Sample records for finite-difference numerical method

  1. ICASE Semiannual Report, October 1, 1992 through March 31, 1993

    DTIC Science & Technology

    1993-06-01

    NUMERICAL MATHEMATICS Saul Abarbanel Further results have been obtained regarding long time integration of high order compact finite difference schemes...overall accuracy. These problems are common to all numerical methods: finite differences , finite elements and spectral methods. It should be noted that...fourth order finite difference scheme. * In the same case, the D6 wavelets provide a sixth order finite difference , noncompact formula. * The wavelets

  2. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  3. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Alkhalifah, Tariq

    2018-07-01

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.

  4. Numerical simulation of KdV equation by finite difference method

    NASA Astrophysics Data System (ADS)

    Yokus, A.; Bulut, H.

    2018-05-01

    In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.

  5. Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids

    DTIC Science & Technology

    2006-12-01

    theory for charged vacancy diffusion in elastic dielectric materials is formulated and implemented numerically in a finite difference code. The...one of the co-authors on neutral vacancy kinetics (Grinfeld and Hazzledine, 1997). The theory is implemented numerically in a finite difference code...accuracy of order ( )2x∆ , using a finite difference approximation (Hoffman, 1992) for the second spatial derivative of φ : ( )21 1 0ˆ2 /i i i i Rxφ

  6. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Agarwal, P.; El-Sayed, A. A.

    2018-06-01

    In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

  7. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    PubMed

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  8. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  9. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    PubMed

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A block iterative finite element algorithm for numerical solution of the steady-state, compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1976-01-01

    An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.

  11. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  12. Computer-Aided Engineering of Semiconductor Integrated Circuits

    DTIC Science & Technology

    1979-07-01

    equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last

  13. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  14. Recent Developments in Computational Techniques for Applied Hydrodynamics.

    DTIC Science & Technology

    1979-12-07

    by block number) Numerical Method Fluids Incompressible Flow Finite Difference Methods Poisson Equation Convective Equations -MABSTRACT (Continue on...weaknesses of the different approaches are analyzed. Finite - difference techniques have particularly attractive properties in this framework. Hence it will...be worthwhile to correct, at least partially, the difficulties from which Eulerian and Lagrangian finite - difference techniques suffer, discussed in

  15. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  16. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  17. A moving mesh finite difference method for equilibrium radiation diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less

  18. Improved methods of vibration analysis of pretwisted, airfoil blades

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1984-01-01

    Vibration analysis of pretwisted blades of asymmetric airfoil cross section is performed by using two mixed variational approaches. Numerical results obtained from these two methods are compared to those obtained from an improved finite difference method and also to those given by the ordinary finite difference method. The relative merits, convergence properties and accuracies of all four methods are studied and discussed. The effects of asymmetry and pretwist on natural frequencies and mode shapes are investigated. The improved finite difference method is shown to be far superior to the conventional finite difference method in several respects. Close lower bound solutions are provided by the improved finite difference method for untwisted blades with a relatively coarse mesh while the mixed methods have not indicated any specific bound.

  19. Applications of numerical methods to simulate the movement of contaminants in groundwater.

    PubMed Central

    Sun, N Z

    1989-01-01

    This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327

  20. Experimental Investigation of Hydrodynamic Self-Acting Gas Bearings at High Knudsen Numbers.

    DTIC Science & Technology

    1980-07-01

    Reynolds equation. Two finite - difference algorithms were used to solve the equation. Numerical results - the predicted load and pitch angle - from the two...that should be used. The majority of the numerical solution are still based on the finite difference approximation of the governing equation. But in... finite difference method. Reddi and Chu [26) also noted that it is very difficult to compare the two techniques on the same level since the solution

  1. A weak Galerkin generalized multiscale finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-03-31

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  2. A weak Galerkin generalized multiscale finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  3. Computational procedure for finite difference solution of one-dimensional heat conduction problems reduces computer time

    NASA Technical Reports Server (NTRS)

    Iida, H. T.

    1966-01-01

    Computational procedure reduces the numerical effort whenever the method of finite differences is used to solve ablation problems for which the surface recession is large relative to the initial slab thickness. The number of numerical operations required for a given maximum space mesh size is reduced.

  4. The use of spectral methods in bidomain studies.

    PubMed

    Trayanova, N; Pilkington, T

    1992-01-01

    A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.

  5. An investigation of several numerical procedures for time-asymptotic compressible Navier-Stokes solutions

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.; Morris, D. J.; Blanchard, D. K.; Cooke, C. H.; Rubin, S. G.

    1975-01-01

    The status of an investigation of four numerical techniques for the time-dependent compressible Navier-Stokes equations is presented. Results for free shear layer calculations in the Reynolds number range from 1000 to 81000 indicate that a sequential alternating-direction implicit (ADI) finite-difference procedure requires longer computing times to reach steady state than a low-storage hopscotch finite-difference procedure. A finite-element method with cubic approximating functions was found to require excessive computer storage and computation times. A fourth method, an alternating-direction cubic spline technique which is still being tested, is also described.

  6. Finite Volume Algorithms for Heat Conduction

    DTIC Science & Technology

    2010-05-01

    scalar quantity). Although (3) is relatively easy to discretize by using finite differences , its form in generalized coordinates is not. Later, we...familiar with the finite difference method for discretizing differential equations. In fact, the Newton divided difference is the numerical analog for a...expression (8) for the average derivative matches the Newton divided difference formula, so for uniform one-dimensional meshes, the finite volume and

  7. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    NASA Astrophysics Data System (ADS)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  8. Explicit finite-difference simulation of optical integrated devices on massive parallel computers.

    PubMed

    Sterkenburgh, T; Michels, R M; Dress, P; Franke, H

    1997-02-20

    An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.

  9. A time-spectral approach to numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Lindvall, Kristoffer; Yik, Hiu Fai

    2018-05-01

    Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling.

  10. APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM

    EPA Science Inventory

    A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the ca...

  11. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  12. Numerical solution of nonlinear partial differential equations of mixed type. [finite difference approximation

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1976-01-01

    A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.

  13. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.

    PubMed

    Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E

    2013-12-01

    In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  15. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  16. An Artificial Neural Networks Method for Solving Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Alharbi, Abir

    2010-09-01

    While there already exists many analytical and numerical techniques for solving PDEs, this paper introduces an approach using artificial neural networks. The approach consists of a technique developed by combining the standard numerical method, finite-difference, with the Hopfield neural network. The method is denoted Hopfield-finite-difference (HFD). The architecture of the nets, energy function, updating equations, and algorithms are developed for the method. The HFD method has been used successfully to approximate the solution of classical PDEs, such as the Wave, Heat, Poisson and the Diffusion equations, and on a system of PDEs. The software Matlab is used to obtain the results in both tabular and graphical form. The results are similar in terms of accuracy to those obtained by standard numerical methods. In terms of speed, the parallel nature of the Hopfield nets methods makes them easier to implement on fast parallel computers while some numerical methods need extra effort for parallelization.

  17. Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Park, Brian T.; Petrosian, Vahe

    1996-03-01

    Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.

  18. Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules

    1999-01-01

    In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.

  19. A time-space domain stereo finite difference method for 3D scalar wave propagation

    NASA Astrophysics Data System (ADS)

    Chen, Yushu; Yang, Guangwen; Ma, Xiao; He, Conghui; Song, Guojie

    2016-11-01

    The time-space domain finite difference methods reduce numerical dispersion effectively by minimizing the error in the joint time-space domain. However, their interpolating coefficients are related with the Courant numbers, leading to significantly extra time costs for loading the coefficients consecutively according to velocity in heterogeneous models. In the present study, we develop a time-space domain stereo finite difference (TSSFD) method for 3D scalar wave equation. The method propagates both the displacements and their gradients simultaneously to keep more information of the wavefields, and minimizes the maximum phase velocity error directly using constant interpolation coefficients for different Courant numbers. We obtain the optimal constant coefficients by combining the truncated Taylor series approximation and the time-space domain optimization, and adjust the coefficients to improve the stability condition. Subsequent investigation shows that the TSSFD can suppress numerical dispersion effectively with high computational efficiency. The maximum phase velocity error of the TSSFD is just 3.09% even with only 2 sampling points per minimum wavelength when the Courant number is 0.4. Numerical experiments show that to generate wavefields with no visible numerical dispersion, the computational efficiency of the TSSFD is 576.9%, 193.5%, 699.0%, and 191.6% of those of the 4th-order and 8th-order Lax-Wendroff correction (LWC) method, the 4th-order staggered grid method (SG), and the 8th-order optimal finite difference method (OFD), respectively. Meanwhile, the TSSFD is compatible to the unsplit convolutional perfectly matched layer (CPML) boundary condition for absorbing artificial boundaries. The efficiency and capability to handle complex velocity models make it an attractive tool in imaging methods such as acoustic reverse time migration (RTM).

  20. Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy

    PubMed Central

    Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly

    2016-01-01

    This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.

  1. Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices

    NASA Astrophysics Data System (ADS)

    Polstyanko, Sergey V.; Lee, Jin-Fa

    1998-03-01

    In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.

  2. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  3. Optimization of finite difference forward modeling for elastic waves based on optimum combined window functions

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang

    2017-03-01

    Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.

  4. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  5. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  6. Plasma Theory and Simulation

    DTIC Science & Technology

    1988-06-30

    equation using finite difference methods. The distribution function is represented by a large number of particles. The particle’s velocities change as a...Small angle Coulomb collisions The FP equation for describing small angle Coulomb collisions can be solved numerically using finite difference techniques...A finite Fourrier transform (FT) is made in z, then we can solve for each k using the following finite difference scheme [5]: 2{r 1 +l1 2 (,,+ 1 - fj

  7. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  8. Purely numerical approach for analyzing flow to a well intercepting a vertical fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.; Palen, W.A.

    1979-03-01

    A numerical method, based on an Integral Finite Difference approach, is presented to investigate wells intercepting fractures in general and vertical fractures in particular. Such features as finite conductivity, wellbore storage, damage, and fracture deformability and its influence as permeability are easily handled. The advantage of the numerical approach is that it is based on fewer assumptions than analytic solutions and hence has greater generality. Illustrative examples are given to validate the method against known solutions. New results are presenteed to demonstrate the applicability of the method to problems not apparently considered in the literature so far.

  9. Estimation of water table level and nitrate pollution based on geostatistical and multiple mass transport models

    NASA Astrophysics Data System (ADS)

    Matiatos, Ioannis; Varouhakis, Emmanouil A.; Papadopoulou, Maria P.

    2015-04-01

    As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. Based on various methods used to numerically solve algebraic equations representing groundwater flow and contaminant mass transport, numerical models are mainly divided into Finite Difference-based and Finite Element-based models. The present study aims at evaluating the performance of a finite difference-based (MODFLOW-MT3DMS), a finite element-based (FEFLOW) and a hybrid finite element and finite difference (Princeton Transport Code-PTC) groundwater numerical models simulating groundwater flow and nitrate mass transport in the alluvial aquifer of Trizina region in NE Peloponnese, Greece. The calibration of groundwater flow in all models was performed using groundwater hydraulic head data from seven stress periods and the validation was based on a series of hydraulic head data for two stress periods in sufficient numbers of observation locations. The same periods were used for the calibration of nitrate mass transport. The calibration and validation of the three models revealed that the simulated values of hydraulic heads and nitrate mass concentrations coincide well with the observed ones. The models' performance was assessed by performing a statistical analysis of these different types of numerical algorithms. A number of metrics, such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Bias, Nash Sutcliffe Model Efficiency (NSE) and Reliability Index (RI) were used allowing the direct comparison of models' performance. Spatiotemporal Kriging (STRK) was also applied using separable and non-separable spatiotemporal variograms to predict water table level and nitrate concentration at each sampling station for two selected hydrological stress periods. The predictions were validated using the respective measured values. Maps of water table level and nitrate concentrations were produced and compared with those obtained from groundwater and mass transport numerical models. Preliminary results showed similar efficiency of the spatiotemporal geostatistical method with the numerical models. However data requirements of the former model were significantly less. Advantages and disadvantages of the methods performance were analysed and discussed indicating the characteristics of the different approaches.

  10. Design sensitivity analysis with Applicon IFAD using the adjoint variable method

    NASA Technical Reports Server (NTRS)

    Frederick, Marjorie C.; Choi, Kyung K.

    1984-01-01

    A numerical method is presented to implement structural design sensitivity analysis using the versatility and convenience of existing finite element structural analysis program and the theoretical foundation in structural design sensitivity analysis. Conventional design variables, such as thickness and cross-sectional areas, are considered. Structural performance functionals considered include compliance, displacement, and stress. It is shown that calculations can be carried out outside existing finite element codes, using postprocessing data only. That is, design sensitivity analysis software does not have to be imbedded in an existing finite element code. The finite element structural analysis program used in the implementation presented is IFAD. Feasibility of the method is shown through analysis of several problems, including built-up structures. Accurate design sensitivity results are obtained without the uncertainty of numerical accuracy associated with selection of a finite difference perturbation.

  11. Least-squares finite element methods for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  12. Discrete conservation laws and the convergence of long time simulations of the mkdv equation

    NASA Astrophysics Data System (ADS)

    Gorria, C.; Alejo, M. A.; Vega, L.

    2013-02-01

    Pseudospectral collocation methods and finite difference methods have been used for approximating an important family of soliton like solutions of the mKdV equation. These solutions present a structural instability which make difficult to approximate their evolution in long time intervals with enough accuracy. The standard numerical methods do not guarantee the convergence to the proper solution of the initial value problem and often fail by approaching solutions associated to different initial conditions. In this frame the numerical schemes that preserve the discrete invariants related to some conservation laws of this equation produce better results than the methods which only take care of a high consistency order. Pseudospectral spatial discretization appear as the most robust of the numerical methods, but finite difference schemes are useful in order to analyze the rule played by the conservation of the invariants in the convergence.

  13. Shock capturing finite difference algorithms for supersonic flow past fighter and missile type configurations

    NASA Technical Reports Server (NTRS)

    Osher, S.

    1984-01-01

    The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented.

  14. Radiation Diffusion:. AN Overview of Physical and Numerical Concepts

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2005-12-01

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  15. Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity

    NASA Astrophysics Data System (ADS)

    Lin, Guang; Liu, Jiangguo; Mu, Lin; Ye, Xiu

    2014-11-01

    This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors. We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.

  16. On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws. I - Nonstiff strongly dynamic problems

    NASA Technical Reports Server (NTRS)

    Harten, A.; Tal-Ezer, H.

    1981-01-01

    An implicit finite difference method of fourth order accuracy in space and time is introduced for the numerical solution of one-dimensional systems of hyperbolic conservation laws. The basic form of the method is a two-level scheme which is unconditionally stable and nondissipative. The scheme uses only three mesh points at level t and three mesh points at level t + delta t. The dissipative version of the basic method given is conditionally stable under the CFL (Courant-Friedrichs-Lewy) condition. This version is particularly useful for the numerical solution of problems with strong but nonstiff dynamic features, where the CFL restriction is reasonable on accuracy grounds. Numerical results are provided to illustrate properties of the proposed method.

  17. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk; Tcheverda, Vladimir

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. Inmore » this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.« less

  18. The method of space-time and conservation element and solution element: A new approach for solving the Navier-Stokes and Euler equations

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1995-01-01

    A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.

  19. Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case

    NASA Astrophysics Data System (ADS)

    Hojbotǎ, C. I.; Toşa, V.; Mercea, P. V.

    2013-08-01

    We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food.

  20. Four-level conservative finite-difference schemes for Boussinesq paradigm equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.

    2013-10-01

    In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.

  1. The Complex-Step-Finite-Difference method

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Stich, Daniel; Morales, Jose

    2015-07-01

    We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.

  2. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less

  3. Effect of joint spacing and joint dip on the stress distribution around tunnels using different numerical methods

    NASA Astrophysics Data System (ADS)

    Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza

    2016-11-01

    Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.

  4. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain

    NASA Astrophysics Data System (ADS)

    Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.

    2018-05-01

    The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.

  5. Lax-Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic-plastic solids

    NASA Astrophysics Data System (ADS)

    Heuzé, Thomas

    2017-10-01

    We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.

  6. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE PAGES

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  7. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be; Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse; Magin, Thierry E.

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as wellmore » as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.« less

  8. Applications of an exponential finite difference technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.; Keith, T.G. Jr.

    1988-07-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  9. A numerical investigation into the performance of the soil nail wall and pile foundation at the Swift Delta I-5 Interchange.

    DOT National Transportation Integrated Search

    1993-12-01

    Finite Difference Methods (FDM) and Finite Element Methods (FEM) studies are reported studying the soil nail wall construction at the Swift Delta I-5 Interchange bridge reconstruction in North Portland, Oregon. Five layers of soil nails were installe...

  10. Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Liu, Jiangguo; Mu, Lin

    2014-11-01

    This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors.more » We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.« less

  11. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  12. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  13. Large Eddy simulation of compressible flows with a low-numerical dissipation patch-based adaptive mesh refinement method

    NASA Astrophysics Data System (ADS)

    Pantano, Carlos

    2005-11-01

    We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)

  14. Determination of stresses in gas-turbine disks subjected to plastic flow and creep

    NASA Technical Reports Server (NTRS)

    Millenson, M B; Manson, S S

    1948-01-01

    A finite-difference method previously presented for computing elastic stresses in rotating disks is extended to include the computation of the disk stresses when plastic flow and creep are considered. A finite-difference method is employed to eliminate numerical integration and to permit nontechnical personnel to make the calculations with a minimum of engineering supervision. Illustrative examples are included to facilitate explanation of the procedure by carrying out the computations on a typical gas-turbine disk through a complete running cycle. The results of the numerical examples presented indicate that plastic flow markedly alters the elastic-stress distribution.

  15. High performance computation of radiative transfer equation using the finite element method

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.

    2018-05-01

    This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.

  16. A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation

    NASA Astrophysics Data System (ADS)

    Vergez, Guillaume; Danaila, Ionut; Auliac, Sylvain; Hecht, Frédéric

    2016-12-01

    We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the finite element method, allowing to easily code various numerical algorithms. Two robust and optimized numerical methods were implemented to minimize the Gross-Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity strategies are used to reduce the computational time and increase the local spatial accuracy when vortices are present. Different run cases are made available for 2D and 3D configurations of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide several post-processing tools (like the identification of quantized vortices) that could help in extracting physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to deal with different physical models.

  17. Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1983-12-01

    numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for

  18. A family of four stages embedded explicit six-step methods with eliminated phase-lag and its derivatives for the numerical solution of the second order problems

    NASA Astrophysics Data System (ADS)

    Simos, T. E.

    2017-11-01

    A family of four stages high algebraic order embedded explicit six-step methods, for the numerical solution of second order initial or boundary-value problems with periodical and/or oscillating solutions, are studied in this paper. The free parameters of the new proposed methods are calculated solving the linear system of equations which is produced by requesting the vanishing of the phase-lag of the methods and the vanishing of the phase-lag's derivatives of the schemes. For the new obtained methods we investigate: • Its local truncation error (LTE) of the methods.• The asymptotic form of the LTE obtained using as model problem the radial Schrödinger equation.• The comparison of the asymptotic forms of LTEs for several methods of the same family. This comparison leads to conclusions on the efficiency of each method of the family.• The stability and the interval of periodicity of the obtained methods of the new family of embedded finite difference pairs.• The applications of the new obtained family of embedded finite difference pairs to the numerical solution of several second order problems like the radial Schrödinger equation, astronomical problems etc. The above applications lead to conclusion on the efficiency of the methods of the new family of embedded finite difference pairs.

  19. Deformation of two-phase aggregates using standard numerical methods

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.

    2013-04-01

    Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.

  20. Convergence of finite difference transient response computations for thin shells.

    NASA Technical Reports Server (NTRS)

    Sobel, L. H.; Geers, T. L.

    1973-01-01

    Numerical studies pertaining to the limits of applicability of the finite difference method in the solution of linear transient shell response problems are performed, and a computational procedure for the use of the method is recommended. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. This is not a serious limitation in view of natural constraints imposed by the extension of Saint Venant's principle to transient response problems. It is also found that the short wavelength limitations of thin shell (Bernoulli-Euler) theory create significant convergence difficulties in computed response to certain types of transverse excitations. These difficulties may be overcome, however, through proper selection of finite difference mesh dimensions and temporal smoothing of the excitation.

  1. A particle finite element method for machining simulations

    NASA Astrophysics Data System (ADS)

    Sabel, Matthias; Sator, Christian; Müller, Ralf

    2014-07-01

    The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.

  2. Socio-economic applications of finite state mean field games.

    PubMed

    Gomes, Diogo; Velho, Roberto M; Wolfram, Marie-Therese

    2014-11-13

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments, which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Composite scheme using localized relaxation with non-standard finite difference method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Raghurama Rao, S. V.

    2008-04-01

    Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.

  4. Analysis of Piezoelectric Actuator for Vibration Control of Composite plate

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed R.; Hai, Huang

    2017-07-01

    Vibration analysis is studied numerically in this paper for a simply supported composite plate subjected to external loadings. Vibrations are controlled by using piezoelectric patches. Finite element method (ANSYS) is used for obtaining finite element model of the smart plate structure, a layered composite plate is manufactured experimentally and tested to obtain the structure mechanical properties. Different piezoelectric patch areas and different applied gain voltage effects on vibration attenuation is studied. The numerical solution is compared with the experimental work, a good agreement achieved.

  5. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priimak, Dmitri

    2014-12-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

  6. Bracket formulations and energy- and helicity-preserving numerical methods for incompressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Suzuki, Yukihito

    2018-03-01

    A diffuse interface model for three-dimensional viscous incompressible two-phase flows is formulated within a bracket formalism using a skew-symmetric Poisson bracket together with a symmetric negative semi-definite dissipative bracket. The budgets of kinetic energy, helicity, and enstrophy derived from the bracket formulations are properly inherited by the finite difference equations obtained by invoking the discrete variational derivative method combined with the mimetic finite difference method. The Cahn-Hilliard and Allen-Cahn equations are employed as diffuse interface models, in which the equalities of densities and viscosities of two different phases are assumed. Numerical experiments on the motion of periodic arrays of tubes and those of droplets have been conducted to examine the properties and usefulness of the proposed method.

  7. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    NASA Astrophysics Data System (ADS)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  8. Some Finite Difference Solutions of the Laminar Compressible Boundary Layer Showing the Effects of Upstream Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1959-01-01

    Three numerical solutions of the partial differential equations describing the compressible laminar boundary layer are obtained by the finite difference method described in reports by I. Flugge-Lotz, D.C. Baxter, and this author. The solutions apply to steady-state supersonic flow without pressure gradient, over a cold wall and over an adiabatic wall, both having transpiration cooling upstream, and over an adiabatic wall with upstream cooling but without upstream transpiration. It is shown that for a given upstream wall temperature, upstream transpiration cooling affords much better protection to the adiabatic solid wall than does upstream cooling without transpiration. The results of the numerical solutions are compared with those of approximate solutions. The thermal results of the finite difference solution lie between the results of Rubesin and Inouye, and those of Libby and Pallone. When the skin-friction results of one finite difference solution are used in the thermal analysis of Rubesin and Inouye, improved agreement between the thermal results of the two methods of solution is obtained.

  9. Implicit finite difference methods on composite grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1987-01-01

    Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.

  10. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    EPA Science Inventory

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a
    numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  11. Numerical simulation of one-dimensional heat transfer in composite bodies with phase change. M.S. Thesis, 1980 Final Report; [wing deicing pads

    NASA Technical Reports Server (NTRS)

    Dewitt, K. J.; Baliga, G.

    1982-01-01

    A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions.

  12. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  13. Finite element computation of a viscous compressible free shear flow governed by the time dependent Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.; Blanchard, D. K.

    1975-01-01

    A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.

  14. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES

    PubMed Central

    Wan, Xiaohai; Li, Zhilin

    2012-01-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346

  15. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.

    PubMed

    Wan, Xiaohai; Li, Zhilin

    2012-06-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size.

  16. Finite difference methods for transient signal propagation in stratified dispersive media

    NASA Technical Reports Server (NTRS)

    Lam, D. H.

    1975-01-01

    Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.

  17. A user's guide for V174, a program using a finite difference method to analyze transonic flow over oscillating wings

    NASA Technical Reports Server (NTRS)

    Butler, T. D.; Weatherill, W. H.; Sebastian, J. D.; Ehlers, F. E.

    1977-01-01

    The design and usage of a pilot program using a finite difference method for calculating the pressure distributions over harmonically oscillating wings in transonic flow are discussed. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The steady velocity potential which must be obtained from some other program, is required for input. The unsteady differential equation is linear, complex in form with spatially varying coefficients. Because sinusoidal motion is assumed, time is not a variable. The numerical solution is obtained through a finite difference formulation and a line relaxation solution method.

  18. A 3D finite-difference BiCG iterative solver with the Fourier-Jacobi preconditioner for the anisotropic EIT/EEG forward problem.

    PubMed

    Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D

    2014-01-01

    The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.

  19. High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaolin

    1998-08-01

    Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.

  20. An enriched finite element method to fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam

    2017-08-01

    In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.

  1. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.

    1981-01-01

    Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.

  2. Numerical Characterization of Piezoceramics Using Resonance Curves

    PubMed Central

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-01

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875

  3. Numerical Characterization of Piezoceramics Using Resonance Curves.

    PubMed

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-27

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.

  4. Improving finite element results in modeling heart valve mechanics.

    PubMed

    Earl, Emily; Mohammadi, Hadi

    2018-06-01

    Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.

  5. A Unique Finite Element Modeling of the Periodic Wave Transformation over Sloping and Barred Beaches by Beji and Nadaoka's Extended Boussinesq Equations

    PubMed Central

    Jabbari, Mohammad Hadi; Sayehbani, Mesbah; Reisinezhad, Arsham

    2013-01-01

    This paper presents a numerical model based on one-dimensional Beji and Nadaoka's Extended Boussinesq equations for simulation of periodic wave shoaling and its decomposition over morphological beaches. A unique Galerkin finite element and Adams-Bashforth-Moulton predictor-corrector methods are employed for spatial and temporal discretization, respectively. For direct application of linear finite element method in spatial discretization, an auxiliary variable is hereby introduced, and a particular numerical scheme is offered to rewrite the equations in lower-order form. Stability of the suggested numerical method is also analyzed. Subsequently, in order to display the ability of the presented model, four different test cases are considered. In these test cases, dispersive and nonlinearity effects of the periodic waves over sloping beaches and barred beaches, which are the common coastal profiles, are investigated. Outputs are compared with other existing numerical and experimental data. Finally, it is concluded that the current model can be further developed to model any morphological development of coastal profiles. PMID:23853534

  6. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    NASA Astrophysics Data System (ADS)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  7. Computation of rapidly varied unsteady, free-surface flow

    USGS Publications Warehouse

    Basco, D.R.

    1987-01-01

    Many unsteady flows in hydraulics occur with relatively large gradients in free surface profiles. The assumption of hydrostatic pressure distribution with depth is no longer valid. These are rapidly-varied unsteady flows (RVF) of classical hydraulics and also encompass short wave propagation of coastal hydraulics. The purpose of this report is to present an introductory review of the Boussinnesq-type differential equations that describe these flows and to discuss methods for their numerical integration. On variable slopes and for large scale (finite-amplitude) disturbances, three independent derivational methods all gave differences in the motion equation for higher order terms. The importance of these higher-order terms for riverine applications must be determined by numerical experiments. Care must be taken in selection of the appropriate finite-difference scheme to minimize truncation error effects and the possibility of diverging (double mode) numerical solutions. It is recommended that practical hydraulics cases be established and tested numerically to demonstrate the order of differences in solution with those obtained from the long wave equations of St. Venant. (USGS)

  8. Finite element method formulation in polar coordinates for transient heat conduction problems

    NASA Astrophysics Data System (ADS)

    Duda, Piotr

    2016-04-01

    The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.

  9. Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Wang, Yao; Hei, Baoping

    2013-12-01

    The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.

  10. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  11. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  12. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  13. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  14. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  15. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.

    PubMed

    Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J

    2017-01-01

    A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. The development of an explicit thermochemical nonequilibrium algorithm and its application to compute three dimensional AFE flowfields

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.

  17. Numerical Simulation of the Detonation of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ye, Ting; Ning, Jianguo

    Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.

  18. Numerical simulation of conservation laws

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; To, Wai-Ming

    1992-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.

  19. Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM

    NASA Astrophysics Data System (ADS)

    Pandey, Rishi Kumar; Mishra, Hradyesh Kumar

    2017-11-01

    In this paper, the semi-analytic numerical technique for the solution of time-space fractional telegraph equation is applied. This numerical technique is based on coupling of the homotopy analysis method and sumudu transform. It shows the clear advantage with mess methods like finite difference method and also with polynomial methods similar to perturbation and Adomian decomposition methods. It is easily transform the complex fractional order derivatives in simple time domain and interpret the results in same meaning.

  20. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    PubMed

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  1. Numerical analysis on the cutting and finishing efficiency of MRAFF process

    NASA Astrophysics Data System (ADS)

    Lih, F. L.

    2016-03-01

    The aim of the present research is to conduct a numerical study of the characteristic of a two-phase magnetorheological fluid with different operation conditions by the finite volume method called SIMPLE with an add-on MHD code.

  2. Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data

    NASA Astrophysics Data System (ADS)

    Gibbons, T. J.; Öztürk, E.; Sims, N. D.

    2018-01-01

    Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.

  3. The aggregated unfitted finite element method for elliptic problems

    NASA Astrophysics Data System (ADS)

    Badia, Santiago; Verdugo, Francesc; Martín, Alberto F.

    2018-07-01

    Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.

  4. Fast Fourier transform-based solution of 2D and 3D magnetization problems in type-II superconductivity

    NASA Astrophysics Data System (ADS)

    Prigozhin, Leonid; Sokolovsky, Vladimir

    2018-05-01

    We consider the fast Fourier transform (FFT) based numerical method for thin film magnetization problems (Vestgården and Johansen 2012 Supercond. Sci. Technol. 25 104001), compare it with the finite element methods, and evaluate its accuracy. Proposed modifications of this method implementation ensure stable convergence of iterations and enhance its efficiency. A new method, also based on the FFT, is developed for 3D bulk magnetization problems. This method is based on a magnetic field formulation, different from the popular h-formulation of eddy current problems typically employed with the edge finite elements. The method is simple, easy to implement, and can be used with a general current–voltage relation; its efficiency is illustrated by numerical simulations.

  5. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  6. Tidal, Residual, Intertidal Mudflat (TRIM) Model and its Applications to San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; Gartner, J.W.

    1993-01-01

    A numerical model using a semi-implicit finite-difference method for solving the two-dimensional shallow-water equations is presented. The gradient of the water surface elevation in the momentum equations and the velocity divergence in the continuity equation are finite-differenced implicitly, the remaining terms are finite-differenced explicitly. The convective terms are treated using an Eulerian-Lagrangian method. The combination of the semi-implicit finite-difference solution for the gravity wave propagation, and the Eulerian-Lagrangian treatment of the convective terms renders the numerical model unconditionally stable. When the baroclinic forcing is included, a salt transport equation is coupled to the momentum equations, and the numerical method is subject to a weak stability condition. The method of solution and the properties of the numerical model are given. This numerical model is particularly suitable for applications to coastal plain estuaries and tidal embayments in which tidal currents are dominant, and tidally generated residual currents are important. The model is applied to San Francisco Bay, California where extensive historical tides and current-meter data are available. The model calibration is considered by comparing time-series of the field data and of the model results. Alternatively, and perhaps more meaningfully, the model is calibrated by comparing the harmonic constants of tides and tidal currents derived from field data with those derived from the model. The model is further verified by comparing the model results with an independent data set representing the wet season. The strengths and the weaknesses of the model are assessed based on the results of model calibration and verification. Using the model results, the properties of tides and tidal currents in San Francisco Bay are characterized and discussed. Furthermore, using the numerical model, estimates of San Francisco Bay's volume, surface area, mean water depth, tidal prisms, and tidal excursions at spring and neap tides are computed. Additional applications of the model reveal, qualitatively the spatial distribution of residual variables. ?? 1993 Academic Press. All rights reserved.

  7. Computational Electromagnetics

    DTIC Science & Technology

    2011-02-20

    finite differences use the continuation method instead, and have been shown to lead to unconditionally stable numerics for a wide range of realistic PDE...best previous solvers were restricted to two-dimensional (range and height) refractive index variations. The numerical method we introduced...however, is such that even its solution on the basis of Rytov’s method gives rise to extremely high computational costs. We thus resort to

  8. Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems

    NASA Technical Reports Server (NTRS)

    Skollermo, G.

    1979-01-01

    Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.

  9. High Order Finite Difference Methods with Subcell Resolution for 2D Detonation Waves

    NASA Technical Reports Server (NTRS)

    Wang, W.; Shu, C. W.; Yee, H. C.; Sjogreen, B.

    2012-01-01

    In simulating hyperbolic conservation laws in conjunction with an inhomogeneous stiff source term, if the solution is discontinuous, spurious numerical results may be produced due to different time scales of the transport part and the source term. This numerical issue often arises in combustion and high speed chemical reacting flows.

  10. A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance

    NASA Astrophysics Data System (ADS)

    Witte, J. H.; Reisinger, C.

    2010-09-01

    We present a simple and easy to implement method for the numerical solution of a rather general class of Hamilton-Jacobi-Bellman (HJB) equations. In many cases, the considered problems have only a viscosity solution, to which, fortunately, many intuitive (e.g. finite difference based) discretisations can be shown to converge. However, especially when using fully implicit time stepping schemes with their desireable stability properties, one is still faced with the considerable task of solving the resulting nonlinear discrete system. In this paper, we introduce a penalty method which approximates the nonlinear discrete system to an order of O(1/ρ), where ρ>0 is the penalty parameter, and we show that an iterative scheme can be used to solve the penalised discrete problem in finitely many steps. We include a number of examples from mathematical finance for which the described approach yields a rigorous numerical scheme and present numerical results.

  11. A method for modeling finite-core vortices in wake-flow calculations

    NASA Technical Reports Server (NTRS)

    Stremel, P. M.

    1984-01-01

    A numerical method for computing nonplanar vortex wakes represented by finite-core vortices is presented. The approach solves for the velocity on an Eulerian grid, using standard finite-difference techniques; the vortex wake is tracked by Lagrangian methods. In this method, the distribution of continuous vorticity in the wake is replaced by a group of discrete vortices. An axially symmetric distribution of vorticity about the center of each discrete vortex is used to represent the finite-core model. Two distributions of vorticity, or core models, are investigated: a finite distribution of vorticity represented by a third-order polynomial, and a continuous distribution of vorticity throughout the wake. The method provides for a vortex-core model that is insensitive to the mesh spacing. Results for a simplified case are presented. Computed results for the roll-up of a vortex wake generated by wings with different spanwise load distributions are presented; contour plots of the flow-field velocities are included; and comparisons are made of the computed flow-field velocities with experimentally measured velocities.

  12. The arbitrary order mixed mimetic finite difference method for the diffusion equation

    DOE PAGES

    Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco

    2016-05-01

    Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less

  13. Numerical Analysis of an H 1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    PubMed Central

    Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong

    2014-01-01

    We discuss and analyze an H 1-Galerkin mixed finite element (H 1-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H 1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H 1-GMFE method. Based on the discussion on the theoretical error analysis in L 2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H 1-norm. Moreover, we derive and analyze the stability of H 1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure. PMID:25184148

  14. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    DOE PAGES

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less

  15. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics.

    PubMed

    Brocchini, Maurizio

    2013-12-08

    This paper, which is largely the fruit of an invited talk on the topic at the latest International Conference on Coastal Engineering, describes the state of the art of modelling by means of Boussinesq-type models (BTMs). Motivations for using BTMs as well as their fundamentals are illustrated, with special attention to the interplay between the physics to be described, the chosen model equations and the numerics in use. The perspective of the analysis is that of a physicist/engineer rather than of an applied mathematician. The chronological progress of the currently available BTMs from the pioneering models of the late 1960s is given. The main applications of BTMs are illustrated, with reference to specific models and methods. The evolution in time of the numerical methods used to solve BTMs (e.g. finite differences, finite elements, finite volumes) is described, with specific focus on finite volumes. Finally, an overview of the most important BTMs currently available is presented, as well as some indications on improvements required and fields of applications that call for attention.

  16. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics

    PubMed Central

    Brocchini, Maurizio

    2013-01-01

    This paper, which is largely the fruit of an invited talk on the topic at the latest International Conference on Coastal Engineering, describes the state of the art of modelling by means of Boussinesq-type models (BTMs). Motivations for using BTMs as well as their fundamentals are illustrated, with special attention to the interplay between the physics to be described, the chosen model equations and the numerics in use. The perspective of the analysis is that of a physicist/engineer rather than of an applied mathematician. The chronological progress of the currently available BTMs from the pioneering models of the late 1960s is given. The main applications of BTMs are illustrated, with reference to specific models and methods. The evolution in time of the numerical methods used to solve BTMs (e.g. finite differences, finite elements, finite volumes) is described, with specific focus on finite volumes. Finally, an overview of the most important BTMs currently available is presented, as well as some indications on improvements required and fields of applications that call for attention. PMID:24353475

  17. Simulation of one-sided heating of boiler unit membrane-type water walls

    NASA Astrophysics Data System (ADS)

    Kurepin, M. P.; Serbinovskiy, M. Yu.

    2017-03-01

    This study describes the results of simulation of the temperature field and the stress-strain state of membrane-type gastight water walls of boiler units using the finite element method. The methods of analytical and standard calculation of one-sided heating of fin-tube water walls by a radiative heat flux are analyzed. The methods and software for input data calculation in the finite-element simulation, including thermoelastic moments in welded panels that result from their one-sided heating, are proposed. The method and software modules are used for water wall simulation using ANSYS. The results of simulation of the temperature field, stress field, deformations and displacement of the membrane-type panel for the boiler furnace water wall using the finite-element method, as well as the results of calculation of the panel tube temperature, stresses and deformations using the known methods, are presented. The comparison of the known experimental results on heating and bending by given moments of membrane-type water walls and numerical simulations is performed. It is demonstrated that numerical results agree with high accuracy with the experimental data. The relative temperature difference does not exceed 1%. The relative difference of the experimental fin mutual turning angle caused by one-sided heating by radiative heat flux and the results obtained in the finite element simulation does not exceed 8.5% for nondisplaced fins and 7% for fins with displacement. The same difference for the theoretical results and the simulation using the finite-element method does not exceed 3% and 7.1%, respectively. The proposed method and software modules for simulation of the temperature field and stress-strain state of the water walls are verified and the feasibility of their application in practical design is proven.

  18. Preconditioned conjugate residual methods for the solution of spectral equations

    NASA Technical Reports Server (NTRS)

    Wong, Y. S.; Zang, T. A.; Hussaini, M. Y.

    1986-01-01

    Conjugate residual methods for the solution of spectral equations are described. An inexact finite-difference operator is introduced as a preconditioner in the iterative procedures. Application of these techniques is limited to problems for which the symmetric part of the coefficient matrix is positive definite. Although the spectral equation is a very ill-conditioned and full matrix problem, the computational effort of the present iterative methods for solving such a system is comparable to that for the sparse matrix equations obtained from the application of either finite-difference or finite-element methods to the same problems. Numerical experiments are shown for a self-adjoint elliptic partial differential equation with Dirichlet boundary conditions, and comparison with other solution procedures for spectral equations is presented.

  19. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul

    1993-01-01

    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.

  20. seismo-live: Training in Computational Seismology using Jupyter Notebooks

    NASA Astrophysics Data System (ADS)

    Igel, H.; Krischer, L.; van Driel, M.; Tape, C.

    2016-12-01

    Practical training in computational methodologies is still underrepresented in Earth science curriculae despite the increasing use of sometimes highly sophisticated simulation technologies in research projects. At the same time well-engineered community codes make it easy to return simulation-based results yet with the danger that the inherent traps of numerical solutions are not well understood. It is our belief that training with highly simplified numerical solutions (here to the equations describing elastic wave propagation) with carefully chosen elementary ingredients of simulation technologies (e.g., finite-differencing, function interpolation, spectral derivatives, numerical integration) could substantially improve this situation. For this purpose we have initiated a community platform (www.seismo-live.org) where Python-based Jupyter notebooks can be accessed and run without and necessary downloads or local software installations. The increasingly popular Jupyter notebooks allow combining markup language, graphics, equations with interactive, executable python codes. We demonstrate the potential with training notebooks for the finite-difference method, pseudospectral methods, finite/spectral element methods, the finite-volume and the discontinuous Galerkin method. The platform already includes general Python training, introduction to the ObsPy library for seismology as well as seismic data processing and noise analysis. Submission of Jupyter notebooks for general seismology are encouraged. The platform can be used for complementary teaching in Earth Science courses on compute-intensive research areas.

  1. The least-squares finite element method for low-mach-number compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1994-01-01

    The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.

  2. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids

    NASA Technical Reports Server (NTRS)

    Madsen, Niel K.

    1992-01-01

    Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.

  3. Rupture Dynamics Simulation for Non-Planar fault by a Curved Grid Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, G.; Chen, X.

    2011-12-01

    We first implement the non-staggered finite difference method to solve the dynamic rupture problem, with split-node, for non-planar fault. Split-node method for dynamic simulation has been used widely, because of that it's more precise to represent the fault plane than other methods, for example, thick fault, stress glut and so on. The finite difference method is also a popular numeric method to solve kinematic and dynamic problem in seismology. However, previous works focus most of theirs eyes on the staggered-grid method, because of its simplicity and computational efficiency. However this method has its own disadvantage comparing to non-staggered finite difference method at some fact for example describing the boundary condition, especially the irregular boundary, or non-planar fault. Zhang and Chen (2006) proposed the MacCormack high order non-staggered finite difference method based on curved grids to precisely solve irregular boundary problem. Based upon on this non-staggered grid method, we make success of simulating the spontaneous rupture problem. The fault plane is a kind of boundary condition, which could be irregular of course. So it's convinced that we could simulate rupture process in the case of any kind of bending fault plane. We will prove this method is valid in the case of Cartesian coordinate first. In the case of bending fault, the curvilinear grids will be used.

  4. The finite ground plane effect on the microstrip antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1983-01-01

    The uniform geometrical theory of diffraction (GTD) is employed for calculating the edge diffracted fields from the finite ground plane of a microstrip antenna. The source field from the radiating patch is calculated by two different methods: the slot theory and the modal expansion theory. Many numerical and measured results are presented to demonstrate the accuracy of the calculations and the finite ground plane edge effect.

  5. Assessment of sub-grid scale dispersion closure with regularized deconvolution method in a particle-laden turbulent jet

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Zhao, Xinyu; Ihme, Matthias

    2017-11-01

    Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).

  6. Finite-difference modeling with variable grid-size and adaptive time-step in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Wu, Guochen

    2014-04-01

    Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.

  7. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  8. Extrusion Process by Finite Volume Method Using OpenFoam Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  9. Numerical Treatment of Degenerate Diffusion Equations via Feller's Boundary Classification, and Applications

    NASA Technical Reports Server (NTRS)

    Cacio, Emanuela; Cohn, Stephen E.; Spigler, Renato

    2011-01-01

    A numerical method is devised to solve a class of linear boundary-value problems for one-dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite-difference scheme, grid, and treatment of the boundary data. Second-order accuracy, unconditional stability, and unconditional convergence of solutions of the finite-difference scheme to a constant as the time-step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration.

  10. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.

  11. Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felício B.

    2017-12-01

    Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

  12. Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure

    NASA Astrophysics Data System (ADS)

    Szafran, J.; Juszczyk, K.; Kamiński, M.

    2017-12-01

    The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.

  13. Numerical human models for accident research and safety - potentials and limitations.

    PubMed

    Praxl, Norbert; Adamec, Jiri; Muggenthaler, Holger; von Merten, Katja

    2008-01-01

    The method of numerical simulation is frequently used in the area of automotive safety. Recently, numerical models of the human body have been developed for the numerical simulation of occupants. Different approaches in modelling the human body have been used: the finite-element and the multibody technique. Numerical human models representing the two modelling approaches are introduced and the potentials and limitations of these models are discussed.

  14. A 3D staggered-grid finite difference scheme for poroelastic wave equation

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai

    2014-10-01

    Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.

  15. High-order asynchrony-tolerant finite difference schemes for partial differential equations

    NASA Astrophysics Data System (ADS)

    Aditya, Konduri; Donzis, Diego A.

    2017-12-01

    Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.

  16. A 3D finite element ALE method using an approximate Riemann solution

    DOE PAGES

    Chiravalle, V. P.; Morgan, N. R.

    2016-08-09

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  17. A 3D finite element ALE method using an approximate Riemann solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiravalle, V. P.; Morgan, N. R.

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  18. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  19. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.

  20. A Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    DTIC Science & Technology

    1991-09-01

    Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance

  1. Random element method for numerical modeling of diffusional processes

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Oppenheim, A. K.

    1982-01-01

    The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.

  2. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jinting; Lu, Liqiao; Zhu, Fei

    2018-01-01

    Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.

  3. New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1994-01-01

    A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.

  4. Numerical marching techniques for fluid flows with heat transfer

    NASA Technical Reports Server (NTRS)

    Hornbeck, R. W.

    1973-01-01

    The finite difference formulation and method of solution is presented for a wide variety of fluid flow problems with associated heat transfer. Only a few direct results from these formulations are given as examples, since the book is intended primarily to serve a discussion of the techniques and as a starting point for further investigations; however, the formulations are sufficiently complete that a workable computer program may be written from them. In the appendixes a number of topics are discussed which are of interest with respect to the finite difference equations presented. These include a very rapid method for solving certain sets of linear algebraic equations, a discussion of numerical stability, the inherent error in flow rate for confined flow problems, and a method for obtaining high accuracy with a relatively small number of mesh points.

  5. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.

    PubMed

    Spilker, R L; de Almeida, E S; Donzelli, P S

    1992-01-01

    This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.

  6. A study of unstable rock failures using finite difference and discrete element methods

    NASA Astrophysics Data System (ADS)

    Garvey, Ryan J.

    Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex mine models. These combined numerical tools may be applied in future studies to design primary and secondary supports in bump-prone conditions, evaluate retreat mining cut sequences, asses pillar de-stressing techniques, or perform backanalyses on unstable failures in select mining layouts.

  7. New developments in the method of space-time conservation element and solution element: Applications to the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1993-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods--i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to avoid several key limitations to the above traditional methods. An explicit model scheme for solving a simple 1-D unsteady convection-diffusion equation is constructed and used to illuminate major differences between the current method and those mentioned above. Unexpectedly, its amplification factors for the pure convection and pure diffusion cases are identical to those of the Leapfrog and the DuFort-Frankel schemes, respectively. Also, this explicit scheme and its Navier-Stokes extension have the unusual property that their stabilities are limited only by the CFL condition. Moreover, despite the fact that it does not use any flux-limiter or slope-limiter, the Navier-Stokes solver is capable of generating highly accurate shock tube solutions with shock discontinuities being resolved within one mesh interval. An accurate Euler solver also is constructed through another extension. It has many unusual properties, e.g., numerical diffusion at all mesh points can be controlled by a set of local parameters.

  8. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1999-01-01

    A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.

  9. Stable Artificial Dissipation Operators for Finite Volume Schemes on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Svard, Magnus; Gong, Jing; Nordstrom, Jan

    2006-01-01

    Our objective is to derive stable first-, second- and fourth-order artificial dissipation operators for node based finite volume schemes. Of particular interest are general unstructured grids where the strength of the finite volume method is fully utilized. A commonly used finite volume approximation of the Laplacian will be the basis in the construction of the artificial dissipation. Both a homogeneous dissipation acting in all directions with equal strength and a modification that allows different amount of dissipation in different directions are derived. Stability and accuracy of the new operators are proved and the theoretical results are supported by numerical computations.

  10. Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N. C.

    2010-10-01

    Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage.

  11. The Laguerre finite difference one-way equation solver

    NASA Astrophysics Data System (ADS)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  12. Numerical time-domain electromagnetics based on finite-difference and convolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuanqu

    Time-domain methods posses a number of advantages over their frequency-domain counterparts for the solution of wideband, nonlinear, and time varying electromagnetic scattering and radiation phenomenon. Time domain integral equation (TDIE)-based methods, which incorporate the beneficial properties of integral equation method, are thus well suited for solving broadband scattering problems for homogeneous scatterers. Widespread adoption of TDIE solvers has been retarded relative to other techniques by their inefficiency, inaccuracy and instability. Moreover, two-dimensional (2D) problems are especially problematic, because 2D Green's functions have infinite temporal support, exacerbating these difficulties. This thesis proposes a finite difference delay modeling (FDDM) scheme for the solution of the integral equations of 2D transient electromagnetic scattering problems. The method discretizes the integral equations temporally using first- and second-order finite differences to map Laplace-domain equations into the Z domain before transforming to the discrete time domain. The resulting procedure is unconditionally stable because of the nature of the Laplace- to Z-domain mapping. The first FDDM method developed in this thesis uses second-order Lagrange basis functions with Galerkin's method for spatial discretization. The second application of the FDDM method discretizes the space using a locally-corrected Nystrom method, which accelerates the precomputation phase and achieves high order accuracy. The Fast Fourier Transform (FFT) is applied to accelerate the marching-on-time process in both methods. While FDDM methods demonstrate impressive accuracy and stability in solving wideband scattering problems for homogeneous scatterers, they still have limitations in analyzing interactions between several inhomogenous scatterers. Therefore, this thesis devises a multi-region finite-difference time-domain (MR-FDTD) scheme based on domain-optimal Green's functions for solving sparsely-populated problems. The scheme uses a discrete Green's function (DGF) on the FDTD lattice to truncate the local subregions, and thus reduces reflection error on the local boundary. A continuous Green's function (CGF) is implemented to pass the influence of external fields into each FDTD region which mitigates the numerical dispersion and anisotropy of standard FDTD. Numerical results will illustrate the accuracy and stability of the proposed techniques.

  13. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.

    PubMed

    An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan

    2017-01-01

    The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.

  14. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    NASA Astrophysics Data System (ADS)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  15. Analysis of composite ablators using massively parallel computation

    NASA Technical Reports Server (NTRS)

    Shia, David

    1995-01-01

    In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.

  16. Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course

    ERIC Educational Resources Information Center

    Kull, Trent C.

    2011-01-01

    A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…

  17. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    PubMed

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  18. A study on the uniqueness of the plastic flow direction for granular assemblies of ductile particles using discrete finite-element simulations

    NASA Astrophysics Data System (ADS)

    Abdelmoula, Nouha; Harthong, Barthélémy; Imbault, Didier; Dorémus, Pierre

    2017-12-01

    The multi-particle finite element method involving assemblies of meshed particles interacting through finite-element contact conditions is adopted to study the plastic flow of a granular material with highly deformable elastic-plastic grains. In particular, it is investigated whether the flow rule postulate applies for such materials. Using a spherical stress probing method, the influence of incremental stress on plastic strain increment vectors was assessed for numerical samples compacted along two different loading paths up to different values of relative density. Results show that the numerical samples studied behave reasonably well according to an associated flow rule, except in the vicinity of the loading point where the influence of the stress increment proved to be very significant. A plausible explanation for the non-uniqueness of the direction of plastic flow is proposed, based on the idea that the resistance of the numerical sample to plastic straining can vary by an order of magnitude depending on the direction of the accumulated stress. The above-mentioned dependency of the direction of plastic flow on the direction of the stress increment was related to the difference in strength between shearing and normal stressing at the scale of contact surfaces between particles.

  19. Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Kiris, Cetin

    2016-01-01

    Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.

  20. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.

  1. A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus

    NASA Astrophysics Data System (ADS)

    Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei

    2005-01-01

    Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.

  2. The P1-RKDG method for two-dimensional Euler equations of gas dynamics

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1991-01-01

    A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.

  3. An adaptive finite element method for the inequality-constrained Reynolds equation

    NASA Astrophysics Data System (ADS)

    Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha

    2018-07-01

    We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.

  4. A finite-volume Eulerian-Lagrangian Localized Adjoint Method for solution of the advection-dispersion equation

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1993-01-01

    A new mass-conservative method for solution of the one-dimensional advection-dispersion equation is derived and discussed. Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods, in terms of accuracy and efficiency, for solute transport problems that are dominated by advection. For dispersion-dominated problems, the performance of the method is similar to that of standard methods. Like previous ELLAM formulations, FVELLAM systematically conserves mass globally with all types of boundary conditions. FVELLAM differs from other ELLAM approaches in that integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking, as used by most characteristic methods, of characteristic lines intersecting inflow boundaries. FVELLAM extends previous ELLAM results by obtaining mass conservation locally on Lagrangian space-time elements. Details of the integration, tracking, and boundary algorithms are presented. Test results are given for problems in Cartesian and radial coordinates.

  5. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1986-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  6. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1989-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  7. Finite difference solutions of heat conduction problems in multi-layered bodies with complex geometries

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.

    1984-01-01

    A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.

  8. SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)

    EPA Science Inventory

    Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...

  9. Solidification of a binary mixture

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1982-01-01

    The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.

  10. A study of the response of nonlinear springs

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Knott, T. W.; Johnson, E. R.

    1991-01-01

    The various phases to developing a methodology for studying the response of a spring-reinforced arch subjected to a point load are discussed. The arch is simply supported at its ends with both the spring and the point load assumed to be at midspan. The spring is present to off-set the typical snap through behavior normally associated with arches, and to provide a structure that responds with constant resistance over a finite displacement. The various phases discussed consist of the following: (1) development of the closed-form solution for the shallow arch case; (2) development of a finite difference analysis to study (shallow) arches; and (3) development of a finite element analysis for studying more general shallow and nonshallow arches. The two numerical analyses rely on a continuation scheme to move the solution past limit points, and to move onto bifurcated paths, both characteristics being common to the arch problem. An eigenvalue method is used for a continuation scheme. The finite difference analysis is based on a mixed formulation (force and displacement variables) of the governing equations. The governing equations for the mixed formulation are in first order form, making the finite difference implementation convenient. However, the mixed formulation is not well-suited for the eigenvalue continuation scheme. This provided the motivation for the displacement based finite element analysis. Both the finite difference and the finite element analyses are compared with the closed form shallow arch solution. Agreement is excellent, except for the potential problems with the finite difference analysis and the continuation scheme. Agreement between the finite element analysis and another investigator's numerical analysis for deep arches is also good.

  11. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  12. Numerical simulation of rarefied gas flow through a slit

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jeng, Duen-Ren; De Witt, Kenneth J.; Chung, Chan-Hong

    1990-01-01

    Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas from one reservoir to another through a two-dimensional slit. The cases considered are for hard vacuum downstream pressure, finite pressure ratios, and isobaric pressure with thermal diffusion, which are not well established in spite of the simplicity of the flow field. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, three kinds of collision sampling techniques, the time counter (TC) method, the null collision (NC) method, and the no time counter (NTC) method, are used.

  13. A numerical scheme for singularly perturbed reaction-diffusion problems with a negative shift via numerov method

    NASA Astrophysics Data System (ADS)

    Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.

    2017-11-01

    In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.

  14. Hybrid transfer-matrix FDTD method for layered periodic structures.

    PubMed

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  15. A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.

    1989-01-01

    A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.

  16. Numerical difficulties and computational procedures for thermo-hydro-mechanical coupled problems of saturated porous media

    NASA Astrophysics Data System (ADS)

    Simoni, L.; Secchi, S.; Schrefler, B. A.

    2008-12-01

    This paper analyses the numerical difficulties commonly encountered in solving fully coupled numerical models and proposes a numerical strategy apt to overcome them. The proposed procedure is based on space refinement and time adaptivity. The latter, which in mainly studied here, is based on the use of a finite element approach in the space domain and a Discontinuous Galerkin approximation within each time span. Error measures are defined for the jump of the solution at each time station. These constitute the parameters allowing for the time adaptivity. Some care is however, needed for a useful definition of the jump measures. Numerical tests are presented firstly to demonstrate the advantages and shortcomings of the method over the more traditional use of finite differences in time, then to assess the efficiency of the proposed procedure for adapting the time step. The proposed method reveals its efficiency and simplicity to adapt the time step in the solution of coupled field problems.

  17. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  18. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2017-08-17

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  19. Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Halem, Milton (Technical Monitor)

    2000-01-01

    We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.

  20. Application of a trigonometric finite difference procedure to numerical analysis of compressive and shear buckling of orthotropic panels

    NASA Technical Reports Server (NTRS)

    Stein, M.; Housner, J. D.

    1978-01-01

    A numerical analysis developed for the buckling of rectangular orthotropic layered panels under combined shear and compression is described. This analysis uses a central finite difference procedure based on trigonometric functions instead of using the conventional finite differences which are based on polynomial functions. Inasmuch as the buckle mode shape is usually trigonometric in nature, the analysis using trigonometric finite differences can be made to exhibit a much faster convergence rate than that using conventional differences. Also, the trigonometric finite difference procedure leads to difference equations having the same form as conventional finite differences; thereby allowing available conventional finite difference formulations to be converted readily to trigonometric form. For two-dimensional problems, the procedure introduces two numerical parameters into the analysis. Engineering approaches for the selection of these parameters are presented and the analysis procedure is demonstrated by application to several isotropic and orthotropic panel buckling problems. Among these problems is the shear buckling of stiffened isotropic and filamentary composite panels in which the stiffener is broken. Results indicate that a break may degrade the effect of the stiffener to the extent that the panel will not carry much more load than if the stiffener were absent.

  1. Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1992-01-01

    Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples are detailed. described. The third case is a two-dimensional simulation of a Lamb vortex in an uniform flow. This calculation provides a realistic assessment of various finite difference schemes in terms of the conservation of the vortex strength and the harmonic content after travelling a substantial distance. The numerical implementation of Giles' non-refelctive equations coupled with the characteristic equations as the boundary condition is discussed in detail. Finally, the single vortex calculation is extended to simulate vortex pairing. For the distance between two vortices less than a threshold value, numerical results show crisp resolution of the vortex merging.

  2. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    NASA Astrophysics Data System (ADS)

    Valášek, J.; Sváček, P.; Horáček, J.

    2016-03-01

    The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.

  3. An exploratory study of a finite difference method for calculating unsteady transonic potential flow

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Bland, S. R.

    1979-01-01

    A method for calculating transonic flow over steady and oscillating airfoils was developed by Isogai. The full potential equation is solved with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. The method is described in general terms and results for the case of an airfoil with an oscillating flap are presented for Mach numbers 0.500 and 0.875. Although satisfactory results are obtained for some reduced frequencies, it is found that the numerical technique generates spurious oscillations in the indicial response functions and in the variation of the aerodynamic coefficients with reduced frequency. These oscillations are examined with a dynamic data reduction method to evaluate their effects and trends with reduced frequency and Mach number. Further development of the numerical method is needed to eliminate these oscillations.

  4. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.

  5. Evaluation of Test Methods for Triaxially Braided Composites using a Meso-Scale Finite Element Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao

    The characterization of triaxially braided composite is complicate due to the nonuniformity of deformation within the unit cell as well as the possibility of the freeedge effect related to the large size of the unit cell. Extensive experimental investigation has been conducted to develop more accurate test approaches in characterizing the actual mechanical properties of the material we are studying. In this work, a meso-scale finite element model is utilized to simulate two complex specimens: notched tensile specimen and tube tensile specimen, which are designed to avoid the free-edge effect and free-edge effect induced premature edge damage. The full fieldmore » strain data is predicted numerically and compared with experimental data obtained by Digit Image Correlation. The numerically predicted tensile strength values are compared with experimentally measured results. The discrepancy between numerically predicted and experimentally measured data, the capability of different test approaches are analyzed and discussed. The presented numerical model could serve as assistance to the evaluation of different test methods, and is especially useful in identifying potential local damage events.« less

  6. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE PAGES

    Lu, Zhiming

    2018-01-30

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  7. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiming

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  8. Numerical investigation of sixth order Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.; Vucheva, V.

    2017-10-01

    We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.

  9. Recent advances in two-phase flow numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  10. Parallelized implicit propagators for the finite-difference Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Parker, Jonathan; Taylor, K. T.

    1995-08-01

    We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.

  11. Computation of three-dimensional nozzle-exhaust flow fields with the GIM code

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Anderson, P. G.

    1978-01-01

    A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology.

  12. A time dependent difference theory for sound propagation in ducts with flow. [characteristic of inlet and exhaust ducts of turbofan engines

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    A time dependent numerical solution of the linearized continuity and momentum equation was developed for sound propagation in a two dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic difference equations and boundary conditions were developed along with a numerical determination of the maximum stable time increments. A harmonic noise source radiating into a quiescent duct was analyzed. This explicit iteration method then calculated stepwise in real time to obtain the transient as well as the steady state solution of the acoustic field. Example calculations were presented for sound propagation in hard and soft wall ducts, with no flow and plug flow. Although the problem with sheared flow was formulated and programmed, sample calculations were not examined. The time dependent finite difference analysis was found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.

  13. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using Diffpack and MPI are also presented. Chapter 2 presents the overlapping domain decomposition method for solving PDEs. It is well known that these methods are suitable for parallel processing. The first part of the chapter covers the mathematical formulation of the method as well as algorithmic and implementational issues. The second part presents a serial and a parallel implementational framework within the programming environment of Diffpack. The chapter closes by showing how to solve two application examples with the overlapping domain decomposition method using Diffpack. Chapter 3 is a tutorial about how to incorporate the multigrid solver in Diffpack. The method is illustrated by examples such as a Poisson solver, a general elliptic problem with various types of boundary conditions and a nonlinear Poisson type problem. In chapter 4 the mixed finite element is introduced. Technical issues concerning the practical implementation of the method are also presented. The main difficulties of the efficient implementation of the method, especially in two and three space dimensions on unstructured grids, are presented and addressed in the framework of Diffpack. The implementational process is illustrated by two examples, namely the system formulation of the Poisson problem and the Stokes problem. Chapter 5 is closely related to chapter 4 and addresses the problem of how to solve efficiently the linear systems arising by the application of the mixed finite element method. The proposed method is block preconditioning. Efficient techniques for implementing the method within Diffpack are presented. Optimal block preconditioners are used to solve the system formulation of the Poisson problem, the Stokes problem and the bidomain model for the electrical activity in the heart. The subject of chapter 6 is systems of PDEs. Linear and nonlinear systems are discussed. Fully implicit and operator splitting methods are presented. Special attention is paid to how existing solvers for scalar equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical models used in finance, based on the Black--Scholes equation. Chapter 12 considers several numerical methods like Monte Carlo, lattice methods, finite difference and finite element methods. Implementation of these methods within Diffpack is presented in the last part of the chapter. Chapter 13 presents how the finite element method is used for the modelling and analysis of elastic structures. The authors describe the structural elements of Diffpack which include popular elements such as beams and plates and examples are presented on how to use them to simulate elastic structures. Chapter 14 describes an application problem, namely the extrusion of aluminum. This is a rather\\endcolumn complicated process which involves non-Newtonian flow, heat transfer and elasticity. The authors describe the systems of PDEs modelling the underlying process and use a finite element method to obtain a numerical solution. The implementation of the numerical method in Diffpack is presented along with some applications. The last chapter, chapter 15, focuses on mathematical and numerical models of systems of PDEs governing geological processes in sedimentary basins. The underlying mathematical model is solved using the finite element method within a fully implicit scheme. The authors discuss the implementational issues involved within Diffpack and they present results from several examples. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall the book is well written, the subject of each chapter is well presented and can serve as a reference for graduate students, researchers and engineers who are interested in the numerical solution of partial differential equations modelling various applications.

  14. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.

    PubMed

    Xu, Zhenli; Ma, Manman; Liu, Pei

    2014-07-01

    We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

  15. Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains

    NASA Astrophysics Data System (ADS)

    Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.

    2004-07-01

    Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.

  16. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  17. Compatible Spatial Discretizations for Partial Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Douglas, N, ed.

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less

  18. Numerical solution of the time fractional reaction-diffusion equation with a moving boundary

    NASA Astrophysics Data System (ADS)

    Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.

    2017-06-01

    A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.

  19. Numerical Modelling of Mechanical Properties of C-Pd Film by Homogenization Technique and Finite Element Method

    NASA Astrophysics Data System (ADS)

    Rymarczyk, Joanna; Kowalczyk, Piotr; Czerwosz, Elzbieta; Bielski, Włodzimierz

    2011-09-01

    The nanomechanical properties of nanostructural carbonaceous-palladium films are studied. The nanoindentation experiments are numerically using the Finite Element Method. The homogenization theory is applied to compute the properties of the composite material used as the input data for nanoindentation calculations.

  20. Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    2004-01-01

    This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. Other related issues in high order WENO finite difference and finite volume methods have also been investigated. methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present some quantitative comparisons of the third order finite volume WENO methods and discontinuous Galerkin methods for a series of test problems to assess their relative merits in accuracy and CPU timing. In [3], we review the development of the Runge-Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.

  1. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duru, Kenneth, E-mail: kduru@stanford.edu; Dunham, Eric M.; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a)more » enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.« less

  2. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    NASA Astrophysics Data System (ADS)

    Duru, Kenneth; Dunham, Eric M.

    2016-01-01

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.

  3. A Novel Polygonal Finite Element Method: Virtual Node Method

    NASA Astrophysics Data System (ADS)

    Tang, X. H.; Zheng, C.; Zhang, J. H.

    2010-05-01

    Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.

  4. Application of Four-Point Newton-EGSOR iteration for the numerical solution of 2D Porous Medium Equations

    NASA Astrophysics Data System (ADS)

    Chew, J. V. L.; Sulaiman, J.

    2017-09-01

    Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.

  5. Optimal variable-grid finite-difference modeling for porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-12-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs.

  6. Solution of the advection-dispersion equation by a finite-volume eulerian-lagrangian local adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1992-01-01

    A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.

  7. A progress report on estuary modeling by the finite-element method

    USGS Publications Warehouse

    Gray, William G.

    1978-01-01

    Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)

  8. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  9. Direct numerical simulation of transitional and turbulent flow over a heated flat plate using finite-difference schemes

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    1995-01-01

    This report deals with the direct numerical simulation of transitional and turbulent flow at low Mach numbers using high-order-accurate finite-difference techniques. A computation of transition to turbulence of the spatially-evolving boundary layer on a heated flat plate in the presence of relatively high freestream turbulence was performed. The geometry and flow conditions were chosen to match earlier experiments. The development of the momentum and thermal boundary layers was documented. Velocity and temperature profiles, as well as distributions of skin friction, surface heat transfer rate, Reynolds shear stress, and turbulent heat flux, were shown to compare well with experiment. The results indicate that the essential features of the transition process have been captured. The numerical method used here can be applied to complex geometries in a straightforward manner.

  10. Application of numerical methods to heat transfer and thermal stress analysis of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Wieting, A. R.

    1979-01-01

    The paper describes a thermal-structural design analysis study of a fuel-injection strut for a hydrogen-cooled scramjet engine for a supersonic transport, utilizing finite-element methodology. Applications of finite-element and finite-difference codes to the thermal-structural design-analysis of space transports and structures are discussed. The interaction between the thermal and structural analyses has led to development of finite-element thermal methodology to improve the integration between these two disciplines. The integrated thermal-structural analysis capability developed within the framework of a computer code is outlined.

  11. Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect

    NASA Astrophysics Data System (ADS)

    Novitski, Roman; Scheuer, Jacob; Steinberg, Ben Z.

    2013-02-01

    We present two unconditionally stable finite-difference time-domain (FDTD) methods for modeling the Sagnac effect in rotating optical microsensors. The methods are based on the implicit Crank-Nicolson scheme, adapted to hold in the rotating system reference frame—the rotating Crank-Nicolson (RCN) methods. The first method (RCN-2) is second order accurate in space whereas the second method (RCN-4) is fourth order accurate. Both methods are second order accurate in time. We show that the RCN-4 scheme is more accurate and has better dispersion isotropy. The numerical results show good correspondence with the expression for the classical Sagnac resonant frequency splitting when using group refractive indices of the resonant modes of a microresonator. Also we show that the numerical results are consistent with the perturbation theory for the rotating degenerate microcavities. We apply our method to simulate the effect of rotation on an entire Coupled Resonator Optical Waveguide (CROW) consisting of a set of coupled microresonators. Preliminary results validate the formation of a rotation-induced gap at the center of a transfer function of a CROW.

  12. An economical method of analyzing transient motion of gas-lubricated rotor-bearing systems.

    NASA Technical Reports Server (NTRS)

    Falkenhagen, G. L.; Ayers, A. L.; Barsalou, L. C.

    1973-01-01

    A method of economically evaluating the hydrodynamic forces generated in a gas-lubricated tilting-pad bearing is presented. The numerical method consists of solving the case of the infinite width bearing and then converting this solution to the case of the finite bearing by accounting for end leakage. The approximate method is compared to the finite-difference solution of Reynolds equation and yields acceptable accuracy while running about one-hundred times faster. A mathematical model of a gas-lubricated tilting-pad vertical rotor systems is developed. The model is capable of analyzing a two-bearing-rotor system in which the rotor center of mass is not at midspan by accounting for gyroscopic moments. The numerical results from the model are compared to actual test data as well as analytical results of other investigators.

  13. A finite-step method for estimating the spanwise lift distribution of wings in symmetric, yawed, and rotary flight at low speeds

    NASA Technical Reports Server (NTRS)

    Krenkel, A. R.

    1978-01-01

    The finite-step method was programmed for computing the span loading and stability derivatives of trapezoidal shaped wings in symmetric, yawed, and rotary flight. Calculations were made for a series of different wing planforms and the results compared with several available methods for estimating these derivatives in the linear angle of attack range. The agreement shown was generally good except in a few cases. An attempt was made to estimate the nonlinear variation of lift with angle of attack in the high alpha range by introducing the measured airfoil section data into the finite-step method. The numerical procedure was found to be stable only at low angles of attack.

  14. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-08-31

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  15. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  16. Semi-analytic valuation of stock loans with finite maturity

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoping; Putri, Endah R. M.

    2015-10-01

    In this paper we study stock loans of finite maturity with different dividend distributions semi-analytically using the analytical approximation method in Zhu (2006). Stock loan partial differential equations (PDEs) are established under Black-Scholes framework. Laplace transform method is used to solve the PDEs. Optimal exit price and stock loan value are obtained in Laplace space. Values in the original time space are recovered by numerical Laplace inversion. To demonstrate the efficiency and accuracy of our semi-analytic method several examples are presented, the results are compared with those calculated using existing methods. We also present a calculation of fair service fee charged by the lender for different loan parameters.

  17. Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations

    DTIC Science & Technology

    2012-10-16

    unidirectional fiber - reinforced composites, Computer Methods in Applied Mechanics and Engineering 217 (2012) 247-261. [44] S. A. Silling, M. Epton...numerical testing for different grid widths to horizon ratios , (4) development of an approach to add another material variable in the given approach...partition of unity principle, (3) numerical testing for different grid widths to horizon ratios , (4) development of an approach to add another

  18. A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena

    NASA Technical Reports Server (NTRS)

    Zingg, David W.

    1996-01-01

    This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.

  19. Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent

    Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less

  20. Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach

    DOE PAGES

    Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent; ...

    2017-03-01

    Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less

  1. Nonlinear initial-boundary value solutions by the finite element method. [for Navier-Stokes equations of two dimensional flow

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    The finite-element method is used to establish a numerical solution algorithm for the Navier-Stokes equations for two-dimensional flows of a viscous compressible fluid. Numerical experiments confirm the advection property for the finite-element equivalent of the nonlinear convection term for both unidirectional and recirculating flowfields. For linear functionals, the algorithm demonstrates good accuracy using coarse discretizations and h squared convergence with discretization refinement.

  2. Combined Uncertainty and A-Posteriori Error Bound Estimates for CFD Calculations: Theory and Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    Simulation codes often utilize finite-dimensional approximation resulting in numerical error. Some examples include, numerical methods utilizing grids and finite-dimensional basis functions, particle methods using a finite number of particles. These same simulation codes also often contain sources of uncertainty, for example, uncertain parameters and fields associated with the imposition of initial and boundary data,uncertain physical model parameters such as chemical reaction rates, mixture model parameters, material property parameters, etc.

  3. A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.

    2005-02-01

    In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.

  4. The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory

    PubMed Central

    Bosbach, Wolfram A.

    2015-01-01

    Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603

  5. T-matrix method in plasmonics: An overview

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Nikolai G.

    2013-07-01

    Optical properties of isolated and coupled plasmonic nanoparticles (NPs) are of great interest for many applications in nanophotonics, nanobiotechnology, and nanomedicine owing to rapid progress in fabrication, characterization, and surface functionalization technologies. To simulate optical responses from plasmonic nanostructures, various electromagnetic analytical and numerical methods have been adapted, tested, and used during the past two decades. Currently, the most popular numerical techniques are those that do not suffer from geometrical and composition limitations, e.g., the discrete dipole approximation (DDA), the boundary (finite) element method (BEM, FEM), the finite difference time domain method (FDTDM), and others. However, the T-matrix method still has its own niche in plasmonic science because of its great numerical efficiency, especially for systems with randomly oriented particles and clusters. In this review, I consider the application of the T-matrix method to various plasmonic problems, including dipolar, multipolar, and anisotropic properties of metal NPs; sensing applications; surface enhanced Raman scattering; optics of 1D-3D nanoparticle assemblies; plasmonic particles and clusters near and on substrates; and manipulation of plasmonic NPs with laser tweezers.

  6. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  7. ISCFD Nagoya 1989 - International Symposium on Computational Fluid Dynamics, 3rd, Nagoya, Japan, Aug. 28-31, 1989, Technical Papers

    NASA Astrophysics Data System (ADS)

    Recent advances in computational fluid dynamics are discussed in reviews and reports. Topics addressed include large-scale LESs for turbulent pipe and channel flows, numerical solutions of the Euler and Navier-Stokes equations on parallel computers, multigrid methods for steady high-Reynolds-number flow past sudden expansions, finite-volume methods on unstructured grids, supersonic wake flow on a blunt body, a grid-characteristic method for multidimensional gas dynamics, and CIC numerical simulation of a wave boundary layer. Consideration is given to vortex simulations of confined two-dimensional jets, supersonic viscous shear layers, spectral methods for compressible flows, shock-wave refraction at air/water interfaces, oscillatory flow in a two-dimensional collapsible channel, the growth of randomness in a spatially developing wake, and an efficient simplex algorithm for the finite-difference and dynamic linear-programming method in optimal potential control.

  8. Study on bending behaviour of nickel–titanium rotary endodontic instruments by analytical and numerical analyses

    PubMed Central

    Tsao, C C; Liou, J U; Wen, P H; Peng, C C; Liu, T S

    2013-01-01

    Aim To develop analytical models and analyse the stress distribution and flexibility of nickel–titanium (NiTi) instruments subject to bending forces. Methodology The analytical method was used to analyse the behaviours of NiTi instruments under bending forces. Two NiTi instruments (RaCe and Mani NRT) with different cross-sections and geometries were considered. Analytical results were derived using Euler–Bernoulli nonlinear differential equations that took into account the screw pitch variation of these NiTi instruments. In addition, the nonlinear deformation analysis based on the analytical model and the finite element nonlinear analysis was carried out. Numerical results are obtained by carrying out a finite element method. Results According to analytical results, the maximum curvature of the instrument occurs near the instrument tip. Results of the finite element analysis revealed that the position of maximum von Mises stress was near the instrument tip. Therefore, the proposed analytical model can be used to predict the position of maximum curvature in the instrument where fracture may occur. Finally, results of analytical and numerical models were compatible. Conclusion The proposed analytical model was validated by numerical results in analysing bending deformation of NiTi instruments. The analytical model is useful in the design and analysis of instruments. The proposed theoretical model is effective in studying the flexibility of NiTi instruments. Compared with the finite element method, the analytical model can deal conveniently and effectively with the subject of bending behaviour of rotary NiTi endodontic instruments. PMID:23173762

  9. Three-dimensional finite amplitude electroconvection in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2018-02-01

    Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.

  10. Numerical simulation of axisymmetric turbulent flow in combustors and diffusors. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Yung, Chain Nan

    1988-01-01

    A method for predicting turbulent flow in combustors and diffusers is developed. The Navier-Stokes equations, incorporating a turbulence kappa-epsilon model equation, were solved in a nonorthogonal curvilinear coordinate system. The solution applied the finite volume method to discretize the differential equations and utilized the SIMPLE algorithm iteratively to solve the differenced equations. A zonal grid method, wherein the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. However, treatment of the zonal boundaries required special handling. Boundary overlap and interpolating techniques were used and an adjustment of the flow variables was required to assure conservation of mass, momentum and energy fluxes. The numerical accuracy was assessed using different finite differencing methods, i.e., hybrid, quadratic upwind and skew upwind, to represent the convection terms. Flows in different geometries of combustors and diffusers were simulated and results compared with experimental data and good agreement was obtained.

  11. High-order cyclo-difference techniques: An alternative to finite differences

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Otto, John C.

    1993-01-01

    The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.

  12. Investigation of the Numerical Methods of Finite Differences and Weighted Residuals for Solution of the Heat Equation.

    DTIC Science & Technology

    1982-03-01

    OF FINITE DIFFERENCES AND WEIGHTED RESIDUALS FOR SOLUTION OF THE HEAT EQUATION a THESIS J’. AFIT/GNE/PH/81-7 *-.1 Robert Naegeli .. ....... J --aC t...Institute of Technology Air University in Partial Fulfillment of the a Requirements for the Degree of Master of Science by Robert E. Naegeli , M.S. Capt USAF...a time which proved to be one of great personal adjustment and turmoil. Robert E. Naegeli ii Contents Page Preface

  13. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    PubMed Central

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  14. An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion

    NASA Astrophysics Data System (ADS)

    Li, Eric; He, Z. C.; Wang, G.; Liu, G. R.

    2017-12-01

    The phononics crystals (PCs) are periodic man-made composite materials. In this paper, a mass-redistributed finite element method (MR-FEM) is formulated to study the wave propagation within liquid PCs with hard inclusion. With a perfect balance between stiffness and mass in the MR-FEM model, the dispersion error of longitudinal wave is minimized by redistribution of mass. Such tuning can be easily achieved by adjusting the parameter r that controls the location of integration points of mass matrix. More importantly, the property of mass conservation in the MR-FEM model indicates that the locations of integration points inside or outside the element are immaterial. Four numerical examples are studied in this work, including liquid PCs with cross and circle hard inclusions, different size of inclusion and defect. Compared with standard finite element method, the numerical results have verified the accuracy and effectiveness of MR-FEM. The proposed MR-FEM is a unique and innovative numerical approach with its outstanding features, which has strong potentials to study the stress wave within multi-physics PCs.

  15. Predict the fatigue life of crack based on extended finite element method and SVR

    NASA Astrophysics Data System (ADS)

    Song, Weizhen; Jiang, Zhansi; Jiang, Hui

    2018-05-01

    Using extended finite element method (XFEM) and support vector regression (SVR) to predict the fatigue life of plate crack. Firstly, the XFEM is employed to calculate the stress intensity factors (SIFs) with given crack sizes. Then predicetion model can be built based on the function relationship of the SIFs with the fatigue life or crack length. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Because of the accuracy of the forward Euler method only ensured by the small step size, a new prediction method is presented to resolve the issue. The numerical examples were studied to demonstrate the proposed method allow a larger step size and have a high accuracy.

  16. A robust method of computing finite difference coefficients based on Vandermonde matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin

    2018-05-01

    When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.

  17. A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.

    2014-01-01

    We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.

  18. Determination of the Rotational Barrier in Ethane by Vibrational Spectroscopy and Statistical Thermodynamics

    ERIC Educational Resources Information Center

    Ercolani, Gianfranco

    2005-01-01

    The finite-difference boundary-value method is a numerical method suited for the solution of the one-dimensional Schrodinger equation encountered in problems of hindered rotation. Further, the application of the method, in combination with experimental results for the evaluation of the rotational energy barrier in ethane is presented.

  19. Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading

    NASA Astrophysics Data System (ADS)

    Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.

    2017-05-01

    The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed

  20. Analysis of three-dimensional-cavity-backed aperture antennas using a Combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction technique

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.

  1. Meshfree simulation of avalanches with the Finite Pointset Method (FPM)

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Kuhnert, Jörg; Kolymbas, Dimitrios

    2017-04-01

    Meshfree methods are the numerical method of choice in case of applications which are characterized by strong deformations in conjunction with free surfaces or phase boundaries. In the past the meshfree Finite Pointset Method (FPM) developed by Fraunhofer ITWM (Kaiserslautern, Germany) has been successfully applied to problems in computational fluid dynamics such as water crossing of cars, water turbines, and hydraulic valves. Most recently the simulation of granular flows, e.g. soil interaction with cars (rollover), has also been tackled. This advancement is the basis for the simulation of avalanches. Due to the generalized finite difference formulation in FPM, the implementation of different material models is quite simple. We will demonstrate 3D simulations of avalanches based on the Drucker-Prager yield criterion as well as the nonlinear barodesy model. The barodesy model (Division of Geotechnical and Tunnel Engineering, University of Innsbruck, Austria) describes the mechanical behavior of soil by an evolution equation for the stress tensor. The key feature of successful and realistic simulations of avalanches - apart from the numerical approximation of the occurring differential operators - is the choice of the boundary conditions (slip, no-slip, friction) between the different phases of the flow as well as the geometry. We will discuss their influences for simplified one- and two-phase flow examples. This research is funded by the German Research Foundation (DFG) and the FWF Austrian Science Fund.

  2. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, K; Berirao, L

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this articlemore » is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.« less

  3. Strip Yield Model Numerical Application to Different Geometries and Loading Conditions

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Forman, Royce; Shivakumar, Venkataraman; Lyons, Jed

    2006-01-01

    A new numerical method based on the strip-yield analysis approach was developed for calculating the Crack Tip Opening Displacement (CTOD). This approach can be applied for different crack configurations having infinite and finite geometries, and arbitrary applied loading conditions. The new technique adapts the boundary element / dislocation density method to obtain crack-face opening displacements at any point on a crack, and succeeds by obtaining requisite values as a series of definite integrals, the functional parts of each being evaluated exactly in a closed form.

  4. Size validity of plasma-metamaterial cloaking monitored by scattering wave in finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Bambina, Alexandre; Yamaguchi, Shuhei; Iwai, Akinori; Miyagi, Shigeyuki; Sakai, Osamu

    2018-01-01

    Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD) method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.

  5. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE PAGES

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    2017-01-01

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  6. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  7. Numerical calculations of two dimensional, unsteady transonic flows with circulation

    NASA Technical Reports Server (NTRS)

    Beam, R. M.; Warming, R. F.

    1974-01-01

    The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.

  8. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    NASA Astrophysics Data System (ADS)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  9. On Multifunctional Collaborative Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  10. Numerical analysis of heat transfer in the exhaust gas flow in a diesel power generator

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2016-09-01

    This work presents a numerical study of heat transfer in the exhaust duct of a diesel power generator. The analysis was performed using two different approaches: the Finite Difference Method (FDM) and the Finite Volume Method (FVM), this last one by means of a commercial computer software, ANSYS CFX®. In FDM, the energy conservation equation was solved taking into account the estimated velocity profile for fully developed turbulent flow inside a tube and literature correlations for heat transfer. In FVM, the mass conservation, momentum, energy and transport equations were solved for turbulent quantities by the K-ω SST model. In both methods, variable properties were considered for the exhaust gas composed by six species: CO2, H2O, H2, O2, CO and N2. The entry conditions for the numerical simulations were given by experimental data available. The results were evaluated for the engine operating under loads of 0, 10, 20, and 37.5 kW. Test mesh and convergence were performed to determine the numerical error and uncertainty of the simulations. The results showed a trend of increasing temperature gradient with load increase. The general behaviour of the velocity and temperature profiles obtained by the numerical models were similar, with some divergence arising due to the assumptions made for the resolution of the models.

  11. Some remarks on the numerical solution of parabolic partial differential equations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Cuomo, S.; Leveque, S.; Toraldo, G.; Giannino, F.; Severino, G.

    2017-11-01

    Numerous environmental/engineering applications relying upon the theory of diffusion phenomena into chaotic environments have recently stimulated the interest toward the numerical solution of parabolic partial differential equations (PDEs). In the present paper, we outline a formulation of the mathematical problem underlying a quite general diffusion mechanism in the natural environments, and we shortly emphasize some remarks concerning the applicability of the (straightforward) finite difference method. An illustration example is also presented.

  12. COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION

    EPA Science Inventory

    A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...

  13. Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones

    NASA Astrophysics Data System (ADS)

    Scarella, Gilles; Clatz, Olivier; Lanteri, Stéphane; Beaume, Grégory; Oudot, Steve; Pons, Jean-Philippe; Piperno, Sergo; Joly, Patrick; Wiart, Joe

    2006-06-01

    The ever-rising diffusion of cellular phones has brought about an increased concern for the possible consequences of electromagnetic radiation on human health. Possible thermal effects have been investigated, via experimentation or simulation, by several research projects in the last decade. Concerning numerical modeling, the power absorption in a user's head is generally computed using discretized models built from clinical MRI data. The vast majority of such numerical studies have been conducted using Finite Differences Time Domain methods, although strong limitations of their accuracy are due to heterogeneity, poor definition of the detailed structures of head tissues (staircasing effects), etc. In order to propose numerical modeling using Finite Element or Discontinuous Galerkin Time Domain methods, reliable automated tools for the unstructured discretization of human heads are also needed. Results presented in this article aim at filling the gap between human head MRI images and the accurate numerical modeling of wave propagation in biological tissues and its thermal effects. To cite this article: G. Scarella et al., C. R. Physique 7 (2006).

  14. Mathematical, Constitutive and Numerical Modelling of Catastrophic Landslides and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Pastor, M.; Fernández Merodo, J. A.; Herreros, M. I.; Mira, P.; González, E.; Haddad, B.; Quecedo, M.; Tonni, L.; Drempetic, V.

    2008-02-01

    Mathematical and numerical models are a fundamental tool for predicting the behaviour of geostructures and their interaction with the environment. The term “mathematical model” refers to a mathematical description of the more relevant physical phenomena which take place in the problem being analyzed. It is indeed a wide area including models ranging from the very simple ones for which analytical solutions can be obtained to those more complicated requiring the use of numerical approximations such as the finite element method. During the last decades, mathematical, constitutive and numerical models have been very much improved and today their use is widespread both in industry and in research. One special case is that of fast catastrophic landslides, for which simplified methods are not able to provide accurate solutions in many occasions. Moreover, many finite element codes cannot be applied for propagation of the mobilized mass. The purpose of this work is to present an overview of the different alternative mathematical and numerical models which can be applied to both the initiation and propagation mechanisms of fast catastrophic landslides and other related problems such as waves caused by landslides.

  15. Numerical methods for the inverse problem of density functional theory

    DOE PAGES

    Jensen, Daniel S.; Wasserman, Adam

    2017-07-17

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  16. Numerical methods for the inverse problem of density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Daniel S.; Wasserman, Adam

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  17. Numerical Modelling of Ground Penetrating Radar Antennas

    NASA Astrophysics Data System (ADS)

    Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara

    2014-05-01

    Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD model. Accurate models based on general characteristics of the commercial antennas GSSI 1.5 GHz and MALA 1.2 GHz have been already incorporated in GprMax, a free software which solves Maxwell's equation using a second order in space and time FDTD algorithm. This work presents the implementation of horn antennas with different parameters as well as ridged horn antennas into this FDTD model and their effectiveness is tested in realistic modelled situations. Accurate models of soils and concrete are used to test and compare different antenna units. Stochastic methods are used in order to realistically simulate the geometrical characteristics of the medium. Regarding the dielectric properties, Debye approximations are incorporated in order to simulate realistically the dielectric properties of the medium on the frequency range of interest.

  18. A Highly Accurate Technique for the Treatment of Flow Equations at the Polar Axis in Cylindrical Coordinates using Series Expansions. Appendix A

    NASA Technical Reports Server (NTRS)

    Constantinescu, George S.; Lele, S. K.

    2001-01-01

    Numerical methods for solving the flow equations in cylindrical or spherical coordinates should be able to capture the behavior of the exact solution near the regions where the particular form of the governing equations is singular. In this work we focus on the treatment of these numerical singularities for finite-differences methods by reinterpreting the regularity conditions developed in the context of pseudo-spectral methods. A generally applicable numerical method for treating the singularities present at the polar axis, when nonaxisymmetric flows are solved in cylindrical, coordinates using highly accurate finite differences schemes (e.g., Pade schemes) on non-staggered grids, is presented. Governing equations for the flow at the polar axis are derived using series expansions near r=0. The only information needed to calculate the coefficients in these equations are the values of the flow variables and their radial derivatives at the previous iteration (or time) level. These derivatives, which are multi-valued at the polar axis, are calculated without dropping the accuracy of the numerical method using a mapping of the flow domain from (0,R)*(0,2pi) to (-R,R)*(0,pi), where R is the radius of the computational domain. This allows the radial derivatives to be evaluated using high-order differencing schemes (e.g., compact schemes) at points located on the polar axis. The proposed technique is illustrated by results from simulations of laminar-forced jets and turbulent compressible jets using large eddy simulation (LES) methods. In term of the general robustness of the numerical method and smoothness of the solution close to the polar axis, the present results compare very favorably to similar calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in which the singularity is removed by employing a staggered mesh in the radial direction without a mesh point at r=0, following the method proposed recently by Mohseni and Colonius (1). Extension of the method described here for incompressible flows or for any other set of equations that are solved on a non-staggered mesh in cylindrical or spherical coordinates with finite-differences schemes of various level of accuracy is immediate.

  19. Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer

    NASA Technical Reports Server (NTRS)

    Rai, Man M.; Moin, Parviz

    1991-01-01

    A high-order-accurate finite-difference approach to direct simulations of transition and turbulence in compressible flows is described. Attention is given to the high-free-stream disturbance case in which transition to turbulence occurs close to the leading edge. In effect, computation requirements are reduced. A method for numerically generating free-stream disturbances is presented.

  20. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzini, Gianmarco

    2012-07-13

    We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.

  1. A solution to neural field equations by a recurrent neural network method

    NASA Astrophysics Data System (ADS)

    Alharbi, Abir

    2012-09-01

    Neural field equations (NFE) are used to model the activity of neurons in the brain, it is introduced from a single neuron 'integrate-and-fire model' starting point. The neural continuum is spatially discretized for numerical studies, and the governing equations are modeled as a system of ordinary differential equations. In this article the recurrent neural network approach is used to solve this system of ODEs. This consists of a technique developed by combining the standard numerical method of finite-differences with the Hopfield neural network. The architecture of the net, energy function, updating equations, and algorithms are developed for the NFE model. A Hopfield Neural Network is then designed to minimize the energy function modeling the NFE. Results obtained from the Hopfield-finite-differences net show excellent performance in terms of accuracy and speed. The parallelism nature of the Hopfield approaches may make them easier to implement on fast parallel computers and give them the speed advantage over the traditional methods.

  2. Semi-implicit finite difference methods for three-dimensional shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Cheng, Ralph T.

    1992-01-01

    A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.

  3. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    NASA Astrophysics Data System (ADS)

    Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi

    2010-08-01

    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.

  4. Calculating the Malliavin derivative of some stochastic mechanics problems

    PubMed Central

    Hauseux, Paul; Hale, Jack S.

    2017-01-01

    The Malliavin calculus is an extension of the classical calculus of variations from deterministic functions to stochastic processes. In this paper we aim to show in a practical and didactic way how to calculate the Malliavin derivative, the derivative of the expectation of a quantity of interest of a model with respect to its underlying stochastic parameters, for four problems found in mechanics. The non-intrusive approach uses the Malliavin Weight Sampling (MWS) method in conjunction with a standard Monte Carlo method. The models are expressed as ODEs or PDEs and discretised using the finite difference or finite element methods. Specifically, we consider stochastic extensions of; a 1D Kelvin-Voigt viscoelastic model discretised with finite differences, a 1D linear elastic bar, a hyperelastic bar undergoing buckling, and incompressible Navier-Stokes flow around a cylinder, all discretised with finite elements. A further contribution of this paper is an extension of the MWS method to the more difficult case of non-Gaussian random variables and the calculation of second-order derivatives. We provide open-source code for the numerical examples in this paper. PMID:29261776

  5. Inversion of Robin coefficient by a spectral stochastic finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Bangti; Zou Jun

    2008-03-01

    This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.

  6. Curvilinear grids for WENO methods in astrophysical simulations

    NASA Astrophysics Data System (ADS)

    Grimm-Strele, H.; Kupka, F.; Muthsam, H. J.

    2014-03-01

    We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.

  7. Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations

    NASA Astrophysics Data System (ADS)

    Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran

    2018-06-01

    This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.

  8. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  9. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.

    2008-02-01

    This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.

  10. Evaluation of radiation loading on finite cylindrical shells using the fast Fourier transform: A comparison with direct numerical integration.

    PubMed

    Liu, S X; Zou, M S

    2018-03-01

    The radiation loading on a vibratory finite cylindrical shell is conventionally evaluated through the direct numerical integration (DNI) method. An alternative strategy via the fast Fourier transform algorithm is put forward in this work based on the general expression of radiation impedance. To check the feasibility and efficiency of the proposed method, a comparison with DNI is presented through numerical cases. The results obtained using the present method agree well with those calculated by DNI. More importantly, the proposed calculating strategy can significantly save the time cost compared with the conventional approach of straightforward numerical integration.

  11. Vibration analysis of angle-ply laminated composite plates with an embedded piezoceramic layer.

    PubMed

    Lin, Hsien-Yang; Huang, Jin-Hung; Ma, Chien-Ching

    2003-09-01

    An optical full-field technique, called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), is used in this study to investigate the force-induced transverse vibration of an angle-ply laminated composite embedded with a piezoceramic layer (piezolaminated plates). The piezolaminated plates are excited by applying time-harmonic voltages to the embedded piezoceramic layer. Because clear fringe patterns will appear only at resonant frequencies, both the resonant frequencies and mode shapes of the vibrating piezolaminated plates with five different fiber orientation angles are obtained by the proposed AF-ESPI method. A laser Doppler vibrometer (LDV) system that has the advantage of high resolution and broad dynamic range also is applied to measure the frequency response of piezolaminated plates. In addition to the two proposed optical techniques, numerical computations based on a commercial finite element package are presented for comparison with the experimental results. Three different numerical formulations are used to evaluate the vibration characteristics of piezolaminated plates. Good agreements of the measured data by the optical method and the numerical results predicted by the finite element method (FEM) demonstrate that the proposed methodology in this study is a powerful tool for the vibration analysis of piezolaminated plates.

  12. Stability analysis of flexible wind turbine blades using finite element method

    NASA Technical Reports Server (NTRS)

    Kamoulakos, A.

    1982-01-01

    Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.

  13. Evaluation of the finite element fuel rod analysis code (FRANCO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.; Feltus, M.A.

    1994-12-31

    Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less

  14. Improved finite-element methods for rotorcraft structures

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.

    1991-01-01

    An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.

  15. The effect of numerical methods on the simulation of mid-ocean ridge hydrothermal models

    NASA Astrophysics Data System (ADS)

    Carpio, J.; Braack, M.

    2012-01-01

    This work considers the effect of the numerical method on the simulation of a 2D model of hydrothermal systems located in the high-permeability axial plane of mid-ocean ridges. The behavior of hot plumes, formed in a porous medium between volcanic lava and the ocean floor, is very irregular due to convective instabilities. Therefore, we discuss and compare two different numerical methods for solving the mathematical model of this system. In concrete, we consider two ways to treat the temperature equation of the model: a semi-Lagrangian formulation of the advective terms in combination with a Galerkin finite element method for the parabolic part of the equations and a stabilized finite element scheme. Both methods are very robust and accurate. However, due to physical instabilities in the system at high Rayleigh number, the effect of the numerical method is significant with regard to the temperature distribution at a certain time instant. The good news is that relevant statistical quantities remain relatively stable and coincide for the two numerical schemes. The agreement is larger in the case of a mathematical model with constant water properties. In the case of a model with nonlinear dependence of the water properties on the temperature and pressure, the agreement in the statistics is clearly less pronounced. Hence, the presented work accentuates the need for a strengthened validation of the compatibility between numerical scheme (accuracy/resolution) and complex (realistic/nonlinear) models.

  16. Stability analysis of Eulerian-Lagrangian methods for the one-dimensional shallow-water equations

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1990-01-01

    In this paper stability and error analyses are discussed for some finite difference methods when applied to the one-dimensional shallow-water equations. Two finite difference formulations, which are based on a combined Eulerian-Lagrangian approach, are discussed. In the first part of this paper the results of numerical analyses for an explicit Eulerian-Lagrangian method (ELM) have shown that the method is unconditionally stable. This method, which is a generalized fixed grid method of characteristics, covers the Courant-Isaacson-Rees method as a special case. Some artificial viscosity is introduced by this scheme. However, because the method is unconditionally stable, the artificial viscosity can be brought under control either by reducing the spatial increment or by increasing the size of time step. The second part of the paper discusses a class of semi-implicit finite difference methods for the one-dimensional shallow-water equations. This method, when the Eulerian-Lagrangian approach is used for the convective terms, is also unconditionally stable and highly accurate for small space increments or large time steps. The semi-implicit methods seem to be more computationally efficient than the explicit ELM; at each time step a single tridiagonal system of linear equations is solved. The combined explicit and implicit ELM is best used in formulating a solution strategy for solving a network of interconnected channels. The explicit ELM is used at channel junctions for each time step. The semi-implicit method is then applied to the interior points in each channel segment. Following this solution strategy, the channel network problem can be reduced to a set of independent one-dimensional open-channel flow problems. Numerical results support properties given by the stability and error analyses. ?? 1990.

  17. On finite element implementation and computational techniques for constitutive modeling of high temperature composites

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.

    1989-01-01

    The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.

  18. From three-dimensional long-term tectonic numerical models to synthetic structural data: semi-automatic extraction of instantaneous & finite strain quantities

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; May, Dave

    2017-04-01

    Over the past three decades thermo-mechanical numerical modelling has transformed the way we look at deformation in the lithosphere. More than just generating aesthetically pleasing pictures, the output from a numerical models contains a rich source of quantitative information that can be used to measure deformation quantities in plan view or three-dimensions. Adding value to any numerical experiment requires a thorough post-processing of the modelling results. Such work aims to produce visual information that will resonate to seasoned structural geologists and assist with comparing experimental and observational data. Here we introduce two methods to generate synthetic structural data from numerical model outputs. We first present an image processing and shape recognition workflow developed to extract the active faults orientation from surface velocity gradients. In order to measure the active faults lengths and directions along with their distribution at the surface of the model we implemented an automated sequential mapping technique based on the second invariant of the strain rate tensor and using a suite a python functions. Active fault direction measurements are achieved using a probabilistic method for extracting linear features orientation from any surface. This method has the undeniable advantage to avoid interpretation bias. Strike measurements for individual segments are weighted according to their length and orientation distribution data are presented in an equal-area moving average rose diagrams produced using a weighted method. Finally, we discuss a method for mapping finite strain in three-dimensions. A high-resolution Lagrangian regular grid which advects during the numerical experiment is used to track the progressive deformation within the model. Thanks to this data we can measure the finite strain ellipsoids for any region of interest in the model. This method assumes that the finite strain is homogenous within one unit cell of the grid. We can compute individual ellipsoid's parameters (orientation, shape, etc.) and represent the finite deformation for any region of interest in a Flinn diagram. In addition, we can use the finite strain ellipsoids to estimate the prevailing foliation and/or lineation directions anywhere in the model. These two methods are applied to measure the instantaneous and finite deformation patterns within an oblique rift zone ongoing constant extension in the absence of surface processes.

  19. Second order accurate finite difference approximations for the transonic small disturbance equation and the full potential equation

    NASA Technical Reports Server (NTRS)

    Mostrel, M. M.

    1988-01-01

    New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.

  20. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    NASA Astrophysics Data System (ADS)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  1. A rational interpolation method to compute frequency response

    NASA Technical Reports Server (NTRS)

    Kenney, Charles; Stubberud, Stephen; Laub, Alan J.

    1993-01-01

    A rational interpolation method for approximating a frequency response is presented. The method is based on a product formulation of finite differences, thereby avoiding the numerical problems incurred by near-equal-valued subtraction. Also, resonant pole and zero cancellation schemes are developed that increase the accuracy and efficiency of the interpolation method. Selection techniques of interpolation points are also discussed.

  2. Dual Formulations of Mixed Finite Element Methods with Applications

    PubMed Central

    Gillette, Andrew; Bajaj, Chandrajit

    2011-01-01

    Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail. PMID:21984841

  3. Application of artificial neural network for heat transfer in porous cone

    NASA Astrophysics Data System (ADS)

    Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum

    2018-05-01

    Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.

  4. [Comparison between the Range of Movement Canine Real Cervical Spine and Numerical Simulation - Computer Model Validation].

    PubMed

    Srnec, R; Horák, Z; Sedláček, R; Sedlinská, M; Krbec, M; Nečas, A

    2017-01-01

    PURPOSE OF THE STUDY In developing new or modifying the existing surgical treatment methods of spine conditions an integral part of ex vivo experiments is the assessment of mechanical, kinematic and dynamic properties of created constructions. The aim of the study is to create an appropriately validated numerical model of canine cervical spine in order to obtain a tool for basic research to be applied in cervical spine surgeries. For this purpose, canine is a suitable model due to the occurrence of similar cervical spine conditions in some breeds of dogs and in humans. The obtained model can also be used in research and in clinical veterinary practice. MATERIAL AND METHODS In order to create a 3D spine model, the LightSpeed 16 (GE, Milwaukee, USA) multidetector computed tomography was used to scan the cervical spine of Doberman Pinscher. The data were transmitted to Mimics 12 software (Materialise HQ, Belgium), in which the individual vertebrae were segmented on CT scans by thresholding. The vertebral geometry was exported to Rhinoceros software (McNeel North America, USA) for modelling, and subsequently the specialised software Abaqus (Dassault Systemes, France) was used to analyse the response of the physiological spine model to external load by the finite element method (FEM). All the FEM based numerical simulations were considered as nonlinear contact statistic tasks. In FEM analyses, angles between individual spinal segments were monitored in dependence on ventroflexion/ /dorziflexion. The data were validated using the latero-lateral radiographs of cervical spine of large breed dogs with no evident clinical signs of cervical spine conditions. The radiographs within the cervical spine range of motion were taken at three different positions: in neutral position, in maximal ventroflexion and in maximal dorziflexion. On X-rays, vertebral inclination angles in monitored spine positions were measured and compared with the results obtain0ed from FEM analyses of the numerical model. RESULTS It is obvious from the results that the physiological spine model tested by the finite element method shows a very similar mechanical behaviour as the physiological canine spine. The biggest difference identified between the resulting values was reported in C6-C7 segment in dorsiflexion (Δφ = 5.95%), or in C4-C5 segment in ventroflexion (Δφ = -3.09%). CONCLUSIONS The comparisons between the mobility of cervical spine in ventroflexion/dorsiflexion on radiographs of the real models and the simulated numerical model by finite element method showed a high degree of results conformity with a minimal difference. Therefore, for future experiments the validated numerical model can be used as a tool of basic research on condition that the results of analyses carried out by finite element method will be affected only by an insignificant error. The computer model, on the other hand, is merely a simplified system and in comparison with the real situation cannot fully evaluate the dynamics of the action of forces in time, their variability, and also the individual effects of supportive skeletal tissues. Based on what has been said above, it is obvious that there is a need to exercise restraint in interpreting the obtained results. Key words: cervical spine, kinematics, numerical modelling, finite element method, canine.

  5. An RBF-FD closest point method for solving PDEs on surfaces

    NASA Astrophysics Data System (ADS)

    Petras, A.; Ling, L.; Ruuth, S. J.

    2018-10-01

    Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.

  6. A third-order computational method for numerical fluxes to guarantee nonnegative difference coefficients for advection-diffusion equations in a semi-conservative form

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Watabe, D.; Minamidani, T.; Zhang, G. S.

    2012-10-01

    According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations in a semi-conservative form, in which there exist two kinds of numerical fluxes at a cell surface and these two fluxes are not always coincident in non-uniform velocity fields. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter. We extend the present method into multi-dimensional equations. Numerical experiments for advection-diffusion equations showed nonoscillatory solutions.

  7. A split finite element algorithm for the compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1979-01-01

    An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.

  8. Errors in finite-difference computations on curvilinear coordinate systems

    NASA Technical Reports Server (NTRS)

    Mastin, C. W.; Thompson, J. F.

    1980-01-01

    Curvilinear coordinate systems were used extensively to solve partial differential equations on arbitrary regions. An analysis of truncation error in the computation of derivatives revealed why numerical results may be erroneous. A more accurate method of computing derivatives is presented.

  9. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less

  10. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    NASA Astrophysics Data System (ADS)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  11. A finite-difference method for the variable coefficient Poisson equation on hierarchical Cartesian meshes

    NASA Astrophysics Data System (ADS)

    Raeli, Alice; Bergmann, Michel; Iollo, Angelo

    2018-02-01

    We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.

  12. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  13. Numerical Methods for 2-Dimensional Modeling

    DTIC Science & Technology

    1980-12-01

    high-order finite element methods, and a multidimensional version of the method of lines, both utilizing an optimized stiff integrator for the time...integration. The finite element methods have proved disappointing, but the method of lines has provided an unexpectedly large gain in speed. Two...diffusion problems with the same number of unknowns (a 21 x 41 grid), solved by second-order finite element methods, took over seven minutes on the Cray-i

  14. An efficient numerical technique for calculating thermal spreading resistance

    NASA Technical Reports Server (NTRS)

    Gale, E. H., Jr.

    1977-01-01

    An efficient numerical technique for solving the equations resulting from finite difference analyses of fields governed by Poisson's equation is presented. The method is direct (noniterative)and the computer work required varies with the square of the order of the coefficient matrix. The computational work required varies with the cube of this order for standard inversion techniques, e.g., Gaussian elimination, Jordan, Doolittle, etc.

  15. Comparison of AGE and Spectral Methods for the Simulation of Far-Wakes

    NASA Technical Reports Server (NTRS)

    Bisset, D. K.; Rogers, M. M.; Kega, Dennis (Technical Monitor)

    1999-01-01

    Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This report demonstrates that a good compromise is possible with the Advected Grid Explicit (AGE) method. AGE has proven to be both efficient and accurate for simulating turbulent free-shear flows, including planar mixing layers and planar jets. Its efficiency results from its localized fully explicit finite difference formulation (Bisset 1998a,b) that is very straightforward to compute, outweighing the need for a fairly small timestep. Also, most of the successful simulations were slightly under-resolved, and therefore they were, in effect, large-eddy simulations (LES) without a sub-grid-scale (SGS) model, rather than direct numerical simulations (DNS). The principle is that the role of the smallest scales of turbulent motion (when the Reynolds number is not too low) is to dissipate turbulent energy, and therefore they do not have to be simulated when the numerical method is inherently dissipative at its resolution limits. Such simulations are termed 'auto-LES' (LES with automatic SGS modeling) in this report.

  16. A novel 2.5D finite difference scheme for simulations of resistivity logging in anisotropic media

    NASA Astrophysics Data System (ADS)

    Zeng, Shubin; Chen, Fangzhou; Li, Dawei; Chen, Ji; Chen, Jiefu

    2018-03-01

    The objective of this study is to develop a method to model 3D resistivity well logging problems in 2D formation with anisotropy, known as 2.5D modeling. The traditional 1D forward modeling extensively used in practice lacks the capability of modeling 2D formation. A 2.5D finite difference method (FDM) solving all the electric and magnetic field components simultaneously is proposed. Compared to other previous 2.5D FDM schemes, this method is more straightforward in modeling fully anisotropic media and easy to be implemented. Fourier transform is essential to this FDM scheme, and by employing Gauss-Legendre (GL) quadrature rule the computational time of this step can be greatly reduced. In the numerical examples, we first demonstrate the validity of the FDM scheme with GL rule by comparing with 1D forward modeling for layered anisotropic problems, and then we model a complicated 2D formation case and find that the proposed 2.5D FD scheme is much more efficient than 3D numerical methods.

  17. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1986-01-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  18. A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection

    NASA Technical Reports Server (NTRS)

    Buell, Jeffrey C.

    1988-01-01

    A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.

  19. Numerical modeling of the transmission dynamics of drug-sensitive and drug-resistant HSV-2

    NASA Astrophysics Data System (ADS)

    Gumel, A. B.

    2001-03-01

    A competitive finite-difference method will be constructed and used to solve a modified deterministic model for the spread of herpes simplex virus type-2 (HSV-2) within a given population. The model monitors the transmission dynamics and control of drug-sensitive and drug-resistant HSV-2. Unlike the fourth-order Runge-Kutta method (RK4), which fails when the discretization parameters exceed certain values, the novel numerical method to be developed in this paper gives convergent results for all parameter values.

  20. Study of effects of injector geometry on fuel-air mixing and combustion

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Roach, R. L.

    1977-01-01

    An implicit finite-difference method has been developed for computing the flow in the near field of a fuel injector as part of a broader study of the effects of fuel injector geometry on fuel-air mixing and combustion. Detailed numerical results have been obtained for cases of laminar and turbulent flow without base injection, corresponding to the supersonic base flow problem. These numerical results indicated that the method is stable and convergent, and that significant savings in computer time can be achieved, compared with explicit methods.

  1. Numerical study of the small scale structures in Boussinesq convection

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high order accurate Essentially Nonoscillatory (ENO) scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. The numerical results suggest that the collapse of the bubble cap is unlikely to occur in resolved calculations. The strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. We also found that the cascade of energy to small scales is dominated by the formulation of thin and sharp fronts across which density jumps.

  2. Reduction of the discretization stencil of direct forcing immersed boundary methods on rectangular cells: The ghost node shifting method

    NASA Astrophysics Data System (ADS)

    Picot, Joris; Glockner, Stéphane

    2018-07-01

    We present an analytical study of discretization stencils for the Poisson problem and the incompressible Navier-Stokes problem when used with some direct forcing immersed boundary methods. This study uses, but is not limited to, second-order discretization and Ghost-Cell Finite-Difference methods. We show that the stencil size increases with the aspect ratio of rectangular cells, which is undesirable as it breaks assumptions of some linear system solvers. To circumvent this drawback, a modification of the Ghost-Cell Finite-Difference methods is proposed to reduce the size of the discretization stencil to the one observed for square cells, i.e. with an aspect ratio equal to one. Numerical results validate this proposed method in terms of accuracy and convergence, for the Poisson problem and both Dirichlet and Neumann boundary conditions. An improvement on error levels is also observed. In addition, we show that the application of the chosen Ghost-Cell Finite-Difference methods to the Navier-Stokes problem, discretized by a pressure-correction method, requires an additional interpolation step. This extra step is implemented and validated through well known test cases of the Navier-Stokes equations.

  3. A New Discretization Method of Order Four for the Numerical Solution of One-Space Dimensional Second-Order Quasi-Linear Hyperbolic Equation

    ERIC Educational Resources Information Center

    Mohanty, R. K.; Arora, Urvashi

    2002-01-01

    Three level-implicit finite difference methods of order four are discussed for the numerical solution of the mildly quasi-linear second-order hyperbolic equation A(x, t, u)u[subscript xx] + 2B(x, t, u)u[subscript xt] + C(x, t, u)u[subscript tt] = f(x, t, u, u[subscript x], u[subscript t]), 0 less than x less than 1, t greater than 0 subject to…

  4. Comparison of Implicit Collocation Methods for the Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Jezequel, Fabienne; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    We combine a high-order compact finite difference scheme to approximate spatial derivatives arid collocation techniques for the time component to numerically solve the two dimensional heat equation. We use two approaches to implement the collocation methods. The first one is based on an explicit computation of the coefficients of polynomials and the second one relies on differential quadrature. We compare them by studying their merits and analyzing their numerical performance. All our computations, based on parallel algorithms, are carried out on the CRAY SV1.

  5. Numerical Modelling of Foundation Slabs with use of Schur Complement Method

    NASA Astrophysics Data System (ADS)

    Koktan, Jiří; Brožovský, Jiří

    2017-10-01

    The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.

  6. Sensitivity analysis for dose deposition in radiotherapy via a Fokker–Planck model

    DOE PAGES

    Barnard, Richard C.; Frank, Martin; Krycki, Kai

    2016-02-09

    In this paper, we study the sensitivities of electron dose calculations with respect to stopping power and transport coefficients. We focus on the application to radiotherapy simulations. We use a Fokker–Planck approximation to the Boltzmann transport equation. Equations for the sensitivities are derived by the adjoint method. The Fokker–Planck equation and its adjoint are solved numerically in slab geometry using the spherical harmonics expansion (P N) and an Harten-Lax-van Leer finite volume method. Our method is verified by comparison to finite difference approximations of the sensitivities. Finally, we present numerical results of the sensitivities for the normalized average dose depositionmore » depth with respect to the stopping power and the transport coefficients, demonstrating the increase in relative sensitivities as beam energy decreases. In conclusion, this in turn gives estimates on the uncertainty in the normalized average deposition depth, which we present.« less

  7. High Order Discontinuous Gelerkin Methods for Convection Dominated Problems with Application to Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    2000-01-01

    This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. On the analysis side, we have studied the efficient and stable discontinuous Galerkin framework for small second derivative terms, for example in Navier-Stokes equations, and also for related equations such as the Hamilton-Jacobi equations. This is a truly local discontinuous formulation where derivatives are considered as new variables. On the applied side, we have implemented and tested the efficiency of different approaches numerically. Related issues in high order ENO and WENO finite difference methods and spectral methods have also been investigated. Jointly with Hu, we have presented a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the RungeKutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method. Jointly with Hu, we have constructed third and fourth order WENO schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. The third order schemes are based on a combination of linear polynomials with nonlinear weights, and the fourth order schemes are based on combination of quadratic polynomials with nonlinear weights. We have addressed several difficult issues associated with high order WENO schemes on unstructured mesh, including the choice of linear and nonlinear weights, what to do with negative weights, etc. Numerical examples are shown to demonstrate the accuracies and robustness of the methods for shock calculations. Jointly with P. Montarnal, we have used a recently developed energy relaxation theory by Coquel and Perthame and high order weighted essentially non-oscillatory (WENO) schemes to simulate the Euler equations of real gas. The main idea is an energy decomposition under the form epsilon = epsilon(sub 1) + epsilon(sub 2), where epsilon(sub 1) is associated with a simpler pressure law (gamma)-law in this paper) and the nonlinear deviation epsilon(sub 2) is convected with the flow. A relaxation process is performed for each time step to ensure that the original pressure law is satisfied. The necessary characteristic decomposition for the high order WENO schemes is performed on the characteristic fields based on the epsilon(sub l) gamma-law. The algorithm only calls for the original pressure law once per grid point per time step, without the need to compute its derivatives or any Riemann solvers. Both one and two dimensional numerical examples are shown to illustrate the effectiveness of this approach.

  8. A symplectic integration method for elastic filaments

    NASA Astrophysics Data System (ADS)

    Ladd, Tony; Misra, Gaurav

    2009-03-01

    Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.

  9. The Nonlinear Dynamic Response of an Elastic-Plastic Thin Plate under Impulsive Loading,

    DTIC Science & Technology

    1987-06-11

    Among those numerical methods, the finite element method is the most effective one. The method presented in this paper is an " influence function " numerical...computational time is much less than the finite element method. Its precision is higher also. II. Basic Assumption and the Influence Function of a Simple...calculation. Fig. 1 3 2. The Influence function of a Simple Supported Plate The motion differential equation of a thin plate can be written as DV’w+ _.eluq() (1

  10. A Floating Node Method for the Modelling of Discontinuities Within a Finite Element

    NASA Technical Reports Server (NTRS)

    Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.

    2013-01-01

    This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.

  11. Monte-Carlo simulation of a stochastic differential equation

    NASA Astrophysics Data System (ADS)

    Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG

    2017-12-01

    For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.

  12. Semidiscrete Galerkin modelling of compressible viscous flow past a circular cone at incidence. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Meade, Andrew James, Jr.

    1989-01-01

    A numerical study of the laminar and compressible boundary layer, about a circular cone in a supersonic free stream, is presented. It is thought that if accurate and efficient numerical schemes can be produced to solve the boundary layer equations, they can be joined to numerical codes that solve the inviscid outer flow. The combination of these numerical codes is competitive with the accurate, but computationally expensive, Navier-Stokes schemes. The primary goal is to develop a finite element method for the calculation of 3-D compressible laminar boundary layer about a yawed cone. The proposed method can, in principle, be extended to apply to the 3-D boundary layer of pointed bodies of arbitrary cross section. The 3-D boundary layer equations governing supersonic free stream flow about a cone are examined. The 3-D partial differential equations are reduced to 2-D integral equations by applying the Howarth, Mangler, Crocco transformations, a linear relation between viscosity, and a Blasius-type of similarity variable. This is equivalent to a Dorodnitsyn-type formulation. The reduced equations are independent of density and curvature effects, and resemble the weak form of the 2-D incompressible boundary layer equations in Cartesian coordinates. In addition the coordinate normal to the wall has been stretched, which reduces the gradients across the layer and provides high resolution near the surface. Utilizing the parabolic nature of the boundary layer equations, a finite element method is applied to the Dorodnitsyn formulation. The formulation is presented in a Petrov-Galerkin finite element form and discretized across the layer using linear interpolation functions. The finite element discretization yields a system of ordinary differential equations in the circumferential direction. The circumferential derivatives are solved by an implicit and noniterative finite difference marching scheme. Solutions are presented for a 15 deg half angle cone at angles of attack of 5 and 10 deg. The numerical solutions assume a laminar boundary layer with free stream Mach number of 7. Results include circumferential distribution of skin friction and surface heat transfer, and cross flow velocity distributions across the layer.

  13. A simple finite element method for linear hyperbolic problems

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-09-14

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  14. A simple finite element method for linear hyperbolic problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Ye, Xiu

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  15. Generalized Fourier analyses of the advection-diffusion equation - Part I: one-dimensional domains

    NASA Astrophysics Data System (ADS)

    Christon, Mark A.; Martinez, Mario J.; Voth, Thomas E.

    2004-07-01

    This paper presents a detailed multi-methods comparison of the spatial errors associated with finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. The errors are reported in terms of non-dimensional phase and group speed, discrete diffusivity, artificial diffusivity, and grid-induced anisotropy. It is demonstrated that Fourier analysis provides an automatic process for separating the discrete advective operator into its symmetric and skew-symmetric components and characterizing the spectral behaviour of each operator. For each of the numerical methods considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of pure advection and pure diffusion. It is demonstrated that streamline upwind Petrov-Galerkin and its control-volume finite element analogue, the streamline upwind control-volume method, produce both an artificial diffusivity and a concomitant phase speed adjustment in addition to the usual semi-discrete artifacts observed in the phase speed, group speed and diffusivity. The Galerkin finite element method and its streamline upwind derivatives are shown to exhibit super-convergent behaviour in terms of phase and group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method and its streamline upwind derivatives yield strictly second-order behaviour. In Part II of this paper, we consider two-dimensional semi-discretizations of the advection-diffusion equation and also assess the affects of grid-induced anisotropy observed in the non-dimensional phase speed, and the discrete and artificial diffusivities. Although this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common analysis framework. Published in 2004 by John Wiley & Sons, Ltd.

  16. A three-dimensional thermal finite element analysis of AISI 304 stainless steel and copper dissimilar weldment

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil

    2018-04-01

    The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id

    We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.

  18. The L sub 1 finite element method for pure convection problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1991-01-01

    The least squares (L sub 2) finite element method is introduced for 2-D steady state pure convection problems with smooth solutions. It is proven that the L sub 2 method has the same stability estimate as the original equation, i.e., the L sub 2 method has better control of the streamline derivative. Numerical convergence rates are given to show that the L sub 2 method is almost optimal. This L sub 2 method was then used as a framework to develop an iteratively reweighted L sub 2 finite element method to obtain a least absolute residual (L sub 1) solution for problems with discontinuous solutions. This L sub 1 finite element method produces a nonoscillatory, nondiffusive and highly accurate numerical solution that has a sharp discontinuity in one element on both coarse and fine meshes. A robust reweighting strategy was also devised to obtain the L sub 1 solution in a few iterations. A number of examples solved by using triangle and bilinear elements are presented.

  19. An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions.

    PubMed

    Xia, Guohua; Lin, Ching-Long

    2008-04-01

    A new cell-vortex unstructured finite volume method for structural dynamics is assessed for simulations of structural dynamics in response to fluid motions. A robust implicit dual-time stepping method is employed to obtain time accurate solutions. The resulting system of algebraic equations is matrix-free and allows solid elements to include structure thickness, inertia, and structural stresses for accurate predictions of structural responses and stress distributions. The method is coupled with a fluid dynamics solver for fluid-structure interaction, providing a viable alternative to the finite element method for structural dynamics calculations. A mesh sensitivity test indicates that the finite volume method is at least of second-order accuracy. The method is validated by the problem of vortex-induced vibration of an elastic plate with different initial conditions and material properties. The results are in good agreement with existing numerical data and analytical solutions. The method is then applied to simulate a channel flow with an elastic wall. The effects of wall inertia and structural stresses on the fluid flow are investigated.

  20. AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)

    EPA Science Inventory

    Abstract

    A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...

  1. Hybrid finite volume-finite element model for the numerical analysis of furrow irrigation and fertigation

    USDA-ARS?s Scientific Manuscript database

    Although slowly abandoned in developed countries, furrow irrigation systems continue to be a dominant irrigation method in developing countries. Numerical models represent powerful tools to assess irrigation and fertigation efficiency. While several models have been proposed in the past, the develop...

  2. A Fourier collocation time domain method for numerically solving Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1991-01-01

    A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.

  3. A simple finite-difference scheme for handling topography with the first-order wave equation

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.; Huiskes, M. J.

    2017-07-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.

  4. Investigation of shock-induced combustion past blunt projectiles

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, S. N.

    1996-01-01

    A numerical study is conducted to simulate shock-induced combustion in premixed hydrogen-air mixtures at various free-stream conditions and parameters. Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock-induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A seven-species, seven reactions finite rate hydrogen-air chemical reaction mechanism is used combined with a finite-difference, shock-fitting method to solve the complete set of Navier-Stokes and species conservation equations. The study has allowed an improved understanding of the physics of shock-induced combustion over blunt projectiles and the numerical results can now be explained more readily with one-dimensional wave-interaction model.

  5. Numerical approach for finite volume three-body interaction

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Gasparian, Vladimir

    2018-01-01

    In the present work, we study a numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise δ -function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when the strength of short-range interactions are set equal for all pairs.

  6. Numerical simulation using vorticity-vector potential formulation

    NASA Technical Reports Server (NTRS)

    Tokunaga, Hiroshi

    1993-01-01

    An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the computational method. We present the computational method and apply the present method to computations of flows in a square cavity at large Reynolds number in order to investigate its effectiveness.

  7. Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation.

    PubMed

    Feng, Kai; Liu, Yuanyuan; Cheng, Miaomiao

    2015-12-01

    Owing to its distinct non-contact and oil-free characteristics, a self-running sliding stage based on near-field acoustic levitation can be used in an environment, which demands clean rooms and zero noise. This paper presents a numerical analysis on the lifting and transportation capacity of a non-contact transportation system. Two simplified structure models, namely, free vibration and force vibration models, are proposed for the study of the displacement amplitude distribution of two cases using the finite element method. After coupling the stage displacement into the film thickness, the Reynolds equation is solved by the finite difference method to obtain the lifting and thrusting forces. Parametric analyses of the effects of amplitude, frequency, and standing wave ratio (SWR) on the sliding stage dynamic performance are investigated. Numerical results show good agreement with published experimental values. The predictions also reveal that greater transportation capacity of the self-running sliding stage is generally achieved at less SWR and at higher amplitude.

  8. A Locally Modal B-Spline Based Full-Vector Finite-Element Method with PML for Nonlinear and Lossy Plasmonic Waveguide

    NASA Astrophysics Data System (ADS)

    Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan

    2016-09-01

    In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.

  9. A users guide for A344: A program using a finite difference method to analyze transonic flow over oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.

    1979-01-01

    The design and usage of a pilot program for calculating the pressure distributions over harmonically oscillating airfoils in transonic flow are described. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equations for small disturbances. The steady velocity potential which must be obtained from some other program, was required for input. The unsteady equation, as solved, is linear with spatially varying coefficients. Since sinusoidal motion was assumed, time was not a variable. The numerical solution was obtained through a finite difference formulation and either a line relaxation or an out of core direct solution method.

  10. Simulation of ultrasonic and EMAT arrays using FEM and FDTD.

    PubMed

    Xie, Yuedong; Yin, Wuliang; Liu, Zenghua; Peyton, Anthony

    2016-03-01

    This paper presents a method which combines electromagnetic simulation and ultrasonic simulation to build EMAT array models. For a specific sensor configuration, Lorentz forces are calculated using the finite element method (FEM), which then can feed through to ultrasonic simulations. The propagation of ultrasound waves is numerically simulated using finite-difference time-domain (FDTD) method to describe their propagation within homogenous medium and their scattering phenomenon by cracks. Radiation pattern obtained with Hilbert transform on time domain waveforms is proposed to characterise the sensor in terms of its beam directivity and field distribution along the steering angle. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  12. Numerical simulation of transient, incongruent vaporization induced by high power laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems ismore » studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.« less

  13. KAM Tori Construction Algorithms

    NASA Astrophysics Data System (ADS)

    Wiesel, W.

    In this paper we evaluate and compare two algorithms for the calculation of KAM tori in Hamiltonian systems. The direct fitting of a torus Fourier series to a numerically integrated trajectory is the first method, while an accelerated finite Fourier transform is the second method. The finite Fourier transform, with Hanning window functions, is by far superior in both computational loading and numerical accuracy. Some thoughts on applications of KAM tori are offered.

  14. Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation

    NASA Astrophysics Data System (ADS)

    Su, Bo; Tuo, Xianguo; Xu, Ling

    2017-08-01

    Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.

  15. Finite difference elastic wave modeling with an irregular free surface using ADER scheme

    NASA Astrophysics Data System (ADS)

    Almuhaidib, Abdulaziz M.; Nafi Toksöz, M.

    2015-06-01

    In numerical modeling of seismic wave propagation in the earth, we encounter two important issues: the free surface and the topography of the surface (i.e. irregularities). In this study, we develop a 2D finite difference solver for the elastic wave equation that combines a 4th- order ADER scheme (Arbitrary high-order accuracy using DERivatives), which is widely used in aeroacoustics, with the characteristic variable method at the free surface boundary. The idea is to treat the free surface boundary explicitly by using ghost values of the solution for points beyond the free surface to impose the physical boundary condition. The method is based on the velocity-stress formulation. The ultimate goal is to develop a numerical solver for the elastic wave equation that is stable, accurate and computationally efficient. The solver treats smooth arbitrary-shaped boundaries as simple plane boundaries. The computational cost added by treating the topography is negligible compared to flat free surface because only a small number of grid points near the boundary need to be computed. In the presence of topography, using 10 grid points per shortest shear-wavelength, the solver yields accurate results. Benchmark numerical tests using several complex models that are solved by our method and other independent accurate methods show an excellent agreement, confirming the validity of the method for modeling elastic waves with an irregular free surface.

  16. Finite Element Modelling and Analysis of Conventional Pultrusion Processes

    NASA Astrophysics Data System (ADS)

    Akishin, P.; Barkanov, E.; Bondarchuk, A.

    2015-11-01

    Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.

  17. Meshless Method for Simulation of Compressible Flow

    NASA Astrophysics Data System (ADS)

    Nabizadeh Shahrebabak, Ebrahim

    In the present age, rapid development in computing technology and high speed supercomputers has made numerical analysis and computational simulation more practical than ever before for large and complex cases. Numerical simulations have also become an essential means for analyzing the engineering problems and the cases that experimental analysis is not practical. There are so many sophisticated and accurate numerical schemes, which do these simulations. The finite difference method (FDM) has been used to solve differential equation systems for decades. Additional numerical methods based on finite volume and finite element techniques are widely used in solving problems with complex geometry. All of these methods are mesh-based techniques. Mesh generation is an essential preprocessing part to discretize the computation domain for these conventional methods. However, when dealing with mesh-based complex geometries these conventional mesh-based techniques can become troublesome, difficult to implement, and prone to inaccuracies. In this study, a more robust, yet simple numerical approach is used to simulate problems in an easier manner for even complex problem. The meshless, or meshfree, method is one such development that is becoming the focus of much research in the recent years. The biggest advantage of meshfree methods is to circumvent mesh generation. Many algorithms have now been developed to help make this method more popular and understandable for everyone. These algorithms have been employed over a wide range of problems in computational analysis with various levels of success. Since there is no connectivity between the nodes in this method, the challenge was considerable. The most fundamental issue is lack of conservation, which can be a source of unpredictable errors in the solution process. This problem is particularly evident in the presence of steep gradient regions and discontinuities, such as shocks that frequently occur in high speed compressible flow problems. To solve this discontinuity problem, this research study deals with the implementation of a conservative meshless method and its applications in computational fluid dynamics (CFD). One of the most common types of collocating meshless method the RBF-DQ, is used to approximate the spatial derivatives. The issue with meshless methods when dealing with highly convective cases is that they cannot distinguish the influence of fluid flow from upstream or downstream and some methodology is needed to make the scheme stable. Therefore, an upwinding scheme similar to one used in the finite volume method is added to capture steep gradient or shocks. This scheme creates a flexible algorithm within which a wide range of numerical flux schemes, such as those commonly used in the finite volume method, can be employed. In addition, a blended RBF is used to decrease the dissipation ensuing from the use of a low shape parameter. All of these steps are formulated for the Euler equation and a series of test problems used to confirm convergence of the algorithm. The present scheme was first employed on several incompressible benchmarks to validate the framework. The application of this algorithm is illustrated by solving a set of incompressible Navier-Stokes problems. Results from the compressible problem are compared with the exact solution for the flow over a ramp and compared with solutions of finite volume discretization and the discontinuous Galerkin method, both requiring a mesh. The applicability of the algorithm and its robustness are shown to be applied to complex problems.

  18. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics.

    PubMed

    Aguayo-Ortiz, A; Mendoza, S; Olvera, D

    2018-01-01

    In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.

  19. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics

    PubMed Central

    Mendoza, S.; Olvera, D.

    2018-01-01

    In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and “Rankine-Hugoniot” jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges. PMID:29659602

  20. Valuation of financial models with non-linear state spaces

    NASA Astrophysics Data System (ADS)

    Webber, Nick

    2001-02-01

    A common assumption in valuation models for derivative securities is that the underlying state variables take values in a linear state space. We discuss numerical implementation issues in an interest rate model with a simple non-linear state space, formulating and comparing Monte Carlo, finite difference and lattice numerical solution methods. We conclude that, at least in low dimensional spaces, non-linear interest rate models may be viable.

  1. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time.

    PubMed

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.

  2. Assessment of Efficiency and Performance in Tsunami Numerical Modeling with GPU

    NASA Astrophysics Data System (ADS)

    Yalciner, Bora; Zaytsev, Andrey

    2017-04-01

    Non-linear shallow water equations (NSWE) are used to solve the propagation and coastal amplification of long waves and tsunamis. Leap Frog scheme of finite difference technique is one of the satisfactory numerical methods which is widely used in these problems. Tsunami numerical models are necessary for not only academic but also operational purposes which need faster and accurate solutions. Recent developments in information technology provide considerably faster numerical solutions in this respect and are becoming one of the crucial requirements. Tsunami numerical code NAMI DANCE uses finite difference numerical method to solve linear and non-linear forms of shallow water equations for long wave problems, specifically for tsunamis. In this study, the new code is structured for Graphical Processing Unit (GPU) using CUDA API. The new code is applied to different (analytical, experimental and field) benchmark problems of tsunamis for tests. One of those applications is 2011 Great East Japan tsunami which was instrumentally recorded on various types of gauges including tide and wave gauges and offshore GPS buoys cabled Ocean Bottom Pressure (OBP) gauges and DART buoys. The accuracy of the results are compared with the measurements and fairly well agreements are obtained. The efficiency and performance of the code is also compared with the version using multi-core Central Processing Unit (CPU). Dependence of simulation speed with GPU on linear or non-linear solutions is also investigated. One of the results is that the simulation speed is increased up to 75 times comparing to the process time in the computer using single 4/8 thread multi-core CPU. The results are presented with comparisons and discussions. Furthermore how multi-dimensional finite difference problems fits towards GPU architecture is also discussed. The research leading to this study has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No: 603839 (Project ASTARTE-Assessment, Strategy and Risk Reduction for Tsunamis in Europe). PARI, Japan and NOAA, USA are acknowledged for the data of the measurements. Prof. Ahmet C. Yalciner is also acknowledged for his long term and sustained support to the authors.

  3. Optimal rotated staggered-grid finite-difference schemes for elastic wave modeling in TTI media

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2015-11-01

    The rotated staggered-grid finite-difference (RSFD) is an effective approach for numerical modeling to study the wavefield characteristics in tilted transversely isotropic (TTI) media. But it surfaces from serious numerical dispersion, which directly affects the modeling accuracy. In this paper, we propose two different optimal RSFD schemes based on the sampling approximation (SA) method and the least-squares (LS) method respectively to overcome this problem. We first briefly introduce the RSFD theory, based on which we respectively derive the SA-based RSFD scheme and the LS-based RSFD scheme. Then different forms of analysis are used to compare the SA-based RSFD scheme and the LS-based RSFD scheme with the conventional RSFD scheme, which is based on the Taylor-series expansion (TE) method. The contrast in numerical accuracy analysis verifies the greater accuracy of the two proposed optimal schemes, and indicates that these schemes can effectively widen the wavenumber range with great accuracy compared with the TE-based RSFD scheme. Further comparisons between these two optimal schemes show that at small wavenumbers, the SA-based RSFD scheme performs better, while at large wavenumbers, the LS-based RSFD scheme leads to a smaller error. Finally, the modeling results demonstrate that for the same operator length, the SA-based RSFD scheme and the LS-based RSFD scheme can achieve greater accuracy than the TE-based RSFD scheme, while for the same accuracy, the optimal schemes can adopt shorter difference operators to save computing time.

  4. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chao, D. F. K.

    1983-01-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  5. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique

    NASA Technical Reports Server (NTRS)

    Baum, J. D.; Levine, J. N.

    1980-01-01

    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  6. Application of the Green's function method for 2- and 3-dimensional steady transonic flows

    NASA Technical Reports Server (NTRS)

    Tseng, K.

    1984-01-01

    A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.

  7. The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.

    NASA Astrophysics Data System (ADS)

    Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.

    2009-04-01

    Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D, which allows to handle the topography of the domain very accurately. Moreover, the fact that the resulting mass matrix is block-diagonal and that IPDG is compatible with the use of high-order finite element may let us suppose that its performances are similar to the ones of the SEM. In this presentation, we study the performances of IDPG through numerical comparisons with the SEM in 1D and 2D. We compare in particular the accuracy of the solutions obtained by the two methods with various order of approximation and the computational burden of the algorithms. The conclusion is IPDG and SEM perform similarly when considering low order finite elements while IPDG outperforms SEM in case of high order finite elements. Next we illustrate the impact of IPDG on the RTM, first through a simple configuration test (two-layered medium), then through realistic industrial applications in 2D.

  8. Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices

    NASA Astrophysics Data System (ADS)

    Balzani, Daniel; Gandhi, Ashutosh; Tanaka, Masato; Schröder, Jörg

    2015-05-01

    In this paper a robust approximation scheme for the numerical calculation of tangent stiffness matrices is presented in the context of nonlinear thermo-mechanical finite element problems and its performance is analyzed. The scheme extends the approach proposed in Kim et al. (Comput Methods Appl Mech Eng 200:403-413, 2011) and Tanaka et al. (Comput Methods Appl Mech Eng 269:454-470, 2014 and bases on applying the complex-step-derivative approximation to the linearizations of the weak forms of the balance of linear momentum and the balance of energy. By incorporating consistent perturbations along the imaginary axis to the displacement as well as thermal degrees of freedom, we demonstrate that numerical tangent stiffness matrices can be obtained with accuracy up to computer precision leading to quadratically converging schemes. The main advantage of this approach is that contrary to the classical forward difference scheme no round-off errors due to floating-point arithmetics exist within the calculation of the tangent stiffness. This enables arbitrarily small perturbation values and therefore leads to robust schemes even when choosing small values. An efficient algorithmic treatment is presented which enables a straightforward implementation of the method in any standard finite-element program. By means of thermo-elastic and thermo-elastoplastic boundary value problems at finite strains the performance of the proposed approach is analyzed.

  9. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    NASA Astrophysics Data System (ADS)

    Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.

    2017-11-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.

  10. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  11. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersson, N. Anders; Sjogreen, Bjorn

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  12. The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*

    NASA Astrophysics Data System (ADS)

    Chen, Zhenxing; Hou, Kepeng; Chen, Longwei

    2018-03-01

    For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.

  13. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2017-04-18

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  14. A comparative study between two smoothing strategies for the simulation of contact with large sliding

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Magnain, Benoît; Chevaugeon, Nicolas

    2013-05-01

    The numerical simulation of contact problems is still a delicate matter especially when large transformations are involved. In that case, relative large slidings can occur between contact surfaces and the discretization error induced by usual finite elements may not be satisfactory. In particular, usual elements lead to a facetization of the contact surface, meaning an unavoidable discontinuity of the normal vector to this surface. Uncertainty over the precision of the results, irregularity of the displacement of the contact nodes and even numerical oscillations of contact reaction force may result of such discontinuity. Among the existing methods for tackling such issue, one may consider mortar elements (Fischer and Wriggers, Comput Methods Appl Mech Eng 195:5020-5036, 2006; McDevitt and Laursen, Int J Numer Methods Eng 48:1525-1547, 2000; Puso and Laursen, Comput Methods Appl Mech Eng 93:601-629, 2004), smoothing of the contact surfaces with additional geometrical entity (B-splines or NURBS) (Belytschko et al., Int J Numer Methods Eng 55:101-125, 2002; Kikuchi, Penalty/finite element approximations of a class of unilateral contact problems. Penalty method and finite element method, ASME, New York, 1982; Legrand, Modèles de prediction de l'interaction rotor/stator dans un moteur d'avion Thèse de doctorat. PhD thesis, École Centrale de Nantes, Nantes, 2005; Muñoz, Comput Methods Appl Mech Eng 197:979-993, 2008; Wriggers and Krstulovic-Opara, J Appl Math Mech (ZAMM) 80:77-80, 2000) and, the use of isogeometric analysis (Temizer et al., Comput Methods Appl Mech Eng 200:1100-1112, 2011; Hughes et al., Comput Methods Appl Mech Eng 194:4135-4195, 2005; de Lorenzis et al., Int J Numer Meth Eng, in press, 2011). In the present paper, we focus on these last two methods which are combined with a finite element code using the bi-potential method for contact management (Feng et al., Comput Mech 36:375-383, 2005). A comparative study focusing on the pros and cons of each method regarding geometrical precision and numerical stability for contact solution is proposed. The scope of this study is limited to 2D contact problems for which we consider several types of finite elements. Test cases are given in order to illustrate this comparative study.

  15. An extended validation of the last generation of particle finite element method for free surface flows

    NASA Astrophysics Data System (ADS)

    Gimenez, Juan M.; González, Leo M.

    2015-03-01

    In this paper, a new generation of the particle method known as Particle Finite Element Method (PFEM), which combines convective particle movement and a fixed mesh resolution, is applied to free surface flows. This interesting variant, previously described in the literature as PFEM-2, is able to use larger time steps when compared to other similar numerical tools which implies shorter computational times while maintaining the accuracy of the computation. PFEM-2 has already been extended to free surface problems, being the main topic of this paper a deep validation of this methodology for a wider range of flows. To accomplish this task, different improved versions of discontinuous and continuous enriched basis functions for the pressure field have been developed to capture the free surface dynamics without artificial diffusion or undesired numerical effects when different density ratios are involved. A collection of problems has been carefully selected such that a wide variety of Froude numbers, density ratios and dominant dissipative cases are reported with the intention of presenting a general methodology, not restricted to a particular range of parameters, and capable of using large time-steps. The results of the different free-surface problems solved, which include: Rayleigh-Taylor instability, sloshing problems, viscous standing waves and the dam break problem, are compared to well validated numerical alternatives or experimental measurements obtaining accurate approximations for such complex flows.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Z.; Department of Applied Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083; Lin, P.

    In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C{sup 0} finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy lawmore » (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C{sup 0} finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.« less

  17. Finite Volume Method for Pricing European Call Option with Regime-switching Volatility

    NASA Astrophysics Data System (ADS)

    Lista Tauryawati, Mey; Imron, Chairul; Putri, Endah RM

    2018-03-01

    In this paper, we present a finite volume method for pricing European call option using Black-Scholes equation with regime-switching volatility. In the first step, we formulate the Black-Scholes equations with regime-switching volatility. we use a finite volume method based on fitted finite volume with spatial discretization and an implicit time stepping technique for the case. We show that the regime-switching scheme can revert to the non-switching Black Scholes equation, both in theoretical evidence and numerical simulations.

  18. A Hybrid Numerical Analysis Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Staroselsky, Alexander

    2001-01-01

    A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.

  19. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modelled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  20. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  1. An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation

    NASA Astrophysics Data System (ADS)

    Li, Jia-Wei; Wang, Jiang-Feng

    2018-05-01

    In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.

  2. Some problems of the calculation of three-dimensional boundary layer flows on general configurations

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.

    1973-01-01

    An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.

  3. Influence of the Numerical Scheme on the Solution Quality of the SWE for Tsunami Numerical Codes: The Tohoku-Oki, 2011Example.

    NASA Astrophysics Data System (ADS)

    Reis, C.; Clain, S.; Figueiredo, J.; Baptista, M. A.; Miranda, J. M. A.

    2015-12-01

    Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.

  4. Numerical simulations of negatively buoyant jets in an immiscible fluid using the Particle Finite Element Method

    NASA Astrophysics Data System (ADS)

    Mier-Torrecilla, Monica; Geyer, Adelina; Phillips, Jeremy C.; Idelsohn, Sergio R.; Oñate, Eugenio

    2010-05-01

    In this work we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method (PFEM), a newly developed tool that combines the flexibility of particle-based methods with the accuracy of the finite element discretization. In order to test the applicability of PFEM to the study of negatively buoyant jets, we have compared the two-dimensional numerical results with experiments investigating the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter were varied to cover a wide range of Reynolds Re and Froude numbers Fr, such that 0.1 < Fr < 30, reproducing both weak and strong fountains in a laminar regime (8 < Re < 1350). Numerical results, together with the experimental observations, allow us to describe three different fountain behaviors that have not been previously reported. Based on the Re and Fr values for the numerical and experimental simulations, we have built a regime map to define how these values may control the occurrence of each of the observed flow types. Whereas the Fr number itself provides a prediction of the maximum penetration height of the jet, its combination with the Re number provides a prediction of the flow behavior for a specific nozzle diameter and injection velocity. Conclusive remarks concerning the dynamics of negatively buoyant jets may be applied later on to several geological situations, e.g. the flow structure of a fully submerged subaqueous eruptive vent discharging magma or the replenishment of magma chambers in the Earth's crust.

  5. Least-squares finite element method for fluid dynamics

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1989-01-01

    An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples.

  6. Flux vector splitting of the inviscid equations with application to finite difference methods

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Warming, R. F.

    1979-01-01

    The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.

  7. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  8. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later Shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modeled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  9. Rotordynamic coefficients for labyrinth seals calculated by means of a finite difference technique

    NASA Technical Reports Server (NTRS)

    Nordmann, R.; Weiser, P.

    1989-01-01

    The compressible, turbulent, time dependent and three dimensional flow in a labyrinth seal can be described by the Navier-Stokes equations in conjunction with a turbulence model. Additionally, equations for mass and energy conservation and an equation of state are required. To solve these equations, a perturbation analysis is performed yielding zeroth order equations for centric shaft position and first order equations describing the flow field for small motions around the seal center. For numerical solution a finite difference method is applied to the zeroth and first order equations resulting in leakage and dynamic seal coefficients respectively.

  10. Spectral-element Method for 3D Marine Controlled-source EM Modeling

    NASA Astrophysics Data System (ADS)

    Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.

    2017-12-01

    As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).

  11. Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review

    NASA Astrophysics Data System (ADS)

    Kahnert, Michael

    2016-07-01

    Numerical solution methods for electromagnetic scattering by non-spherical particles comprise a variety of different techniques, which can be traced back to different assumptions and solution strategies applied to the macroscopic Maxwell equations. One can distinguish between time- and frequency-domain methods; further, one can divide numerical techniques into finite-difference methods (which are based on approximating the differential operators), separation-of-variables methods (which are based on expanding the solution in a complete set of functions, thus approximating the fields), and volume integral-equation methods (which are usually solved by discretisation of the target volume and invoking the long-wave approximation in each volume cell). While existing reviews of the topic often tend to have a target audience of program developers and expert users, this tutorial review is intended to accommodate the needs of practitioners as well as novices to the field. The required conciseness is achieved by limiting the presentation to a selection of illustrative methods, and by omitting many technical details that are not essential at a first exposure to the subject. On the other hand, the theoretical basis of numerical methods is explained with little compromises in mathematical rigour; the rationale is that a good grasp of numerical light scattering methods is best achieved by understanding their foundation in Maxwell's theory.

  12. Efficient numerical method for solving Cauchy problem for the Gamma equation

    NASA Astrophysics Data System (ADS)

    Koleva, Miglena N.

    2011-12-01

    In this work we consider Cauchy problem for the so called Gamma equation, derived by transforming the fully nonlinear Black-Scholes equation for option price into a quasilinear parabolic equation for the second derivative (Greek) Γ = VSS of the option price V. We develop an efficient numerical method for solving the model problem concerning different volatility terms. Using suitable change of variables the problem is transformed on finite interval, keeping original behavior of the solution at the infinity. Then we construct Picard-Newton algorithm with adaptive mesh step in time, which can be applied also in the case of non-differentiable functions. Results of numerical simulations are given.

  13. Electron Energy-Loss Spectroscopy (EELS)Calculation in Finite-Difference Time-Domain (FDTD) Package: EELS-FDTD

    NASA Astrophysics Data System (ADS)

    Large, Nicolas; Cao, Yang; Manjavacas, Alejandro; Nordlander, Peter

    2015-03-01

    Electron energy-loss spectroscopy (EELS) is a unique tool that is extensively used to investigate the plasmonic response of metallic nanostructures since the early works in the '50s. To be able to interpret and theoretically investigate EELS results, a myriad of different numerical techniques have been developed for EELS simulations (BEM, DDA, FEM, GDTD, Green dyadic functions). Although these techniques are able to predict and reproduce experimental results, they possess significant drawbacks and are often limited to highly symmetrical geometries, non-penetrating trajectories, small nanostructures, and free standing nanostructures. We present here a novel approach for EELS calculations using the Finite-difference time-domain (FDTD) method: EELS-FDTD. We benchmark our approach by direct comparison with results from the well-established boundary element method (BEM) and published experimental results. In particular, we compute EELS spectra for spherical nanoparticles, nanoparticle dimers, nanodisks supported by various substrates, and gold bowtie antennas on a silicon nitride substrate. Our EELS-FDTD implementation can be easily extended to more complex geometries and configurations and can be directly implemented within other numerical methods. Work funded by the Welch Foundation (C-1222, L-C-004), and the NSF (CNS-0821727, OCI-0959097).

  14. A weak Galerkin least-squares finite element method for div-curl systems

    NASA Astrophysics Data System (ADS)

    Li, Jichun; Ye, Xiu; Zhang, Shangyou

    2018-06-01

    In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.

  15. Analysis and algorithms for a regularized Cauchy problem arising from a non-linear elliptic PDE for seismic velocity estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, M.K.; Fomel, S.B.; Sethian, J.A.

    2009-01-01

    In the present work we derive and study a nonlinear elliptic PDE coming from the problem of estimation of sound speed inside the Earth. The physical setting of the PDE allows us to pose only a Cauchy problem, and hence is ill-posed. However we are still able to solve it numerically on a long enough time interval to be of practical use. We used two approaches. The first approach is a finite difference time-marching numerical scheme inspired by the Lax-Friedrichs method. The key features of this scheme is the Lax-Friedrichs averaging and the wide stencil in space. The second approachmore » is a spectral Chebyshev method with truncated series. We show that our schemes work because of (1) the special input corresponding to a positive finite seismic velocity, (2) special initial conditions corresponding to the image rays, (3) the fact that our finite-difference scheme contains small error terms which damp the high harmonics; truncation of the Chebyshev series, and (4) the need to compute the solution only for a short interval of time. We test our numerical scheme on a collection of analytic examples and demonstrate a dramatic improvement in accuracy in the estimation of the sound speed inside the Earth in comparison with the conventional Dix inversion. Our test on the Marmousi example confirms the effectiveness of the proposed approach.« less

  16. Numerical Differentiation of Noisy, Nonsmooth Data

    DOE PAGES

    Chartrand, Rick

    2011-01-01

    We consider the problem of differentiating a function specified by noisy data. Regularizing the differentiation process avoids the noise amplification of finite-difference methods. We use total-variation regularization, which allows for discontinuous solutions. The resulting simple algorithm accurately differentiates noisy functions, including those which have a discontinuous derivative.

  17. Mountain bicycle frame testing as an example of practical implementation of hybrid simulation using RTFEM

    NASA Astrophysics Data System (ADS)

    Mucha, Waldemar; Kuś, Wacław

    2018-01-01

    The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.

  18. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  19. Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2010-01-01

    The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.

  20. A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Hu, Changqing; Shu, Chi-Wang

    1998-01-01

    In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Shweta; Sharma, Prerana; Kaothekar, Sachin

    The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modifiedmore » thermal instability and stability are discussed in the different cases of interest.« less

  2. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  3. Given a one-step numerical scheme, on which ordinary differential equations is it exact?

    NASA Astrophysics Data System (ADS)

    Villatoro, Francisco R.

    2009-01-01

    A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk's second-order rational, and van Niekerk's third-order rational methods are presented.

  4. Solitary wave solutions and their interactions for fully nonlinear water waves with surface tension in the generalized Serre equations

    NASA Astrophysics Data System (ADS)

    Dutykh, Denys; Hoefer, Mark; Mitsotakis, Dimitrios

    2018-04-01

    Some effects of surface tension on fully nonlinear, long, surface water waves are studied by numerical means. The differences between various solitary waves and their interactions in subcritical and supercritical surface tension regimes are presented. Analytical expressions for new peaked traveling wave solutions are presented in the dispersionless case of critical surface tension. Numerical experiments are performed using a high-accurate finite element method based on smooth cubic splines and the four-stage, classical, explicit Runge-Kutta method of order 4.

  5. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    NASA Technical Reports Server (NTRS)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  6. Preconditioning the Helmholtz Equation for Rigid Ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1998-01-01

    An innovative hyperbolic preconditioning technique is developed for the numerical solution of the Helmholtz equation which governs acoustic propagation in ducts. Two pseudo-time parameters are used to produce an explicit iterative finite difference scheme. This scheme eliminates the large matrix storage requirements normally associated with numerical solutions to the Helmholtz equation. The solution procedure is very fast when compared to other transient and steady methods. Optimization and an error analysis of the preconditioning factors are present. For validation, the method is applied to sound propagation in a 2D semi-infinite hard wall duct.

  7. A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface

    NASA Astrophysics Data System (ADS)

    Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo

    2016-09-01

    The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.

  8. Simulation of 2D rarefied gas flows based on the numerical solution of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Poleshkin, Sergey O.; Malkov, Ewgenij A.; Kudryavtsev, Alexey N.; Shershnev, Anton A.; Bondar, Yevgeniy A.; Kohanchik, A. A.

    2017-10-01

    There are various methods for calculating rarefied gas flows, in particular, statistical methods and deterministic methods based on the finite-difference solutions of the Boltzmann nonlinear kinetic equation and on the solutions of model kinetic equations. There is no universal method; each has its disadvantages in terms of efficiency or accuracy. The choice of the method depends on the problem to be solved and on parameters of calculated flows. Qualitative theoretical arguments help to determine the range of parameters of effectively solved problems for each method; however, it is advisable to perform comparative tests of calculations of the classical problems performed by different methods and with different parameters to have quantitative confirmation of this reasoning. The paper provides the results of the calculations performed by the authors with the help of the Direct Simulation Monte Carlo method and finite-difference methods of solving the Boltzmann equation and model kinetic equations. Based on this comparison, conclusions are made on selecting a particular method for flow simulations in various ranges of flow parameters.

  9. FLUX-CORRECTED TRANSPORT TECHNIQUE FOR OPEN CHANNEL FLOW. (R825200)

    EPA Science Inventory

    In modeling flow in open channels, the traditional finite difference/finite volume schemes become inefficient and warrant special numerical treatment in the presence of shocks and discontinuities. The numerical oscillations that arise by making use of a second- and higher-order s...

  10. Numerical Modeling of Ultra Wideband Combined Antennas

    NASA Astrophysics Data System (ADS)

    Zorkal'tseva, M. Yu.; Koshelev, V. I.; Petkun, A. A.

    2017-12-01

    With the help of a program we developed, based on the finite difference method in the time domain, we have investigated the characteristics of ultra wideband combined antennas in detail. The antennas were developed to radiate bipolar pulses with durations in the range 0.5-3 ns. Data obtained by numerical modeling are compared with the data of experimental studies on antennas and have been used in the synthesis of electromagnetic pulses with maximum field strength.

  11. Experimental and Numerical Analysis of Axially Compressed Circular Cylindrical Fiber-Reinforced Panels with Various Boundary Conditions.

    DTIC Science & Technology

    1981-10-01

    Numerical predictions used in the compari- sons were obtained from the energy -based, finite-difference computer proqram CLAPP. Test specimens were clamped...edges V LONGITUDINAL STIFFENERS 45 I. Introduction 45 2. Stiffener Strain Energy 46 3. Stiffener Energy in Matrix Form 47 4. Displacement Continuity 49...that theoretical bifurcation loads predicted by the energy method represent upper bounds to the classical bifurcation loads associated with the test

  12. Assessing the capability of numerical methods to predict earthquake ground motion: the Euroseistest verification and validation project

    NASA Astrophysics Data System (ADS)

    Chaljub, E. O.; Bard, P.; Tsuno, S.; Kristek, J.; Moczo, P.; Franek, P.; Hollender, F.; Manakou, M.; Raptakis, D.; Pitilakis, K.

    2009-12-01

    During the last decades, an important effort has been dedicated to develop accurate and computationally efficient numerical methods to predict earthquake ground motion in heterogeneous 3D media. The progress in methods and increasing capability of computers have made it technically feasible to calculate realistic seismograms for frequencies of interest in seismic design applications. In order to foster the use of numerical simulation in practical prediction, it is important to (1) evaluate the accuracy of current numerical methods when applied to realistic 3D applications where no reference solution exists (verification) and (2) quantify the agreement between recorded and numerically simulated earthquake ground motion (validation). Here we report the results of the Euroseistest verification and validation project - an ongoing international collaborative work organized jointly by the Aristotle University of Thessaloniki, Greece, the Cashima research project (supported by the French nuclear agency, CEA, and the Laue-Langevin institute, ILL, Grenoble), and the Joseph Fourier University, Grenoble, France. The project involves more than 10 international teams from Europe, Japan and USA. The teams employ the Finite Difference Method (FDM), the Finite Element Method (FEM), the Global Pseudospectral Method (GPSM), the Spectral Element Method (SEM) and the Discrete Element Method (DEM). The project makes use of a new detailed 3D model of the Mygdonian basin (about 5 km wide, 15 km long, sediments reach about 400 m depth, surface S-wave velocity is 200 m/s). The prime target is to simulate 8 local earthquakes with magnitude from 3 to 5. In the verification, numerical predictions for frequencies up to 4 Hz for a series of models with increasing structural and rheological complexity are analyzed and compared using quantitative time-frequency goodness-of-fit criteria. Predictions obtained by one FDM team and the SEM team are close and different from other predictions (consistent with the ESG2006 exercise which targeted the Grenoble Valley). Diffractions off the basin edges and induced surface-wave propagation mainly contribute to differences between predictions. The differences are particularly large in the elastic models but remain important also in models with attenuation. In the validation, predictions are compared with the recordings by a local array of 19 surface and borehole accelerometers. The level of agreement is found event-dependent. For the largest-magnitude event the agreement is surprisingly good even at high frequencies.

  13. Influence of local meshing size on stress intensity factor of orthopedic lag screw

    NASA Astrophysics Data System (ADS)

    Husain, M. N.; Daud, R.; Basaruddin, K. S.; Mat, F.; Bajuri, M. Y.; Arifin, A. K.

    2017-09-01

    Linear elastic fracture mechanics (LEFM) concept is generally used to study the influence of crack on the performance of structures. In order to study the LEFM concept on damaged structure, the usage of finite element analysis software is implemented to do the simulation of the structure. Mesh generation is one of the most crucial procedures in finite element method. For the structure that crack or damaged, it is very important to determine the accurate local meshing size at the crack tip of the crack itself in order to get the accurate value of stress intensity factor, KI. Pre crack will be introduced to the lag screw based on the von mises' stress result that had been performed in previous research. This paper shows the influence of local mesh arrangement on numerical value of the stress intensity factor, KI obtained by the displacement method. This study aims to simulate the effect of local meshing which is the singularity region on stress intensity factor, KI to the critical point of failure in screw. Five different set of wedges meshing size are introduced during the simulation of finite element analysis. The number of wedges used to simulate this research is 8, 10, 14, 16 and 20. There are three set of numerical equations used to validate the results which are brown and srawley, gross and brown and Tada equation. The result obtained from the finite element software (ANSYS APDL) has a positive agreement with the numerical analysis which is Brown and Srawley compared to other numerical formula. Radius of first row size of 0.014 and singularity element with 14 numbers of wedges is proved to be the best local meshing for this study.

  14. A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Komen, E. M. J.; Camilo, L. H.; Shams, A.; Geurts, B. J.; Koren, B.

    2017-09-01

    LES for industrial applications with complex geometries is mostly characterised by: a) a finite volume CFD method using a non-staggered arrangement of the flow variables and second order accurate spatial and temporal discretisation schemes, b) an implicit top-hat filter, where the filter length is equal to the local computational cell size, and c) eddy-viscosity type LES models. LES based on these three main characteristics is indicated as industrial LES in this paper. It becomes increasingly clear that the numerical dissipation in CFD codes typically used in industrial applications with complex geometries may inhibit the predictive capabilities of explicit LES. Therefore, there is a need to quantify the numerical dissipation rate in such CFD codes. In this paper, we quantify the numerical dissipation rate in physical space based on an analysis of the transport equation for the mean turbulent kinetic energy. Using this method, we quantify the numerical dissipation rate in a quasi-Direct Numerical Simulation (DNS) and in under-resolved DNS of, as a basic demonstration case, fully-developed turbulent channel flow. With quasi-DNS, we indicate a DNS performed using a second order accurate finite volume method typically used in industrial applications. Furthermore, we determine and explain the trends in the performance of industrial LES for fully-developed turbulent channel flow for four different Reynolds numbers for three different LES mesh resolutions. The presented explanation of the mechanisms behind the observed trends is based on an analysis of the turbulent kinetic energy budgets. The presented quantitative analyses demonstrate that the numerical errors in the industrial LES computations of the considered turbulent channel flows result in a net numerical dissipation rate which is larger than the subgrid-scale dissipation rate. No new computational methods are presented in this paper. Instead, the main new elements in this paper are our detailed quantification method for the numerical dissipation rate, the application of this method to a quasi-DNS and under-resolved DNS of fully-developed turbulent channel flow, and the explanation of the effects of the numerical dissipation on the observed trends in the performance of industrial LES for fully-developed turbulent channel flows.

  15. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.

    PubMed

    Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A

    2003-02-01

    A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.

  16. Numerical prediction of the energy efficiency of the three-dimensional fish school using the discretized Adomian decomposition method

    NASA Astrophysics Data System (ADS)

    Lin, Yinwei

    2018-06-01

    A three-dimensional modeling of fish school performed by a modified Adomian decomposition method (ADM) discretized by the finite difference method is proposed. To our knowledge, few studies of the fish school are documented due to expensive cost of numerical computing and tedious three-dimensional data analysis. Here, we propose a simple model replied on the Adomian decomposition method to estimate the efficiency of energy saving of the flow motion of the fish school. First, the analytic solutions of Navier-Stokes equations are used for numerical validation. The influences of the distance between the side-by-side two fishes are studied on the energy efficiency of the fish school. In addition, the complete error analysis for this method is presented.

  17. The Constraint Method for Solid Finite Elements.

    DTIC Science & Technology

    1980-09-30

    9. ’Hierarchical Approximation in Finite Element Analysis", by I. Norman Katz, International Symposium on Innovative Numerical Analysis In Applied ... Engineering Science, Versailles, France, May 23-27, 1977. 10. "Efficient Generation of Hierarchal Finite Elamnts Through the Use of Precomputed Arrays

  18. Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-12-22

    Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less

  19. Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less

  20. Calculation of Sensitivity Derivatives in an MDAO Framework

    NASA Technical Reports Server (NTRS)

    Moore, Kenneth T.

    2012-01-01

    During gradient-based optimization of a system, it is necessary to generate the derivatives of each objective and constraint with respect to each design parameter. If the system is multidisciplinary, it may consist of a set of smaller "components" with some arbitrary data interconnection and process work ow. Analytical derivatives in these components can be used to improve the speed and accuracy of the derivative calculation over a purely numerical calculation; however, a multidisciplinary system may include both components for which derivatives are available and components for which they are not. Three methods to calculate the sensitivity of a mixed multidisciplinary system are presented: the finite difference method, where the derivatives are calculated numerically; the chain rule method, where the derivatives are successively cascaded along the system's network graph; and the analytic method, where the derivatives come from the solution of a linear system of equations. Some improvements to these methods, to accommodate mixed multidisciplinary systems, are also presented; in particular, a new method is introduced to allow existing derivatives to be used inside of finite difference. All three methods are implemented and demonstrated in the open-source MDAO framework OpenMDAO. It was found that there are advantages to each of them depending on the system being solved.

  1. magnum.fe: A micromagnetic finite-element simulation code based on FEniCS

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter

    2013-11-01

    We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.

  2. Fibre Bragg grating sensing and finite element analysis of the biomechanics of the mandible

    NASA Astrophysics Data System (ADS)

    Silva, J. C. C.; Ramos, A.; Carvalho, L.; Nogueira, R. N.; Ballu, A.; Mesnard, M.; Pinto, J. L.; Kalinowski, Hypolito J.; Simoes, J. A.

    2005-05-01

    This paper describes the application of fibre Bragg grating (FBG) sensors to measure strains at the outer surface of a mandible. The strains were correlated to identical ones obtained with a numerical finite element model. For this purpose, a synthetic mandible was used and 4 Bragg sensors were glued to the mandible. Strain patterns were assessed for different load configurations which included the forces of the masseter and temporal muscles and occlusion loads on different tooth (incisor, canine and molar). Overall the strains obtained using different measuring methods were identical, namely for the case of symmetric loading. When loading was non-symmetric, strain differences were observed at one sensor.

  3. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  4. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Energy Efficiency of Induction Motors Running Off Frequency Converters with Pulse-Width Voltage Modulation{sup 1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvetsov, N. K., E-mail: elmash@em.ispu.ru

    2016-11-15

    The results of calculations of the increase in losses in an induction motor with frequency control and different forms of the supply voltage are presented. The calculations were performed by an analytic method based on harmonic analysis of the supply voltage as well as numerical calculation of the electromagnetic processes by the finite-element method.

  6. Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grutzik, Scott Joseph; Reedy, Jr., E. D.

    Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less

  7. Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

    DOE PAGES

    Grutzik, Scott Joseph; Reedy, Jr., E. D.

    2017-08-04

    Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less

  8. UXO Discrimination in Cases with Overlapping Signatures

    DTIC Science & Technology

    2007-03-07

    13. APPENDIX B: HFE -BIEM ..........................................................................................................290 - 7...First principals numerical solutions developed were a Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM) body of revolution (BOR...attacks, namely the Method of Auxiliary Sources (MAS) and the Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM). These work

  9. Analysis of crack propagation in human long bone by using finite element modeling

    NASA Astrophysics Data System (ADS)

    Salim, Mohammad Shahril; Salleh, Ahmad Faizal; Daud, Ruslizam

    2017-12-01

    The aim of this research is to present a numerical modeling of crack for human long bone specifically on femur shaft bone under mode I loading condition. Two - dimensional model (2D) of long bone was developed based on past research study. The finite element analysis and construction of the model are done using Mechanical APDL (ANSYS) v14.0 software. The research was conducted mainly based on two conditions that were at different crack lengths and different loading forces for male and female. In order to evaluate the stress intensity factor (KI) of the femur shaft of long bone, this research employed finite element method to predict the brittle fracture loading by using three-point bending test. The result of numerical test found that the crack was formed when the crack length reached 0.0022 m where KI values are proportional with the crack's length. Also, various loading forces in range of 400 N to 1000 N were applied in an attempt to study their effect on stress intensity factor and it was found that the female dimension has higher KI values compared to male. It was also observed that K values found by this method have good agreement with theoretical results based on previous research.

  10. A semi-implicit finite difference model for three-dimensional tidal circulation,

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1992-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.

  11. Optimal least-squares finite element method for elliptic problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1991-01-01

    An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.

  12. Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite element method

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1992-01-01

    A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.

  13. Extension and Validation of a Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 2

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Shivarama, Ravishankar

    2004-01-01

    The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.

  14. Mathematical modeling of heat transfer problems in the permafrost

    NASA Astrophysics Data System (ADS)

    Gornov, V. F.; Stepanov, S. P.; Vasilyeva, M. V.; Vasilyev, V. I.

    2014-11-01

    In this work we present results of numerical simulation of three-dimensional temperature fields in soils for various applied problems: the railway line in the conditions of permafrost for different geometries, the horizontal tunnel underground storage and greenhouses of various designs in the Far North. Mathematical model of the process is described by a nonstationary heat equation with phase transitions of pore water. The numerical realization of the problem is based on the finite element method using a library of scientific computing FEniCS. For numerical calculations we use high-performance computing systems.

  15. Determination of Fracture Parameters for Multiple Cracks of Laminated Composite Finite Plate

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit Kumar; Arora, P. K.; Srivastava, Sharad Chandra; Kumar, Harish; Lohumi, M. K.

    2018-04-01

    A predictive method for estimation of stress state at zone of crack tip and assessment of remaining component lifetime depend on the stress intensity factor (SIF). This paper discusses the numerical approach for prediction of first ply failure load (FL), progressive failure load, SIF and critical SIF for multiple cracks configurations of laminated composite finite plate using finite element method (FEM). The Hashin and Chang failure criterion are incorporated in ABAQUS using subroutine approach user defined field variables (USDFLD) for prediction of progressive fracture response of laminated composite finite plate, which is not directly available in the software. A tensile experiment on laminated composite finite plate with stress concentration is performed to validate the numerically predicted subroutine results, shows excellent agreement. The typical results are presented to examine effect of changing the crack tip distance (S), crack offset distance (H), and stacking fiber angle (θ) on FL, and SIF .

  16. Characterization of Meta-Materials Using Computational Electromagnetic Methods

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Shin, Joon

    2005-01-01

    An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.

  17. A k-space method for large-scale models of wave propagation in tissue.

    PubMed

    Mast, T D; Souriau, L P; Liu, D L; Tabei, M; Nachman, A I; Waag, R C

    2001-03-01

    Large-scale simulation of ultrasonic pulse propagation in inhomogeneous tissue is important for the study of ultrasound-tissue interaction as well as for development of new imaging methods. Typical scales of interest span hundreds of wavelengths; most current two-dimensional methods, such as finite-difference and finite-element methods, are unable to compute propagation on this scale with the efficiency needed for imaging studies. Furthermore, for most available methods of simulating ultrasonic propagation, large-scale, three-dimensional computations of ultrasonic scattering are infeasible. Some of these difficulties have been overcome by previous pseudospectral and k-space methods, which allow substantial portions of the necessary computations to be executed using fast Fourier transforms. This paper presents a simplified derivation of the k-space method for a medium of variable sound speed and density; the derivation clearly shows the relationship of this k-space method to both past k-space methods and pseudospectral methods. In the present method, the spatial differential equations are solved by a simple Fourier transform method, and temporal iteration is performed using a k-t space propagator. The temporal iteration procedure is shown to be exact for homogeneous media, unconditionally stable for "slow" (c(x) < or = c0) media, and highly accurate for general weakly scattering media. The applicability of the k-space method to large-scale soft tissue modeling is shown by simulating two-dimensional propagation of an incident plane wave through several tissue-mimicking cylinders as well as a model chest wall cross section. A three-dimensional implementation of the k-space method is also employed for the example problem of propagation through a tissue-mimicking sphere. Numerical results indicate that the k-space method is accurate for large-scale soft tissue computations with much greater efficiency than that of an analogous leapfrog pseudospectral method or a 2-4 finite difference time-domain method. However, numerical results also indicate that the k-space method is less accurate than the finite-difference method for a high contrast scatterer with bone-like properties, although qualitative results can still be obtained by the k-space method with high efficiency. Possible extensions to the method, including representation of absorption effects, absorbing boundary conditions, elastic-wave propagation, and acoustic nonlinearity, are discussed.

  18. Three-Dimensional High-Order Spectral Finite Volume Method for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel; Wang, Z. J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Many areas require a very high-order accurate numerical solution of conservation laws for complex shapes. This paper deals with the extension to three dimensions of the Spectral Finite Volume (SV) method for unstructured grids, which was developed to solve such problems. We first summarize the limitations of traditional methods such as finite-difference, and finite-volume for both structured and unstructured grids. We then describe the basic formulation of the spectral finite volume method. What distinguishes the SV method from conventional high-order finite-volume methods for unstructured triangular or tetrahedral grids is the data reconstruction. Instead of using a large stencil of neighboring cells to perform a high-order reconstruction, the stencil is constructed by partitioning each grid cell, called a spectral volume (SV), into 'structured' sub-cells, called control volumes (CVs). One can show that if all the SV cells are partitioned into polygonal or polyhedral CV sub-cells in a geometrically similar manner, the reconstructions for all the SVs become universal, irrespective of their shapes, sizes, orientations, or locations. It follows that the reconstruction is reduced to a weighted sum of unknowns involving just a few simple adds and multiplies, and those weights are universal and can be pre-determined once for all. The method is thus very efficient, accurate, and yet geometrically flexible. The most critical part of the SV method is the partitioning of the SV into CVs. In this paper we present the partitioning of a tetrahedral SV into polyhedral CVs with one free parameter for polynomial reconstructions up to degree of precision five. (Note that the order of accuracy of the method is one order higher than the reconstruction degree of precision.) The free parameter will be determined by minimizing the Lebesgue constant of the reconstruction matrix or similar criteria to obtain optimized partitions. The details of an efficient, parallelizable code to solve three-dimensional problems for any order of accuracy are then presented. Important aspects of the data structure are discussed. Comparisons with the Discontinuous Galerkin (DG) method are made. Numerical examples for wave propagation problems are presented.

  19. Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.

    PubMed

    Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa

    2010-01-21

    Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.

  20. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  1. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  2. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2003-01-01

    The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.

  3. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  4. Vector form Intrinsic Finite Element Method for the Two-Dimensional Analysis of Marine Risers with Large Deformations

    NASA Astrophysics Data System (ADS)

    Li, Xiaomin; Guo, Xueli; Guo, Haiyan

    2018-06-01

    Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.

  5. A numerical analysis of contact and limit-point behavior in a class of problems of finite elastic deformation

    NASA Technical Reports Server (NTRS)

    Endo, T.; Oden, J. T.; Becker, E. B.; Miller, T.

    1984-01-01

    Finite element methods for the analysis of bifurcations, limit-point behavior, and unilateral frictionless contact of elastic bodies undergoing finite deformation are presented. Particular attention is given to the development and application of Riks-type algorithms for the analysis of limit points and exterior penalty methods for handling the unilateral constraints. Applications focus on the problem of finite axisymmetric deformations, snap-through, and inflation of thick rubber spherical shells.

  6. Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface

    NASA Astrophysics Data System (ADS)

    Coco, Armando; Russo, Giovanni

    2018-05-01

    In this paper we propose a second-order accurate numerical method to solve elliptic problems with discontinuous coefficients (with general non-homogeneous jumps in the solution and its gradient) in 2D and 3D. The method consists of a finite-difference method on a Cartesian grid in which complex geometries (boundaries and interfaces) are embedded, and is second order accurate in the solution and the gradient itself. In order to avoid the drop in accuracy caused by the discontinuity of the coefficients across the interface, two numerical values are assigned on grid points that are close to the interface: a real value, that represents the numerical solution on that grid point, and a ghost value, that represents the numerical solution extrapolated from the other side of the interface, obtained by enforcing the assigned non-homogeneous jump conditions on the solution and its flux. The method is also extended to the case of matrix coefficient. The linear system arising from the discretization is solved by an efficient multigrid approach. Unlike the 1D case, grid points are not necessarily aligned with the normal derivative and therefore suitable stencils must be chosen to discretize interface conditions in order to achieve second order accuracy in the solution and its gradient. A proper treatment of the interface conditions will allow the multigrid to attain the optimal convergence factor, comparable with the one obtained by Local Fourier Analysis for rectangular domains. The method is robust enough to handle large jump in the coefficients: order of accuracy, monotonicity of the errors and good convergence factor are maintained by the scheme.

  7. A Novel Finite-Sum Inequality-Based Method for Robust H∞ Control of Uncertain Discrete-Time Takagi-Sugeno Fuzzy Systems With Interval-Like Time-Varying Delays.

    PubMed

    Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua

    2017-09-22

    This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.

  8. A finite difference method for the solution of the transonic flow around harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, E. F.

    1974-01-01

    A finite difference method for the solution of the transonic flow about a harmonically oscillating wing is presented. The partial differential equation for the unsteady transonic flow was linearized by dividing the flow into separate steady and unsteady perturbation velocity potentials and by assuming small amplitudes of harmonic oscillation. The resulting linear differential equation is of mixed type, being elliptic or hyperbolic whereever the steady flow equation is elliptic or hyperbolic. Central differences were used for all derivatives except at supersonic points where backward differencing was used for the streamwise direction. Detailed formulas and procedures are described in sufficient detail for programming on high speed computers. To test the method, the problem of the oscillating flap on a NACA 64A006 airfoil was programmed. The numerical procedure was found to be stable and convergent even in regions of local supersonic flow with shocks.

  9. Improved finite-difference computation of the van der Waals force: One-dimensional case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Fabrizio

    2009-10-15

    We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate themore » difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.« less

  10. A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Tayebi, A.; Shekari, Y.; Heydari, M. H.

    2017-07-01

    Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.

  11. Stability Analysis of Finite Difference Schemes for Hyperbolic Systems, and Problems in Applied and Computational Linear Algebra.

    DTIC Science & Technology

    FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.

  12. The Propagation and Scattering of EM Waves in Electrically Large Ducts

    NASA Astrophysics Data System (ADS)

    Khan, Saeed Mahmood

    The electromagnetic scattering from large arbitrarily shaped ducts with complex termination is studied here by a hybrid technique. The propagation of electromagnetic waves in the duct is analyzed in terms of an approximate modal solution. A finite difference technique is employed for computing the reflection characteristics of the complex terminations. Both solutions are combined using the unimoment method. The analysis here is carried out for monostatic RCS and considers only fields backscattered from inside the cavity. Rim-diffraction has been left out. The procedure offers such advantages as in that it is not necessary to find complicated Green's functions, which may not be readily available, when compared with the integral equation method. Hybridization performed by combining an approximate modal technique with a finite difference one makes the scheme numerically efficient. From a computational EM point of view, it brings together a whole spectrum of techniques associated with high frequency modal analysis, Fourier Methods, Radar Cross Section and Scattering, finite difference solution and the Unimoment Method. The practical application of this technique may range from the study of RCS scattered from jet inlets of radar evasive aircraft to submarine communication waveguides.

  13. Electrodynamic multiple-scattering method for the simulation of optical trapping atop periodic metamaterials

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-07-01

    We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.

  14. An efficient finite differences method for the computation of compressible, subsonic, unsteady flows past airfoils and panels

    NASA Astrophysics Data System (ADS)

    Colera, Manuel; Pérez-Saborid, Miguel

    2017-09-01

    A finite differences scheme is proposed in this work to compute in the time domain the compressible, subsonic, unsteady flow past an aerodynamic airfoil using the linearized potential theory. It improves and extends the original method proposed in this journal by Hariharan, Ping and Scott [1] by considering: (i) a non-uniform mesh, (ii) an implicit time integration algorithm, (iii) a vectorized implementation and (iv) the coupled airfoil dynamics and fluid dynamic loads. First, we have formulated the method for cases in which the airfoil motion is given. The scheme has been tested on well known problems in unsteady aerodynamics -such as the response to a sudden change of the angle of attack and to a harmonic motion of the airfoil- and has been proved to be more accurate and efficient than other finite differences and vortex-lattice methods found in the literature. Secondly, we have coupled our method to the equations governing the airfoil dynamics in order to numerically solve problems where the airfoil motion is unknown a priori as happens, for example, in the cases of the flutter and the divergence of a typical section of a wing or of a flexible panel. Apparently, this is the first self-consistent and easy-to-implement numerical analysis in the time domain of the compressible, linearized coupled dynamics of the (generally flexible) airfoil-fluid system carried out in the literature. The results for the particular case of a rigid airfoil show excellent agreement with those reported by other authors, whereas those obtained for the case of a cantilevered flexible airfoil in compressible flow seem to be original or, at least, not well-known.

  15. Flow field analysis of aircraft configurations using a numerical solution to the three-dimensional unified supersonic/hypersonic small disturbance equations, part 1

    NASA Technical Reports Server (NTRS)

    Gunness, R. C., Jr.; Knight, C. J.; Dsylva, E.

    1972-01-01

    The unified small disturbance equations are numerically solved using the well-known Lax-Wendroff finite difference technique. The method allows complete determination of the inviscid flow field and surface properties as long as the flow remains supersonic. Shock waves and other discontinuities are accounted for implicity in the numerical method. This technique was programed for general application to the three-dimensional case. The validity of the method is demonstrated by calculations on cones, axisymmetric bodies, lifting bodies, delta wings, and a conical wing/body combination. Part 1 contains the discussion of problem development and results of the study. Part 2 contains flow charts, subroutine descriptions, and a listing of the computer program.

  16. Lattice study of finite volume effect in HVP for muon g-2

    NASA Astrophysics Data System (ADS)

    Izubuchi, Taku; Kuramashi, Yoshinobu; Lehner, Christoph; Shintani, Eigo

    2018-03-01

    We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp, in lattice QCD by comparison with two different volumes, L4 = (5.4)4 and (8.1)4 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a-1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.

  17. Parallel processing in finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1987-01-01

    A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).

  18. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, Nikolay A.; Shilnikov, Kirill E.

    Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumormore » tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.« less

  19. On finite element methods for the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Aziz, A. K.; Werschulz, A. G.

    1979-01-01

    The numerical solution of the Helmholtz equation is considered via finite element methods. A two-stage method which gives the same accuracy in the computed gradient as in the computed solution is discussed. Error estimates for the method using a newly developed proof are given, and the computational considerations which show this method to be computationally superior to previous methods are presented.

  20. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    NASA Technical Reports Server (NTRS)

    Chung, T. J. (Editor); Karr, Gerald R. (Editor)

    1989-01-01

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.

  1. Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor

    NASA Astrophysics Data System (ADS)

    Pranger, Casper

    2017-04-01

    In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.

  2. Calculation of three-dimensional compressible laminar and turbulent boundary layers. An implicit finite-difference procedure for solving the three-dimensional compressible laminar, transitional, and turbulent boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1975-01-01

    An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.

  3. Mean Field Type Control with Congestion (II): An Augmented Lagrangian Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Laurière, Mathieu

    This work deals with a numerical method for solving a mean-field type control problem with congestion. It is the continuation of an article by the same authors, in which suitably defined weak solutions of the system of partial differential equations arising from the model were discussed and existence and uniqueness were proved. Here, the focus is put on numerical methods: a monotone finite difference scheme is proposed and shown to have a variational interpretation. Then an Alternating Direction Method of Multipliers for solving the variational problem is addressed. It is based on an augmented Lagrangian. Two kinds of boundary conditionsmore » are considered: periodic conditions and more realistic boundary conditions associated to state constrained problems. Various test cases and numerical results are presented.« less

  4. Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case

    USGS Publications Warehouse

    Haney, M.M.

    2007-01-01

    Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.

  5. A numerical study of the temperature field in a cooled radial turbine rotor

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1977-01-01

    The three dimensional temperature distribution in the cooled rotor of a radial inflow turbine is determined numerically using the finite element method. Through this approach, the complicated geometries of the hot rotor and coolant passage surfaces are handled easily, and the temperatures are determined without loss of accuracy at these convective boundaries. Different cooling techniques with given coolant to primary flow ratios are investigated, and the corresponding rotor temperature fields are presented for comparison.

  6. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Turan, A.

    1985-01-01

    The hybrid-upwind finite difference schemes employed in generally available combustor codes possess excessive numerical diffusion errors which preclude accurate quantative calculations. The present study has as its primary objective the identification and assessment of an improved solution algorithm as well as discretization schemes applicable to analysis of turbulent viscous recirculating flows. The assessment is carried out primarily in two dimensional/axisymetric geometries with a view to identifying an appropriate technique to be incorporated in a three-dimensional code.

  7. Historical evolution of vortex-lattice methods

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1976-01-01

    A review of the beginning and some orientation of the vortex-lattice method were given. The historical course of this method was followed in conjunction with its field of computational fluid dynamics, spanning the period from L.F. Richardson's paper in 1910 to 1975. The following landmarks were pointed out: numerical analysis of partial differential equations, lifting-line theory, finite-difference method, 1/4-3/4 rule, block relaxation technique, application of electronic computers, and advanced panel methods.

  8. A new weak Galerkin finite element method for elliptic interface problems

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu; ...

    2016-08-26

    We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less

  9. A new weak Galerkin finite element method for elliptic interface problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less

  10. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    NASA Astrophysics Data System (ADS)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  11. Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice

    2018-05-01

    In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.

  12. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils - Large Deformation Analysis Via Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konkol, Jakub; Bałachowski, Lech

    2017-03-01

    In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  13. Microscopic predictions of fission yields based on the time dependent GCM formalism

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-03-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  14. An efficient finite element method for simulation of droplet spreading on a topologically rough surface

    NASA Astrophysics Data System (ADS)

    Luo, Li; Wang, Xiao-Ping; Cai, Xiao-Chuan

    2017-11-01

    We study numerically the dynamics of a three-dimensional droplet spreading on a rough solid surface using a phase-field model consisting of the coupled Cahn-Hilliard and Navier-Stokes equations with a generalized Navier boundary condition (GNBC). An efficient finite element method on unstructured meshes is introduced to cope with the complex geometry of the solid surfaces. We extend the GNBC to surfaces with complex geometry by including its weak form along different normal and tangential directions in the finite element formulation. The semi-implicit time discretization scheme results in a decoupled system for the phase function, the velocity, and the pressure. In addition, a mass compensation algorithm is introduced to preserve the mass of the droplet. To efficiently solve the decoupled systems, we present a highly parallel solution strategy based on domain decomposition techniques. We validate the newly developed solution method through extensive numerical experiments, particularly for those phenomena that can not be achieved by two-dimensional simulations. On a surface with circular posts, we study how wettability of the rough surface depends on the geometry of the posts. The contact line motion for a droplet spreading over some periodic rough surfaces are also efficiently computed. Moreover, we study the spreading process of an impacting droplet on a microstructured surface, a qualitative agreement is achieved between the numerical and experimental results. The parallel performance suggests that the proposed solution algorithm is scalable with over 4,000 processors cores with tens of millions of unknowns.

  15. Green's function enriched Poisson solver for electrostatics in many-particle systems

    NASA Astrophysics Data System (ADS)

    Sutmann, Godehard

    2016-06-01

    A highly accurate method is presented for the construction of the charge density for the solution of the Poisson equation in particle simulations. The method is based on an operator adjusted source term which can be shown to produce exact results up to numerical precision in the case of a large support of the charge distribution, therefore compensating the discretization error of finite difference schemes. This is achieved by balancing an exact representation of the known Green's function of regularized electrostatic problem with a discretized representation of the Laplace operator. It is shown that the exact calculation of the potential is possible independent of the order of the finite difference scheme but the computational efficiency for higher order methods is found to be superior due to a faster convergence to the exact result as a function of the charge support.

  16. The contributions of Lewis Fry Richardson to drainage theory, soil physics, and the soil-plant-atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Knight, John; Raats, Peter

    2016-04-01

    The EGU Division on Nonlinear Processes in Geophysics awards the Lewis Fry Richardson Medal. Richardson's significance is highlighted in http://www.egu.eu/awards-medals/portrait-lewis-fry-richardson/, but his contributions to soil physics and to numerical solutions of heat and diffusion equations are not mentioned. We would like to draw attention to those little known contributions. Lewis Fry Richardson (1881-1953) made important contributions to many fields including numerical weather prediction, finite difference solutions of partial differential equations, turbulent flow and diffusion, fractals, quantitative psychology and studies of conflict. He invented numerical weather prediction during World War I, although his methods were not successfully applied until 1950, after the invention of fast digital computers. In 1922 he published the book `Numerical weather prediction', of which few copies were sold and even fewer were read until the 1950s. To model heat and mass transfer in the atmosphere, he did much original work on turbulent flow and defined what is now known as the Richardson number. His technique for improving the convergence of a finite difference calculation is known as Richardson extrapolation, and was used by John Philip in his 1957 semi-analytical solution of the Richards equation for water movement in unsaturated soil. Richardson's first papers in 1908 concerned the numerical solution of the free surface problem of unconfined flow of water in saturated soil, arising in the design of drain spacing in peat. Later, for the lower boundary of his atmospheric model he needed to understand the movement of heat, liquid water and water vapor in what is now called the vadose zone and the soil plant atmosphere system, and to model coupled transfer of heat and flow of water in unsaturated soil. Finding little previous work, he formulated partial differential equations for transient, vertical flow of liquid water and for transfer of heat and water vapor. He paid considerable attention to the balances of water and energy at the soil-atmosphere and plant-atmosphere interfaces, making use of the concept of transfer resistance introduced by Brown and Escombe (1900) for leaf-atmosphere interfaces. He incorporated finite difference versions of all equations into his numerical weather forecasting model. From 1916, Richardson drove an ambulance in France in World War I, did weather computations in his spare time, and wrote a draft of his book. Later researchers such as L.A. Richards, D.A. de Vries and J.R. Philip from the 1930s to the 1950s were unaware that Richardson had anticipated many of their ideas on soil liquid water, heat, water vapor, and the soil-plant-atmosphere system. The Richards (1931) equation could rightly be called the Richardson (1922) equation! Richardson (1910) developed what we now call the Crank Nicolson implicit method for the heat or diffusion equation. To save effort, he used an explicit three level method after the first time step. Crank and Nicolson (1947) pointed out the instability in the explicit method, and used his implicit method for all time steps. Hanks and Bowers (1962) adapted the Crank Nicolson method to solve the Richards equation. So we could say that Hanks and Bowers used the Richardson finite difference method to solve the Richardson equation for soil water flow!

  17. The constraint method: A new finite element technique. [applied to static and dynamic loads on plates

    NASA Technical Reports Server (NTRS)

    Tsai, C.; Szabo, B. A.

    1973-01-01

    An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.

  18. Numerical simulations of electrohydrodynamic evolution of thin polymer films

    NASA Astrophysics Data System (ADS)

    Borglum, Joshua Christopher

    Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.

  19. Structural optimisation of cage induction motors using finite element analysis

    NASA Astrophysics Data System (ADS)

    Palko, S.

    The current trend in motor design is to have highly efficient, low noise, low cost, and modular motors with a high power factor. High torque motors are useful in applications like servo motors, lifts, cranes, and rolling mills. This report contains a detailed review of different optimization methods applicable in various design problems. Special attention is given to the performance of different methods, when they are used with finite element analysis (FEA) as an objective function, and accuracy problems arising from the numerical simulations. Also an effective method for designing high starting torque and high efficiency motors is presented. The method described in this work utilizes FEA combined with algorithms for the optimization of the slot geometry. The optimization algorithm modifies the position of the nodal points in the element mesh. The number of independent variables ranges from 14 to 140 in this work.

  20. Efficient numerical method for analyzing optical bistability in photonic crystal microcavities.

    PubMed

    Yuan, Lijun; Lu, Ya Yan

    2013-05-20

    Nonlinear optical effects can be enhanced by photonic crystal microcavities and be used to develop practical ultra-compact optical devices with low power requirements. The finite-difference time-domain method is the standard numerical method for simulating nonlinear optical devices, but it has limitations in terms of accuracy and efficiency. In this paper, a rigorous and efficient frequency-domain numerical method is developed for analyzing nonlinear optical devices where the nonlinear effect is concentrated in the microcavities. The method replaces the linear problem outside the microcavities by a rigorous and numerically computed boundary condition, then solves the nonlinear problem iteratively in a small region around the microcavities. Convergence of the iterative method is much easier to achieve since the size of the problem is significantly reduced. The method is presented for a specific two-dimensional photonic crystal waveguide-cavity system with a Kerr nonlinearity, using numerical methods that can take advantage of the geometric features of the structure. The method is able to calculate multiple solutions exhibiting the optical bistability phenomenon in the strongly nonlinear regime.

  1. Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Zhu, Z. H.

    2015-12-01

    Dynamic modeling of tethered spacecraft with the consideration of elasticity of tether is prone to the numerical instability and error accumulation over long-term numerical integration. This paper addresses the challenges by proposing a globally stable numerical approach with the nodal position finite element method (NPFEM) and the implicit, symplectic, 2-stage and 4th order Gaussian-Legendre Runge-Kutta time integration. The NPFEM eliminates the numerical error accumulation by using the position instead of displacement of tether as the state variable, while the symplectic integration enforces the energy and momentum conservation of the discretized finite element model to ensure the global stability of numerical solution. The effectiveness and robustness of the proposed approach is assessed by an elastic pendulum problem, whose dynamic response resembles that of tethered spacecraft, in comparison with the commonly used time integrators such as the classical 4th order Runge-Kutta schemes and other families of non-symplectic Runge-Kutta schemes. Numerical results show that the proposed approach is accurate and the energy of the corresponding numerical model is conservative over the long-term numerical integration. Finally, the proposed approach is applied to the dynamic modeling of deorbiting process of tethered spacecraft over a long period.

  2. Numerical studies of interacting vortices

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Hsu, C. H.

    1985-01-01

    To get a basic understanding of the physics of flowfields modeled by vortex filaments with finite vortical cores, systematic numerical studies of the interactions of two dimensional vortices and pairs of coaxial axisymmetric circular vortex rings were made. Finite difference solutions of the unsteady incompressible Navier-Stokes equations were carried out using vorticity and stream function as primary variables. Special emphasis was placed on the formulation of appropriate boundary conditions necessary for the calculations in a finite computational domain. Numerical results illustrate the interaction of vortex filaments, demonstrate when and how they merge with each other, and establish the region of validity for an asymptotic analysis.

  3. Design of the sample cell in near-field surface-enhanced Raman scattering by finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Li, Yaqin; Jian, Guoshu; Wu, Shifa

    2006-11-01

    The rational design of the sample cell may improve the sensitivity of surface-enhanced Raman scattering (SERS) detection in a high degree. Finite difference time domain (FDTD) simulations of the configuration of Ag film-Ag particles illuminated by plane wave and evanescent wave are performed to provide physical insight for design of the sample cell. Numerical solutions indicate that the sample cell can provide more "hot spots' and the massive field intensity enhancement occurs in these "hot spots'. More information on the nanometer character of the sample can be got because of gradient-field Raman (GFR) of evanescent wave.

  4. The shock formation distance in a bounded sound beam of finite amplitude.

    PubMed

    Tao, Chao; Ma, Jian; Zhu, Zhemin; Du, Gonghuan; Ping, Zihong

    2003-07-01

    This paper investigates the shock formation distance in a bounded sound beam of finite amplitude by solving the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation using frequency-domain numerical method. Simulation results reveal that, besides the nonlinearity and absorption, the diffraction is another important factor that affects the shock formation of a bounded sound beam. More detailed discussions of the shock formation in a bounded sound beam, such as the waveform of sound pressure and the spatial distribution of shock formation, are also presented and compared for different parameters.

  5. High mobility of large mass movements: a study by means of FEM/DEM simulations

    NASA Astrophysics Data System (ADS)

    Manzella, I.; Lisjak, A.; Grasselli, G.

    2013-12-01

    Large mass movements, such as rock avalanches and large volcanic debris avalanches are characterized by extremely long propagation, which cannot be modelled using normal sliding friction law. For this reason several studies and theories derived from field observation, physical theories and laboratory experiments, exist to try to explain their high mobility. In order to investigate more into deep some of the processes recalled by these theories, simulations have been run with a new numerical tool called Y-GUI based on the Finite Element-Discrete Element Method FEM/DEM. The FEM/DEM method is a numerical technique developed by Munjiza et al. (1995) where Discrete Element Method (DEM) algorithms are used to model the interaction between different solids, while Finite Element Method (FEM) principles are used to analyze their deformability being also able to explicitly simulate material sudden loss of cohesion (i.e. brittle failure). In particular numerical tests have been run, inspired by the small-scale experiments done by Manzella and Labiouse (2013). They consist of rectangular blocks released on a slope; each block is a rectangular discrete element made of a mesh of finite elements enabled to fragment. These simulations have highlighted the influence on the propagation of block packing, i.e. whether the elements are piled into geometrical ordinate structure before failure or they are chaotically disposed as a loose material, and of the topography, i.e. whether the slope break is smooth and regular or not. In addition the effect of fracturing, i.e. fragmentation, on the total runout have been studied and highlighted.

  6. On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    van Horssen, Wim T.; Wang, Yandong; Cao, Guohua

    2018-06-01

    In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.

  7. Finite-surface method for the Maxwell equations with corner singularities

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel; Yarrow, Maurice

    1994-01-01

    The finite-surface method for the two-dimensional Maxwell equations in generalized coordinates is extended to treat perfect conductor boundaries with sharp corners. Known singular forms of the grid and the electromagnetic fields in the neighborhood of each corner are used to obtain accurate approximations to the surface and line integrals appearing in the method. Numerical results are presented for a harmonic plane wave incident on a finite flat plate. Comparisons with exact solutions show good agreement.

  8. Stochastic Least-Squares Petrov--Galerkin Method for Parameterized Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kookjin; Carlberg, Kevin; Elman, Howard C.

    Here, we consider the numerical solution of parameterized linear systems where the system matrix, the solution, and the right-hand side are parameterized by a set of uncertain input parameters. We explore spectral methods in which the solutions are approximated in a chosen finite-dimensional subspace. It has been shown that the stochastic Galerkin projection technique fails to minimize any measure of the solution error. As a remedy for this, we propose a novel stochatic least-squares Petrov--Galerkin (LSPG) method. The proposed method is optimal in the sense that it produces the solution that minimizes a weightedmore » $$\\ell^2$$-norm of the residual over all solutions in a given finite-dimensional subspace. Moreover, the method can be adapted to minimize the solution error in different weighted $$\\ell^2$$-norms by simply applying a weighting function within the least-squares formulation. In addition, a goal-oriented seminorm induced by an output quantity of interest can be minimized by defining a weighting function as a linear functional of the solution. We establish optimality and error bounds for the proposed method, and extensive numerical experiments show that the weighted LSPG method outperforms other spectral methods in minimizing corresponding target weighted norms.« less

  9. Numerical Simulations Of Flagellated Micro-Swimmers

    NASA Astrophysics Data System (ADS)

    Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey

    2017-11-01

    We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.

  10. Hybrid finite difference/finite element immersed boundary method.

    PubMed

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  11. Identification of material constants for piezoelectric transformers by three-dimensional, finite-element method and a design-sensitivity method.

    PubMed

    Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo

    2003-08-01

    In this paper, an inversion scheme for piezoelectric constants of piezoelectric transformers is proposed. The impedance of piezoelectric transducers is calculated using a three-dimensional finite element method. The validity of this is confirmed experimentally. The effects of material coefficients on piezoelectric transformers are investigated numerically. Six material coefficient variables for piezoelectric transformers were selected, and a design sensitivity method was adopted as an inversion scheme. The validity of the proposed method was confirmed by step-up ratio calculations. The proposed method is applied to the analysis of a sample piezoelectric transformer, and its resonance characteristics are obtained by numerically combined equivalent circuit method.

  12. Fourier/Chebyshev methods for the incompressible Navier-Stokes equations in finite domains

    NASA Technical Reports Server (NTRS)

    Corral, Roque; Jimenez, Javier

    1992-01-01

    A fully spectral numerical scheme for the incompressible Navier-Stokes equations in domains which are infinite or semi-infinite in one dimension. The domain is not mapped, and standard Fourier or Chebyshev expansions can be used. The handling of the infinite domain does not introduce any significant overhead. The scheme assumes that the vorticity in the flow is essentially concentrated in a finite region, which is represented numerically by standard spectral collocation methods. To accomodate the slow exponential decay of the velocities at infinity, extra expansion functions are introduced, which are handled analytically. A detailed error analysis is presented, and two applications to Direct Numerical Simulation of turbulent flows are discussed in relation with the numerical performance of the scheme.

  13. A higher order numerical method for time fractional partial differential equations with nonsmooth data

    NASA Astrophysics Data System (ADS)

    Xing, Yanyuan; Yan, Yubin

    2018-03-01

    Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu [20] (2016), where k is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 as in Gao et al. [11] (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 < α < 1 for any fixed tn > 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

  14. Comparison of vertical discretization techniques in finite-difference models of ground-water flow; example from a hypothetical New England setting

    USGS Publications Warehouse

    Harte, Philip T.

    1994-01-01

    Proper discretization of a ground-water-flow field is necessary for the accurate simulation of ground-water flow by models. Although discretiza- tion guidelines are available to ensure numerical stability, current guidelines arc flexible enough (particularly in vertical discretization) to allow for some ambiguity of model results. Testing of two common types of vertical-discretization schemes (horizontal and nonhorizontal-model-layer approach) were done to simulate sloping hydrogeologic units characteristic of New England. Differences of results of model simulations using these two approaches are small. Numerical errors associated with use of nonhorizontal model layers are small (4 percent). even though this discretization technique does not adhere to the strict formulation of the finite-difference method. It was concluded that vertical discretization by means of the nonhorizontal layer approach has advantages in representing the hydrogeologic units tested and in simplicity of model-data input. In addition, vertical distortion of model cells by this approach may improve the representation of shallow flow processes.

  15. Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

    NASA Astrophysics Data System (ADS)

    Baker, Alexander; Beg, Marijan; Ashton, Gregory; Albert, Maximilian; Chernyshenko, Dmitri; Wang, Weiwei; Zhang, Shilei; Bisotti, Marc-Antonio; Franchin, Matteo; Hu, Chun Lian; Stamps, Robert; Hesjedal, Thorsten; Fangohr, Hans

    2017-01-01

    Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.

  16. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  17. Large-eddy simulation using the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, R.C.; Gresho, P.M.; Leone, J.M. Jr.

    1993-10-01

    In a large-eddy simulation (LES) of turbulent flows, the large-scale motion is calculated explicitly (i.e., approximated with semi-empirical relations). Typically, finite difference or spectral numerical schemes are used to generate an LES; the use of finite element methods (FEM) has been far less prominent. In this study, we demonstrate that FEM in combination with LES provides a viable tool for the study of turbulent, separating channel flows, specifically the flow over a two-dimensional backward-facing step. The combination of these methodologies brings together the advantages of each: LES provides a high degree of accuracy with a minimum of empiricism for turbulencemore » modeling and FEM provides a robust way to simulate flow in very complex domains of practical interest. Such a combination should prove very valuable to the engineering community.« less

  18. Monotonic Derivative Correction for Calculation of Supersonic Flows

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    Aim of the study: This study examines numerical methods for solving the problems in gas dynamics, which are based on an exact or approximate solution to the problem of breakdown of an arbitrary discontinuity (the Riemann problem). Results: Comparative analysis of finite difference schemes for the Euler equations integration is conducted on the…

  19. Stability analysis of cylinders with circular cutouts

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Brogan, F. A.; Marlowe, M. B.

    1973-01-01

    The stability of axially compressed cylinders with circular cutouts is analyzed numerically. An extension of the finite-difference method is used which removes the requirement that displacement components be defined in the directions of the grid lines. The results of this nonlinear analysis are found to be in good agreement with earlier experimental results.

  20. A simple finite element method for non-divergence form elliptic equation

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-03-01

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

Top