Sample records for finite-difference numerical model

  1. A Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    DTIC Science & Technology

    1991-09-01

    Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance

  2. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  3. COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION

    EPA Science Inventory

    A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...

  4. Optimization of finite difference forward modeling for elastic waves based on optimum combined window functions

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang

    2017-03-01

    Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.

  5. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  6. A block iterative finite element algorithm for numerical solution of the steady-state, compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1976-01-01

    An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.

  7. Estimation of water table level and nitrate pollution based on geostatistical and multiple mass transport models

    NASA Astrophysics Data System (ADS)

    Matiatos, Ioannis; Varouhakis, Emmanouil A.; Papadopoulou, Maria P.

    2015-04-01

    As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. Based on various methods used to numerically solve algebraic equations representing groundwater flow and contaminant mass transport, numerical models are mainly divided into Finite Difference-based and Finite Element-based models. The present study aims at evaluating the performance of a finite difference-based (MODFLOW-MT3DMS), a finite element-based (FEFLOW) and a hybrid finite element and finite difference (Princeton Transport Code-PTC) groundwater numerical models simulating groundwater flow and nitrate mass transport in the alluvial aquifer of Trizina region in NE Peloponnese, Greece. The calibration of groundwater flow in all models was performed using groundwater hydraulic head data from seven stress periods and the validation was based on a series of hydraulic head data for two stress periods in sufficient numbers of observation locations. The same periods were used for the calibration of nitrate mass transport. The calibration and validation of the three models revealed that the simulated values of hydraulic heads and nitrate mass concentrations coincide well with the observed ones. The models' performance was assessed by performing a statistical analysis of these different types of numerical algorithms. A number of metrics, such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Bias, Nash Sutcliffe Model Efficiency (NSE) and Reliability Index (RI) were used allowing the direct comparison of models' performance. Spatiotemporal Kriging (STRK) was also applied using separable and non-separable spatiotemporal variograms to predict water table level and nitrate concentration at each sampling station for two selected hydrological stress periods. The predictions were validated using the respective measured values. Maps of water table level and nitrate concentrations were produced and compared with those obtained from groundwater and mass transport numerical models. Preliminary results showed similar efficiency of the spatiotemporal geostatistical method with the numerical models. However data requirements of the former model were significantly less. Advantages and disadvantages of the methods performance were analysed and discussed indicating the characteristics of the different approaches.

  8. Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2010-01-01

    The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.

  9. Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case

    USGS Publications Warehouse

    Haney, M.M.

    2007-01-01

    Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.

  10. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Alkhalifah, Tariq

    2018-07-01

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.

  11. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.

    PubMed

    Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E

    2013-12-01

    In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Four-level conservative finite-difference schemes for Boussinesq paradigm equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.

    2013-10-01

    In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.

  13. FLUX-CORRECTED TRANSPORT TECHNIQUE FOR OPEN CHANNEL FLOW. (R825200)

    EPA Science Inventory

    In modeling flow in open channels, the traditional finite difference/finite volume schemes become inefficient and warrant special numerical treatment in the presence of shocks and discontinuities. The numerical oscillations that arise by making use of a second- and higher-order s...

  14. Stability Analysis of Finite Difference Schemes for Hyperbolic Systems, and Problems in Applied and Computational Linear Algebra.

    DTIC Science & Technology

    FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.

  15. Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case

    NASA Astrophysics Data System (ADS)

    Hojbotǎ, C. I.; Toşa, V.; Mercea, P. V.

    2013-08-01

    We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food.

  16. AUTOMATIC CALIBRATION OF A STOCHASTIC-LAGRANGIAN TRANSPORT MODEL (SLAM)

    EPA Science Inventory

    Numerical models are a useful tool in evaluating and designing NAPL remediation systems. Traditional constitutive finite difference and finite element models are complex and expensive to apply. For this reason, this paper presents the application of a simplified stochastic-Lagran...

  17. Applications of numerical methods to simulate the movement of contaminants in groundwater.

    PubMed Central

    Sun, N Z

    1989-01-01

    This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327

  18. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  19. Properties of finite difference models of non-linear conservative oscillators

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1988-01-01

    Finite-difference (FD) approaches to the numerical solution of the differential equations describing the motion of a nonlinear conservative oscillator are investigated analytically. A generalized formulation of the Duffing and modified Duffing equations is derived and analyzed using several FD techniques, and it is concluded that, although it is always possible to contstruct FD models of conservative oscillators which are themselves conservative, caution is required to avoid numerical solutions which do not accurately reflect the properties of the original equation.

  20. Numerical human models for accident research and safety - potentials and limitations.

    PubMed

    Praxl, Norbert; Adamec, Jiri; Muggenthaler, Holger; von Merten, Katja

    2008-01-01

    The method of numerical simulation is frequently used in the area of automotive safety. Recently, numerical models of the human body have been developed for the numerical simulation of occupants. Different approaches in modelling the human body have been used: the finite-element and the multibody technique. Numerical human models representing the two modelling approaches are introduced and the potentials and limitations of these models are discussed.

  1. Improving finite element results in modeling heart valve mechanics.

    PubMed

    Earl, Emily; Mohammadi, Hadi

    2018-06-01

    Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.

  2. Tidal, Residual, Intertidal Mudflat (TRIM) Model and its Applications to San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; Gartner, J.W.

    1993-01-01

    A numerical model using a semi-implicit finite-difference method for solving the two-dimensional shallow-water equations is presented. The gradient of the water surface elevation in the momentum equations and the velocity divergence in the continuity equation are finite-differenced implicitly, the remaining terms are finite-differenced explicitly. The convective terms are treated using an Eulerian-Lagrangian method. The combination of the semi-implicit finite-difference solution for the gravity wave propagation, and the Eulerian-Lagrangian treatment of the convective terms renders the numerical model unconditionally stable. When the baroclinic forcing is included, a salt transport equation is coupled to the momentum equations, and the numerical method is subject to a weak stability condition. The method of solution and the properties of the numerical model are given. This numerical model is particularly suitable for applications to coastal plain estuaries and tidal embayments in which tidal currents are dominant, and tidally generated residual currents are important. The model is applied to San Francisco Bay, California where extensive historical tides and current-meter data are available. The model calibration is considered by comparing time-series of the field data and of the model results. Alternatively, and perhaps more meaningfully, the model is calibrated by comparing the harmonic constants of tides and tidal currents derived from field data with those derived from the model. The model is further verified by comparing the model results with an independent data set representing the wet season. The strengths and the weaknesses of the model are assessed based on the results of model calibration and verification. Using the model results, the properties of tides and tidal currents in San Francisco Bay are characterized and discussed. Furthermore, using the numerical model, estimates of San Francisco Bay's volume, surface area, mean water depth, tidal prisms, and tidal excursions at spring and neap tides are computed. Additional applications of the model reveal, qualitatively the spatial distribution of residual variables. ?? 1993 Academic Press. All rights reserved.

  3. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk; Tcheverda, Vladimir

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. Inmore » this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.« less

  4. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics.

    PubMed

    Brocchini, Maurizio

    2013-12-08

    This paper, which is largely the fruit of an invited talk on the topic at the latest International Conference on Coastal Engineering, describes the state of the art of modelling by means of Boussinesq-type models (BTMs). Motivations for using BTMs as well as their fundamentals are illustrated, with special attention to the interplay between the physics to be described, the chosen model equations and the numerics in use. The perspective of the analysis is that of a physicist/engineer rather than of an applied mathematician. The chronological progress of the currently available BTMs from the pioneering models of the late 1960s is given. The main applications of BTMs are illustrated, with reference to specific models and methods. The evolution in time of the numerical methods used to solve BTMs (e.g. finite differences, finite elements, finite volumes) is described, with specific focus on finite volumes. Finally, an overview of the most important BTMs currently available is presented, as well as some indications on improvements required and fields of applications that call for attention.

  5. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics

    PubMed Central

    Brocchini, Maurizio

    2013-01-01

    This paper, which is largely the fruit of an invited talk on the topic at the latest International Conference on Coastal Engineering, describes the state of the art of modelling by means of Boussinesq-type models (BTMs). Motivations for using BTMs as well as their fundamentals are illustrated, with special attention to the interplay between the physics to be described, the chosen model equations and the numerics in use. The perspective of the analysis is that of a physicist/engineer rather than of an applied mathematician. The chronological progress of the currently available BTMs from the pioneering models of the late 1960s is given. The main applications of BTMs are illustrated, with reference to specific models and methods. The evolution in time of the numerical methods used to solve BTMs (e.g. finite differences, finite elements, finite volumes) is described, with specific focus on finite volumes. Finally, an overview of the most important BTMs currently available is presented, as well as some indications on improvements required and fields of applications that call for attention. PMID:24353475

  6. Finite-difference model for 3-D flow in bays and estuaries

    USGS Publications Warehouse

    Smith, Peter E.; Larock, Bruce E.; ,

    1993-01-01

    This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.

  7. Numerical studies of interacting vortices

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Hsu, C. H.

    1985-01-01

    To get a basic understanding of the physics of flowfields modeled by vortex filaments with finite vortical cores, systematic numerical studies of the interactions of two dimensional vortices and pairs of coaxial axisymmetric circular vortex rings were made. Finite difference solutions of the unsteady incompressible Navier-Stokes equations were carried out using vorticity and stream function as primary variables. Special emphasis was placed on the formulation of appropriate boundary conditions necessary for the calculations in a finite computational domain. Numerical results illustrate the interaction of vortex filaments, demonstrate when and how they merge with each other, and establish the region of validity for an asymptotic analysis.

  8. Parallel processing in finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1987-01-01

    A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).

  9. A conservative implicit finite difference algorithm for the unsteady transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Caradonna, F. X.

    1980-01-01

    An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.

  10. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  11. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  12. A Unique Finite Element Modeling of the Periodic Wave Transformation over Sloping and Barred Beaches by Beji and Nadaoka's Extended Boussinesq Equations

    PubMed Central

    Jabbari, Mohammad Hadi; Sayehbani, Mesbah; Reisinezhad, Arsham

    2013-01-01

    This paper presents a numerical model based on one-dimensional Beji and Nadaoka's Extended Boussinesq equations for simulation of periodic wave shoaling and its decomposition over morphological beaches. A unique Galerkin finite element and Adams-Bashforth-Moulton predictor-corrector methods are employed for spatial and temporal discretization, respectively. For direct application of linear finite element method in spatial discretization, an auxiliary variable is hereby introduced, and a particular numerical scheme is offered to rewrite the equations in lower-order form. Stability of the suggested numerical method is also analyzed. Subsequently, in order to display the ability of the presented model, four different test cases are considered. In these test cases, dispersive and nonlinearity effects of the periodic waves over sloping beaches and barred beaches, which are the common coastal profiles, are investigated. Outputs are compared with other existing numerical and experimental data. Finally, it is concluded that the current model can be further developed to model any morphological development of coastal profiles. PMID:23853534

  13. A 3D staggered-grid finite difference scheme for poroelastic wave equation

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai

    2014-10-01

    Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.

  14. Socio-economic applications of finite state mean field games.

    PubMed

    Gomes, Diogo; Velho, Roberto M; Wolfram, Marie-Therese

    2014-11-13

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments, which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Analysis of Piezoelectric Actuator for Vibration Control of Composite plate

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed R.; Hai, Huang

    2017-07-01

    Vibration analysis is studied numerically in this paper for a simply supported composite plate subjected to external loadings. Vibrations are controlled by using piezoelectric patches. Finite element method (ANSYS) is used for obtaining finite element model of the smart plate structure, a layered composite plate is manufactured experimentally and tested to obtain the structure mechanical properties. Different piezoelectric patch areas and different applied gain voltage effects on vibration attenuation is studied. The numerical solution is compared with the experimental work, a good agreement achieved.

  16. Finite-difference modeling with variable grid-size and adaptive time-step in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Wu, Guochen

    2014-04-01

    Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.

  17. Finite-element numerical modeling of atmospheric turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  18. A progress report on estuary modeling by the finite-element method

    USGS Publications Warehouse

    Gray, William G.

    1978-01-01

    Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)

  19. A Numerical Model for Predicting Shoreline Changes.

    DTIC Science & Technology

    1980-07-01

    minimal shorelines for finite - difference scheme of time lAt (B) . . . 27 11 Transport function Q(ao) = cos ao sin za o for selected values of z . 28 12...generate the preceding examples was based on the use of implicit finite differences . Such schemes, whether implicit or ex- plicit (or both), are...10(A) shows an initially straight shoreline. In any finite - difference scheme, after one time increment At, the shoreline is bounded below by the solid

  20. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  1. A time-spectral approach to numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Lindvall, Kristoffer; Yik, Hiu Fai

    2018-05-01

    Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling.

  2. Finite element computation of a viscous compressible free shear flow governed by the time dependent Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.; Blanchard, D. K.

    1975-01-01

    A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.

  3. ICASE Semiannual Report, October 1, 1992 through March 31, 1993

    DTIC Science & Technology

    1993-06-01

    NUMERICAL MATHEMATICS Saul Abarbanel Further results have been obtained regarding long time integration of high order compact finite difference schemes...overall accuracy. These problems are common to all numerical methods: finite differences , finite elements and spectral methods. It should be noted that...fourth order finite difference scheme. * In the same case, the D6 wavelets provide a sixth order finite difference , noncompact formula. * The wavelets

  4. An Analysis Technique/Automated Tool for Comparing and Tracking Analysis Modes of Different Finite Element Models

    NASA Technical Reports Server (NTRS)

    Towner, Robert L.; Band, Jonathan L.

    2012-01-01

    An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.

  5. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  6. Controlling Reflections from Mesh Refinement Interfaces in Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Van Meter, James R.

    2005-01-01

    A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of mesh- refinement techniques for some numerical relativity applications. We elucidate this numerical effect by presenting a model problem which exhibits the phenomenon, but which is simple enough that its numerical error can be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing error generated across low and high resolution regions, and that its slow convergence is caused by the presence of dramatic speed differences among propagation modes typical of 3+1 relativity. Lastly, we resolve the problem, presenting a class of finite-differencing stencil modifications which eliminate this pathology in both our model problem and in numerical relativity examples.

  7. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be; Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse; Magin, Thierry E.

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as wellmore » as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.« less

  8. Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong; Park, Ja-Rin

    2017-06-01

    A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.

  9. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE PAGES

    Lu, Zhiming

    2018-01-30

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  10. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiming

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  11. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun

    2008-07-01

    Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.

  12. Transport and dispersion of pollutants in surface impoundments: a finite difference model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.

  13. The Complex-Step-Finite-Difference method

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Stich, Daniel; Morales, Jose

    2015-07-01

    We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.

  14. LaRC design analysis report for National Transonic Facility for 304 stainless steel tunnel shell. Volume 1S: Finite difference analysis of cone/cylinder junction

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.; Taylor, J. T.; Wilson, J. F.; Gray, C. E., Jr.; Leatherman, A. D.; Rooker, J. R.; Allred, J. W.

    1976-01-01

    The results of extensive computer (finite element, finite difference and numerical integration), thermal, fatigue, and special analyses of critical portions of a large pressurized, cryogenic wind tunnel (National Transonic Facility) are presented. The computer models, loading and boundary conditions are described. Graphic capability was used to display model geometry, section properties, and stress results. A stress criteria is presented for evaluation of the results of the analyses. Thermal analyses were performed for major critical and typical areas. Fatigue analyses of the entire tunnel circuit are presented.

  15. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    NASA Astrophysics Data System (ADS)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  16. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  17. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    PubMed

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Application of 'steady' state finite element and transient finite difference theory to sound propagation in a variable duct - A comparison with experiment

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.

    1981-01-01

    Experimental data are presented for sound propagation in a simulated infinite hard wall duct with a large change in duct cross sectional area. The data are conveniently tabulated for further use. The 'steady' state finite element theory of Astley and Eversman (1981) and the transient finite difference theory of White (1981) are in good agreement with the data for both the axial and transverse pressure profiles and the axial phase angle. Therefore, numerical finite difference and finite element theories appear to be ideally suited for handling duct propagation problems which encounter large axial gradients in acoustic parameters. The measured energy reflection coefficient agrees with the values from the Astley-Eversman modal coupling model.

  19. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.

    PubMed

    Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J

    2017-01-01

    A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE PAGES

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  1. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.

  2. Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data

    NASA Astrophysics Data System (ADS)

    Gibbons, T. J.; Öztürk, E.; Sims, N. D.

    2018-01-01

    Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.

  3. Numerical simulation of aerothermal loads in hypersonic engine inlets due to shock impingement

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, R.

    1992-01-01

    The effect of shock impingement on an axial corner simulating the inlet of a hypersonic vehicle engine is modeled using a finite-difference procedure. A three-dimensional dynamic grid adaptation procedure is utilized to move the grids to regions with strong flow gradients. The adaptation procedure uses a grid relocation stencil that is valid at both the interior and boundary points of the finite-difference grid. A linear combination of spatial derivatives of specific flow variables, calculated with finite-element interpolation functions, are used as adaptation measures. This computational procedure is used to study laminar and turbulent Mach 6 flows in the axial corner. The description of flow physics and qualitative measures of heat transfer distributions on cowl and strut surfaces obtained from the analysis are compared with experimental observations. Conclusions are drawn regarding the capability of the numerical scheme for enhanced modeling of high-speed compressible flows.

  4. Thermodynamic analysis of journal bearings operating under steady state loading in laminar regime. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Khonsari, M. M.

    1983-01-01

    Thermohydrodynamic effects in journal bearings operating under steady load in laminar regime are investigated. An analytical model for the finite and infinitely long journal bearings is formulated. The model includes correction factors for the cavitation effects in the unloaded region of the bearing and the mixing of the recirculating oil and supply oil at the oil inlet. A finite difference computer program is developed to numerically solve the governing equations of the continuity, Reynolds, energy, Laplace heat conduction, and a viscosity-temperature relation simultaneously. The program includes a numerical technique for obtaining an isothermal shaft temperature. The numerical results of temperature distribution and the heat effects on the bearing load carrying capacity agree closely with those of experimental findings. Several different sets of simpler boundary conditions for the energy equation are studied.

  5. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  6. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less

  7. Comparison of vertical discretization techniques in finite-difference models of ground-water flow; example from a hypothetical New England setting

    USGS Publications Warehouse

    Harte, Philip T.

    1994-01-01

    Proper discretization of a ground-water-flow field is necessary for the accurate simulation of ground-water flow by models. Although discretiza- tion guidelines are available to ensure numerical stability, current guidelines arc flexible enough (particularly in vertical discretization) to allow for some ambiguity of model results. Testing of two common types of vertical-discretization schemes (horizontal and nonhorizontal-model-layer approach) were done to simulate sloping hydrogeologic units characteristic of New England. Differences of results of model simulations using these two approaches are small. Numerical errors associated with use of nonhorizontal model layers are small (4 percent). even though this discretization technique does not adhere to the strict formulation of the finite-difference method. It was concluded that vertical discretization by means of the nonhorizontal layer approach has advantages in representing the hydrogeologic units tested and in simplicity of model-data input. In addition, vertical distortion of model cells by this approach may improve the representation of shallow flow processes.

  8. A symplectic integration method for elastic filaments

    NASA Astrophysics Data System (ADS)

    Ladd, Tony; Misra, Gaurav

    2009-03-01

    Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.

  9. Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred

    2005-08-01

    In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.

  10. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    DOE PAGES

    Isvoranu, Dragos D.; Cizmas, Paul G. A.

    2003-01-01

    This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less

  11. Study on bending behaviour of nickel–titanium rotary endodontic instruments by analytical and numerical analyses

    PubMed Central

    Tsao, C C; Liou, J U; Wen, P H; Peng, C C; Liu, T S

    2013-01-01

    Aim To develop analytical models and analyse the stress distribution and flexibility of nickel–titanium (NiTi) instruments subject to bending forces. Methodology The analytical method was used to analyse the behaviours of NiTi instruments under bending forces. Two NiTi instruments (RaCe and Mani NRT) with different cross-sections and geometries were considered. Analytical results were derived using Euler–Bernoulli nonlinear differential equations that took into account the screw pitch variation of these NiTi instruments. In addition, the nonlinear deformation analysis based on the analytical model and the finite element nonlinear analysis was carried out. Numerical results are obtained by carrying out a finite element method. Results According to analytical results, the maximum curvature of the instrument occurs near the instrument tip. Results of the finite element analysis revealed that the position of maximum von Mises stress was near the instrument tip. Therefore, the proposed analytical model can be used to predict the position of maximum curvature in the instrument where fracture may occur. Finally, results of analytical and numerical models were compatible. Conclusion The proposed analytical model was validated by numerical results in analysing bending deformation of NiTi instruments. The analytical model is useful in the design and analysis of instruments. The proposed theoretical model is effective in studying the flexibility of NiTi instruments. Compared with the finite element method, the analytical model can deal conveniently and effectively with the subject of bending behaviour of rotary NiTi endodontic instruments. PMID:23173762

  12. A time-space domain stereo finite difference method for 3D scalar wave propagation

    NASA Astrophysics Data System (ADS)

    Chen, Yushu; Yang, Guangwen; Ma, Xiao; He, Conghui; Song, Guojie

    2016-11-01

    The time-space domain finite difference methods reduce numerical dispersion effectively by minimizing the error in the joint time-space domain. However, their interpolating coefficients are related with the Courant numbers, leading to significantly extra time costs for loading the coefficients consecutively according to velocity in heterogeneous models. In the present study, we develop a time-space domain stereo finite difference (TSSFD) method for 3D scalar wave equation. The method propagates both the displacements and their gradients simultaneously to keep more information of the wavefields, and minimizes the maximum phase velocity error directly using constant interpolation coefficients for different Courant numbers. We obtain the optimal constant coefficients by combining the truncated Taylor series approximation and the time-space domain optimization, and adjust the coefficients to improve the stability condition. Subsequent investigation shows that the TSSFD can suppress numerical dispersion effectively with high computational efficiency. The maximum phase velocity error of the TSSFD is just 3.09% even with only 2 sampling points per minimum wavelength when the Courant number is 0.4. Numerical experiments show that to generate wavefields with no visible numerical dispersion, the computational efficiency of the TSSFD is 576.9%, 193.5%, 699.0%, and 191.6% of those of the 4th-order and 8th-order Lax-Wendroff correction (LWC) method, the 4th-order staggered grid method (SG), and the 8th-order optimal finite difference method (OFD), respectively. Meanwhile, the TSSFD is compatible to the unsplit convolutional perfectly matched layer (CPML) boundary condition for absorbing artificial boundaries. The efficiency and capability to handle complex velocity models make it an attractive tool in imaging methods such as acoustic reverse time migration (RTM).

  13. Remote sensing applied to numerical modelling. [water resources pollution

    NASA Technical Reports Server (NTRS)

    Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.

    1975-01-01

    Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.

  14. Bracket formulations and energy- and helicity-preserving numerical methods for incompressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Suzuki, Yukihito

    2018-03-01

    A diffuse interface model for three-dimensional viscous incompressible two-phase flows is formulated within a bracket formalism using a skew-symmetric Poisson bracket together with a symmetric negative semi-definite dissipative bracket. The budgets of kinetic energy, helicity, and enstrophy derived from the bracket formulations are properly inherited by the finite difference equations obtained by invoking the discrete variational derivative method combined with the mimetic finite difference method. The Cahn-Hilliard and Allen-Cahn equations are employed as diffuse interface models, in which the equalities of densities and viscosities of two different phases are assumed. Numerical experiments on the motion of periodic arrays of tubes and those of droplets have been conducted to examine the properties and usefulness of the proposed method.

  15. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less

  16. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    NASA Astrophysics Data System (ADS)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  17. Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones

    NASA Astrophysics Data System (ADS)

    Scarella, Gilles; Clatz, Olivier; Lanteri, Stéphane; Beaume, Grégory; Oudot, Steve; Pons, Jean-Philippe; Piperno, Sergo; Joly, Patrick; Wiart, Joe

    2006-06-01

    The ever-rising diffusion of cellular phones has brought about an increased concern for the possible consequences of electromagnetic radiation on human health. Possible thermal effects have been investigated, via experimentation or simulation, by several research projects in the last decade. Concerning numerical modeling, the power absorption in a user's head is generally computed using discretized models built from clinical MRI data. The vast majority of such numerical studies have been conducted using Finite Differences Time Domain methods, although strong limitations of their accuracy are due to heterogeneity, poor definition of the detailed structures of head tissues (staircasing effects), etc. In order to propose numerical modeling using Finite Element or Discontinuous Galerkin Time Domain methods, reliable automated tools for the unstructured discretization of human heads are also needed. Results presented in this article aim at filling the gap between human head MRI images and the accurate numerical modeling of wave propagation in biological tissues and its thermal effects. To cite this article: G. Scarella et al., C. R. Physique 7 (2006).

  18. Mathematical, Constitutive and Numerical Modelling of Catastrophic Landslides and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Pastor, M.; Fernández Merodo, J. A.; Herreros, M. I.; Mira, P.; González, E.; Haddad, B.; Quecedo, M.; Tonni, L.; Drempetic, V.

    2008-02-01

    Mathematical and numerical models are a fundamental tool for predicting the behaviour of geostructures and their interaction with the environment. The term “mathematical model” refers to a mathematical description of the more relevant physical phenomena which take place in the problem being analyzed. It is indeed a wide area including models ranging from the very simple ones for which analytical solutions can be obtained to those more complicated requiring the use of numerical approximations such as the finite element method. During the last decades, mathematical, constitutive and numerical models have been very much improved and today their use is widespread both in industry and in research. One special case is that of fast catastrophic landslides, for which simplified methods are not able to provide accurate solutions in many occasions. Moreover, many finite element codes cannot be applied for propagation of the mobilized mass. The purpose of this work is to present an overview of the different alternative mathematical and numerical models which can be applied to both the initiation and propagation mechanisms of fast catastrophic landslides and other related problems such as waves caused by landslides.

  19. Calculation of three-dimensional compressible laminar and turbulent boundary layers. An implicit finite-difference procedure for solving the three-dimensional compressible laminar, transitional, and turbulent boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1975-01-01

    An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.

  20. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  1. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  2. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  3. Evaluation of Test Methods for Triaxially Braided Composites using a Meso-Scale Finite Element Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao

    The characterization of triaxially braided composite is complicate due to the nonuniformity of deformation within the unit cell as well as the possibility of the freeedge effect related to the large size of the unit cell. Extensive experimental investigation has been conducted to develop more accurate test approaches in characterizing the actual mechanical properties of the material we are studying. In this work, a meso-scale finite element model is utilized to simulate two complex specimens: notched tensile specimen and tube tensile specimen, which are designed to avoid the free-edge effect and free-edge effect induced premature edge damage. The full fieldmore » strain data is predicted numerically and compared with experimental data obtained by Digit Image Correlation. The numerically predicted tensile strength values are compared with experimentally measured results. The discrepancy between numerically predicted and experimentally measured data, the capability of different test approaches are analyzed and discussed. The presented numerical model could serve as assistance to the evaluation of different test methods, and is especially useful in identifying potential local damage events.« less

  4. Numerical analysis of some problems related to the mechanics of pneumatic tires: Finite deformation/rolling contact of a viscoelastic cylinder and finite deformation of cord-reinforced rubber composites

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.

    1984-01-01

    The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.

  5. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2003-01-01

    The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.

  6. A method for modeling finite-core vortices in wake-flow calculations

    NASA Technical Reports Server (NTRS)

    Stremel, P. M.

    1984-01-01

    A numerical method for computing nonplanar vortex wakes represented by finite-core vortices is presented. The approach solves for the velocity on an Eulerian grid, using standard finite-difference techniques; the vortex wake is tracked by Lagrangian methods. In this method, the distribution of continuous vorticity in the wake is replaced by a group of discrete vortices. An axially symmetric distribution of vorticity about the center of each discrete vortex is used to represent the finite-core model. Two distributions of vorticity, or core models, are investigated: a finite distribution of vorticity represented by a third-order polynomial, and a continuous distribution of vorticity throughout the wake. The method provides for a vortex-core model that is insensitive to the mesh spacing. Results for a simplified case are presented. Computed results for the roll-up of a vortex wake generated by wings with different spanwise load distributions are presented; contour plots of the flow-field velocities are included; and comparisons are made of the computed flow-field velocities with experimentally measured velocities.

  7. Valuation of financial models with non-linear state spaces

    NASA Astrophysics Data System (ADS)

    Webber, Nick

    2001-02-01

    A common assumption in valuation models for derivative securities is that the underlying state variables take values in a linear state space. We discuss numerical implementation issues in an interest rate model with a simple non-linear state space, formulating and comparing Monte Carlo, finite difference and lattice numerical solution methods. We conclude that, at least in low dimensional spaces, non-linear interest rate models may be viable.

  8. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.

    PubMed

    Xu, Zhenli; Ma, Manman; Liu, Pei

    2014-07-01

    We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

  9. Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids

    DTIC Science & Technology

    2006-12-01

    theory for charged vacancy diffusion in elastic dielectric materials is formulated and implemented numerically in a finite difference code. The...one of the co-authors on neutral vacancy kinetics (Grinfeld and Hazzledine, 1997). The theory is implemented numerically in a finite difference code...accuracy of order ( )2x∆ , using a finite difference approximation (Hoffman, 1992) for the second spatial derivative of φ : ( )21 1 0ˆ2 /i i i i Rxφ

  10. Geodynamics for Everyone: Robust Finite-Difference Heat Transfer Models using MS Excel 2007 Spreadsheets

    NASA Astrophysics Data System (ADS)

    Grose, C. J.

    2008-05-01

    Numerical geodynamics models of heat transfer are typically thought of as specialized topics of research requiring knowledge of specialized modelling software, linux platforms, and state-of-the-art finite-element codes. I have implemented analytical and numerical finite-difference techniques with Microsoft Excel 2007 spreadsheets to solve for complex solid-earth heat transfer problems for use by students, teachers, and practicing scientists without specialty in geodynamics modelling techniques and applications. While implementation of equations for use in Excel spreadsheets is occasionally cumbersome, once case boundary structure and node equations are developed, spreadsheet manipulation becomes routine. Model experimentation by modifying parameter values, geometry, and grid resolution makes Excel a useful tool whether in the classroom at the undergraduate or graduate level or for more engaging student projects. Furthermore, the ability to incorporate complex geometries and heat-transfer characteristics makes it ideal for first and occasionally higher order geodynamics simulations to better understand and constrain the results of professional field research in a setting that does not require the constraints of state-of-the-art modelling codes. The straightforward expression and manipulation of model equations in excel can also serve as a medium to better understand the confusing notations of advanced mathematical problems. To illustrate the power and robustness of computation and visualization in spreadsheet models I focus primarily on one-dimensional analytical and two-dimensional numerical solutions to two case problems: (i) the cooling of oceanic lithosphere and (ii) temperatures within subducting slabs. Excel source documents will be made available.

  11. Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements

    NASA Astrophysics Data System (ADS)

    Arntsen, B.

    2017-12-01

    The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.

  12. Transient well flow in vertically heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with partially penetrating wells may be estimated without the need to construct transient numerical models. A computer program based on the hybrid analytical-numerical technique is available from the author.

  13. Full numerical simulation of coflowing, axisymmetric jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Mahalingam, S.; Cantwell, B. J.; Ferziger, J. H.

    1990-01-01

    The near field of a non-premixed flame in a low speed, coflowing axisymmetric jet is investigated numerically using full simulation. The time-dependent governing equations are solved by a second-order, explicit finite difference scheme and a single-step, finite rate model is used to represent the chemistry. Steady laminar flame results show the correct dependence of flame height on Peclet number and reaction zone thickness on Damkoehler number. Forced simulations reveal a large difference in the instantaneous structure of scalar dissipation fields between nonbuoyant and buoyant cases. In the former, the scalar dissipation marks intense reaction zones, supporting the flamelet concept; however, results suggest that flamelet modeling assumptions need to be reexamined. In the latter, this correspondence breaks down, suggesting that modifications to the flamelet modeling approach are needed in buoyant turbulent diffusion flames.

  14. Optimal variable-grid finite-difference modeling for porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-12-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs.

  15. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1999-01-01

    A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.

  16. Engine dynamic analysis with general nonlinear finite element codes. Part 2: Bearing element implementation overall numerical characteristics and benchmaking

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Adams, M.; Fertis, J.; Zeid, I.; Lam, P.

    1982-01-01

    Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved.

  17. Numerical simulation of double‐diffusive finger convection

    USGS Publications Warehouse

    Hughes, Joseph D.; Sanford, Ward E.; Vacher, H. Leonard

    2005-01-01

    A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double‐diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density‐dependent, saturated‐unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute‐transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute‐transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High‐resolution data from a double‐diffusive Hele‐Shaw experiment, initially in a density‐stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double‐diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer.

  18. Stabilization of a finite slice in miscible displacement in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Mishra, Manoranjan

    2016-11-01

    We numerically studied the miscible displacement of a finite slice of variable viscosity and density. The stability of the finite slice depends on different flow parameters, such as displacement velocity U, mobility ratio R , and the density contrast. Series of numerical simulations corresponding to different ordered pair (R, U) in the parameter space, and a given density contrast reveal six different instability regions. We have shown that independent of the width of the slice, there always exists a region of stable displacement, and below a critical value of the slice width, this stable region increases with decreasing slice width. Further we observe that the viscous fingering (buoyancy-induced instability) at the upper interface induces buoyancy-induced instability (viscous fingering) at the lower interface. Besides the fundamental fluid dynamics understanding, our results can be helpful to model CO2 sequestration and chromatographic separation.

  19. Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices

    NASA Astrophysics Data System (ADS)

    Polstyanko, Sergey V.; Lee, Jin-Fa

    1998-03-01

    In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.

  20. Hybrid finite volume-finite element model for the numerical analysis of furrow irrigation and fertigation

    USDA-ARS?s Scientific Manuscript database

    Although slowly abandoned in developed countries, furrow irrigation systems continue to be a dominant irrigation method in developing countries. Numerical models represent powerful tools to assess irrigation and fertigation efficiency. While several models have been proposed in the past, the develop...

  1. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  2. Stability Test for Transient-Temperature Calculations

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1984-01-01

    Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.

  3. Numerical Simulation of a Solar Domestic Hot Water System

    NASA Astrophysics Data System (ADS)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  4. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  5. Application of a trigonometric finite difference procedure to numerical analysis of compressive and shear buckling of orthotropic panels

    NASA Technical Reports Server (NTRS)

    Stein, M.; Housner, J. D.

    1978-01-01

    A numerical analysis developed for the buckling of rectangular orthotropic layered panels under combined shear and compression is described. This analysis uses a central finite difference procedure based on trigonometric functions instead of using the conventional finite differences which are based on polynomial functions. Inasmuch as the buckle mode shape is usually trigonometric in nature, the analysis using trigonometric finite differences can be made to exhibit a much faster convergence rate than that using conventional differences. Also, the trigonometric finite difference procedure leads to difference equations having the same form as conventional finite differences; thereby allowing available conventional finite difference formulations to be converted readily to trigonometric form. For two-dimensional problems, the procedure introduces two numerical parameters into the analysis. Engineering approaches for the selection of these parameters are presented and the analysis procedure is demonstrated by application to several isotropic and orthotropic panel buckling problems. Among these problems is the shear buckling of stiffened isotropic and filamentary composite panels in which the stiffener is broken. Results indicate that a break may degrade the effect of the stiffener to the extent that the panel will not carry much more load than if the stiffener were absent.

  6. A 3D finite-difference BiCG iterative solver with the Fourier-Jacobi preconditioner for the anisotropic EIT/EEG forward problem.

    PubMed

    Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D

    2014-01-01

    The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.

  7. Large Eddy simulation of compressible flows with a low-numerical dissipation patch-based adaptive mesh refinement method

    NASA Astrophysics Data System (ADS)

    Pantano, Carlos

    2005-11-01

    We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)

  8. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  9. Finite difference methods for transient signal propagation in stratified dispersive media

    NASA Technical Reports Server (NTRS)

    Lam, D. H.

    1975-01-01

    Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.

  10. Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio.

    PubMed

    Kataoka, Takeshi; Tsutahara, Michihisa

    2004-03-01

    We have developed a lattice Boltzmann model for the compressible Navier-Stokes equations with a flexible specific-heat ratio. Several numerical results are presented, and they agree well with the corresponding solutions of the Navier-Stokes equations. In addition, an explicit finite-difference scheme is proposed for the numerical calculation that can make a stable calculation with a large Courant number.

  11. Recent advances in two-phase flow numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  12. Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felício B.

    2017-12-01

    Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

  13. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  14. [Comparison between the Range of Movement Canine Real Cervical Spine and Numerical Simulation - Computer Model Validation].

    PubMed

    Srnec, R; Horák, Z; Sedláček, R; Sedlinská, M; Krbec, M; Nečas, A

    2017-01-01

    PURPOSE OF THE STUDY In developing new or modifying the existing surgical treatment methods of spine conditions an integral part of ex vivo experiments is the assessment of mechanical, kinematic and dynamic properties of created constructions. The aim of the study is to create an appropriately validated numerical model of canine cervical spine in order to obtain a tool for basic research to be applied in cervical spine surgeries. For this purpose, canine is a suitable model due to the occurrence of similar cervical spine conditions in some breeds of dogs and in humans. The obtained model can also be used in research and in clinical veterinary practice. MATERIAL AND METHODS In order to create a 3D spine model, the LightSpeed 16 (GE, Milwaukee, USA) multidetector computed tomography was used to scan the cervical spine of Doberman Pinscher. The data were transmitted to Mimics 12 software (Materialise HQ, Belgium), in which the individual vertebrae were segmented on CT scans by thresholding. The vertebral geometry was exported to Rhinoceros software (McNeel North America, USA) for modelling, and subsequently the specialised software Abaqus (Dassault Systemes, France) was used to analyse the response of the physiological spine model to external load by the finite element method (FEM). All the FEM based numerical simulations were considered as nonlinear contact statistic tasks. In FEM analyses, angles between individual spinal segments were monitored in dependence on ventroflexion/ /dorziflexion. The data were validated using the latero-lateral radiographs of cervical spine of large breed dogs with no evident clinical signs of cervical spine conditions. The radiographs within the cervical spine range of motion were taken at three different positions: in neutral position, in maximal ventroflexion and in maximal dorziflexion. On X-rays, vertebral inclination angles in monitored spine positions were measured and compared with the results obtain0ed from FEM analyses of the numerical model. RESULTS It is obvious from the results that the physiological spine model tested by the finite element method shows a very similar mechanical behaviour as the physiological canine spine. The biggest difference identified between the resulting values was reported in C6-C7 segment in dorsiflexion (Δφ = 5.95%), or in C4-C5 segment in ventroflexion (Δφ = -3.09%). CONCLUSIONS The comparisons between the mobility of cervical spine in ventroflexion/dorsiflexion on radiographs of the real models and the simulated numerical model by finite element method showed a high degree of results conformity with a minimal difference. Therefore, for future experiments the validated numerical model can be used as a tool of basic research on condition that the results of analyses carried out by finite element method will be affected only by an insignificant error. The computer model, on the other hand, is merely a simplified system and in comparison with the real situation cannot fully evaluate the dynamics of the action of forces in time, their variability, and also the individual effects of supportive skeletal tissues. Based on what has been said above, it is obvious that there is a need to exercise restraint in interpreting the obtained results. Key words: cervical spine, kinematics, numerical modelling, finite element method, canine.

  15. A solution to neural field equations by a recurrent neural network method

    NASA Astrophysics Data System (ADS)

    Alharbi, Abir

    2012-09-01

    Neural field equations (NFE) are used to model the activity of neurons in the brain, it is introduced from a single neuron 'integrate-and-fire model' starting point. The neural continuum is spatially discretized for numerical studies, and the governing equations are modeled as a system of ordinary differential equations. In this article the recurrent neural network approach is used to solve this system of ODEs. This consists of a technique developed by combining the standard numerical method of finite-differences with the Hopfield neural network. The architecture of the net, energy function, updating equations, and algorithms are developed for the NFE model. A Hopfield Neural Network is then designed to minimize the energy function modeling the NFE. Results obtained from the Hopfield-finite-differences net show excellent performance in terms of accuracy and speed. The parallelism nature of the Hopfield approaches may make them easier to implement on fast parallel computers and give them the speed advantage over the traditional methods.

  16. Numerical simulation of the generation, propagation, and diffraction of nonlinear waves in a rectangular basin: A three-dimensional numerical wave tank

    NASA Astrophysics Data System (ADS)

    Darwiche, Mahmoud Khalil M.

    The research presented herein is a contribution to the understanding of the numerical modeling of fully nonlinear, transient water waves. The first part of the work involves the development of a time-domain model for the numerical generation of fully nonlinear, transient waves by a piston type wavemaker in a three-dimensional, finite, rectangular tank. A time-domain boundary-integral model is developed for simulating the evolving fluid field. A robust nonsingular, adaptive integration technique for the assembly of the boundary-integral coefficient matrix is developed and tested. A parametric finite-difference technique for calculating the fluid- particle kinematics is also developed and tested. A novel compatibility and continuity condition is implemented to minimize the effect of the singularities that are inherent at the intersections of the various Dirichlet and/or Neumann subsurfaces. Results are presented which demonstrate the accuracy and convergence of the numerical model. The second portion of the work is a study of the interaction of the numerically-generated, fully nonlinear, transient waves with a bottom-mounted, surface-piercing, vertical, circular cylinder. The numerical model developed in the first part of this dissertation is extended to include the presence of the cylinder at the centerline of the basin. The diffraction of the numerically generated waves by the cylinder is simulated, and the particle kinematics of the diffracted flow field are calculated and reported. Again, numerical results showing the accuracy and convergence of the extended model are presented.

  17. Revision of the documentation for a model for calculating effects of liquid waste disposal in deep saline aquifers

    USGS Publications Warehouse

    INTERA Environmental Consultants, Inc.

    1979-01-01

    The major limitation of the model arises using second-order correct (central-difference) finite-difference approximation in space. To avoid numerical oscillations in the solution, the user must restrict grid block and time step sizes depending upon the magnitude of the dispersivity.

  18. The development of an explicit thermochemical nonequilibrium algorithm and its application to compute three dimensional AFE flowfields

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.

  19. Numerical Modelling of Ground Penetrating Radar Antennas

    NASA Astrophysics Data System (ADS)

    Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara

    2014-05-01

    Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD model. Accurate models based on general characteristics of the commercial antennas GSSI 1.5 GHz and MALA 1.2 GHz have been already incorporated in GprMax, a free software which solves Maxwell's equation using a second order in space and time FDTD algorithm. This work presents the implementation of horn antennas with different parameters as well as ridged horn antennas into this FDTD model and their effectiveness is tested in realistic modelled situations. Accurate models of soils and concrete are used to test and compare different antenna units. Stochastic methods are used in order to realistically simulate the geometrical characteristics of the medium. Regarding the dielectric properties, Debye approximations are incorporated in order to simulate realistically the dielectric properties of the medium on the frequency range of interest.

  20. A comparative study on dynamic stiffness in typical finite element model and multi-body model of C6-C7 cervical spine segment.

    PubMed

    Wang, Yawei; Wang, Lizhen; Du, Chengfei; Mo, Zhongjun; Fan, Yubo

    2016-06-01

    In contrast to numerous researches on static or quasi-static stiffness of cervical spine segments, very few investigations on their dynamic stiffness were published. Currently, scale factors and estimated coefficients were usually used in multi-body models for including viscoelastic properties and damping effects, meanwhile viscoelastic properties of some tissues were unavailable for establishing finite element models. Because dynamic stiffness of cervical spine segments in these models were difficult to validate because of lacking in experimental data, we tried to gain some insights on current modeling methods through studying dynamic stiffness differences between these models. A finite element model and a multi-body model of C6-C7 segment were developed through using available material data and typical modeling technologies. These two models were validated with quasi-static response data of the C6-C7 cervical spine segment. Dynamic stiffness differences were investigated through controlling motions of C6 vertebrae at different rates and then comparing their reaction forces or moments. Validation results showed that both the finite element model and the multi-body model could generate reasonable responses under quasi-static loads, but the finite element segment model exhibited more nonlinear characters. Dynamic response investigations indicated that dynamic stiffness of this finite element model might be underestimated because of the absence of dynamic stiffen effect and damping effects of annulus fibrous, while representation of these effects also need to be improved in current multi-body model. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N. C.

    2010-10-01

    Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage.

  2. Numerical Simulation of the Detonation of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ye, Ting; Ning, Jianguo

    Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.

  3. ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.; ,

    1985-01-01

    Besides providing an exact solution for steady-state heat conduction processes (Laplace Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximative boundary generation. This error evaluation can be used to develop highly accurate CVBEM models of the heat transport process, and the resulting model can be used as a test case for evaluating the precision of domain models based on finite elements or finite differences.

  4. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  5. Symmetric tridiagonal structure preserving finite element model updating problem for the quadratic model

    NASA Astrophysics Data System (ADS)

    Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath

    2018-07-01

    One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.

  6. A finite difference-time domain technique for modeling narrow apertures in conducting scatterers

    NASA Technical Reports Server (NTRS)

    Demarest, Kenneth R.

    1987-01-01

    The finite difference-time domain (FDTD) technique has proven to be a valuable tool for the calculation of the transient and steady state scattering characteristics of relatively complex scatterer and source configurations. In spite of its usefulness, it exhibits serious deficiencies when used to analyze geometries that contain fine detail. An FDTD technique is described that utilizes Babinet's principle to decouple the regions on both sides of the aperture. The result is an FDTD technique that is capable of modeling apertures that are much smaller than the spatial grid used in the analysis and yet is not perturbed by numerical noise when used in the 'scattered field' mode. Numerical results are presented that show the field penetration through cavity-backed apertures that are much smaller than the spatial grid used during the solution.

  7. Radon transport model into a porous ground layer of finite capacity

    NASA Astrophysics Data System (ADS)

    Parovik, Roman

    2017-10-01

    The model of radon transfer is considered in a porous ground layer of finite power. With the help of the Laplace integral transformation, a numerical solution of this model is obtained which is based on the construction of a generalized quadrature formula of the highest degree of accuracy for the transition to the original - the function of solving this problem. The calculated curves are constructed and investigated depending on the diffusion and advection coefficients.The work was a mathematical model that describes the effect of the sliding attachment (stick-slip), taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  8. Numerical simulation of conservation laws

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; To, Wai-Ming

    1992-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.

  9. On the numerical modeling of sliding beams: A comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Ivo; Humer, Alexander; Vu-Quoc, Loc

    2017-11-01

    The transient analysis of sliding beams represents a challenging problem of structural mechanics. Typically, the sliding motion superimposed by large flexible deformation requires numerical methods as, e.g., finite elements, to obtain approximate solutions. By means of the classical sliding spaghetti problem, the present paper provides a guideline to the numerical modeling with conventional finite element codes. For this purpose, two approaches, one using solid elements and one using beam elements, respectively, are employed in the analysis, and the characteristics of each approach are addressed. The contact formulation realizing the interaction of the beam with its support demands particular attention in the context of sliding structures. Additionally, the paper employs the sliding-beam formulation as a third approach, which avoids the numerical difficulties caused by the large sliding motion through a suitable coordinate transformation. The present paper briefly outlines the theoretical fundamentals of the respective approaches for the modeling of sliding structures and gives a detailed comparison by means of the sliding spaghetti serving as a representative example. The specific advantages and limitations of the different approaches with regard to accuracy and computational efficiency are discussed in detail. Through the comparison, the sliding-beam formulation, which proves as an effective approach for the modeling, can be validated for the general problem of a sliding structure subjected to large deformation.

  10. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments

    USGS Publications Warehouse

    Trescott, Peter C.; Pinder, George Francis; Larson, S.P.

    1976-01-01

    The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.

  11. Researched applied to transonic compressors in numerical fluid mechanics of inviscid flow and viscous flow

    NASA Technical Reports Server (NTRS)

    Thompkins, W. T., Jr.

    1985-01-01

    A streamline Euler solver which combines high accuracy and good convergence rates with capabilities for inverse or direct mode solution modes and an analysis technique for finite difference models of hyperbolic partial difference equations were developed.

  12. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  13. Models and finite element approximations for interacting nanosized piezoelectric bodies and acoustic medium

    NASA Astrophysics Data System (ADS)

    Nasedkin, A. V.

    2017-01-01

    This research presents the new size-dependent models of piezoelectric materials oriented to finite element applications. The proposed models include the facilities of taking into account different mechanisms of damping for mechanical and electric fields. The coupled models also incorporate the equations of the theory of acoustics for viscous fluids. In particular cases, these models permit to use the mode superposition method with full separation of the finite element systems into independent equations for the independent modes for transient and harmonic problems. The main boundary conditions were supplemented with the facilities of taking into account the coupled surface effects, allowing to explore the nanoscale piezoelectric materials in the framework of theories of continuous media with surface stresses and their generalizations. For the considered problems we have implemented the finite element technologies and various numerical algorithms to maintain a symmetrical structure of the finite element quasi-definite matrices (matrix structure for the problems with a saddle point).

  14. On finite element implementation and computational techniques for constitutive modeling of high temperature composites

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.

    1989-01-01

    The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.

  15. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    NASA Technical Reports Server (NTRS)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  16. Numerical Characterization of Piezoceramics Using Resonance Curves

    PubMed Central

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-01

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875

  17. Numerical Characterization of Piezoceramics Using Resonance Curves.

    PubMed

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-27

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.

  18. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-08-31

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  19. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  20. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain

    NASA Astrophysics Data System (ADS)

    Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.

    2018-05-01

    The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.

  1. Study of stability of the difference scheme for the model problem of the gaslift process

    NASA Astrophysics Data System (ADS)

    Temirbekov, Nurlan; Turarov, Amankeldy

    2017-09-01

    The paper studies a model of the gaslift process where the motion in a gas-lift well is described by partial differential equations. The system describing the studied process consists of equations of motion, continuity, equations of thermodynamic state, and hydraulic resistance. A two-layer finite-difference Lax-Vendroff scheme is constructed for the numerical solution of the problem. The stability of the difference scheme for the model problem is investigated using the method of a priori estimates, the order of approximation is investigated, the algorithm for numerical implementation of the gaslift process model is given, and the graphs are presented. The development and investigation of difference schemes for the numerical solution of systems of equations of gas dynamics makes it possible to obtain simultaneously exact and monotonic solutions.

  2. Combined Uncertainty and A-Posteriori Error Bound Estimates for CFD Calculations: Theory and Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    Simulation codes often utilize finite-dimensional approximation resulting in numerical error. Some examples include, numerical methods utilizing grids and finite-dimensional basis functions, particle methods using a finite number of particles. These same simulation codes also often contain sources of uncertainty, for example, uncertain parameters and fields associated with the imposition of initial and boundary data,uncertain physical model parameters such as chemical reaction rates, mixture model parameters, material property parameters, etc.

  3. Treatment of late time instabilities in finite difference EMP scattering codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.T.; Arman, S.; Holland, R.

    1982-12-01

    Time-domain solutions to the finite-differenced Maxwell's equations give rise to several well-known nonphysical propagation anomalies. In particular, when a radiative electric-field look back scheme is employed to terminate the calculation, a high-frequency, growing, numerical instability is introduced. This paper describes the constraints made on the mesh to minimize this instability, and a technique of applying an absorbing sheet to damp out this instability without altering the early time solution. Also described are techniques to extend the data record in the presence of high-frequency noise through application of a low-pass digital filter and the fitting of a damped sinusoid to themore » late-time tail of the data record. An application of these techniques is illustrated with numerical models of the FB-111 aircraft and the B-52 aircraft in the in-flight refueling configuration using the THREDE finite difference computer code. Comparisons are made with experimental scale model measurements with agreement typically on the order of 3 to 6 dB near the fundamental resonances.« less

  4. The Laguerre finite difference one-way equation solver

    NASA Astrophysics Data System (ADS)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  5. The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory

    PubMed Central

    Bosbach, Wolfram A.

    2015-01-01

    Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603

  6. Comparison of finite-difference schemes for analysis of shells of revolution. [stress and free vibration analysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Stephens, W. B.

    1973-01-01

    Several finite difference schemes are applied to the stress and free vibration analysis of homogeneous isotropic and layered orthotropic shells of revolution. The study is based on a form of the Sanders-Budiansky first-approximation linear shell theory modified such that the effects of shear deformation and rotary inertia are included. A Fourier approach is used in which all the shell stress resultants and displacements are expanded in a Fourier series in the circumferential direction, and the governing equations reduce to ordinary differential equations in the meridional direction. While primary attention is given to finite difference schemes used in conjunction with first order differential equation formulation, comparison is made with finite difference schemes used with other formulations. These finite difference discretization models are compared with respect to simplicity of application, convergence characteristics, and computational efficiency. Numerical studies are presented for the effects of variations in shell geometry and lamination parameters on the accuracy and convergence of the solutions obtained by the different finite difference schemes. On the basis of the present study it is shown that the mixed finite difference scheme based on the first order differential equation formulation and two interlacing grids for the different fundamental unknowns combines a number of advantages over other finite difference schemes previously reported in the literature.

  7. The MUSIC algorithm for impedance tomography of small inclusions from discrete data

    NASA Astrophysics Data System (ADS)

    Lechleiter, A.

    2015-09-01

    We consider a point-electrode model for electrical impedance tomography and show that current-to-voltage measurements from finitely many electrodes are sufficient to characterize the positions of a finite number of point-like inclusions. More precisely, we consider an asymptotic expansion with respect to the size of the small inclusions of the relative Neumann-to-Dirichlet operator in the framework of the point electrode model. This operator is naturally finite-dimensional and models difference measurements by finitely many small electrodes of the electric potential with and without the small inclusions. Moreover, its leading-order term explicitly characterizes the centers of the small inclusions if the (finite) number of point electrodes is large enough. This characterization is based on finite-dimensional test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion centers. We show both the feasibility and limitations of this imaging technique via two-dimensional numerical experiments, considering in particular the influence of the number of point electrodes on the algorithm’s images.

  8. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    NASA Astrophysics Data System (ADS)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  9. A novel 2.5D finite difference scheme for simulations of resistivity logging in anisotropic media

    NASA Astrophysics Data System (ADS)

    Zeng, Shubin; Chen, Fangzhou; Li, Dawei; Chen, Ji; Chen, Jiefu

    2018-03-01

    The objective of this study is to develop a method to model 3D resistivity well logging problems in 2D formation with anisotropy, known as 2.5D modeling. The traditional 1D forward modeling extensively used in practice lacks the capability of modeling 2D formation. A 2.5D finite difference method (FDM) solving all the electric and magnetic field components simultaneously is proposed. Compared to other previous 2.5D FDM schemes, this method is more straightforward in modeling fully anisotropic media and easy to be implemented. Fourier transform is essential to this FDM scheme, and by employing Gauss-Legendre (GL) quadrature rule the computational time of this step can be greatly reduced. In the numerical examples, we first demonstrate the validity of the FDM scheme with GL rule by comparing with 1D forward modeling for layered anisotropic problems, and then we model a complicated 2D formation case and find that the proposed 2.5D FD scheme is much more efficient than 3D numerical methods.

  10. Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure

    NASA Astrophysics Data System (ADS)

    Szafran, J.; Juszczyk, K.; Kamiński, M.

    2017-12-01

    The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.

  11. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    NASA Astrophysics Data System (ADS)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

    PubMed

    Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray

    2017-07-11

    Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

  13. A study of unstable rock failures using finite difference and discrete element methods

    NASA Astrophysics Data System (ADS)

    Garvey, Ryan J.

    Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex mine models. These combined numerical tools may be applied in future studies to design primary and secondary supports in bump-prone conditions, evaluate retreat mining cut sequences, asses pillar de-stressing techniques, or perform backanalyses on unstable failures in select mining layouts.

  14. Numerical Modeling of Ultra Wideband Combined Antennas

    NASA Astrophysics Data System (ADS)

    Zorkal'tseva, M. Yu.; Koshelev, V. I.; Petkun, A. A.

    2017-12-01

    With the help of a program we developed, based on the finite difference method in the time domain, we have investigated the characteristics of ultra wideband combined antennas in detail. The antennas were developed to radiate bipolar pulses with durations in the range 0.5-3 ns. Data obtained by numerical modeling are compared with the data of experimental studies on antennas and have been used in the synthesis of electromagnetic pulses with maximum field strength.

  15. Experimental Investigation of Hydrodynamic Self-Acting Gas Bearings at High Knudsen Numbers.

    DTIC Science & Technology

    1980-07-01

    Reynolds equation. Two finite - difference algorithms were used to solve the equation. Numerical results - the predicted load and pitch angle - from the two...that should be used. The majority of the numerical solution are still based on the finite difference approximation of the governing equation. But in... finite difference method. Reddi and Chu [26) also noted that it is very difficult to compare the two techniques on the same level since the solution

  16. Computational strategies for tire monitoring and analysis

    NASA Technical Reports Server (NTRS)

    Danielson, Kent T.; Noor, Ahmed K.; Green, James S.

    1995-01-01

    Computational strategies are presented for the modeling and analysis of tires in contact with pavement. A procedure is introduced for simple and accurate determination of tire cross-sectional geometric characteristics from a digitally scanned image. Three new strategies for reducing the computational effort in the finite element solution of tire-pavement contact are also presented. These strategies take advantage of the observation that footprint loads do not usually stimulate a significant tire response away from the pavement contact region. The finite element strategies differ in their level of approximation and required amount of computer resources. The effectiveness of the strategies is demonstrated by numerical examples of frictionless and frictional contact of the space shuttle Orbiter nose-gear tire. Both an in-house research code and a commercial finite element code are used in the numerical studies.

  17. A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation

    NASA Astrophysics Data System (ADS)

    Vergez, Guillaume; Danaila, Ionut; Auliac, Sylvain; Hecht, Frédéric

    2016-12-01

    We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the finite element method, allowing to easily code various numerical algorithms. Two robust and optimized numerical methods were implemented to minimize the Gross-Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity strategies are used to reduce the computational time and increase the local spatial accuracy when vortices are present. Different run cases are made available for 2D and 3D configurations of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide several post-processing tools (like the identification of quantized vortices) that could help in extracting physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to deal with different physical models.

  18. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    NASA Astrophysics Data System (ADS)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  19. Nonlinear finite element modeling of corrugated board

    Treesearch

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  20. Mathematical modeling of heat transfer problems in the permafrost

    NASA Astrophysics Data System (ADS)

    Gornov, V. F.; Stepanov, S. P.; Vasilyeva, M. V.; Vasilyev, V. I.

    2014-11-01

    In this work we present results of numerical simulation of three-dimensional temperature fields in soils for various applied problems: the railway line in the conditions of permafrost for different geometries, the horizontal tunnel underground storage and greenhouses of various designs in the Far North. Mathematical model of the process is described by a nonstationary heat equation with phase transitions of pore water. The numerical realization of the problem is based on the finite element method using a library of scientific computing FEniCS. For numerical calculations we use high-performance computing systems.

  1. A one-dimensional model to describe flow localization in viscoplastic slender bars subjected to super critical impact velocities

    NASA Astrophysics Data System (ADS)

    Vaz-Romero, A.; Rodríguez-Martínez, J. A.

    2018-01-01

    In this paper we investigate flow localization in viscoplastic slender bars subjected to dynamic tension. We explore loading rates above the critical impact velocity: the wave initiated in the impacted end by the applied velocity is the trigger for the localization of plastic deformation. The problem has been addressed using two kinds of numerical simulations: (1) one-dimensional finite difference calculations and (2) axisymmetric finite element computations. The latter calculations have been used to validate the capacity of the finite difference model to describe plastic flow localization at high impact velocities. The finite difference model, which highlights due to its simplicity, allows to obtain insights into the role played by the strain rate and temperature sensitivities of the material in the process of dynamic flow localization. Specifically, we have shown that viscosity can stabilize the material behavior to the point of preventing the appearance of the critical impact velocity. This is a key outcome of our investigation, which, to the best of the authors' knowledge, has not been previously reported in the literature.

  2. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersson, N. Anders; Sjogreen, Bjorn

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  3. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2017-04-18

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  4. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  5. Analysis of crack propagation in human long bone by using finite element modeling

    NASA Astrophysics Data System (ADS)

    Salim, Mohammad Shahril; Salleh, Ahmad Faizal; Daud, Ruslizam

    2017-12-01

    The aim of this research is to present a numerical modeling of crack for human long bone specifically on femur shaft bone under mode I loading condition. Two - dimensional model (2D) of long bone was developed based on past research study. The finite element analysis and construction of the model are done using Mechanical APDL (ANSYS) v14.0 software. The research was conducted mainly based on two conditions that were at different crack lengths and different loading forces for male and female. In order to evaluate the stress intensity factor (KI) of the femur shaft of long bone, this research employed finite element method to predict the brittle fracture loading by using three-point bending test. The result of numerical test found that the crack was formed when the crack length reached 0.0022 m where KI values are proportional with the crack's length. Also, various loading forces in range of 400 N to 1000 N were applied in an attempt to study their effect on stress intensity factor and it was found that the female dimension has higher KI values compared to male. It was also observed that K values found by this method have good agreement with theoretical results based on previous research.

  6. A novel equivalent definition of Caputo fractional derivative without singular kernel and superconvergent analysis

    NASA Astrophysics Data System (ADS)

    Liu, Zhengguang; Li, Xiaoli

    2018-05-01

    In this article, we present a new second-order finite difference discrete scheme for a fractal mobile/immobile transport model based on equivalent transformative Caputo formulation. The new transformative formulation takes the singular kernel away to make the integral calculation more efficient. Furthermore, this definition is also effective where α is a positive integer. Besides, the T-Caputo derivative also helps us to increase the convergence rate of the discretization of the α-order(0 < α < 1) Caputo derivative from O(τ2-α) to O(τ3-α), where τ is the time step. For numerical analysis, a Crank-Nicolson finite difference scheme to solve the fractal mobile/immobile transport model is introduced and analyzed. The unconditional stability and a priori estimates of the scheme are given rigorously. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.

  7. Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Zhu, Z. H.

    2015-12-01

    Dynamic modeling of tethered spacecraft with the consideration of elasticity of tether is prone to the numerical instability and error accumulation over long-term numerical integration. This paper addresses the challenges by proposing a globally stable numerical approach with the nodal position finite element method (NPFEM) and the implicit, symplectic, 2-stage and 4th order Gaussian-Legendre Runge-Kutta time integration. The NPFEM eliminates the numerical error accumulation by using the position instead of displacement of tether as the state variable, while the symplectic integration enforces the energy and momentum conservation of the discretized finite element model to ensure the global stability of numerical solution. The effectiveness and robustness of the proposed approach is assessed by an elastic pendulum problem, whose dynamic response resembles that of tethered spacecraft, in comparison with the commonly used time integrators such as the classical 4th order Runge-Kutta schemes and other families of non-symplectic Runge-Kutta schemes. Numerical results show that the proposed approach is accurate and the energy of the corresponding numerical model is conservative over the long-term numerical integration. Finally, the proposed approach is applied to the dynamic modeling of deorbiting process of tethered spacecraft over a long period.

  8. From three-dimensional long-term tectonic numerical models to synthetic structural data: semi-automatic extraction of instantaneous & finite strain quantities

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; May, Dave

    2017-04-01

    Over the past three decades thermo-mechanical numerical modelling has transformed the way we look at deformation in the lithosphere. More than just generating aesthetically pleasing pictures, the output from a numerical models contains a rich source of quantitative information that can be used to measure deformation quantities in plan view or three-dimensions. Adding value to any numerical experiment requires a thorough post-processing of the modelling results. Such work aims to produce visual information that will resonate to seasoned structural geologists and assist with comparing experimental and observational data. Here we introduce two methods to generate synthetic structural data from numerical model outputs. We first present an image processing and shape recognition workflow developed to extract the active faults orientation from surface velocity gradients. In order to measure the active faults lengths and directions along with their distribution at the surface of the model we implemented an automated sequential mapping technique based on the second invariant of the strain rate tensor and using a suite a python functions. Active fault direction measurements are achieved using a probabilistic method for extracting linear features orientation from any surface. This method has the undeniable advantage to avoid interpretation bias. Strike measurements for individual segments are weighted according to their length and orientation distribution data are presented in an equal-area moving average rose diagrams produced using a weighted method. Finally, we discuss a method for mapping finite strain in three-dimensions. A high-resolution Lagrangian regular grid which advects during the numerical experiment is used to track the progressive deformation within the model. Thanks to this data we can measure the finite strain ellipsoids for any region of interest in the model. This method assumes that the finite strain is homogenous within one unit cell of the grid. We can compute individual ellipsoid's parameters (orientation, shape, etc.) and represent the finite deformation for any region of interest in a Flinn diagram. In addition, we can use the finite strain ellipsoids to estimate the prevailing foliation and/or lineation directions anywhere in the model. These two methods are applied to measure the instantaneous and finite deformation patterns within an oblique rift zone ongoing constant extension in the absence of surface processes.

  9. Numerical simulation of KdV equation by finite difference method

    NASA Astrophysics Data System (ADS)

    Yokus, A.; Bulut, H.

    2018-05-01

    In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.

  10. Numerical analysis of heat transfer in the exhaust gas flow in a diesel power generator

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2016-09-01

    This work presents a numerical study of heat transfer in the exhaust duct of a diesel power generator. The analysis was performed using two different approaches: the Finite Difference Method (FDM) and the Finite Volume Method (FVM), this last one by means of a commercial computer software, ANSYS CFX®. In FDM, the energy conservation equation was solved taking into account the estimated velocity profile for fully developed turbulent flow inside a tube and literature correlations for heat transfer. In FVM, the mass conservation, momentum, energy and transport equations were solved for turbulent quantities by the K-ω SST model. In both methods, variable properties were considered for the exhaust gas composed by six species: CO2, H2O, H2, O2, CO and N2. The entry conditions for the numerical simulations were given by experimental data available. The results were evaluated for the engine operating under loads of 0, 10, 20, and 37.5 kW. Test mesh and convergence were performed to determine the numerical error and uncertainty of the simulations. The results showed a trend of increasing temperature gradient with load increase. The general behaviour of the velocity and temperature profiles obtained by the numerical models were similar, with some divergence arising due to the assumptions made for the resolution of the models.

  11. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  12. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    DOE PAGES

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less

  13. Newtonian nudging for a Richards equation-based distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark

    The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.

  14. Newtonian Nudging For A Richards Equation-based Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Paniconi, C.; Marrocu, M.; Putti, M.; Verbunt, M.

    In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimila- tion scheme. Nudging is shown to be successful in improving the hydrological sim- ulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitiv- ity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexi- ble, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be read- ily extended to any features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.

  15. Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Adamian, A.

    1988-01-01

    An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.

  16. Numerical investigation of self-sustained oscillations in the flow over the spiked blunt body

    NASA Astrophysics Data System (ADS)

    Konstantin, Babarykin

    2018-05-01

    Numerical simulation of the supersonic turbulent flow around spike-tipped cylindrical body is carried out. The self-sustained oscillating flow picture is studied. For the simulations the ANSYS Fluent finite-volume solver is employed, the calculations are performed mainly for 2d axisymmetric case, and some simulations are made in 3d version. The freestream Mach number is 2,22, the cases of sharp and obtuse needle of different length are considered. The numerical results are obtained using different turbulence models, are compared with experimental data.

  17. An introduction to three-dimensional climate modeling

    NASA Technical Reports Server (NTRS)

    Washington, W. M.; Parkinson, C. L.

    1986-01-01

    The development and use of three-dimensional computer models of the earth's climate are discussed. The processes and interactions of the atmosphere, oceans, and sea ice are examined. The basic theory of climate simulation which includes the fundamental equations, models, and numerical techniques for simulating the atmosphere, oceans, and sea ice is described. Simulated wind, temperature, precipitation, ocean current, and sea ice distribution data are presented and compared to observational data. The responses of the climate to various environmental changes, such as variations in solar output or increases in atmospheric carbon dioxide, are modeled. Future developments in climate modeling are considered. Information is also provided on the derivation of the energy equation, the finite difference barotropic forecast model, the spectral transform technique, and the finite difference shallow water waved equation model.

  18. An economical method of analyzing transient motion of gas-lubricated rotor-bearing systems.

    NASA Technical Reports Server (NTRS)

    Falkenhagen, G. L.; Ayers, A. L.; Barsalou, L. C.

    1973-01-01

    A method of economically evaluating the hydrodynamic forces generated in a gas-lubricated tilting-pad bearing is presented. The numerical method consists of solving the case of the infinite width bearing and then converting this solution to the case of the finite bearing by accounting for end leakage. The approximate method is compared to the finite-difference solution of Reynolds equation and yields acceptable accuracy while running about one-hundred times faster. A mathematical model of a gas-lubricated tilting-pad vertical rotor systems is developed. The model is capable of analyzing a two-bearing-rotor system in which the rotor center of mass is not at midspan by accounting for gyroscopic moments. The numerical results from the model are compared to actual test data as well as analytical results of other investigators.

  19. On the dynamics of some grid adaption schemes

    NASA Technical Reports Server (NTRS)

    Sweby, Peter K.; Yee, Helen C.

    1994-01-01

    The dynamics of a one-parameter family of mesh equidistribution schemes coupled with finite difference discretisations of linear and nonlinear convection-diffusion model equations is studied numerically. It is shown that, when time marched to steady state, the grid adaption not only influences the stability and convergence rate of the overall scheme, but can also introduce spurious dynamics to the numerical solution procedure.

  20. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain

    NASA Astrophysics Data System (ADS)

    Ouyang, Chaojun; He, Siming; Xu, Qiang; Luo, Yu; Zhang, Wencheng

    2013-03-01

    A two-dimensional mountainous mass flow dynamic procedure solver (Massflow-2D) using the MacCormack-TVD finite difference scheme is proposed. The solver is implemented in Matlab on structured meshes with variable computational domain. To verify the model, a variety of numerical test scenarios, namely, the classical one-dimensional and two-dimensional dam break, the landslide in Hong Kong in 1993 and the Nora debris flow in the Italian Alps in 2000, are executed, and the model outputs are compared with published results. It is established that the model predictions agree well with both the analytical solution as well as the field observations.

  1. Heat transfer models for predicting Salmonella enteritidis in shell eggs through supply chain distribution.

    PubMed

    Almonacid, S; Simpson, R; Teixeira, A

    2007-11-01

    Egg and egg preparations are important vehicles for Salmonella enteritidis infections. The influence of time-temperature becomes important when the presence of this organism is found in commercial shell eggs. A computer-aided mathematical model was validated to estimate surface and interior temperature of shell eggs under variable ambient and refrigerated storage temperature. A risk assessment of S. enteritidis based on the use of this model, coupled with S. enteritidis kinetics, has already been reported in a companion paper published earlier in JFS. The model considered the actual geometry and composition of shell eggs and was solved by numerical techniques (finite differences and finite elements). Parameters of interest such as local (h) and global (U) heat transfer coefficient, thermal conductivity, and apparent volumetric specific heat were estimated by an inverse procedure from experimental temperature measurement. In order to assess the error in predicting microbial population growth, theoretical and experimental temperatures were applied to a S. enteritidis growth model taken from the literature. Errors between values of microbial population growth calculated from model predicted compared with experimentally measured temperatures were satisfactorily low: 1.1% and 0.8% for the finite difference and finite element model, respectively.

  2. The effect of numerical methods on the simulation of mid-ocean ridge hydrothermal models

    NASA Astrophysics Data System (ADS)

    Carpio, J.; Braack, M.

    2012-01-01

    This work considers the effect of the numerical method on the simulation of a 2D model of hydrothermal systems located in the high-permeability axial plane of mid-ocean ridges. The behavior of hot plumes, formed in a porous medium between volcanic lava and the ocean floor, is very irregular due to convective instabilities. Therefore, we discuss and compare two different numerical methods for solving the mathematical model of this system. In concrete, we consider two ways to treat the temperature equation of the model: a semi-Lagrangian formulation of the advective terms in combination with a Galerkin finite element method for the parabolic part of the equations and a stabilized finite element scheme. Both methods are very robust and accurate. However, due to physical instabilities in the system at high Rayleigh number, the effect of the numerical method is significant with regard to the temperature distribution at a certain time instant. The good news is that relevant statistical quantities remain relatively stable and coincide for the two numerical schemes. The agreement is larger in the case of a mathematical model with constant water properties. In the case of a model with nonlinear dependence of the water properties on the temperature and pressure, the agreement in the statistics is clearly less pronounced. Hence, the presented work accentuates the need for a strengthened validation of the compatibility between numerical scheme (accuracy/resolution) and complex (realistic/nonlinear) models.

  3. Combining Thermal And Structural Analyses

    NASA Technical Reports Server (NTRS)

    Winegar, Steven R.

    1990-01-01

    Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.

  4. Finite-difference time-domain modelling of through-the-Earth radio signal propagation

    NASA Astrophysics Data System (ADS)

    Ralchenko, M.; Svilans, M.; Samson, C.; Roper, M.

    2015-12-01

    This research seeks to extend the knowledge of how a very low frequency (VLF) through-the-Earth (TTE) radio signal behaves as it propagates underground, by calculating and visualizing the strength of the electric and magnetic fields for an arbitrary geology through numeric modelling. To achieve this objective, a new software tool has been developed using the finite-difference time-domain method. This technique is particularly well suited to visualizing the distribution of electromagnetic fields in an arbitrary geology. The frequency range of TTE radio (400-9000 Hz) and geometrical scales involved (1 m resolution for domains a few hundred metres in size) involves processing a grid composed of millions of cells for thousands of time steps, which is computationally expensive. Graphics processing unit acceleration was used to reduce execution time from days and weeks, to minutes and hours. Results from the new modelling tool were compared to three cases for which an analytic solution is known. Two more case studies were done featuring complex geologic environments relevant to TTE communications that cannot be solved analytically. There was good agreement between numeric and analytic results. Deviations were likely caused by numeric artifacts from the model boundaries; however, in a TTE application in field conditions, the uncertainty in the conductivity of the various geologic formations will greatly outweigh these small numeric errors.

  5. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.

    2008-02-01

    This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.

  6. An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere

    NASA Astrophysics Data System (ADS)

    Swidinsky, Andrei; Liu, Lifei

    2017-11-01

    We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.

  7. Lax-Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic-plastic solids

    NASA Astrophysics Data System (ADS)

    Heuzé, Thomas

    2017-10-01

    We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.

  8. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  9. A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.

    2005-02-01

    In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.

  10. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later Shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modeled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  11. Numerical Modelling of Foundation Slabs with use of Schur Complement Method

    NASA Astrophysics Data System (ADS)

    Koktan, Jiří; Brožovský, Jiří

    2017-10-01

    The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.

  12. Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,

    DTIC Science & Technology

    1984-01-12

    Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density

  13. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  14. Optimal rotated staggered-grid finite-difference schemes for elastic wave modeling in TTI media

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2015-11-01

    The rotated staggered-grid finite-difference (RSFD) is an effective approach for numerical modeling to study the wavefield characteristics in tilted transversely isotropic (TTI) media. But it surfaces from serious numerical dispersion, which directly affects the modeling accuracy. In this paper, we propose two different optimal RSFD schemes based on the sampling approximation (SA) method and the least-squares (LS) method respectively to overcome this problem. We first briefly introduce the RSFD theory, based on which we respectively derive the SA-based RSFD scheme and the LS-based RSFD scheme. Then different forms of analysis are used to compare the SA-based RSFD scheme and the LS-based RSFD scheme with the conventional RSFD scheme, which is based on the Taylor-series expansion (TE) method. The contrast in numerical accuracy analysis verifies the greater accuracy of the two proposed optimal schemes, and indicates that these schemes can effectively widen the wavenumber range with great accuracy compared with the TE-based RSFD scheme. Further comparisons between these two optimal schemes show that at small wavenumbers, the SA-based RSFD scheme performs better, while at large wavenumbers, the LS-based RSFD scheme leads to a smaller error. Finally, the modeling results demonstrate that for the same operator length, the SA-based RSFD scheme and the LS-based RSFD scheme can achieve greater accuracy than the TE-based RSFD scheme, while for the same accuracy, the optimal schemes can adopt shorter difference operators to save computing time.

  15. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.

  16. Mathematical and Numerical Analysis of Model Equations on Interactions of the HIV/AIDS Virus and the Immune System

    NASA Astrophysics Data System (ADS)

    Parumasur, N.; Willie, R.

    2008-09-01

    We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.

  17. Finite-Strain Fractional-Order Viscoelastic (FOV) Material Models and Numerical Methods for Solving Them

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.

  18. Analysis of the sound field in finite length infinite baffled cylindrical ducts with vibrating walls of finite impedance.

    PubMed

    Shao, Wei; Mechefske, Chris K

    2005-04-01

    This paper describes an analytical model of finite cylindrical ducts with infinite flanges. This model is used to investigate the sound radiation characteristics of the gradient coil system of a magnetic resonance imaging (MRI) scanner. The sound field in the duct satisfies both the boundary conditions at the wall and at the open ends. The vibrating cylindrical wall of the duct is assumed to be the only sound source. Different acoustic conditions for the wall (rigid and absorptive) are used in the simulations. The wave reflection phenomenon at the open ends of the finite duct is described by general radiation impedance. The analytical model is validated by the comparison with its counterpart in a commercial code based on the boundary element method (BEM). The analytical model shows significant advantages over the BEM model with better numerical efficiency and a direct relation between the design parameters and the sound field inside the duct.

  19. An adaptive finite element method for the inequality-constrained Reynolds equation

    NASA Astrophysics Data System (ADS)

    Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha

    2018-07-01

    We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.

  20. Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Kiris, Cetin

    2016-01-01

    Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.

  1. Middle atmosphere project. A semi-spectral numerical model for the large-scale stratospheric circulation

    NASA Technical Reports Server (NTRS)

    Holton, J. R.; Wehrbein, W.

    1979-01-01

    The complete model is a semispectral model in which the longitudinal dependence is represented by expansion in zonal harmonics while the latitude and height dependencies are represented by a finite difference grid. The model is based on the primitive equations in the log pressure coordinate system. The lower boundary of the model domain is set at the 100 mb level (i.e., near the tropopause) and the effects of tropospheric forcing are included in the lower boundary condition. The upper boundary is at approximately 96 km, and the latitudinal extent is either global or hemispheric. The basic differential equations and boundary conditions are outlined. The finite difference equations are described. The initial conditions are discussed and a sample calculation is presented. The FORTRAN code is given in the appendix.

  2. A NON-OSCILLATORY SCHEME FOR OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the ...

  3. Computer-Aided Engineering of Semiconductor Integrated Circuits

    DTIC Science & Technology

    1979-07-01

    equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last

  4. Meshfree simulation of avalanches with the Finite Pointset Method (FPM)

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Kuhnert, Jörg; Kolymbas, Dimitrios

    2017-04-01

    Meshfree methods are the numerical method of choice in case of applications which are characterized by strong deformations in conjunction with free surfaces or phase boundaries. In the past the meshfree Finite Pointset Method (FPM) developed by Fraunhofer ITWM (Kaiserslautern, Germany) has been successfully applied to problems in computational fluid dynamics such as water crossing of cars, water turbines, and hydraulic valves. Most recently the simulation of granular flows, e.g. soil interaction with cars (rollover), has also been tackled. This advancement is the basis for the simulation of avalanches. Due to the generalized finite difference formulation in FPM, the implementation of different material models is quite simple. We will demonstrate 3D simulations of avalanches based on the Drucker-Prager yield criterion as well as the nonlinear barodesy model. The barodesy model (Division of Geotechnical and Tunnel Engineering, University of Innsbruck, Austria) describes the mechanical behavior of soil by an evolution equation for the stress tensor. The key feature of successful and realistic simulations of avalanches - apart from the numerical approximation of the occurring differential operators - is the choice of the boundary conditions (slip, no-slip, friction) between the different phases of the flow as well as the geometry. We will discuss their influences for simplified one- and two-phase flow examples. This research is funded by the German Research Foundation (DFG) and the FWF Austrian Science Fund.

  5. Tapered holey fibers for spot-size and numerical-aperture conversion.

    PubMed

    Town, G E; Lizier, J T

    2001-07-15

    Adiabatically tapered holey fibers are shown to be potentially useful for guided-wave spot-size and numerical-aperture conversion. Conditions for adiabaticity and design guidelines are provided in terms of the effective-index model. We also present finite-difference time-domain calculations of downtapered holey fiber, showing that large spot-size conversion factors are obtainable with minimal loss by use of short, optimally shaped tapers.

  6. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  7. Computational procedure for finite difference solution of one-dimensional heat conduction problems reduces computer time

    NASA Technical Reports Server (NTRS)

    Iida, H. T.

    1966-01-01

    Computational procedure reduces the numerical effort whenever the method of finite differences is used to solve ablation problems for which the surface recession is large relative to the initial slab thickness. The number of numerical operations required for a given maximum space mesh size is reduced.

  8. The evolution and discharge of electric fields within a thunderstorm

    NASA Technical Reports Server (NTRS)

    Hager, William W.; Nisbet, John S.; Kasha, John R.

    1989-01-01

    An analysis of the present three-dimensional thunderstorm electrical model and its finite-difference approximations indicates unconditional stability for the discretization that results from the approximation of the spatial derivatives by a box-schemelike method and of the temporal derivative by either a backward-difference or Crank-Nicholson scheme. Lightning propagation is treated through numerical techniques based on the inverse-matrix modification formula and Cholesky updates. The model is applied to a storm observed at the Kennedy Space Center in 1978, and numerical comparisons are conducted between the model and the theoretical results obtained by Wilson (1920) and Holzer and Saxon (1952).

  9. Finite difference modelling of dipole acoustic logs in a poroelastic formation with anisotropic permeability

    NASA Astrophysics Data System (ADS)

    He, Xiao; Hu, Hengshan; Wang, Xiuming

    2013-01-01

    Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.

  10. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  11. Finite T spectral function of a single carrier injected into an Ising chain: a comparison of 3 different models

    NASA Astrophysics Data System (ADS)

    Moeller, Mirko; Berciu, Mona

    2015-03-01

    When studying the properties of complex, magnetic materials it is often necessary to work with effective Hamiltonians. In many cases the effective Hamiltonian is obtained by mapping the full, multiband Hamiltonian onto a simpler, single band model. A prominent example is the use of Zhang-Rice singlets to map the multiband Emery model for cuprates onto the single band t - J -model. Such mappings are usually done at zero temperature (T) and it is implicitly assumed that they are justified at finite T, as well. We present results on 3 different models of a single charge carrier (electron or hole) injected into a ferromagnetic Ising chain. Model I is a two band, two sublattice model, Model II is a two band, single sublattice model, and Model III is a single band model, the so called t -Jz -model. Due to the absence of spin-flip terms, a numerically exact solution of all 3 Models is possible, even at finite T. At zero T a mapping between all 3 models results in the same low energy physics. However, this is no longer true at finite T. Here the low energy behavior of Model III is significantly different from that of Models I and II. The reasons for this discrepancy and its implications for more realistic models (higher dimension, inclusion of spin-flip terms) are discussed. This work was supported by NSERC, QMI and the UBC 4YF (M.M.).

  12. Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.

    2018-06-01

    We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .

  13. A numerical study of drop-on-demand ink jets

    NASA Technical Reports Server (NTRS)

    Fromm, J.

    1982-01-01

    Ongoing work related to development and utilization of a numerical model for treating the fluid dynamics of ink jets is discussed. The model embodies the complete nonlinear, time dependent, axi-symmetric equations in finite difference form. The jet nozzle geometry with no-slip boundary conditions and the existence of a contact circle are included. The contact circle is allowed some freedom of movement, but wetting of exterior surfaces is not addressed. The principal objective in current numerical experiments is to determine what pressure history, in conjunction with surface forces, will lead to clean drop formation.

  14. Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.

    PubMed

    Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija

    2014-02-07

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.

  15. Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor

    PubMed Central

    Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė

    2014-01-01

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882

  16. Numerical modeling of the transmission dynamics of drug-sensitive and drug-resistant HSV-2

    NASA Astrophysics Data System (ADS)

    Gumel, A. B.

    2001-03-01

    A competitive finite-difference method will be constructed and used to solve a modified deterministic model for the spread of herpes simplex virus type-2 (HSV-2) within a given population. The model monitors the transmission dynamics and control of drug-sensitive and drug-resistant HSV-2. Unlike the fourth-order Runge-Kutta method (RK4), which fails when the discretization parameters exceed certain values, the novel numerical method to be developed in this paper gives convergent results for all parameter values.

  17. A discrete model to study reaction-diffusion-mechanics systems.

    PubMed

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  18. A Discrete Model to Study Reaction-Diffusion-Mechanics Systems

    PubMed Central

    Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911

  19. Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grutzik, Scott Joseph; Reedy, Jr., E. D.

    Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less

  20. Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

    DOE PAGES

    Grutzik, Scott Joseph; Reedy, Jr., E. D.

    2017-08-04

    Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less

  1. FINIFLUX: An implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon

    NASA Astrophysics Data System (ADS)

    Frei, S.; Gilfedder, B. S.

    2015-08-01

    A quantitative understanding of groundwater-surface water interactions is vital for sustainable management of water quantity and quality. The noble gas radon-222 (Rn) is becoming increasingly used as a sensitive tracer to quantify groundwater discharge to wetlands, lakes, and rivers: a development driven by technical and methodological advances in Rn measurement. However, quantitative interpretation of these data is not trivial, and the methods used to date are based on the simplest solutions to the mass balance equation (e.g., first-order finite difference and inversion). Here we present a new implicit numerical model (FINIFLUX) based on finite elements for quantifying groundwater discharge to streams and rivers using Rn surveys at the reach scale (1-50 km). The model is coupled to a state-of-the-art parameter optimization code Parallel-PEST to iteratively solve the mass balance equation for groundwater discharge and hyporheic exchange. The major benefit of this model is that it is programed to be very simple to use, reduces nonuniqueness, and provides numerically stable estimates of groundwater fluxes and hyporheic residence times from field data. FINIFLUX was tested against an analytical solution and then implemented on two German rivers of differing magnitude, the Salzach (˜112 m3 s-1) and the Rote Main (˜4 m3 s-1). We show that using previous inversion techniques numerical instability can lead to physically impossible negative values, whereas the new model provides stable positive values for all scenarios. We hope that by making FINIFLUX freely available to the community that Rn might find wider application in quantifying groundwater discharge to streams and rivers and thus assist in a combined management of surface and groundwater systems.

  2. Finite Volume Algorithms for Heat Conduction

    DTIC Science & Technology

    2010-05-01

    scalar quantity). Although (3) is relatively easy to discretize by using finite differences , its form in generalized coordinates is not. Later, we...familiar with the finite difference method for discretizing differential equations. In fact, the Newton divided difference is the numerical analog for a...expression (8) for the average derivative matches the Newton divided difference formula, so for uniform one-dimensional meshes, the finite volume and

  3. A three-dimensional thermal finite element analysis of AISI 304 stainless steel and copper dissimilar weldment

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil

    2018-04-01

    The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.

  4. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    PubMed

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  5. Finite-Size Scaling of a First-Order Dynamical Phase Transition: Adaptive Population Dynamics and an Effective Model

    NASA Astrophysics Data System (ADS)

    Nemoto, Takahiro; Jack, Robert L.; Lecomte, Vivien

    2017-03-01

    We analyze large deviations of the time-averaged activity in the one-dimensional Fredrickson-Andersen model, both numerically and analytically. The model exhibits a dynamical phase transition, which appears as a singularity in the large deviation function. We analyze the finite-size scaling of this phase transition numerically, by generalizing an existing cloning algorithm to include a multicanonical feedback control: this significantly improves the computational efficiency. Motivated by these numerical results, we formulate an effective theory for the model in the vicinity of the phase transition, which accounts quantitatively for the observed behavior. We discuss potential applications of the numerical method and the effective theory in a range of more general contexts.

  6. Calculating the Malliavin derivative of some stochastic mechanics problems

    PubMed Central

    Hauseux, Paul; Hale, Jack S.

    2017-01-01

    The Malliavin calculus is an extension of the classical calculus of variations from deterministic functions to stochastic processes. In this paper we aim to show in a practical and didactic way how to calculate the Malliavin derivative, the derivative of the expectation of a quantity of interest of a model with respect to its underlying stochastic parameters, for four problems found in mechanics. The non-intrusive approach uses the Malliavin Weight Sampling (MWS) method in conjunction with a standard Monte Carlo method. The models are expressed as ODEs or PDEs and discretised using the finite difference or finite element methods. Specifically, we consider stochastic extensions of; a 1D Kelvin-Voigt viscoelastic model discretised with finite differences, a 1D linear elastic bar, a hyperelastic bar undergoing buckling, and incompressible Navier-Stokes flow around a cylinder, all discretised with finite elements. A further contribution of this paper is an extension of the MWS method to the more difficult case of non-Gaussian random variables and the calculation of second-order derivatives. We provide open-source code for the numerical examples in this paper. PMID:29261776

  7. Two-Dimensional Model for Reactive-Sorption Columns of Cylindrical Geometry: Analytical Solutions and Moment Analysis.

    PubMed

    Khan, Farman U; Qamar, Shamsul

    2017-05-01

    A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. A simple finite-difference scheme for handling topography with the first-order wave equation

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.; Huiskes, M. J.

    2017-07-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.

  9. [Three-dimensional finite element analysis on cell culture membrane under mechanical load].

    PubMed

    Guo, Xin; Fan, Yubo; Song, Jinlin; Chen, Junkai

    2002-01-01

    A three-dimensional finite element model of the cell culture membrane was developed in the culture device under tension state made by us. The magnitude of tension and the displacement distribution in the membrane made of silicon rubber under different hydrostatic load were obtained by use of FEM analysis. A comparative study was made between the numerical and the experimental results. These results can serve as guides to the related cellular mechanical research.

  10. An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion

    NASA Astrophysics Data System (ADS)

    Li, Eric; He, Z. C.; Wang, G.; Liu, G. R.

    2017-12-01

    The phononics crystals (PCs) are periodic man-made composite materials. In this paper, a mass-redistributed finite element method (MR-FEM) is formulated to study the wave propagation within liquid PCs with hard inclusion. With a perfect balance between stiffness and mass in the MR-FEM model, the dispersion error of longitudinal wave is minimized by redistribution of mass. Such tuning can be easily achieved by adjusting the parameter r that controls the location of integration points of mass matrix. More importantly, the property of mass conservation in the MR-FEM model indicates that the locations of integration points inside or outside the element are immaterial. Four numerical examples are studied in this work, including liquid PCs with cross and circle hard inclusions, different size of inclusion and defect. Compared with standard finite element method, the numerical results have verified the accuracy and effectiveness of MR-FEM. The proposed MR-FEM is a unique and innovative numerical approach with its outstanding features, which has strong potentials to study the stress wave within multi-physics PCs.

  11. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    NASA Astrophysics Data System (ADS)

    Valášek, J.; Sváček, P.; Horáček, J.

    2016-03-01

    The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.

  12. A numerical solution for thermoacoustic convection of fluids in low gravity

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Bourgeois, S. V., Jr.; Fan, C.; Grodzka, P. G.

    1973-01-01

    A finite difference numerical technique for solving the differential equations which describe thermal convection of compressible fluids in low gravity are reported. Results of one-dimensional calculations are presented, and comparisons are made to previous solutions. The primary result presented is a one-dimensional radial model of the Apollo 14 heat flow and convection demonstration flight experiment. The numerical calculations show that thermally induced convective motion in a confined fluid can have significant effects on heat transfer in a low gravity environment.

  13. Investigation of shock-induced combustion past blunt projectiles

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, S. N.

    1996-01-01

    A numerical study is conducted to simulate shock-induced combustion in premixed hydrogen-air mixtures at various free-stream conditions and parameters. Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock-induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A seven-species, seven reactions finite rate hydrogen-air chemical reaction mechanism is used combined with a finite-difference, shock-fitting method to solve the complete set of Navier-Stokes and species conservation equations. The study has allowed an improved understanding of the physics of shock-induced combustion over blunt projectiles and the numerical results can now be explained more readily with one-dimensional wave-interaction model.

  14. On numerical model of time-dependent processes in three-dimensional porous heat-releasing objects

    NASA Astrophysics Data System (ADS)

    Lutsenko, Nickolay A.

    2016-10-01

    The gas flows in the gravity field through porous objects with heat-releasing sources are investigated when the self-regulation of the flow rate of the gas passing through the porous object takes place. Such objects can appear after various natural or man-made disasters (like the exploded unit of the Chernobyl NPP). The mathematical model and the original numerical method, based on a combination of explicit and implicit finite difference schemes, are developed for investigating the time-dependent processes in 3D porous energy-releasing objects. The advantage of the numerical model is its ability to describe unsteady processes under both natural convection and forced filtration. The gas cooling of 3D porous objects with different distribution of heat sources is studied using computational experiment.

  15. Triggering effect of mining at different horizons in the rock mass with excavations. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eremin, M. O.; Makarov, P. V.

    2017-12-01

    On the basis of a quite simple structural model of rock mass, containing coal seams on two horizons, coal mining is numerically modeled. A finite difference numerical technique is applied. At first, mining starts at the upper horizon and then moves to the lower horizon. It is shown that a mining process at the lower horizon has a significant triggering influence on the growth of damage zones in the roof and floor at the upper horizon. The features of spatiotemporal migration of deformation activity are studied numerically. Foci of large-scale fracture are located at the boundary of the seismic silence zone and the zone where the deformation activity migrates. This boundary has an additional characteristic: the maximum gradient of rock pressure is observed in this zone.

  16. Numerical solution of transport equation for applications in environmental hydraulics and hydrology

    NASA Astrophysics Data System (ADS)

    Rashidul Islam, M.; Hanif Chaudhry, M.

    1997-04-01

    The advective term in the one-dimensional transport equation, when numerically discretized, produces artificial diffusion. To minimize such artificial diffusion, which vanishes only for Courant number equal to unity, transport owing to advection has been modeled separately. The numerical solution of the advection equation for a Gaussian initial distribution is well established; however, large oscillations are observed when applied to an initial distribution with sleep gradients, such as trapezoidal distribution of a constituent or propagation of mass from a continuous input. In this study, the application of seven finite-difference schemes and one polynomial interpolation scheme is investigated to solve the transport equation for both Gaussian and non-Gaussian (trapezoidal) initial distributions. The results obtained from the numerical schemes are compared with the exact solutions. A constant advective velocity is assumed throughout the transport process. For a Gaussian distribution initial condition, all eight schemes give excellent results, except the Lax scheme which is diffusive. In application to the trapezoidal initial distribution, explicit finite-difference schemes prove to be superior to implicit finite-difference schemes because the latter produce large numerical oscillations near the steep gradients. The Warming-Kutler-Lomax (WKL) explicit scheme is found to be better among this group. The Hermite polynomial interpolation scheme yields the best result for a trapezoidal distribution among all eight schemes investigated. The second-order accurate schemes are sufficiently accurate for most practical problems, but the solution of unusual problems (concentration with steep gradient) requires the application of higher-order (e.g. third- and fourth-order) accurate schemes.

  17. Numerical Modelling of Mechanical Properties of C-Pd Film by Homogenization Technique and Finite Element Method

    NASA Astrophysics Data System (ADS)

    Rymarczyk, Joanna; Kowalczyk, Piotr; Czerwosz, Elzbieta; Bielski, Włodzimierz

    2011-09-01

    The nanomechanical properties of nanostructural carbonaceous-palladium films are studied. The nanoindentation experiments are numerically using the Finite Element Method. The homogenization theory is applied to compute the properties of the composite material used as the input data for nanoindentation calculations.

  18. Finite-difference time-domain modeling of transient infrasonic wavefields excited by volcanic explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Lees, J. M.

    2011-03-01

    Numerical modeling of waveform diffractions along the rim of a volcano vent shows high correlation to observed explosion signals at Karymsky Volcano, Kamchatka, Russia. The finite difference modeling assumed a gaussian source time function and an axisymmetric geometry. A clear demonstration of the significant distortion of infrasonic wavefronts was caused by diffraction at the vent rim edge. Data collected at Karymsky in 1997 and 1998 were compared to synthetic waveforms and variations of vent geometry were determined via grid search. Karymsky exhibited a wide range of variation in infrasonic waveforms, well explained by the diffraction, and modeled as changing vent geometry. Rim diffraction of volcanic infrasound is shown to be significant and must be accounted for when interpreting source physics from acoustic observations.

  19. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.

    2013-12-01

    In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.

  20. Evaluation of the UnTRIM model for 3-D tidal circulation

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; ,

    2001-01-01

    A family of numerical models, known as the TRIM models, shares the same modeling philosophy for solving the shallow water equations. A characteristic analysis of the shallow water equations points out that the numerical instability is controlled by the gravity wave terms in the momentum equations and by the transport terms in the continuity equation. A semi-implicit finite-difference scheme has been formulated so that these terms and the vertical diffusion terms are treated implicitly and the remaining terms explicitly to control the numerical stability and the computations are carried out over a uniform finite-difference computational mesh without invoking horizontal or vertical coordinate transformations. An unstructured grid version of TRIM model is introduced, or UnTRIM (pronounces as "you trim"), which preserves these basic numerical properties and modeling philosophy, only the computations are carried out over an unstructured orthogonal grid. The unstructured grid offers the flexibilities in representing complex study areas so that fine grid resolution can be placed in regions of interest, and coarse grids are used to cover the remaining domain. Thus, the computational efforts are concentrated in areas of importance, and an overall computational saving can be achieved because the total number of grid-points is dramatically reduced. To use this modeling approach, an unstructured grid mesh must be generated to properly reflect the properties of the domain of the investigation. The new modeling flexibility in grid structure is accompanied by new challenges associated with issues of grid generation. To take full advantage of this new model flexibility, the model grid generation should be guided by insights into the physics of the problems; and the insights needed may require a higher degree of modeling skill.

  1. Numerical approach for finite volume three-body interaction

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Gasparian, Vladimir

    2018-01-01

    In the present work, we study a numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise δ -function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when the strength of short-range interactions are set equal for all pairs.

  2. Numerical difficulties and computational procedures for thermo-hydro-mechanical coupled problems of saturated porous media

    NASA Astrophysics Data System (ADS)

    Simoni, L.; Secchi, S.; Schrefler, B. A.

    2008-12-01

    This paper analyses the numerical difficulties commonly encountered in solving fully coupled numerical models and proposes a numerical strategy apt to overcome them. The proposed procedure is based on space refinement and time adaptivity. The latter, which in mainly studied here, is based on the use of a finite element approach in the space domain and a Discontinuous Galerkin approximation within each time span. Error measures are defined for the jump of the solution at each time station. These constitute the parameters allowing for the time adaptivity. Some care is however, needed for a useful definition of the jump measures. Numerical tests are presented firstly to demonstrate the advantages and shortcomings of the method over the more traditional use of finite differences in time, then to assess the efficiency of the proposed procedure for adapting the time step. The proposed method reveals its efficiency and simplicity to adapt the time step in the solution of coupled field problems.

  3. Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation.

    PubMed

    Feng, Kai; Liu, Yuanyuan; Cheng, Miaomiao

    2015-12-01

    Owing to its distinct non-contact and oil-free characteristics, a self-running sliding stage based on near-field acoustic levitation can be used in an environment, which demands clean rooms and zero noise. This paper presents a numerical analysis on the lifting and transportation capacity of a non-contact transportation system. Two simplified structure models, namely, free vibration and force vibration models, are proposed for the study of the displacement amplitude distribution of two cases using the finite element method. After coupling the stage displacement into the film thickness, the Reynolds equation is solved by the finite difference method to obtain the lifting and thrusting forces. Parametric analyses of the effects of amplitude, frequency, and standing wave ratio (SWR) on the sliding stage dynamic performance are investigated. Numerical results show good agreement with published experimental values. The predictions also reveal that greater transportation capacity of the self-running sliding stage is generally achieved at less SWR and at higher amplitude.

  4. A well-balanced meshless tsunami propagation and inundation model

    NASA Astrophysics Data System (ADS)

    Brecht, Rüdiger; Bihlo, Alexander; MacLachlan, Scott; Behrens, Jörn

    2018-05-01

    We present a novel meshless tsunami propagation and inundation model. We discretize the nonlinear shallow-water equations using a well-balanced scheme relying on radial basis function based finite differences. For the inundation model, radial basis functions are used to extrapolate the dry region from nearby wet points. Numerical results against standard one- and two-dimensional benchmarks are presented.

  5. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  6. Implementation of different turbulence model to find proper model to estimate aerodynamic properties of airfoils

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2018-02-01

    In this paper, aerodynamic calculations of NACA 4 series airfoil of 0012 are performed by using Finite-Volume Method and obtained results are compared with experimental data to correlate the numerical accuracy of CFD approximation. Then other airfoils are simulated with k-ɛ, k-w Spalart-Allmaras and SST model. The governing equations are the Reynolds-Averaged-Navier-Stokes (RANS) equations. The performance of different airfoils (NACA 0008, 0009, 0010, 0012, 0015, 0018, 0021, 0024) at different angle of attack are investigated and compared with most used turbulence models for industrial applications. According to the results of the comparison of numerical calculations and experimental data, k-w and SST models are considered to be closest to experimental results for the calculation of the lift coefficient.

  7. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prudencio, E.; Candel, A.; Ge, L.

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation timemore » from days to some hours.« less

  8. Frequency response function (FRF) based updating of a laser spot welded structure

    NASA Astrophysics Data System (ADS)

    Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.

    2018-04-01

    The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.

  9. Random element method for numerical modeling of diffusional processes

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Oppenheim, A. K.

    1982-01-01

    The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.

  10. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.

    PubMed

    Zhang, Jing; Tian, Jiabin; Ta, Na; Huang, Xinsheng; Rao, Zhushi

    2016-08-01

    Finite element method was employed in this study to analyze the change in performance of implantable hearing devices due to the consideration of soft tissues' viscoelasticity. An integrated finite element model of human ear including the external ear, middle ear and inner ear was first developed via reverse engineering and analyzed by acoustic-structure-fluid coupling. Viscoelastic properties of soft tissues in the middle ear were taken into consideration in this model. The model-derived dynamic responses including middle ear and cochlea functions showed a better agreement with experimental data at high frequencies above 3000 Hz than the Rayleigh-type damping. On this basis, a coupled finite element model consisting of the human ear and a piezoelectric actuator attached to the long process of incus was further constructed. Based on the electromechanical coupling analysis, equivalent sound pressure and power consumption of the actuator corresponding to viscoelasticity and Rayleigh damping were calculated using this model. The analytical results showed that the implant performance of the actuator evaluated using a finite element model considering viscoelastic properties gives a lower output above about 3 kHz than does Rayleigh damping model. Finite element model considering viscoelastic properties was more accurate to numerically evaluate implantable hearing devices. © IMechE 2016.

  11. Two-dimensional numerical model for the high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Loret, Dany

    1987-11-01

    A two-dimensional numerical drift-diffusion model for the High Electron Mobility Transistor (HEMT) is presented. Special attention is paid to the modeling of the current flow over the heterojunction. A finite difference scheme is used to solve the equations, and a variable mesh spacing was implemented to cope with the strong variations of functions near the heterojunction. Simulation results are compared to experimental data for a 0.7 μm gate length device. Small-signal transconductances and cut-off frequency obtained from the 2-D model agree well with the experimental values from S-parameter measurements. It is shown that the numerical models give good insight into device behaviour, including important parasitic effects such as electron injection into the bulk GaAs.

  12. Assessment of Efficiency and Performance in Tsunami Numerical Modeling with GPU

    NASA Astrophysics Data System (ADS)

    Yalciner, Bora; Zaytsev, Andrey

    2017-04-01

    Non-linear shallow water equations (NSWE) are used to solve the propagation and coastal amplification of long waves and tsunamis. Leap Frog scheme of finite difference technique is one of the satisfactory numerical methods which is widely used in these problems. Tsunami numerical models are necessary for not only academic but also operational purposes which need faster and accurate solutions. Recent developments in information technology provide considerably faster numerical solutions in this respect and are becoming one of the crucial requirements. Tsunami numerical code NAMI DANCE uses finite difference numerical method to solve linear and non-linear forms of shallow water equations for long wave problems, specifically for tsunamis. In this study, the new code is structured for Graphical Processing Unit (GPU) using CUDA API. The new code is applied to different (analytical, experimental and field) benchmark problems of tsunamis for tests. One of those applications is 2011 Great East Japan tsunami which was instrumentally recorded on various types of gauges including tide and wave gauges and offshore GPS buoys cabled Ocean Bottom Pressure (OBP) gauges and DART buoys. The accuracy of the results are compared with the measurements and fairly well agreements are obtained. The efficiency and performance of the code is also compared with the version using multi-core Central Processing Unit (CPU). Dependence of simulation speed with GPU on linear or non-linear solutions is also investigated. One of the results is that the simulation speed is increased up to 75 times comparing to the process time in the computer using single 4/8 thread multi-core CPU. The results are presented with comparisons and discussions. Furthermore how multi-dimensional finite difference problems fits towards GPU architecture is also discussed. The research leading to this study has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No: 603839 (Project ASTARTE-Assessment, Strategy and Risk Reduction for Tsunamis in Europe). PARI, Japan and NOAA, USA are acknowledged for the data of the measurements. Prof. Ahmet C. Yalciner is also acknowledged for his long term and sustained support to the authors.

  13. Numerical approach to optimal portfolio in a power utility regime-switching model

    NASA Astrophysics Data System (ADS)

    Gyulov, Tihomir B.; Koleva, Miglena N.; Vulkov, Lubin G.

    2017-12-01

    We consider a system of weakly coupled degenerate semi-linear parabolic equations of optimal portfolio in a regime-switching with power utility function, derived by A.R. Valdez and T. Vargiolu [14]. First, we discuss some basic properties of the solution of this system. Then, we develop and analyze implicit-explicit, flux limited finite difference schemes for the differential problem. Numerical experiments are discussed.

  14. Adaptive Wavelet Modeling of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.

    2009-12-01

    Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  15. From LIDAR Scanning to 3d FEM Analysis for Complex Surface and Underground Excavations

    NASA Astrophysics Data System (ADS)

    Chun, K.; Kemeny, J.

    2017-12-01

    Light detection and ranging (LIDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease to use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of three-dimensional numerical model that can be used in FEM analysis. To date, however, straightforward techniques in reconstructing numerical model from the scanned data of underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating from LIDAR scanning to finite element numerical analysis, specifically converting LIDAR 3D point clouds of object containing complex surface geometry into finite element model. This methodology has been applied to the Kartchner Caverns in Arizona for the stability analysis. Numerical simulations were performed using the finite element code ABAQUS. The results indicate that the highlights of our technologies obtained from LIDAR is effective and provide reference for other similar engineering project in practice.

  16. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using Diffpack and MPI are also presented. Chapter 2 presents the overlapping domain decomposition method for solving PDEs. It is well known that these methods are suitable for parallel processing. The first part of the chapter covers the mathematical formulation of the method as well as algorithmic and implementational issues. The second part presents a serial and a parallel implementational framework within the programming environment of Diffpack. The chapter closes by showing how to solve two application examples with the overlapping domain decomposition method using Diffpack. Chapter 3 is a tutorial about how to incorporate the multigrid solver in Diffpack. The method is illustrated by examples such as a Poisson solver, a general elliptic problem with various types of boundary conditions and a nonlinear Poisson type problem. In chapter 4 the mixed finite element is introduced. Technical issues concerning the practical implementation of the method are also presented. The main difficulties of the efficient implementation of the method, especially in two and three space dimensions on unstructured grids, are presented and addressed in the framework of Diffpack. The implementational process is illustrated by two examples, namely the system formulation of the Poisson problem and the Stokes problem. Chapter 5 is closely related to chapter 4 and addresses the problem of how to solve efficiently the linear systems arising by the application of the mixed finite element method. The proposed method is block preconditioning. Efficient techniques for implementing the method within Diffpack are presented. Optimal block preconditioners are used to solve the system formulation of the Poisson problem, the Stokes problem and the bidomain model for the electrical activity in the heart. The subject of chapter 6 is systems of PDEs. Linear and nonlinear systems are discussed. Fully implicit and operator splitting methods are presented. Special attention is paid to how existing solvers for scalar equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical models used in finance, based on the Black--Scholes equation. Chapter 12 considers several numerical methods like Monte Carlo, lattice methods, finite difference and finite element methods. Implementation of these methods within Diffpack is presented in the last part of the chapter. Chapter 13 presents how the finite element method is used for the modelling and analysis of elastic structures. The authors describe the structural elements of Diffpack which include popular elements such as beams and plates and examples are presented on how to use them to simulate elastic structures. Chapter 14 describes an application problem, namely the extrusion of aluminum. This is a rather\\endcolumn complicated process which involves non-Newtonian flow, heat transfer and elasticity. The authors describe the systems of PDEs modelling the underlying process and use a finite element method to obtain a numerical solution. The implementation of the numerical method in Diffpack is presented along with some applications. The last chapter, chapter 15, focuses on mathematical and numerical models of systems of PDEs governing geological processes in sedimentary basins. The underlying mathematical model is solved using the finite element method within a fully implicit scheme. The authors discuss the implementational issues involved within Diffpack and they present results from several examples. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall the book is well written, the subject of each chapter is well presented and can serve as a reference for graduate students, researchers and engineers who are interested in the numerical solution of partial differential equations modelling various applications.

  17. Assessment of chemistry models for compressible reacting flows

    NASA Astrophysics Data System (ADS)

    Lapointe, Simon; Blanquart, Guillaume

    2014-11-01

    Recent technological advances in propulsion and power devices and renewed interest in the development of next generation supersonic and hypersonic vehicles have increased the need for detailed understanding of turbulence-combustion interactions in compressible reacting flows. In numerical simulations of such flows, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used in reacting flow simulations. However, the differences between these models and their impacts on the fluid dynamics in the context of compressible flows are not well understood. In the present work, a numerical code is developed to solve the fully coupled compressible conservation equations for reacting flows. The finite volume code is based on the theoretical and numerical framework developed by Oefelein (Prog. Aero. Sci. 42 (2006) 2-37) and employs an all-Mach-number formulation with dual time-stepping and preconditioning. The numerical approach is tested on turbulent premixed flames at high Karlovitz numbers. Different chemical models of varying complexity and computational cost are used and their effects are compared.

  18. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  19. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  20. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnat, B.

    2011-09-22

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  1. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    PubMed

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  2. Finite Element Modeling of Magnetically-Damped Convection during Solidification

    NASA Technical Reports Server (NTRS)

    deGroh, H. C.; Li, B. Q.; Lu, X.

    1998-01-01

    A fully 3-D, transient finite element model is developed to represent the magnetic damping effects on complex fluid flow, heat transfer and electromagnetic field distributions in a Sn- 35.5%Pb melt undergoing unidirectional solidification. The model is developed based on our in- house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The numerical model is tested against numerical and experimental results for water as reported in literature. Various numerical simulations are carried out for the melt convection and temperature distribution with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to stabilize melt flow, reduce turbulence and flow levels in the melt and over a certain threshold value a higher magnetic field resulted in a greater reduction in velocity. Also, for the study of melt flow instability, a long enough running time is needed to ensure the final fluid flow recirculation pattern. Moreover, numerical results suggest that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the 0 convection in the melt is actually enhanced.

  3. The influence of acetabular bone cracks in the press-fit hip replacement: Numerical and experimental analysis.

    PubMed

    Ramos, A; Duarte, R J; Relvas, C; Completo, A; Simões, J A

    2013-07-01

    The press-fit hip acetabular prosthesis implantation can cause crack formation in the thin regions surrounding the acetabular. As a consequence the presence of cracks in this region can lead to poor fixation and fibrous tissue formation. Numerical and experimental models of commercial press-fit hip replacements were developed to compare the behavior between the intact and implanted joints. Numerical models with an artificial crack and without crack were considered. The iliac and the femur were created through 3D geometry acquisition based on composite human replicas and 3D-Finite Element models were generated. The mechanical behavior was assessed numerically and experimentally considering the principal strains. The comparison between Finite Element model predictions and experimental measurements revealed a maximum difference of 9%. Similar distribution of the principal strains around the acetabular cavity was obtained for the intact and implanted models. When comparing the Von Mises stresses, it is possible to observe that the intact model is the one that presents the highest stress values in the entire acetabular cavity surface. The crack in the posterior side changes significantly the principal strain distribution, suggesting bone loss after hip replacement. Relatively to micromotions, these were higher on the superior side of the acetabular cavity and can change the implant stability and bone ingrowth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Numerical damage models using a structural approach: application in bones and ligaments

    NASA Astrophysics Data System (ADS)

    Arnoux, P. J.; Bonnoit, J.; Chabrand, P.; Jean, M.; Pithioux, M.

    2002-01-01

    The purpose of the present study was to apply knowledge of structural properties to perform numerical simulations with models of bones and knee ligaments exposed to dynamic tensile loading leading to tissue damage. Compact bones and knee ligaments exhibit the same geometrical pattern in their different levels of structural hierarchy from the tropocollagen molecule to the fibre. Nevertheless, their mechanical behaviours differ considerably at the fibril level. These differences are due to the contribution of the joints in the microfibril-fibril-fibre assembly and to the mechanical properties of the structural components. Two finite element models of the fibrous bone and ligament structure were used to describe damage in terms of elastoplastic laws or joint decohesion processes.

  5. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    PubMed

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  6. Recent Developments in Computational Techniques for Applied Hydrodynamics.

    DTIC Science & Technology

    1979-12-07

    by block number) Numerical Method Fluids Incompressible Flow Finite Difference Methods Poisson Equation Convective Equations -MABSTRACT (Continue on...weaknesses of the different approaches are analyzed. Finite - difference techniques have particularly attractive properties in this framework. Hence it will...be worthwhile to correct, at least partially, the difficulties from which Eulerian and Lagrangian finite - difference techniques suffer, discussed in

  7. Continuous and Discrete Structured Population Models with Applications to Epidemiology and Marine Mammals

    NASA Astrophysics Data System (ADS)

    Tang, Tingting

    In this dissertation, we develop structured population models to examine how changes in the environmental affect population processes. In Chapter 2, we develop a general continuous time size structured model describing a susceptible-infected (SI) population coupled with the environment. This model applies to problems arising in ecology, epidemiology, and cell biology. The model consists of a system of quasilinear hyperbolic partial differential equations coupled with a system of nonlinear ordinary differential equations that represent the environment. We develop a second-order high resolution finite difference scheme to numerically solve the model. Convergence of this scheme to a weak solution with bounded total variation is proved. We numerically compare the second order high resolution scheme with a first order finite difference scheme. Higher order of convergence and high resolution property are observed in the second order finite difference scheme. In addition, we apply our model to a multi-host wildlife disease problem, questions regarding the impact of the initial population structure and transition rate within each host are numerically explored. In Chapter 3, we use a stage structured matrix model for wildlife population to study the recovery process of the population given an environmental disturbance. We focus on the time it takes for the population to recover to its pre-event level and develop general formulas to calculate the sensitivity or elasticity of the recovery time to changes in the initial population distribution, vital rates and event severity. Our results suggest that the recovery time is independent of the initial population size, but is sensitive to the initial population structure. Moreover, it is more sensitive to the reduction proportion to the vital rates of the population caused by the catastrophe event relative to the duration of impact of the event. We present the potential application of our model to the amphibian population dynamic and the recovery of a certain plant population. In addition, we explore, in details, the application of the model to the sperm whale population in Gulf of Mexico after the Deepwater Horizon oil spill. In Chapter 4, we summarize the results from Chapter 2 and Chapter 3 and explore some further avenues of our research.

  8. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  9. A numerical model to reproduce squeaking of ceramic-on-ceramic total hip arthroplasty. Influence of design and material.

    PubMed

    Piriou, P; Ouenzerfi, G; Migaud, H; Renault, E; Massi, F; Serrault, M

    2016-06-01

    Modern ceramic (CoC) bearings for hip arthroplasty (THA) have been used in younger patients who expect improved survivorship. However, audible squeaking produced by the implant is an annoying complication. Previous numerical simulations were not able to accurately reproduce in vitro and in vivo observations. Therefore, we developed a finite element model to: (1) reproduce in vitro squeaking and validate the model by comparing it with in vivo recordings, (2) determine why there are differences between in vivo and in vitro squeaking frequencies, (3) identify the stem's role in this squeaking, (4) predict which designs and materials are more likely to produce squeaking. A CoC THA numerical model can be developed that reproduces the squeaking frequencies observed in vivo. Numerical methods (finite element analysis [ANSYS]) and experimental methods (using a non-lubricated simulated hip with a cementless 32mm CoC THA) were developed to reproduce squeaking. Numerical analysis was performed to identify the frequencies that cause vibrations perceived as an acoustic emission. The finite element analysis (FEA) model was enhanced by adjusting periprosthetic bone and soft tissue elements in order to reproduce the squeaking frequencies recorded in vivo. A numerical method (complex eigenvalue analysis) was used to find the acoustic frequencies of the squeaking noise. The frequencies obtained from the model and the hip simulator were compared to those recorded in vivo. The numerical results were validated by experiments with the laboratory hip simulator. The frequencies obtained (mean 2790Hz with FEA, 2755Hz with simulator, decreasing to 1759Hz when bone and soft tissue were included in the FEA) were consistent with those of squeaking hips recorded in vivo (1521Hz). The cup and ceramic insert were the source of the vibration, but had little influence on the diffusion of the noise required to make the squeaking audible to the human ear. The FEA showed that diffusion of squeaking was due to an unstable vibration of the stem during frictional contact. The FEA predicted a higher rate of squeaking (at a lower coefficient of friction) when TZMF™ alloy is used instead of Ti6Al4V and when an anatomic press-fit stem is used instead of straight self-locking designs. The current FEA model is reliable; it can be used to assess various stem designs and alloys to predict the different rates of squeaking that certain stems will likely produce. Level IV in vitro study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Energy and technology review: Engineering modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.

    1986-10-01

    This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.

  11. A mixed pseudospectral/finite difference method for a thermally driven fluid in a nonuniform gravitational field

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modelled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.

  12. Rotordynamic coefficients for labyrinth seals calculated by means of a finite difference technique

    NASA Technical Reports Server (NTRS)

    Nordmann, R.; Weiser, P.

    1989-01-01

    The compressible, turbulent, time dependent and three dimensional flow in a labyrinth seal can be described by the Navier-Stokes equations in conjunction with a turbulence model. Additionally, equations for mass and energy conservation and an equation of state are required. To solve these equations, a perturbation analysis is performed yielding zeroth order equations for centric shaft position and first order equations describing the flow field for small motions around the seal center. For numerical solution a finite difference method is applied to the zeroth and first order equations resulting in leakage and dynamic seal coefficients respectively.

  13. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction

    NASA Technical Reports Server (NTRS)

    Oyegbesan, A. O.; Algermissen, J.

    1986-01-01

    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  14. On Multifunctional Collaborative Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  15. Rheological Models in the Time-Domain Modeling of Seismic Motion

    NASA Astrophysics Data System (ADS)

    Moczo, P.; Kristek, J.

    2004-12-01

    The time-domain stress-strain relation in a viscoelastic medium has a form of the convolutory integral which is numerically intractable. This was the reason for the oversimplified models of attenuation in the time-domain seismic wave propagation and earthquake motion modeling. In their pioneering work, Day and Minster (1984) showed the way how to convert the integral into numerically tractable differential form in the case of a general viscoelastic modulus. In response to the work by Day and Minster, Emmerich and Korn (1987) suggested using the rheology of their generalized Maxwell body (GMB) while Carcione et al. (1988) suggested using the generalized Zener body (GZB). The viscoelastic moduli of both rheological models have a form of the rational function and thus the differential form of the stress-strain relation is rather easy to obtain. After the papers by Emmerich and Korn and Carcione et al. numerical modelers decided either for the GMB or GZB rheology and developed 'non-communicating' algorithms. In the many following papers the authors using the GMB never commented the GZB rheology and the corresponding algorithms, and the authors using the GZB never related their methods to the GMB rheology and algorithms. We analyze and compare both rheologies and the corresponding incorporations of the realistic attenuation into the time-domain computations. We then focus on the most recent staggered-grid finite-difference modeling, mainly on accounting for the material heterogeneity in the viscoelastic media, and the computational efficiency of the finite-difference algorithms.

  16. Composite scheme using localized relaxation with non-standard finite difference method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Raghurama Rao, S. V.

    2008-04-01

    Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.

  17. Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.

    2015-01-01

    Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.

  18. Finite Difference modeling of VLF Propagation in the Earth-Ionosphere Waveguide

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Wallace, T.; Turbe, M.

    2016-12-01

    Very-low-frequency (VLF, 3—30 kHz) waves can propagate efficiently in the waveguide formed by the Earth and the D-region ionosphere. vVariation in the signals monitored by a stationary receiver can be attributed to variations in the lower ionosphere. As such, these signals are used to monitor the D-region ionosphere in daytime and nighttime. However, the use of VLF transmitter signals to quantitatively diagnose the D-region ionosphere is complicated by i) the propagation of many modes in the waveguide, and their interference, and ii) the effect of the ionosphere along the entire path on the receiver signal at a single location. In this paper, we compare the modeled phase and amplitude of VLF signals using three methods: a Finite-Difference Time-Domain (FDTD) model, a Finite-Difference Frequency-Domain (FDFD) model, and the Long-Wave Prediction Capability (LWPC) model, which has been the method de rigueur since the 1970s. While LWPC solves mode propagation and coupling in the anisotropic waveguide, the FD methods directly solve for electric and magnetic fields from Maxwell's equations on a finite-difference grid. Thus, FD methods provide greater freedom to vary the physical inputs of the model, limited only by the spatial resolution, but at the expense of computation time. We compare the simulated amplitude and phase of these models by running them with identical physical inputs. In this work we compare both i) the absolute amplitude and phase trends as a function of distance, and ii) the magnitude of amplitude and phase variations for given ionosphere changes. Modeling results show that FDTD and FDFD simulations track the amplitude and phase as a function of distance very closely when compared to LWPC. Phase drift due to numerical dispersion is observed at large distances, of a few tens of degrees per 1000 km. These phase drifts increase quadratically with frequency, as expected from numerical dispersion in FD methods. In fact, the phase drift can be mostly removed by applying a simple Richardson extrapolation. After extrapolating, FDTD and LWPC differences can be mapped to a phase velocity difference of <0.07%. When we compare phase changes due to ionospheric variations (Figure 1), we find that all three models show similar magnitudes of phase changes, to within 20%, and similar trends with frequency.­­­

  19. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method.

    PubMed

    de Vries, Martinus P; Hamburg, Marc C; Schutte, Harm K; Verkerke, Gijsbertus J; Veldman, Arthur E P

    2003-04-01

    Surgical removal of the larynx results in radically reduced production of voice and speech. To improve voice quality a voice-producing element (VPE) is developed, based on the lip principle, called after the lips of a musician while playing a brass instrument. To optimize the VPE, a numerical model is developed. In this model, the finite element method is used to describe the mechanical behavior of the VPE. The flow is described by two-dimensional incompressible Navier-Stokes equations. The interaction between VPE and airflow is modeled by placing the grid of the VPE model in the grid of the aerodynamical model, and requiring continuity of forces and velocities. By applying and increasing pressure to the numerical model, pulses comparable to glottal volume velocity waveforms are obtained. By variation of geometric parameters their influence can be determined. To validate this numerical model, an in vitro test with a prototype of the VPE is performed. Experimental and numerical results show an acceptable agreement.

  20. Numerical Simulation and Experimental Verification of Hollow and Foam-Filled Flax-Fabric-Reinforced Epoxy Tubular Energy Absorbers Subjected to Crashing

    NASA Astrophysics Data System (ADS)

    Sliseris, J.; Yan, L.; Kasal, B.

    2017-09-01

    Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.

  1. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less

  2. Numerical Modelling of Three-Fluid Flow Using The Level-set Method

    NASA Astrophysics Data System (ADS)

    Li, Hongying; Lou, Jing; Shang, Zhi

    2014-11-01

    This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).

  3. A conservative numerical scheme for modeling nonlinear acoustic propagation in thermoviscous homogeneous media

    NASA Astrophysics Data System (ADS)

    Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.

    2018-06-01

    A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.

  4. Flow studies in canine artery bifurcations using a numerical simulation method.

    PubMed

    Xu, X Y; Collins, M W; Jones, C J

    1992-11-01

    Three-dimensional flows through canine femoral bifurcation models were predicted under physiological flow conditions by solving numerically the time-dependent three-dimensional Navier-stokes equations. In the calculations, two models were assumed for the blood, those of (a) a Newtonian fluid, and (b) a non-Newtonian fluid obeying the power law. The blood vessel wall was assumed to be rigid this being the only approximation to the prediction model. The numerical procedure utilized a finite volume approach on a finite element mesh to discretize the equations, and the code used (ASTEC) incorporated the SIMPLE velocity-pressure algorithm in performing the calculations. The predicted velocity profiles were in good qualitative agreement with the in vivo measurements recently obtained by Jones et al. The non-Newtonian effects on the bifurcation flow field were also investigated, and no great differences in velocity profiles were observed. This indicated that the non-Newtonian characteristics of the blood might not be an important factor in determining the general flow patterns for these bifurcations, but could have local significance. Current work involves modeling wall distensibility in an empirically valid manner. Predictions accommodating these will permit a true quantitative comparison with experiment.

  5. Three friendly walkers

    NASA Astrophysics Data System (ADS)

    Jensen, Iwan

    2017-01-01

    More than 15 years ago Guttmann and Vöge (2002 J. Stat. Plan. Inference 101 107), introduced a model of friendly walkers. Since then it has remained unsolved. In this paper we provide the exact solution to a closely allied model which essentially only differs in the boundary conditions. The exact solution is expressed in terms of the reciprocal of the generating function for vicious walkers which is a D-finite function. However, ratios of D-finite functions are inherently not D-finite and in this case we prove that the friendly walkers generating function is the solution to a non-linear differential equation with polynomial coefficients, it is in other words D-algebraic. We find using numerically exact calculations a conjectured expression for the generating function of the original model as a ratio of a D-finite function and the generating function for vicious walkers. We obtain an expression for this D-finite function in terms of a {{}2}{{F}1} hypergeometric function with a rational pullback and its first and second derivatives. Dedicated to Tony Guttmann on the occasion of his 70th birthday.

  6. A robust method of computing finite difference coefficients based on Vandermonde matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin

    2018-05-01

    When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.

  7. Theory and Circuit Model for Lossy Coaxial Transmission Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genoni, T. C.; Anderson, C. N.; Clark, R. E.

    2017-04-01

    The theory of signal propagation in lossy coaxial transmission lines is revisited and new approximate analytic formulas for the line impedance and attenuation are derived. The accuracy of these formulas from DC to 100 GHz is demonstrated by comparison to numerical solutions of the exact field equations. Based on this analysis, a new circuit model is described which accurately reproduces the line response over the entire frequency range. Circuit model calculations are in excellent agreement with the numerical and analytic results, and with finite-difference-time-domain simulations which resolve the skindepths of the conducting walls.

  8. Symmetry-breaking dynamics of the finite-size Lipkin-Meshkov-Glick model near ground state

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Li, Tongcang; Yin, Zhang-qi

    2018-01-01

    We study the dynamics of the Lipkin-Meshkov-Glick (LMG) model with a finite number of spins. In the thermodynamic limit, the ground state of the LMG model with an isotropic Hamiltonian in the broken phase breaks to a mean-field ground state with a certain direction. However, when the spin number N is finite, the exact ground state is always unique and is not given by a classical mean-field ground state. Here, we prove that when N is large but finite, through a tiny external perturbation, a localized state which is close to a mean-field ground state can be prepared, which mimics spontaneous symmetry breaking. Also, we find the localized in-plane spin polarization oscillates with two different frequencies ˜O (1 /N ) , and the lifetime of the localized state is long enough to exhibit this oscillation. We numerically test the analytical results and find that they agree very well with each other. Finally, we link the phenomena to quantum time crystals and time quasicrystals.

  9. A family of four stages embedded explicit six-step methods with eliminated phase-lag and its derivatives for the numerical solution of the second order problems

    NASA Astrophysics Data System (ADS)

    Simos, T. E.

    2017-11-01

    A family of four stages high algebraic order embedded explicit six-step methods, for the numerical solution of second order initial or boundary-value problems with periodical and/or oscillating solutions, are studied in this paper. The free parameters of the new proposed methods are calculated solving the linear system of equations which is produced by requesting the vanishing of the phase-lag of the methods and the vanishing of the phase-lag's derivatives of the schemes. For the new obtained methods we investigate: • Its local truncation error (LTE) of the methods.• The asymptotic form of the LTE obtained using as model problem the radial Schrödinger equation.• The comparison of the asymptotic forms of LTEs for several methods of the same family. This comparison leads to conclusions on the efficiency of each method of the family.• The stability and the interval of periodicity of the obtained methods of the new family of embedded finite difference pairs.• The applications of the new obtained family of embedded finite difference pairs to the numerical solution of several second order problems like the radial Schrödinger equation, astronomical problems etc. The above applications lead to conclusion on the efficiency of the methods of the new family of embedded finite difference pairs.

  10. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  11. A Model-Free No-arbitrage Price Bound for Variance Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnans, J. Frederic, E-mail: frederic.bonnans@inria.fr; Tan Xiaolu, E-mail: xiaolu.tan@polytechnique.edu

    2013-08-01

    We suggest a numerical approximation for an optimization problem, motivated by its applications in finance to find the model-free no-arbitrage bound of variance options given the marginal distributions of the underlying asset. A first approximation restricts the computation to a bounded domain. Then we propose a gradient projection algorithm together with the finite difference scheme to solve the optimization problem. We prove the general convergence, and derive some convergence rate estimates. Finally, we give some numerical examples to test the efficiency of the algorithm.

  12. Finite difference elastic wave modeling with an irregular free surface using ADER scheme

    NASA Astrophysics Data System (ADS)

    Almuhaidib, Abdulaziz M.; Nafi Toksöz, M.

    2015-06-01

    In numerical modeling of seismic wave propagation in the earth, we encounter two important issues: the free surface and the topography of the surface (i.e. irregularities). In this study, we develop a 2D finite difference solver for the elastic wave equation that combines a 4th- order ADER scheme (Arbitrary high-order accuracy using DERivatives), which is widely used in aeroacoustics, with the characteristic variable method at the free surface boundary. The idea is to treat the free surface boundary explicitly by using ghost values of the solution for points beyond the free surface to impose the physical boundary condition. The method is based on the velocity-stress formulation. The ultimate goal is to develop a numerical solver for the elastic wave equation that is stable, accurate and computationally efficient. The solver treats smooth arbitrary-shaped boundaries as simple plane boundaries. The computational cost added by treating the topography is negligible compared to flat free surface because only a small number of grid points near the boundary need to be computed. In the presence of topography, using 10 grid points per shortest shear-wavelength, the solver yields accurate results. Benchmark numerical tests using several complex models that are solved by our method and other independent accurate methods show an excellent agreement, confirming the validity of the method for modeling elastic waves with an irregular free surface.

  13. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  14. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  15. Fibre Bragg grating sensing and finite element analysis of the biomechanics of the mandible

    NASA Astrophysics Data System (ADS)

    Silva, J. C. C.; Ramos, A.; Carvalho, L.; Nogueira, R. N.; Ballu, A.; Mesnard, M.; Pinto, J. L.; Kalinowski, Hypolito J.; Simoes, J. A.

    2005-05-01

    This paper describes the application of fibre Bragg grating (FBG) sensors to measure strains at the outer surface of a mandible. The strains were correlated to identical ones obtained with a numerical finite element model. For this purpose, a synthetic mandible was used and 4 Bragg sensors were glued to the mandible. Strain patterns were assessed for different load configurations which included the forces of the masseter and temporal muscles and occlusion loads on different tooth (incisor, canine and molar). Overall the strains obtained using different measuring methods were identical, namely for the case of symmetric loading. When loading was non-symmetric, strain differences were observed at one sensor.

  16. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    PubMed Central

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  18. Efficient calculation of higher-order optical waveguide dispersion.

    PubMed

    Mores, J A; Malheiros-Silveira, G N; Fragnito, H L; Hernández-Figueroa, H E

    2010-09-13

    An efficient numerical strategy to compute the higher-order dispersion parameters of optical waveguides is presented. For the first time to our knowledge, a systematic study of the errors involved in the higher-order dispersions' numerical calculation process is made, showing that the present strategy can accurately model those parameters. Such strategy combines a full-vectorial finite element modal solver and a proper finite difference differentiation algorithm. Its performance has been carefully assessed through the analysis of several key geometries. In addition, the optimization of those higher-order dispersion parameters can also be carried out by coupling to the present scheme a genetic algorithm, as shown here through the design of a photonic crystal fiber suitable for parametric amplification applications.

  19. Spectral-element Method for 3D Marine Controlled-source EM Modeling

    NASA Astrophysics Data System (ADS)

    Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.

    2017-12-01

    As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).

  20. A semi-implicit finite difference model for three-dimensional tidal circulation,

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1992-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.

  1. Analysis of composite ablators using massively parallel computation

    NASA Technical Reports Server (NTRS)

    Shia, David

    1995-01-01

    In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.

  2. Finite Element modelling of deformation induced by interacting volcanic sources

    NASA Astrophysics Data System (ADS)

    Pascal, Karen; Neuberg, Jürgen; Rivalta, Eleonora

    2010-05-01

    The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system comprises more than one source, the assumption of homogeneity in the half-space is violated and several sources are combined, their respective deformation field being summed. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying their relative position. Furthermore we considered the impact of topography, loading, and magma compressibility. To quantify the discrepancies and compare the various models, we calculated the difference between analytical and numerical maximum horizontal or vertical surface displacements.We will demonstrate that for certain conditions combining analytical sources can cause an error of up to 20%. References: McTigue, D. F. (1987), Elastic Stress and Deformation Near a Finite Spherical Magma Body: Resolution of the Point Source Paradox, J. Geophys. Res. 92, 12931-12940. Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull Earthquake Res Inst, Univ Tokyo 36, 99-134. Okada, Y. (1992), Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Bulletin of the Seismological Society of America 82(2), 1018-1040.

  3. A two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1988-01-01

    Research has been undertaken to achieve an improved understanding of physical phenomena present when a supersonic flow undergoes chemical reaction. A detailed understanding of supersonic reacting flows is necessary to successfully develop advanced propulsion systems now planned for use late in this century and beyond. In order to explore such flows, a study was begun to create appropriate physical models for describing supersonic combustion, and to develop accurate and efficient numerical techniques for solving the governing equations that result from these models. From this work, two computer programs were written to study reacting flows. Both programs were constructed to consider the multicomponent diffusion and convection of important chemical species, the finite rate reaction of these species, and the resulting interaction of the fluid mechanics and the chemistry. The first program employed a finite difference scheme for integrating the governing equations, whereas the second used a hybrid Chebyshev pseudospectral technique for improved accuracy.

  4. Numerical Assessment of Rockbursting.

    DTIC Science & Technology

    1987-05-27

    static equilibrium, nonlinear elasticity, strain-softening • material , unstable propagation of pre-existing cracks , and finally - surface...structure of LINOS, which is common to most of the large finite element codes, the library of element and material subroutines can be easily expanded... material model subroutines , are tested by comparing finite element results with analytical or numerical results derived for hypo-elastic and

  5. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    NASA Astrophysics Data System (ADS)

    Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.

    2015-09-01

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  6. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, M.D., E-mail: mdmeyers@physics.ucla.edu; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095; Huang, C.-K., E-mail: huangck@lanl.gov

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTDmore » scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.« less

  7. Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading

    NASA Astrophysics Data System (ADS)

    Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.

    2017-05-01

    The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed

  8. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    NASA Astrophysics Data System (ADS)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  9. Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate

    NASA Astrophysics Data System (ADS)

    Xue, Jia; Wang, Wen-Xue; Zhang, Jia-Zhen; Wu, Su-Jun; Li, Hang

    2015-10-01

    A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.

  10. A study of buried pipeline response to fault movement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiou, Y.J.; Chi, S.Y.; Chang, H.Y.

    1994-02-01

    This study investigates the buried pipeline response to strike slip fault movement. The large deflection pipe crossing the fault zone is modeled as an elastica, while the remaining portion of small deflection pipe is modeled as a semi-infinite beam on elastic foundation. The finite difference method is applied for the numerical solution and the results agree qualitatively with the earlier works.

  11. Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media

    USGS Publications Warehouse

    Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.

    2009-01-01

    Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Petersson, N. A.; Rodgers, A.

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less

  13. Predict the fatigue life of crack based on extended finite element method and SVR

    NASA Astrophysics Data System (ADS)

    Song, Weizhen; Jiang, Zhansi; Jiang, Hui

    2018-05-01

    Using extended finite element method (XFEM) and support vector regression (SVR) to predict the fatigue life of plate crack. Firstly, the XFEM is employed to calculate the stress intensity factors (SIFs) with given crack sizes. Then predicetion model can be built based on the function relationship of the SIFs with the fatigue life or crack length. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Because of the accuracy of the forward Euler method only ensured by the small step size, a new prediction method is presented to resolve the issue. The numerical examples were studied to demonstrate the proposed method allow a larger step size and have a high accuracy.

  14. Strip Yield Model Numerical Application to Different Geometries and Loading Conditions

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Forman, Royce; Shivakumar, Venkataraman; Lyons, Jed

    2006-01-01

    A new numerical method based on the strip-yield analysis approach was developed for calculating the Crack Tip Opening Displacement (CTOD). This approach can be applied for different crack configurations having infinite and finite geometries, and arbitrary applied loading conditions. The new technique adapts the boundary element / dislocation density method to obtain crack-face opening displacements at any point on a crack, and succeeds by obtaining requisite values as a series of definite integrals, the functional parts of each being evaluated exactly in a closed form.

  15. A MULTIPLE GRID ALGORITHM FOR ONE-DIMENSIONAL TRANSIENT OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    Numerical modeling of open channel flows with shocks using explicit finite difference schemes is constrained by the choice of time step, which is limited by the CFL stability criteria. To overcome this limitation, in this work we introduce the application of a multiple grid al...

  16. Finite elements of nonlinear continua.

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1972-01-01

    The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.

  17. Plasma Theory and Simulation

    DTIC Science & Technology

    1988-06-30

    equation using finite difference methods. The distribution function is represented by a large number of particles. The particle’s velocities change as a...Small angle Coulomb collisions The FP equation for describing small angle Coulomb collisions can be solved numerically using finite difference techniques...A finite Fourrier transform (FT) is made in z, then we can solve for each k using the following finite difference scheme [5]: 2{r 1 +l1 2 (,,+ 1 - fj

  18. On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming

    NASA Astrophysics Data System (ADS)

    Grilo, Tiago J.; Vladimirov, Ivaylo N.; Valente, Robertt A. F.; Reese, Stefanie

    2016-06-01

    In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.

  19. A Hybrid Numerical Analysis Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Staroselsky, Alexander

    2001-01-01

    A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.

  20. Finite element simulations of the Portevin Le Chatelier effect in aluminium alloy

    NASA Astrophysics Data System (ADS)

    Hopperstad, O. S.; Børvik, T.; Berstad, T.; Benallal, A.

    2006-08-01

    Finite element simulations of the Portevin-Le Chatelier effect in aluminium alloy 5083-H116 are presented and evaluated against existing experimental results. The constitutive model of McCormick (1988) for materials exhibiting negative steady-state strain-rate sensitivity is incorporated into an elastic-viscoplastic model for large plastic deformations and implemented in LS-DYNA for use with the explicit or implicit solver. Axisymmetric tensile specimens loaded at different strain rates are studied numerically, and it is shown that the model predicts the experimental behaviour with reasonable accuracy; including serrated yielding and propagating bands of localized plastic deformation along the gauge length of the specimen at intermediate strain rates.

  1. Sampling Versus Filtering in Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Debliquy, O.; Knaepen, B.; Carati, D.; Wray, A. A.

    2004-01-01

    A LES formalism in which the filter operator is replaced by a sampling operator is proposed. The unknown quantities that appear in the LES equations originate only from inadequate resolution (Discretization errors). The resulting viewpoint seems to make a link between finite difference approaches and finite element methods. Sampling operators are shown to commute with nonlinearities and to be purely projective. Moreover, their use allows an unambiguous definition of the LES numerical grid. The price to pay is that sampling never commutes with spatial derivatives and the commutation errors must be modeled. It is shown that models for the discretization errors may be treated using the dynamic procedure. Preliminary results, using the Smagorinsky model, are very encouraging.

  2. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.

    2018-02-01

    A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.

  3. Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1979-01-04

    Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric andmore » 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables.« less

  4. Large Eddy Simulation of wind turbine wakes: detailed comparisons of two codes focusing on effects of numerics and subgrid modeling

    NASA Astrophysics Data System (ADS)

    Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-01

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  5. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less

  6. A gradient enhanced plasticity-damage microplane model for concrete

    NASA Astrophysics Data System (ADS)

    Zreid, Imadeddin; Kaliske, Michael

    2018-03-01

    Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.

  7. Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; DeBonis, J. R.

    1999-01-01

    A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.

  8. Lattice study of finite volume effect in HVP for muon g-2

    NASA Astrophysics Data System (ADS)

    Izubuchi, Taku; Kuramashi, Yoshinobu; Lehner, Christoph; Shintani, Eigo

    2018-03-01

    We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp, in lattice QCD by comparison with two different volumes, L4 = (5.4)4 and (8.1)4 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a-1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.

  9. Analytical and numerical solutions of the potential and electric field generated by different electrode arrays in a tumor tissue under electrotherapy.

    PubMed

    Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M

    2011-09-24

    Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.

  10. Buckling analysis of SMA bonded sandwich structure – using FEM

    NASA Astrophysics Data System (ADS)

    Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.

    2018-03-01

    Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.

  11. Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor

    NASA Astrophysics Data System (ADS)

    Pranger, Casper

    2017-04-01

    In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.

  12. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE PAGES

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    2017-01-01

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  13. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  14. The Finite-Size Scaling Relation for the Order-Parameter Probability Distribution of the Six-Dimensional Ising Model

    NASA Astrophysics Data System (ADS)

    Merdan, Ziya; Karakuş, Özlem

    2016-11-01

    The six dimensional Ising model with nearest-neighbor pair interactions has been simulated and verified numerically on the Creutz Cellular Automaton by using five bit demons near the infinite-lattice critical temperature with the linear dimensions L=4,6,8,10. The order parameter probability distribution for six dimensional Ising model has been calculated at the critical temperature. The constants of the analytical function have been estimated by fitting to probability function obtained numerically at the finite size critical point.

  15. A general algorithm using finite element method for aerodynamic configurations at low speeds

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.

    1975-01-01

    A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.

  16. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.

    PubMed

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-07

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  17. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches

    NASA Astrophysics Data System (ADS)

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-01

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  18. Numerical analysis of ossicular chain lesion of human ear

    NASA Astrophysics Data System (ADS)

    Liu, Yingxi; Li, Sheng; Sun, Xiuzhen

    2009-04-01

    Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.

  19. A three-dimensional, time-dependent model of Mobile Bay

    NASA Technical Reports Server (NTRS)

    Pitts, F. H.; Farmer, R. C.

    1976-01-01

    A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.

  20. MRI-based finite element modeling of facial mimics: a case study on the paired zygomaticus major muscles.

    PubMed

    Fan, Ang-Xiao; Dakpé, Stéphanie; Dao, Tien Tuan; Pouletaut, Philippe; Rachik, Mohamed; Ho Ba Tho, Marie Christine

    2017-07-01

    Finite element simulation of facial mimics provides objective indicators about soft tissue functions for improving diagnosis, treatment and follow-up of facial disorders. There is a lack of in vivo experimental data for model development and validation. In this study, the contribution of the paired Zygomaticus Major (ZM) muscle contraction on the facial mimics was investigated using in vivo experimental data derived from MRI. Maximal relative differences of 7.7% and 37% were noted between MRI-based measurements and numerical outcomes for ZM and skin deformation behaviors respectively. This study opens a new direction to simulate facial mimics with in vivo data.

  1. Numerical modeling on carbon fiber composite material in Gaussian beam laser based on ANSYS

    NASA Astrophysics Data System (ADS)

    Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Yang, Wei-jun; Zhao, Yun-fang

    2014-02-01

    Based on the heat transfer theory and finite element method, the macroscopic ablation model of Gaussian beam laser irradiated surface is built and the value of temperature field and thermal ablation development is calculated and analyzed rationally by using finite element software of ANSYS. Calculation results show that the ablating form of the materials in different irritation is of diversity. The laser irradiated surface is a camber surface rather than a flat surface, which is on the lowest point and owns the highest power density. Research shows that the higher laser power density absorbed by material surface, the faster the irritation surface regressed.

  2. Scattering models for some vegetation samples

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Antar, Y. M. M.

    1987-01-01

    The Helmholtz integral equation is presently derived for a scatterer of arbitrary shape, and reduced in order to obtain the far zone-scattered field in terms of the field within the scatterer. Attention is given to the effect of different approaches to field estimation within the scatterer on the backscattering cross section, as illustrated numerically by the cases of a circular disk, a needle, and a finite-length cylinder. A comparison is made of the results obtained by modeling a leaf by means of a circular disk within the Shifrin approximation, and a tree branch by means of a finite-length cylinder, with measurements from a single leaf and a single branch.

  3. Low-rank approximation in the numerical modeling of the Farley-Buneman instability in ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Dolgov, S. V.; Smirnov, A. P.; Tyrtyshnikov, E. E.

    2014-04-01

    We consider numerical modeling of the Farley-Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed. The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.

  4. Developments in the Gung Ho dynamical core

    NASA Astrophysics Data System (ADS)

    Melvin, Thomas

    2017-04-01

    Gung Ho is the new dynamical core being developed for the next generation Met Office weather and climate model, suitable for meeting the exascale challenge on emerging computer architectures. It builds upon the earlier collaborative project between the Met Office, NERC and STFC Daresbury of the same name to investigate suitable numerical methods for dynamical cores. A mixed-finite element approach is used, where different finite element spaces are used to represent various fields. This method provides a number of beneficial improvements over the current model, such a compatibility and inherent conservation on quasi-uniform unstructured meshes, whilst maintaining the accuracy and good dispersion properties of the staggered grid currently used. Furthermore, the mixed finite element approach allows a large degree of flexibility in the type of mesh, order of approximation and discretisation, providing a simple way to test alternative options to obtain the best model possible.

  5. Manual of phosphoric acid fuel cell stack three-dimensional model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.

  6. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Agarwal, P.; El-Sayed, A. A.

    2018-06-01

    In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

  7. A mathematical model for describing the mechanical behaviour of root canal instruments.

    PubMed

    Zhang, E W; Cheung, G S P; Zheng, Y F

    2011-01-01

    The purpose of this study was to establish a general mathematical model for describing the mechanical behaviour of root canal instruments by combining a theoretical analytical approach with a numerical finite-element method. Mathematical formulas representing the longitudinal (taper, helical angle and pitch) and cross-sectional configurations and area, the bending and torsional inertia, the curvature of the boundary point and the (geometry of) loading condition were derived. Torsional and bending stresses and the resultant deformation were expressed mathematically as a function of these geometric parameters, modulus of elasticity of the material and the applied load. As illustrations, three brands of NiTi endodontic files of different cross-sectional configurations (ProTaper, Hero 642, and Mani NRT) were analysed under pure torsion and pure bending situation by entering the model into a finite-element analysis package (ANSYS). Numerical results confirmed that mathematical models were a feasible method to analyse the mechanical properties and predict the stress and deformation for root canal instruments during root canal preparation. Mathematical and numerical model can be a suitable way to examine mechanical behaviours as a criterion of the instrument design and to predict the stress and strain experienced by the endodontic instruments during root canal preparation. © 2010 International Endodontic Journal.

  8. An investigation of several numerical procedures for time-asymptotic compressible Navier-Stokes solutions

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.; Morris, D. J.; Blanchard, D. K.; Cooke, C. H.; Rubin, S. G.

    1975-01-01

    The status of an investigation of four numerical techniques for the time-dependent compressible Navier-Stokes equations is presented. Results for free shear layer calculations in the Reynolds number range from 1000 to 81000 indicate that a sequential alternating-direction implicit (ADI) finite-difference procedure requires longer computing times to reach steady state than a low-storage hopscotch finite-difference procedure. A finite-element method with cubic approximating functions was found to require excessive computer storage and computation times. A fourth method, an alternating-direction cubic spline technique which is still being tested, is also described.

  9. A moving mesh finite difference method for equilibrium radiation diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less

  10. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    NASA Astrophysics Data System (ADS)

    Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2004-06-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.

  11. Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution ( 2 km) gravity fields of the Moon

    NASA Astrophysics Data System (ADS)

    Šprlák, M.; Han, S.-C.; Featherstone, W. E.

    2017-12-01

    Rigorous modelling of the spherical gravitational potential spectra from the volumetric density and geometry of an attracting body is discussed. Firstly, we derive mathematical formulas for the spatial analysis of spherical harmonic coefficients. Secondly, we present a numerically efficient algorithm for rigorous forward modelling. We consider the finite-amplitude topographic modelling methods as special cases, with additional postulates on the volumetric density and geometry. Thirdly, we implement our algorithm in the form of computer programs and test their correctness with respect to the finite-amplitude topography routines. For this purpose, synthetic and realistic numerical experiments, applied to the gravitational field and geometry of the Moon, are performed. We also investigate the optimal choice of input parameters for the finite-amplitude modelling methods. Fourth, we exploit the rigorous forward modelling for the determination of the spherical gravitational potential spectra inferred by lunar crustal models with uniform, laterally variable, radially variable, and spatially (3D) variable bulk density. Also, we analyse these four different crustal models in terms of their spectral characteristics and band-limited radial gravitation. We demonstrate applicability of the rigorous forward modelling using currently available computational resources up to degree and order 2519 of the spherical harmonic expansion, which corresponds to a resolution of 2.2 km on the surface of the Moon. Computer codes, a user manual and scripts developed for the purposes of this study are publicly available to potential users.

  12. Tidal Dissipation Within the Jupiter Moon Io - A Numerical Approach

    NASA Astrophysics Data System (ADS)

    Steinke, Teresa; van der Wal, Wouter; Hu, Haiyang; Vermeersen, Bert

    2017-04-01

    Satellite images and recent Earth-based observations of the innermost of the Galilean moons reveal a conspicuous pattern of volcanic hotspots and paterae on its surface. This pattern is associated with the heat flux originating from tidal dissipation in Io's mantle and asthenosphere. As shown by many analytical studies [e.g. Segatz et al. 1988], the local heat flux pattern depends on the rheology and structure of the satellite's interior and therefore could reveal constraints on Io's present interior. However, non-linear processes, different rheologies, and in particular lateral variations arising from the spatial heating pattern are difficult to incorporate in analytical 1D models but might be crucial. This motivates the development of a 3D finite element model of a layered body disturbed by a tidal potential. As a first step of this project we present a 3D finite element model of a spherically stratified body of linear viscoelastic rheology. For validation, we compare the resulting tidal deformation and local heating patterns with the results obtained by analytical models. Numerical errors increase with lower values of the asthenosphere viscosity. Currently, the numerical model allows realistic simulation down to viscosities of 1018 Pa s. Furthermore, we investigate an adequate way to deal with the relaxation of false modes that arise at the onset of the periodic tidal potential series in the numerical approach. Segatz, M., Spohn, T., Ross, M. N., Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75(2), 187-206.

  13. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils - Large Deformation Analysis Via Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konkol, Jakub; Bałachowski, Lech

    2017-03-01

    In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  14. Assessment of sub-grid scale dispersion closure with regularized deconvolution method in a particle-laden turbulent jet

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Zhao, Xinyu; Ihme, Matthias

    2017-11-01

    Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).

  15. Lagrangian predictability characteristics of an Ocean Model

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia

    2014-11-01

    The Mediterranean Forecasting System (MFS) Ocean Model, provided by INGV, has been chosen as case study to analyze Lagrangian trajectory predictability by means of a dynamical systems approach. To this regard, numerical trajectories are tested against a large amount of Mediterranean drifter data, used as sample of the actual tracer dynamics across the sea. The separation rate of a trajectory pair is measured by computing the Finite-Scale Lyapunov Exponent (FSLE) of first and second kind. An additional kinematic Lagrangian model (KLM), suitably treated to avoid "sweeping"-related problems, has been nested into the MFS in order to recover, in a statistical sense, the velocity field contributions to pair particle dispersion, at mesoscale level, smoothed out by finite resolution effects. Some of the results emerging from this work are: (a) drifter pair dispersion displays Richardson's turbulent diffusion inside the [10-100] km range, while numerical simulations of MFS alone (i.e., without subgrid model) indicate exponential separation; (b) adding the subgrid model, model pair dispersion gets very close to observed data, indicating that KLM is effective in filling the energy "mesoscale gap" present in MFS velocity fields; (c) there exists a threshold size beyond which pair dispersion becomes weakly sensitive to the difference between model and "real" dynamics; (d) the whole methodology here presented can be used to quantify model errors and validate numerical current fields, as far as forecasts of Lagrangian dispersion are concerned.

  16. High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models

    NASA Astrophysics Data System (ADS)

    Engwirda, Darren; Kelley, Maxwell; Marshall, John

    2017-08-01

    Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.

  17. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids

    NASA Technical Reports Server (NTRS)

    Madsen, Niel K.

    1992-01-01

    Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.

  18. Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Persova, Marina G.; Soloveichik, Yury G.; Belov, Vasiliy K.; Kiselev, Dmitry S.; Vagin, Denis V.; Domnikov, Petr A.; Patrushev, Ilya I.; Kurskiy, Denis N.

    2017-07-01

    In this paper, the problem of numerical modeling of thermoelastic behavior of nose caps of hypersonic vehicles at different angles of attack is considered. 3D finite element modeling is performed by solving the coupled heat and elastic problems taking into account thermal and mechanical properties variations with temperature. A special method for calculating the aerodynamic heat flux entering the nose cap from its surface is proposed. This method is characterized by very low computational costs and allows calculating the aerodynamic heat flux at different values of the Mach number and angles of attack which may vary during the aerodynamic heating. The numerical results obtained by the proposed approach are compared with the numerical results and experimental data obtained by other authors. The developed approach has been used for studying the impact of the angle of attack on the thermoelastic behavior of nose caps main components.

  19. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo

    2017-10-01

    A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  20. Hybrid transfer-matrix FDTD method for layered periodic structures.

    PubMed

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  1. Personal computer study of finite-difference methods for the transonic small disturbance equation

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1989-01-01

    Calculation of unsteady flow phenomena requires careful attention to the numerical treatment of the governing partial differential equations. The personal computer provides a convenient and useful tool for the development of meshes, algorithms, and boundary conditions needed to provide time accurate solution of these equations. The one-dimensional equation considered provides a suitable model for the study of wave propagation in the equations of transonic small disturbance potential flow. Numerical results for effects of mesh size, extent, and stretching, time step size, and choice of far-field boundary conditions are presented. Analysis of the discretized model problem supports these numerical results. Guidelines for suitable mesh and time step choices are given.

  2. A numerical study of variable density flow and mixing in porous media

    NASA Astrophysics Data System (ADS)

    Fan, Yin; Kahawita, René

    1994-10-01

    A numerical study of a negatively buoyant plume intruding into a neutrally stratified porous medium has been undertaken using finite different methods. Of particular interest has been to ascertain whether the experimentally observed gravitational instabilities that form along the lower edge of the plume are reproduced in the numerical model. The model has been found to faithfully reproduce the mean flow as well as the gravitational instabilities in the intruding plume. A linear stability analysis has confirmed the fact that the negatively buoyant plume is in fact gravitationally unstable and that the stability depends on two parameters: a concentration Rayleigh number and a characteristic length scale which is dependent on the transverse dispersivity.

  3. Numerical model for healthy and injured ankle ligaments.

    PubMed

    Forestiero, Antonella; Carniel, Emanuele Luigi; Fontanella, Chiara Giulia; Natali, Arturo Nicola

    2017-06-01

    The aim of this work is to provide a computational tool for the investigation of ankle mechanics under different loading conditions. The attention is focused on the biomechanical role of ankle ligaments that are fundamental for joints stability. A finite element model of the human foot is developed starting from Computed Tomography and Magnetic Resonance Imaging, using particular attention to the definition of ankle ligaments. A refined fiber-reinforced visco-hyperelastic constitutive model is assumed to characterize the mechanical response of ligaments. Numerical analyses that interpret anterior drawer and the talar tilt tests reported in literature are performed. The numerical results are in agreement with the range of values obtained by experimental tests confirming the accuracy of the procedure adopted. The increase of the ankle range of motion after some ligaments rupture is also evaluated, leading to the capability of the numerical models to interpret the damage conditions. The developed computational model provides a tool for the investigation of foot and ankle functionality in terms of stress-strain of the tissues and in terms of ankle motion, considering different types of damage to ankle ligaments.

  4. Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xu, Zhenhuan; Li, Yuguo

    2018-04-01

    We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.

  5. Three-dimensional geoelectric modelling with optimal work/accuracy rate using an adaptive wavelet algorithm

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.

    2010-08-01

    Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric modelling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with high spatial variability of electrical conductivities. The linear dependence of the modelling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  6. Storm Water Infiltration and Focused Groundwater Recharge in a Rain Garden: Finite Volume Model and Numerical Simulations for Different Configurations and Climates

    NASA Astrophysics Data System (ADS)

    Aravena, J.; Dussaillant, A. R.

    2006-12-01

    Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).

  7. Modelling water uptake efficiency of root systems

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. Journal of Hydrology, 233(1), 72-85. Javaux, M., Schröder, T., Vanderborght, J., & Vereecken, H. (2008). Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone Journal, 7(3), 1079-1088.

  8. Microstructure-based hyperelastic models for closed-cell solids

    PubMed Central

    Wyatt, Hayley

    2017-01-01

    For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases. PMID:28484340

  9. Microstructure-based hyperelastic models for closed-cell solids.

    PubMed

    Mihai, L Angela; Wyatt, Hayley; Goriely, Alain

    2017-04-01

    For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson's ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.

  10. Microstructure-based hyperelastic models for closed-cell solids

    NASA Astrophysics Data System (ADS)

    Mihai, L. Angela; Wyatt, Hayley; Goriely, Alain

    2017-04-01

    For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson's ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.

  11. Evaluation of the finite element fuel rod analysis code (FRANCO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.; Feltus, M.A.

    1994-12-31

    Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less

  12. A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data

    PubMed Central

    He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei

    2017-01-01

    This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148

  13. Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect

    NASA Astrophysics Data System (ADS)

    Novitski, Roman; Scheuer, Jacob; Steinberg, Ben Z.

    2013-02-01

    We present two unconditionally stable finite-difference time-domain (FDTD) methods for modeling the Sagnac effect in rotating optical microsensors. The methods are based on the implicit Crank-Nicolson scheme, adapted to hold in the rotating system reference frame—the rotating Crank-Nicolson (RCN) methods. The first method (RCN-2) is second order accurate in space whereas the second method (RCN-4) is fourth order accurate. Both methods are second order accurate in time. We show that the RCN-4 scheme is more accurate and has better dispersion isotropy. The numerical results show good correspondence with the expression for the classical Sagnac resonant frequency splitting when using group refractive indices of the resonant modes of a microresonator. Also we show that the numerical results are consistent with the perturbation theory for the rotating degenerate microcavities. We apply our method to simulate the effect of rotation on an entire Coupled Resonator Optical Waveguide (CROW) consisting of a set of coupled microresonators. Preliminary results validate the formation of a rotation-induced gap at the center of a transfer function of a CROW.

  14. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads

    PubMed Central

    Ashab, A.S.M. Ayman; Ruan, Dong; Lu, Guoxing; Bhuiyan, Arafat A.

    2016-01-01

    The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE) models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression) have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams. PMID:28773288

  15. Comparison of AGE and Spectral Methods for the Simulation of Far-Wakes

    NASA Technical Reports Server (NTRS)

    Bisset, D. K.; Rogers, M. M.; Kega, Dennis (Technical Monitor)

    1999-01-01

    Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This report demonstrates that a good compromise is possible with the Advected Grid Explicit (AGE) method. AGE has proven to be both efficient and accurate for simulating turbulent free-shear flows, including planar mixing layers and planar jets. Its efficiency results from its localized fully explicit finite difference formulation (Bisset 1998a,b) that is very straightforward to compute, outweighing the need for a fairly small timestep. Also, most of the successful simulations were slightly under-resolved, and therefore they were, in effect, large-eddy simulations (LES) without a sub-grid-scale (SGS) model, rather than direct numerical simulations (DNS). The principle is that the role of the smallest scales of turbulent motion (when the Reynolds number is not too low) is to dissipate turbulent energy, and therefore they do not have to be simulated when the numerical method is inherently dissipative at its resolution limits. Such simulations are termed 'auto-LES' (LES with automatic SGS modeling) in this report.

  16. Numerical simulation of one-dimensional heat transfer in composite bodies with phase change. M.S. Thesis, 1980 Final Report; [wing deicing pads

    NASA Technical Reports Server (NTRS)

    Dewitt, K. J.; Baliga, G.

    1982-01-01

    A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions.

  17. A numerical study of a vertical solar air collector with obstacle

    NASA Astrophysics Data System (ADS)

    Moumeni, A.; Bouchekima, B.; Lati, M.

    2016-07-01

    Because of the lack of heat exchange obtained by a solar air between the fluid and the absorber, the introduction of obstacles arranged in rows overlapping in the ducts of these systems improves heat transfer. In this work, a numerical study using the finite volume methods is made to model the dynamic and thermal behavior of air flow in a vertical solar collector with baffles destined for integration in building. We search essentially to compare between three air collectors models with different inclined obstacles angle. The first kind with 90° shows a good performance energetic and turbulent.

  18. Numerical Solution of a 3-D Advection-Dispersion Model for Dissolved Oxygen Distribution in Facultative Ponds

    NASA Astrophysics Data System (ADS)

    Sunarsih; Sasongko, Dwi P.; Sutrisno

    2018-02-01

    This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.

  19. Dispersive models describing mosquitoes’ population dynamics

    NASA Astrophysics Data System (ADS)

    Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.

    2016-08-01

    The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.

  20. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation.

    PubMed

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-11-25

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.

  1. Experimental study and finite element analysis of wind-induced vibration of modal car based on fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Tao, Li-li; Du, Guang-sheng; Liu, Li-ping; Liu, Yong-hui; Shao, Zhu-feng

    2013-02-01

    The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-induced vibrations of the front windshield at different speeds of a van-body model bus. The Fluid-Structure Interaction (FSI) model is used for the finite element analysis of the vibration characteristics of the front windshield glass in the travelling process, and the wind-induced vibration response characteristics of the glass is obtained. A wind-tunnel experiment with an eddy current displacement sensor is carried out to study the deformation of the windshield at different wind speeds, and to verify the numerical simulation results. It is shown that the windshield of the model bus windshield undergoes a noticeable deformation as the speed changes, and from the deformation curve obtained, it is seen that in the accelerating process, the deformation of the glass increases as the speed increases, and with the speed being stablized, it also tends to a certain value. The results of this study can provide a scientific basis for the safety design of the windshield and the body.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Z.; Department of Applied Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083; Lin, P.

    In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C{sup 0} finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy lawmore » (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C{sup 0} finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.« less

  3. [Numerical simulation of the effect of virtual stent release pose on the expansion results].

    PubMed

    Li, Jing; Peng, Kun; Cui, Xinyang; Fu, Wenyu; Qiao, Aike

    2018-04-01

    The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

  4. Numerical model of glulam beam delamination in dependence on cohesive strength

    NASA Astrophysics Data System (ADS)

    Kawecki, Bartosz; Podgórski, Jerzy

    2018-01-01

    This paper presents an attempt of using a finite element method for predicting delamination of a glue laminated timber beam through a cohesive layer. There were used cohesive finite elements, quadratic stress damage initiation criterion and mixed mode energy release rate failure model. Finite element damage was equal to its complete stiffness degradation. Timber material was considered to be an orthotropic with plastic behaviour after reaching bending limit.

  5. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    DTIC Science & Technology

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  6. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  7. On the limits of probabilistic forecasting in nonlinear time series analysis II: Differential entropy.

    PubMed

    Amigó, José M; Hirata, Yoshito; Aihara, Kazuyuki

    2017-08-01

    In a previous paper, the authors studied the limits of probabilistic prediction in nonlinear time series analysis in a perfect model scenario, i.e., in the ideal case that the uncertainty of an otherwise deterministic model is due to only the finite precision of the observations. The model consisted of the symbolic dynamics of a measure-preserving transformation with respect to a finite partition of the state space, and the quality of the predictions was measured by the so-called ignorance score, which is a conditional entropy. In practice, though, partitions are dispensed with by considering numerical and experimental data to be continuous, which prompts us to trade off in this paper the Shannon entropy for the differential entropy. Despite technical differences, we show that the core of the previous results also hold in this extended scenario for sufficiently high precision. The corresponding imperfect model scenario will be revisited too because it is relevant for the applications. The theoretical part and its application to probabilistic forecasting are illustrated with numerical simulations and a new prediction algorithm.

  8. Transient modeling/analysis of hyperbolic heat conduction problems employing mixed implicit-explicit alpha method

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; D'Costa, Joseph F.

    1991-01-01

    This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.

  9. Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density

    NASA Astrophysics Data System (ADS)

    Jansen van Rensburg, Gerhardus J.; Kok, Schalk; Wilke, Daniel N.

    2018-03-01

    This paper presents the development and numerical implementation of a state variable based thermomechanical material model, intended for use within a fully implicit finite element formulation. Plastic hardening, thermal recovery and multiple cycles of recrystallisation can be tracked for single peak as well as multiple peak recrystallisation response. The numerical implementation of the state variable model extends on a J2 isotropic hypo-elastoplastic modelling framework. The complete numerical implementation is presented as an Abaqus UMAT and linked subroutines. Implementation is discussed with detailed explanation of the derivation and use of various sensitivities, internal state variable management and multiple recrystallisation cycle contributions. A flow chart explaining the proposed numerical implementation is provided as well as verification on the convergence of the material subroutine. The material model is characterised using two high temperature data sets for cobalt and copper. The results of finite element analyses using the material parameter values characterised on the copper data set are also presented.

  10. Long-time asymptotic solution structure of Camassa-Holm equation subject to an initial condition with non-zero reflection coefficient of the scattering data

    NASA Astrophysics Data System (ADS)

    Chang, Chueh-Hsin; Yu, Ching-Hao; Sheu, Tony Wen-Hann

    2016-10-01

    In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut - uxxt + 2ux + 3uux = 2uxuxx + uuxxx. The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones.

  11. Numerical solutions of the Navier-Stokes equations for transonic afterbody flows

    NASA Technical Reports Server (NTRS)

    Swanson, R. C., Jr.

    1980-01-01

    The time dependent Navier-Stokes equations in mass averaged variables are solved for transonic flow over axisymmetric boattail plume simulator configurations. Numerical solution of these equations is accomplished with the unsplit explict finite difference algorithm of MacCormack. A grid subcycling procedure and computer code vectorization are used to improve computational efficiency. The two layer algebraic turbulence models of Cebeci-Smith and Baldwin-Lomax are employed for investigating turbulence closure. Two relaxation models based on these baseline models are also considered. Results in the form of surface pressure distribution for three different circular arc boattails at two free stream Mach numbers are compared with experimental data. The pressures in the recirculating flow region for all separated cases are poorly predicted with the baseline turbulence models. Significant improvements in the predictions are usually obtained by using the relaxation models.

  12. Nature of Continuous Phase Transitions in Interacting Topological Insulators

    DOE PAGES

    Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin; ...

    2017-11-08

    Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.

  13. Nature of Continuous Phase Transitions in Interacting Topological Insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin

    Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.

  14. Experimental validation of a numerical 3-D finite model applied to wind turbines design under vibration constraints: TREVISE platform

    NASA Astrophysics Data System (ADS)

    Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi

    2018-04-01

    With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.

  15. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  16. Simulating and Forecasting Flooding Events in the City of Jeddah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ghostine, Rabih; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim

    2014-05-01

    Metropolitan cities in the Kingdom of Saudi Arabia, as Jeddah and Riyadh, are more frequently experiencing flooding events caused by strong convective storms that produce intense precipitation over a short span of time. The flooding in the city of Jeddah in November 2009 was described by civil defense officials as the worst in 27 years. As of January 2010, 150 people were reported killed and more than 350 were missing. Another flooding event, less damaging but comparably spectacular, occurred one year later (Jan 2011) in Jeddah. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision and rescue plans. We have developed a coupled hydro-meteorological model for simulating and predicting flooding events in the city of Jeddah. We use the Weather Research Forecasting (WRF) model assimilating all available data in the Jeddah region for simulating the storm events in Jeddah. The resulting rain is then used on 10 minutes intervals to feed up an advanced numerical shallow water model that has been discretized on an unstructured grid using different numerical schemes based on the finite elements or finite volume techniques. The model was integrated on a high-resolution grid size varying between 0.5m within the streets of Jeddah and 500m outside the city. This contribution will present the flooding simulation system and the simulation results, focusing on the comparison of the different numerical schemes on the system performances in terms of accuracy and computational efficiency.

  17. Pregnancy impact on uterosacral ligament and pelvic muscles using a 3D numerical and finite element model: preliminary results.

    PubMed

    Jean Dit Gautier, Estelle; Mayeur, Olivier; Lepage, Julien; Brieu, Mathias; Cosson, Michel; Rubod, Chrystele

    2018-03-01

    We studied the geometry of and changes in structures that play an important role in stabilizing the pelvic system during pregnancy using a numerical system at different gestational ages and postpartum. We developed a parturient numerical model to assess pelvic structures at different gestational stages (16, 32, and 38 weeks) and postpartum (2 months and 1 year) using magnetic resonance imaging (MRI). Organs, muscles, and ligaments were segmented to generate a 3D model of the pelvis. We studied changes in the length of uterosacral ligaments (USL) and thickness of the puborectal portion of the levator ani muscle (LAM) during and after pregnancy. We used this model to perform finite element (FE) simulation and analyze deformations of these structures under stress from the increase in uterine weight. Analysis reveals an increase in the length of US ligaments at 16, 32, and 38 weeks. Two months after delivery, it decreases without returning to the length at 16 weeks of pregnancy. Similar changes were observed for the puborectal portion of the LAM. Variations observed in these structures are not equivalent to other anatomical structures of pelvic suspension. FE simulation with increased uterus weight does not lead to those findings. This analysis brings new elements and a new focus for discussion relating to changes in pelvic balance of parturient women that are not simply linked to the increase in uterine volume.

  18. Seismic modeling with radial basis function-generated finite differences (RBF-FD) – a simplified treatment of interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy formore » the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.« less

  19. Seismic modeling with radial basis function-generated finite differences (RBF-FD) - a simplified treatment of interfaces

    NASA Astrophysics Data System (ADS)

    Martin, Bradley; Fornberg, Bengt

    2017-04-01

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.

  20. Numerical solution of the time fractional reaction-diffusion equation with a moving boundary

    NASA Astrophysics Data System (ADS)

    Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.

    2017-06-01

    A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.

  1. Hot forming of composite prepreg: Numerical analyses

    NASA Astrophysics Data System (ADS)

    Guzman-Maldonado, Eduardo; Hamila, Nahiène; Boisse, Philippe; El Azzouzi, Khalid; Tardif, Xavier; Moro, Tanguy; Chatel, Sylvain; Fideu, Paulin

    2017-10-01

    The work presented here is part of the "FORBANS" project about the Hot Drape Forming (HDF) process consisting of unidirectional prepregs laminates. To ensure a fine comprehension of this process a combination strategy between experiment and numerical analysis is adopted. This paper is focused on the numerical analysis using the finite element method (FEM) with a hyperelastic constitutive law. Each prepreg layer is modelled by shell elements. These elements consider the tension, in-plane shear and bending behaviour of the ply at different temperatures. The contact/friction during the forming process is taken into account using forward increment Lagrange multipliers.

  2. A 3-D Finite-Volume Non-hydrostatic Icosahedral Model (NIM)

    NASA Astrophysics Data System (ADS)

    Lee, Jin

    2014-05-01

    The Nonhydrostatic Icosahedral Model (NIM) formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM's modeling goal is to improve numerical accuracy for weather and climate simulations as well as to utilize the state-of-art computing architecture such as massive parallel CPUs and GPUs to deliver routine high-resolution forecasts in timely manner. NIM dynamic corel innovations include: * A local coordinate system remapped spherical surface to plane for numerical accuracy (Lee and MacDonald, 2009), * Grid points in a table-driven horizontal loop that allow any horizontal point sequence (A.E. MacDonald, et al., 2010), * Flux-Corrected Transport formulated on finite-volume operators to maintain conservative positive definite transport (J.-L, Lee, ET. Al., 2010), *Icosahedral grid optimization (Wang and Lee, 2011), * All differentials evaluated as three-dimensional finite-volume integrals around the control volume. The three-dimensional finite-volume solver in NIM is designed to improve pressure gradient calculation and orographic precipitation over complex terrain. NIM dynamical core has been successfully verified with various non-hydrostatic benchmark test cases such as internal gravity wave, and mountain waves in Dynamical Cores Model Inter-comparisons Projects (DCMIP). Physical parameterizations suitable for NWP are incorporated into NIM dynamical core and successfully tested with multimonth aqua-planet simulations. Recently, NIM has started real data simulations using GFS initial conditions. Results from the idealized tests as well as real-data simulations will be shown in the conference.

  3. Scattering of Acoustic Energy from Rough Deep Ocean Seafloor: a Numerical Modeling Approach.

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan Olof Anders

    1995-01-01

    The highly heterogeneous and anelastic nature of deep ocean seafloor results in complex reverberation as acoustic energy incident from the overlaying water column interacts and scatters from it. To gain a deeper understanding of the mechanisms causing the reverberation in sonar and seafloor scattering experiments, we have developed numerical simulation techniques that are capable of modeling the principal physical properties of complex seafloor structures. A new viscoelastic finite-difference technique for modeling anelastic wave propagation in 2-D and 3-D heterogeneous media, as well as a computationally optimally efficient method for quantifying the anelastic properties in terms of viscoelastic mechanics are presented. A method for reducing numerical dispersion using a Galerkin-wavelet formulation that enables large computational savings is also presented. The widely different regimes of wave propagation occurring in ocean acoustic problems motivate the use of hybrid simulation techniques. HARVEST (Hybrid Adaptive Regime Visco-Elastic Simulation Technique) combines solutions from Gaussian beams, viscoelastic finite-differences, and Kirchhoff extrapolation, to simulate large offset scattering problems. Several scattering hypotheses based on finite -difference simulations of short-range acoustic scattering from realistic seafloor models are presented. Anelastic sediments on the seafloor are found to have a significant impact on the backscattered field from low grazing angle scattering experiments. In addition, small perturbations in the sediment compressional velocity can also dramatically alter the backscattered field due to transitions between pre- and post-critical reflection regimes. The hybrid techniques are employed to simulate deep ocean acoustic reverberation data collected in the vicinity of the northern mid-Atlantic ridge. In general, the simulated data compare well to the real data. Noise partly due to side-lobes in the beam-pattern of the receiver -array is the principal source of reverberation at lower levels. Overall, the employed seafloor models were found to model the real seafloor well. Inaccurately predicted events may partly be attributed to the intrinsic uncertainty in the stochastic seafloor models. For optimal comparison between real and HARVEST simulated data the experimental geometry should be chosen so that 3-D effects may be ignored, and to yield a cross-range resolution in the beam-formed acoustic data that is small relative to the lineation of the seafloor.

  4. Incremental analysis of large elastic deformation of a rotating cylinder

    NASA Technical Reports Server (NTRS)

    Buchanan, G. R.

    1976-01-01

    The effect of finite deformation upon a rotating, orthotropic cylinder was investigated using a general incremental theory. The incremental equations of motion are developed using the variational principle. The governing equations are derived using the principle of virtual work for a body with initial stress. The governing equations are reduced to those for the title problem and a numerical solution is obtained using finite difference approximations. Since the problem is defined in terms of one independent space coordinate, the finite difference grid can be modified as the incremental deformation occurs without serious numerical difficulties. The nonlinear problem is solved incrementally by totaling a series of linear solutions.

  5. An object-oriented, coprocessor-accelerated model for ice sheet simulations

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.

    2013-12-01

    Recently, numerous models capable of modeling the thermo-dynamics of ice sheets have been developed within the ice sheet modeling community. Their capabilities have been characterized by a wide range of features with different numerical methods (finite difference or finite element), different implementations of the ice flow mechanics (shallow-ice, higher-order, full Stokes) and different treatments for the basal and coastal areas (basal hydrology, basal sliding, ice shelves). Shallow-ice models (SICOPOLIS, IcIES, PISM, etc) have been widely used for modeling whole ice sheets (Greenland and Antarctica) due to the relatively low computational cost of the shallow-ice approximation but higher order (ISSM, AIF) and full Stokes (Elmer/Ice) models have been recently used to model the Greenland ice sheet. The advance in processor speed and the decrease in cost for accessing large amount of memory and storage have undoubtedly been the driving force in the commoditization of models with higher capabilities, and the popularity of Elmer/Ice (http://elmerice.elmerfem.com) with an active user base is a notable representation of this trend. Elmer/Ice is a full Stokes model built on top of the multi-physics package Elmer (http://www.csc.fi/english/pages/elmer) which provides the full machinery for the complex finite element procedure and is fully parallel (mesh partitioning with OpenMPI communication). Elmer is mainly written in Fortran 90 and targets essentially traditional processors as the code base was not initially written to run on modern coprocessors (yet adding support for the recently introduced x86 based coprocessors is possible). Furthermore, a truly modular and object-oriented implementation is required for quick adaptation to fast evolving capabilities in hardware (Fortran 2003 provides an object-oriented programming model while not being clean and requiring a tricky refactoring of Elmer code). In this work, the object-oriented, coprocessor-accelerated finite element code Sainou is introduced. Sainou is an Elmer fork which is reimplemented in Objective C and used for experimenting with ice sheet models running on coprocessors, essentially GPU devices. GPUs are highly parallel processors that provide opportunities for fine-grained parallelization of the full Stokes problem using the standard OpenCL language (http://www.khronos.org/opencl/) to access the device. Sainou is built upon a collection of Objective C base classes that service a modular kernel (itself a base class) which provides the core methods to solve the finite element problem. An early implementation of Sainou will be presented with emphasis on the object architecture and the strategies of parallelizations. The computation of a simple heat conduction problem is used to test the implementation which also provides experimental support for running the global matrix assembly on GPU.

  6. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Numerical Modeling of Turbulence Effects within an Evaporating Droplet in Atomizing Sprays

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing liquid sprays is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen (2005). This finite conductivity model is based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffhsivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. The current evaporation model is incorporated into the T-blob atomization model of Trinh and Chen (2005) and implemented in an existing CFD Eulerian-Lagrangian two-way coupling numerical scheme. Validation studies were carried out by comparing with available evaporating atomization spray experimental data in terms of jet penetration, temperature field, and droplet SMD distribution within the spray. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating spray.

  8. Experimental validation of a numerical model for subway induced vibrations

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Degrande, G.; Lombaert, G.

    2009-04-01

    This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.

  9. The Evolution and Discharge of Electric Fields within a Thunderstorm

    NASA Astrophysics Data System (ADS)

    Hager, William W.; Nisbet, John S.; Kasha, John R.

    1989-05-01

    A 3-dimensional electrical model for a thunderstorm is developed and finite difference approximations to the model are analyzed. If the spatial derivatives are approximated by a method akin to the ☐ scheme and if the temporal derivative is approximated by either a backward difference or the Crank-Nicholson scheme, we show that the resulting discretization is unconditionally stable. The forward difference approximation to the time derivative is stable when the time step is sufficiently small relative to the ratio between the permittivity and the conductivity. Max-norm error estimates for the discrete approximations are established. To handle the propagation of lightning, special numerical techniques are devised based on the Inverse Matrix Modification Formula and Cholesky updates. Numerical comparisons between the model and theoretical results of Wilson and Holzer-Saxon are presented. We also apply our model to a storm observed at the Kennedy Space Center on July 11, 1978.

  10. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf

    NASA Astrophysics Data System (ADS)

    Chang, Jiang-Hao; Yu, Jing-Cun; Liu, Zhi-Xin

    2016-09-01

    The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the fullspace 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goaf water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.

  11. A three-dimensional finite element model of near-field scanning microwave microscopy

    NASA Astrophysics Data System (ADS)

    Balusek, Curtis; Friedman, Barry; Luna, Darwin; Oetiker, Brian; Babajanyan, Arsen; Lee, Kiejin

    2012-10-01

    A three-dimensional finite element model of an experimental near-field scanning microwave microscope (NSMM) has been developed and compared to experiment on non conducting samples. The microwave reflection coefficient S11 is calculated as a function of frequency with no adjustable parameters. There is qualitative agreement with experiment in that the resonant frequency can show a sizable increase with sample dielectric constant; a result that is not obtained with a two-dimensional model. The most realistic model shows a semi-quantitative agreement with experiment. The effect of different sample thicknesses and varying tip sample distances is investigated numerically and shown to effect NSMM performance in a way consistent with experiment. Visualization of the electric field indicates that the field is primarily determined by the shape of the coupling hooks.

  12. Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section

    NASA Technical Reports Server (NTRS)

    Taflove, Allen; Umashankar, Korada R.

    1989-01-01

    Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.

  13. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  14. New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1994-01-01

    A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.

  15. Numerical analysis of static strength for different damages of hydraulic structures when changing stressed and strained state

    NASA Astrophysics Data System (ADS)

    Volosukhin, V. A.; Bandurin, M. A.; Vanzha, V. V.; Mikheev, A. V.; Volosukhin, Y. V.

    2018-05-01

    The results of finite element state simulation of stressed and strained changes under different damages of hydraulic structures are presented. As a result of the experiment, a solidstate model of bearing elements was built. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks and defects in reinforced concrete elements is determined.

  16. Analytical and numerical solutions of the potential and electric field generated by different electrode arrays in a tumor tissue under electrotherapy

    PubMed Central

    2011-01-01

    Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385

  17. Modelling to very high strains

    NASA Astrophysics Data System (ADS)

    Bons, P. D.; Jessell, M. W.; Griera, A.; Evans, L. A.; Wilson, C. J. L.

    2009-04-01

    Ductile strains in shear zones often reach extreme values, resulting in typical structures, such as winged porphyroclasts and several types of shear bands. The numerical simulation of the development of such structures has so far been inhibited by the low maximum strains that numerical models can normally achieve. Typical numerical models collapse at shear strains in the order of one to three. We have implemented a number of new functionalities in the numerical platform "Elle" (Jessell et al. 2001), which significantly increases the amount of strain that can be achieved and simultaneously reduces boundary effects that become increasingly disturbing at higher strain. Constant remeshing, while maintaining the polygonal phase regions, is the first step to avoid collapse of the finite-element grid required by finite-element solvers, such as Basil (Houseman et al. 2008). The second step is to apply a grain-growth routine to the boundaries of polygons that represent phase regions. This way, the development of sharp angles is avoided. A second advantage is that phase regions may merge or become separated (boudinage). Such topological changes are normally not possible in finite element deformation codes. The third step is the use of wrapping vertical model boundaries, with which optimal and unchanging model boundaries are maintained for the application of stress or velocity boundary conditions. The fourth step is to shift the model by a random amount in the vertical direction every time step. This way, the fixed horizontal boundary conditions are applied to different material points within the model every time step. Disturbing boundary effects are thus averaged out over the whole model and not localised to e.g. top and bottom of the model. Reduction of boundary effects has the additional advantage that model can be smaller and, therefore, numerically more efficient. Owing to the combination of these existing and new functionalities it is now possible to simulate the development of very high-strain structures. Jessell, M.W., Bons, P.D., Evans, L., Barr, T., Stüwe, K. 2001. Elle: a micro-process approach to the simulation of microstructures. Computers & Geosciences 27, 17-30. Houseman, G., Barr, T., Evans, L. 2008. Basil: stress and deformation in a viscous material. In: P.D. Bons, D. Koehn & M.W.Jessell (Eds.) Microdynamics Simulation. Lecture Notes in Earth Sciences 106, Springer, Berlin, 405p.

  18. New developments in the method of space-time conservation element and solution element: Applications to the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1993-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods--i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to avoid several key limitations to the above traditional methods. An explicit model scheme for solving a simple 1-D unsteady convection-diffusion equation is constructed and used to illuminate major differences between the current method and those mentioned above. Unexpectedly, its amplification factors for the pure convection and pure diffusion cases are identical to those of the Leapfrog and the DuFort-Frankel schemes, respectively. Also, this explicit scheme and its Navier-Stokes extension have the unusual property that their stabilities are limited only by the CFL condition. Moreover, despite the fact that it does not use any flux-limiter or slope-limiter, the Navier-Stokes solver is capable of generating highly accurate shock tube solutions with shock discontinuities being resolved within one mesh interval. An accurate Euler solver also is constructed through another extension. It has many unusual properties, e.g., numerical diffusion at all mesh points can be controlled by a set of local parameters.

  19. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.

    PubMed

    An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan

    2017-01-01

    The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.

  20. Finite-difference numerical simulations of underground explosion cavity decoupling

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Preston, L. A.; Jensen, R. P.

    2012-12-01

    Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion source located at the center of a spherical cavity generates only diverging compressional waves. However, we find that shear waves are generated by an off-center source, or by a non-spherical cavity (e.g. a tunnel). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances

    NASA Astrophysics Data System (ADS)

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F.

    2016-08-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  2. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances.

    PubMed

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F

    2016-12-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  3. A Floating Node Method for the Modelling of Discontinuities Within a Finite Element

    NASA Technical Reports Server (NTRS)

    Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.

    2013-01-01

    This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.

  4. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated With Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2001-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  5. A Comparison of Curing Process-Induced Residual Stresses and Cure Shrinkage in Micro-Scale Composite Structures with Different Constitutive Laws

    NASA Astrophysics Data System (ADS)

    Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin

    2018-02-01

    In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.

  6. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 45, 601-620, (1999)

  7. Evaluation of Geometrically Nonlinear Reduced Order Models with Nonlinear Normal Modes

    DOE PAGES

    Kuether, Robert J.; Deaner, Brandon J.; Hollkamp, Joseph J.; ...

    2015-09-15

    Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. But, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. Our paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinearmore » normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Moreover, various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.« less

  8. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jinting; Lu, Liqiao; Zhu, Fei

    2018-01-01

    Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.

  9. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  10. Overcoming the sign problem at finite temperature: Quantum tensor network for the orbital eg model on an infinite square lattice

    NASA Astrophysics Data System (ADS)

    Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.

    2017-07-01

    The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.

  11. A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media, 2. Porous medium simulation examples

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Springer, E. P.

    1994-06-01

    This paper discusses the verification and application of the three-dimensional (3-D) multiphase flow model presented by Huyakorn et al. (Part 1 in this issue) for assessing contamination due to subsurface releases of non-aqueous-phase liquids (NAPL's). Attention is focussed on situations involving one-, two- and three-dimensional flow through porous media. The model formulations and numerical schemes are tested for highly nonlinear field conditions. The utility and accuracy of various simplifications to certain simulation scenarios are assessed. Five simulation examples are included for demonstrative purposes. The first example verifies the model for vertical flow and compares the performance of the fully three-phase and the passive-air-phase formulations. Air-phase boundary conditions are noted to have considerable effects on simulation results. The second example verifies the model for cross-sectional analyses involving LNAPL and DNAPL migration. Finite-difference (5-point) and finite-element (9-point) spatial approximations are compared for different grid aspect ratios. Unless corrected, negative-transmissivity conditions were found to have undesirable impact on the finite-element solutions. The third example provides a model validation against laboratory experimental data on 5-spot water-flood treatment of oil reservoirs. The sensitivity to grid orientation is noted for the finite-difference schemes. The fourth example demonstrates model utility in characterizing the 3-D migration of LNAPL and DNAPL from surface sources. The final example present a modeling study of air sparging. Critical parameters affecting the performance of air-sparging system are examined. In general, the modeling results indicate sparging is more effective in water-retentive soils, and larger values of sparge influence radius may be achieved for certain anisotropic conditions.

  12. Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor

    ERIC Educational Resources Information Center

    Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui

    2010-01-01

    A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…

  13. The Application of COMSOL Multiphysics Package on the Modelling of Complex 3-D Lithospheric Electrical Resistivity Structures - A Case Study from the Proterozoic Orogenic belt within the North China Craton

    NASA Astrophysics Data System (ADS)

    Guo, L.; Yin, Y.; Deng, M.; Guo, L.; Yan, J.

    2017-12-01

    At present, most magnetotelluric (MT) forward modelling and inversion codes are based on finite difference method. But its structured mesh gridding cannot be well adapted for the conditions with arbitrary topography or complex tectonic structures. By contrast, the finite element method is more accurate in calculating complex and irregular 3-D region and has lower requirement of function smoothness. However, the complexity of mesh gridding and limitation of computer capacity has been affecting its application. COMSOL Multiphysics is a cross-platform finite element analysis, solver and multiphysics full-coupling simulation software. It achieves highly accurate numerical simulations with high computational performance and outstanding multi-field bi-directional coupling analysis capability. In addition, its AC/DC and RF module can be used to easily calculate the electromagnetic responses of complex geological structures. Using the adaptive unstructured grid, the calculation is much faster. In order to improve the discretization technique of computing area, we use the combination of Matlab and COMSOL Multiphysics to establish a general procedure for calculating the MT responses for arbitrary resistivity models. The calculated responses include the surface electric and magnetic field components, impedance components, magnetic transfer functions and phase tensors. Then, the reliability of this procedure is certificated by 1-D, 2-D and 3-D and anisotropic forward modeling tests. Finally, we establish the 3-D lithospheric resistivity model for the Proterozoic Wutai-Hengshan Mts. within the North China Craton by fitting the real MT data collected there. The reliability of the model is also verified by induced vectors and phase tensors. Our model shows more details and better resolution, compared with the previously published 3-D model based on the finite difference method. In conclusion, COMSOL Multiphysics package is suitable for modeling the 3-D lithospheric resistivity structures under complex tectonic deformation backgrounds, which could be a good complement to the existing finite-difference inversion algorithms.

  14. Accurate green water loads calculation using naval hydro pack

    NASA Astrophysics Data System (ADS)

    Jasak, H.; Gatin, I.; Vukčević, V.

    2017-12-01

    An extensive verification and validation of Finite Volume based CFD software Naval Hydro based on foam-extend is presented in this paper for green water loads. Two-phase numerical model with advanced methods for treating the free surface is employed. Pressure loads on horizontal deck of Floating Production Storage and Offloading vessel (FPSO) model are compared to experimental results from [1] for three incident regular waves. Pressure peaks and integrals of pressure in time are measured on ten different locations on deck for each case. Pressure peaks and integrals are evaluated as average values among the measured incident wave periods, where periodic uncertainty is assessed for both numerical and experimental results. Spatial and temporal discretization refinement study is performed providing numerical discretization uncertainties.

  15. Some problems of the calculation of three-dimensional boundary layer flows on general configurations

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.

    1973-01-01

    An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.

  16. Two-dimensional atmospheric transport and chemistry model - Numerical experiments with a new advection algorithm

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.

    1990-01-01

    Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  17. Numerical modeling of Harmonic Imaging and Pulse Inversion fields

    NASA Astrophysics Data System (ADS)

    Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis

    2003-10-01

    Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.

  18. Finite burn maneuver modeling for a generalized spacecraft trajectory design and optimization system.

    PubMed

    Ocampo, Cesar

    2004-05-01

    The modeling, design, and optimization of finite burn maneuvers for a generalized trajectory design and optimization system is presented. A generalized trajectory design and optimization system is a system that uses a single unified framework that facilitates the modeling and optimization of complex spacecraft trajectories that may operate in complex gravitational force fields, use multiple propulsion systems, and involve multiple spacecraft. The modeling and optimization issues associated with the use of controlled engine burn maneuvers of finite thrust magnitude and duration are presented in the context of designing and optimizing a wide class of finite thrust trajectories. Optimal control theory is used examine the optimization of these maneuvers in arbitrary force fields that are generally position, velocity, mass, and are time dependent. The associated numerical methods used to obtain these solutions involve either, the solution to a system of nonlinear equations, an explicit parameter optimization method, or a hybrid parameter optimization that combines certain aspects of both. The theoretical and numerical methods presented here have been implemented in copernicus, a prototype trajectory design and optimization system under development at the University of Texas at Austin.

  19. SENR /NRPy + : Numerical relativity in singular curvilinear coordinate systems

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-03-01

    We report on a new open-source, user-friendly numerical relativity code package called SENR /NRPy + . Our code extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude more efficient than other widely used open-source numerical relativity codes. NRPy + provides a Python-based interface in which equations are written in natural tensorial form and output at arbitrary finite difference order as highly efficient C code, putting complex tensorial equations at the scientist's fingertips without the need for an expensive software license. SENR provides the algorithmic framework that combines the C codes generated by NRPy + into a functioning numerical relativity code. We validate against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of constraint violation and gravitational waveform errors to zero as the order of spatial finite difference derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes tensor components with respect to the coordinates. Future plans include extending this formulation to allow dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting compact binary dynamics.

  20. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale.

    PubMed

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2016-02-01

    Based on the Darcy-Brinkman-Forchheimer equation, a finite-volume computational model with lattice Boltzmann flux scheme is proposed for incompressible porous media flow in this paper. The fluxes across the cell interface are calculated by reconstructing the local solution of the generalized lattice Boltzmann equation for porous media flow. The time-scaled midpoint integration rule is adopted to discretize the governing equation, which makes the time step become limited by the Courant-Friedricks-Lewy condition. The force term which evaluates the effect of the porous medium is added to the discretized governing equation directly. The numerical simulations of the steady Poiseuille flow, the unsteady Womersley flow, the circular Couette flow, and the lid-driven flow are carried out to verify the present computational model. The obtained results show good agreement with the analytical, finite-difference, and/or previously published solutions.

  1. Finite Element Modelling and Analysis of Conventional Pultrusion Processes

    NASA Astrophysics Data System (ADS)

    Akishin, P.; Barkanov, E.; Bondarchuk, A.

    2015-11-01

    Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.

  2. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

    PubMed Central

    Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-01-01

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process. PMID:29027925

  3. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response.

    PubMed

    Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-10-13

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  4. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  5. Damped gyroscopic effects and axial-flexural-torsional coupling using spinning finite elements for wind-turbine blades characterization

    NASA Astrophysics Data System (ADS)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Renewable energy sources like wind are important technologies, useful to alleviate for the current fossil-fuel crisis. Capturing wind energy in a more efficient way has resulted in the emergence of more sophisticated designs of wind turbines, particularly Horizontal-Axis Wind Turbines (HAWTs). To promote efficiency, traditional finite element methods have been widely used to characterize the aerodynamics of these types of multi-body systems and improve their design. Given their aeroelastic behavior, tapered-swept blades offer the potential to optimize energy capture and decrease fatigue loads. Nevertheless, modeling special complex geometries requires huge computational efforts necessitating tradeoffs between faster computation times at lower cost, and reliability and numerical accuracy. Indeed, the computational cost and the numerical effort invested, using traditional FE methods, to reproduce dependable aerodynamics of these complex-shape beams are sometimes prohibitive. A condensed Spinning Finite Element (SFE) method scheme is presented in this study aimed to alleviate this issue by means of modeling wind-turbine rotor blades properly with tapered-swept cross-section variations of arbitrary order via Lagrangian equations. Axial-flexural-torsional coupling is carried out on axial deformation, torsion, in-plane bending and out-of-plane bending using super-convergent elements. In this study, special attention is paid for the case of damped yaw effects, expressed within the described skew-symmetric damped gyroscopic matrix. Dynamics of the model are analyzed by achieving modal analysis with complex-number eigen-frequencies. By means of mass, damped gyroscopic, and stiffness (axial-flexural-torsional coupling) matrix condensation (order reduction), numerical analysis is carried out for several prototypes with different tapered, swept, and curved variation intensities, and for a practical range of spinning velocities at different rotation angles. A convergence study for the resulting natural frequencies is performed to evaluate the dynamic collateral effects of tapered-swept blade profiles in spinning motion using this new model. Stability analysis in boundary conditions of the postulated model is achieved to test the convergence and integrity of the mathematical model. The proposed framework presumes to be particularly suitable to characterize models with complex-shape cross-sections at low computation cost.

  6. Influence of different boundary conditions at the tympanic annulus on finite element models of the human middle ear

    NASA Astrophysics Data System (ADS)

    Lobato, Lucas; Paul, Stephan; Cordioli, Júlio

    2018-05-01

    The tympanic annulus is a fibrocartilage ligament that supports the tympanic membrane in a sulcus at the end of the outer ear canal. Among many FE models of the middle ear found in literature, the effect of different boundary conditions at tympanic annulus on middle ear mechanics was not found. In order to investigate the influence of different representations of this detail in FE models, three different ways to connect the tympanic annulus to the outer ear canal were modelled in a reduced middle ear system. This reduced system includes tympanic membrane, tympanic annulus, manubrium, malleus and anterior ligament of malleus. The numerical frequency response function Humbo (umbo velocity vs sound pressure at tympanic membrane) was analyzed through the different boundary conditions and compared to numerical and experimental data from the literature. Also a numerical modal analysis was performed to improve the analysis. It was found that the boundary conditions used to represent the connection between Tympanic Annulus and Outer Ear Canal can change the global stiffness of the system and its natural frequencies as well as change the modal shape of high order modes.

  7. A nonlinear dynamic finite element approach for simulating muscular hydrostats.

    PubMed

    Vavourakis, V; Kazakidi, A; Tsakiris, D P; Ekaterinaris, J A

    2014-01-01

    An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney-Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton-Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching.

  8. A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics

    DOE PAGES

    Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...

    2015-04-29

    New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less

  9. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding tomore » two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.« less

  10. Application of Gurson–Tvergaard–Needleman Constitutive Model to the Tensile Behavior of Reinforcing Bars with Corrosion Pits

    PubMed Central

    Xu, Yidong; Qian, Chunxiang

    2013-01-01

    Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140

  11. On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface

    NASA Astrophysics Data System (ADS)

    Schmitt, Regina; Kuhn, Charlotte; Müller, Ralf

    2017-07-01

    A continuum phase field model for martensitic transformations is introduced, including crystal plasticity with different slip systems for the different phases. In a 2D setting, the transformation-induced eigenstrain is taken into account for two martensitic orientation variants. With aid of the model, the phase transition and its dependence on the volume change, crystal plastic material behavior, and the inheritance of plastic deformations from austenite to martensite are studied in detail. The numerical setup is motivated by the process of cryogenic turning. The resulting microstructure qualitatively coincides with an experimentally obtained martensite structure. For the numerical calculations, finite elements together with global and local implicit time integration scheme are employed.

  12. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priimak, Dmitri

    2014-12-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

  13. Markov chain sampling of the O(n) loop models on the infinite plane

    NASA Astrophysics Data System (ADS)

    Herdeiro, Victor

    2017-07-01

    A numerical method was recently proposed in Herdeiro and Doyon [Phys. Rev. E 94, 043322 (2016), 10.1103/PhysRevE.94.043322] showing a precise sampling of the infinite plane two-dimensional critical Ising model for finite lattice subsections. The present note extends the method to a larger class of models, namely the O(n) loop gas models for n ∈(1 ,2 ] . We argue that even though the Gibbs measure is nonlocal, it is factorizable on finite subsections when sufficient information on the loops touching the boundaries is stored. Our results attempt to show that provided an efficient Markov chain mixing algorithm and an improved discrete lattice dilation procedure the planar limit of the O(n) models can be numerically studied with efficiency similar to the Ising case. This confirms that scale invariance is the only requirement for the present numerical method to work.

  14. Numerical simulation of transient, incongruent vaporization induced by high power laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems ismore » studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.« less

  15. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    NASA Astrophysics Data System (ADS)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0.25 Hz but that the velocity model is fast at stations located very close to the fault. In this near-fault zone the model also underpredicts the amplitudes. This implies the need to include an additional low velocity zone in the fault zone to fit the data. For the finite fault modeling we use the same stations as in our previous study (Kim and Dreger 2008), and compare the results to investigate the effect of 3D Green's functions on kinematic source inversions. References: Brocher, T. M., (2005), Empirical relations between elastic wavespeeds and density in the Earth's crust, Bull. Seism. Soc. Am., 95, No. 6, 2081-2092. Eberhart-Phillips, D., and A.J. Michael, (1993), Three-dimensional velocity structure and seismicity in the Parkfield region, central California, J. Geophys. Res., 98, 15,737-15,758. Kim A., D. S. Dreger (2008), Rupture process of the 2004 Parkfield earthquake from near-fault seismic waveform and geodetic records, J. Geophys. Res., 113, B07308. Thurber, C., H. Zhang, F. Waldhauser, J. Hardebeck, A. Michaels, and D. Eberhart-Phillips (2006), Three- dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region, Bull. Seism. Soc. Am., 96, S38-S49. Larsen, S., and C. A. Schultz (1995), ELAS3D: 2D/3D elastic finite-difference wave propagation code, Technical Report No. UCRL-MA-121792, 19pp. Liu, P., and R. J. Archuleta (2004), A new nonlinear finite fault inversion with three-dimensional Green's functions: Application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res., 109, B02318.

  16. APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM

    EPA Science Inventory

    A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the ca...

  17. The use of spectral methods in bidomain studies.

    PubMed

    Trayanova, N; Pilkington, T

    1992-01-01

    A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.

  18. A weak Galerkin generalized multiscale finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-03-31

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  19. A weak Galerkin generalized multiscale finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  20. An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1988-01-01

    An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.

  1. TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.

    1993-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.

  2. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, Nikolay A.; Shilnikov, Kirill E.

    Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumormore » tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.« less

  3. Compatible Spatial Discretizations for Partial Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Douglas, N, ed.

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less

  4. Finite element simulation of texture evolution and Swift effect in NiAl under torsion

    NASA Astrophysics Data System (ADS)

    Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht

    2007-09-01

    The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.

  5. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue.

    PubMed

    Hedenstierna, S; Halldin, P; Brolin, K

    2008-12-01

    The numerical method of finite elements (FE) is a powerful tool for analysing stresses and strains in the human body. One area of increasing interest is the skeletal musculature. This study evaluated modelling of skeletal muscle tissue using a combination of passive non-linear, viscoelastic solid elements and active Hill-type truss elements, the super-positioned muscle finite element (SMFE). The performance of the combined materials and elements was evaluated for eccentric motions by simulating a tensile experiment from a published study on a stimulated rabbit muscle including three different strain rates. It was also evaluated for isometric and concentric contractions. The resulting stress-strain curves had the same overall pattern as the experiments, with the main limitation being sensitivity to the active force-length relation. It was concluded that the SMFE could model active and passive muscle tissue at constant rate elongations for strains below failure, as well as isometric and concentric contractions.

  6. A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface

    NASA Astrophysics Data System (ADS)

    Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo

    2016-09-01

    The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.

  7. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    NASA Astrophysics Data System (ADS)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  8. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    NASA Astrophysics Data System (ADS)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  9. SToRM: A Model for Unsteady Surface Hydraulics Over Complex Terrain

    USGS Publications Warehouse

    Simoes, Francisco J.

    2014-01-01

    A two-dimensional (depth-averaged) finite volume Godunov-type shallow water model developed for flow over complex topography is presented. The model is based on an unstructured cellcentered finite volume formulation and a nonlinear strong stability preserving Runge-Kutta time stepping scheme. The numerical discretization is founded on the classical and well established shallow water equations in hyperbolic conservative form, but the convective fluxes are calculated using auto-switching Riemann and diffusive numerical fluxes. The model’s implementation within a graphical user interface is discussed. Field application of the model is illustrated by utilizing it to estimate peak flow discharges in a flooding event of historic significance in Colorado, U.S.A., in 2013.

  10. Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton's iteration

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Huang, Weizhang; Li, Xianping; Zhang, Shicheng

    2018-03-01

    A moving mesh finite element method is studied for the numerical solution of a phase-field model for brittle fracture. The moving mesh partial differential equation approach is employed to dynamically track crack propagation. Meanwhile, the decomposition of the strain tensor into tensile and compressive components is essential for the success of the phase-field modeling of brittle fracture but results in a non-smooth elastic energy and stronger nonlinearity in the governing equation. This makes the governing equation much more difficult to solve and, in particular, Newton's iteration often fails to converge. Three regularization methods are proposed to smooth out the decomposition of the strain tensor. Numerical examples of fracture propagation under quasi-static load demonstrate that all of the methods can effectively improve the convergence of Newton's iteration for relatively small values of the regularization parameter but without compromising the accuracy of the numerical solution. They also show that the moving mesh finite element method is able to adaptively concentrate the mesh elements around propagating cracks and handle multiple and complex crack systems.

  11. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  12. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation

    PubMed Central

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-01-01

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761

  13. Switching synchronization in one-dimensional memristive networks

    NASA Astrophysics Data System (ADS)

    Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.

    2015-11-01

    We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.

  14. A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time

    NASA Astrophysics Data System (ADS)

    Lang, Holger; Linn, Joachim

    2009-09-01

    We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.

  15. The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity

    NASA Astrophysics Data System (ADS)

    Keitel, David; Forteza, Xisco Jiménez; Husa, Sascha; London, Lionel; Bernuzzi, Sebastiano; Harms, Enno; Nagar, Alessandro; Hannam, Mark; Khan, Sebastian; Pürrer, Michael; Pratten, Geraint; Chaurasia, Vivek

    2017-07-01

    For a brief moment, a binary black hole (BBH) merger can be the most powerful astrophysical event in the visible Universe. Here we present a model fit for this gravitational-wave peak luminosity of nonprecessing quasicircular BBH systems as a function of the masses and spins of the component black holes, based on numerical relativity (NR) simulations and the hierarchical fitting approach introduced by X. Jiménez-Forteza et al. [Phys. Rev. D 95, 064024 (2017)., 10.1103/PhysRevD.95.064024]. This fit improves over previous results in accuracy and parameter-space coverage and can be used to infer posterior distributions for the peak luminosity of future astrophysical signals like GW150914 and GW151226. The model is calibrated to the ℓ≤6 modes of 378 nonprecessing NR simulations up to mass ratios of 18 and dimensionless spin magnitudes up to 0.995, and includes unequal-spin effects. We also constrain the fit to perturbative numerical results for large mass ratios. Studies of key contributions to the uncertainty in NR peak luminosities, such as (i) mode selection, (ii) finite resolution, (iii) finite extraction radius, and (iv) different methods for converting NR waveforms to luminosity, allow us to use NR simulations from four different codes as a homogeneous calibration set. This study of systematic fits to combined NR and large-mass-ratio data, including higher modes, also paves the way for improved inspiral-merger-ringdown waveform models.

  16. A study of the response of nonlinear springs

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Knott, T. W.; Johnson, E. R.

    1991-01-01

    The various phases to developing a methodology for studying the response of a spring-reinforced arch subjected to a point load are discussed. The arch is simply supported at its ends with both the spring and the point load assumed to be at midspan. The spring is present to off-set the typical snap through behavior normally associated with arches, and to provide a structure that responds with constant resistance over a finite displacement. The various phases discussed consist of the following: (1) development of the closed-form solution for the shallow arch case; (2) development of a finite difference analysis to study (shallow) arches; and (3) development of a finite element analysis for studying more general shallow and nonshallow arches. The two numerical analyses rely on a continuation scheme to move the solution past limit points, and to move onto bifurcated paths, both characteristics being common to the arch problem. An eigenvalue method is used for a continuation scheme. The finite difference analysis is based on a mixed formulation (force and displacement variables) of the governing equations. The governing equations for the mixed formulation are in first order form, making the finite difference implementation convenient. However, the mixed formulation is not well-suited for the eigenvalue continuation scheme. This provided the motivation for the displacement based finite element analysis. Both the finite difference and the finite element analyses are compared with the closed form shallow arch solution. Agreement is excellent, except for the potential problems with the finite difference analysis and the continuation scheme. Agreement between the finite element analysis and another investigator's numerical analysis for deep arches is also good.

  17. Computer simulations of austenite decomposition of microalloyed 700 MPa steel during cooling

    NASA Astrophysics Data System (ADS)

    Pohjonen, Aarne; Paananen, Joni; Mourujärvi, Juho; Manninen, Timo; Larkiola, Jari; Porter, David

    2018-05-01

    We present computer simulations of austenite decomposition to ferrite and bainite during cooling. The phase transformation model is based on Johnson-Mehl-Avrami-Kolmogorov type equations. The model is parameterized by numerical fitting to continuous cooling data obtained with Gleeble thermo-mechanical simulator and it can be used for calculation of the transformation behavior occurring during cooling along any cooling path. The phase transformation model has been coupled with heat conduction simulations. The model includes separate parameters to account for the incubation stage and for the kinetics after the transformation has started. The incubation time is calculated with inversion of the CCT transformation start time. For heat conduction simulations we employed our own parallelized 2-dimensional finite difference code. In addition, the transformation model was also implemented as a subroutine in commercial finite-element software Abaqus which allows for the use of the model in various engineering applications.

  18. Large-scale computations in fluid mechanics; Proceedings of the Fifteenth Summer Seminar on Applied Mathematics, University of California, La Jolla, CA, June 27-July 8, 1983. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Engquist, B. E. (Editor); Osher, S. (Editor); Somerville, R. C. J. (Editor)

    1985-01-01

    Papers are presented on such topics as the use of semi-Lagrangian advective schemes in meteorological modeling; computation with high-resolution upwind schemes for hyperbolic equations; dynamics of flame propagation in a turbulent field; a modified finite element method for solving the incompressible Navier-Stokes equations; computational fusion magnetohydrodynamics; and a nonoscillatory shock capturing scheme using flux-limited dissipation. Consideration is also given to the use of spectral techniques in numerical weather prediction; numerical methods for the incorporation of mountains in atmospheric models; techniques for the numerical simulation of large-scale eddies in geophysical fluid dynamics; high-resolution TVD schemes using flux limiters; upwind-difference methods for aerodynamic problems governed by the Euler equations; and an MHD model of the earth's magnetosphere.

  19. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  20. Full Coupling Between the Atmosphere, Surface, and Subsurface for Integrated Hydrologic Simulation

    NASA Astrophysics Data System (ADS)

    Davison, Jason Hamilton; Hwang, Hyoun-Tae; Sudicky, Edward A.; Mallia, Derek V.; Lin, John C.

    2018-01-01

    An ever increasing community of earth system modelers is incorporating new physical processes into numerical models. This trend is facilitated by advancements in computational resources, improvements in simulation skill, and the desire to build numerical simulators that represent the water cycle with greater fidelity. In this quest to develop a state-of-the-art water cycle model, we coupled HydroGeoSphere (HGS), a 3-D control-volume finite element surface and variably saturated subsurface flow model that includes evapotranspiration processes, to the Weather Research and Forecasting (WRF) Model, a 3-D finite difference nonhydrostatic mesoscale atmospheric model. The two-way coupled model, referred to as HGS-WRF, exchanges the actual evapotranspiration fluxes and soil saturations calculated by HGS to WRF; conversely, the potential evapotranspiration and precipitation fluxes from WRF are passed to HGS. The flexible HGS-WRF coupling method allows for unique meshes used by each model, while maintaining mass and energy conservation between the domains. Furthermore, the HGS-WRF coupling implements a subtime stepping algorithm to minimize computational expense. As a demonstration of HGS-WRF's capabilities, we applied it to the California Basin and found a strong connection between the depth to the groundwater table and the latent heat fluxes across the land surface.

  1. Finite horizon EOQ model for non-instantaneous deteriorating items with price and advertisement dependent demand and partial backlogging under inflation

    NASA Astrophysics Data System (ADS)

    Palanivel, M.; Uthayakumar, R.

    2015-07-01

    This paper deals with an economic order quantity (EOQ) model for non-instantaneous deteriorating items with price and advertisement dependent demand pattern under the effect of inflation and time value of money over a finite planning horizon. In this model, shortages are allowed and partially backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. This paper aids the retailer in minimising the total inventory cost by finding the optimal interval and the optimal order quantity. An algorithm is designed to find the optimum solution of the proposed model. Numerical examples are given to demonstrate the results. Also, the effect of changes in the different parameters on the optimal total cost is graphically presented and the implications are discussed in detail.

  2. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    NASA Astrophysics Data System (ADS)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  3. Improved methods of vibration analysis of pretwisted, airfoil blades

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1984-01-01

    Vibration analysis of pretwisted blades of asymmetric airfoil cross section is performed by using two mixed variational approaches. Numerical results obtained from these two methods are compared to those obtained from an improved finite difference method and also to those given by the ordinary finite difference method. The relative merits, convergence properties and accuracies of all four methods are studied and discussed. The effects of asymmetry and pretwist on natural frequencies and mode shapes are investigated. The improved finite difference method is shown to be far superior to the conventional finite difference method in several respects. Close lower bound solutions are provided by the improved finite difference method for untwisted blades with a relatively coarse mesh while the mixed methods have not indicated any specific bound.

  4. Efficient numerical method for solving Cauchy problem for the Gamma equation

    NASA Astrophysics Data System (ADS)

    Koleva, Miglena N.

    2011-12-01

    In this work we consider Cauchy problem for the so called Gamma equation, derived by transforming the fully nonlinear Black-Scholes equation for option price into a quasilinear parabolic equation for the second derivative (Greek) Γ = VSS of the option price V. We develop an efficient numerical method for solving the model problem concerning different volatility terms. Using suitable change of variables the problem is transformed on finite interval, keeping original behavior of the solution at the infinity. Then we construct Picard-Newton algorithm with adaptive mesh step in time, which can be applied also in the case of non-differentiable functions. Results of numerical simulations are given.

  5. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading

    PubMed Central

    Gao, Hao; Wang, Huiming; Berry, Colin; Luo, Xiaoyu; Griffith, Boyce E

    2014-01-01

    Finite stress and strain analyses of the heart provide insight into the biomechanics of myocardial function and dysfunction. Herein, we describe progress toward dynamic patient-specific models of the left ventricle using an immersed boundary (IB) method with a finite element (FE) structural mechanics model. We use a structure-based hyperelastic strain-energy function to describe the passive mechanics of the ventricular myocardium, a realistic anatomical geometry reconstructed from clinical magnetic resonance images of a healthy human heart, and a rule-based fiber architecture. Numerical predictions of this IB/FE model are compared with results obtained by a commercial FE solver. We demonstrate that the IB/FE model yields results that are in good agreement with those of the conventional FE model under diastolic loading conditions, and the predictions of the LV model using either numerical method are shown to be consistent with previous computational and experimental data. These results are among the first to analyze the stress and strain predictions of IB models of ventricular mechanics, and they serve both to verify the IB/FE simulation framework and to validate the IB/FE model. Moreover, this work represents an important step toward using such models for fully dynamic fluid–structure interaction simulations of the heart. © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. PMID:24799090

  6. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  7. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    NASA Astrophysics Data System (ADS)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  8. An Introduction to Vortex Breakdown and Vortex Core Bursting (Introduction a la Rupture et a l’Eclatement du Noyau des Vortex).

    DTIC Science & Technology

    1985-03-01

    solved by the use of finite - .- core vortex filament models (Chorin and Bernard, 1973). A recent paper by Stremel (1984) briefly reviewed this...history of vortex sheet numerical modeling and presented a ’state of the art’ numerical technique. Stremel compared his numerical results with experimental

  9. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    NASA Astrophysics Data System (ADS)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  10. A low-dimensional analogue of holographic baryons

    NASA Astrophysics Data System (ADS)

    Bolognesi, Stefano; Sutcliffe, Paul

    2014-04-01

    Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.

  11. Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.

    2002-01-01

    The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.

  12. Study of transient behavior of finned coil heat exchangers

    NASA Technical Reports Server (NTRS)

    Rooke, S. P.; Elissa, M. G.

    1993-01-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  13. Semigroup theory and numerical approximation for equations in linear viscoelasticity

    NASA Technical Reports Server (NTRS)

    Fabiano, R. H.; Ito, K.

    1990-01-01

    A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.

  14. Numerical simulations of earthquakes and the dynamics of fault systems using the Finite Element method.

    NASA Astrophysics Data System (ADS)

    Kettle, L. M.; Mora, P.; Weatherley, D.; Gross, L.; Xing, H.

    2006-12-01

    Simulations using the Finite Element method are widely used in many engineering applications and for the solution of partial differential equations (PDEs). Computational models based on the solution of PDEs play a key role in earth systems simulations. We present numerical modelling of crustal fault systems where the dynamic elastic wave equation is solved using the Finite Element method. This is achieved using a high level computational modelling language, escript, available as open source software from ACcESS (Australian Computational Earth Systems Simulator), the University of Queensland. Escript is an advanced geophysical simulation software package developed at ACcESS which includes parallel equation solvers, data visualisation and data analysis software. The escript library was implemented to develop a flexible Finite Element model which reliably simulates the mechanism of faulting and the physics of earthquakes. Both 2D and 3D elastodynamic models are being developed to study the dynamics of crustal fault systems. Our final goal is to build a flexible model which can be applied to any fault system with user-defined geometry and input parameters. To study the physics of earthquake processes, two different time scales must be modelled, firstly the quasi-static loading phase which gradually increases stress in the system (~100years), and secondly the dynamic rupture process which rapidly redistributes stress in the system (~100secs). We will discuss the solution of the time-dependent elastic wave equation for an arbitrary fault system using escript. This involves prescribing the correct initial stress distribution in the system to simulate the quasi-static loading of faults to failure; determining a suitable frictional constitutive law which accurately reproduces the dynamics of the stick/slip instability at the faults; and using a robust time integration scheme. These dynamic models generate data and information that can be used for earthquake forecasting.

  15. Numerical simulation of axisymmetric turbulent flow in combustors and diffusors. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Yung, Chain Nan

    1988-01-01

    A method for predicting turbulent flow in combustors and diffusers is developed. The Navier-Stokes equations, incorporating a turbulence kappa-epsilon model equation, were solved in a nonorthogonal curvilinear coordinate system. The solution applied the finite volume method to discretize the differential equations and utilized the SIMPLE algorithm iteratively to solve the differenced equations. A zonal grid method, wherein the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. However, treatment of the zonal boundaries required special handling. Boundary overlap and interpolating techniques were used and an adjustment of the flow variables was required to assure conservation of mass, momentum and energy fluxes. The numerical accuracy was assessed using different finite differencing methods, i.e., hybrid, quadratic upwind and skew upwind, to represent the convection terms. Flows in different geometries of combustors and diffusers were simulated and results compared with experimental data and good agreement was obtained.

  16. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. © IMechE 2016.

  17. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.; Sprague, M. A.; Jonkman, J.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less

  18. Numerical Analysis of Solids at Failure

    DTIC Science & Technology

    2011-08-20

    failure analyses include the formulation of invariant finite elements for thin Kirchhoff rods, and preliminary initial studies of growth in...analysis of the failure of other structural/mechanical systems, including the finite element modeling of thin Kirchhoff rods and the constitutive...algorithm based on the connectivity graph of the underlying finite element mesh. In this setting, the discontinuities are defined by fronts propagating

  19. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    PubMed

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  20. Wall function treatment for bubbly boundary layers at low void fractions.

    PubMed

    Soares, Daniel V; Bitencourt, Marcelo C; Loureiro, Juliana B R; Silva Freire, Atila P

    2018-01-01

    The present work investigates the role of different treatments of the lower boundary condition on the numerical prediction of bubbly flows. Two different wall function formulations are tested against experimental data obtained for bubbly boundary layers: (i) a new analytical solution derived through asymptotic techniques and (ii) the previous formulation of Troshko and Hassan (IJHMT, 44, 871-875, 2001a). A modified k-e model is used to close the averaged Navier-Stokes equations together with the hypothesis that turbulence can be modelled by a linear superposition of bubble and shear induced eddy viscosities. The work shows, in particular, how four corrections must the implemented in the standard single-phase k-e model to account for the effects of bubbles. The numerical implementation of the near wall functions is made through a finite elements code.

Top