis reports the results of the process (pi)('+) + A (--->) (pi)('+) (omega) + A. The (pi)('+)(omega) spectrum was found to be dominated by the B('+)(1237) meson. A fit was performed on the line shape of the (pi)('+)(omega) mass spectrum and values of 1.271 (+OR-) 0.011 GeV and 0.232 (+OR-) 0.029 GeV were found for the mass and total width. The helicity zero decay probability of the (omega), (VBAR)F(,0)(VBAR)('2), was measured to be (VBAR)F(,0)(VBAR)('2) = 0.15 (+OR-) 0.035. The t distributions were analyzed allowing the electromagnetic and hadronic production processes to interfer. From these distributions a radiative width of 230 (+OR-) 61 was extracted.

  1. Opto-thermal analysis of a lightweighted mirror for solar telescope.

    PubMed

    Banyal, Ravinder K; Ravindra, B; Chatterjee, S

    2013-03-25

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications.

  2. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  3. Optimization of lightweight structure and supporting bipod flexure for a space mirror.

    PubMed

    Chen, Yi-Cheng; Huang, Bo-Kai; You, Zhen-Ting; Chan, Chia-Yen; Huang, Ting-Ming

    2016-12-20

    This article presents an optimization process for integrated optomechanical design. The proposed optimization process for integrated optomechanical design comprises computer-aided drafting, finite element analysis (FEA), optomechanical transfer codes, and an optimization solver. The FEA was conducted to determine mirror surface deformation; then, deformed surface nodal data were transferred into Zernike polynomials through MATLAB optomechanical transfer codes to calculate the resulting optical path difference (OPD) and optical aberrations. To achieve an optimum design, the optimization iterations of the FEA, optomechanical transfer codes, and optimization solver were automatically connected through a self-developed Tcl script. Two examples of optimization design were illustrated in this research, namely, an optimum lightweight design of a Zerodur primary mirror with an outer diameter of 566 mm that is used in a spaceborne telescope and an optimum bipod flexure design that supports the optimum lightweight primary mirror. Finally, optimum designs were successfully accomplished in both examples, achieving a minimum peak-to-valley (PV) value for the OPD of the deformed optical surface. The simulated optimization results showed that (1) the lightweight ratio of the primary mirror increased from 56% to 66%; and (2) the PV value of the mirror supported by optimum bipod flexures in the horizontal position effectively decreased from 228 to 61 nm.

  4. Space Active Optics: toward optimized correcting mirrors for future large spaceborne observatories

    NASA Astrophysics Data System (ADS)

    Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard; Liotard, Arnaud

    2011-10-01

    Wave-front correction in optical instruments is often needed, either to compensate Optical Path Differences, off-axis aberrations or mirrors deformations. Active optics techniques are developed to allow efficient corrections with deformable mirrors. In this paper, we will present the conception of particular deformation systems which could be used in space telescopes and instruments in order to improve their performances while allowing relaxing specifications on the global system stability. A first section will be dedicated to the design and performance analysis of an active mirror specifically designed to compensate for aberrations that might appear in future 3m-class space telescopes, due to lightweight primary mirrors, thermal variations or weightless conditions. A second section will be dedicated to a brand new design of active mirror, able to compensate for given combinations of aberrations with a single actuator. If the aberrations to be corrected in an instrument and their evolutions are known in advance, an optimal system geometry can be determined thanks to the elasticity theory and Finite Element Analysis.

  5. Refurbishment of solar simulation optical train mirror assemblies

    NASA Technical Reports Server (NTRS)

    Leverton, W. R.

    1973-01-01

    Mirror refurbishment processing is described, and the results of processing 251 mirror assemblies are reported. The mirror replica bonding, optical tests, electrical discharge machining, and vacuum coating are discussed.

  6. Optical properties of relativistic plasma mirrors

    PubMed Central

    Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, Ph.; Quéré, F.

    2014-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748

  7. DAMA annual modulation and mirror Dark Matter

    NASA Astrophysics Data System (ADS)

    Cerulli, R.; Villar, P.; Cappella, F.; Bernabei, R.; Belli, P.; Incicchitti, A.; Addazi, A.; Berezhiani, Z.

    2017-02-01

    The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities.

  8. Optical data processing using paraboloidal mirror segments

    NASA Technical Reports Server (NTRS)

    Husain-Abidi, A. S. (Inventor)

    1973-01-01

    An optical data processing system using paraboloidal reflecting surfaces is disclosed. In the preferred embodiment the paraboloidal reflecting surfaces are segments of a paraboloidal mirror. A source of coherent light is in the focal plane of the first paraboloidal mirror segment which collimates the beam and reflects it toward a second paraboloidal mirror surface. The information to be analyzed, on a transparency for example, is placed in the collimated beam. The beam is reflected from the second paraboloidal mirror segment and focused on a Fourier transform plane. A photon detector could be placed in the Fourier transform plane or suitable spatial filters, with the filtered beam then being reflected from a third paraboloidal mirror segment to be focused on a reconstruction plane.

  9. Optical properties of relativistic plasma mirrors.

    PubMed

    Vincenti, H; Monchocé, S; Kahaly, S; Bonnaud, G; Martin, Ph; Quéré, F

    2014-03-11

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase.

  10. Replicated Electro-Formed Nickel Alloy Mirror

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Dr. Joe Ritter examines a replicated electro-formed nickel-alloy mirror which exemplifies the improvements in mirror fabrication techniques, with benefits such as dramtic weight reduction that have been achieved at the Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC).

  11. Mirror Neurons through the Lens of Epigenetics

    PubMed Central

    Ferrari, Pier F.; Tramacere, Antonella; Simpson, Elizabeth A.; Iriki, Atsushi

    2013-01-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this article, we argue that, in light of recent evidence, this is, at best, an incomplete and oversimplified view of mirror neurons, whose activity is actually quite variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although extant associative and genetic accounts fail to consider the complexity of genetic and non-genetic interactions, we propose a new Evo-Devo perspective, which predicts that environmental differences early in development, or through sensorimotor training, should produce variations in mirror neuron response patterns, tuning them to the social environment. PMID:23953747

  12. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    PubMed

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  13. Durable silver coating for mirrors

    DOEpatents

    Wolfe, Jesse D.; Thomas, Norman L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  14. Compact active mirror laser (CAMIL)

    NASA Astrophysics Data System (ADS)

    Vetrovec, John

    2002-03-01

    This work presents concept and scaling considerations for a solid-state laser with a gain medium disk operating in the active mirror mode. The disk is of composite construction formed by bonding undoped optical medium to the peripheral edges of a gain medium disk. Pump diode arrays are placed around the perimeter of the composite disk and pump light is injected into the undoped edge. With proper choice of lasant doping, diode placement and diode divergence, a uniform laser gain can be achieved across large portions of the disk. To mitigate thermal deformations, the gain medium disk is pressure-clamped to a rigid, cooled substrate. Effective reduction of thermo-optical distortions makes this laser suitable for operation at high-average power.

  15. Mirror Modes in the Heliosheath

    SciTech Connect

    Tsurutani, B. T.; Guarnieri, F. L.; Echer, E. E.; Lakhina, G. S.; Verkhoglyadova, O. P.

    2011-01-04

    Mirror mode (MM) structures are identified in the Voyager 1 heliosheath magnetic field data. Their characteristics are: (1) quasiperiodic structures with a typical scale size of {approx}57 {rho}{sub p}(proton gyroradii), (2) little or no angular changes across the structures ({approx}3 deg. longitude and {approx}3 deg. latitude), and (3) a lack of sharp boundaries at the magnetic dip edges. It is proposed that the pickup of interstellar neutrals in the upstream region of the termination shock (TS) is the likely cause of MM instability during intervals when the IMF is nearly orthogonal to the solar wind flow direction. Concomitant (quasiperpendicular) shock compression of the MM structures at the TS and additional injection of pickup ions (PUIs) throughout the heliosheath will enhance MM growth.

  16. Tandem mirrors for neutron production

    SciTech Connect

    Doggett, J.N.

    1983-03-31

    Two mirror machine concepts are being studied as early-time, low-cost, neutron-producing devices for testing and demonstrating reactor-relevant fusion technology. The first of these concepts is for a new, small, driven, steady-state, D-T reactor, called the Technology Demonstration Facility (TDF). The second concept is for upgrades to the MFTF-B machine that burn tritium and run for pulse lengths of some hours. Both devices operate in the Kelley mode in order to provide high-wall loadings of 14-MeV neutrons, thereby providing a valuable test bed for reactor-relevant hardware and subsystems. Either one of these devices could be running in the early 1990's with first wall fluxes between 1.4 and 2.0 MW m/sup -2/.

  17. Deformable Mirror Materials Issue Assessment

    SciTech Connect

    Rudd, R E

    2008-05-27

    It was a pleasure to speak with you and Dr. Olivier Guyon about your project to develop a coronagraph and in particular about materials science considerations in the development of the deformable mirror (DM) for the coronagraph. The coronagraph application will demand more of a DM than previous applications with regard to precision, and since the characterization and modeling tools are currently under development, you asked me to comment on materials issues that might impact the DM design and testing. I have not conducted research on this question, and my own research on modeling MEMS has not included DM systems. I am only in a position to discuss some general considerations that may help in developing a research plan for the DM system. As I understand it, the relevant points about the DM system are as follows. The DM surface needs to be positioned to less than 1 {angstrom} RMS of the desired shape, and be stable to 0.3 {angstrom} RMS for an hour. In the ultimate application in space the stability requirements may be greater. For example, the DM shape can be set using a bright star and then allow the coronagraph to be turned to a dim star to collect data for several hours, counting on the mirror shape to be stable. The DM is made of a polysilicon membrane coated with one or more metal layers for the reflective surface and actuated by 32x32 or 64x64 electrostatic actuators on the back side. The uncertainty in the position of any one actuator should be at the few-picometer level or less averaged over the 300-{micro}m region of the actuator. Currently, experiments are conducted that can characterize the surface shape to the 1 nm level, and it is anticipated that the experiments will be able to characterize the shape at the sub-Angstrom level but not in the immediate future. Regarding stability, under relatively large deformations (10's of nm), the DM mirror surface shows no hysteresis at the measurable nm level. Let me begin by saying that I am not aware of any

  18. Toward a large lightweight mirror for AO: development of a 1m Ni coated CFRP mirror

    NASA Astrophysics Data System (ADS)

    Thompson, S. J.; Doel, A. P.; Brooks, D.; Strangwood, M.

    2008-07-01

    We present our recent developments towards the construction of a large, thin, single-piece mirror for adaptive optics (AO). Our current research program aims to have completed fabrication and testing of a 1m diameter, nickel coated carbon-fibre reinforced cyanate ester resin mirror by the last quarter of 2009. This composite mirror material is being developed to provide a lightweight and robust alternative to thin glass shell mirrors, with the challenge of future large deformable mirrors such as the 2.5m M4 on the E-ELT in mind. A detailed analysis of the material properties of test mirror samples is being performed at the University of Birmingham (UK), the first results of which are discussed and presented here. We discuss the project progress achieved so far, including fabrication of the 1m flat moulds for the replication process, manufacturing and testing methods for 20 cm diameter sample mirrors and system simulations.

  19. A viscoelastic Unitary Crack-Opening strain tensor for crack width assessment in fractured concrete structures

    NASA Astrophysics Data System (ADS)

    Sciumè, Giuseppe; Benboudjema, Farid

    2016-09-01

    A post-processing technique which allows computing crack width in concrete is proposed for a viscoelastic damage model. Concrete creep is modeled by means of a Kelvin-Voight cell while the damage model is that of Mazars in its local form. Due to the local damage approach, the constitutive model is regularized with respect to finite element mesh to avoid mesh dependency in the computed solution (regularization is based on fracture energy). The presented method is an extension to viscoelasticity of the approach proposed by Matallah et al. (Int. J. Numer. Anal. Methods Geomech. 34(15):1615-1633, 2010) for a purely elastic damage model. The viscoelastic Unitary Crack-Opening (UCO) strain tensor is computed accounting for evolution with time of surplus of stress related to damage; this stress is obtained from decomposition of the effective stress tensor. From UCO the normal crack width is then derived accounting for finite element characteristic length in the direction orthogonal to crack. This extension is quite natural and allows for accounting of creep impact on opening/closing of cracks in time dependent problems. A graphical interpretation of the viscoelastic UCO using Mohr's circles is proposed and application cases together with a theoretical validation are presented to show physical consistency of computed viscoelastic UCO.

  20. Dreams that mirror the session.

    PubMed

    Civitarese, Giuseppe

    2006-06-01

    Dreams in which the analyst appears undisguised almost always depict violations of the setting. Often experienced as special, epiphanic moments, they give a glimpse of an intense, emotional reaction to traumatogenic or otherwise significant events that have occurred during the session or in the most recent previous ones. Probably, the essential aspect of these dreams can be found in the 'form of their content'. This may be paralleled by the narrative technique of mise en abyme or mirror-text. The dream appears as a story within the main story and the scene of the analysis is reflected anti-illusionistically. The fictional structure of the setting is emphasized. Its theatrical self-consciousness quality is revealed at its best. The author postulates that the transformative therapeutic value of these dreams derives from denouncing the referential illusion of 'concrete reality' and of 'what really happened'. For the analysand, they are an effective (i.e. emotionally intense) opportunity to discover the spatial articulations and the staggering refractions of the inside/outside, the textual/extra-textual, the psychic reality/material reality. In the continual comings and goings from one term to another, the work of symbolization is reactivated and the subject is constructed. Dreams that mirror the session, from this point of view, provide a model for conceptualizing the analytic work, and their significance goes beyond the specific phenomena referred to. A clinical case is given, in which some of one patient's dreams are considered as they occurred over a short period. In one of them, the dream-within-a-dream phenomenon is present.

  1. Archetypal-Imaging and Mirror-Gazing

    PubMed Central

    Caputo, Giovanni B.

    2013-01-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one’s own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject’s unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for “imaging of the unconscious”. Future researches have been proposed. PMID:25379264

  2. Mirror Figuring Techniques of Sir William Herschel

    NASA Astrophysics Data System (ADS)

    Albin, E. F.

    2004-05-01

    Between the years 1773 to 1818, Sir William Herschel constructed dozens of speculum telescope mirrors, with diameters ranging from 6 - 48 inches. Very little, if any, detailed information has ever been published on the specifics of his mirror figuring efforts. The reason for this certainly relates to his desire to closely guard mirror production trade secrets. Upon Herschel's death, all telescope-making documents were passed on to his only son, Sir John Herschel. These materials are now in the possession of the British RAS and primarily consist of: a) a four volume series entitled "Experiments on the Construction of Specula," b) a 129 page treaty called "On the Construction of Specula," and c) a 179 page manuscript entitled "Results of Experiments on the Construction of Mirrors." It is suggested that publication was further delayed and then eventually abandoned due to silver-coated glass mirrors coming into favor. A recent investigation by the author, of the unpublished manuscripts on the construction of specula, suggests that Herschel's mirror figuring techniques did not involve any guess work; in fact, his methods were highly refined -- never leaving to chance the evolution of a spherical surface into the required paraboloid. At the heart of Herschel's figuring techniques were a series of aperture diaphragms (similar to the Couder masks used by modern telescope makers) that were placed over the mirror, which allowed for the precise determination of its curvature at various predefined zones. With this information, Herschel was able to vary his figuring strokes with his polishing tool accordingly. In addition, all mirrors were subsequently "star tested," sometimes with aperture diaphragms in place, allowing for field examination of the mirror's "distinctness" or performance. Double stars and the planet Saturn were favorite targets used to analyze and then correct a mirror's figure.

  3. Archetypal-imaging and mirror-gazing.

    PubMed

    Caputo, Giovanni B

    2014-03-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one's own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject's unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for "imaging of the unconscious". Future researches have been proposed.

  4. Lightweight deformable mirrors for future space telescopes

    NASA Astrophysics Data System (ADS)

    Patterson, Keith

    This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m2 have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications. The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during

  5. Mirror neurons: from origin to function.

    PubMed

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  6. Impedance Matched to Vacuum, Invisible Edge, Diffraction Suppressed Mirror

    NASA Technical Reports Server (NTRS)

    Hagopian, John G. (Inventor); Roman, Patrick A. (Inventor); Shiri, Sharham (Inventor); Wollack, Edward J. (Inventor)

    2015-01-01

    Diffraction suppressed mirrors having an invisible edge are disclosed for incident light at both targeted wavelengths and broadband incident light. The mirrors have a first having at least one discontiguous portion having a plurality of nanostructured apertures. The discontiguous mirror portion impedance matches a relatively high impedance portion of the mirror to a relatively low impedance portion of the mirror, thereby reducing the diffraction edge effect otherwise present in a conventional mirror.

  7. Double arch mirror study. Part 3: Fabrication and test report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, glass mirror was developed for infrared, astronomical telescopes such as the Space Infrared Telescope Facility (SIRTF). A 50 cm, fused silica mirror which was previously fabricated was modified for use with a new mount configuration. This mount concept was developed. The modification of the mirror, the fabrication of the mirror mount, and the room temperature testing of the mounted mirror are reported. A design for a SIRTF class primary mirror is suggested.

  8. Finite element modeling of concentrating solar collectors for evauation of gravity loads, bending, and optical characterization.

    SciTech Connect

    Christian, Joshua M.; Ho, Clifford Kuofei

    2010-04-01

    Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.

  9. Research and design for focusing device of secondary mirror

    NASA Astrophysics Data System (ADS)

    Li, WeiYan; Zhang, DanDan; Lv, QunBo; Liu, YangYang; Pei, LinLin; Wang, JianWei

    2015-09-01

    The position of optical plane for a space remote sensing instrument will be changed in severe launching process and complex working thermal environments, which affects the imaging quality of the remote sensing instrument seriously. based on traditional R-C optical systems designed a new type of initiative thermal controlling focusing device, which was driver by the change of thermal according to the basic concepts of thermal expansion properties, the apparatus selectively adjusting the position of the secondary mirror to compensate for the amount of defocus, analysis the main factors of affecting the accuracy of focusing device, and using finite element analysis software for simulation data, while the device for the corresponding experimental verification according to the actual working environment .The results showed that the focusing device designed to meet the required shaking volume requirement 15."

  10. Shock Analysis of Sentinel-3 SLSTR Parabolic Mirror Assembly

    NASA Astrophysics Data System (ADS)

    Braun, Benjamin; Kiel, Daniel

    2014-06-01

    This paper presents the different steps that have been undertaken to demonstrate the successful shock qualification of the Parabolic Mirror Assembly (PMA) in the frame of the Sentinel-3 SLSTR development. The unit has failed the first qualification shock test in terms of shift of natural frequencies and optical alignment. The objectives of the subsequent analyses are:- to correlate the finite element model with the PMA shock test on unit level,- to determine the interface loads between different parts of the PMA assembly for the PMA shock test on unit level,- to assess the PMA interface loads induced by the instrument level shock test,- to derive a reduced shock input spectrum for the PMA shock test on unit level with respect to a second qualification test.

  11. Measuring Slit Width and Separation in a Diffraction Experiment

    ERIC Educational Resources Information Center

    Gan, K. K.; Law, A. T.

    2009-01-01

    We present a procedure for measuring slit width and separation in single- and double-slit diffraction experiments. Intensity spectra of diffracted laser light are measured with an optical sensor (PIN diode). Slit widths and separations are extracted by fitting to the measured spectra. We present a simple fitting procedure to account for the…

  12. Toward high-dynamic active mirrors for LGS refocusing systems

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Madec, Fabrice; Vives, Sébastien; Ferrari, Marc; Le Mignant, David; Cuby, Jean Gabriel

    2010-07-01

    In the frame of the E-ELT-EAGLE instrument phase A studies, we designed a convex VCM able to compensate for the focus variation on the Laser Guide Star (LGS) wavefront sensor, due to the elevation of the telescope and the fixed sodium layer altitude. We present an original optical design including this active convex mirror, providing a large sag variation on a spherical surface with a 120mm clear aperture, with an optical quality better than lambda/5 RMS up to 820μm of sag and better than lambda/4 RMS up to 1000μm of sag. Finite element analysis (FEA) allowed an optimisation of the mirror's variable thickness distribution to compensate for geometrical and material non linearity. Preliminary study of the pre-stressing has also been performed by FEA, showing that a permanent deformation remains after removal of the loads. Results and comparison with the FEA are presented in the article of F.Madec et al (AS10-7736-119, this conference), with an emphasis on the system approach.

  13. Generalized energy principle for flute perturbations in axisymmetric mirror machines

    SciTech Connect

    Lansky, I.M.; Ryutov, D.D.

    1993-01-20

    Axial symmetry is a very desirable property of the mirror devices both for fusion and neutron source applications. The main obstacle to be circumvented in the development of such systems, is the flute instability of axisymmetric mirrors. In recent years there appeared a number of proposals, devoted to the stabilization of the flute perturbations in the framework of axisymmetric magnetic configurations, which are based on the combining of the MHD unstable central cell with various types of end-cell stabilizers. In the present paper we concentrate ourselves just on this scheme, including long solenoid with a uniform field, conjugated with the end stabilizing anchor, intended to provide MHD stability of the system as a whole. The attractive feature of such a configuration is that it allows to exploit finite larmor radius (FLR) effects for the stabilization of the flute perturbations. As is well known, FLR effects, being strong, stabilize all flute modes, except the one with azimuthal number m = 1, corresponding to the ``rigid`` displacement of the plasma column (the ``global`` mode). Consequently, in the conditions when FLR effects dominate, the anchor has to stabilize the ``global` mode only. Bearing in mind a favorable influence of FLR effects we, however, don`t restrict our paper by discussion of only ``global`` mode stability and consider a general case of an arbitrary azimuthal mode.

  14. Stress-concentration factors for finite orthotropic laminates with a circular hole and uniaxial loading

    NASA Technical Reports Server (NTRS)

    Hong, C. S.; Crews, J. H., Jr.

    1979-01-01

    Stresses were calculated for finite-width orthotropic laminates with a circular hole and remote uniaxial loading using a two-dimensional finite element analysis with both uniform stress and uniform displacement boundary conditions. Five different laminates were analyzed. Computed results are presented for selected combinations of hole diameter/sheet-width ratio d/w and length-to-width ratio L/w. For small L/w values, the stress-concentration factors K sub tn were significantly different for the uniform stress and uniform displacement boundary conditions. Typically, for the uniform stress condition, the K sub tn values were much larger than for the infinite strip reference condition; however, for the uniform displacement condition, they were only slightly smaller than for this reference. The results for long strips are also presented as width correction factors. For d/w less or = 0.33, these width correction factors are nearly equal for all five laminates.

  15. Stability of AN Axisymmetric Mirror with AN Energetic Ion Component.

    NASA Astrophysics Data System (ADS)

    Krall, Jonathan Francis

    We examine the stability of an axisymmetric mirror with an energetic ion component to finite azimuthal mode number (m) interchange modes, using a dispersion functional in which the energetic ions are described by the Vlasov equation and the background plasma is described by the magnetohydrodynamic (MHD) equations. A separate analysis is presented for the Vlasov- fluid case Freidberg, 1972 , where the background consists of fluid electrons. Stability is addressed first for an elongated equilibrium with a specific class of energetic ion orbits in the Vlasov-MHD case and then for both cases with more general equilibria and orbits. With the elongated mirror, we suppose that the axis-encircling ions have orbits that reside on flux surfaces, obtaining a sufficient condition for stability on each flux surface. Numerical evaluation of the stability condition indicates that the energetic ion component is highly stabilizing in regions where the energetic ion density increases outward and highly destabilizing where the density decreases outward. The more general problem is considered by representing the displacement in terms of a complete set of global basis functions, giving a necessary and sufficient condition for stability for each case. In each of the two cases, kinetic effects enter into the analysis through phase-space autocorrelation functions Lewis et al., 1985 . We find that in the Vlasov-MHD case, where we use a rigid-rotor distribution for the energetic ions, the net rotation of the energetic ions is destabilizing and dominates the stabilizing influence of the energetic ion current. In the Vlasov-fluid case, finite Larmor radius (FLR) effects were recovered, with growth rates reduced when ((rho)(,i)/L)('2) >(, )(gamma)(,MHD)/(OMEGA)(,i), where (rho)(,i) is the Larmor radius of the Vlasov ions, L is the plasma radius, (gamma)(,MHD) is the growth rate with FLR effects excluded and (OMEGA)(,i) is the ion gyrofrequency. These effects are discussed in terms of phase

  16. Effect of step width manipulation on tibial stress during running.

    PubMed

    Meardon, Stacey A; Derrick, Timothy R

    2014-08-22

    Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (p<0.001 for all). The data from this study suggests that stresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style.

  17. Turner syndrome isochromosome karyotype correlates with decreased dental crown width.

    PubMed

    Rizell, S; Barrenäs, M-L; Andlin-Sobocki, A; Stecksén-Blicks, C; Kjellberg, H

    2012-04-01

    The aim of this project was to study possible influences of Turner syndrome (TS) karyotype and the number of X chromosomes with intact short arm (p-arm) on dental crown width. Primary and permanent mesio-distal crown width was measured on plaster casts from 112 TS females. The influence on crown width of four karyotypes: 1. monosomy (45,X), 2. mosaic (45,X/46,XX), 3. isochromosome, and 4. other, and the number of intact X chromosomal p-arms were investigated. In comparisons between karyotypes, statistically significant differences were found for isochromosome karyotype maxillary second premolars, canines, laterals, mandibular first premolars, and canines, indicating that this karyotype was the most divergent as shown by the most reduced crown width. When each karyotype group were compared versus controls, all teeth in the isochromosome group were significantly smaller than controls (P < 0.01-0.001). The 45,X/46,XX karyotype expressed fewer and smaller differences from controls, while 45,X individuals seemed to display an intermediate tooth width compared with 45,X/46,XX and isochromosomes. No significant difference in crown width was found comparing the groups with one or two intact X chromosomal p-arms. Both primary and permanent teeth proved to have a significantly smaller crown width in the entire group of TS females compared to healthy females. We conclude that the isochromosome group deviates most from other karyotypes and controls, exhibiting the smallest dental crown width, while individuals with 45,X/46,XX mosaicism seemed to have a less affected crown width. An influence of the number of intact p-arms on crown width could not be demonstrated in this study.

  18. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.

  19. Mirror neurons: functions, mechanisms and models.

    PubMed

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system.

  20. Laser cleaning of ITER's diagnostic mirrors

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  1. Simple Finite Jordan Pseudoalgebras

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Pavel

    2009-01-01

    We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We construct an analogue of the Tits-Kantor-Koecher construction for finite Jordan pseudoalgebras and describe all simple ones.

  2. Lightweight active controlled primary mirror technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mazzinghi, P.; Bratina, V.; Ferruzzi, D.; Gambicorti, L.; Simonetti, F.; Zuccaro Marchi, A.; Salinari, P.; Lisi, F.; Olivier, M.; Bursi, A.; Gallieni, D.; Biasi, R.; Pereira, J.

    2007-10-01

    This paper describes the design, manufacturing and test of a ground demonstrator of an innovative technology able to realize lightweight active controlled space-borne telescope mirror. This analysis is particularly devoted to applications for a large aperture space telescope for advanced LIDAR, but it can be used for any lightweight mirror. For a space-borne telescope the mirror weight is a fundamental parameter to be minimized (less than 15 Kg/m2), while maximizing the optical performances (optical quality better than λ/3). In order to guarantee these results, the best selected solution is a thin glass primary mirror coupled to a stiff CFRP (Carbon Fiber Reinforced Plastic) panel with a surface active control system. A preliminary design of this lightweight structure highlighted the critical areas that were deeply analyzed by the ground demonstrator: the 1 mm thick mirror survivability on launch and the actuator functional performances with low power consumption. To preserve the mirror glass the Electrostatic Locking technique was developed and is here described. The active optics technique, already widely used for ground based telescopes, consists of a metrology system (wave front sensor, WFS), a control algorithm and a system of actuators to slightly deform the primary mirror and/or displace the secondary, in a closed-loop control system that applies the computed corrections to the mirror's optical errors via actuators. These actuators types are properly designed and tested in order to guarantee satisfactory performances in terms of stroke, force and power consumption. The realized and tested ground demonstrator is a square CFRP structure with a flat mirror on the upper face and an active actuator beneath it. The test campaign demonstrated the technology feasibility and robustness, supporting the next step toward the large and flat surface with several actuators.

  3. Long-lived resonances at mirrors

    NASA Astrophysics Data System (ADS)

    Queisser, Friedemann; Unruh, William G.

    2016-12-01

    Motivated by realistic scattering processes of composite systems, we study the dynamics of a two-particle bound system which is scattered at a mirror. We consider two different scenarios: In the first case we assume that only one particle interacts directly with the mirror whereas in the second case both particles are scattered. The coherence between the transmitted and the reflected wave packet is reduced when the internal degree of freedom (the relative coordinate) of the bound system becomes excited. Depending on the particular system-mirror interaction, long-lived resonances can occur.

  4. Affect regulation: holding, containing and mirroring.

    PubMed

    Pedersen, Signe Holm; Poulsen, Stig; Lunn, Susanne

    2014-10-01

    Gergely and colleagues' state that their "Social Biofeedback Theory of Parental Affect Mirroring" can be seen as a kind of operationalization of the classical psychoanalytic concepts of holding, containing and mirroring. This article examines to what extent the social biofeedback theory of parental affect mirroring may be understood as a specification of these concepts. It is argued that despite similarities at a descriptive level the concepts are embedded in theories with different ideas of subjectivity. Hence an understanding of the concept of affect regulation as a concretization and specification of the classical concepts dilutes the complexity of both the concept of affect regulation and of the classical concepts.

  5. Fine alignment of a large segmented mirror

    NASA Technical Reports Server (NTRS)

    Dey, Thomas William (Inventor)

    2010-01-01

    A system for aligning a segmented mirror includes a source of radiation directed along a first axis to the segmented mirror and a beamsplitter removably inserted along the first axis for redirecting radiation from the first axis to a second axis, substantially perpendicular to the first axis. An imaging array is positioned along the second axis for imaging the redirected radiation, and a knife-edge configured for cutting the redirected radiation is serially positioned to occlude and not occlude the redirected radiation, effectively providing a variable radiation pattern detected by the imaging array for aligning the segmented mirror.

  6. Particle Deconfinement in a Bent Magnetic Mirror

    SciTech Connect

    Renaud Gueroult and Nathaniel J. Fisch

    2012-09-06

    Coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements - similar to the resonant regime in tandem mirrors - can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing in principle the filtering of a specific species based on its mass.

  7. Theoretical aspects of the agile mirror

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace M.; Fernsler, Richard

    1994-01-01

    A planar plasma mirror which can be oriented electronically could have the capability of providing electronic steering of a microwave beam in a radar or electronic warfare system. This system is denoted the agile mirror. A recent experiment has demonstrated such a planar plasma and the associated microwave reflection. This plasma was produced by a hollow cathode glow discharge, where the hollow cathode was a grooved metallic trench in a Lucite plate. Various theoretical aspects of this configuration of an agile mirror are examined here.

  8. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  9. Stroboscopic Interferometer for Measuring Mirror Vibrations

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Robers, Ted

    2005-01-01

    Stroboscopic interferometry is a technique for measuring the modes of vibration of mirrors that are lightweight and, therefore, unavoidably flexible. The technique was conceived especially for modal characterization of lightweight focusing mirror segments to be deployed in outer space; however, the technique can be applied to lightweight mirrors designed for use on Earth as well as the modal investigation of other optical and mechanical structures. To determine the modal structure of vibration of a mirror, it is necessary to excite the mirror by applying a force that varies periodically with time at a controllable frequency. The excitation can utilize sinusoidal, square, triangular, or even asynchronous waveforms. Because vibrational modes occur at specific resonant frequencies, it is necessary to perform synchronous measurements and sweep the frequency to locate the significant resonant modes. For a given mode it is possible to step the phase of data acquisition in order to capture the modal behavior over a single cycle of the resonant frequency. In order to measure interferometrically the vibrational response of the mirror at a given frequency, an interferometer must be suitably aligned with the mirror and adjustably phase-locked with the excitation signal. As in conventional stroboscopic photography, the basic idea in stroboscopic interferometry is to capture an image of the shape of a moving object (in this case, the vibrating mirror) at a specified instant of time in the vibration cycle. Adjusting the phase difference over a full cycle causes the interference fringes to vary over the full range of motion for the mode at the excitation frequency. The interference-fringe pattern is recorded as a function of the phase difference, and, from the resulting data, the surface shape of the mirror for the given mode is extracted. In addition to the interferometer and the mirror to be tested, the equipment needed for stroboscopic interferometry includes an arbitrary

  10. Fiber ring laser with a feedback mirror.

    PubMed

    Abitan, H; Bohr, H; Pedersen, C F

    2005-12-20

    We describe the spectral and power features of a ytterbium-doped double-clad photonic crystal fiber laser that is operated in a ring configuration with an external mirror that feeds back only one of its two output beams. We compare the operation of the laser with and without an external feedback mirror. We find that the feedback mirror reduces significantly the spectral and power fluctuations. It is also responsible for an interesting spectral phenomenon: The laser frequency is drifting periodically over 9 nm at a rate of 2 nm/s from a short wavelength to a longer wavelength and vice versa.

  11. HCN laser with an adaptive output mirror

    SciTech Connect

    Kamenev, Yu E; Masalov, S A; Filimonova, A A

    2006-09-30

    A device for optimal coupling between a laser resonator and the external medium, having the form of one-dimensional wire grating conjugated with a plane mirror with an aperture, is proposed, developed and tested experimentally. The dependences of the output laser power on the separation between the grating and the mirror, diameter of the aperture in the plane mirror, and the grating period, are studied. The obtained results not only confirm the possibility of using such a coupling device, but also point towards the ways and principles of its application. (lasers)

  12. Exclusive lower extremity mirror movements and diastematomyelia.

    PubMed

    Tubbs, R Shane; Smyth, Matthew D; Dure, Leon S; Oakes, W Jerry

    2004-01-01

    Mirror movements usually seen in the Klippel-Feil syndrome are most commonly appreciated in the upper extremities. Lower extremity involvement is seen rarely and when observed, is found in conjunction with upper extremity mirror movements. We report what we believe to be the first case of mirror movements found exclusively in the lower extremities in a female patient presenting with tethered cord syndrome. Our hopes are that this report will help elucidate mechanisms involved with these anomalous movements, as currently there is no commonly accepted etiology.

  13. Accurate vessel width measurement from fundus photographs: a new concept.

    PubMed Central

    Rassam, S M; Patel, V; Brinchmann-Hansen, O; Engvold, O; Kohner, E M

    1994-01-01

    Accurate determination of retinal vessel width measurement is important in the study of the haemodynamic changes that accompany various physiological and pathological states. Currently the width at the half height of the transmittance and densitometry profiles are used as a measure of retinal vessel width. A consistent phenomenon of two 'kick points' on the slopes of the transmittance and densitometry profiles near the base, has been observed. In this study, mathematical models have been formulated to describe the characteristic curves of the transmittance and the densitometry profiles. They demonstrate the kick points being coincident with the edges of the blood column. The horizontal distance across the kick points would therefore indicate the actual blood column width. To evaluate this hypothesis, blood was infused through two lengths of plastic tubing of known diameters, and photographed. In comparison with the known diameters, the half height underestimated the blood column width by 7.33% and 6.46%, while the kick point method slightly overestimated it by 1.40% and 0.34%. These techniques were applied to monochromatic fundus photographs. In comparison with the kick point method, the half height underestimated the blood column width in veins by 16.67% and in arteries by 15.86%. The characteristics of the kick points and their practicality have been discussed. The kick point method may provide the most accurate measurement of vessel width possible from these profiles. Images PMID:8110693

  14. Wave-optical assessment of alignment tolerances in nano-focusing with ellipsoidal mirror

    SciTech Connect

    Yumoto, Hirokatsu Koyama, Takahisa; Ohashi, Haruhiko

    2016-01-28

    High-precision ellipsoidal mirrors, which can efficiently focus X-rays to the nanometer dimension with a mirror, have not been realized because of the difficulties in the fabrication process. The purpose of our study was to develop nano-focusing ellipsoidal mirrors in the hard X-ray region. We developed a wave-optical focusing simulator for investigating alignment tolerances in nano-focusing with a designed ellipsoidal mirror, which produce a diffraction-limited focus size of 30 × 35 nm{sup 2} in full width at half maximum at an X-ray energy of 7 keV. The simulator can calculate focusing intensity distributions around the focal point under conditions of misalignment. The wave-optical simulator enabled the calculation of interference intensity distributions, which cannot be predicted by the conventional ray-trace method. The alignment conditions with a focal length error of ≲ ±10 µm, incident angle error of ≲ ±0.5 µrad, and in-plane rotation angle error of ≲ ±0.25 µrad must be satisfied for nano-focusing.

  15. Wave-optical assessment of alignment tolerances in nano-focusing with ellipsoidal mirror

    NASA Astrophysics Data System (ADS)

    Yumoto, Hirokatsu; Koyama, Takahisa; Matsuyama, Satoshi; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-01-01

    High-precision ellipsoidal mirrors, which can efficiently focus X-rays to the nanometer dimension with a mirror, have not been realized because of the difficulties in the fabrication process. The purpose of our study was to develop nano-focusing ellipsoidal mirrors in the hard X-ray region. We developed a wave-optical focusing simulator for investigating alignment tolerances in nano-focusing with a designed ellipsoidal mirror, which produce a diffraction-limited focus size of 30 × 35 nm2 in full width at half maximum at an X-ray energy of 7 keV. The simulator can calculate focusing intensity distributions around the focal point under conditions of misalignment. The wave-optical simulator enabled the calculation of interference intensity distributions, which cannot be predicted by the conventional ray-trace method. The alignment conditions with a focal length error of ≲ ±10 µm, incident angle error of ≲ ±0.5 µrad, and in-plane rotation angle error of ≲ ±0.25 µrad must be satisfied for nano-focusing.

  16. Bank stability and channel width adjustment, East Fork River, Wyoming.

    USGS Publications Warehouse

    Andrews, E.D.

    1982-01-01

    Frequent surveys of eight cross sections located in self-formed reaches of the East Fork River, Wyoming, during the 1974 snowmelt flood showed a close relation between channel morphology and scour and fill. Those cross sections narrower than the mean reach width filled at discharges less than bankfull and scoured at discharges greater than bankfull. Those cross sections wider than the mean reach width scoured at discharges less than bankfull and filled at discharges greater than bankfull. Bank stability, and to some extent the adjustment of stream channel width, in the East Fork River study reach appears to be controlled by the processes of scour and fill. -from Author

  17. Scaling laws for light weight optics, studies of light weight mirrors mounting and dynamic mirror stress, and light weight mirror and mount designs

    NASA Technical Reports Server (NTRS)

    Vukobratovich, Daniel; Richard, Ralph M.; Valente, Tina M.; Cho, Myung K.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature was made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best curve for each case. A best fitting curve program tests nineteen different equations and ranks a goodness-to-fit for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  18. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers.

    PubMed

    Ma, Jie; Lu, Shunbin; Guo, Zhinan; Xu, Xiaodong; Zhang, Han; Tang, Dingyuan; Fan, Dianyuan

    2015-08-24

    We experimentally demonstrated that few-layer black phosphorus (BP) could be used as an optical modulator for solid-state lasers to generate short laser pulses. The BP flakes were fabricated by the liquid phase exfoliation method and drop-casted on a high-reflection mirror to form a BP-based saturable absorber mirror (BP-SAM). Stable Q-switched pulses with a pulse width of 620 ns at the wavelength of 1046 nm were obtained in a Yb:CaYAlO(4) (Yb:CYA) laser with the BP-SAM. The generated pulse train has a repetition rate of 113.6 kHz and an average output power of 37 mW. Our results show that the BP-SAMs could have excellent prospective for ultrafast photonics applications.

  19. QUARKONIUM AT FINITE TEMPERATURE.

    SciTech Connect

    UMEDA, T.

    2006-06-09

    Lattice QCD studies on charmonium at finite temperature are presented After a discussion about problems for the Maximum Entropy Method applied to finite temperature lattice QCD, I show several results on charmonium spectral functions. The 'wave function' of charmonium is also discussed to study the spatial correlation between quark and anti-quark in deconfinement phase.

  20. Finite Control in Korean

    ERIC Educational Resources Information Center

    Lee, Kum Young

    2009-01-01

    This thesis explores finite control in Korean. An overview of the previous studies of control shows that the mainstream literature on control has consistently argued that referential dependence between an overt matrix argument and an embedded null subject is characteristic of non-finite clauses which contain a PRO subject. Moreover, although some…

  1. Polishing X-ray Mirror Mandrel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. MSFC's Space Optics Manufacturing Technology Center (SOMTC) has grinding and polishing equipment ranging from conventional spindles to custom-designed polishers. These capabilities allow us to grind precisely and polish a variety of optical devices, including x-ray mirror mandrels. This image shows Charlie Griffith polishing the half-meter mandrel at SOMTC.

  2. Mirror Advanced Reactor Study interim design report

    SciTech Connect

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  3. Coating considerations for mirrors of CPV devices

    SciTech Connect

    Schmauder, Torsten; Sauer, Peter; Ickes, Gerd

    2014-09-26

    One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further 'secondary' reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror.

  4. Applied physics: Optical trapping for space mirrors.

    PubMed

    McGloin, David

    2014-02-27

    Might it be possible to create mirrors for space telescopes, using nothing but microscopic particles held in place by light? A study that exploits a technique called optical binding provides a step towards this goal.

  5. The mirror mechanism: recent findings and perspectives.

    PubMed

    Rizzolatti, Giacomo; Fogassi, Leonardo

    2014-01-01

    Mirror neurons are a specific type of visuomotor neuron that discharge both when a monkey executes a motor act and when it observes a similar motor act performed by another individual. In this article, we review first the basic properties of these neurons. We then describe visual features recently investigated which indicate that, besides encoding the goal of motor acts, mirror neurons are modulated by location in space of the observed motor acts, by the perspective from which the others' motor acts are seen, and by the value associated with the object on which others' motor acts are performed. In the last part of this article, we discuss the role of the mirror mechanism in planning actions and in understanding the intention underlying the others' motor acts. We also review some human studies suggesting that motor intention in humans may rely, as in the monkey, on the mirror mechanism.

  6. Lightweight hollow rooftop mirrors for stabilized interferometry

    NASA Astrophysics Data System (ADS)

    Hill, Robert J.; Courtney, Trevor L.; Park, Samuel D.; Jonas, David M.

    2013-10-01

    Hollow rooftop mirrors, also known as dihedral retroreflectors, can simultaneously preserve polarization, minimize chromatic dispersion, and allow beams to be stacked inside an interferometer. Two hollow rooftop mirrors were fabricated and characterized using a Fizeau interferometer and an inexpensive home-built jig instead of a master cube. The mass was 3.3 g for a clear aperture surface area of 110 mm2 with maximum retroreflected beam deviation of 12 arc s. With a hollow rooftop mirror mounted on a piezoelectric transducer in one arm of a Mach-Zehnder interferometer, a displacement stability of ±0.8 nm rms was achieved using active feedback. The rooftop mirrors' suitability for Fourier transform spectroscopy was demonstrated.

  7. Auditory-vocal mirroring in songbirds.

    PubMed

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  8. Coating considerations for mirrors of CPV devices

    NASA Astrophysics Data System (ADS)

    Schmauder, Torsten; Sauer, Peter; Ickes, Gerd

    2014-09-01

    One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further "secondary" reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror.

  9. Design Considerations for a Highly Segmented Mirror

    NASA Astrophysics Data System (ADS)

    Padin, Stephen

    2003-06-01

    Design issues for a 30-m highly segmented mirror are explored, with emphasis on parametric models of simple, inexpensive segments. A mirror with many small segments offers cost savings through quantity production and permits high-order active and adaptive wave-front corrections. For a 30-m f/1 .5 paraboloidal mirror made of spherical, hexagonal glass segments, with simple warping harnesses and three-point supports, the maximum segment diameter is ~100 mm, and the minimum segment thickness is ~5 mm. Large-amplitude, low-order gravitational deformations in the mirror cell can be compensated if the segments are mounted on a plate floating on astatic supports. Because gravitational deformations in the plate are small, the segment actuators require a stroke of only a few tens of micrometers, and the segment positions can be measured by a wave-front sensor.

  10. Electric dipole radiation near a mirror

    SciTech Connect

    Li Xin; Arnoldus, Henk F.

    2010-05-15

    The emission of radiation by a linearly oscillating electric dipole is drastically altered when the dipole is close to the surface of a mirror. The energy is not emitted along optical rays, as for a free dipole, but as a set of four optical vortices. The field lines of energy flow spiral around a set of two lines through the dipole. At a larger distance from the dipole, singularities and isolated vortices appear. It is shown that these interference vortices are due to the vanishing of the magnetic field at their centers. In the plane of the mirror there is a singular circle with a diameter which is proportional to the distance between the dipole and the mirror. Inside this circle, all energy flows to a singularity on the mirror surface.

  11. Space Optic Manufacturing - X-ray Mirror

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. This image shows a lightweight replicated x-ray mirror with gold coatings applied.

  12. Motorized control for mirror mount apparatus

    SciTech Connect

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  13. Motorized control for mirror mount apparatus

    SciTech Connect

    Cutburth, R.W.

    1989-03-14

    This patent describes a motorized control and automatic braking system for adjusting mirror mount apparatus. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  14. Testing the first neutron mirror flipper

    NASA Astrophysics Data System (ADS)

    Pleshanov, N. K.; Syromyatnikov, V. G.

    2016-11-01

    The first neutron mirror flipper built as a magnetic Co70Fe30 (71.1 nm) layer on a non-magnetic periodic multilayer {NiMo(6.96 nm)/Ti(6.17 nm)}×20 was tested. Its efficiency at the Bragg peak was found to exceed 0.966. Thus, the possibility of producing neutron mirror spin turners, including π/2- and π-turners (flippers), was experimentally demonstrated.

  15. Differential interferometric measurement of mirror shape parameters

    NASA Astrophysics Data System (ADS)

    Robinson, Brian

    This project was inspired by the need for a remote method to accurately measure radius of curvature of mirrors tested under the NASA Advanced Mirror System Demonstrator program. Under this program, off axis parabolas (subscale candidates for James Webb Space Telescope optical elements) were tested under cryo-vac conditions. A remote, differential interferometric method is presented for measuring the shape parameters of general aspheric mirrors. The result of measurement is the assignment of best-fit values to a set of parameters that characterize the shape of the surface. If the mirror is nominally a conic of rotation, for example, the measurement yields the radius of curvature and conic constant. The method involves testing the optic in an interferometric center-of-curvature null configuration but can easily be extended to include conjugate null tests. During the measurement, known translational misalignments are introduced and the effects on the optical path length function are measured using a phase-shifting interferometer. Based on the nominal mirror shape, a model function is defined, up to a set of free shape parameters. The mirror shape parameters are regressed, based on the interferometric data, from this model. This differential measurement method works for on- and off-axis mirrors of all shapes and can be applied remotely as long as the mirror is mounted on an actuated stage. Hence, this measurement method would work well in a cryogenic testing situation. We have successfully applied the method to the case of an off-axis parabola with a nominal radius of curvature of 304.8 mm, a diameter of 76.17 mm, and a pupil offset of -89.40 mm.

  16. Experimental study of solar simulator mirror cryocontamination

    NASA Technical Reports Server (NTRS)

    Galjaev, V. L.; Makarov, A. A.; Afanassiev, N. A.

    1994-01-01

    The background and tasks formulation of the study of Solar Simulator collimation mirror cryocontamination in Large Thermal Vacuum Facility are outlined, research methods and experiment procedures are described, experimental relationships obtained are analyzed and practical recommendations are given. The accepted procedure of thermal vacuum tests as a rule defines the sequence of operations for verifying the spacecraft under test without taking into account measures for preventing Solar Simulator collimation mirror contamination and degradation. On the other hand, evacuation procedures is defined for conditions of achieving the required vacuum in the shortest possible time with using the available evacuation equipment at a regime close to the optimum one. Similarly, cryopanel cooling down cyclogram and test object preparation process are not analyzed from the viewpoint of ways of reducing environmental detrimental effects on thermal vacuum facility contamination-sensitive systems. Solar Simulator mirror contamination and its reflective characteristics change results in degradation of solar flux parameters and reduction of simulator continuous operation time. Methods of consideration of optical effects due to mirror surface contamination are actually missing. The effects themselves are not quite understood and data cited in literature as a rule, were obtained under conditions different from real thermal vacuum facility and therefore should be subjected to additional experimental verification. Only in the last few years contamination effect on optical surfaces degradation has been considered with using empirical relations. Mirror reflective properties degradation leads to the increase of Solar Simulator errors. This ultimately has an adverse effect on S/C ground development, schedule and cost of thermal vacuum tests. Besides, the mirror maintenance in operable state becomes more expensive. The present paper is dedicated to the study of Solar Simulator collimation

  17. Exit slit mirrors for the ebert spectrometer.

    PubMed

    Fastie, W G

    1972-09-01

    The use of a very long straight entrance slit in an Ebert grating spectrometer with two plane mirrors at the shorter exit slit to increase the energy density is described. This system has been employed in a far uv rocket spectrometer to provide higher sensitivity than has been achieved previously. The imaging properties and required slit and mirror adjustments are presented. Experimental results are included.

  18. High-speed mirror-scanning tracker

    NASA Astrophysics Data System (ADS)

    Tong, HengWei

    1999-06-01

    This paper introduces a high speed single-mirror scanner developed by us as a versatile tracker. It can be connected with a high speed camera, a TV tracker (or color video recorder) /measurer/recorder. It can be guided by a computer, a joystick (automatic or manual) or TV tracker. In this paper, we also present the advantages of our scanner contrasted with the limitations of fixed camera system. In addition, several usable projects of mirror scanner are discussed.

  19. Electroformed grazing incidence X-ray mirrors for a mirror array telescope

    NASA Technical Reports Server (NTRS)

    Ulmer, Melville P.; Matsui, Yutaka; Bedford, D. K.; Simnett, G. M.; Takacs, Peter Z.

    1987-01-01

    Grazing incidence Wolter type I mirrors for higher-energy X-rays have been replicated from two superpolished mandrels by electroforming. Single mirrors and a nested pair were tested with 1.5- and 6.4-keV X-rays, and their subminute of arc resolution and reflectivity close to the theoretical values are confirmed. The design of the mandrels, the mirror mounting scheme, and results of the X-ray test are presented. The microroughnesses of the mirrors measured using an optical profilometer were compared with the X-ray test results.

  20. Mirror reversal: empirical tests of competing accounts.

    PubMed

    Takano, Yohtaro; Tanaka, Akihiro

    2007-11-01

    In a mirror, left and right are said to look reversed. Surprisingly, this very familiar phenomenon, mirror reversal, has still no agreed-upon account to date. This study compared a variety of accounts in the light of empirical data. In Experiment 1, 102 students judged whether the mirror image of a person or a character looked reversed or not in 15 settings and also judged the directional relation between its components. In Experiment 2, 52 students made the reversal judgements in 13 settings. It was found for the first time that a substantial proportion of people denied the left-right mirror reversal of a person, whereas virtually all of them did recognize that of a character. This discrepancy strongly suggested that these two kinds of mirror reversal are produced by different processes, respectively. A number of findings including this discrepancy clearly contradicted two accounts that are currently active: the one based on the priority of the up-down and front-back axes over the left-right axis, and the one based on the physical rotation of an object. All the findings were consistent with an account that considered mirror reversal a complex of three different phenomena produced by three different processes, respectively.