Sample records for finite-dimensional quantum systems

  1. Tomograms for open quantum systems: In(finite) dimensional optical and spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thapliyal, Kishore, E-mail: tkishore36@yahoo.com; Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in; Pathak, Anirban, E-mail: anirban.pathak@gmail.com

    Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained frommore » experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.« less

  2. Observable measure of quantum coherence in finite dimensional systems.

    PubMed

    Girolami, Davide

    2014-10-24

    Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.

  3. The smooth entropy formalism for von Neumann algebras

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Furrer, Fabian; Scholz, Volkher B.

    2016-01-01

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  4. The smooth entropy formalism for von Neumann algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berta, Mario, E-mail: berta@caltech.edu; Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp; Scholz, Volkher B., E-mail: scholz@phys.ethz.ch

    2016-01-15

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  5. Quantifying matrix product state

    NASA Astrophysics Data System (ADS)

    Bhatia, Amandeep Singh; Kumar, Ajay

    2018-03-01

    Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.

  6. Conditional quantum entropy power inequality for d-level quantum systems

    NASA Astrophysics Data System (ADS)

    Jeong, Kabgyun; Lee, Soojoon; Jeong, Hyunseok

    2018-04-01

    We propose an extension of the quantum entropy power inequality for finite dimensional quantum systems, and prove a conditional quantum entropy power inequality by using the majorization relation as well as the concavity of entropic functions also given by Audenaert et al (2016 J. Math. Phys. 57 052202). Here, we make particular use of the fact that a specific local measurement after a partial swap operation (or partial swap quantum channel) acting only on finite dimensional bipartite subsystems does not affect the majorization relation for the conditional output states when a separable ancillary subsystem is involved. We expect our conditional quantum entropy power inequality to be useful, and applicable in bounding and analyzing several capacity problems for quantum channels.

  7. Measurement-based quantum teleportation on finite AKLT chains

    NASA Astrophysics Data System (ADS)

    Fujii, Akihiko; Feder, David

    In the measurement-based model of quantum computation, universal quantum operations are effected by making repeated local measurements on resource states which contain suitable entanglement. Resource states include two-dimensional cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the honeycomb lattice. Recent studies suggest that measurements on one-dimensional systems in the Haldane phase teleport perfect single-qubit gates in the correlation space, protected by the underlying symmetry. As laboratory realizations of symmetry-protected states will necessarily be finite, we investigate the potential for quantum gate teleportation in finite chains of a bilinear-biquadratic Hamiltonian which is a generalization of the AKLT model representing the full Haldane phase.

  8. Quantum key distribution for composite dimensional finite systems

    NASA Astrophysics Data System (ADS)

    Shalaby, Mohamed; Kamal, Yasser

    2017-06-01

    The application of quantum mechanics contributes to the field of cryptography with very important advantage as it offers a mechanism for detecting the eavesdropper. The pioneering work of quantum key distribution uses mutually unbiased bases (MUBs) to prepare and measure qubits (or qudits). Weak mutually unbiased bases (WMUBs) have weaker properties than MUBs properties, however, unlike MUBs, a complete set of WMUBs can be constructed for systems with composite dimensions. In this paper, we study the use of weak mutually unbiased bases (WMUBs) in quantum key distribution for composite dimensional finite systems. We prove that the security analysis of using a complete set of WMUBs to prepare and measure the quantum states in the generalized BB84 protocol, gives better results than using the maximum number of MUBs that can be constructed, when they are analyzed against the intercept and resend attack.

  9. Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagarello, F., E-mail: fabio.bagarello@unipa.it

    In a recent paper we have introduced several possible inequivalent descriptions of the dynamics and of the transition probabilities of a quantum system when its Hamiltonian is not self-adjoint. Our analysis was carried out in finite dimensional Hilbert spaces. This is useful, but quite restrictive since many physically relevant quantum systems live in infinite dimensional Hilbert spaces. In this paper we consider this situation, and we discuss some applications to well known models, introduced in the literature in recent years: the extended harmonic oscillator, the Swanson model and a generalized version of the Landau levels Hamiltonian. Not surprisingly we willmore » find new interesting features not previously found in finite dimensional Hilbert spaces, useful for a deeper comprehension of this kind of physical systems.« less

  10. Classical simulation of infinite-size quantum lattice systems in two spatial dimensions.

    PubMed

    Jordan, J; Orús, R; Vidal, G; Verstraete, F; Cirac, J I

    2008-12-19

    We present an algorithm to simulate two-dimensional quantum lattice systems in the thermodynamic limit. Our approach builds on the projected entangled-pair state algorithm for finite lattice systems [F. Verstraete and J. I. Cirac, arxiv:cond-mat/0407066] and the infinite time-evolving block decimation algorithm for infinite one-dimensional lattice systems [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)10.1103/PhysRevLett.98.070201]. The present algorithm allows for the computation of the ground state and the simulation of time evolution in infinite two-dimensional systems that are invariant under translations. We demonstrate its performance by obtaining the ground state of the quantum Ising model and analyzing its second order quantum phase transition.

  11. Quantum number theoretic transforms on multipartite finite systems.

    PubMed

    Vourdas, A; Zhang, S

    2009-06-01

    A quantum system composed of p-1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg-Weyl group in this context is also discussed.

  12. Minimum Dimension of a Hilbert Space Needed to Generate a Quantum Correlation.

    PubMed

    Sikora, Jamie; Varvitsiotis, Antonios; Wei, Zhaohui

    2016-08-05

    Consider a two-party correlation that can be generated by performing local measurements on a bipartite quantum system. A question of fundamental importance is to understand how many resources, which we quantify by the dimension of the underlying quantum system, are needed to reproduce this correlation. In this Letter, we identify an easy-to-compute lower bound on the smallest Hilbert space dimension needed to generate a given two-party quantum correlation. We show that our bound is tight on many well-known correlations and discuss how it can rule out correlations of having a finite-dimensional quantum representation. We show that our bound is multiplicative under product correlations and also that it can witness the nonconvexity of certain restricted-dimensional quantum correlations.

  13. Quantum approach to classical statistical mechanics.

    PubMed

    Somma, R D; Batista, C D; Ortiz, G

    2007-07-20

    We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.

  14. Finite key analysis for symmetric attacks in quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Tim; Kampermann, Hermann; Kleinmann, Matthias

    2006-10-15

    We introduce a constructive method to calculate the achievable secret key rate for a generic class of quantum key distribution protocols, when only a finite number n of signals is given. Our approach is applicable to all scenarios in which the quantum state shared by Alice and Bob is known. In particular, we consider the six state protocol with symmetric eavesdropping attacks, and show that for a small number of signals, i.e., below n{approx}10{sup 4}, the finite key rate differs significantly from the asymptotic value for n{yields}{infinity}. However, for larger n, a good approximation of the asymptotic value is found.more » We also study secret key rates for protocols using higher-dimensional quantum systems.« less

  15. Revised Geometric Measure of Entanglement in Infinite Dimensional Multipartite Quantum Systems

    NASA Astrophysics Data System (ADS)

    Wang, Yinzhu; Wang, Danxia; Huang, Li

    2018-05-01

    In Cao and Wang (J. Phys.: Math. Theor. 40, 3507-3542, 2007), the revised geometric measure of entanglement (RGME) for states in finite dimensional bipartite quantum systems was proposed. Furthermore, in Cao and Wang (Commun. Theor. Phys. 51(4), 613-620, 2009), the authors obtained the revised geometry measure of entanglement for multipartite states including three-qubit GHZ state, W state, and the generalized Smolin state in the presence of noise and the two-mode squeezed thermal state, and defined the Gaussian geometric entanglement measure. In this paper, we generalize the RGME to infinite dimensional multipartite quantum systems, and prove that this measure satisfies some necessary properties as a well-defined entanglement measure, including monotonicity under local operations and classical communications.

  16. Gauge theory for finite-dimensional dynamical systems.

    PubMed

    Gurfil, Pini

    2007-06-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently "disordered" flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.

  17. Entropic Barriers for Two-Dimensional Quantum Memories

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  18. Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Karoly F.; Vertesi, Tamas

    2010-08-15

    The I{sub 3322} inequality is the simplest bipartite two-outcome Bell inequality beyond the Clauser-Horne-Shimony-Holt (CHSH) inequality, consisting of three two-outcome measurements per party. In the case of the CHSH inequality the maximal quantum violation can already be attained with local two-dimensional quantum systems; however, there is no such evidence for the I{sub 3322} inequality. In this paper a family of measurement operators and states is given which enables us to attain the maximum quantum value in an infinite-dimensional Hilbert space. Further, it is conjectured that our construction is optimal in the sense that measuring finite-dimensional quantum systems is not enoughmore » to achieve the true quantum maximum. We also describe an efficient iterative algorithm for computing quantum maximum of an arbitrary two-outcome Bell inequality in any given Hilbert space dimension. This algorithm played a key role in obtaining our results for the I{sub 3322} inequality, and we also applied it to improve on our previous results concerning the maximum quantum violation of several bipartite two-outcome Bell inequalities with up to five settings per party.« less

  19. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    NASA Astrophysics Data System (ADS)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical approaches based on an approximate, yet systematically improved account of quantum correlations.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Møller, Jacob Schach

    These notes provide an introduction to the spectral analysis of Pauli-Fierz systems at zero and positive temperature. More precisely, we study finite dimensional quantum systems linearly coupled to a single reservoir, a massless scalar quantum field. We emphasize structure results valid at arbitrary system-reservoir coupling strength. The notes contain a mixture of known, refined, and new results and each section ends with a discussion of open problems.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giorda, Paolo; Zanardi, Paolo; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

    We analyze the dynamical-algebraic approach to universal quantum control introduced in P. Zanardi and S. Lloyd, e-print quant-ph/0305013. The quantum state space H encoding information decomposes into irreducible sectors and subsystems associated with the group of available evolutions. If this group coincides with the unitary part of the group algebra CK of some group K then universal control is achievable over the K-irreducible components of H. This general strategy is applied to different kinds of bosonic systems. We first consider massive bosons in a double well and show how to achieve universal control over all finite-dimensional Fock sectors. We thenmore » discuss a multimode massless case giving the conditions for generating the whole infinite-dimensional multimode Heisenberg-Weyl enveloping algebra. Finally we show how to use an auxiliary bosonic mode coupled to finite-dimensional systems to generate high-order nonlinearities needed for universal control.« less

  2. Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benatti, Fabio, E-mail: benatti@ts.infn.it; Oskouei, Samad Khabbazi, E-mail: kh.oskuei@ut.ac.ir; Deh Abad, Ahmad Shafiei, E-mail: shafiei@khayam.ut.ac.ir

    We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.

  3. Gauge theory for finite-dimensional dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-06-15

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differentialmore » equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.« less

  4. Quantum trilogy: discrete Toda, Y-system and chaos

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2018-02-01

    We discuss a discretization of the quantum Toda field theory associated with a semisimple finite-dimensional Lie algebra or a tamely-laced infinite-dimensional Kac-Moody algebra G, generalizing the previous construction of discrete quantum Liouville theory for the case G  =  A 1. The model is defined on a discrete two-dimensional lattice, whose spatial direction is of length L. In addition we also find a ‘discretized extra dimension’ whose width is given by the rank r of G, which decompactifies in the large r limit. For the case of G  =  A N or AN-1(1) , we find a symmetry exchanging L and N under appropriate spatial boundary conditions. The dynamical time evolution rule of the model is quantizations of the so-called Y-system, and the theory can be well described by the quantum cluster algebra. We discuss possible implications for recent discussions of quantum chaos, and comment on the relation with the quantum higher Teichmüller theory of type A N .

  5. Quantum Monte Carlo study of spin correlations in the one-dimensional Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandvik, A.W.; Scalapino, D.J.; Singh, C.

    1993-07-15

    The one-dimensional Hubbard model is studied at and close to half-filling using a generalization of Handscomb's quantum Monte Carlo method. Results for spin-correlation functions and susceptibilities are presented for systems of up to 128 sites. The spin-correlation function at low temperature is well described by a recently introduced formula relating the correlation function of a finite periodic system to the corresponding [ital T]=0 correlation function of the infinite system. For the [ital T][r arrow]0 divergence of the [ital q]=2[ital k][sub [ital F

  6. Rashba and Dresselhaus spin-orbit interactions effects on electronic features of a two dimensional elliptic quantum dot

    NASA Astrophysics Data System (ADS)

    Mokhtari, P.; Rezaei, G.; Zamani, A.

    2017-06-01

    In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.

  7. Quantum simulation of dissipative processes without reservoir engineering

    DOE PAGES

    Di Candia, R.; Pedernales, J. S.; del Campo, A.; ...

    2015-05-29

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id

    We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.

  9. General response formula and application to topological insulator in quantum open system.

    PubMed

    Shen, H Z; Qin, M; Shao, X Q; Yi, X X

    2015-11-01

    It is well-known that the quantum linear response theory is based on the first-order perturbation theory for a system in thermal equilibrium. Hence, this theory breaks down when the system is in a steady state far from thermal equilibrium and the response up to higher order in perturbation is not negligible. In this paper, we develop a nonlinear response theory for such quantum open system. We first formulate this theory in terms of general susceptibility, after which we apply it to the derivation of Hall conductance for open system at finite temperature. As an example, the Hall conductance of the two-band model is derived. Then we calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model. The calculations show that the transition points of topological phase are robust against the environment. Our results provide a promising platform for the coherent manipulation of the nonlinear response in quantum open system, which has potential applications for quantum information processing and statistical physics.

  10. Renormalization Group Studies and Monte Carlo Simulation for Quantum Spin Systems.

    NASA Astrophysics Data System (ADS)

    Pan, Ching-Yan

    We have discussed the extended application of various real space renormalization group methods to the quantum spin systems. At finite temperature, we extended both the reliability and range of application of the decimation renormalization group method (DRG) for calculating the thermal and magnetic properties of low-dimensional quantum spin chains, in which we have proposed general models of the three-state Potts model and the general Heisenberg model. Some interesting finite-temperature behavior of the models has been obtained. We also proposed a general formula for the critical properties of the n-dimensional q-state Potts model by using a modified migdal-Kadanoff approach which is in very good agreement with all available results for general q and d. For high-spin systems, we have investigated the famous Haldane's prediction by using a modified block renormalization group approach in spin -1over2, spin-1 and spin-3 over2 cases. Our result supports Haldane's prediction and a novel property of the spin-1 Heisenberg antiferromagnet has been predicted. A modified quantum monte Carlo simulation approach has been developed in this study which we use to treat quantum interacting problems (we only work on quantum spin systems in this study) without the "negative sign problem". We also obtain with the Monte Carlo approach the numerical derivative directly. Furthermore, using this approach we have obtained the energy spectrum and the thermodynamic properties of the antiferromagnetic q-state Potts model, and have studied the q-color problem with the result which supports Mattis' recent conjecture of entropy for the n -dimensional q-state Potts antiferromagnet. We also find a general solution for the q-color problem in d dimensions.

  11. Fate of superconductivity in three-dimensional disordered Luttinger semimetals

    NASA Astrophysics Data System (ADS)

    Mandal, Ipsita

    2018-05-01

    Superconducting instability can occur in three-dimensional quadratic band crossing semimetals only at a finite coupling strength due to the vanishing of density of states at the quadratic band touching point. Since realistic materials are always disordered to some extent, we study the effect of short-ranged-correlated disorder on this superconducting quantum critical point using a controlled loop-expansion applying dimensional regularization. The renormalization group (RG) scheme allows us to determine the RG flows of the various interaction strengths and shows that disorder destroys the superconducting quantum critical point. In fact, the system exhibits a runaway flow to strong disorder.

  12. Effects of stochastic noise on dynamical decoupling procedures

    NASA Astrophysics Data System (ADS)

    Bernád, J. Z.; Frydrych, H.

    2014-06-01

    Dynamical decoupling is an important tool to counter decoherence and dissipation effects in quantum systems originating from environmental interactions. It has been used successfully in many experiments; however, there is still a gap between fidelity improvements achieved in practice compared to theoretical predictions. We propose a model for imperfect dynamical decoupling based on a stochastic Ito differential equation which could explain the observed gap. We discuss the impact of our model on the time evolution of various quantum systems in finite- and infinite-dimensional Hilbert spaces. Analytical results are given for the limit of continuous control, whereas we present numerical simulations and upper bounds for the case of finite control.

  13. Quantum geometric phase in Majorana's stellar representation: mapping onto a many-body Aharonov-Bohm phase.

    PubMed

    Bruno, Patrick

    2012-06-15

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  14. Quantum Geometric Phase in Majorana's Stellar Representation: Mapping onto a Many-Body Aharonov-Bohm Phase

    NASA Astrophysics Data System (ADS)

    Bruno, Patrick

    2012-06-01

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  15. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d-dimensional regular lattices.

    PubMed

    Dias, W S; Bertrand, D; Lyra, M L

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d>4.

  16. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d -dimensional regular lattices

    NASA Astrophysics Data System (ADS)

    Dias, W. S.; Bertrand, D.; Lyra, M. L.

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d >4 .

  17. Quantum revival for elastic waves in thin plate

    NASA Astrophysics Data System (ADS)

    Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick

    2017-05-01

    Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.

  18. Overcoming the sign problem at finite temperature: Quantum tensor network for the orbital eg model on an infinite square lattice

    NASA Astrophysics Data System (ADS)

    Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.

    2017-07-01

    The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.

  19. Emergent phases of fractonic matter

    NASA Astrophysics Data System (ADS)

    Prem, Abhinav; Pretko, Michael; Nandkishore, Rahul M.

    2018-02-01

    Fractons are emergent particles which are immobile in isolation, but which can move together in dipolar pairs or other small clusters. These exotic excitations naturally occur in certain quantum phases of matter described by tensor gauge theories. Previous research has focused on the properties of small numbers of fractons and their interactions, effectively mapping out the "standard model" of fractons. In the present work, however, we consider systems with a finite density of either fractons or their dipolar bound states, with a focus on the U (1 ) fracton models. We study some of the phases in which emergent fractonic matter can exist, thereby initiating the study of the "condensed matter" of fractons. We begin by considering a system with a finite density of fractons, which we show can exhibit microemulsion physics, in which fractons form small-scale clusters emulsed in a phase dominated by long-range repulsion. We then move on to study systems with a finite density of mobile dipoles, which have phases analogous to many conventional condensed matter phases. We focus on two major examples: Fermi liquids and quantum Hall phases. A finite density of fermionic dipoles will form a Fermi surface and enter a Fermi liquid phase. Interestingly, this dipolar Fermi liquid exhibits a finite-temperature phase transition, corresponding to an unbinding transition of fractons. Finally, we study chiral two-dimensional phases corresponding to dipoles in "quantum Hall" states of their emergent magnetic field. We study numerous aspects of these generalized quantum Hall systems, such as their edge theories and ground state degeneracies.

  20. Benford's law gives better scaling exponents in phase transitions of quantum XY models.

    PubMed

    Rane, Ameya Deepak; Mishra, Utkarsh; Biswas, Anindya; Sen De, Aditi; Sen, Ujjwal

    2014-08-01

    Benford's law is an empirical law predicting the distribution of the first significant digits of numbers obtained from natural phenomena and mathematical tables. It has been found to be applicable for numbers coming from a plethora of sources, varying from seismographic, biological, financial, to astronomical. We apply this law to analyze the data obtained from physical many-body systems described by the one-dimensional anisotropic quantum XY models in a transverse magnetic field. We detect the zero-temperature quantum phase transition and find that our method gives better finite-size scaling exponents for the critical point than many other known scaling exponents using measurable quantities like magnetization, entanglement, and quantum discord. We extend our analysis to the same system but at finite temperature and find that it also detects the finite-temperature phase transition in the model. Moreover, we compare the Benford distribution analysis with the same obtained from the uniform and Poisson distributions. The analysis is furthermore important in that the high-precision detection of the cooperative physical phenomena is possible even from low-precision experimental data.

  1. Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks

    NASA Astrophysics Data System (ADS)

    Huh, Hyungjin; Ha, Seung-Yeal; Kim, Dohyun

    2017-12-01

    We present several sufficient frameworks leading to the emergent behaviors of the coupled Schrödinger-Lohe (S-L) model under the same one-body external potential on cooperative-competitive networks. The S-L model was first introduced as a possible phenomenological model exhibiting quantum synchronization and its emergent dynamics on all-to-all cooperative networks has been treated via two distinct approaches, Lyapunov functional approach and the finite-dimensional reduction based on pairwise correlations. In this paper, we further generalize the finite-dimensional dynamical systems approach for pairwise correlation functions on cooperative-competitive networks and provide several sufficient frameworks leading to the collective exponential synchronization. For small systems consisting of three and four quantum subsystem, we also show that the system for pairwise correlations can be reduced to the Lotka-Volterra model with cooperative and competitive interactions, in which lots of interesting dynamical patterns appear, e.g., existence of closed orbits and limit-cycles.

  2. Workshop on Quantum Control Theory and its Applications

    DTIC Science & Technology

    2004-01-01

    for characterization of organic molecules, the use of NMR has spread to areas as diverse pharmaceutics, metabolic studies, structural biology, solid...using rncauth.cls PRACQSYS󈧈 13 quantum system (and hence U) is finite dimensional, as in architechtures of coupled spins and in cases where U is...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION California Institute of Technology REPORT NUMBER Pasadena

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirokov, M. E.

    We analyse two possible definitions of the squashed entanglement in an infinite-dimensional bipartite system: direct translation of the finite-dimensional definition and its universal extension. It is shown that the both definitions produce the same lower semicontinuous entanglement measure possessing all basis properties of the squashed entanglement on the set of states having at least one finite marginal entropy. It is also shown that the second definition gives an adequate lower semicontinuous extension of this measure to all states of the infinite-dimensional bipartite system. A general condition relating continuity of the squashed entanglement to continuity of the quantum mutual information ismore » proved and its corollaries are considered. Continuity bound for the squashed entanglement under the energy constraint on one subsystem is obtained by using the tight continuity bound for quantum conditional mutual information (proved in the Appendix by using Winter’s technique). It is shown that the same continuity bound is valid for the entanglement of formation. As a result the asymptotic continuity of the both entanglement measures under the energy constraint on one subsystem is proved.« less

  4. Lack of a thermodynamic finite-temperature spin-glass phase in the two-dimensional randomly coupled ferromagnet

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Ochoa, Andrew J.; Katzgraber, Helmut G.

    2018-05-01

    The search for problems where quantum adiabatic optimization might excel over classical optimization techniques has sparked a recent interest in inducing a finite-temperature spin-glass transition in quasiplanar topologies. We have performed large-scale finite-temperature Monte Carlo simulations of a two-dimensional square-lattice bimodal spin glass with next-nearest ferromagnetic interactions claimed to exhibit a finite-temperature spin-glass state for a particular relative strength of the next-nearest to nearest interactions [Phys. Rev. Lett. 76, 4616 (1996), 10.1103/PhysRevLett.76.4616]. Our results show that the system is in a paramagnetic state in the thermodynamic limit, despite zero-temperature simulations [Phys. Rev. B 63, 094423 (2001), 10.1103/PhysRevB.63.094423] suggesting the existence of a finite-temperature spin-glass transition. Therefore, deducing the finite-temperature behavior from zero-temperature simulations can be dangerous when corrections to scaling are large.

  5. Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension

    NASA Astrophysics Data System (ADS)

    Jaschke, Daniel; Wall, Michael L.; Carr, Lincoln D.

    2018-04-01

    Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose-Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them.

  6. A characterization of positive linear maps and criteria of entanglement for quantum states

    NASA Astrophysics Data System (ADS)

    Hou, Jinchuan

    2010-09-01

    Let H and K be (finite- or infinite-dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from {\\mathcal B}(H) into {\\mathcal B}(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied to give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is given which shows that a state ρ on HotimesK is separable if and only if (ΦotimesI)ρ >= 0 for all positive finite-rank elementary operators Φ. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.

  7. Nature of Continuous Phase Transitions in Interacting Topological Insulators

    DOE PAGES

    Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin; ...

    2017-11-08

    Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.

  8. Nature of Continuous Phase Transitions in Interacting Topological Insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin

    Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.

  9. Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Kim, Isaac H.

    2011-05-01

    We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.

  10. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits

    NASA Astrophysics Data System (ADS)

    Morin, Olivier; Huang, Kun; Liu, Jianli; Le Jeannic, Hanna; Fabre, Claude; Laurat, Julien

    2014-07-01

    The wave-particle duality of light has led to two different encodings for optical quantum information processing. Several approaches have emerged based either on particle-like discrete-variable states (that is, finite-dimensional quantum systems) or on wave-like continuous-variable states (that is, infinite-dimensional systems). Here, we demonstrate the generation of entanglement between optical qubits of these different types, located at distant places and connected by a lossy channel. Such hybrid entanglement, which is a key resource for a variety of recently proposed schemes, including quantum cryptography and computing, enables information to be converted from one Hilbert space to the other via teleportation and therefore the connection of remote quantum processors based upon different encodings. Beyond its fundamental significance for the exploration of entanglement and its possible instantiations, our optical circuit holds promise for implementations of heterogeneous network, where discrete- and continuous-variable operations and techniques can be efficiently combined.

  11. Noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Gamboa, J.; Loewe, M.; Rojas, J. C.

    2001-09-01

    A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.

  12. GL/sub 3/-invariant solutions of the Yang-Baxter equation and associated quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulish, P.P.; Reshetikin N.Y.

    1986-09-01

    GL/sub 3/-invariant, finite-dimensional solutions of the Yang-Baxter equations acting in the tensor product of two irreducible representations of the group GL/sub 3/ are investigated. A number of relations are obtained for the transfer matrices which demonstrate the connection of representation theory and the Bethe Ansatz in GL/sub 3/invariant models. Some of the most interesting quantum and classical integrable systems connected with GL/sub 3/-invariant solutions of the Yang-Baxter equation are presented.

  13. GL/sub 3/-invariant solutions of the Yang-Baxter equation and associated quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulish, P.P.; Reshetikhin, N.Yu.

    1986-09-10

    GL/sub 3/-invariant, finite-dimensional solutions of the Yang-Baxter equations acting in the tensor product of two irreducible representations of the group GL/sub 3/ are investigated. A number of relations are obtained for the transfer matrices which demonstrate the connection of representation theory and the Bethe Ansatz in GL/sub 3/-invariant models. Some of the most interesting quantum and classical integrable systems connected with GL/sub 3/-invariant solutions of the Yang-Baxter equation are presented.

  14. GL/sub 3/-invariant solutions of the Yang-Baxter equation and associated quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulish, P.P.; Reshetikhin, N.Yu.

    1987-05-20

    The authors investigate the GL/sub 3/-invariant finite-dimensional solutions of the Yang-Baxter equation acting in the tensor product of two irreducible representations of the GL/sub 3/ group. Relationships obtained for the transfer matrices demonstrate the link between representation theory and the Bethe ansatz in GL/sub 3/-invariant models. Some examples of quantum and classical integrable systems associated with GL/sub 3/-invariant solutions of the Yang-Baxter equation are given.

  15. Multipartite Entanglement in Topological Quantum Phases.

    PubMed

    Pezzè, Luca; Gabbrielli, Marco; Lepori, Luca; Smerzi, Augusto

    2017-12-22

    We witness multipartite entanglement in the ground state of the Kitaev chain-a benchmark model of a one dimensional topological superconductor-also with variable-range pairing, using the quantum Fisher information. Phases having a finite winding number, for both short- and long-range pairing, are characterized by a power-law diverging finite-size scaling of multipartite entanglement. Moreover, the occurring quantum phase transitions are sharply marked by the divergence of the derivative of the quantum Fisher information, even in the absence of a closing energy gap.

  16. Dynamical Quasicondensation of Hard-Core Bosons at Finite Momenta: A Non-equilibrium Condensation Effect

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Vidmar, L.; Ronzheimer, J. P.; Hodgman, S.; Schreiber, M.; Braun, S.; Langer, S.; Bloch, I.; Schneider, U.

    2016-05-01

    Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant d. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta +/-(π / 2)(ℏ / d) in the momentum distribution function. Supported by the DFG via FOR 801.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently andmore » thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.« less

  18. Renormalization of concurrence: The application of the quantum renormalization group to quantum-information systems

    NASA Astrophysics Data System (ADS)

    Kargarian, M.; Jafari, R.; Langari, A.

    2007-12-01

    We have combined the idea of renormalization group and quantum-information theory. We have shown how the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the quantum-information properties of a many-body system. We have obtained the concurrence as a measure of entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising model in transverse field. We have found that the derivative of concurrence between two blocks each containing half of the system size diverges at the critical point with the exponent, which is directly associated with the divergence of the correlation length.

  19. Plasmon confinement in fractal quantum systems

    NASA Astrophysics Data System (ADS)

    Westerhout, Tom; van Veen, Edo; Katsnelson, Mikhail I.; Yuan, Shengjun

    2018-05-01

    Recent progress in the fabrication of materials has made it possible to create arbitrary nonperiodic two-dimensional structures in the quantum plasmon regime. This paves the way for exploring the quantum plasmonic properties of electron gases in complex geometries. In this work we study systems with a fractal dimension. We calculate the full dielectric functions of two prototypical fractals with different ramification numbers, namely the Sierpinski carpet and gasket. We show that the Sierpinski carpet has a dispersion comparable to a square lattice, but the Sierpinski gasket features highly localized plasmon modes with a flat dispersion. This strong plasmon confinement in finitely ramified fractals can provide a novel setting for manipulating light at the quantum level.

  20. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centini, M.; Sciscione, L.; Sibilia, C.

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process.

  1. Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottmeister, Alexander, E-mail: alexander.stottmeister@gravity.fau.de; Thiemann, Thomas, E-mail: thomas.thiemann@gravity.fau.de

    2016-06-15

    This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems,more » which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).« less

  2. Quantum superintegrable system with a novel chain structure of quadratic algebras

    NASA Astrophysics Data System (ADS)

    Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong

    2018-06-01

    We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.

  3. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

    PubMed

    Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  4. Complex-time singularity and locality estimates for quantum lattice systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouch, Gabriel

    2015-12-15

    We present and prove a well-known locality bound for the complex-time dynamics of a general class of one-dimensional quantum spin systems. Then we discuss how one might hope to extend this same procedure to higher dimensions using ideas related to the Eden growth process and lattice trees. Finally, we demonstrate with a specific family of lattice trees in the plane why this approach breaks down in dimensions greater than one and prove that there exist interactions for which the complex-time dynamics blows-up in finite imaginary time. .

  5. Real-space finite-difference approach for multi-body systems: path-integral renormalization group method and direct energy minimization method.

    PubMed

    Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu

    2011-11-02

    The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.

  6. Solving quantum optimal control problems using Clebsch variables and Lin constraints

    NASA Astrophysics Data System (ADS)

    Delgado-Téllez, M.; Ibort, A.; Rodríguez de la Peña, T.

    2018-01-01

    Clebsch variables (and Lin constraints) are applied to the study of a class of optimal control problems for affine-controlled quantum systems. The optimal control problem will be modelled with controls defined on an auxiliary space where the dynamical group of the system acts freely. The reciprocity between both theories: the classical theory defined by the objective functional and the quantum system, is established by using a suitable version of Lagrange’s multipliers theorem and a geometrical interpretation of the constraints of the system as defining a subspace of horizontal curves in an associated bundle. It is shown how the solutions of the variational problem defined by the objective functional determine solutions of the quantum problem. Then a new way of obtaining explicit solutions for a family of optimal control problems for affine-controlled quantum systems (finite or infinite dimensional) is obtained. One of its main advantages, is the the use of Clebsch variables allows to compute such solutions from solutions of invariant problems that can often be computed explicitly. This procedure can be presented as an algorithm that can be applied to a large class of systems. Finally, some simple examples, spin control, a simple quantum Hamiltonian with an ‘Elroy beanie’ type classical model and a controlled one-dimensional quantum harmonic oscillator, illustrating the main features of the theory, will be discussed.

  7. Single-Particle Mobility Edge in a One-Dimensional Quasiperiodic Optical Lattice

    NASA Astrophysics Data System (ADS)

    Lüschen, Henrik P.; Scherg, Sebastian; Kohlert, Thomas; Schreiber, Michael; Bordia, Pranjal; Li, Xiao; Das Sarma, S.; Bloch, Immanuel

    2018-04-01

    A single-particle mobility edge (SPME) marks a critical energy separating extended from localized states in a quantum system. In one-dimensional systems with uncorrelated disorder, a SPME cannot exist, since all single-particle states localize for arbitrarily weak disorder strengths. However, in a quasiperiodic system, the localization transition can occur at a finite detuning strength and SPMEs become possible. In this Letter, we find experimental evidence for the existence of such a SPME in a one-dimensional quasiperiodic optical lattice. Specifically, we find a regime where extended and localized single-particle states coexist, in good agreement with theoretical simulations, which predict a SPME in this regime.

  8. Luttinger liquid behavior in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy Patricia

    The purpose of this thesis is the study of different low-dimensional systems displaying the physical properties of Luttinger liquids (LL). In recent years, the LL model has been successfully applied to understand the transport properties, and recently noise measurements, of low-dimensional electronic systems. In this thesis, I focus on quantum wires (QW) and two-dimensional systems exhibiting the fractional quantum Hall effect (FQHE) as two different examples of systems showing Luttinger liquid behavior. In the case of QW, I analyze the effect of the dimensionality crossover on the finite temperature conductance in weakly disordered quantum wires. I show that although the quasi-one-dimensional QW exhibits a typical Luttinger liquid behavior for a small number of channels in the wire, the well-established Fermi liquid picture sets in when the number of channels increases. As another example of LL behavior, I study junctions between fractional quantum Hall (FQH) systems with different filling fractions. These junctions display a rich and interesting array of new physics. For example, I show that, by analyzing the scattering processes at the junction site, processes analogous to Andreev reflection present in superconductor/normal metal junctions are also present in the FQH junctions. I also analyze the noise spectrum of FQH junctions, and show that the scale of the noise spectrum is determined by the conductance of the junction. Furthermore, I discuss the implications of these results on the interpretation of recent experiments in terms of quasiparticles with fractional charge. Finally, I introduce the concept of generalized noise Wilson ratios as universal quotients between noise amplitudes in the thermal and shot noise regimes and discuss their experimental consequences.

  9. Intrinsic retrieval efficiency for quantum memories: A three-dimensional theory of light interaction with an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming

    2018-03-01

    Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.

  10. Topological Quantum Phase Transition and Local Topological Order in a Strongly Interacting Light-Matter System.

    PubMed

    Sarkar, Sujit

    2017-05-12

    An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).

  11. Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures.

    PubMed

    Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J; Katzgraber, Helmut G

    2016-09-01

    We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.

  12. Quantum computation with coherent spin states and the close Hadamard problem

    NASA Astrophysics Data System (ADS)

    Adcock, Mark R. A.; Høyer, Peter; Sanders, Barry C.

    2016-04-01

    We study a model of quantum computation based on the continuously parameterized yet finite-dimensional Hilbert space of a spin system. We explore the computational powers of this model by analyzing a pilot problem we refer to as the close Hadamard problem. We prove that the close Hadamard problem can be solved in the spin system model with arbitrarily small error probability in a constant number of oracle queries. We conclude that this model of quantum computation is suitable for solving certain types of problems. The model is effective for problems where symmetries between the structure of the information associated with the problem and the structure of the unitary operators employed in the quantum algorithm can be exploited.

  13. On infinite-dimensional state spaces

    NASA Astrophysics Data System (ADS)

    Fritz, Tobias

    2013-05-01

    It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.

  14. Wigner tomography of multispin quantum states

    NASA Astrophysics Data System (ADS)

    Leiner, David; Zeier, Robert; Glaser, Steffen J.

    2017-12-01

    We study the tomography of multispin quantum states in the context of finite-dimensional Wigner representations. An arbitrary operator can be completely characterized and visualized using multiple shapes assembled from linear combinations of spherical harmonics [A. Garon, R. Zeier, and S. J. Glaser, Phys. Rev. A 91, 042122 (2015), 10.1103/PhysRevA.91.042122]. We develop a general methodology to experimentally recover these shapes by measuring expectation values of rotated axial spherical tensor operators and provide an interpretation in terms of fictitious multipole potentials. Our approach is experimentally demonstrated for quantum systems consisting of up to three spins using nuclear magnetic resonance spectroscopy.

  15. Tan's contact and the phase distribution of repulsive Fermi gases: Insights from quantum chromodynamics noise analyses

    NASA Astrophysics Data System (ADS)

    Porter, William J.; Drut, Joaquín E.

    2017-05-01

    Path-integral analyses originally pioneered in the study of the complex-phase problem afflicting lattice calculations of finite-density quantum chromodynamics are generalized to nonrelativistic Fermi gases with repulsive interactions. Using arguments similar to those previously applied to relativistic theories, we show that the analogous problem in nonrelativistic systems manifests itself naturally in Tan's contact as a nontrivial cancellation between terms with varied dependence on extensive thermodynamic quantities. We analyze that case under the assumption of a Gaussian phase distribution, which is supported by our Monte Carlo calculations and perturbative considerations. We further generalize these results to observables other than the contact, as well as to polarized systems and systems with fixed particle number. Our results are quite general in that they apply to repulsive multicomponent fermions, they are independent of dimensionality or trapping potential, and they hold in the ground state as well as at finite temperature.

  16. Supersymmetric quantum spin chains and classical integrable systems

    NASA Astrophysics Data System (ADS)

    Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei

    2015-05-01

    For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

  17. Private algebras in quantum information and infinite-dimensional complementarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crann, Jason, E-mail: jason-crann@carleton.ca; Laboratoire de Mathématiques Paul Painlevé–UMR CNRS 8524, UFR de Mathématiques, Université Lille 1–Sciences et Technologies, 59655 Villeneuve d’Ascq Cédex; Kribs, David W., E-mail: dkribs@uoguelph.ca

    We introduce a generalized framework for private quantum codes using von Neumann algebras and the structure of commutants. This leads naturally to a more general notion of complementary channel, which we use to establish a generalized complementarity theorem between private and correctable subalgebras that applies to both the finite and infinite-dimensional settings. Linear bosonic channels are considered and specific examples of Gaussian quantum channels are given to illustrate the new framework together with the complementarity theorem.

  18. Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Huang, Ching-Yu

    2017-09-01

    Recent progress in the characterization of gapped quantum phases has also triggered the search for a universal resource for quantum computation in symmetric gapped phases. Prior works in one dimension suggest that it is a feature more common than previously thought, in that nontrivial one-dimensional symmetry-protected topological (SPT) phases provide quantum computational power characterized by the algebraic structure defining these phases. Progress in two and higher dimensions so far has been limited to special fixed points. Here we provide two families of two-dimensional Z2 symmetric wave functions such that there exists a finite region of the parameter in the SPT phases that supports universal quantum computation. The quantum computational power appears to lose its universality at the boundary between the SPT and the symmetry-breaking phases.

  19. Geometry of quantum dynamics in infinite-dimensional Hilbert space

    NASA Astrophysics Data System (ADS)

    Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana

    2018-04-01

    We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.

  20. Quantum gravity in three dimensions, Witten spinors and the quantisation of length

    NASA Astrophysics Data System (ADS)

    Wieland, Wolfgang

    2018-05-01

    In this paper, I investigate the quantisation of length in euclidean quantum gravity in three dimensions. The starting point is the classical hamiltonian formalism in a cylinder of finite radius. At this finite boundary, a counter term is introduced that couples the gravitational field in the interior to a two-dimensional conformal field theory for an SU (2) boundary spinor, whose norm determines the conformal factor between the fiducial boundary metric and the physical metric in the bulk. The equations of motion for this boundary spinor are derived from the boundary action and turn out to be the two-dimensional analogue of the Witten equations appearing in Witten's proof of the positive mass theorem. The paper concludes with some comments on the resulting quantum theory. It is shown, in particular, that the length of a one-dimensional cross section of the boundary turns into a number operator on the Fock space of the theory. The spectrum of this operator is discrete and matches the results from loop quantum gravity in the spin network representation.

  1. Physical realization of topological quantum walks on IBM-Q and beyond

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Castillo, Daniel; Siopsis, George

    2018-07-01

    We discuss an efficient physical realization of topological quantum walks on a one-dimensional finite lattice with periodic boundary conditions (circle). The N-point lattice is realized with {log}}2N qubits, and the quantum circuit utilizes a number of quantum gates that are polynomial in the number of qubits. In a certain scaling limit, we show that a large number of steps are implemented with a number of quantum gates which are independent of the number of steps. We ran the quantum algorithm on the IBM-Q five-qubit quantum computer, thus experimentally demonstrating topological features, such as boundary bound states, on a one-dimensional lattice with N = 4 points.

  2. Quantum Monte Carlo study of the transverse-field quantum Ising model on infinite-dimensional structures

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ki; Um, Jaegon; Yi, Su Do; Kim, Beom Jun

    2011-11-01

    In a number of classical statistical-physical models, there exists a characteristic dimensionality called the upper critical dimension above which one observes the mean-field critical behavior. Instead of constructing high-dimensional lattices, however, one can also consider infinite-dimensional structures, and the question is whether this mean-field character extends to quantum-mechanical cases as well. We therefore investigate the transverse-field quantum Ising model on the globally coupled network and on the Watts-Strogatz small-world network by means of quantum Monte Carlo simulations and the finite-size scaling analysis. We confirm that both of the structures exhibit critical behavior consistent with the mean-field description. In particular, we show that the existing cumulant method has difficulty in estimating the correct dynamic critical exponent and suggest that an order parameter based on the quantum-mechanical expectation value can be a practically useful numerical observable to determine critical behavior when there is no well-defined dimensionality.

  3. The canonical quantization of chaotic maps on the torus

    NASA Astrophysics Data System (ADS)

    Rubin, Ron Shai

    In this thesis, a quantization method for classical maps on the torus is presented. The quantum algebra of observables is defined as the quantization of measurable functions on the torus with generators exp (2/pi ix) and exp (2/pi ip). The Hilbert space we use remains the infinite-dimensional L2/ (/IR, dx). The dynamics is given by a unitary quantum propagator such that as /hbar /to 0, the classical dynamics is returned. We construct such a quantization for the Kronecker map, the cat map, the baker's map, the kick map, and the Harper map. For the cat map, we find the same for the propagator on the plane the same integral kernel conjectured in (HB) using semiclassical methods. We also define a quantum 'integral over phase space' as a trace over the quantum algebra. Using this definition, we proceed to define quantum ergodicity and mixing for maps on the torus. We prove that the quantum cat map and Kronecker map are both ergodic, but only the cat map is mixing, true to its classical origins. For Planck's constant satisfying the integrality condition h = 1/N, with N/in doubz+, we construct an explicit isomorphism between L2/ (/IR, dx) and the Hilbert space of sections of an N-dimensional vector bundle over a θ-torus T2 of boundary conditions. The basis functions are distributions in L2/ (/IR, dx), given by an infinite comb of Dirac δ-functions. In Bargmann space these distributions take on the form of Jacobi ϑ-functions. Transformations from position to momentum representation can be implemented via a finite N-dimensional discrete Fourier transform. With the θ-torus, we provide a connection between the finite-dimensional quantum maps given in the physics literature and the canonical quantization presented here and found in the language of pseudo-differential operators elsewhere in mathematics circles. Specifically, at a fixed point of the dynamics on the θ-torus, we return a finite-dimensional matrix propagator. We present this connection explicitly for several examples.

  4. On infinite-dimensional state spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Tobias

    It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context frommore » which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V{sup -1}U{sup 2}V=U{sup 3}, then finite-dimensionality entails the relation UV{sup -1}UV=V{sup -1}UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V{sup -1}U{sup 2}V=U{sup 3} holds only up to {epsilon} and then yields a lower bound on the dimension.« less

  5. Universal entanglement spectra of gapped one-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei

    2017-03-01

    We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the "gapped regime'' R ≫ξ , the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.

  6. Quantum carpets in a one-dimensional tilted optical lattices

    NASA Astrophysics Data System (ADS)

    Parra Murillo, Carlos Alberto; Muã+/-Oz Arias, Manuel Humberto; Madroã+/-Ero, Javier

    A unit filling Bose-Hubbard Hamiltonian embedded in a strong Stark field is studied in the off-resonant regime inhibiting single- and many-particle first-order tunneling resonances. We investigate the occurrence of coherent dipole wavelike propagation along an optical lattice by means of an effective Hamiltonian accounting for second-order tunneling processes. It is shown that dipole wave function evolution in the short-time limit is ballistic and that finite-size effects induce dynamical self-interference patterns known as quantum carpets. We also present the effects of the border right after the first reflection, showing that the wave function diffuses normally with the variance changing linearly in time. This work extends the rich physical phenomenology of tilted one-dimensional lattice systems in a scenario of many interacting quantum particles, the so-called many-body Wannier-Stark system. The authors acknownledge the finantial support of the Universidad del Valle (project CI 7996). C. A. Parra-Murillo greatfully acknowledges the financial support of COLCIENCIAS (Grant 656).

  7. A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet Shekhar

    1992-01-01

    General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.

  8. Theory of a peristaltic pump for fermionic quantum fluids

    NASA Astrophysics Data System (ADS)

    Romeo, F.; Citro, R.

    2018-05-01

    Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.

  9. Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

    NASA Astrophysics Data System (ADS)

    Kimchi, Itamar

    In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.

  10. Nonequilibrium dynamic critical scaling of the quantum Ising chain.

    PubMed

    Kolodrubetz, Michael; Clark, Bryan K; Huse, David A

    2012-07-06

    We solve for the time-dependent finite-size scaling functions of the one-dimensional transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively athermal features of the scaling functions, such as negative spin correlations, and we show that they should be robustly observable within present cold atom experiments.

  11. Fractal universe and quantum gravity.

    PubMed

    Calcagni, Gianluca

    2010-06-25

    We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.

  12. Realization of discrete quantum billiards in a two-dimensional optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krimer, Dmitry O.; Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, D-01187 Dresden; Khomeriki, Ramaz

    2011-10-15

    We propose a method for optical visualization of the Bose-Hubbard model with two interacting bosons in the form of two-dimensional (2D) optical lattices consisting of optical waveguides, where the waveguides at the diagonal are characterized by different refractive indices than others elsewhere, modeling the boson-boson interaction. We study the light intensity distribution function averaged over the direction of propagation for both ordered and disordered cases, exploring the sensitivity of the averaged picture with respect to the beam injection position. For our finite systems, the resulting patterns are reminiscent the ones set in billiards, and therefore we introduce a definition ofmore » discrete quantum billiards and discuss the possible relevance to its well-established continuous counterpart.« less

  13. Floquet Engineering in Quantum Chains

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; de la Torre, A.; Ron, A.; Hsieh, D.; Millis, A. J.

    2018-03-01

    We consider a one-dimensional interacting spinless fermion model, which displays the well-known Luttinger liquid (LL) to charge density wave (CDW) transition as a function of the ratio between the strength of the interaction U and the hopping J . We subject this system to a spatially uniform drive which is ramped up over a finite time interval and becomes time periodic in the long-time limit. We show that by using a density matrix renormalization group approach formulated for infinite system sizes, we can access the large-time limit even when the drive induces finite heating. When both the initial and long-time states are in the gapless (LL) phase, the final state has power-law correlations for all ramp speeds. However, when the initial and final state are gapped (CDW phase), we find a pseudothermal state with an effective temperature that depends on the ramp rate, both for the Magnus regime in which the drive frequency is very large compared to other scales in the system and in the opposite limit where the drive frequency is less than the gap. Remarkably, quantum defects (instantons) appear when the drive tunes the system through the quantum critical point, in a realization of the Kibble-Zurek mechanism.

  14. Periodic and quasiperiodic revivals in periodically driven interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Luitz, David J.; Lazarides, Achilleas; Bar Lev, Yevgeny

    2018-01-01

    Recently it has been shown that interparticle interactions generically destroy dynamical localization in periodically driven systems, resulting in diffusive transport and heating. In this Rapid Communication we rigorously construct a family of interacting driven systems which are dynamically localized and effectively decoupled from the external driving potential. We show that these systems exhibit tunable periodic or quasiperiodic revivals of the many-body wave function and thus of all physical observables. By numerically examining spinless fermions on a one-dimensional lattice we show that the analytically obtained revivals of such systems remain stable for finite systems with open boundary conditions while having a finite lifetime in the presence of static spatial disorder. We find this lifetime to be inversely proportional to the disorder strength.

  15. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    NASA Astrophysics Data System (ADS)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  16. Photonic topological boundary pumping as a probe of 4D quantum Hall physics

    NASA Astrophysics Data System (ADS)

    Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P.; Kraus, Yaacov E.; Rechtsman, Mikael C.

    2018-01-01

    When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

  17. Photonic topological boundary pumping as a probe of 4D quantum Hall physics.

    PubMed

    Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P; Kraus, Yaacov E; Rechtsman, Mikael C

    2018-01-03

    When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

  18. Simple prescription for computing the interparticle potential energy for D-dimensional gravity systems

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Helayël-Neto, José; Barone, F. E.; Herdy, Wallace

    2015-02-01

    A straightforward prescription for computing the D-dimensional potential energy of gravitational models, which is strongly based on the Feynman path integral, is built up. Using this method, the static potential energy for the interaction of two masses is found in the context of D-dimensional higher-derivative gravity models, and its behavior is analyzed afterwards in both ultraviolet and infrared regimes. As a consequence, two new gravity systems in which the potential energy is finite at the origin, respectively, in D = 5 and D = 6, are found. Since the aforementioned prescription is equivalent to that based on the marriage between quantum mechanics (to leading order, i.e., in the first Born approximation) and the nonrelativistic limit of quantum field theory, and bearing in mind that the latter relies basically on the calculation of the nonrelativistic Feynman amplitude ({{M}NR}), a trivial expression for computing {{M}NR} is obtained from our prescription as an added bonus.

  19. Quantum statistical mechanics of nonrelativistic membranes: crumpling transition at finite temperature

    NASA Astrophysics Data System (ADS)

    Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.

    2000-03-01

    The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.

  20. Analytical expressions for the evolution of many-body quantum systems quenched far from equilibrium

    NASA Astrophysics Data System (ADS)

    Santos, Lea F.; Torres-Herrera, E. Jonathan

    2017-12-01

    Possible strategies to describe analytically the dynamics of many-body quantum systems out of equilibrium include the use of solvable models and of full random matrices. None of the two approaches represent actual realistic systems, but they serve as references for the studies of these ones. We take the second path and obtain analytical expressions for the survival probability, density imbalance, and out-of-time-ordered correlator. Using these findings, we then propose an approximate expression that matches very well numerical results for the evolution of realistic finite quantum systems that are strongly chaotic and quenched far from equilibrium. In the case of the survival probability, the expression proposed covers all different time scales, from the moment the system is taken out of equilibrium to the moment it reaches a new equilibrium. The realistic systems considered are described by one-dimensional spin-1/2 models.

  1. New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian; Quesne, Christiane

    2013-04-15

    In recent years, many exceptional orthogonal polynomials (EOP) were introduced and used to construct new families of 1D exactly solvable quantum potentials, some of which are shape invariant. In this paper, we construct from Hermite and Laguerre EOP and their related quantum systems new 2D superintegrable Hamiltonians with higher-order integrals of motion and the polynomial algebras generated by their integrals of motion. We obtain the finite-dimensional unitary representations of the polynomial algebras and the corresponding energy spectrum. We also point out a new type of degeneracies of the energy levels of these systems that is associated with holes in sequencesmore » of EOP.« less

  2. Electron Dynamics in Finite Quantum Systems

    NASA Astrophysics Data System (ADS)

    McDonald, Christopher R.

    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to investigate a wide variety of problems that cannot be currently treated by any other method. Finally, the time it takes for an electron to tunnel from a bound state is investigated; a definition of the tunnel time is established and the Keldysh time is connected to the wavefunction dynamics.

  3. Quantum mechanics over sets

    NASA Astrophysics Data System (ADS)

    Ellerman, David

    2014-03-01

    In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.

  4. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here in this paper, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)] tomore » obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S = 1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.« less

  5. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    DOE PAGES

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; ...

    2018-04-20

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here in this paper, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)] tomore » obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S = 1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.« less

  6. The new finite temperature Schrödinger equations with strong or weak interaction

    NASA Astrophysics Data System (ADS)

    Li, Heling; Yang, Bin; Shen, Hongjun

    2017-07-01

    Implanting the thoughtway of thermostatistics into quantum mechanics, we formulate new Schrödinger equations of multi-particle and single-particle respectively at finite temperature. To get it, the pure-state free energies and the microscopic entropy operators are introduced and meantime the pure-state free energies take the places of mechanical energies at finite temperature. The definition of microscopic entropy introduced by Wu was also revised, and the strong or weak interactions dependent on temperature are considered in multi-particle Schrödinger Equations. Based on the new Schrödinger equation at finite temperature, two simple cases were analyzed. The first one is concerning some identical harmonic oscillators in N lattice points and the other one is about N unrelated particles in three dimensional in finite potential well. From the results gotten, we conclude that the finite temperature Schrödinger equation is particularly important for mesoscopic systems.

  7. Interaction quantum quenches in the one-dimensional Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano

    2016-05-01

    We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.

  8. Semiclassical states on Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsobanjan, Artur, E-mail: artur.tsobanjan@gmail.com

    2015-03-15

    The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following themore » methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.« less

  9. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    NASA Astrophysics Data System (ADS)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  10. Ground-state factorization and correlations with broken symmetry

    NASA Astrophysics Data System (ADS)

    Tomasello, B.; Rossini, D.; Hamma, A.; Amico, L.

    2011-10-01

    We show how the phenomenon of factorization in a quantum many-body system is of collective nature. To this aim we study the quantum discord Q in the one-dimensional XY model in a transverse field. We analyze the behavior of Q at both the critical point and at the non-critical factorizing field. The factorization is found to be governed by an exponential scaling law for Q. We also address the thermal effects fanning out from the anomalies occurring at zero temperature. Close to the quantum phase transition, Q exhibits a finite-temperature crossover with universal scaling behavior, while the factorization phenomenon results in a non-trivial pattern of correlations present at low temperature.

  11. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas.

    PubMed

    Hadzibabic, Zoran; Krüger, Peter; Cheneau, Marc; Battelier, Baptiste; Dalibard, Jean

    2006-06-29

    Any state of matter is classified according to its order, and the type of order that a physical system can possess is profoundly affected by its dimensionality. Conventional long-range order, as in a ferromagnet or a crystal, is common in three-dimensional systems at low temperature. However, in two-dimensional systems with a continuous symmetry, true long-range order is destroyed by thermal fluctuations at any finite temperature. Consequently, for the case of identical bosons, a uniform two-dimensional fluid cannot undergo Bose-Einstein condensation, in contrast to the three-dimensional case. However, the two-dimensional system can form a 'quasi-condensate' and become superfluid below a finite critical temperature. The Berezinskii-Kosterlitz-Thouless (BKT) theory associates this phase transition with the emergence of a topological order, resulting from the pairing of vortices with opposite circulation. Above the critical temperature, proliferation of unbound vortices is expected. Here we report the observation of a BKT-type crossover in a trapped quantum degenerate gas of rubidium atoms. Using a matter wave heterodyning technique, we observe both the long-wavelength fluctuations of the quasi-condensate phase and the free vortices. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of proliferation of free vortices. Our results provide direct experimental evidence for the microscopic mechanism underlying the BKT theory, and raise new questions regarding coherence and superfluidity in mesoscopic systems.

  12. Reexamination of optimal quantum state estimation of pure states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2005-09-15

    A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independentmore » of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input.« less

  13. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.

    PubMed

    Inglis, Stephen; Melko, Roger G

    2013-01-01

    We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.

  14. Deformed oscillator algebra approach of some quantum superintegrable Lissajous systems on the sphere and of their rational extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    2015-06-15

    We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less

  15. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Cota, Ernesto; Ramírez, Felipe; Ulloa, Sergio E.

    1997-08-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  16. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Ramirez, Felipe; Cota, Ernesto; Ulloa, Sergio E.

    1997-03-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  17. Existence of the Stark-Wannier quantum resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it

    2014-12-15

    In this paper, we prove the existence of the Stark-Wannier quantum resonances for one-dimensional Schrödinger operators with smooth periodic potential and small external homogeneous electric field. Such a result extends the existence result previously obtained in the case of periodic potentials with a finite number of open gaps.

  18. Nilpotent representations of classical quantum groups at roots of unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, Yuuki; Nakashima, Toshiki

    2005-11-01

    Properly specializing the parameters in 'Schnizer modules', for types A,B,C, and D, we get its unique primitive vector. Then we show that the module generated by the primitive vector is an irreducible highest weight module of finite dimensional classical quantum groups at roots of unity.

  19. Quantum Quenches and Relaxation Dynamics in the Thermodynamic Limit

    NASA Astrophysics Data System (ADS)

    Mallayya, Krishnanand; Rigol, Marcos

    2018-02-01

    We implement numerical linked cluster expansions (NLCEs) to study dynamics of lattice systems following quantum quenches, and focus on a hard-core boson model in one-dimensional lattices. We find that, in the nonintegrable regime and within the accessible times, local observables exhibit exponential relaxation. We determine the relaxation rate as one departs from the integrable point and show that it scales quadratically with the strength of the integrability breaking perturbation. We compare the NLCE results with those from exact diagonalization calculations on finite chains with periodic boundary conditions, and show that NLCEs are far more accurate.

  20. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE PAGES

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; ...

    2017-11-24

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  1. Provably secure and high-rate quantum key distribution with time-bin qudits

    PubMed Central

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2017-01-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system. PMID:29202028

  2. Provably secure and high-rate quantum key distribution with time-bin qudits.

    PubMed

    Islam, Nurul T; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J

    2017-11-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.

  3. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  4. Time evolution and dynamical phase transitions at a critical time in a system of one-dimensional bosons after a quantum quench.

    PubMed

    Mitra, Aditi

    2012-12-28

    A renormalization group approach is used to show that a one-dimensional system of bosons subject to a lattice quench exhibits a finite-time dynamical phase transition where an order parameter within a light cone increases as a nonanalytic function of time after a critical time. Such a transition is also found for a simultaneous lattice and interaction quench where the effective scaling dimension of the lattice becomes time dependent, crucially affecting the time evolution of the system. Explicit results are presented for the time evolution of the boson interaction parameter and the order parameter for the dynamical transition as well as for more general quenches.

  5. Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions

    NASA Astrophysics Data System (ADS)

    Hoffman, M. D.; Loheac, A. C.; Porter, W. J.; Drut, J. E.

    2017-03-01

    Motivated by advances in the manipulation and detection of ultracold atoms with multiple internal degrees of freedom, we present a finite-temperature lattice Monte Carlo calculation of the density and pressure equations of state, as well as Tan's contact, of attractively interacting SU(4)- and SU(6)-symmetric fermion systems in one spatial dimension. We also furnish a nonperturbative proof of a universal relation whereby quantities computable in the SU(2) case completely determine the virial coefficients of the SU(Nf) case. These one-dimensional systems are appealing because they can be experimentally realized in highly constrained traps and because of the dominant role played by correlations. The latter are typically nonperturbative and are crucial for understanding ground states and quantum phase transitions. While quantum fluctuations are typically overpowered by thermal ones in one and two dimensions at any finite temperature, we find that quantum effects do leave their imprint in thermodynamic quantities. Our calculations show that the additional degrees of freedom, relative to the SU(2) case, provide a dramatic enhancement of the density and pressure (in units of their noninteracting counterparts) in a wide region around vanishing β μ , where β is the inverse temperature and μ the chemical potential. As shown recently in experiments, the thermodynamics we explore here can be measured in a controlled and precise fashion in highly constrained traps and optical lattices. Our results are a prediction for such experiments in one dimension with atoms of high nuclear spin.

  6. Measuring finite-range phase coherence in an optical lattice using Talbot interferometry

    PubMed Central

    Santra, Bodhaditya; Baals, Christian; Labouvie, Ralf; Bhattacherjee, Aranya B.; Pelster, Axel; Ott, Herwig

    2017-01-01

    One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose–Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications. PMID:28580941

  7. A New Principle in Physiscs: the Principle "Finiteness", and Some Consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham Sternlieb

    2010-06-25

    In this paper I propose a new principle in physics: the principle of "finiteness". It stems from the definition of physics as a science that deals (among other things) with measurable dimensional physical quantities. Since measurement results, including their errors, are always finite, the principle of finiteness postulates that the mathematical formulation of "legitimate" laws of physics should prevent exactly zero or infinite solutions. Some consequences of the principle of finiteness are discussed, in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The consequences are derived independently of any other theory ormore » principle in physics. I propose "finiteness" as a postulate (like the constancy of the speed of light in vacuum, "c"), as opposed to a notion whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories, or principles.« less

  8. Semilocal Exchange Energy Functional for Two-Dimensional Quantum Systems: A Step Beyond Generalized Gradient Approximations.

    PubMed

    Jana, Subrata; Samal, Prasanjit

    2017-06-29

    Semilocal density functionals for the exchange-correlation energy of electrons are extensively used as they produce realistic and accurate results for finite and extended systems. The choice of techniques plays a crucial role in constructing such functionals of improved accuracy and efficiency. An accurate and efficient semilocal exchange energy functional in two dimensions is constructed by making use of the corresponding hole which is derived based on the density matrix expansion. The exchange hole involved is localized under the generalized coordinate transformation and satisfies all the relevant constraints. Comprehensive testing and excellent performance of the functional is demonstrated versus exact exchange results. The accuracy of results obtained by using the newly constructed functional is quite remarkable as it substantially reduces the errors present in the local and nonempirical exchange functionals proposed so far for two-dimensional quantum systems. The underlying principles involved in the functional construction are physically appealing and hold promise for developing range separated and nonlocal exchange functionals in two dimensions.

  9. The principle of finiteness - a guideline for physical laws

    NASA Astrophysics Data System (ADS)

    Sternlieb, Abraham

    2013-04-01

    I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.

  10. Explorations in fuzzy physics and non-commutative geometry

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Seckin

    Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.

  11. Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments

    NASA Astrophysics Data System (ADS)

    Iotti, Rita Claudia; Rossi, Fausto

    2017-12-01

    Microscopic modeling of electronic phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, non-Markovian density-matrix approaches are widely used simulation strategies. Here we show that such methods, along with valuable virtues, in some circumstances may exhibit potential limitations that need to be taken into account for a reliable description of quantum materials and related devices. More specifically, extending the analysis recently proposed in [EPL 112, 67005 (2015)] to high temperatures and degenerate conditions, we show that the usual mean-field treatment - employed to derive quantum-kinetic equations - in some cases may lead to anomalous results, characterized by decoherence suppression and positivity violations. By means of a simple two-level model, we show that such unexpected behaviors may affect zero-dimensional electronic systems coupled to dispersionless phonon modes, while such anomalies are expected to play a negligible role in nanosystems with higher dimensionality; these limitations are found to be significant in the low-density and low-temperature limit, while in the degenerate and/or finite-temperature regime - typical of many state-of-the-art quantum devices - their impact is strongly reduced.

  12. An algorithm for the basis of the finite Fourier transform

    NASA Technical Reports Server (NTRS)

    Santhanam, Thalanayar S.

    1995-01-01

    The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.

  13. Simple expression for the quantum Fisher information matrix

    NASA Astrophysics Data System (ADS)

    Šafránek, Dominik

    2018-04-01

    Quantum Fisher information matrix (QFIM) is a cornerstone of modern quantum metrology and quantum information geometry. Apart from optimal estimation, it finds applications in description of quantum speed limits, quantum criticality, quantum phase transitions, coherence, entanglement, and irreversibility. We derive a surprisingly simple formula for this quantity, which, unlike previously known general expression, does not require diagonalization of the density matrix, and is provably at least as efficient. With a minor modification, this formula can be used to compute QFIM for any finite-dimensional density matrix. Because of its simplicity, it could also shed more light on the quantum information geometry in general.

  14. Spacetime Singularities in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Minassian, Eric A.

    2000-04-01

    Recent advances in 2+1 dimensional quantum gravity have provided tools to study the effects of quantization of spacetime on black hole and big bang/big crunch type singularities. I investigate effects of quantization of spacetime on singularities of the 2+1 dimensional BTZ black hole and the 2+1 dimensional torus universe. Hosoya has considered the BTZ black hole, and using a "quantum generalized affine parameter" (QGAP), has shown that, for some specific paths, quantum effects "smear" the singularities. Using gaussian wave functions as generic wave functions, I found that, for both BTZ black hole and the torus universe, there are families of paths that still reach the singularities with a finite QGAP, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular invariant wave functions of Carlip and Nelson for the torus universe, offer further support for this conclusion. Currently work is in progress to study more realistic quantum gravity effects for BTZ black holes and other spacetime models.

  15. Effects of dynamical paths on the energy gap and the corrections to the free energy in path integrals of mean-field quantum spin systems

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei

    2018-03-01

    In current studies of mean-field quantum spin systems, much attention is placed on the calculation of the ground-state energy and the excitation gap, especially the latter, which plays an important role in quantum annealing. In pure systems, the finite gap can be obtained by various existing methods such as the Holstein-Primakoff transform, while the tunneling splitting at first-order phase transitions has also been studied in detail using instantons in many previous works. In disordered systems, however, it remains challenging to compute the gap of large-size systems with specific realization of disorder. Hitherto, only quantum Monte Carlo techniques are practical for such studies. Recently, Knysh [Nature Comm. 7, 12370 (2016), 10.1038/ncomms12370] proposed a method where the exponentially large dimensionality of such systems is condensed onto a random potential of much lower dimension, enabling efficient study of such systems. Here we propose a slightly different approach, building upon the method of static approximation of the partition function widely used for analyzing mean-field models. Quantum effects giving rise to the excitation gap and nonextensive corrections to the free energy are accounted for by incorporating dynamical paths into the path integral. The time-dependence of the trace of the time-ordered exponential of the effective Hamiltonian is calculated by solving a differential equation perturbatively, yielding a finite-size series expansion of the path integral. Formulae for the first excited-state energy are proposed to aid in computing the gap. We illustrate our approach using the infinite-range ferromagnetic Ising model and the Hopfield model, both in the presence of a transverse field.

  16. Exact solution of finite parabolic potential disc-like quantum dot with and without electric field R. Djelti, S. Bentata and Z. Aziz: Trimer barrier hight effect oh the nature of the electronic state of the superlatice GaAs/AlxGa1-xAs Bibhas K. Dutta and Prasanta K. Mahapatra: Study of velocity-dependent collision effects on Lamb dip and crossover resonances in three-level system

    NASA Astrophysics Data System (ADS)

    Hassanien, H. H.; Abdelmoly, S. S.; Elmeshad, N.

    The exact series solutions of finite parabolic potential disc-like quantum dot are given in the absence and presence of uniform applied electric field. We define some normalized parameters. From the complex eigenenergy E=E0 - i G/2, due to the electric field, we calculate the resonance width G of a bounded state. The ground and the first excited state of the electron and the hole are obtained with and without the electric field. The corresponding envelope functions are presented as a function of the disc dimensionality, radius R and half-width L.

  17. Charge and spin transport in edge channels of a ν=0 quantum Hall system on the surface of topological insulators.

    PubMed

    Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto

    2015-04-10

    Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.

  18. Solution of the Lindblad equation for spin helix states.

    PubMed

    Popkov, V; Schütz, G M

    2017-04-01

    Using Lindblad dynamics we study quantum spin systems with dissipative boundary dynamics that generate a stationary nonequilibrium state with a nonvanishing spin current that is locally conserved except at the boundaries. We demonstrate that with suitably chosen boundary target states one can solve the many-body Lindblad equation exactly in any dimension. As solution we obtain pure states at any finite value of the dissipation strength and any system size. They are characterized by a helical stationary magnetization profile and a ballistic spin current which is independent of system size, even when the quantum spin system is not integrable. These results are derived in explicit form for the one-dimensional spin-1/2 Heisenberg chain and its higher-spin generalizations, which include the integrable spin-1 Zamolodchikov-Fateev model and the biquadratic Heisenberg chain.

  19. Equation of state of the one- and three-dimensional Bose-Bose gases

    NASA Astrophysics Data System (ADS)

    Chiquillo, Emerson

    2018-06-01

    We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.

  20. Nonequilibrium quantum mechanics: A "hot quantum soup" of paramagnons

    NASA Astrophysics Data System (ADS)

    Scammell, H. D.; Sushkov, O. P.

    2017-01-01

    Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our formulation can be split into two regimes: (i) a nonperturbative, "hot quantum soup" regime where the paramagnon width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency, finite temperature technique for a nonlinear quantum field theory; the "golden rule of quantum kinetics." The formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data. Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes the commonly accepted picture of the quantum disordered and quantum critical regimes.

  1. Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups

    NASA Astrophysics Data System (ADS)

    Brannan, Michael; Collins, Benoît

    2018-03-01

    In this paper we describe a class of highly entangled subspaces of a tensor product of finite-dimensional Hilbert spaces arising from the representation theory of free orthogonal quantum groups. We determine their largest singular values and obtain lower bounds for the minimum output entropy of the corresponding quantum channels. An application to the construction of d-positive maps on matrix algebras is also presented.

  2. Superconductor-insulator quantum phase transition in disordered FeSe thin films.

    PubMed

    Schneider, R; Zaitsev, A G; Fuchs, D; V Löhneysen, H

    2012-06-22

    The evolution of two-dimensional electronic transport with increasing disorder in epitaxial FeSe thin films is studied. Disorder is generated by reducing the film thickness. The extreme sensitivity of the films to disorder results in a superconductor-insulator transition. The finite-size scaling analysis in the critical regime based on the Bose-glass model strongly supports the idea of a continuous quantum phase transition. The obtained value for the critical-exponent product of approximately 7/3 suggests that the transition is governed by quantum percolation. Finite-size scaling with the same critical-exponent product is also substantiated when the superconductor-insulator transition is tuned with an applied magnetic field.

  3. Structure of the thermodynamic arrow of time in classical and quantum theories

    NASA Astrophysics Data System (ADS)

    Korzekwa, Kamil

    2017-05-01

    In this work we analyze the structure of the thermodynamic arrow of time, defined by transformations that leave the thermal equilibrium state unchanged, in classical (incoherent) and quantum (coherent) regimes. We note that in the infinite-temperature limit, the thermodynamic ordering of states in both regimes exhibits a lattice structure. This means that when energy does not matter and the only thermodynamic resource is given by information, the thermodynamic arrow of time has a very specific structure. Namely, for any two states at present there exists a unique state in the past consistent with them and with all possible joint pasts. Similarly, there also exists a unique state in the future consistent with those states and with all possible joint futures. We also show that the lattice structure in the classical regime is broken at finite temperatures, i.e., when energy is a relevant thermodynamic resource. Surprisingly, however, we prove that in the simplest quantum scenario of a two-dimensional system, this structure is preserved at finite temperatures. We provide the physical interpretation of these results by introducing and analyzing the history erasure process, and point out that quantum coherence may be a necessary resource for the existence of an optimal erasure process.

  4. Real time evolution at finite temperatures with operator space matrix product states

    NASA Astrophysics Data System (ADS)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  5. A new family of N dimensional superintegrable double singular oscillators and quadratic algebra Q(3) ⨁ so(n) ⨁ so(N-n)

    NASA Astrophysics Data System (ADS)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2015-11-01

    We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.

  6. Quasi-one-dimensional density of states in a single quantum ring.

    PubMed

    Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A; Nogues, Gilles; Dang, Le Si; Song, Jin Dong

    2017-01-05

    Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.

  7. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures.

    PubMed

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  8. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  9. Symmetry-conserving purification of quantum states within the density matrix renormalization group

    DOE PAGES

    Nocera, Alberto; Alvarez, Gonzalo

    2016-01-28

    The density matrix renormalization group (DMRG) algorithm was originally designed to efficiently compute the zero-temperature or ground-state properties of one-dimensional strongly correlated quantum systems. The development of the algorithm at finite temperature has been a topic of much interest, because of the usefulness of thermodynamics quantities in understanding the physics of condensed matter systems, and because of the increased complexity associated with efficiently computing temperature-dependent properties. The ancilla method is a DMRG technique that enables the computation of these thermodynamic quantities. In this paper, we review the ancilla method, and improve its performance by working on reduced Hilbert spaces andmore » using canonical approaches. Furthermore we explore its applicability beyond spins systems to t-J and Hubbard models.« less

  10. Optimal protocols for slowly driven quantum systems.

    PubMed

    Zulkowski, Patrick R; DeWeese, Michael R

    2015-09-01

    The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.

  11. Quasi-superradiant soliton state of matter in quantum metamaterials

    NASA Astrophysics Data System (ADS)

    Asai, Hidehiro; Kawabata, Shiro; Savel'ev, Sergey E.; Zagoskin, Alexandre M.

    2018-02-01

    Strong interaction of a system of quantum emitters (e.g., two-level atoms) with electromagnetic field induces specific correlations in the system accompanied by a drastic increase of emitted radiation (superradiation or superfluorescence). Despite the fact that since its prediction this phenomenon was subject to a vigorous experimental and theoretical research, there remain open question, in particular, concerning the possibility of a first order phase transition to the superradiant state from the vacuum state. In systems of natural and charge-based artificial atom this transition is prohibited by "no-go" theorems. Here we demonstrate numerically and confirm analytically a similar transition in a one-dimensional quantum metamaterial - a chain of artificial atoms (qubits) strongly interacting with classical electromagnetic fields in a transmission line. The system switches from vacuum state to the quasi-superradiant (QS) phase with one or several magnetic solitons and finite average occupation of qubit excited states along the transmission line. A quantum metamaterial in the QS phase circumvents the "no-go" restrictions by considerably decreasing its total energy relative to the vacuum state by exciting nonlinear electromagnetic solitons.

  12. Non-Markovianity quantifier of an arbitrary quantum process

    NASA Astrophysics Data System (ADS)

    Debarba, Tiago; Fanchini, Felipe F.

    2017-12-01

    Calculating the degree of non-Markovianity of a quantum process, for a high-dimensional system, is a difficult task given complex maximization problems. Focusing on the entanglement-based measure of non-Markovianity we propose a numerically feasible quantifier for finite-dimensional systems. We define the non-Markovianity measure in terms of a class of entanglement quantifiers named witnessed entanglement which allow us to write several entanglement based measures of non-Markovianity in a unique formalism. In this formalism, we show that the non-Markovianity, in a given time interval, can be witnessed by calculating the expectation value of an observable, making it attractive for experimental investigations. Following this property we introduce a quantifier base on the entanglement witness in an interval of time; we show that measure is a bonafide measure of non-Markovianity. In our example, we use the generalized robustness of entanglement, an entanglement measure that can be readily calculated by a semidefinite programming method, to study impurity atoms coupled to a Bose-Einstein condensate.

  13. Differentiable representations of finite dimensional Lie groups in rigged Hilbert spaces

    NASA Astrophysics Data System (ADS)

    Wickramasekara, Sujeewa

    The inceptive motivation for introducing rigged Hilbert spaces (RHS) in quantum physics in the mid 1960's was to provide the already well established Dirac formalism with a proper mathematical context. It has since become clear, however, that this mathematical framework is lissome enough to accommodate a class of solutions to the dynamical equations of quantum physics that includes some which are not possible in the normative Hilbert space theory. Among the additional solutions, in particular, are those which describe aspects of scattering and decay phenomena that have eluded the orthodox quantum physics. In this light, the RHS formulation seems to provide a mathematical rubric under which various phenomenological observations and calculational techniques, commonly known in the study of resonance scattering and decay as ``effective theories'' (e.g., the Wigner- Weisskopf method), receive a unified theoretical foundation. These observations lead to the inference that a theory founded upon the RHS mathematics may prove to be of better utility and value in understanding quantum physical phenomena. This dissertation primarily aims to contribute to the general formalism of the RHS theory of quantum mechanics by undertaking a study of differentiable representations of finite dimensional Lie groups. In particular, it is shown that a finite dimensional operator Lie algebra G in a rigged Hilbert space can be always integrated, provided one parameter integrability holds true for the elements of any basis for G . This result differs from and extends the well known integration theorem of E. Nelson and the subsequent works of others on unitary representations in that it does not require any assumptions on the existence of analytic vectors. Also presented here is a construction of a particular rigged Hilbert space of Hardy class functions that appears useful in formulating a relativistic version of the RHS theory of resonances and decay. As a contexture for the construction, a synopsis of the new relativistic theory is presented.

  14. Finite-dimensional approximation for optimal fixed-order compensation of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Rosen, I. G.

    1988-01-01

    In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.

  15. Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator.

    PubMed

    He, Ling Yan; Wang, Tie-Jun; Wang, Chuan

    2016-07-11

    High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator. In our scheme, the required number of interaction times between the photon and solid state system reduce greatly compared with the traditional method which decomposes the high-dimensional Hilbert space into 2-dimensional quantum space, and it is on a shorter temporal scale for the experimental realization. Moreover, we discuss the performance and feasibility of our hybrid CF gate, concluding that it can be easily extended to a 2n-dimensional case and it is feasible with current technology.

  16. Quantum computation on the edge of a symmetry-protected topological order.

    PubMed

    Miyake, Akimasa

    2010-07-23

    We elaborate the idea of quantum computation through measuring the correlation of a gapped ground state, while the bulk Hamiltonian is utilized to stabilize the resource. A simple computational primitive, by pulling out a single spin adiabatically from the bulk followed by its measurement, is shown to make any ground state of the one-dimensional isotropic Haldane phase useful ubiquitously as a quantum logical wire. The primitive is compatible with certain discrete symmetries that protect this topological order, and the antiferromagnetic Heisenberg spin-1 finite chain is practically available. Our approach manifests a holographic principle in that the logical information of a universal quantum computer can be written and processed perfectly on the edge state (i.e., boundary) of the system, supported by the persistent entanglement from the bulk even when the ground state and its evolution cannot be exactly analyzed.

  17. Non-equilibrium coherence dynamics in one-dimensional Bose gases.

    PubMed

    Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J

    2007-09-20

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

  18. Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra.

    PubMed

    Do, Thanh Nhut; Gelin, Maxim F; Tan, Howe-Siang

    2017-10-14

    We derive general expressions that incorporate finite pulse envelope effects into a coherent two-dimensional optical spectroscopy (2DOS) technique. These expressions are simpler and less computationally intensive than the conventional triple integral calculations needed to simulate 2DOS spectra. The simplified expressions involving multiplications of arbitrary pulse spectra with 2D spectral response function are shown to be exactly equal to the conventional triple integral calculations of 2DOS spectra if the 2D spectral response functions do not vary with population time. With minor modifications, they are also accurate for 2D spectral response functions with quantum beats and exponential decay during population time. These conditions cover a broad range of experimental 2DOS spectra. For certain analytically defined pulse spectra, we also derived expressions of 2D spectra for arbitrary population time dependent 2DOS spectral response functions. Having simpler and more efficient methods to calculate experimentally relevant 2DOS spectra with finite pulse effect considered will be important in the simulation and understanding of the complex systems routinely being studied by using 2DOS.

  19. Applications of finite-size scaling for atomic and non-equilibrium systems

    NASA Astrophysics Data System (ADS)

    Antillon, Edwin A.

    We apply the theory of Finite-size scaling (FSS) to an atomic and a non-equilibrium system in order to extract critical parameters. In atomic systems, we look at the energy dependence on the binding charge near threshold between bound and free states, where we seek the critical nuclear charge for stability. We use different ab initio methods, such as Hartree-Fock, Density Functional Theory, and exact formulations implemented numerically with the finite-element method (FEM). Using Finite-size scaling formalism, where in this case the size of the system is related to the number of elements used in the basis expansion of the wavefunction, we predict critical parameters in the large basis limit. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that this combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems. In the second part we look at non-equilibrium one-dimensional model known as the raise and peel model describing a growing surface which grows locally and has non-local desorption. For a specific values of adsorption ( ua) and desorption (ud) the model shows interesting features. At ua = ud, the model is described by a conformal field theory (with conformal charge c = 0) and its stationary probability can be mapped to the ground state of a quantum chain and can also be related a two dimensional statistical model. For ua ≥ ud, the model shows a scale invariant phase in the avalanche distribution. In this work we study the surface dynamics by looking at avalanche distributions using FSS formalism and explore the effect of changing the boundary conditions of the model. The model shows the same universality for the cases with and with our the wall for an odd number of tiles removed, but we find a new exponent in the presence of a wall for an even number of avalanches released. We provide new conjecture for the probability distribution of avalanches with a wall obtained by using exact diagonalization of small lattices and Monte-Carlo simulations.

  20. Rényi and Tsallis formulations of separability conditions in finite dimensions

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2017-12-01

    Separability conditions for a bipartite quantum system of finite-dimensional subsystems are formulated in terms of Rényi and Tsallis entropies. Entropic uncertainty relations often lead to entanglement criteria. We propose new approach based on the convolution of discrete probability distributions. Measurements on a total system are constructed of local ones according to the convolution scheme. Separability conditions are derived on the base of uncertainty relations of the Maassen-Uffink type as well as majorization relations. On each of subsystems, we use a pair of sets of subnormalized vectors that form rank-one POVMs. We also obtain entropic separability conditions for local measurements with a special structure, such as mutually unbiased bases and symmetric informationally complete measurements. The relevance of the derived separability conditions is demonstrated with several examples.

  1. Affine.m—Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras

    NASA Astrophysics Data System (ADS)

    Nazarov, Anton

    2012-11-01

    In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent algorithm based on generalization of Weyl character formula. We also offer alternative implementation based on the Freudenthal multiplicity formula which can be faster in some cases. Restrictions: Computational complexity grows fast with the rank of an algebra, so computations for algebras of ranks greater than 8 are not practical. Unusual features: We offer the possibility of using a traditional mathematical notation for the objects in representation theory of Lie algebras in computations if Affine.m is used in the Mathematica notebook interface. Running time: From seconds to days depending on the rank of the algebra and the complexity of the representation.

  2. Current algebras, measures quasi-invariant under diffeomorphism groups, and infinite quantum systems with accumulation points

    NASA Astrophysics Data System (ADS)

    Sakuraba, Takao

    The approach to quantum physics via current algebra and unitary representations of the diffeomorphism group is established. This thesis studies possible infinite Bose gas systems using this approach. Systems of locally finite configurations and systems of configurations with accumulation points are considered, with the main emphasis on the latter. In Chapter 2, canonical quantization, quantization via current algebra and unitary representations of the diffeomorphism group are reviewed. In Chapter 3, a new definition of the space of configurations is proposed and an axiom for general configuration spaces is abstracted. Various subsets of the configuration space, including those specifying the number of points in a Borel set and those specifying the number of accumulation points in a Borel set are proved to be measurable using this axiom. In Chapter 4, known results on the space of locally finite configurations and Poisson measure are reviewed in the light of the approach developed in Chapter 3, including the approach to current algebra in the Poisson space by Albeverio, Kondratiev, and Rockner. Goldin and Moschella considered unitary representations of the group of diffeomorphisms of the line based on self-similar random processes, which may describe infinite quantum gas systems with clusters. In Chapter 5, the Goldin-Moschella theory is developed further. Their construction of measures quasi-invariant under diffeomorphisms is reviewed, and a rigorous proof of their conjectures is given. It is proved that their measures with distinct correlation parameters are mutually singular. A quasi-invariant measure constructed by Ismagilov on the space of configurations with accumulation points on the circle is proved to be singular with respect to the Goldin-Moschella measures. Finally a generalization of the Goldin-Moschella measures to the higher-dimensional case is studied, where the notion of covariance matrix and the notion of condition number play important roles. A rigorous construction of measures quasi-invariant under the group of diffeomorphisms of d-dimensional space stabilizing a point is given.

  3. Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Ahn, Junyeong; Yang, Bohm-Jung

    2017-04-01

    We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.

  4. Particle formation and ordering in strongly correlated fermionic systems: Solving a model of quantum chromodynamics

    DOE PAGES

    Azaria, P.; Konik, R. M.; Lecheminant, P.; ...

    2016-08-03

    In our paper we study a (1+1)-dimensional version of the famous Nambu–Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, μ, is zero, we describe the formation of fermion three-quark (nucleons and Δ baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at μ=0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phasesmore » with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). Finally, the QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).« less

  5. Andreev spectrum with high spin-orbit interactions: Revealing spin splitting and topologically protected crossings

    NASA Astrophysics Data System (ADS)

    Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.

    2017-10-01

    In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.

  6. Modeling techniques for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  7. Modeling techniques for quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less

  8. Entanglement negativity and sudden death in the toric code at finite temperature

    NASA Astrophysics Data System (ADS)

    Hart, O.; Castelnovo, C.

    2018-04-01

    We study the fate of quantum correlations at finite temperature in the two-dimensional toric code using the logarithmic entanglement negativity. We are able to obtain exact results that give us insight into how thermal excitations affect quantum entanglement. The toric code has two types of elementary excitations (defects) costing different energies. We show that an O (1 ) density of the lower energy defect is required to degrade the zero-temperature entanglement between two subsystems in contact with one another. However, one type of excitation alone is not sufficient to kill all quantum correlations, and an O (1 ) density of the higher energy defect is required to cause the so-called sudden death of the negativity. Interestingly, if the energy cost of one of the excitations is taken to infinity, quantum correlations survive up to arbitrarily high temperatures, a feature that is likely shared with other quantum spin liquids and frustrated systems in general, when projected down to their low-energy states. We demonstrate this behavior both for small subsystems, where we can prove that the negativity is a necessary and sufficient condition for separability, as well as for extended subsystems, where it is only a necessary condition. We further observe that the negativity per boundary degree of freedom at a given temperature increases (parametrically) with the size of the boundary, and that quantum correlations between subsystems with extended boundaries are more robust to thermal fluctuations.

  9. Scaling in Plateau-to-Plateau Transition: A Direct Connection of Quantum Hall Systems with the Anderson Localization Model

    NASA Astrophysics Data System (ADS)

    Li, Wanli; Vicente, C. L.; Xia, J. S.; Pan, W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.

    2009-05-01

    The quantum Hall-plateau transition was studied at temperatures down to 1 mK in a random alloy disordered high mobility two-dimensional electron gas. A perfect power-law scaling with κ=0.42 was observed from 1.2 K down to 12 mK. This perfect scaling terminates sharply at a saturation temperature of Ts˜10mK. The saturation is identified as a finite-size effect when the quantum phase coherence length (Lϕ∝T-p/2) reaches the sample size (W) of millimeter scale. From a size dependent study, Ts∝W-1 was observed and p=2 was obtained. The exponent of the localization length, determined directly from the measured κ and p, is ν=2.38, and the dynamic critical exponent z=1.

  10. The E(2) symmetry and quantum phase transition in the two-dimensional limit of the vibron model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Pan, Feng; Liu, Yu-Xin; Draayer, J. P.

    2010-11-01

    We study in detail the relation between the two-dimensional Euclidean dynamical E(2) symmetry and the quantum phase transition in the two-dimensional limit of the vibron model, called the U(3) vibron model. Both geometric and algebraic descriptions of the U(3) vibron model show that structures of low-lying states at the critical point of the model with a quartic potential as its classical limit can be approximately described by the E(2) symmetry. We also fit the finite-size scaling exponent of the energy levels and E1 transition rates in the F(2) model, which is exactly the E(2) model but with truncation in its Hilbert subspace, as well as those at the critical point in the U(3) vibron model. The N-scaling power law around the critical point shows that the E(2) symmetry is well preserved even for cases with finite number of bosons. In addition, two kinds of experimentally accessible effective order parameters, such as the energy ratios E_{2_1}/E_{1_1}, E_{3_1}/E_{1_1} and E1 transition ratios \\frac{B(E1;2_1\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, \\frac{B(E1;0_2\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, are proposed to identify the second-order phase transition in such systems. Possible empirical examples exhibiting approximate E(2) symmetry are also presented.

  11. Relative Yetter-Drinfeld modules and comodules over braided groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Haixing, E-mail: zhuhaixing@163.com, E-mail: haxing.zhu@njfu.edu.cn

    Let H{sub 1} be a quantum group and f : H{sub 1}⟶H{sub 2} a Hopf algebra homomorphism. Assume that B is some braided group obtained by Majid’s transmutation process. We first show that there is a tensor equivalence between the category of comodules over the braided group B and that of relative Yetter-Drinfeld modules. Next, we prove that the Drinfeld centers of the two categories mentioned above are equivalent to the category of modules over some quantum double, namely, the category of ordinary Yetter-Drinfeld modules over some Radford’s biproduct Hopf algebra. Importantly, the above results not only hold for amore » finite dimensional quantum group but also for an infinite dimensional one.« less

  12. Introducing the Qplex: a novel arena for quantum theory

    NASA Astrophysics Data System (ADS)

    Appleby, Marcus; Fuchs, Christopher A.; Stacey, Blake C.; Zhu, Huangjun

    2017-07-01

    We reconstruct quantum theory starting from the premise that, as Asher Peres remarked, "Unperformed experiments have no results." The tools of quantum information theory, and in particular the symmetric informationally complete (SIC) measurements, provide a concise expression of how exactly Peres's dictum holds true. That expression is a constraint on how the probability distributions for outcomes of different, hypothetical and mutually exclusive experiments ought to mesh together, a type of constraint not foreseen in classical thinking. Taking this as our foundational principle, we show how to reconstruct the formalism of quantum theory in finite-dimensional Hilbert spaces. The central variety of mathematical entity in our reconstruction is the qplex, a very particular type of subset of a probability simplex. Along the way, by closely studying the symmetry properties of qplexes, we derive a condition for the existence of a d-dimensional SIC.

  13. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach

    NASA Astrophysics Data System (ADS)

    Borrelli, Raffaele; Gelin, Maxim F.

    2016-12-01

    Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.

  14. Electronic Phenomena in Two-Dimensional Topological Insulators

    NASA Astrophysics Data System (ADS)

    Hart, Sean

    In recent years, two-dimensional electron systems have played an integral role at the forefront of discoveries in condensed matter physics. These include the integer and fractional quantum Hall effects, massless electron physics in graphene, the quantum spin and quantum anomalous Hall effects, and many more. Investigation of these fascinating states of matter brings with it surprising new results, challenges us to understand new physical phenomena, and pushes us toward new technological capabilities. In this thesis, we describe a set of experiments aimed at elucidating the behavior of two such two-dimensional systems: the quantum Hall effect, and the quantum spin Hall effect. The first experiment examines electronic behavior at the edge of a two-dimensional electron system formed in a GaAs/AlGaAs heterostructure, under the application of a strong perpendicular magnetic field. When the ratio between the number of electrons and flux quanta in the system is tuned near certain integer or fractional values, the electrons in the system can form states which are respectively known as the integer and fractional quantum Hall effects. These states are insulators in the bulk, but carry gapless excitations at the edge. Remarkably, in certain fractional quantum Hall states, it was predicted that even as charge is carried downstream along an edge, heat can be carried upstream in a neutral edge channel. By placing quantum dots along a quantum Hall edge, we are able to locally monitor the edge temperature. Using a quantum point contact, we can locally heat the edge and use the quantum dot thermometers to detect heat carried both downstream and upstream. We find that heat can be carried upstream when the edge contains structure related to the nu = 2/3 fractional quantum Hall state. We further find that this fractional edge physics can even be present when the bulk is tuned to the nu = 1integer quantum Hall state. Our experiments also demonstrate that the nature of this fractional reconstruction can be tuned by modifying the sharpness of the confining potential at the edge. In the second set of experiments, we focus on an exciting new two-dimensional system known as a quantum spin Hall insulator. Realized in quantum well heterostructures formed by layers of HgTe and HgCdTe, this material belongs to a set of recently discovered topological insulators. Like the quantum Hall effect, the quantum spin Hall effect is characterized by an insulating bulk and conducting edge states. However, the quantum spin Hall effect occurs in the absence of an external magnetic field, and contains a pair of counter propagating edge states which are the time-reversed partners of one another. It was recently predicted that a Josephson junction based around one of these edge states could host a new variety of excitation called a Majorana fermion. Majorana fermions are predicted to have non-Abelian braiding statistics, a property which holds promise as a robust basis for quantum information processing. In our experiments, we place a section of quantum spin Hall insulator between two superconducting leads, to form a Josephson junction. By measuring Fraunhofer interference, we are able to study the spatial distribution of supercurrent in the junction. In the quantum spin Hall regime, this supercurrent becomes confined to the topological edge states. In addition to providing a microscopic picture of these states, our measurement scheme generally provides a way to investigate the edge structure of any topological insulator. In further experiments, we tune the chemical potential into the conduction band of the HgTe system, and investigate the behavior of Fraunhofer interference as a magnetic field is applied parallel to the plane of the quantum well. By theoretically analyzing the interference in a parallel field, we find that Cooper pairs in the material acquire a tunable momentum that grows with the magnetic field strength. This finite pairing momentum leads to the appearance of triplet pair correlations at certain locations within the junction, which we are able to control with the external magnetic field. Our measurements and analysis also provide a method to obtain information about the Fermi surface properties and spin-orbit coupling in two-dimensional materials.

  15. Quantum field theory on toroidal topology: Algebraic structure and applications

    NASA Astrophysics Data System (ADS)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.

    2014-05-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus ΓDd=(S1)d×RD-d is developed from a Lie-group representation and c*c*-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ41. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space-time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy-momentum tensor. Self interacting four-fermion systems, described by the Gross-Neveu and Nambu-Jona-Lasinio models, are considered. Then finite size effects on the hadronic phase structure are investigated, taking into account density and temperature. As a final application, effects of extra spatial dimensions are addressed, by developing a quantum electrodynamics in a five-dimensional space-time, where the fifth-dimension is compactified on a torus. The formalism, initially developed for particle physics, provides results compatible with other trials of probing the existence of extra-dimensions.

  16. Time-dependent density functional theory with twist-averaged boundary conditions

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2016-05-01

    Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, three-dimensional (3D) coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms, molecules, nuclei, hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing potential in a certain boundary region sufficiently far from the described system. However, such absorption cannot be applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust), which suffer from unphysical effects stemming from a finite computational box used. Here, twist-averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we extend TABC to time-dependent modes. Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional. The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations of 16O. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged. Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results. With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious fluctuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas remains in the box; the amount of nucleons in the gas is found to be roughly the same as the number of absorbed particles in ABC. Conclusion: We demonstrate that by using TABC, one can reduce finite-volume effects drastically without adding any additional parameters associated with absorption at large distances. Moreover, TABC are an obvious choice for time-dependent calculations for infinite systems. Since TABC calculations for different twists can be performed independently, the method is trivially adapted to parallel computing.

  17. Multiply Degenerate Exceptional Points and Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Borisov, Denis I.; Ružička, František; Znojil, Miloslav

    2015-12-01

    The realization of a genuine phase transition in quantum mechanics requires that at least one of the Kato's exceptional-point parameters becomes real. A new family of finite-dimensional and time-parametrized quantum-lattice models with such a property is proposed and studied. All of them exhibit, at a real exceptional-point time t = 0, the Jordan-block spectral degeneracy structure of some of their observables sampled by Hamiltonian H( t) and site-position Q( t). The passes through the critical instant t = 0 are interpreted as schematic simulations of non-equivalent versions of the Big-Bang-like quantum catastrophes.

  18. Using time-dependent density functional theory in real time for calculating electronic transport

    NASA Astrophysics Data System (ADS)

    Schaffhauser, Philipp; Kümmel, Stephan

    2016-01-01

    We present a scheme for calculating electronic transport within the propagation approach to time-dependent density functional theory. Our scheme is based on solving the time-dependent Kohn-Sham equations on grids in real space and real time for a finite system. We use absorbing and antiabsorbing boundaries for simulating the coupling to a source and a drain. The boundaries are designed to minimize the effects of quantum-mechanical reflections and electrical polarization build-up, which are the major obstacles when calculating transport by applying an external bias to a finite system. We show that the scheme can readily be applied to real molecules by calculating the current through a conjugated molecule as a function of time. By comparing to literature results for the conjugated molecule and to analytic results for a one-dimensional model system we demonstrate the reliability of the concept.

  19. PLQP & Company: Decidable Logics for Quantum Algorithms

    NASA Astrophysics Data System (ADS)

    Baltag, Alexandru; Bergfeld, Jort; Kishida, Kohei; Sack, Joshua; Smets, Sonja; Zhong, Shengyang

    2014-10-01

    We introduce a probabilistic modal (dynamic-epistemic) quantum logic PLQP for reasoning about quantum algorithms. We illustrate its expressivity by using it to encode the correctness of the well-known quantum search algorithm, as well as of a quantum protocol known to solve one of the paradigmatic tasks from classical distributed computing (the leader election problem). We also provide a general method (extending an idea employed in the decidability proof in Dunn et al. (J. Symb. Log. 70:353-359, 2005)) for proving the decidability of a range of quantum logics, interpreted on finite-dimensional Hilbert spaces. We give general conditions for the applicability of this method, and in particular we apply it to prove the decidability of PLQP.

  20. Quantum phases of dimerized and frustrated Heisenberg spin chains with s = 1/2, 1 and 3/2: an entanglement entropy and fidelity study.

    PubMed

    Goli, V M L Durga Prasad; Sahoo, Shaon; Ramasesha, S; Sen, Diptiman

    2013-03-27

    We study here different regions in phase diagrams of the spin-1/2, spin-1 and spin-3/2 one-dimensional antiferromagnetic Heisenberg systems with frustration (next-nearest-neighbor interaction J2) and dimerization (δ). In particular, we analyze the behaviors of the bipartite entanglement entropy and fidelity at the gapless to gapped phase transitions and across the lines separating different phases in the J2-δ plane. All the calculations in this work are based on numerical exact diagonalizations of finite systems.

  1. High-dimensional quantum cloning and applications to quantum hacking

    PubMed Central

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W.; Karimi, Ebrahim

    2017-01-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography. PMID:28168219

  2. High-dimensional quantum cloning and applications to quantum hacking.

    PubMed

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim

    2017-02-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.

  3. CT artifact recognition for the nuclear technologist.

    PubMed

    Popilock, Robert; Sandrasagaren, Kumar; Harris, Lowell; Kaser, Keith A

    2008-06-01

    The goal of this article is to make the PET/CT and SPECT/CT operator aware of common artifacts found in CT. In diagnostic imaging, the ability to render an accurate diagnosis requires the technologist to take steps to optimize image quality and recognize when image quality has been compromised-that is, when there is an image artifact. One way these artifacts occur is through the inability of the CT linear attenuation image to precisely represent the linear attenuation map of a 2-dimensional section through the body. The reasons for this inability are multifold. First, CT is subject to the laws of x-ray quantum physics resulting in noise in all CT images. Moreover, all current CT x-ray systems generate a spectrum of energies. Also, CT scanners use detectors of finite dimension, as are the x-ray focal spots; reconstruct images from a finite number of samples distributed over a finite number of views; and acquire the data for each reconstruction over a finite period.

  4. Eavesdropping on counterfactual quantum key distribution with finite resources

    NASA Astrophysics Data System (ADS)

    Liu, Xingtong; Zhang, Bo; Wang, Jian; Tang, Chaojing; Zhao, Jingjing; Zhang, Sheng

    2014-08-01

    A striking scheme called "counterfactual quantum cryptography" gives a conceptually new approach to accomplish the task of key distribution. It allows two legitimate parties to share a secret even though a particle carrying secret information is not, in fact, transmitted through the quantum channel. Since an eavesdropper cannot directly access the entire quantum system of each signal particle, the protocol seems to provide practical security advantages. However, here we propose an eavesdropping method which works on the scheme in a finite key scenario. We show that, for practical systems only generating a finite number of keys, the eavesdropping can obtain all of the secret information without being detected. We also present a improved protocol as a countermeasure against this attack.

  5. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg

    2016-08-15

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the realmore » time propagation can be a challenge.« less

  6. Adaptive strategy for joint measurements

    NASA Astrophysics Data System (ADS)

    Uola, Roope; Luoma, Kimmo; Moroder, Tobias; Heinosaari, Teiko

    2016-08-01

    We develop a technique to find simultaneous measurements for noisy quantum observables in finite-dimensional Hilbert spaces. We use the method to derive lower bounds for the noise needed to make incompatible measurements jointly measurable. Using our strategy together with recent developments in the field of one-sided quantum information processing we show that the attained lower bounds are tight for various symmetric sets of quantum measurements. We use this characterisation to prove the existence of so called 4-Specker sets, i.e. sets of four incompatible observables with compatible subsets in the qubit case.

  7. A path model for Whittaker vectors

    NASA Astrophysics Data System (ADS)

    Di Francesco, Philippe; Kedem, Rinat; Turmunkh, Bolor

    2017-06-01

    In this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra U_q(slr+1) . This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the q-difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way.

  8. Multiple quantum criticality in a two-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Biscaras, J.; Bergeal, N.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Grilli, M.; Caprara, S.; Lesueur, J.

    2013-06-01

    The diverse phenomena associated with the two-dimensional electron gas (2DEG) that occurs at oxide interfaces include, among others, exceptional carrier mobilities, magnetism and superconductivity. Although these have mostly been the focus of interest for potential future applications, they also offer an opportunity for studying more fundamental quantum many-body effects. Here, we examine the magnetic-field-driven quantum phase transition that occurs in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through a finite-size scaling analysis, we show that it belongs to the (2+1)D XY model universality class. The system can be described as a disordered array of superconducting puddles coupled by a 2DEG and, depending on its conductance, the observed critical behaviour is single (corresponding to the long-range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). A phase diagram illustrating the dependence of the critical field on the 2DEG conductance is constructed, and shown to agree with theoretical proposals. Moreover, by retrieving the coherence-length critical exponent ν, we show that the quantum critical behaviour can be clean or dirty according to the Harris criterion, depending on whether the phase-coherence length is smaller or larger than the size of the puddles.

  9. Multiple quantum criticality in a two-dimensional superconductor.

    PubMed

    Biscaras, J; Bergeal, N; Hurand, S; Feuillet-Palma, C; Rastogi, A; Budhani, R C; Grilli, M; Caprara, S; Lesueur, J

    2013-06-01

    The diverse phenomena associated with the two-dimensional electron gas (2DEG) that occurs at oxide interfaces include, among others, exceptional carrier mobilities, magnetism and superconductivity. Although these have mostly been the focus of interest for potential future applications, they also offer an opportunity for studying more fundamental quantum many-body effects. Here, we examine the magnetic-field-driven quantum phase transition that occurs in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through a finite-size scaling analysis, we show that it belongs to the (2+1)D XY model universality class. The system can be described as a disordered array of superconducting puddles coupled by a 2DEG and, depending on its conductance, the observed critical behaviour is single (corresponding to the long-range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). A phase diagram illustrating the dependence of the critical field on the 2DEG conductance is constructed, and shown to agree with theoretical proposals. Moreover, by retrieving the coherence-length critical exponent ν, we show that the quantum critical behaviour can be clean or dirty according to the Harris criterion, depending on whether the phase-coherence length is smaller or larger than the size of the puddles.

  10. Pauli structures arising from confined particles interacting via a statistical potential

    NASA Astrophysics Data System (ADS)

    Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman

    2017-09-01

    There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.

  11. Time-optimal control with finite bandwidth

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  12. Minimal scales from an extended Hilbert space

    NASA Astrophysics Data System (ADS)

    Kober, Martin; Nicolini, Piero

    2010-12-01

    We consider an extension of the conventional quantum Heisenberg algebra, assuming that coordinates as well as momenta fulfil nontrivial commutation relations. As a consequence, a minimal length and a minimal mass scale are implemented. Our commutators do not depend on positions and momenta and we provide an extension of the coordinate coherent state approach to noncommutative geometry. We explore, as a toy model, the corresponding quantum field theory in a (2+1)-dimensional spacetime. Then we investigate the more realistic case of a (3+1)-dimensional spacetime, foliated into noncommutative planes. As a result, we obtain propagators, which are finite in the ultraviolet as well as the infrared regime.

  13. Multiple Quantum Phase Transitions in a two-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Bergeal, Nicolas; Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Lesueur, J.; Budhani, R. C.; Rastogi, A.; Caprara, S.; Grilli, M.

    2013-03-01

    We studied the magnetic field driven Quantum Phase Transition (QPT) in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through finite size scaling analysis, we showed that it belongs to the (2 +1)D XY model universality class. The system can be described as a disordered array of superconducting islands coupled by a two dimensional electron gas (2DEG). Depending on the 2DEG conductance tuned by the gate voltage, the QPT is single (corresponding to the long range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). By retrieving the coherence length critical exponent ν, we showed that the QPT can be ``clean'' or ``dirty'' according to the Harris criteria, depending on whether the phase coherence length is smaller or larger than the island size. The overall behaviour is well described by a model of coupled superconducting puddles in the framework of the fermionic scenario of 2D superconducting QPT.

  14. Site- and bond-percolation thresholds in K_{n,n}-based lattices: Vulnerability of quantum annealers to random qubit and coupler failures on chimera topologies.

    PubMed

    Melchert, O; Katzgraber, Helmut G; Novotny, M A

    2016-04-01

    We estimate the critical thresholds of bond and site percolation on nonplanar, effectively two-dimensional graphs with chimeralike topology. The building blocks of these graphs are complete and symmetric bipartite subgraphs of size 2n, referred to as K_{n,n} graphs. For the numerical simulations we use an efficient union-find-based algorithm and employ a finite-size scaling analysis to obtain the critical properties for both bond and site percolation. We report the respective percolation thresholds for different sizes of the bipartite subgraph and verify that the associated universality class is that of standard two-dimensional percolation. For the canonical chimera graph used in the D-Wave Systems Inc. quantum annealer (n=4), we discuss device failure in terms of network vulnerability, i.e., we determine the critical fraction of qubits and couplers that can be absent due to random failures prior to losing large-scale connectivity throughout the device.

  15. Experimental test of single-system steering and application to quantum communication

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-Di; Sun, Yong-Nan; Cheng, Ze-Di; Xu, Xiao-Ye; Zhou, Zong-Quan; Chen, Geng; Li, Chuan-Feng; Guo, Guang-Can

    2017-02-01

    Einstein-Podolsky-Rosen (EPR) steering describes the ability to steer remotely quantum states of an entangled pair by measuring locally one of its particles. Here we report on an experimental demonstration of single-system steering. The application to quantum communication is also investigated. Single-system steering refers to steering of a single d -dimensional quantum system that can be used in a unifying picture to certify the reliability of tasks employed in both quantum communication and quantum computation. In our experiment, high-dimensional quantum states are implemented by encoding polarization and orbital angular momentum of photons with dimensionality of up to 12.

  16. Quantum phase transitions of the one-dimensional Peierls-Hubbard model with next-nearest-neighbor hopping integrals

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi

    1998-06-01

    We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling region U>>t, t' [t (t'), nearest- (next-nearest-) neighbor hopping; U, on-site Coulomb repulsion]. In the uniform case, with the help of the conformal field theory prediction, we numerically determine a phase boundary t'c(U/t) between the spin-fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size systems and a value of the central charge are also examined. The critical phenomenological aspect of the spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin gap (i.e., the Cross-Fisher scaling law) are discussed.

  17. Measurement-based quantum computation on two-body interacting qubits with adiabatic evolution.

    PubMed

    Kyaw, Thi Ha; Li, Ying; Kwek, Leong-Chuan

    2014-10-31

    A cluster state cannot be a unique ground state of a two-body interacting Hamiltonian. Here, we propose the creation of a cluster state of logical qubits encoded in spin-1/2 particles by adiabatically weakening two-body interactions. The proposal is valid for any spatial dimensional cluster states. Errors induced by thermal fluctuations and adiabatic evolution within finite time can be eliminated ensuring fault-tolerant quantum computing schemes.

  18. A magnetically induced quantum critical point in holography

    DOE PAGES

    Gnecchi, A.; Gursoy, U.; Papadoulaki, O.; ...

    2016-09-15

    Here, we investigate quantum critical points in a 2+1 dimensional gauge theory at finite chemical potential χ and magnetic field B. The gravity dual is based on 4D N = 2 Fayet-Iliopoulos gauged supergravity and the solutions we consider — that are constructed analytically — are extremal, dyonic, asymptotically AdS4 black-branes with a nontrivial radial profile for the scalar field. We discover a line of second order fixed points at B = B c(χ) between the dyonic black brane and an extremal “thermal gas” solution with a singularity of good-type, according to the acceptability criteria of Gubser. The dual fieldmore » theory is a strongly coupled nonconformal field theory at finite charge and magnetic field, related to the ABJM theory deformed by a triple trace operator Φ 3. This line of fixed points might be useful in studying the various strongly interacting quantum critical phenomena such as the ones proposed to underlie the cuprate superconductors. We also find curious similarities between the behaviour of the VeV under B and that of the quark condensate in 2+1 dimensional NJL models.« less

  19. Quantum thermodynamics with local control

    NASA Astrophysics Data System (ADS)

    Lekscha, J.; Wilming, H.; Eisert, J.; Gallego, R.

    2018-02-01

    We investigate the limitations that emerge in thermodynamic tasks as a result of having local control only over the components of a thermal machine. These limitations are particularly relevant for devices composed of interacting many-body systems. Specifically, we study protocols of work extraction that employ a many-body system as a working medium whose evolution can be driven by tuning the on-site Hamiltonian terms. This provides a restricted set of thermodynamic operations, giving rise to alternative bounds for the performance of engines. Our findings show that those limitations in control render it, in general, impossible to reach Carnot efficiency; in its extreme ramification it can even forbid to reach a finite efficiency or finite work per particle. We focus on the one-dimensional Ising model in the thermodynamic limit as a case study. We show that in the limit of strong interactions the ferromagnetic case becomes useless for work extraction, while the antiferromagnetic case improves its performance with the strength of the couplings, reaching Carnot in the limit of arbitrary strong interactions. Our results provide a promising connection between the study of quantum control and thermodynamics and introduce a more realistic set of physical operations well suited to capture current experimental scenarios.

  20. Certifying an Irreducible 1024-Dimensional Photonic State Using Refined Dimension Witnesses.

    PubMed

    Aguilar, Edgar A; Farkas, Máté; Martínez, Daniel; Alvarado, Matías; Cariñe, Jaime; Xavier, Guilherme B; Barra, Johanna F; Cañas, Gustavo; Pawłowski, Marcin; Lima, Gustavo

    2018-06-08

    We report on a new class of dimension witnesses, based on quantum random access codes, which are a function of the recorded statistics and that have different bounds for all possible decompositions of a high-dimensional physical system. Thus, it certifies the dimension of the system and has the new distinct feature of identifying whether the high-dimensional system is decomposable in terms of lower dimensional subsystems. To demonstrate the practicability of this technique, we used it to experimentally certify the generation of an irreducible 1024-dimensional photonic quantum state. Therefore, certifying that the state is not multipartite or encoded using noncoupled different degrees of freedom of a single photon. Our protocol should find applications in a broad class of modern quantum information experiments addressing the generation of high-dimensional quantum systems, where quantum tomography may become intractable.

  1. Certifying an Irreducible 1024-Dimensional Photonic State Using Refined Dimension Witnesses

    NASA Astrophysics Data System (ADS)

    Aguilar, Edgar A.; Farkas, Máté; Martínez, Daniel; Alvarado, Matías; Cariñe, Jaime; Xavier, Guilherme B.; Barra, Johanna F.; Cañas, Gustavo; Pawłowski, Marcin; Lima, Gustavo

    2018-06-01

    We report on a new class of dimension witnesses, based on quantum random access codes, which are a function of the recorded statistics and that have different bounds for all possible decompositions of a high-dimensional physical system. Thus, it certifies the dimension of the system and has the new distinct feature of identifying whether the high-dimensional system is decomposable in terms of lower dimensional subsystems. To demonstrate the practicability of this technique, we used it to experimentally certify the generation of an irreducible 1024-dimensional photonic quantum state. Therefore, certifying that the state is not multipartite or encoded using noncoupled different degrees of freedom of a single photon. Our protocol should find applications in a broad class of modern quantum information experiments addressing the generation of high-dimensional quantum systems, where quantum tomography may become intractable.

  2. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.

    PubMed

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-03

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  3. Generation and confirmation of a (100 x 100)-dimensional entangled quantum system.

    PubMed

    Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2014-04-29

    Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising.

  4. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system

    PubMed Central

    Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2014-01-01

    Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising. PMID:24706902

  5. On the Local Equivalence Between the Canonical and the Microcanonical Ensembles for Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Tasaki, Hal

    2018-06-01

    We study a quantum spin system on the d-dimensional hypercubic lattice Λ with N=L^d sites with periodic boundary conditions. We take an arbitrary translation invariant short-ranged Hamiltonian. For this system, we consider both the canonical ensemble with inverse temperature β _0 and the microcanonical ensemble with the corresponding energy U_N(β _0) . For an arbitrary self-adjoint operator \\hat{A} whose support is contained in a hypercubic block B inside Λ , we prove that the expectation values of \\hat{A} with respect to these two ensembles are close to each other for large N provided that β _0 is sufficiently small and the number of sites in B is o(N^{1/2}) . This establishes the equivalence of ensembles on the level of local states in a large but finite system. The result is essentially that of Brandao and Cramer (here restricted to the case of the canonical and the microcanonical ensembles), but we prove improved estimates in an elementary manner. We also review and prove standard results on the thermodynamic limits of thermodynamic functions and the equivalence of ensembles in terms of thermodynamic functions. The present paper assumes only elementary knowledge on quantum statistical mechanics and quantum spin systems.

  6. Transfer matrix approach to the persistent current in quantum rings: Application to hybrid normal-superconducting rings

    NASA Astrophysics Data System (ADS)

    Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico

    2016-11-01

    Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.

  7. Experimental violation of Bell inequalities for multi-dimensional systems

    PubMed Central

    Lo, Hsin-Pin; Li, Che-Ming; Yabushita, Atsushi; Chen, Yueh-Nan; Luo, Chih-Wei; Kobayashi, Takayoshi

    2016-01-01

    Quantum correlations between spatially separated parts of a d-dimensional bipartite system (d ≥ 2) have no classical analog. Such correlations, also called entanglements, are not only conceptually important, but also have a profound impact on information science. In theory the violation of Bell inequalities based on local realistic theories for d-dimensional systems provides evidence of quantum nonlocality. Experimental verification is required to confirm whether a quantum system of extremely large dimension can possess this feature, however it has never been performed for large dimension. Here, we report that Bell inequalities are experimentally violated for bipartite quantum systems of dimensionality d = 16 with the usual ensembles of polarization-entangled photon pairs. We also estimate that our entanglement source violates Bell inequalities for extremely high dimensionality of d > 4000. The designed scenario offers a possible new method to investigate the entanglement of multipartite systems of large dimensionality and their application in quantum information processing. PMID:26917246

  8. Coherent and radiative couplings through two-dimensional structured environments

    NASA Astrophysics Data System (ADS)

    Galve, F.; Zambrini, R.

    2018-03-01

    We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.

  9. Representations of the quantum doubles of finite group algebras and spectral parameter dependent solutions of the Yang-Baxter equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dancer, K. A.; Isac, P. S.; Links, J.

    2006-10-15

    Quantum doubles of finite group algebras form a class of quasitriangular Hopf algebras that algebraically solve the Yang-Baxter equation. Each representation of the quantum double then gives a matrix solution of the Yang-Baxter equation. Such solutions do not depend on a spectral parameter, and to date there has been little investigation into extending these solutions such that they do depend on a spectral parameter. Here we first explicitly construct the matrix elements of the generators for all irreducible representations of quantum doubles of the dihedral groups D{sub n}. These results may be used to determine constant solutions of the Yang-Baxtermore » equation. We then discuss Baxterization ansaetze to obtain solutions of the Yang-Baxter equation with a spectral parameter and give several examples, including a new 21-vertex model. We also describe this approach in terms of minimal-dimensional representations of the quantum doubles of the alternating group A{sub 4} and the symmetric group S{sub 4}.« less

  10. Nonthermal Quantum Channels as a Thermodynamical Resource.

    PubMed

    Navascués, Miguel; García-Pintos, Luis Pedro

    2015-07-03

    Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.

  11. Nonthermal Quantum Channels as a Thermodynamical Resource

    NASA Astrophysics Data System (ADS)

    Navascués, Miguel; García-Pintos, Luis Pedro

    2015-07-01

    Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.

  12. High-dimensional Controlled-phase Gate Between a 2 N -dimensional Photon and N Three-level Artificial Atoms

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Ming; Wang, Tie-Jun

    2017-10-01

    Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.

  13. Quantum Superalgebras at Roots of Unity and Topological Invariants of Three-manifolds

    NASA Astrophysics Data System (ADS)

    Blumen, Sacha C.

    2006-01-01

    The general method of Reshetikhin and Turaev is followed to develop topological invariants of closed, connected, orientable 3-manifolds from a new class of algebras called pseudo-modular Hopf algebras. Pseudo-modular Hopf algebras are a class of Z_2-graded ribbon Hopf algebras that generalise the concept of a modular Hopf algebra. The quantum superalgebra U_q(osp(1|2n)) over C is considered with q a primitive N^th root of unity for all integers N >= 3. For such a q, a certain left ideal I of U_q(osp(1|2n)) is also a two-sided Hopf ideal, and the quotient algebra U_q^(N)(osp(1|2n)) = U_q(osp(1|2n)) / I is a Z_2-graded ribbon Hopf algebra. For all n and all N >= 3, a finite collection of finite dimensional representations of U_q^(N)(osp(1|2n)) is defined. Each such representation of U_q^(N)(osp(1|2n)) is labelled by an integral dominant weight belonging to the truncated dominant Weyl chamber. Properties of these representations are considered: the quantum superdimension of each representation is calculated, each representation is shown to be self-dual, and more importantly, the decomposition of the tensor product of an arbitrary number of such representations is obtained for even N. It is proved that the quotient algebra U_q^(N)(osp(1|2n)), together with the set of finite dimensional representations discussed above, form a pseudo-modular Hopf algebra when N >= 6 is twice an odd number. Using this pseudo-modular Hopf algebra, we construct a topological invariant of 3-manifolds. This invariant is shown to be different to the topological invariants of 3-manifolds arising from quantum so(2n+1) at roots of unity.

  14. Quantum predictions for an unmeasured system cannot be simulated with a finite-memory classical system

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Cabello, Adán

    2018-03-01

    We consider an ideal experiment in which unlimited nonprojective quantum measurements are sequentially performed on a system that is initially entangled with a distant one. At each step of the sequence, the measurements are randomly chosen between two. However, regardless of which measurement is chosen or which outcome is obtained, the quantum state of the pair always remains entangled. We show that the classical simulation of the reduced state of the distant system requires not only unlimited rounds of communication, but also that the distant system has infinite memory. Otherwise, a thermodynamical argument predicts heating at a distance. Our proposal can be used for experimentally ruling out nonlocal finite-memory classical models of quantum theory.

  15. Engineering two-photon high-dimensional states through quantum interference

    PubMed Central

    Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew

    2016-01-01

    Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685

  16. Application of hierarchical equations of motion (HEOM) to time dependent quantum transport at zero and finite temperatures

    NASA Astrophysics Data System (ADS)

    Tian, Heng; Chen, GuanHua

    2013-10-01

    Going beyond the limitations of our earlier works [X. Zheng, F. Wang, C.Y. Yam, Y. Mo, G.H. Chen, Phys. Rev. B 75, 195127 (2007); X. Zheng, G.H. Chen, Y. Mo, S.K. Koo, H. Tian, C.Y. Yam, Y.J. Yan, J. Chem. Phys. 133, 114101 (2010)], we propose, in this manuscript, a new alternative approach to simulate time-dependent quantum transport phenomenon from first-principles. This new practical approach, still retaining the formal exactness of HEOM framework, does not rely on any intractable parametrization scheme and the pole structure of Fermi distribution function, thus, can seamlessly incorporated into first-principles simulation and treat transient response of an open electronic systems to an external bias voltage at both zero and finite temperatures on the equal footing. The salient feature of this approach is surveyed, and its time complexity is analysed. As a proof-of-principle of this approach, simulation of the transient current of one dimensional tight-binding chain, driven by some direct external voltages, is demonstrated.

  17. Multispeed Prethermalization in Quantum Spin Models with Power-Law Decaying Interactions

    NASA Astrophysics Data System (ADS)

    Frérot, Irénée; Naldesi, Piero; Roscilde, Tommaso

    2018-01-01

    The relaxation of uniform quantum systems with finite-range interactions after a quench is generically driven by the ballistic propagation of long-lived quasiparticle excitations triggered by a sufficiently small quench. Here we investigate the case of long-range (1 /rα) interactions for a d -dimensional lattice spin model with uniaxial symmetry, and show that, in the regime d <α

  18. Multispeed Prethermalization in Quantum Spin Models with Power-Law Decaying Interactions.

    PubMed

    Frérot, Irénée; Naldesi, Piero; Roscilde, Tommaso

    2018-02-02

    The relaxation of uniform quantum systems with finite-range interactions after a quench is generically driven by the ballistic propagation of long-lived quasiparticle excitations triggered by a sufficiently small quench. Here we investigate the case of long-range (1/r^{α}) interactions for a d-dimensional lattice spin model with uniaxial symmetry, and show that, in the regime d<α

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Robert; Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125; Mitchison, Graeme

    In its most basic form, the finite quantum de Finetti theorem states that the reduced k-partite density operator of an n-partite symmetric state can be approximated by a convex combination of k-fold product states. Variations of this result include Renner's 'exponential' approximation by 'almost-product' states, a theorem which deals with certain triples of representations of the unitary group, and the result of D'Cruz et al. [e-print quant-ph/0606139;Phys. Rev. Lett. 98, 160406 (2007)] for infinite-dimensional systems. We show how these theorems follow from a single, general de Finetti theorem for representations of symmetry groups, each instance corresponding to a particular choicemore » of symmetry group and representation of that group. This gives some insight into the nature of the set of approximating states and leads to some new results, including an exponential theorem for infinite-dimensional systems.« less

  20. Computational models for the berry phase in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca; Sebetci, A.

    2014-10-06

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  1. Work extraction from quantum systems with bounded fluctuations in work.

    PubMed

    Richens, Jonathan G; Masanes, Lluis

    2016-11-25

    In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.

  2. Work extraction from quantum systems with bounded fluctuations in work

    PubMed Central

    Richens, Jonathan G.; Masanes, Lluis

    2016-01-01

    In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations. PMID:27886177

  3. Work extraction from quantum systems with bounded fluctuations in work

    NASA Astrophysics Data System (ADS)

    Richens, Jonathan G.; Masanes, Lluis

    2016-11-01

    In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.

  4. Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors

    NASA Astrophysics Data System (ADS)

    Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay

    2017-11-01

    Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α , the appropriate FRCG model has the effective range d =b2/N =α2/N , for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

  5. Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.

    PubMed

    Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay

    2017-11-01

    Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

  6. GENERAL: Scattering Phase Correction for Semiclassical Quantization Rules in Multi-Dimensional Quantum Systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung

    2010-02-01

    While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.

  7. Finite-dimensional integrable systems: A collection of research problems

    NASA Astrophysics Data System (ADS)

    Bolsinov, A. V.; Izosimov, A. M.; Tsonev, D. M.

    2017-05-01

    This article suggests a series of problems related to various algebraic and geometric aspects of integrability. They reflect some recent developments in the theory of finite-dimensional integrable systems such as bi-Poisson linear algebra, Jordan-Kronecker invariants of finite dimensional Lie algebras, the interplay between singularities of Lagrangian fibrations and compatible Poisson brackets, and new techniques in projective geometry.

  8. Non-perturbative background field calculations

    NASA Astrophysics Data System (ADS)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  9. Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Nowara, Ewa; Johnson, Bruce

    2015-03-01

    The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.

  10. Nonlinear Control Systems

    DTIC Science & Technology

    2007-03-01

    Finite -dimensional regulators for a class of infinite dimensional systems ,” Systems and Control Letters, 3 (1983), 7-12. [11] B...semiglobal stabilizability by encoded state feedback,” to appear in Systems and Control Letters. 22 29. C. De Persis, A. Isidori, “Global stabilization of...nonequilibrium setting, for both finite and infinite dimensional control systems . Our objectives for distributed parameter systems included

  11. Critical behavior of dissipative two-dimensional spin lattices

    NASA Astrophysics Data System (ADS)

    Rota, R.; Storme, F.; Bartolo, N.; Fazio, R.; Ciuti, C.

    2017-04-01

    We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian that are subject to incoherent spin flips. We determine the steady-state solution of the master equation for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and critical exponent of the magnetic linear susceptibility associated with a dissipative ferromagnetic transition. We show that the von Neumann entropy increases across the critical point, revealing a strongly mixed character of the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information, which exhibits a critical behavior at the transition point, showing that quantum correlations play a crucial role in the transition.

  12. Maps on positive operators preserving Rényi type relative entropies and maximal f-divergences

    NASA Astrophysics Data System (ADS)

    Gaál, Marcell; Nagy, Gergő

    2018-02-01

    In this paper, we deal with two quantum relative entropy preserver problems on the cones of positive (either positive definite or positive semidefinite) operators. The first one is related to a quantum Rényi relative entropy like quantity which plays an important role in classical-quantum channel decoding. The second one is connected to the so-called maximal f-divergences introduced by D. Petz and M. B. Ruskai who considered this quantity as a generalization of the usual Belavkin-Staszewski relative entropy. We emphasize in advance that all the results are obtained for finite-dimensional Hilbert spaces.

  13. Distribution of high-dimensional entanglement via an intra-city free-space link

    PubMed Central

    Steinlechner, Fabian; Ecker, Sebastian; Fink, Matthias; Liu, Bo; Bavaresco, Jessica; Huber, Marcus; Scheidl, Thomas; Ursin, Rupert

    2017-01-01

    Quantum entanglement is a fundamental resource in quantum information processing and its distribution between distant parties is a key challenge in quantum communications. Increasing the dimensionality of entanglement has been shown to improve robustness and channel capacities in secure quantum communications. Here we report on the distribution of genuine high-dimensional entanglement via a 1.2-km-long free-space link across Vienna. We exploit hyperentanglement, that is, simultaneous entanglement in polarization and energy-time bases, to encode quantum information, and observe high-visibility interference for successive correlation measurements in each degree of freedom. These visibilities impose lower bounds on entanglement in each subspace individually and certify four-dimensional entanglement for the hyperentangled system. The high-fidelity transmission of high-dimensional entanglement under real-world atmospheric link conditions represents an important step towards long-distance quantum communications with more complex quantum systems and the implementation of advanced quantum experiments with satellite links. PMID:28737168

  14. Distribution of high-dimensional entanglement via an intra-city free-space link.

    PubMed

    Steinlechner, Fabian; Ecker, Sebastian; Fink, Matthias; Liu, Bo; Bavaresco, Jessica; Huber, Marcus; Scheidl, Thomas; Ursin, Rupert

    2017-07-24

    Quantum entanglement is a fundamental resource in quantum information processing and its distribution between distant parties is a key challenge in quantum communications. Increasing the dimensionality of entanglement has been shown to improve robustness and channel capacities in secure quantum communications. Here we report on the distribution of genuine high-dimensional entanglement via a 1.2-km-long free-space link across Vienna. We exploit hyperentanglement, that is, simultaneous entanglement in polarization and energy-time bases, to encode quantum information, and observe high-visibility interference for successive correlation measurements in each degree of freedom. These visibilities impose lower bounds on entanglement in each subspace individually and certify four-dimensional entanglement for the hyperentangled system. The high-fidelity transmission of high-dimensional entanglement under real-world atmospheric link conditions represents an important step towards long-distance quantum communications with more complex quantum systems and the implementation of advanced quantum experiments with satellite links.

  15. Stopping dynamics of ions passing through correlated honeycomb clusters

    NASA Astrophysics Data System (ADS)

    Balzer, Karsten; Schlünzen, Niclas; Bonitz, Michael

    2016-12-01

    A combined nonequilibrium Green functions-Ehrenfest dynamics approach is developed that allows for a time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson (Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T -matrix approximations of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1 and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular, examine the influence of electron-electron correlations on the energy exchange between projectile and electron system. We investigate the time dependence of the projectile's kinetic energy (stopping power), the electron density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations for particle irradiation of single-layer graphene.

  16. Experimental ladder proof of Hardy's nonlocality for high-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Chen, Lixiang; Zhang, Wuhong; Wu, Ziwen; Wang, Jikang; Fickler, Robert; Karimi, Ebrahim

    2017-08-01

    Recent years have witnessed a rapidly growing interest in high-dimensional quantum entanglement for fundamental studies as well as towards novel applications. Therefore, the ability to verify entanglement between physical qudits, d -dimensional quantum systems, is of crucial importance. To show nonclassicality, Hardy's paradox represents "the best version of Bell's theorem" without using inequalities. However, so far it has only been tested experimentally for bidimensional vector spaces. Here, we formulate a theoretical framework to demonstrate the ladder proof of Hardy's paradox for arbitrary high-dimensional systems. Furthermore, we experimentally demonstrate the ladder proof by taking advantage of the orbital angular momentum of high-dimensionally entangled photon pairs. We perform the ladder proof of Hardy's paradox for dimensions 3 and 4, both with the ladder up to the third step. Our paper paves the way towards a deeper understanding of the nature of high-dimensionally entangled quantum states and may find applications in quantum information science.

  17. An uncertainty principle for unimodular quantum groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crann, Jason; Université Lille 1 - Sciences et Technologies, UFR de Mathématiques, Laboratoire de Mathématiques Paul Painlevé - UMR CNRS 8524, 59655 Villeneuve d'Ascq Cédex; Kalantar, Mehrdad, E-mail: jason-crann@carleton.ca, E-mail: mkalanta@math.carleton.ca

    2014-08-15

    We present a generalization of Hirschman's entropic uncertainty principle for locally compact Abelian groups to unimodular locally compact quantum groups. As a corollary, we strengthen a well-known uncertainty principle for compact groups, and generalize the relation to compact quantum groups of Kac type. We also establish the complementarity of finite-dimensional quantum group algebras. In the non-unimodular setting, we obtain an uncertainty relation for arbitrary locally compact groups using the relative entropy with respect to the Haar weight as the measure of uncertainty. We also show that when restricted to q-traces of discrete quantum groups, the relative entropy with respect tomore » the Haar weight reduces to the canonical entropy of the random walk generated by the state.« less

  18. Finite Geometries in Quantum Theory:. from Galois (fields) to Hjelmslev (rings)

    NASA Astrophysics Data System (ADS)

    Saniga, Metod; Planat, Michel

    Geometries over Galois fields (and related finite combinatorial structures/algebras) have recently been recognized to play an ever-increasing role in quantum theory, especially when addressing properties of mutually unbiased bases (MUBs). The purpose of this contribution is to show that completely new vistas open up if we consider a generalized class of finite (projective) geometries, viz. those defined over Galois rings and/or other finite Hjelmslev rings. The case is illustrated by demonstrating that the basic combinatorial properties of a complete set of MUBs of a q-dimensional Hilbert space { H}q, q = pr with p being a prime and r a positive integer, are qualitatively mimicked by the configuration of points lying on a proper conic in a projective Hjelmslev plane defined over a Galois ring of characteristic p2 and rank r. The q vectors of a basis of { H}q correspond to the q points of a (so-called) neighbour class and the q + 1 MUBs answer to the total number of (pairwise disjoint) neighbour classes on the conic. Although this remarkable analogy is still established at the level of cardinalities only, we currently work on constructing an explicit mapping by associating a MUB to each neighbour class of the points of the conic and a state vector of this MUB to a particular point of the class. Further research in this direction may prove to be of great relevance for many areas of quantum information theory, in particular for quantum information processing.

  19. Exceptional quantum geometry and particle physics

    NASA Astrophysics Data System (ADS)

    Dubois-Violette, Michel

    2016-11-01

    Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.

  20. On Landauer's Principle and Bound for Infinite Systems

    NASA Astrophysics Data System (ADS)

    Longo, Roberto

    2018-04-01

    Landauer's principle provides a link between Shannon's information entropy and Clausius' thermodynamical entropy. Here we set up a basic formula for the incremental free energy of a quantum channel, possibly relative to infinite systems, naturally arising by an Operator Algebraic point of view. By the Tomita-Takesaki modular theory, we can indeed describe a canonical evolution associated with a quantum channel state transfer. Such evolution is implemented both by a modular Hamiltonian and a physical Hamiltonian, the latter being determined by its functoriality properties. This allows us to make an intrinsic analysis, extending our QFT index formula, but without any a priori given dynamics; the associated incremental free energy is related to the logarithm of the Jones index and is thus quantised. This leads to a general lower bound for the incremental free energy of an irreversible quantum channel which is half of the Landauer bound, and to further bounds corresponding to the discrete series of the Jones index. In the finite dimensional context, or in the case of DHR charges in QFT, where the dimension is a positive integer, our lower bound agrees with Landauer's bound.

  1. Heat conduction in one-dimensional aperiodic quantum Ising chains.

    PubMed

    Li, Wenjuan; Tong, Peiqing

    2011-03-01

    The heat conductivity of nonperiodic quantum Ising chains whose ends are connected with heat baths at different temperatures are studied numerically by solving the Lindblad master equation. The chains are subjected to a uniform transverse field h, while the exchange coupling J{m} between the nearest-neighbor spins takes the two values J{A} and J{B} arranged in Fibonacci, generalized Fibonacci, Thue-Morse, and period-doubling sequences. We calculate the energy-density profile and energy current of the resulting nonequilibrium steady states to study the heat-conducting behavior of finite but large systems. Although these nonperiodic quantum Ising chains are integrable, it is clearly found that energy gradients exist in all chains and the energy currents appear to scale as the system size ~N{α}. By increasing the ratio of couplings, the exponent α can be modulated from α > -1 to α < -1 corresponding to the nontrivial transition from the abnormal heat transport to the heat insulator. The influences of the temperature gradient and the magnetic field to heat conduction have also been discussed.

  2. Quantum correlations in multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.

    2018-03-01

    Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.

  3. Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections

    NASA Astrophysics Data System (ADS)

    Hermanns, M.; Kimchi, I.; Knolle, J.

    2018-03-01

    Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking, the topological order underlying quantum spin liquids is hard to detect experimentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tricoordinated lattices are chief counterexamples - they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including two-dimensional and three-dimensional fractionalization as well as dynamic correlations and behavior at finite temperatures. We discuss the different materials and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vourdas, A.

    The finite set of subsystems of a finite quantum system with variables in Z(n), is studied as a Heyting algebra. The physical meaning of the logical connectives is discussed. It is shown that disjunction of subsystems is more general concept than superposition. Consequently, the quantum probabilities related to commuting projectors in the subsystems, are incompatible with associativity of the join in the Heyting algebra, unless if the variables belong to the same chain. This leads to contextuality, which in the present formalism has as contexts, the chains in the Heyting algebra. Logical Bell inequalities, which contain “Heyting factors,” are discussed.more » The formalism is also applied to the infinite set of all finite quantum systems, which is appropriately enlarged in order to become a complete Heyting algebra.« less

  5. Conditions where random phase approximation becomes exact in the high-density limit

    NASA Astrophysics Data System (ADS)

    Morawetz, Klaus; Ashokan, Vinod; Bala, Renu; Pathak, Kare Narain

    2018-04-01

    It is shown that, in d -dimensional systems, the vertex corrections beyond the random phase approximation (RPA) or G W approximation scales with the power d -β -α of the Fermi momentum if the relation between Fermi energy and Fermi momentum is ɛf˜pfβ and the interacting potential possesses a momentum power law of ˜p-α . The condition d -β -α <0 specifies systems where RPA is exact in the high-density limit. The one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum Monte Carlo simulations.

  6. An embedding of the universal Askey-Wilson algebra into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2)

    NASA Astrophysics Data System (ADS)

    Huang, Hau-Wen

    2017-09-01

    The Askey-Wilson algebras were used to interpret the algebraic structure hidden in the Racah-Wigner coefficients of the quantum algebra Uq (sl2). In this paper, we display an injection of a universal analog △q of Askey-Wilson algebras into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2) behind the application. Moreover we establish the decomposition rules for 3-fold tensor products of irreducible Verma Uq (sl2)-modules and of finite-dimensional irreducible Uq (sl2)-modules into the direct sums of finite-dimensional irreducible △q-modules. As an application, we derive a formula for the Racah-Wigner coefficients of Uq (sl2).

  7. Quasi-local holographic dualities in non-perturbative 3D quantum gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Goeller, Christophe; Livine, Etera R.; Riello, Aldo

    2018-07-01

    We present a line of research aimed at investigating holographic dualities in the context of three dimensional quantum gravity within finite bounded regions. The bulk quantum geometrodynamics is provided by the Ponzano–Regge state-sum model, which defines 3D quantum gravity as a discrete topological quantum field theory (TQFT). This formulation provides an explicit and detailed definition of the quantum boundary states, which allows a rich correspondence between quantum boundary conditions and boundary theories, thereby leading to holographic dualities between 3D quantum gravity and 2D statistical models as used in condensed matter. After presenting the general framework, we focus on the concrete example of the coherent twisted torus boundary, which allows for a direct comparison with other approaches to 3D/2D holography at asymptotic infinity. We conclude with the most interesting questions to pursue in this framework.

  8. De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography.

    PubMed

    Renner, R; Cirac, J I

    2009-03-20

    We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks.

  9. Holographic RG flows on curved manifolds and quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Ghosh, J. K.; Kiritsis, E.; Nitti, F.; Witkowski, L. T.

    2018-05-01

    Holographic RG flows dual to QFTs on maximally symmetric curved manifolds (dS d , AdS d , and S d ) are considered in the framework of Einstein-dilaton gravity in d + 1 dimensions. A general dilaton potential is used and the flows are driven by a scalar relevant operator. The general properties of such flows are analyzed and the UV and IR asymptotics computed. New RG flows can appear at finite curvature which do not have a zero curvature counterpart. The so-called `bouncing' flows, where the β-function has a branch cut at which it changes sign, are found to persist at finite curvature. Novel quantum first-order phase transitions are found, triggered by a variation in the d-dimensional curvature in theories allowing multiple ground states.

  10. Measuring higher-dimensional entanglement

    NASA Astrophysics Data System (ADS)

    Datta, Chandan; Agrawal, Pankaj; Choudhary, Sujit K.

    2017-04-01

    We study local-realistic inequalities, Bell-type inequalities, for bipartite pure states of finite dimensional quantum systems—qudits. There are a number of proposed Bell-type inequalities for such systems. Our interest is in relating the value of the Bell-type inequality function with a measure of entanglement. Interestingly, we find that one of these inequalities, the Son-Lee-Kim inequality, can be used to measure entanglement of a pure bipartite qudit state and a class of mixed two-qudit states. Unlike the majority of earlier schemes in this direction, where the number of observables needed to characterize the entanglement increases with the dimension of the subsystems, this method needs only four observables. We also discuss the experimental feasibility of this scheme. It turns out that current experimental setups can be used to measure the entanglement using our scheme.

  11. Response to defects in multipartite and bipartite entanglement of isotropic quantum spin networks

    NASA Astrophysics Data System (ADS)

    Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2018-05-01

    Quantum networks are an integral component in performing efficient computation and communication tasks that are not accessible using classical systems. A key aspect in designing an effective and scalable quantum network is generating entanglement between its nodes, which is robust against defects in the network. We consider an isotropic quantum network of spin-1/2 particles with a finite fraction of defects, where the corresponding wave function of the network is rotationally invariant under the action of local unitaries. By using quantum information-theoretic concepts like strong subadditivity of von Neumann entropy and approximate quantum telecloning, we prove analytically that in the presence of defects, caused by loss of a finite fraction of spins, the network, composed of a fixed numbers of lattice sites, sustains genuine multisite entanglement and at the same time may exhibit finite moderate-range bipartite entanglement, in contrast to the network with no defects.

  12. Experimental witness of genuine high-dimensional entanglement

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Hu, Xiao-Min; Liu, Bi-Heng; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can

    2018-06-01

    Growing interest has been invested in exploring high-dimensional quantum systems, for their promising perspectives in certain quantum tasks. How to characterize a high-dimensional entanglement structure is one of the basic questions to take full advantage of it. However, it is not easy for us to catch the key feature of high-dimensional entanglement, for the correlations derived from high-dimensional entangled states can be possibly simulated with copies of lower-dimensional systems. Here, we follow the work of Kraft et al. [Phys. Rev. Lett. 120, 060502 (2018), 10.1103/PhysRevLett.120.060502], and present the experimental realizing of creation and detection, by the normalized witness operation, of the notion of genuine high-dimensional entanglement, which cannot be decomposed into lower-dimensional Hilbert space and thus form the entanglement structures existing in high-dimensional systems only. Our experiment leads to further exploration of high-dimensional quantum systems.

  13. Non-monotonicity of Trace Distance Under Tensor Products

    NASA Astrophysics Data System (ADS)

    Maziero, Jonas

    2015-10-01

    The trace distance (TD) possesses several of the good properties required for a faithful distance measure in the quantum state space. Despite its importance and ubiquitous use in quantum information science, one of its questionable features, its possible non-monotonicity under taking tensor products of its arguments (NMuTP), has been hitherto unexplored. In this article, we advance analytical and numerical investigations of this issue considering different classes of states living in a discrete and finite dimensional Hilbert space. Our results reveal that although this property of TD does not show up for pure states and for some particular classes of mixed states, it is present in a non-negligible fraction of the regarded density operators. Hence, even though the percentage of quartets of states leading to the NMuTP drawback of TD and its strength decrease as the system's dimension grows, this property of TD must be taken into account before using it as a figure of merit for distinguishing mixed quantum states.

  14. Quasiparticle breakdown in a quantum spin liquid.

    PubMed

    Stone, Matthew B; Zaliznyak, Igor A; Hong, Tao; Broholm, Collin L; Reich, Daniel H

    2006-03-09

    Much of modern condensed matter physics is understood in terms of elementary excitations, or quasiparticles--fundamental quanta of energy and momentum. Various strongly interacting atomic systems are successfully treated as a collection of quasiparticles with weak or no interactions. However, there are interesting limitations to this description: in some systems the very existence of quasiparticles cannot be taken for granted. Like unstable elementary particles, quasiparticles cannot survive beyond a threshold where certain decay channels become allowed by conservation laws; their spectrum terminates at this threshold. Such quasiparticle breakdown was first predicted for an exotic state of matter--super-fluid 4He at temperatures close to absolute zero, a quantum Bose liquid where zero-point atomic motion precludes crystallization. Here we show, using neutron scattering, that quasiparticle breakdown can also occur in a quantum magnet and, by implication, in other systems with Bose quasiparticles. We have measured spin excitations in a two-dimensional quantum magnet, piperazinium hexachlorodicuprate (PHCC), in which spin-1/2 copper ions form a non-magnetic quantum spin liquid, and find remarkable similarities with excitations in superfluid 4He. We observe a threshold momentum beyond which the quasiparticle peak merges with the two-quasiparticle continuum. It then acquires a finite energy width and becomes indistinguishable from a leading-edge singularity, so that excited states are no longer quasiparticles but occupy a wide band of energy. Our findings have important ramifications for understanding excitations with gapped spectra in many condensed matter systems, ranging from band insulators to high-transition-temperature superconductors.

  15. Quantum learning of classical stochastic processes: The completely positive realization problem

    NASA Astrophysics Data System (ADS)

    Monràs, Alex; Winter, Andreas

    2016-01-01

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print arXiv:1303.3771(2013)].

  16. Arrays of individually controlled ions suitable for two-dimensional quantum simulations

    PubMed Central

    Mielenz, Manuel; Kalis, Henning; Wittemer, Matthias; Hakelberg, Frederick; Warring, Ulrich; Schmied, Roman; Blain, Matthew; Maunz, Peter; Moehring, David L.; Leibfried, Dietrich; Schaetz, Tobias

    2016-01-01

    A precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here, we operate two-dimensional arrays of three trapped ions in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 μm. In our approach, which is scalable to arbitrary two-dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as a tuning of couplings between ions within experimental sequences. Our work paves the way towards a quantum simulator of two-dimensional systems designed at will. PMID:27291425

  17. Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.

    2016-12-01

    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.

  18. Condensed Matter Theories: Volume 25

    NASA Astrophysics Data System (ADS)

    Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter

    2011-03-01

    pt. A. Fermi and Bose fluids, exotic systems. Reemergence of the collective mode in [symbol]He and electron layers / H. M. Bohm ... [et al.]. Dissecting and testing collective and topological scenarios for the quantum critical point / J. W. Clark, V. A. Khodel and M. V. Zverev. Helium on nanopatterned surfaces at finite temperature / E. S. Hernandez ... [et al.]. Towards DFT calculations of metal clusters in quantum fluid matrices / S. A. Chin ... [et al.]. Acoustic band gap formation in metamaterials / D. P. Elford ... [et al.]. Dissipative processes in low density strongly interacting 2D electron systems / D. Neilson. Dynamical spatially resolved response function of finite 1-D nano plasmas / T. Raitza, H. Reinholz and G. Ropke. Renormalized bosons and fermions / K. A. Gernoth and M. L. Ristig. Light clusters in nuclear matter / G. Ropke -- pt. B. Quantum magnets, quantum dynamics and phase transitions. Magnetic ordering of antiferromagnets on a spatially anisotropic triangular lattice / R. F. Bishop ... [et al.]. Thermodynamic detection of quantum phase transitions / M. K. G. Kruse ... [et al.]. The SU(2) semi quantum systems dynamics and thermodynamics / C. M. Sarris and A. N. Proto -- pt. C. Physics of nanosystems and nanotechnology. Quasi-one dimensional fluids that exhibit higher dimensional behavior / S. M. Gatica ... [et al.]. Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach / J. Roden, W. T. Strunz and A. Eisfeld. Quantum properties in transport through nanoscopic rings: Charge-spin separation and interference effects / K. Hallberg, J. Rincon and S. Ramasesha. Cooperative localization-delocalization in the high T[symbol] cuprates / J. Ranninger. Thermodynamically stable vortex states in superconducting nanowires / W. M. Wu, M. B. Sobnack and F. V. Kusmartsev.pt. D. Quantum information. Quantum information in optical lattices / A. M. Guzman and M. A. Duenas E. -- pt. E. Theory and applications of molecular dynamics and density functional theory. Exchange-correlation functionals from the identical-particle Ornstein-Zernike equation: Basic formulation and numerical algorithms / R. Cuevas-Saavedra and P. W. Ayers. Features and catalytic properties of RhCu: A review / S. Gonzalez, C. Sousa and F. Illas. Kinetic energy functionals: Exact ones from analytic model wave functions and approximate ones in orbital-free molecular dynamics / V. V. Karasiev ... [et al.]. Numerical analysis of hydrogen storage in carbon nanopores / C. Wexler ... [et al.] -- pt. F. Superconductivity. Generalized Bose-Einstein condensation in superconductivity / M. de Llano. Kohn anomaly energy in conventional superconductors equals twice the energy of the superconducting gap: How and why? / R. Chaudhury and M. P. Das. Collective excitations in superconductors and semiconductors in the presence of a condensed phase / Z. Koinov. Thermal expansion of ferromagnetic superconductors: Possible application to UGe[symbol] / N. Hatayama and R. Konno. Generalized superconducting gap in a Boson-Fermion model / T. A. Mamedov and M. de Llano. Influence of domain walls in the superconductor/ferromagnet proximity effect / E. J. Patino. Spin singlet and triplet superconductivity induced by correlated hopping interactions / L. A. Perez, J. S. Millan and C. Wang -- pt. G. Statistical mechanics, relativistic quantum mechanics. Boltzmann's ergodic hypothesis: A meeting place for two cultures / M. H. Lee. Electron-electron interaction in the non-relativistic limit / F. B. Malik.

  19. Finite-block-length analysis in classical and quantum information theory.

    PubMed

    Hayashi, Masahito

    2017-01-01

    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects.

  20. Finite-block-length analysis in classical and quantum information theory

    PubMed Central

    HAYASHI, Masahito

    2017-01-01

    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects. PMID:28302962

  1. High-Dimensional Quantum Information Processing with Linear Optics

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Casey A.

    Quantum information processing (QIP) is an interdisciplinary field concerned with the development of computers and information processing systems that utilize quantum mechanical properties of nature to carry out their function. QIP systems have become vastly more practical since the turn of the century. Today, QIP applications span imaging, cryptographic security, computation, and simulation (quantum systems that mimic other quantum systems). Many important strategies improve quantum versions of classical information system hardware, such as single photon detectors and quantum repeaters. Another more abstract strategy engineers high-dimensional quantum state spaces, so that each successful event carries more information than traditional two-level systems allow. Photonic states in particular bring the added advantages of weak environmental coupling and data transmission near the speed of light, allowing for simpler control and lower system design complexity. In this dissertation, numerous novel, scalable designs for practical high-dimensional linear-optical QIP systems are presented. First, a correlated photon imaging scheme using orbital angular momentum (OAM) states to detect rotational symmetries in objects using measurements, as well as building images out of those interactions is reported. Then, a statistical detection method using chains of OAM superpositions distributed according to the Fibonacci sequence is established and expanded upon. It is shown that the approach gives rise to schemes for sorting, detecting, and generating the recursively defined high-dimensional states on which some quantum cryptographic protocols depend. Finally, an ongoing study based on a generalization of the standard optical multiport for applications in quantum computation and simulation is reported upon. The architecture allows photons to reverse momentum inside the device. This in turn enables realistic implementation of controllable linear-optical scattering vertices for carrying out quantum walks on arbitrary graph structures, a powerful tool for any quantum computer. It is shown that the novel architecture provides new, efficient capabilities for the optical quantum simulation of Hamiltonians and topologically protected states. Further, these simulations use exponentially fewer resources than feedforward techniques, scale linearly to higher-dimensional systems, and use only linear optics, thus offering a concrete experimentally achievable implementation of graphical models of discrete-time quantum systems.

  2. Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato

    2017-11-01

    The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.

  3. Mixing Categories and Modal Logics in the Quantum Setting

    NASA Astrophysics Data System (ADS)

    Cinà, Giovanni

    The study of the foundations of Quantum Mechanics, especially after the advent of Quantum Computation and Information, has benefited from the application of category-theoretic tools and modal logics to the analysis of Quantum processes: we witness a wealth of theoretical frameworks casted in either of the two languages. This paper explores the interplay of the two formalisms in the peculiar context of Quantum Theory. After a review of some influential abstract frameworks, we show how different modal logic frames can be extracted from the category of finite dimensional Hilbert spaces, connecting the Categorical Quantum Mechanics approach to some modal logics that have been proposed for Quantum Computing. We then apply a general version of the same technique to two other categorical frameworks, the `topos approach' of Doering and Isham and the sheaf-theoretic work on contextuality by Abramsky and Brandenburger, suggesting how some key features can be expressed with modal languages.

  4. Finite hedging in field theory models of interest rates

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Srikant, Marakani

    2004-03-01

    We use path integrals to calculate hedge parameters and efficacy of hedging in a quantum field theory generalization of the Heath, Jarrow, and Morton [Robert Jarrow, David Heath, and Andrew Morton, Econometrica 60, 77 (1992)] term structure model, which parsimoniously describes the evolution of imperfectly correlated forward rates. We calculate, within the model specification, the effectiveness of hedging over finite periods of time, and obtain the limiting case of instantaneous hedging. We use empirical estimates for the parameters of the model to show that a low-dimensional hedge portfolio is quite effective.

  5. 1 / f α noise and generalized diffusion in random Heisenberg spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Kartiek; Demler, Eugene; Martin, Ivar

    2015-11-01

    We study the “flux-noise” spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq (f ), at finite wave vector q, exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T = 0 and T =∞. The low-frequency power-law behavior of the structure factormore » is inherited by any generic probe with a finite bandwidth and is of the form 1/f α with 0.5 < α < 1. An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings.More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusionwhich directly follows from a generalized spin-diffusion propagator.We also argue that 1/f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1/f α behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1/f α noise in SQUIDs.« less

  6. Grassmann matrix quantum mechanics

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less

  7. Metric dimensional reduction at singularities with implications to Quantum Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2014-08-15

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being justmore » non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained opens new ways for Quantum Gravity.« less

  8. Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudip; Rajak, Atanu; Chakrabarti, Bikas K.

    2018-02-01

    We explore the behavior of the order parameter distribution of the quantum Sherrington-Kirkpatrick model in the spin glass phase using Monte Carlo technique for the effective Suzuki-Trotter Hamiltonian at finite temperatures and that at zero temperature obtained using the exact diagonalization method. Our numerical results indicate the existence of a low- but finite-temperature quantum-fluctuation-dominated ergodic region along with the classical fluctuation-dominated high-temperature nonergodic region in the spin glass phase of the model. In the ergodic region, the order parameter distribution gets narrower around the most probable value of the order parameter as the system size increases. In the other region, the Parisi order distribution function has nonvanishing value everywhere in the thermodynamic limit, indicating nonergodicity. We also show that the average annealing time for convergence (to a low-energy level of the model, within a small error range) becomes system size independent for annealing down through the (quantum-fluctuation-dominated) ergodic region. It becomes strongly system size dependent for annealing through the nonergodic region. Possible finite-size scaling-type behavior for the extent of the ergodic region is also addressed.

  9. Sudden death of entanglement and non-locality in two- and three-component quantum systems

    NASA Astrophysics Data System (ADS)

    Ann, Kevin

    2011-12-01

    Quantum entanglement and non-locality are non-classical characteristics of quantum states with phase coherence that are of central importance to physics, and relevant to the foundations of quantum mechanics and quantum information science. This thesis examines quantum entanglement and non-locality in two- and three-component quantum states with phase coherence when they are subject to statistically independent, classical, Markovian, phase noise in various combinations at the local and collective level. Because this noise reduces phase coherence, it can also reduce quantum entanglement and Bell non-locality. After introducing and contextualizing the research, the results are presented in three broad areas. The first area characterizes the relative time scales of decoherence and disentanglement in 2 x 2 and 3 x 3 quantum states, as well as the various subsystems of the two classes of entangled tripartite two-level quantum states. In all cases, it was found that disentanglement time scales are less than or equal to decoherence time scales. The second area examines the finite-time loss of entanglement, even as quantum state coherence is lost only asymptotically in time due to local dephasing noise, a phenomenon entitled "Entanglement Sudden Death" (ESD). Extending the initial discovery in the simplest 2 x 2 case, ESD is shown to exist in all other systems where mixed-state entanglement measures exist, the 2 x 3 and d x d systems, for finite d > 2. The third area concerns non-locality, which is a physical phenomenon independent of quantum mechanics and related to, though fundamentally different from, entanglement. Non-locality, as quantified by classes of Bell inequalities, is shown to be lost in finite time, even when decoherence occurs only asymptotically. This phenomenon was named "Bell Non-locality Sudden Death" (BNSD).

  10. Hybrid Methods in Quantum Information

    NASA Astrophysics Data System (ADS)

    Marshall, Kevin

    Today, the potential power of quantum information processing comes as no surprise to physicist or science-fiction writer alike. However, the grand promises of this field remain unrealized, despite significant strides forward, due to the inherent difficulties of manipulating quantum systems. Simply put, it turns out that it is incredibly difficult to interact, in a controllable way, with the quantum realm when we seem to live our day to day lives in a classical world. In an effort to solve this challenge, people are exploring a variety of different physical platforms, each with their strengths and weaknesses, in hopes of developing new experimental methods that one day might allow us to control a quantum system. One path forward rests in combining different quantum systems in novel ways to exploit the benefits of different systems while circumventing their respective weaknesses. In particular, quantum systems come in two different flavours: either discrete-variable systems or continuous-variable ones. The field of hybrid quantum information seeks to combine these systems, in clever ways, to help overcome the challenges blocking the path between what is theoretically possible and what is achievable in a laboratory. In this thesis we explore four topics in the context of hybrid methods in quantum information, in an effort to contribute to the resolution of existing challenges and to stimulate new avenues of research. First, we explore the manipulation of a continuous-variable quantum system consisting of phonons in a linear chain of trapped ions where we use the discretized internal levels to mediate interactions. Using our proposed interaction we are able to implement, for example, the acoustic equivalent of a beam splitter with modest experimental resources. Next we propose an experimentally feasible implementation of the cubic phase gate, a primitive non-Gaussian gate required for universal continuous-variable quantum computation, based off sequential photon subtraction. We then discuss the notion of embedding a finite dimensional state into a continuous-variable system, and propose a method of performing quantum computations on encrypted continuous-variable states. This protocol allows for a client, of limited quantum ability, to outsource a computation while hiding their information. Next, we discuss the possibility of performing universal quantum computation on discrete-variable logical states encoded in mixed continuous-variable quantum states. Finally, we present an account of open problems related to our results, and possible future avenues of research.

  11. Optimal eavesdropping in cryptography with three-dimensional quantum states.

    PubMed

    Bruss, D; Macchiavello, C

    2002-03-25

    We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.

  12. Fate of classical solitons in one-dimensional quantum systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pustilnik, M.; Matveev, K. A.

    We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, andmore » argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.« less

  13. Hopping transport through an array of Luttinger liquid stubs

    NASA Astrophysics Data System (ADS)

    Chudnovskiy, A. L.

    2004-01-01

    We consider a thermally activated transport across and array of parallel one-dimensional quantum wires of finite length (quantum stubs). The disorder enters as a random tunneling between the nearest-neighbor stubs as well as a random shift of the bottom of the energy band in each stub. Whereas one-particle wave functions are localized across the array, the plasmons are delocalized, which affects the variable-range hopping. A perturbative analytical expression for the low-temperature resistance across the array is obtained for a particular choice of plasmon dispersion.

  14. Crystal-Phase Quantum Wires: One-Dimensional Heterostructures with Atomically Flat Interfaces.

    PubMed

    Corfdir, Pierre; Li, Hong; Marquardt, Oliver; Gao, Guanhui; Molas, Maciej R; Zettler, Johannes K; van Treeck, David; Flissikowski, Timur; Potemski, Marek; Draxl, Claudia; Trampert, Achim; Fernández-Garrido, Sergio; Grahn, Holger T; Brandt, Oliver

    2018-01-10

    In semiconductor quantum-wire heterostructures, interface roughness leads to exciton localization and to a radiative decay rate much smaller than that expected for structures with flat interfaces. Here, we uncover the electronic and optical properties of the one-dimensional extended defects that form at the intersection between stacking faults and inversion domain boundaries in GaN nanowires. We show that they act as crystal-phase quantum wires, a novel one-dimensional quantum system with atomically flat interfaces. These quantum wires efficiently capture excitons whose radiative decay gives rise to an optical doublet at 3.36 eV at 4.2 K. The binding energy of excitons confined in crystal-phase quantum wires is measured to be more than twice larger than that of the bulk. As a result of their unprecedented interface quality, these crystal-phase quantum wires constitute a model system for the study of one-dimensional excitons.

  15. Exactly solvable quantum cosmologies from two killing field reductions of general relativity

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Smolin, Lee

    1989-11-01

    An exact and, possibly, general solution to the quantum constraints is given for the sector of general relativity containing cosmological solutions with two space-like, commuting, Killing fields. The dynamics of these model space-times, which are known as Gowdy space-times, is formulated in terms of Ashtekar's new variables. The quantization is done by using the recently introduced self-dual and loop representations. On the classical phase space we find four explicit physical observables, or constants of motion, which generate a GL(2) symmetry group on the space of solutions. In the loop representations we find that a complete description of the physical state space, consisting of the simultaneous solutions to all of the constraints, is given in terms of the equivalence classes, under Diff(S1), of a pair of densities on the circle. These play the same role that the link classes play in the loop representation solution to the full 3+1 theory. An infinite dimensional algebra of physical observables is found on the physical state space, which is a GL(2) loop algebra. In addition, by freezing the local degrees of freedom of the model, we find a finite dimensional quantum system which describes a set of degenerate quantum cosmologies on T3 in which the length of one of the S1's has gone to zero, while the area of the remaining S1×S1 is quantized in units of the Planck area. The quantum kinematics of this sector of the model is identical to that of a one-plaquette SU(2) lattice gauge theory.

  16. Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential

    NASA Astrophysics Data System (ADS)

    Hussin, Véronique; Marquette, Ian

    2011-03-01

    We consider classical and quantum one and two-dimensional systems with ladder operators that satisfy generalized Heisenberg algebras. In the classical case, this construction is related to the existence of closed trajectories. In particular, we apply these results to the infinite well and Morse potentials. We discuss how the degeneracies of the permutation symmetry of quantum two-dimensional systems can be explained using products of ladder operators. These products satisfy interesting commutation relations. The two-dimensional Morse quantum system is also related to a generalized two-dimensional Morse supersymmetric model. Arithmetical or accidental degeneracies of such system are shown to be associated to additional supersymmetry.

  17. Kicking atoms with finite duration pulses

    NASA Astrophysics Data System (ADS)

    Fekete, Julia; Chai, Shijie; Daszuta, Boris; Andersen, Mikkel F.

    2016-05-01

    The atom optics delta-kicked particle is a paradigmatic system for experimental studies of quantum chaos and classical-quantum correspondence. It consists of a cloud of laser cooled atoms exposed to a periodically pulsed standing wave of far off-resonant laser light. A purely quantum phenomena in such systems are quantum resonances which transfers the atoms into a coherent superposition of largely separated momentum states. Using such large momentum transfer ``beamsplitters'' in atom interferometers may have applications in high precision metrology. The growth in momentum separation cannot be maintained indefinitely due to finite laser power. The largest momentum transfer is achieved by violating the usual delta-kick assumption. Therefore we explore the behavior of the atom optics kicked particle with finite pulse duration. We have developed a semi-classical model which shows good agreement with the full quantum description as well as our experiments. Furthermore we have found a simple scaling law that helps to identify optimal parameters for an atom interferometer. We verify this by measurements of the ``Talbot time'' (a measurement of h/m) which together with other well-known constants constitute a measurement of the fine structure constant.

  18. Emergent phases and critical behavior in a non-Markovian open quantum system

    NASA Astrophysics Data System (ADS)

    Cheung, H. F. H.; Patil, Y. S.; Vengalattore, M.

    2018-05-01

    Open quantum systems exhibit a range of novel out-of-equilibrium behavior due to the interplay between coherent quantum dynamics and dissipation. Of particular interest in these systems are driven, dissipative transitions, the emergence of dynamical phases with novel broken symmetries, and critical behavior that lies beyond the conventional paradigm of Landau-Ginzburg phenomenology. Here, we consider a parametrically driven two-mode system in the presence of non-Markovian system-reservoir interactions. We show that the non-Markovian dynamics modifies the phase diagram of this system, resulting in the emergence of a broken symmetry phase in a universality class that has no counterpart in the corresponding Markovian system. This emergent phase is accompanied by enhanced two-mode entanglement that remains robust at finite temperatures. Such reservoir-engineered dynamical phases can potentially shed light on universal aspects of dynamical phase transitions in a wide range of nonequilibrium systems, and aid in the development of techniques for the robust generation of entanglement and quantum correlations at finite temperatures with potential applications to quantum control, state preparation, and metrology.

  19. Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.

    PubMed

    Wu, Jianda; Kormos, Márton; Si, Qimiao

    2014-12-12

    A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.

  20. Measuring the quantum geometric tensor in two-dimensional photonic and exciton-polariton systems

    NASA Astrophysics Data System (ADS)

    Bleu, O.; Solnyshkov, D. D.; Malpuech, G.

    2018-05-01

    We propose theoretically a method that allows to measure all the components of the quantum geometric tensor (the metric tensor and the Berry curvature) in a photonic system. The method is based on standard optical measurements. It applies to two-band systems, which can be mapped to a pseudospin, and to four-band systems, which can be described by two entangled pseudospins. We apply this method to several specific cases. We consider a 2D planar cavity with two polarization eigenmodes, where the pseudospin measurement can be performed via polarization-resolved photoluminescence. We also consider the s band of a staggered honeycomb lattice with polarization-degenerate modes (scalar photons), where the sublattice pseudospin can be measured by performing spatially resolved interferometric measurements. We finally consider the s band of a honeycomb lattice with polarized (spinor) photons as an example of a four-band model. We simulate realistic experimental situations in all cases. We find the photon eigenstates by solving the Schrödinger equation including pumping and finite lifetime, and then simulate the measurements to finally extract realistic mappings of the k-dependent tensor components.

  1. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  2. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints

    NASA Astrophysics Data System (ADS)

    Manukure, Solomon

    2018-04-01

    We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.

  3. Quantum criticality among entangled spin chains

    DOE PAGES

    Blanc, N.; Trinh, J.; Dong, L.; ...

    2017-12-11

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  4. Quantum criticality among entangled spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, N.; Trinh, J.; Dong, L.

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  5. Quantum criticality among entangled spin chains

    NASA Astrophysics Data System (ADS)

    Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.

    2018-03-01

    An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.

  6. Toric-boson model: Toward a topological quantum memory at finite temperature

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Castelnovo, Claudio; Chamon, Claudio

    2009-06-01

    We discuss the existence of stable topological quantum memory at finite temperature. At stake here is the fundamental question of whether it is, in principle, possible to store quantum information for macroscopic times without the intervention from the external world, that is, without error correction. We study the toric code in two dimensions with an additional bosonic field that couples to the defects, in the presence of a generic environment at finite temperature: the toric-boson model. Although the coupling constants for the bare model are not finite in the thermodynamic limit, the model has a finite spectrum. We show that in the topological phase, there is a finite temperature below which open strings are confined and therefore the lifetime of the memory can be made arbitrarily (polynomially) long in system size. The interaction with the bosonic field yields a long-range attractive force between the end points of open strings but leaves closed strings and topological order intact.

  7. Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder

    NASA Astrophysics Data System (ADS)

    Peschke, Matthias; Rausch, Roman; Potthoff, Michael

    2018-03-01

    The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.

  8. Adiabatic and nonadiabatic perturbation theory for coherence vector description of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Hollenberg, Sebastian; Päs, Heinrich

    2012-01-01

    The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and nonadiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g., matter) potentials. Neglecting effects of ensemble decoherence for now, we study the evolution of a neutrino ensemble governed by the associated quantum kinetic equations, which apply to systems with finite temperature. The quantum kinetic equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g., the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g., an effective oscillation length). It is understood that this method also provides a promising starting point for the treatment of the more general case in which decoherence is taken into account.

  9. A general derivation and quantification of the third law of thermodynamics.

    PubMed

    Masanes, Lluís; Oppenheim, Jonathan

    2017-03-14

    The most accepted version of the third law of thermodynamics, the unattainability principle, states that any process cannot reach absolute zero temperature in a finite number of steps and within a finite time. Here, we provide a derivation of the principle that applies to arbitrary cooling processes, even those exploiting the laws of quantum mechanics or involving an infinite-dimensional reservoir. We quantify the resources needed to cool a system to any temperature, and translate these resources into the minimal time or number of steps, by considering the notion of a thermal machine that obeys similar restrictions to universal computers. We generally find that the obtainable temperature can scale as an inverse power of the cooling time. Our results also clarify the connection between two versions of the third law (the unattainability principle and the heat theorem), and place ultimate bounds on the speed at which information can be erased.

  10. A general derivation and quantification of the third law of thermodynamics

    PubMed Central

    Masanes, Lluís; Oppenheim, Jonathan

    2017-01-01

    The most accepted version of the third law of thermodynamics, the unattainability principle, states that any process cannot reach absolute zero temperature in a finite number of steps and within a finite time. Here, we provide a derivation of the principle that applies to arbitrary cooling processes, even those exploiting the laws of quantum mechanics or involving an infinite-dimensional reservoir. We quantify the resources needed to cool a system to any temperature, and translate these resources into the minimal time or number of steps, by considering the notion of a thermal machine that obeys similar restrictions to universal computers. We generally find that the obtainable temperature can scale as an inverse power of the cooling time. Our results also clarify the connection between two versions of the third law (the unattainability principle and the heat theorem), and place ultimate bounds on the speed at which information can be erased. PMID:28290452

  11. Chaos in quantum steering in high-dimensional systems

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2018-04-01

    Quantum steering means that in some bipartite quantum systems the local measurements on one side can determine the state of the other side. Here we show that in high-dimensional systems there exists a specific entangled state which can display a kind of chaos effect when being adopted for steering. That is, a subtle difference in the measurement results on one side can steer the other side into completely orthogonal states. Moreover, by expanding the result to infinite-dimensional systems, we find two sets of states for which, contrary to common belief, even though their density matrices approach being identical, the steering between them is impossible. This property makes them very useful for quantum cryptography.

  12. Holography and the Coleman-Mermin-Wagner theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anninos, Dionysios; Hartnoll, Sean A.; Iqbal, Nabil

    2010-09-15

    In 2+1 dimensions at finite temperature, spontaneous symmetry breaking of global symmetries is precluded by large thermal fluctuations of the order parameter. The holographic correspondence implies that analogous effects must also occur in 3+1 dimensional theories with gauged symmetries in certain curved spacetimes with horizon. By performing a one loop computation in the background of a holographic superconductor, we show that bulk quantum fluctuations wash out the classical order parameter at sufficiently large distance scales. The low temperature phase is seen to exhibit algebraic long-range order. Beyond the specific example we study, holography suggests that IR singular quantum fluctuations ofmore » the fields and geometry will play an interesting role for many 3+1 dimensional asymptotically anti-de Sitter spacetimes with planar horizon.« less

  13. Arrays of individually controlled ions suitable for two-dimensional quantum simulations

    DOE PAGES

    Mielenz, Manuel; Kalis, Henning; Wittemer, Matthias; ...

    2016-06-13

    A precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here, we operate two-dimensional arrays of three trapped ions in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 μm. In our approach, which is scalable to arbitrary two-dimensional lattices, we demonstrate individual control of themore » electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as a tuning of couplings between ions within experimental sequences. Lastly, our work paves the way towards a quantum simulator of two-dimensional systems designed at will.« less

  14. Connes' embedding problem and winning strategies for quantum XOR games

    NASA Astrophysics Data System (ADS)

    Harris, Samuel J.

    2017-12-01

    We consider quantum XOR games, defined in the work of Regev and Vidick [ACM Trans. Comput. Theory 7, 43 (2015)], from the perspective of unitary correlations defined in the work of Harris and Paulsen [Integr. Equations Oper. Theory 89, 125 (2017)]. We show that the winning bias of a quantum XOR game in the tensor product model (respectively, the commuting model) is equal to the norm of its associated linear functional on the unitary correlation set from the appropriate model. We show that Connes' embedding problem has a positive answer if and only if every quantum XOR game has entanglement bias equal to the commuting bias. In particular, the embedding problem is equivalent to determining whether every quantum XOR game G with a winning strategy in the commuting model also has a winning strategy in the approximate finite-dimensional model.

  15. Optimal fixed-finite-dimensional compensator for Burgers' equation with unbounded input/output operators

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Marrekchi, Hamadi

    1993-01-01

    The problem of using reduced order dynamic compensators to control a class of nonlinear parabolic distributed parameter systems was considered. Concentration was on a system with unbounded input and output operators governed by Burgers' equation. A linearized model was used to compute low-order-finite-dimensional control laws by minimizing certain energy functionals. Then these laws were applied to the nonlinear model. Standard approaches to this problem employ model/controller reduction techniques in conjunction with linear quadratic Gaussian (LQG) theory. The approach used is based on the finite dimensional Bernstein/Hyland optimal projection theory which yields a fixed-finite-order controller.

  16. Experimental verification of multidimensional quantum steering

    NASA Astrophysics Data System (ADS)

    Li, Che-Ming; Lo, Hsin-Pin; Chen, Liang-Yu; Yabushita, Atsushi

    2018-03-01

    Quantum steering enables one party to communicate with another remote party even if the sender is untrusted. Such characteristics of quantum systems not only provide direct applications to quantum information science, but are also conceptually important for distinguishing between quantum and classical resources. While concrete illustrations of steering have been shown in several experiments, quantum steering has not been certified for higher dimensional systems. Here, we introduce a simple method to experimentally certify two different kinds of quantum steering: Einstein-Podolsky-Rosen (EPR) steering and single-system (SS) steering (i.e., temporal steering), for dimensionality (d) up to d = 16. The former reveals the steerability among bipartite systems, whereas the latter manifests itself in single quantum objects. We use multidimensional steering witnesses to verify EPR steering of polarization-entangled pairs and SS steering of single photons. The ratios between the measured witnesses and the maximum values achieved by classical mimicries are observed to increase with d for both EPR and SS steering. The designed scenario offers a new method to study further the genuine multipartite steering of large dimensionality and potential uses in quantum information processing.

  17. Quantum state discrimination bounds for finite sample size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audenaert, Koenraad M. R.; Mosonyi, Milan; Mathematical Institute, Budapest University of Technology and Economics, Egry Jozsef u 1., Budapest 1111

    2012-12-15

    In the problem of quantum state discrimination, one has to determine by measurements the state of a quantum system, based on the a priori side information that the true state is one of the two given and completely known states, {rho} or {sigma}. In general, it is not possible to decide the identity of the true state with certainty, and the optimal measurement strategy depends on whether the two possible errors (mistaking {rho} for {sigma}, or the other way around) are treated as of equal importance or not. Results on the quantum Chernoff and Hoeffding bounds and the quantum Stein'smore » lemma show that, if several copies of the system are available then the optimal error probabilities decay exponentially in the number of copies, and the decay rate is given by a certain statistical distance between {rho} and {sigma} (the Chernoff distance, the Hoeffding distances, and the relative entropy, respectively). While these results provide a complete solution to the asymptotic problem, they are not completely satisfying from a practical point of view. Indeed, in realistic scenarios one has access only to finitely many copies of a system, and therefore it is desirable to have bounds on the error probabilities for finite sample size. In this paper we provide finite-size bounds on the so-called Stein errors, the Chernoff errors, the Hoeffding errors, and the mixed error probabilities related to the Chernoff and the Hoeffding errors.« less

  18. Conductance of finite systems and scaling in localization theory

    NASA Astrophysics Data System (ADS)

    Suslov, I. M.

    2012-11-01

    The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β( g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β( g) in 1/ g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ɛ looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ - iω for conductivity are discussed.

  19. Activation of zero-error classical capacity in low-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Park, Jeonghoon; Heo, Jun

    2018-06-01

    Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.

  20. Most energetic passive states.

    PubMed

    Perarnau-Llobet, Martí; Hovhannisyan, Karen V; Huber, Marcus; Skrzypczyk, Paul; Tura, Jordi; Acín, Antonio

    2015-10-01

    Passive states are defined as those states that do not allow for work extraction in a cyclic (unitary) process. Within the set of passive states, thermal states are the most stable ones: they maximize the entropy for a given energy, and similarly they minimize the energy for a given entropy. Here we find the passive states lying in the other extreme, i.e., those that maximize the energy for a given entropy, which we show also minimize the entropy when the energy is fixed. These extremal properties make these states useful to obtain fundamental bounds for the thermodynamics of finite-dimensional quantum systems, which we show in several scenarios.

  1. Surface passivation for tight-binding calculations of covalent solids.

    PubMed

    Bernstein, N

    2007-07-04

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  2. Surface passivation for tight-binding calculations of covalent solids

    NASA Astrophysics Data System (ADS)

    Bernstein, N.

    2007-07-01

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  3. Quantum friction in two-dimensional topological materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.

    In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less

  4. Quantum friction in two-dimensional topological materials

    DOE PAGES

    Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.

    2018-04-24

    In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less

  5. Nonequilibrium dynamics of the O( N ) model on dS3 and AdS crunches

    NASA Astrophysics Data System (ADS)

    Kumar, S. Prem; Vaganov, Vladislav

    2018-03-01

    We study the nonperturbative quantum evolution of the interacting O( N ) vector model at large- N , formulated on a spatial two-sphere, with time dependent couplings which diverge at finite time. This model - the so-called "E-frame" theory, is related via a conformal transformation to the interacting O( N ) model in three dimensional global de Sitter spacetime with time independent couplings. We show that with a purely quartic, relevant deformation the quantum evolution of the E-frame model is regular even when the classical theory is rendered singular at the end of time by the diverging coupling. Time evolution drives the E-frame theory to the large- N Wilson-Fisher fixed point when the classical coupling diverges. We study the quantum evolution numerically for a variety of initial conditions and demonstrate the finiteness of the energy at the classical "end of time". With an additional (time dependent) mass deformation, quantum backreaction lowers the mass, with a putative smooth time evolution only possible in the limit of infinite quartic coupling. We discuss the relevance of these results for the resolution of crunch singularities in AdS geometries dual to E-frame theories with a classical gravity dual.

  6. Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2018-04-01

    We provide a generalization for the polygamy constraint of multiparty entanglement in arbitrary-dimensional quantum systems. By using the β th power of entanglement of assistance for 0 ≤β ≤1 and the Hamming weight of the binary vector related with the distribution of subsystems, we establish a class of weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems. We further show that our class of weighted polygamy inequalities can even be improved to be tighter inequalities with some conditions on the assisted entanglement of bipartite subsystems.

  7. Units of rotational information

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  8. Dynamical phase transitions at finite temperature from fidelity and interferometric Loschmidt echo induced metrics

    NASA Astrophysics Data System (ADS)

    Mera, Bruno; Vlachou, Chrysoula; Paunković, Nikola; Vieira, Vítor R.; Viyuela, Oscar

    2018-03-01

    We study finite-temperature dynamical quantum phase transitions (DQPTs) by means of the fidelity and the interferometric Loschmidt echo (LE) induced metrics. We analyze the associated dynamical susceptibilities (Riemannian metrics), and derive analytic expressions for the case of two-band Hamiltonians. At zero temperature, the two quantities are identical, nevertheless, at finite temperatures they behave very differently. Using the fidelity LE, the zero-temperature DQPTs are gradually washed away with temperature, while the interferometric counterpart exhibits finite-temperature phase transitions. We analyze the physical differences between the two finite-temperature LE generalizations, and argue that, while the interferometric one is more sensitive and can therefore provide more information when applied to genuine quantum (microscopic) systems, when analyzing many-body macroscopic systems, the fidelity-based counterpart is a more suitable quantity to study. Finally, we apply the previous results to two representative models of topological insulators in one and two dimensions.

  9. Entanglement Entropy in Two-Dimensional String Theory.

    PubMed

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  10. Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals.

    PubMed

    Johnson, Craig M; Reece, Peter J; Conibeer, Gavin J

    2011-10-15

    We present an approach to realizing enhanced upconversion efficiency in erbium (Er)-doped photonic crystals. Slow-light-mode pumping of the first Er excited state transition can result in enhanced emission from higher-energy levels that may lead to finite subbandgap external quantum efficiency in crystalline silicon solar cells. Using a straightforward electromagnetic model, we calculate potential field enhancements of more than 18× within he slow-light mode of a one-dimensional photonic crystal and discuss design trade-offs and considerations for photovoltaics.

  11. Symmetry and Degeneracy in Quantum Mechanics. Self-Duality in Finite Spin Systems

    ERIC Educational Resources Information Center

    Osacar, C.; Pacheco, A. F.

    2009-01-01

    The symmetry of self-duality (Savit 1980 "Rev. Mod. Phys. 52" 453) of some models of statistical mechanics and quantum field theory is discussed for finite spin blocks of the Ising chain in a transverse magnetic field. The existence of this symmetry in a specific type of these blocks, and not in others, is manifest by the degeneracy of their…

  12. Possible Many-Body Localization in a Long-Lived Finite-Temperature Ultracold Quasineutral Molecular Plasma

    NASA Astrophysics Data System (ADS)

    Sous, John; Grant, Edward

    2018-03-01

    We argue that the quenched ultracold plasma presents an experimental platform for studying the quantum many-body physics of disordered systems in the long-time and finite energy-density limits. We consider an experiment that quenches a plasma of nitric oxide to an ultracold system of Rydberg molecules, ions, and electrons that exhibits a long-lived state of arrested relaxation. The qualitative features of this state fail to conform with classical models. Here, we develop a microscopic quantum description for the arrested phase based on an effective many-body spin Hamiltonian that includes both dipole-dipole and van der Waals interactions. This effective model appears to offer a way to envision the essential quantum disordered nonequilibrium physics of this system.

  13. Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological quantum computation

    NASA Astrophysics Data System (ADS)

    Chen, Chui-Zhen; Xie, Ying-Ming; Liu, Jie; Lee, Patrick A.; Law, K. T.

    2018-03-01

    Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science 357, 294 (2017), 10.1126/science.aag2792]. However, chiral Majorana modes, being extended, cannot be used for topological quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures exhibit a large topological regime (much larger than the two-dimensional case) which supports localized Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is shown explicitly by time-dependent calculations. We believe that the proposed quasi-one-dimensional quantum anomalous Hall structures can be easily fabricated for scalable topological quantum computation.

  14. Gaussian discriminating strength

    NASA Astrophysics Data System (ADS)

    Rigovacca, L.; Farace, A.; De Pasquale, A.; Giovannetti, V.

    2015-10-01

    We present a quantifier of nonclassical correlations for bipartite, multimode Gaussian states. It is derived from the Discriminating Strength measure, introduced for finite dimensional systems in Farace et al., [New J. Phys. 16, 073010 (2014), 10.1088/1367-2630/16/7/073010]. As the latter the new measure exploits the quantum Chernoff bound to gauge the susceptibility of the composite system with respect to local perturbations induced by unitary gates extracted from a suitable set of allowed transformations (the latter being identified by posing some general requirements). Closed expressions are provided for the case of two-mode Gaussian states obtained by squeezing or by linearly mixing via a beam splitter a factorized two-mode thermal state. For these density matrices, we study how nonclassical correlations are related with the entanglement present in the system and with its total photon number.

  15. Quantum correlations in non-inertial cavity systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2016-10-15

    Non-inertial cavities are utilized to store and send Quantum Information between mode pairs. A two-cavity system is considered where one is inertial and the other accelerated in a finite time. Maclaurian series are applied to expand the related Bogoliubov coefficients and the problem is treated perturbatively. It is shown that Quantum Discord, which is a measure of quantumness of correlations, is degraded periodically. This is almost in agreement with previous results reached in accelerated systems where increment of acceleration decreases the degree of quantum correlations. As another finding of the study, it is explicitly shown that degradation of Quantum Discordmore » disappears when the state is in a single cavity which is accelerated for a finite time. This feature makes accelerating cavities useful instruments in Quantum Information Theory. - Highlights: • Non-inertial cavities are utilized to store and send information in Quantum Information Theory. • Cavities include boundary conditions which will protect the entanglement once it has been created. • The problem is treated perturbatively and the maclaurian series are applied to expand the related Bogoliubov coefficients. • When two cavities are considered degradation in the degree of quantum correlation happens and it appears periodically. • The interesting issue is when a single cavity is studied and the degradation in quantum correlations disappears.« less

  16. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  17. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  18. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  19. Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machnes, S.; Institute for Theoretical Physics, University of Ulm, D-89069 Ulm; Sander, U.

    2011-08-15

    For paving the way to novel applications in quantum simulation, computation, and technology, increasingly large quantum systems have to be steered with high precision. It is a typical task amenable to numerical optimal control to turn the time course of pulses, i.e., piecewise constant control amplitudes, iteratively into an optimized shape. Here, we present a comparative study of optimal-control algorithms for a wide range of finite-dimensional applications. We focus on the most commonly used algorithms: GRAPE methods which update all controls concurrently, and Krotov-type methods which do so sequentially. Guidelines for their use are given and open research questions aremore » pointed out. Moreover, we introduce a unifying algorithmic framework, DYNAMO (dynamic optimization platform), designed to provide the quantum-technology community with a convenient matlab-based tool set for optimal control. In addition, it gives researchers in optimal-control techniques a framework for benchmarking and comparing newly proposed algorithms with the state of the art. It allows a mix-and-match approach with various types of gradients, update and step-size methods as well as subspace choices. Open-source code including examples is made available at http://qlib.info.« less

  20. Quantum learning of classical stochastic processes: The completely positive realization problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monràs, Alex; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543; Winter, Andreas

    2016-01-15

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece inmore » the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print http://arxiv.org/abs/1303.3771 (2013)].« less

  1. Construction of general colored R matrices for the Yang-Baxter equation and q-boson realization of quantum algebra SL[sub q](2) when q is a root of unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, M.L.; Sun, C.P.; Xue, K.

    1992-10-20

    In this paper, through a general q-boson realization of quantum algebra sl[sub q](2) and its universal R matrix an operator R matrix with many parameters is obtained in terms of q-boson operators. Building finite-dimensional representations of q-boson algebra, the authors construct various colored R matrices associated with nongeneric representations of sl[sub q](2) with dimension-independent parameters. The nonstandard R matrices obtained by Lee-Couture and Murakami are their special examples.

  2. Review of literature on the finite-element solution of the equations of two-dimensional surface-water flow in the horizontal plane

    USGS Publications Warehouse

    Lee, Jonathan K.; Froehlich, David C.

    1987-01-01

    Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.

  3. Quantum heat waves in a one-dimensional condensate

    NASA Astrophysics Data System (ADS)

    Agarwal, Kartiek; Dalla Torre, Emanuele G.; Schmiedmayer, Jörg; Demler, Eugene

    2017-05-01

    We study the dynamics of phase relaxation between a pair of one-dimensional condensates created by a bi-directional, supersonic `unzipping' of a finite single condensate. We find that the system fractures into different extensive chunks of space-time, within which correlations appear thermal but correspond to different effective temperatures. Coherences between different eigen-modes are crucial for understanding the development of such thermal correlations; at no point in time can our system be described by a generalized Gibbs' ensemble despite nearly always appearing locally thermal. We rationalize a picture of propagating fronts of hot and cold sound waves, populated at effective, relativistically red- and blue-shifted temperatures to intuitively explain our findings. The disparity between these hot and cold temperatures vanishes for the case of instantaneous splitting but diverges in the limit where the splitting velocity approaches the speed of sound; in this limit, a sonic boom occurs wherein the system is excited only along an infinitely narrow, and infinitely hot beam. We expect our findings to apply generally to the study of superluminal perturbations in systems with emergent Lorentz symmetry.

  4. Chiral liquid phase of simple quantum magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhentao; Feiguin, Adrian E.; Zhu, Wei

    2017-11-07

    We study a T=0 quantum phase transition between a quantum paramagnetic state and a magnetically ordered state for a spin S=1 XXZ Heisenberg antiferromagnet on a two-dimensional triangular lattice. The transition is induced by an easy-plane single-ion anisotropy D. At the mean-field level, the system undergoes a direct transition at a critical D=D c between a paramagnetic state at D>D c and an ordered state with broken U(1) symmetry at Dc. We show that beyond mean field the phase diagram is very different and includes an intermediate, partially ordered chiral liquid phase. Specifically, we find that inside the paramagnetic phasemore » the Ising (J z) component of the Heisenberg exchange binds magnons into a two-particle bound state with zero total momentum and spin. This bound state condenses at D>D c, before single-particle excitations become unstable, and gives rise to a chiral liquid phase, which spontaneously breaks spatial inversion symmetry, but leaves the spin-rotational U(1) and time-reversal symmetries intact. This chiral liquid phase is characterized by a finite vector chirality without long-range dipolar magnetic order. In our analytical treatment, the chiral phase appears for arbitrarily small J z because the magnon-magnon attraction becomes singular near the single-magnon condensation transition. This phase exists in a finite range of D and transforms into the magnetically ordered state at some Dc. In conclusion, we corroborate our analytic treatment with numerical density matrix renormalization group calculations.« less

  5. Entanglement entropy and fidelity susceptibility in the one-dimensional spin-1 XXZ chains with alternating single-site anisotropy.

    PubMed

    Ren, Jie; Liu, Guang-Hua; You, Wen-Long

    2015-03-18

    We study the fidelity susceptibility in an antiferromagnetic spin-1 XXZ chain numerically. By using the density-matrix renormalization group method, the effects of the alternating single-site anisotropy D on fidelity susceptibility are investigated. Its relation with the quantum phase transition is analyzed. It is found that the quantum phase transition from the Haldane spin liquid to periodic Néel spin solid can be well characterized by the fidelity. Finite size scaling of fidelity susceptibility shows a power-law divergence at criticality, which indicates the quantum phase transition is of second order. The results are confirmed by the second derivative of the ground-state energy. We also study the relationship between the entanglement entropy, the Schmidt gap and quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other.

  6. Resource theory for work and heat

    NASA Astrophysics Data System (ADS)

    Sparaciari, Carlo; Oppenheim, Jonathan; Fritz, Tobias

    2017-11-01

    Several recent results on thermodynamics have been obtained using the tools of quantum information theory and resource theories. So far, the resource theories utilized to describe thermodynamics have assumed the existence of an infinite thermal reservoir, by declaring that thermal states at some background temperature come for free. Here, we propose a resource theory of quantum thermodynamics without a background temperature, so that no states at all come for free. We apply this resource theory to the case of many noninteracting systems and show that all quantum states are classified by their entropy and average energy, even arbitrarily far away from equilibrium. This implies that thermodynamics takes place in a two-dimensional convex set that we call the energy-entropy diagram. The answers to many resource-theoretic questions about thermodynamics can be read off from this diagram, such as the efficiency of a heat engine consisting of finite reservoirs, or the rate of conversion between two states. This allows us to consider a resource theory which puts work and heat on an equal footing, and serves as a model for other resource theories.

  7. Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Adamian, A.

    1988-01-01

    An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.

  8. Thermalization without eigenstate thermalization hypothesis after a quantum quench.

    PubMed

    Mori, Takashi; Shiraishi, Naoto

    2017-08-01

    Nonequilibrium dynamics of a nonintegrable system without the eigenstate thermalization hypothesis is studied. It is shown that, in the thermodynamic limit, this model thermalizes after an arbitrary quantum quench at finite temperature, although it does not satisfy the eigenstate thermalization hypothesis. In contrast, when the system size is finite and the temperature is low enough, the system may not thermalize. In this case, the steady state is well described by the generalized Gibbs ensemble constructed by using highly nonlocal conserved quantities. We also show that this model exhibits prethermalization, in which the prethermalized state is characterized by nonthermal energy eigenstates.

  9. Numerical approximation for the infinite-dimensional discrete-time optimal linear-quadratic regulator problem

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1986-01-01

    An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.

  10. Practical Unitary Simulator for Non-Markovian Complex Processes

    NASA Astrophysics Data System (ADS)

    Binder, Felix C.; Thompson, Jayne; Gu, Mile

    2018-06-01

    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this Letter, we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models, it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.

  11. Mutually unbiased projectors and duality between lines and bases in finite quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalaby, M.; Vourdas, A., E-mail: a.vourdas@bradford.ac.uk

    2013-10-15

    Quantum systems with variables in the ring Z(d) are considered, and the concepts of weak mutually unbiased bases and mutually unbiased projectors are discussed. The lines through the origin in the Z(d)×Z(d) phase space, are classified into maximal lines (sets of d points), and sublines (sets of d{sub i} points where d{sub i}|d). The sublines are intersections of maximal lines. It is shown that there exists a duality between the properties of lines (resp., sublines), and the properties of weak mutually unbiased bases (resp., mutually unbiased projectors). -- Highlights: •Lines in discrete phase space. •Bases in finite quantum systems. •Dualitymore » between bases and lines. •Weak mutually unbiased bases.« less

  12. Revealing nonclassicality beyond Gaussian states via a single marginal distribution

    PubMed Central

    Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul

    2017-01-01

    A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential—a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis–independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement. PMID:28077456

  13. Revealing nonclassicality beyond Gaussian states via a single marginal distribution.

    PubMed

    Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul

    2017-01-31

    A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential-a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis-independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement.

  14. Polygamy of entanglement in multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2009-08-01

    We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.

  15. 3-d finite element model development for biomechanics: a software demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollerbach, K.; Hollister, A.M.; Ashby, E.

    1997-03-01

    Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models,more » using human hand and knee examples, and will demonstrate their software tools.« less

  16. Electron-phonon interaction in quantum transport through quantum dots and molecular systems

    NASA Astrophysics Data System (ADS)

    Ojeda, J. H.; Duque, C. A.; Laroze, D.

    2016-12-01

    The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.

  17. Mathematical Techniques for Nonlinear System Theory.

    DTIC Science & Technology

    1981-09-01

    This report deals with research results obtained in the following areas: (1) Finite-dimensional linear system theory by algebraic methods--linear...Infinite-dimensional linear systems--realization theory of infinite-dimensional linear systems; (3) Nonlinear system theory --basic properties of

  18. Coherifying quantum channels

    NASA Astrophysics Data System (ADS)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  19. Two-dimensional electron gas in monolayer InN quantum wells

    DOE PAGES

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; ...

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×10 15 cm -2 and 420 cm 2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  20. Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Moca, Cǎtǎlin Paşcu; Kormos, Márton; Zaránd, Gergely

    2017-09-01

    We develop a hybrid semiclassical method to study the time evolution of one-dimensional quantum systems in and out of equilibrium. Our method handles internal degrees of freedom completely quantum mechanically by a modified time-evolving block decimation method while treating orbital quasiparticle motion classically. We can follow dynamics up to time scales well beyond the reach of standard numerical methods to observe the crossover between preequilibrated and locally phase equilibrated states. As an application, we investigate the quench dynamics and phase fluctuations of a pair of tunnel-coupled one-dimensional Bose condensates. We demonstrate the emergence of soliton-collision-induced phase propagation, soliton-entropy production, and multistep thermalization. Our method can be applied to a wide range of gapped one-dimensional systems.

  1. Decoupling of the reparametrization degree of freedom and a generalized probability in quantum cosmology

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Terzis, Petros A.; Zampeli, Adamantia; Christodoulakis, T.

    2016-09-01

    The high degree of symmetry renders the dynamics of cosmological as well as some black hole spacetimes describable by a system of finite degrees of freedom. These systems are generally known as minisuperspace models. One of their important key features is the invariance of the corresponding reduced actions under reparametrizations of the independent variable, a fact that can be seen as the remnant of the general covariance of the full theory. In the case of a system of n degrees of freedom, described by a Lagrangian quadratic in velocities, one can use the lapse by either gauge fixing it or letting it be defined by the constraint and subsequently substitute into the rest of the equations. In the first case, the system of the second-order equations of motion is solvable for all n accelerations and the constraint becomes a restriction among constants of integration. In the second case, the system can be solved for only n -1 accelerations and the "gauge" freedom is transferred to the choice of one of the scalar degrees of freedom. In this paper, we take the second path and express all n -1 scalar degrees of freedom in terms of the remaining one, say q . By considering these n -1 degrees of freedom as arbitrary but given functions of q , we manage to extract a two-dimensional pure gauge system consisting of the lapse N and the arbitrary q : in a way, we decouple the reparametrization invariance from the rest of the equations of motion, which are thus describing the "true" dynamics. The solution of the corresponding quantum two-dimensional system is used for the definition of a generalized probability for every configuration fi(q ), be it classical or not. The main result is that, interestingly enough, this probability attains its extrema on the classical solution of the initial n -dimensional system.

  2. EDITORIAL: Focus on Quantum Information and Many-Body Theory

    NASA Astrophysics Data System (ADS)

    Eisert, Jens; Plenio, Martin B.

    2010-02-01

    Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac and F Verstraete SIMULATION AND DYNAMICS A quantum differentiation of k-SAT instances B Tamir and G Ortiz Classical Ising model test for quantum circuits Joseph Geraci and Daniel A Lidar Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain S R Clark, J Prior, M J Hartmann, D Jaksch and M B Plenio Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition Tomaž Prosen and Bojan Žunkovič Quantum kinetic Ising models R Augusiak, F M Cucchietti, F Haake and M Lewenstein ENTANGLEMENT AND SPECTRAL PROPERTIES Ground states of unfrustrated spin Hamiltonians satisfy an area law Niel de Beaudrap, Tobias J Osborne and Jens Eisert Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group W Münder, A Weichselbaum, A Holzner, Jan von Delft and C L Henley The invariant-comb approach and its relation to the balancedness of multipartite entangled states Andreas Osterloh and Jens Siewert Entanglement scaling of fractional quantum Hall states through geometric deformations Andreas M Läuchli, Emil J Bergholtz and Masudul Haque Entanglement versus gap for one-dimensional spin systems Daniel Gottesman and M B Hastings Entanglement spectra of critical and near-critical systems in one dimension F Pollmann and J E Moore Macroscopic bound entanglement in thermal graph states D Cavalcanti, L Aolita, A Ferraro, A García-Saez and A Acín Entanglement at the quantum phase transition in a harmonic lattice Elisabeth Rieper, Janet Anders and Vlatko Vedral Multipartite entanglement and frustration P Facchi, G Florio, U Marzolino, G Parisi and S Pascazio Entropic uncertainty relations—a survey Stephanie Wehner and Andreas Winter Entanglement in a spin system with inverse square statistical interaction D Giuliano, A Sindona, G Falcone, F Plastina and L Amico APPLICATIONS Time-dependent currents of one-dimensional bosons in an optical lattice J Schachenmayer, G Pupillo and A J Daley Implementing quantum gates using the ferromagnetic spin-J XXZ chain with kink boundary conditions Tom Michoel, Jaideep Mulherkar and Bruno Nachtergaele Long-distance entanglement in many-body atomic and optical systems Salvatore M Giampaolo and Fabrizio Illuminati QUANTUM MEMORIES AND TOPOLOGICAL ORDER Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes Stefano Chesi, Daniel Loss, Sergey Bravyi and Barbara M Terhal Topological color codes and two-body quantum lattice Hamiltonians M Kargarian, H Bombin and M A Martin-Delgado RENORMALIZATION Local renormalization method for random systems O Gittsovich, R Hübener, E Rico and H J Briegel

  3. Monogamy relations of concurrence for any dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Zhu, Xue-Na; Li-Jost, Xianqing; Fei, Shao-Ming

    2017-11-01

    We study monogamy relations for arbitrary dimensional multipartite systems. Monogamy relations based on concurrence and concurrence of assistance for any dimensional m_1⊗ m_2⊗ \\cdots ⊗ mN quantum states are derived, which give rise to the restrictions on the entanglement distributions among the subsystems. Besides, we give the lower bound of concurrence for four-partite mixed states. The approach can be readily generalized to arbitrary multipartite systems.

  4. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    NASA Astrophysics Data System (ADS)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  5. Kosterlitz-Thouless transition and vortex-antivortex lattice melting in two-dimensional Fermi gases with p - or d -wave pairing

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang

    2017-12-01

    We present a theoretical study of the finite-temperature Kosterlitz-Thouless (KT) and vortex-antivortex lattice (VAL) melting transitions in two-dimensional Fermi gases with p - or d -wave pairing. For both pairings, when the interaction is tuned from weak to strong attractions, we observe a quantum phase transition from the Bardeen-Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein condensation (BEC) of difermions. The KT and VAL transition temperatures increase during this BCS-BEC transition and approach constant values in the deep BEC region. The BCS-BEC transition is characterized by the nonanalyticities of the chemical potential, the superfluid order parameter, and the sound velocities as functions of the interaction strength at both zero and finite temperatures; however, the temperature effect tends to weaken the nonanalyticities compared to the zero-temperature case. The effect of mismatched Fermi surfaces on the d -wave pairing is also studied.

  6. Work distributions for random sudden quantum quenches

    NASA Astrophysics Data System (ADS)

    Łobejko, Marcin; Łuczka, Jerzy; Talkner, Peter

    2017-05-01

    The statistics of work performed on a system by a sudden random quench is investigated. Considering systems with finite dimensional Hilbert spaces we model a sudden random quench by randomly choosing elements from a Gaussian unitary ensemble (GUE) consisting of Hermitian matrices with identically, Gaussian distributed matrix elements. A probability density function (pdf) of work in terms of initial and final energy distributions is derived and evaluated for a two-level system. Explicit results are obtained for quenches with a sharply given initial Hamiltonian, while the work pdfs for quenches between Hamiltonians from two independent GUEs can only be determined in explicit form in the limits of zero and infinite temperature. The same work distribution as for a sudden random quench is obtained for an adiabatic, i.e., infinitely slow, protocol connecting the same initial and final Hamiltonians.

  7. Truncated Calogero-Sutherland models

    NASA Astrophysics Data System (ADS)

    Pittman, S. M.; Beau, M.; Olshanii, M.; del Campo, A.

    2017-05-01

    A one-dimensional quantum many-body system consisting of particles confined in a harmonic potential and subject to finite-range two-body and three-body inverse-square interactions is introduced. The range of the interactions is set by truncation beyond a number of neighbors and can be tuned to interpolate between the Calogero-Sutherland model and a system with nearest and next-nearest neighbors interactions discussed by Jain and Khare. The model also includes the Tonks-Girardeau gas describing impenetrable bosons as well as an extension with truncated interactions. While the ground state wave function takes a truncated Bijl-Jastrow form, collective modes of the system are found in terms of multivariable symmetric polynomials. We numerically compute the density profile, one-body reduced density matrix, and momentum distribution of the ground state as a function of the range r and the interaction strength.

  8. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energymore » surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.« less

  9. Stable Direct Adaptive Control of Linear Infinite-dimensional Systems Using a Command Generator Tracker Approach

    NASA Technical Reports Server (NTRS)

    Balas, M. J.; Kaufman, H.; Wen, J.

    1985-01-01

    A command generator tracker approach to model following contol of linear distributed parameter systems (DPS) whose dynamics are described on infinite dimensional Hilbert spaces is presented. This method generates finite dimensional controllers capable of exponentially stable tracking of the reference trajectories when certain ideal trajectories are known to exist for the open loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asymptotically) stable finite dimensional control of the infinite dimensional DPS.

  10. Nematic order on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  11. Quantum spectral curve for arbitrary state/operator in AdS5/CFT4

    NASA Astrophysics Data System (ADS)

    Gromov, Nikolay; Kazakov, Vladimir; Leurent, Sébastien; Volin, Dmytro

    2015-09-01

    We give a derivation of quantum spectral curve (QSC) — a finite set of Riemann-Hilbert equations for exact spectrum of planar N=4 SYM theory proposed in our recent paper Phys. Rev. Lett. 112 (2014). We also generalize this construction to all local single trace operators of the theory, in contrast to the TBA-like approaches worked out only for a limited class of states. We reveal a rich algebraic and analytic structure of the QSC in terms of a so called Q-system — a finite set of Baxter-like Q-functions. This new point of view on the finite size spectral problem is shown to be completely compatible, though in a far from trivial way, with already known exact equations (analytic Y-system/TBA, or FiNLIE). We use the knowledge of this underlying Q-system to demonstrate how the classical finite gap solutions and the asymptotic Bethe ansatz emerge from our formalism in appropriate limits.

  12. Exotic quantum order in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Girvin, S. M.

    1998-08-01

    Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.

  13. Quantum correlation of high dimensional system in a dephasing environment

    NASA Astrophysics Data System (ADS)

    Ji, Yinghua; Ke, Qiang; Hu, Juju

    2018-05-01

    For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.

  14. Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.

    2018-06-01

    On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.

  15. Reconstructing high-dimensional two-photon entangled states via compressive sensing

    PubMed Central

    Tonolini, Francesco; Chan, Susan; Agnew, Megan; Lindsay, Alan; Leach, Jonathan

    2014-01-01

    Accurately establishing the state of large-scale quantum systems is an important tool in quantum information science; however, the large number of unknown parameters hinders the rapid characterisation of such states, and reconstruction procedures can become prohibitively time-consuming. Compressive sensing, a procedure for solving inverse problems by incorporating prior knowledge about the form of the solution, provides an attractive alternative to the problem of high-dimensional quantum state characterisation. Using a modified version of compressive sensing that incorporates the principles of singular value thresholding, we reconstruct the density matrix of a high-dimensional two-photon entangled system. The dimension of each photon is equal to d = 17, corresponding to a system of 83521 unknown real parameters. Accurate reconstruction is achieved with approximately 2500 measurements, only 3% of the total number of unknown parameters in the state. The algorithm we develop is fast, computationally inexpensive, and applicable to a wide range of quantum states, thus demonstrating compressive sensing as an effective technique for measuring the state of large-scale quantum systems. PMID:25306850

  16. Observation of the quantum Hall effect in δ-doped SrTiO3

    PubMed Central

    Matsubara, Y.; Takahashi, K. S.; Bahramy, M. S.; Kozuka, Y.; Maryenko, D.; Falson, J.; Tsukazaki, A.; Tokura, Y.; Kawasaki, M.

    2016-01-01

    The quantum Hall effect is a macroscopic quantum phenomenon in a two-dimensional electron system. The two-dimensional electron system in SrTiO3 has sparked a great deal of interest, mainly because of the strong electron correlation effects expected from the 3d orbitals. Here we report the observation of the quantum Hall effect in a dilute La-doped SrTiO3-two-dimensional electron system, fabricated by metal organic molecular-beam epitaxy. The quantized Hall plateaus are found to be solely stemming from the low Landau levels with even integer-filling factors, ν=4 and 6 without any contribution from odd ν's. For ν=4, the corresponding plateau disappears on decreasing the carrier density. Such peculiar behaviours are proposed to be due to the crossing between the Landau levels originating from the two subbands composed of d orbitals with different effective masses. Our findings pave a way to explore unprecedented quantum phenomena in d-electron systems. PMID:27228903

  17. An impurity-induced gap system as a quantum data bus for quantum state transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bing, E-mail: chenbingphys@gmail.com; Li, Yong; Song, Z.

    2014-09-15

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness ofmore » this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.« less

  18. de Sitter space as a tensor network: Cosmic no-hair, complementarity, and complexity

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Cao, ChunJun; Carroll, Sean M.; Chatwin-Davies, Aidan

    2017-12-01

    We investigate the proposed connection between de Sitter spacetime and the multiscale entanglement renormalization ansatz (MERA) tensor network, and ask what can be learned via such a construction. We show that the quantum state obeys a cosmic no-hair theorem: the reduced density operator describing a causal patch of the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with a positive cosmological constant asymptote to de Sitter space. The MERA is potentially compatible with a weak form of complementarity (local physics only describes single patches at a time, but the overall Hilbert space is infinite dimensional) or, with certain specific modifications to the tensor structure, a strong form (the entire theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert space). We also suggest that de Sitter evolution has an interpretation in terms of circuit complexity, as has been conjectured for anti-de Sitter space.

  19. Shape from sound: toward new tools for quantum gravity.

    PubMed

    Aasen, David; Bhamre, Tejal; Kempf, Achim

    2013-03-22

    To unify general relativity and quantum theory is hard in part because they are formulated in two very different mathematical languages, differential geometry and functional analysis. A natural candidate for bridging this language gap, at least in the case of the Euclidean signature, is the discipline of spectral geometry. It aims at describing curved manifolds in terms of the spectra of their canonical differential operators. As an immediate benefit, this would offer a clean gauge-independent identification of the metric's degrees of freedom in terms of invariants that should be ready to quantize. However, spectral geometry is itself hard and has been plagued by ambiguities. Here, we regularize and break up spectral geometry into small, finite-dimensional and therefore manageable steps. We constructively demonstrate that this strategy works at least in two dimensions. We can now calculate the shapes of two-dimensional objects from their vibrational spectra.

  20. Remarks on Chern-Simons Invariants

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnëv, Pavel

    2010-02-01

    The perturbative Chern-Simons theory is studied in a finite-dimensional version or assuming that the propagator satisfies certain properties (as is the case, e.g., with the propagator defined by Axelrod and Singer). It turns out that the effective BV action is a function on cohomology (with shifted degrees) that solves the quantum master equation and is defined modulo certain canonical transformations that can be characterized completely. Out of it one obtains invariants.

  1. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  2. Quantum critical spin-2 chain with emergent SU(3) symmetry.

    PubMed

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K

    2015-04-10

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  3. Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system

    DOE PAGES

    Lu, T. M.; Tracy, L. A.; Laroche, D.; ...

    2017-06-01

    We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less

  4. Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, T. M.; Tracy, L. A.; Laroche, D.

    We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less

  5. On-chip generation of high-dimensional entangled quantum states and their coherent control

    NASA Astrophysics Data System (ADS)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-01

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  6. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    PubMed

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  7. Design of dual-diameter nanoholes for efficient solar-light harvesting

    PubMed Central

    2014-01-01

    A dual-diameter nanohole (DNH) photovoltaic system is proposed, where a top (bottom) layer with large (small) nanoholes is used to improve the absorption for the short-wavelength (long-wavelength) solar incidence, leading to a broadband light absorption enhancement. Through three-dimensional finite-element simulation, the core device parameters, including the lattice constant, nanohole diameters, and nanohole depths, are engineered in order to realize the best light-matter coupling between nanostructured silicon and solar spectrum. The designed bare DNH system exhibits an outstanding absorption capability with a photocurrent density (under perfect internal quantum process) predicted to be 27.93 mA/cm2, which is 17.39%, 26.17%, and over 100% higher than the best single-nanohole (SNH) system, SNH system with an identical Si volume, and equivalent planar configuration, respectively. Considering the fabrication feasibility, a modified DNH system with an anti-reflection coating and back silver reflector is examined by simulating both optical absorption and carrier transport in a coupled way in frequency and three-dimensional spatial domains, achieving a light-conversion efficiency of 13.72%. PACS 85.60.-q; Optoelectronic device; 84.60.Jt; Photovoltaic conversion PMID:25258605

  8. De Sitter Space Without Dynamical Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2016-06-01

    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.

  9. Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Bloshkin, A. A.; Armbrister, V. A.; Dvurechenskii, A. V.

    2017-10-01

    Quantum dot based infrared (IR) photodetectors (QDIPs) have the potential to provide meaningful advances to the next generation of imaging systems due to their sensitivity to normal incidence radiation, large optical gain, low dark currents, and high operating temperature. SiGe-based QDIPs are of particular interest as they are compatible with silicon integration technology but suffer from the low absorption coefficient and hence small photoresponse in the mid-wavelength IR region. Here, we report on the plasmonic enhanced Ge/Si QDIPs with tailorable wavelength optical response and polarization selectivity. Ge/Si heterostructures with self-assembled Ge quantum dots are monolithically integrated with periodic two-dimensional arrays of subwavelength holes (2DHAs) perforated in gold films to convert the incident electromagnetic IR radiation into the surface plasmon polariton (SPP) waves. The resonant responsivity of the plasmonic detector at a wavelength of 5.4 μm shows an enhancement of up to thirty times over a narrow spectral bandwidth (FWHM = 0.3 μm), demonstrating the potentiality of this approach for the realization of high-performance Ge/Si QDIPs that require high spectral resolution. The possibility of the polarization-sensitive detection in Ge/Si QDIPs enhanced with a stretched-lattice 2DHA is reported. The excitation of SPP modes and the near-field components are investigated with the three-dimensional finite-element frequency-domain method. The role that plasmonic electric field plays in QDIP enhancement is discussed.

  10. Quantum decimation in Hilbert space: Coarse graining without structure

    NASA Astrophysics Data System (ADS)

    Singh, Ashmeet; Carroll, Sean M.

    2018-03-01

    We present a technique to coarse grain quantum states in a finite-dimensional Hilbert space. Our method is distinguished from other approaches by not relying on structures such as a preferred factorization of Hilbert space or a preferred set of operators (local or otherwise) in an associated algebra. Rather, we use the data corresponding to a given set of states, either specified independently or constructed from a single state evolving in time. Our technique is based on principle component analysis (PCA), and the resulting coarse-grained quantum states live in a lower-dimensional Hilbert space whose basis is defined using the underlying (isometric embedding) transformation of the set of fine-grained states we wish to coarse grain. Physically, the transformation can be interpreted to be an "entanglement coarse-graining" scheme that retains most of the global, useful entanglement structure of each state, while needing fewer degrees of freedom for its reconstruction. This scheme could be useful for efficiently describing collections of states whose number is much smaller than the dimension of Hilbert space, or a single state evolving over time.

  11. Generalization of uncertainty relation for quantum and stochastic systems

    NASA Astrophysics Data System (ADS)

    Koide, T.; Kodama, T.

    2018-06-01

    The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross-Pitaevskii equation and the Navier-Stokes-Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.

  12. Local quantum measurement and no-signaling imply quantum correlations.

    PubMed

    Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S

    2010-04-09

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  13. Quantum networks in divergence-free circuit QED

    NASA Astrophysics Data System (ADS)

    Parra-Rodriguez, A.; Rico, E.; Solano, E.; Egusquiza, I. L.

    2018-04-01

    Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the behaviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analogue quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.

  14. Quantum phase transition in strongly correlated many-body system

    NASA Astrophysics Data System (ADS)

    You, Wenlong

    The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M in the Ising model, and then we say long range order (LRO) exists in the system. LRO plays a key role in determining the ordered-disorder transition. Thereby, we investigate two-dimensional 120° orbital-only model to present how to extract the information of LRO in a pedagogical manner, by applying the reflection positivity method introduced by Dyson, Lieb, and Simon. We rigorously establish the existence of an anti-ferromagnetic like transverse orbital long-range order in the so called two-dimensional 120° model at zero temperature. Next we consider possible pairings in the family of FeAs-based ReO1--xFxFeAs (Re=La, Nd, Ce, Pr, etc.) high-temperature superconductors. We build some identities based on a two-orbital model, and obtained some constraints on a few possible pairings. We also establish the sufficient conditions for the coexistence of two superconducting orders, and we propose the most favorable pairings around half filling according to physical consideration. In chapter 3, we present a quantum solvation process with solvent of fermion character based on the one-dimensional asymmetric t-J-Jz model. The model is experimental realizable in optical lattices and exhibits rich physics. In this work, we show that there exist two types of phase separations, one is driven by potential energy while the other by kinetic energy. In between, solvation process occurs. Analytically, we are able to obtain some rigorous results to understand the underlying physics. Numerically, we perform exact diagonalization and density matrix renormalization group calculations, accompanied by detailed finite size analysis. In chapter 4, we explore several characterizations of QPT points. As distinguished from the methods in condensed-matter physics, we give much attention to understand QPT from the quantum information (QI) point of view. The perspective makes a new bridge between these two fields. It no only can facilitate the understanding of condensed-matter physics, but also provide the prominent playground for the quantum information theory. They are fidelity susceptibility and reduced fidelity susceptibility. We establish a general relation between fidelity and structure factor of the driving term in a Hamiltonian through fidelity susceptibility and show that the evaluation of fidelity in terms of susceptibility is facilitated by using well developed techniques such as density matrix renormalization group for the ground state, or Monte Carlo simulations for the states in thermal equilibrium. Furthermore, we show that the reduced fidelity susceptibility in the family of one-dimensional XY model obeys scaling law in the vicinity of quantum critical points both analytically and numerically. The logarithmic divergence behavior suggests that the reduced fidelity susceptibility can act as an indicator of quantum phase transition.

  15. Quantum Vertex Model for Reversible Classical Computing

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  16. Bipartite fidelity and Loschmidt echo of the bosonic conformal interface

    NASA Astrophysics Data System (ADS)

    Zhou, Tianci; Lin, Mao

    2017-12-01

    We study the quantum quench problem for a class of bosonic conformal interfaces by computing the Loschmidt echo and the bipartite fidelity. The quench can be viewed as a sudden change of boundary conditions parametrized by θ when connecting two one-dimensional critical systems. They are classified by S (θ ) matrices associated with the current scattering processes on the interface. The resulting Loschmidt echo of the quench has long time algebraic decay t-α, whose exponent also appears in the finite size bipartite fidelity as L-α/2. We perform analytic and numerical calculations of the exponent α , and find that it has a quadratic dependence on the change of θ if the prior and post-quench boundary conditions are of the same type of S , while remaining 1/4 otherwise. Possible physical realizations of these interfaces include, for instance, connecting different quantum wires (Luttinger liquids), quench of the topological phase edge states, etc., and the exponent can be detected in an x-ray edge singularity-type experiment.

  17. Quantum phase slips: from condensed matter to ultracold quantum gases.

    PubMed

    D'Errico, C; Abbate, S Scaffidi; Modugno, G

    2017-12-13

    Quantum phase slips (QPS) are the primary excitations in one-dimensional superfluids and superconductors at low temperatures. They have been well characterized in most condensed-matter systems, and signatures of their existence have been recently observed in superfluids based on quantum gases too. In this review, we briefly summarize the main results obtained on the investigation of phase slips from superconductors to quantum gases. In particular, we focus our attention on recent experimental results of the dissipation in one-dimensional Bose superfluids flowing along a shallow periodic potential, which show signatures of QPS.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).

  18. Computational methods for the control of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Cliff, E. M.; Powers, R. K.

    1985-01-01

    It is shown that care must be taken to ensure that finite dimensional approximations of distributed parameter systems preserve important system properties (i.e., controllability, observability, stabilizability, detectability, etc.). It is noted that, if the particular scheme used to construct the finite dimensional model does not take into account these system properties, the model may not be suitable for control design and analysis. These ideas are illustrated by a simple example, i.e., a cable-spring-mass system.

  19. Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations

    DOE PAGES

    Schuetrumpf, B.; Nazarewicz, W.

    2015-10-21

    Nuclear pasta phases, present in the inner crust of neutron stars, are associated with nucleonic matter at subsaturation densities arranged in regular shapes. Those complex phases, residing in a layer which is approximately 100-m thick, impact many features of neutron stars. Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite three-dimensional boxes assuming periodic boundary conditions. The resulting solutions are affected by spurious finite-size effects. To remove spurious finite-size effects, it is convenient to employ twist-averaged boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice quantum chromodynamics applications. In this work, we study the effectivenessmore » of TABC in the context of pasta phase simulations within nuclear density functional theory. We demonstrated that by applying TABC reliable results can be obtained from calculations performed in relatively small volumes. By studying various contributions to the total energy, we gain insights into pasta phases in mid-density range. Future applications will include the TABC extension of the adaptive multiresolution 3D Hartree-Fock solver and Hartree-Fock-Bogoliubov TABC applications to superfluid pasta phases and complex nucleonic topologies as in fission.« less

  20. Rigged String Configurations, Bethe Ansatz Qubits, and Conservation of Parity

    NASA Astrophysics Data System (ADS)

    Lulek, T.

    Bethe Ansatz solutions for the Heisenberg Hamiltonian of a one - dimensional magnetic ring of N nodes, each with the spin 1/2, within the XXX model, have been presented as some composite systems, in a spirit of quantum information theory. The constituents are single - node spin states, which organize into strings of various length, and "seas of holes". The former are responsible for dynamics, whereas the latter determine the range of riggings for strings. Another aim was to demonstrate a unification of Bethe Ansatz eigenstates by means of Galois symmetries of finite field extensions. The key observation is that the original eigenproblem is expressible in integers, and thus, for a finite fixed N, the splitting field of the characteristic polynom of the Heisenberg Hamiltonian is also finite. The Galois group of the latter field permutes, by definition, roots of this polynom, which implies permutation of eigenstates. General considerations are demonstrated on the example of heptagon (N = 7), which admits an implementation of a collection of arithmetic qubits, and also demonstrates a special case of degeneration of the spectrum of the Hamiltonian, resulting from conservation of parity, within the realm of rigged string configurations.

  1. Length filtration of the separable states.

    PubMed

    Chen, Lin; Ðoković, Dragomir Ž

    2016-11-01

    We investigate the separable states ρ of an arbitrary multi-partite quantum system with Hilbert space [Formula: see text] of dimension d . The length L ( ρ ) of ρ is defined as the smallest number of pure product states having ρ as their mixture. The length filtration of the set of separable states, [Formula: see text], is the increasing chain [Formula: see text], where [Formula: see text]. We define the maximum length, [Formula: see text], critical length, L crit , and yet another special length, L c , which was defined by a simple formula in one of our previous papers. The critical length indicates the first term in the length filtration whose dimension is equal to [Formula: see text]. We show that in general d ≤ L c ≤ L crit ≤ L max ≤ d 2 . We conjecture that the equality L crit = L c holds for all finite-dimensional multi-partite quantum systems. Our main result is that L crit = L c for the bipartite systems having a single qubit as one of the parties. This is accomplished by computing the rank of the Jacobian matrix of a suitable map having [Formula: see text] as its range.

  2. Adiabatic Quantum Search in Open Systems.

    PubMed

    Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D

    2016-10-07

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  3. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    2016-08-15

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.

  4. Electrons in Flatland

    NASA Astrophysics Data System (ADS)

    MacDonald, Allan

    2007-04-01

    Like the classical squares and triangles in Edwin Abbott's 19th century social satire and science fiction novel Flatland, electrons and other quantum particles behave differently when confined to a two-dimensional world. Condensed matter physicists have been intrigued and regularly suprised by two-dimensional electron systems since they were first studied in semiconductor field-effect-transistor devices over forty years ago. I will discuss some important milestones in the study of two-dimensional electrn systems, from the discoveries of the integer and fractional quantum Hall effects in the 1980's to recent quantum Hall effect work on quasiparticles with non-Abelian quantum statistics. Special attention will be given to a new electronic Flatland that has risen to prominence recently, graphene, which consists of a single sheet of carbon atoms in a honeycomb lattice arrangement. Graphene provides a realization of two-dimensional massless Dirac fermions which interact via nearly instantaneous Coulomb interactions. Early research on graphene has demonstrated yet again that Flatland exceeds expectations.

  5. Otto engine beyond its standard quantum limit.

    PubMed

    Leggio, Bruno; Antezza, Mauro

    2016-02-01

    We propose a quantum Otto cycle based on the properties of a two-level system in a realistic out-of-thermal-equilibrium electromagnetic field acting as its sole reservoir. This steady configuration is produced without the need of active control over the state of the environment, which is a noncoherent thermal radiation, sustained only by external heat supplied to macroscopic objects. Remarkably, even for nonideal finite-time transformations, it largely over-performs the standard ideal Otto cycle and asymptotically achieves unit efficiency at finite power.

  6. ANALYTICAL SOLUTION TO SATURATED FLOW IN A FINITE STRATIFIED AQUIFER

    EPA Science Inventory

    An analytical solution for the flow of water in a saturated-stratified aquitard-aquifer-aquitard system of finite length is presented. The analytical solution assumes one-dimensional horizontal flow in the aquifer and two-dimensional flow in the aquitards. Several examples are gi...

  7. A MATLAB-based finite-element visualization of quantum reactive scattering. I. Collinear atom-diatom reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warehime, Mick; Alexander, Millard H., E-mail: mha@umd.edu

    We restate the application of the finite element method to collinear triatomic reactive scattering dynamics with a novel treatment of the scattering boundary conditions. The method provides directly the reactive scattering wave function and, subsequently, the probability current density field. Visualizing these quantities provides additional insight into the quantum dynamics of simple chemical reactions beyond simplistic one-dimensional models. Application is made here to a symmetric reaction (H+H{sub 2}), a heavy-light-light reaction (F+H{sub 2}), and a heavy-light-heavy reaction (F+HCl). To accompany this article, we have written a MATLAB code which is fast, simple enough to be accessible to a wide audience,more » as well as generally applicable to any problem that can be mapped onto a collinear atom-diatom reaction. The code and user's manual are available for download from http://www2.chem.umd.edu/groups/alexander/FEM.« less

  8. Realistic finite temperature simulations of magnetic systems using quantum statistics

    NASA Astrophysics Data System (ADS)

    Bergqvist, Lars; Bergman, Anders

    2018-01-01

    We have performed realistic atomistic simulations at finite temperatures using Monte Carlo and atomistic spin dynamics simulations incorporating quantum (Bose-Einstein) statistics. The description is much improved at low temperatures compared to classical (Boltzmann) statistics normally used in these kind of simulations, while at higher temperatures the classical statistics are recovered. This corrected low-temperature description is reflected in both magnetization and the magnetic specific heat, the latter allowing for improved modeling of the magnetic contribution to free energies. A central property in the method is the magnon density of states at finite temperatures, and we have compared several different implementations for obtaining it. The method has no restrictions regarding chemical and magnetic order of the considered materials. This is demonstrated by applying the method to elemental ferromagnetic systems, including Fe and Ni, as well as Fe-Co random alloys and the ferrimagnetic system GdFe3.

  9. Thermodynamic and Neutron Scattering Study of the Spin-1/2 Kagome Antiferromagnet ZnCu3(OH)6Cl2: A Quantum Spin Liquid System

    NASA Astrophysics Data System (ADS)

    Han, Tianheng

    New physics, such as a quantum spin liquid, can emerge in systems where quantum fluctuations are enhanced due to reduced dimensionality and strong frustration . The realization of a quantum spin liquid in two-dimensions would represent a new state of matter. It is believed that spin liquid physics plays a role in the phenomenon of high-Tc superconductivity, and the topological properties of the spin liquid state may have applications in the field of quantum information. The Zn-paratacamite family, ZnxCu4-- x(OH)6Cl2 for x > 0.33, is an ideal system to look for such an exotic state in the form of antiferromagnetic Cu 2 + kagome planes. The x = 1 end member, named herbertsmithite, has shown promising spin liquid properties from prior studies on powder samples. Here we show a new synthesis by which high-quality centimeter-sized single crystals of Znparatacamite have been produced for the first time. Neutron and synchrotron xray diffraction experiments indicate no structural transition down to T = 2 K. The magnetic susceptibility both perpendicular and parallel to the kagome plane has been measured for the x = 1 sample. A small, temperature-dependent anisotropy has been observed, where chi z / chip > 1 at high temperatures and chiz / chip < 1 at low temperatures. Fits of the high-temperature data to a Curie-Weiss model also reveal anisotropies for thetacw's and g-factors. By comparing with theoretical calculations, the presence of a small easy-axis exchange anisotropy can be deduced as a primary perturbation to the dominant Heisenberg nearest neighbor interaction. These results have great bearing on the interpretation of theoretical calculations based on the kagome Heisenberg antiferromagnet model to the experiments on ZnCu3(OH) 6Cl2. Specific heat measurements down to dilution temperatures and under strong applied magnetic fields show a superlinear temperature dependence with a finite linear term. Most importantly, we present neutron scattering measurements of the spin excitations on a large deuterated single crystal sample of herbertsmithite. Our observation of a spinon continuum in a two-dimensional magnet is unprecedented. The sresults serve as a a key fingerprint of the quantum spin liquid state in herbertsmithite. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  10. Quantum melting of a two-dimensional Wigner crystal

    NASA Astrophysics Data System (ADS)

    Dolgopolov, V. T.

    2017-10-01

    The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid-solid phase interface are discussed.

  11. Edge-mode superconductivity in a two-dimensional topological insulator.

    PubMed

    Pribiag, Vlad S; Beukman, Arjan J A; Qu, Fanming; Cassidy, Maja C; Charpentier, Christophe; Wegscheider, Werner; Kouwenhoven, Leo P

    2015-07-01

    Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which have been predicted to occur in the surface states of three-dimensional systems, in the edge states of two-dimensional systems, and in one-dimensional wires. Localized Majorana zero-modes obey non-Abelian exchange statistics, making them interesting building blocks for topological quantum computing. Here, we report superconductivity induced in the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the two-dimensional topological phase. These experiments establish InAs/GaSb as a promising platform for the confinement of Majoranas into localized states, enabling future investigations of non-Abelian statistics.

  12. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Zhou, Qi

    2015-08-01

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.

  13. Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.

    2015-03-01

    We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.

  14. Optimal least-squares finite element method for elliptic problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1991-01-01

    An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.

  15. Dissipative phases across the superconductor-to-insulator transition

    PubMed Central

    Couëdo, F.; Crauste, O.; Drillien, A. A.; Humbert, V.; Bergé, L.; Marrache-Kikuchi, C. A.; Dumoulin, L.

    2016-01-01

    Competing phenomena in low dimensional systems can generate exotic electronic phases, either through symmetry breaking or a non-trivial topology. In two-dimensional (2D) systems, the interplay between superfluidity, disorder and repulsive interactions is especially fruitful in this respect although both the exact nature of the phases and the microscopic processes at play are still open questions. In particular, in 2D, once superconductivity is destroyed by disorder, an insulating ground state is expected to emerge, as a result of a direct superconductor-to-insulator quantum phase transition. In such systems, no metallic state is theoretically expected to survive to the slightest disorder. Here we map out the phase diagram of amorphous NbSi thin films as functions of disorder and film thickness, with two metallic phases in between the superconducting and insulating ones. These two dissipative states, defined by a resistance which extrapolates to a finite value in the zero temperature limit, each bear a specific dependence on disorder. We argue that they originate from an inhomogeneous destruction of superconductivity, even if the system is morphologically homogeneous. Our results suggest that superconducting fluctuations can favor metallic states that would not otherwise exist. PMID:27786260

  16. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  17. General polygamy inequality of multiparty quantum entanglement

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2012-06-01

    Using entanglement of assistance, we establish a general polygamy inequality of multiparty entanglement in arbitrary-dimensional quantum systems. For multiparty closed quantum systems, we relate our result with the monogamy of entanglement, and clarify that the entropy of entanglement bounds both monogamy and polygamy of multiparty quantum entanglement.

  18. Finite-Dimensional Representations for Controlled Diffusions with Delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Federico, Salvatore, E-mail: salvatore.federico@unimi.it; Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr

    2015-02-15

    We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.

  19. Direct evaluation of boson dynamics via finite-temperature time-dependent variation with multiple Davydov states.

    PubMed

    Fujihashi, Yuta; Wang, Lu; Zhao, Yang

    2017-12-21

    Recent advances in quantum optics allow for exploration of boson dynamics in dissipative many-body systems. However, the traditional descriptions of quantum dissipation using reduced density matrices are unable to capture explicit information of bath dynamics. In this work, efficient evaluation of boson dynamics is demonstrated by combining the multiple Davydov Ansatz with finite-temperature time-dependent variation, going beyond what state-of-the-art density matrix approaches are capable to offer for coupled electron-boson systems. To this end, applications are made to excitation energy transfer in photosynthetic systems, singlet fission in organic thin films, and circuit quantum electrodynamics in superconducting devices. Thanks to the multiple Davydov Ansatz, our analysis of boson dynamics leads to clear revelation of boson modes strongly coupled to electronic states, as well as in-depth description of polaron creation and destruction in the presence of thermal fluctuations.

  20. Ground-state phase diagram in the Kugel-Khomskii model with finite spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji

    2018-05-01

    We study ground-state properties in the Kugel-Khomskii model on the two-dimensional honeycomb lattice. Using the cluster mean-field approximations, we deal with the exchange and spin-orbit couplings on an equal footing. We then discuss the stability of the ferromagnetically ordered states against the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit.

  1. Quantum key distribution session with 16-dimensional photonic states.

    PubMed

    Etcheverry, S; Cañas, G; Gómez, E S; Nogueira, W A T; Saavedra, C; Xavier, G B; Lima, G

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  2. Quantum key distribution session with 16-dimensional photonic states

    NASA Astrophysics Data System (ADS)

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-07-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  3. Quantum key distribution session with 16-dimensional photonic states

    PubMed Central

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  4. Graphene quantum dots with visible light absorption of the carbon core: insights from single-particle spectroscopy and first principles based theory

    NASA Astrophysics Data System (ADS)

    Ghosh, Siddharth; Awasthi, Manohar; Ghosh, Moumita; Seibt, Michael; Niehaus, Thomas A.

    2016-12-01

    Luminescent carbon nanodots (CND) are a recent addition to the family of carbon nanostructures. Interestingly, a large group of CNDs are fluorescent in the visible spectrum and possess single dipole emitters with potential applications in super-resolution microscopy, quantum information science, and optoelectronics. There is a large diversity of CND’s size as well as a strong variability of edge topology and functional groups in real samples. This hampers a direct comparison of experimental and theoretical findings that is necessary to understand the unusual photophysics of these systems. Here, we derive atomistic models of finite sized (<2.5 nm) CNDs from high resolution transmission electron microscopy (HRTEM) which are studied using approximate time-dependent density functional theory. The atomistic models are found to be primarily two-dimensional (2D) and can hence be categorised as graphene quantum dots (GQD). The GQD model structures that are presented here show excitation energies in the visible spectrum matching previous single GQD level photoluminescence studies. We also present the effect of edge hydroxyl and carboxyl functional groups on the absorption spectrum. Overall, the study reveals the atomistic origin of CNDs photoluminescence in the visible range.

  5. Photonic ququart logic assisted by the cavity-QED system.

    PubMed

    Luo, Ming-Xing; Deng, Yun; Li, Hui-Ran; Ma, Song-Ya

    2015-08-14

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions of qubit systems, we investigate the possibility of ququart systems (four-dimensional states) dependent on two DOFs of photon systems. We propose some useful one-parameter four-dimensional quantum transformations for the construction of universal ququart logic gates. The interface between the spin of a photon and an electron spin confined in a quantum dot embedded in a microcavity is applied to build universal ququart logic gates on the photon system with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-assisted quantum error-correcting code, which may be available in modern physical technology.

  6. Photonic ququart logic assisted by the cavity-QED system

    PubMed Central

    Luo, Ming-Xing; Deng, Yun; Li, Hui-Ran; Ma, Song-Ya

    2015-01-01

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions of qubit systems, we investigate the possibility of ququart systems (four-dimensional states) dependent on two DOFs of photon systems. We propose some useful one-parameter four-dimensional quantum transformations for the construction of universal ququart logic gates. The interface between the spin of a photon and an electron spin confined in a quantum dot embedded in a microcavity is applied to build universal ququart logic gates on the photon system with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-assisted quantum error-correcting code, which may be available in modern physical technology. PMID:26272869

  7. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  8. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States.

    PubMed

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-25

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  9. An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, M.E.; Ritchie, A.B.

    1997-12-31

    One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less

  10. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators

    NASA Astrophysics Data System (ADS)

    Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2017-08-01

    Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.

  11. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-01

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  12. Spectral functions of strongly correlated extended systems via an exact quantum embedding

    NASA Astrophysics Data System (ADS)

    Booth, George H.; Chan, Garnet Kin-Lic

    2015-04-01

    Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.

  13. Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Zhang, Baile

    2016-11-01

    Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.

  14. Quantum many-body adiabaticity, topological Thouless pump and driven impurity in a one-dimensional quantum fluid

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim

    2018-02-01

    The quantum adiabatic theorem states that a driven system can be kept arbitrarily close to the instantaneous eigenstate of its Hamiltonian if the latter varies in time slowly enough. When it comes to applying the adiabatic theorem in practice, the key question to be answered is how slow slowly enough is. This question can be an intricate one, especially for many-body systems, where the limits of slow driving and large system size may not commute. Recently we have shown how the quantum adiabaticity in many-body systems is related to the generalized orthogonality catastrophe [arXiv 1611.00663, to appear in Phys. Rev. Lett.]. We have proven a rigorous inequality relating these two phenomena and applied it to establish conditions for the quantized transport in the topological Thouless pump. In the present contribution we (i) review these developments and (ii) apply the inequality to establish the conditions for adiabaticity in a one-dimensional system consisting of a quantum fluid and an impurity particle pulled through the fluid by an external force. The latter analysis is vital for the correct quantitative description of the phenomenon of quasi-Bloch oscillations in a one-dimensional translation invariant impurity-fluid system.

  15. Thermalization and revivals after a quantum quench in conformal field theory.

    PubMed

    Cardy, John

    2014-06-06

    We consider a quantum quench in a finite system of length L described by a 1+1-dimensional conformal field theory (CFT), of central charge c, from a state with finite energy density corresponding to an inverse temperature β≪L. For times t such that ℓ/2

  16. BOOK REVIEW: Quantum Physics in One Dimension

    NASA Astrophysics Data System (ADS)

    Logan, David

    2004-05-01

    To a casual ostrich the world of quantum physics in one dimension may sound a little one-dimensional, suitable perhaps for those with an unhealthy obsession for the esoteric. Nothing of course could be further from the truth. The field is remarkably rich and broad, and for more than fifty years has thrown up innumerable challenges. Theorists, realising that the role of interactions in 1D is special and that well known paradigms of higher dimensions (Fermi liquid theory for example) no longer apply, took up the challenge of developing new concepts and techniques to understand the undoubted pecularities of one-dimensional systems. And experimentalists have succeeded in turning pipe dreams into reality, producing an impressive and ever increasing array of experimental realizations of 1D systems, from the molecular to the mesoscopic---spin and ladder compounds, organic superconductors, carbon nanotubes, quantum wires, Josephson junction arrays and so on. Many books on the theory of one-dimensional systems are however written by experts for experts, and tend as such to leave the non-specialist a touch bewildered. This is understandable on both fronts, for the underlying theoretical techniques are unquestionably sophisticated and not usually part of standard courses in many-body theory. A brave author it is then who aims to produce a well rounded, if necessarily partial, overview of quantum physics in one dimension, accessible to a beginner yet taking them to the edge of current research, and providing en route a thorough grounding in the fundamental ideas, basic methods and essential phenomenology of the field. It is of course the brave who succeed in this world, and Thierry Giamarchi does just that with this excellent book, written by an expert for the uninitiated. Aimed in particular at graduate students in theoretical condensed matter physics, and assumimg little theoretical background on the part of the reader (well just a little), Giamarchi writes in a refreshingly relaxed style with infectious enthusiasm for his subject, and readily combines formal instruction with physical insight. The result is a serious, pedagogical yet comprehensive guide to the fascinating and important field of one-dimensional quantum systems, for which many a graduate student (and not a few oldies) will be grateful. The first half of the book, chapters 1--5, is devoted to a coherent presentation of the essential concepts and theoretical methods of the field. After a basic introduction to the unique behaviour of interacting electrons in one dimension, and to early fermionic approaches to the problem, Giamarchi turns to the technique of bosonization, introducing chapter 3 with a Marxist quote: `A child of five would understand this. Send for a child of five.' This most powerful technique is presented in a step by step fashion, and serious perusal of the chapter will benefit all ages since bosonization is used extensively throughout the rest of the book. The same is true of chapter 3 where a phenomenological and physically insightful introduction is given to the Luttinger liquid---the key concept in the low-energy physics of one-dimensional systems, analogous to the Fermi liquid in higher dimensions. Chapter 4 deals with what the author calls `refinements', or complications of the sort theorists in particular welcome; such as how the Luttinger liquid description is modified by the presence of long-ranged interactions, the Mott transition (`we forgot the lattice Gromit'), and the effects of breaking spin rotational invariance on application of a magnetic field. Finally chapter 5 describes various microscopic methods for one dimension, including a brief discussion of numerical techniques but focussing primarily on the Bethe ansatz---the famous one-dimensional technique others seek to emulate but whose well known complexity necessitates a relatively brief discussion, confined in practice to the spin-1/2 Heisenberg model. In the second half of the book, chapters 6--11, a range of different physical realizations of one-dimensional quantum physics are discussed. According to taste and interest, these chapters can be read in essentially any order. Spin systems are considered in chapter 6, beginning with spin chains---Jordan--Wigner, the bosonization solution---before moving to frustration, the spin-Peierls transition, and spin ladders; and including experimental examples of both spin chain and ladder materials. Chapters 7 and 8 deal with interacting lattice fermions, the former with single chain problems, notably the Hubbard, t-J and related models; and the latter with coupled fermionic chains, from finite to infinite, including a fulsome discussion of Bechgaard salts (organic conductors) as exemplars of Luttinger liquid behaviour. The effect of disorder in fermionic systems is taken up in chapter 9, and here the reader may react: interacting systems are tough enough, why make life harder? But disorder is always present to some degree in real systems---quantum wires, for example, discussed briefly in the chapter---and its effects particularly acute in one dimension. It simply cannot be avoided, even if the problem of interacting, disordered one-dimensional systems is still a long way off being solved. The penultimate chapter deals with the topical issues of boundaries, isolated impurities and constrictions, with a primary focus on mesoscopic examples of Luttinger liquids, notably carbon nanotubes and edge states in the quantum Hall effect. Finally `significant other' examples of Luttinger liquids, namely interacting one-dimensional bosons, are considered in chapter 11; which concludes with a discussion of bosonization techniques in the context of quantum impurities in Fermi liquids---the x-ray, Kondo and multichannel Kondo problems. The quality of the product attests to the fact that writing this impressive tome was a labour of love for the author. Anyone with a serious interest in getting to grips with one-dimensional quantum systems simply needs the book on their shelves---and will have great fun reading it too.

  17. Ensemble Density Functional Approach to the Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Heinonen, O.

    1997-03-01

    The fractional quantum Hall effect (FQHE) occurs in a two-dimensional electron gas of density n when a strong magnetic field perpendicular to the plane of the electron gas takes on certain strengths B(n). At these magnetic field strengths the system is incompressible, i.e., there is a finite cost in energy for creating charge density fluctuations in the bulk. Even so the boundary of the electron gas supports gapless modes of density waves. The bulk energy gap arises because of the strong electron-electron interactions. There are very good models for infinite homogeneous systems and for the gapless excitations of the boundary of the electron gas. But in order to explain experiments on quantum Hall systems, including Hall bars and quantum dots, new approaches are needed which can accurately describe inhomogeneous systems, including Landau level mixing and the spin degree of freedom. One possibility is an ensemble density functional theory approach that we have developed.(O. Heinonen, M.I. Lubin, and M.D. Johnson, Phys. Rev. Lett. 75), 4110 (1995)(O. Heinonen, M.I. Lubin, and M.D. Johnson, Int. J. Quant. Chem, December 1996) We have applied this to study edge reconstructions of spin-polarized quantum dots. The results for a six-electron test case are in excellent agreement with numerical diagonalizations. For larger systems, compressible and incompressible strips appear as the magnetic field is increased from the region in which a dot forms a compact so-called maximum density droplet. We have recently included spin degree of freedom to study the stability of a maximum density droplet, and charge-spin textures in inhomogeneous systems. As an example, when the Zeeman coupling is decreased, we find that the maximum density droplet develops a spin-structured edge instability. This implies that the spin degree of freedom may play a significant role in the study of edge modes at low or moderate magnetic fields.

  18. Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Bulchandani, Vir B.; Moore, Joel E.

    2018-04-01

    We study a one-dimensional gas of hard rods trapped in a harmonic potential, which breaks integrability of the hard-rod interaction in a nonuniform way. We explore the consequences of such broken integrability for the dynamics of a large number of particles and find three distinct regimes: initial, chaotic, and stationary. The initial regime is captured by an evolution equation for the phase-space distribution function. For any finite number of particles, this hydrodynamics breaks down and the dynamics becomes chaotic after a characteristic timescale determined by the interparticle distance and scattering length. The system fails to thermalize over the timescale studied (1 04 natural units), but the time-averaged ensemble is a stationary state of the hydrodynamic evolution. We close by discussing logical extensions of the results to similar systems of quantum particles.

  19. Contextuality as a Resource for Models of Quantum Computation with Qubits

    NASA Astrophysics Data System (ADS)

    Bermejo-Vega, Juan; Delfosse, Nicolas; Browne, Dan E.; Okay, Cihan; Raussendorf, Robert

    2017-09-01

    A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.

  20. Quantum Discord Preservation for Two Quantum-Correlated Qubits in Two Independent Reserviors

    NASA Astrophysics Data System (ADS)

    Xu, Lan

    2018-03-01

    We investigate the dynamics of quantum discord using an exactly solvable model where two qubits coupled to independent thermal environments. The quantum discord is employed as a non-classical correlation quantifier. By studying the quantum discord of a class of initial states, we find discord remains preserve for a finite time. The effects of the temperature, initial-state parameter, system-reservoir coupling constant and temperature difference parameter of the two independent reserviors are also investigated. We discover that the quantum nature loses faster in high temperature, however, one can extend the time of quantum nature by choosing smaller system-reservoir coupling constant, larger certain initial-state parameter and larger temperature difference parameter.

  1. Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases

    DOE PAGES

    Brandino, G. P.; Caux, J. -S.; Konik, R. M.

    2015-12-16

    Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess non-trivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking,more » we show that it is possible to construct residual quasi-conserved quantities, so providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasi-conserved quantities can be probed experimentally.« less

  2. Multiple-state quantum Otto engine, 1D box system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latifah, E., E-mail: enylatifah@um.ac.id; Purwanto, A.

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  3. Wilson-Racah quantum system

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2017-02-01

    Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialas, A.; Czyz, W.; Zalewski, K.

    The relation between Renyi entropies and moments of the Wigner function, representing the quantum mechanical description of the M-particle semi-inclusive distribution at freeze-out, is investigated. It is shown that in the limit of infinite volume of the system, the classical and quantum descriptions are equivalent. Finite volume corrections are derived and shown to be small for systems encountered in relativistic heavy ion collisions.

  5. Superior memory efficiency of quantum devices for the simulation of continuous-time stochastic processes

    NASA Astrophysics Data System (ADS)

    Elliott, Thomas J.; Gu, Mile

    2018-03-01

    Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.

  6. Secure Quantum Technologies

    NASA Astrophysics Data System (ADS)

    Malik, Mehul

    Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum lithography, quantum ghost imaging, and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of accurate and efficient methods of measuring and characterizing the elusive quantum state itself. In this thesis, I present new technologies that use the quantum properties of light for security. The first of these is a technique that extends the principles behind QKD to the field of imaging and optical ranging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that were secure against any intercept-resend jamming attacks. The second technology presented in this thesis is based on an extension of quantum ghost imaging, a technique that uses position-momentum entangled photons to create an image of an object without directly gaining any spatial information from it. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this thesis is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. I discuss the development of two OAM-QKD protocols based on the BB84 and Ekert protocols of QKD. In addition, I present a study characterizing the effects of turbulence on a communication system using OAM modes for encoding. The fourth and final technology presented in this thesis is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state. I use this technique to characterize the quantum state of a photon with a dimensionality of d = 27, and visualize its rotation in the natural basis of OAM.

  7. Gutzwiller Monte Carlo approach for a critical dissipative spin model

    NASA Astrophysics Data System (ADS)

    Casteels, Wim; Wilson, Ryan M.; Wouters, Michiel

    2018-06-01

    We use the Gutzwiller Monte Carlo approach to simulate the dissipative X Y Z model in the vicinity of a dissipative phase transition. This approach captures classical spatial correlations together with the full on-site quantum behavior while neglecting nonlocal quantum effects. By considering finite two-dimensional lattices of various sizes, we identify a ferromagnetic and two paramagnetic phases, in agreement with earlier studies. The greatly reduced numerical complexity of the Gutzwiller Monte Carlo approach facilitates efficient simulation of relatively large lattice sizes. The inclusion of the spatial correlations allows to capture parts of the phase diagram that are completely missed by the widely applied Gutzwiller decoupling of the density matrix.

  8. Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material.

    PubMed

    Humam, Nurrul Syafawati Binti; Sato, Yu; Takahashi, Motoki; Kanazawa, Shohei; Tsumori, Nobuhiro; Regreny, Philippe; Gendry, Michel; Saiki, Toshiharu

    2014-06-16

    We present the mechanisms underlying the redshifted and blueshifted photoluminescence (PL) of quantum dots (QDs) upon amorphization of phase change material (PCM). We calculated the stress and energy shift distribution induced by volume expansion using finite element method. Simulation result reveals that redshift is obtained beneath the flat part of amorphous mark, while blueshift is obtained beneath the edge region of amorphous mark. Simulation result is accompanied by two experimental studies; two-dimensional PL intensity mapping of InAs/InP QD sample deposited by a layer of PCM, and an analysis on the relationship between PL intensity ratio and energy shift were performed.

  9. A Polarization-Dependent Normal Incident Quantum Cascade Detector Enhanced Via Metamaterial Resonators.

    PubMed

    Wang, Lei; Zhai, Shen-Qiang; Wang, Feng-Jiao; Liu, Jun-Qi; Liu, Shu-Man; Zhuo, Ning; Zhang, Chuan-Jin; Wang, Li-Jun; Liu, Feng-Qi; Wang, Zhan-Guo

    2016-12-01

    The design, fabrication, and characterization of a polarization-dependent normal incident quantum cascade detector coupled via complementary split-ring metamaterial resonators in the infrared regime are presented. The metamaterial structure is designed through three-dimensional finite-difference time-domain method and fabricated on the top metal contact, which forms a double-metal waveguide together with the metallic ground plane. With normal incidence, significant enhancements of photocurrent response are obtained at the metamaterial resonances compared with the 45° polished edge coupling device. The photocurrent response enhancements exhibit clearly polarization dependence, and the largest response enhancement factor of 165% is gained for the incident light polarized parallel to the split-ring gap.

  10. Magnetic-field-induced mixed-level Kondo effect in two-level systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Arturo; Ngo, Anh T.; Ulloa, Sergio E.

    2016-10-17

    We consider a two-orbital impurity system with intra-and interlevel Coulomb repulsion that is coupled to a single conduction channel. This situation can generically occur in multilevel quantum dots or in systems of coupled quantum dots. For finite energy spacing between spin-degenerate orbitals, an in-plane magnetic field drives the system from a local-singlet ground state to a "mixed-level" Kondo regime, where the Zeeman-split levels are degenerate for opposite-spin states. We use the numerical renormalization group approach to fully characterize this mixed-level Kondo state and discuss its properties in terms of the applied Zeeman field, temperature, and system parameters. Under suitable conditions,more » the total spectral function is shown to develop a Fermi-level resonance, so that the linear conductance of the system peaks at a finite Zeeman field while it decreases as a function of temperature. These features, as well as the local moment and entropy contribution of the impurity system, are commensurate with Kondo physics, which can be studied in suitably tuned quantum dot systems.« less

  11. Reductions in finite-dimensional integrable systems and special points of classical r-matrices

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2016-12-01

    For a given 𝔤 ⊗ 𝔤-valued non-skew-symmetric non-dynamical classical r-matrices r(u, v) with spectral parameters, we construct the general form of 𝔤-valued Lax matrices of finite-dimensional integrable systems satisfying linear r-matrix algebra. We show that the reduction in the corresponding finite-dimensional integrable systems is connected with "the special points" of the classical r-matrices in which they become degenerated. We also propose a systematic way of the construction of additional integrals of the Lax-integrable systems associated with the symmetries of the corresponding r-matrices. We consider examples of the Lax matrices and integrable systems that are obtained in the framework of the general scheme. Among them there are such physically important systems as generalized Gaudin systems in an external magnetic field, ultimate integrable generalization of Toda-type chains (including "modified" or "deformed" Toda chains), generalized integrable Jaynes-Cummings-Dicke models, integrable boson models generalizing Bose-Hubbard dimer models, etc.

  12. Phase operator problem and macroscopic extension of quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozawa, M.

    1997-06-01

    To find the Hermitian phase operator of a single-mode electromagnetic field in quantum mechanics, the Schr{umlt o}dinger representation is extended to a larger Hilbert space augmented by states with infinite excitation by nonstandard analysis. The Hermitian phase operator is shown to exist on the extended Hilbert space. This operator is naturally considered as the controversial limit of the approximate phase operators on finite dimensional spaces proposed by Pegg and Barnett. The spectral measure of this operator is a Naimark extension of the optimal probability operator-valued measure for the phase parameter found by Helstrom. Eventually, the two promising approaches to themore » statistics of the phase in quantum mechanics are synthesized by means of the Hermitian phase operator in the macroscopic extension of the Schr{umlt o}dinger representation. {copyright} 1997 Academic Press, Inc.« less

  13. Chain representations of Open Quantum Systems and Lieb-Robinson like bounds for the dynamics

    NASA Astrophysics Data System (ADS)

    Woods, Mischa

    2013-03-01

    This talk is concerned with the mapping of the Hamiltonian of open quantum systems onto chain representations, which forms the basis for a rigorous theory of the interaction of a system with its environment. This mapping progresses as an interaction which gives rise to a sequence of residual spectral densities of the system. The rigorous mathematical properties of this mapping have been unknown so far. Here we develop the theory of secondary measures to derive an analytic, expression for the sequence solely in terms of the initial measure and its associated orthogonal polynomials of the first and second kind. These mappings can be thought of as taking a highly nonlocal Hamiltonian to a local Hamiltonian. In the latter, a Lieb-Robinson like bound for the dynamics of the open quantum system makes sense. We develop analytical bounds on the error to observables of the system as a function of time when the semi-infinite chain in truncated at some finite length. The fact that this is possible shows that there is a finite ``Speed of sound'' in these chain representations. This has many implications of the simulatability of open quantum systems of this type and demonstrates that a truncated chain can faithfully reproduce the dynamics at shorter times. These results make a significant and mathematically rigorous contribution to the understanding of the theory of open quantum systems; and pave the way towards the efficient simulation of these systems, which within the standard methods, is often an intractable problem. EPSRC CDT in Controlled Quantum Dynamics, EU STREP project and Alexander von Humboldt Foundation

  14. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  15. FELIX-2.0: New version of the finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Verrière, M.; Schunck, N.

    2018-04-01

    The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this paper, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank-Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. We emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).

  16. Magnetic control of dipolaritons in quantum dots.

    PubMed

    Rojas-Arias, J S; Rodríguez, B A; Vinck-Posada, H

    2016-12-21

    Dipolaritons are quasiparticles that arise in coupled quantum wells embedded in a microcavity, they are a superposition of a photon, a direct exciton and an indirect exciton. We propose the existence of dipolaritons in a system of two coupled quantum dots inside a microcavity in direct analogy with the quantum well case and find that, despite some similarities, dipolaritons in quantum dots have different properties and can lead to true dark polariton states. We use a finite system theory to study the effects of the magnetic field on the system, including the emission, and find that it can be used as a control parameter of the properties of excitons and dipolaritons, and the overall magnetic behaviour of the structure.

  17. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    NASA Astrophysics Data System (ADS)

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-01

    We studied the lattice vibrations of two interpenetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. As the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a nonzero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a "devil's staircase" behavior at a finite temperature.

  18. Tomographic quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yeong Cherng; Kaszlikowski, Dagomir; Englert, Berthold-Georg

    2003-08-01

    We present a protocol for quantum cryptography in which the data obtained for mismatched bases are used in full for the purpose of quantum state tomography. Eavesdropping on the quantum channel is seriously impeded by requiring that the outcome of the tomography is consistent with unbiased noise in the channel. We study the incoherent eavesdropping attacks that are still permissible and establish under which conditions a secure cryptographic key can be generated. The whole analysis is carried out for channels that transmit quantum systems of any finite dimension.

  19. 2 + 1 dimensional de Sitter universe emerging from the gauge structure of a nonlinear quantum system.

    PubMed

    Kam, Chon-Fai; Liu, Ren-Bao

    2017-08-29

    Berry phases and gauge structures are fundamental quantum phenomena. In linear quantum mechanics the gauge field in parameter space presents monopole singularities where the energy levels become degenerate. In nonlinear quantum mechanics, which is an effective theory of interacting quantum systems, there can be phase transitions and hence critical surfaces in the parameter space. We find that these critical surfaces result in a new type of gauge field singularity, namely, a conic singularity that resembles the big bang of a 2 + 1 dimensional de Sitter universe, with the fundamental frequency of Bogoliubov excitations acting as the cosmic scale, and mode softening at the critical surface, where the fundamental frequency vanishes, causing a causal singularity. Such conic singularity may be observed in various systems such as Bose-Einstein condensates and molecular magnets. This finding offers a new approach to quantum simulation of fundamental physics.

  20. A self-contained quantum harmonic engine

    NASA Astrophysics Data System (ADS)

    Reid, B.; Pigeon, S.; Antezza, M.; De Chiara, G.

    2017-12-01

    We propose a system made of three quantum harmonic oscillators as a compact quantum engine for producing mechanical work. The three oscillators play respectively the role of the hot bath, the working medium and the cold bath. The working medium performs an Otto cycle during which its frequency is changed and it is sequentially coupled to each of the two other oscillators. As the two environments are finite, the lifetime of the machine is finite and after a number of cycles it stops working and needs to be reset. Remarkably, we show that this machine can extract more than 90% of the available energy during 70 cycles. Differently from usually investigated infinite-reservoir configurations, this machine allows the protection of induced quantum correlations and we analyse the entanglement and quantum discord generated during the strokes. Interestingly, we show that high work generation is always accompanied by large quantum correlations. Our predictions can be useful for energy management at the nanoscale, and can be relevant for experiments with trapped ions and experiments with light in integrated optical circuits.

  1. Quantum states and optical responses of low-dimensional electron hole systems

    NASA Astrophysics Data System (ADS)

    Ogawa, Tetsuo

    2004-09-01

    Quantum states and their optical responses of low-dimensional electron-hole systems in photoexcited semiconductors and/or metals are reviewed from a theoretical viewpoint, stressing the electron-hole Coulomb interaction, the excitonic effects, the Fermi-surface effects and the dimensionality. Recent progress of theoretical studies is stressed and important problems to be solved are introduced. We cover not only single-exciton problems but also few-exciton and many-exciton problems, including electron-hole plasma situations. Dimensionality of the Wannier exciton is clarified in terms of its linear and nonlinear responses. We also discuss a biexciton system, exciton bosonization technique, high-density degenerate electron-hole systems, gas-liquid phase separation in an excited state and the Fermi-edge singularity due to a Mahan exciton in a low-dimensional metal.

  2. A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu

    We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less

  3. Experimental researches on quantum transport in semiconductor two-dimensional electron systems

    PubMed Central

    Kawaji, Shinji

    2008-01-01

    The author reviews contribution of Gakushuin University group to the progress of the quantum transport in semiconductor two-dimensional electron systems (2DES) for forty years from the birth of the 2DES in middle of the 1960s till the finding of temperature dependent collapse of the quantized Hall resistance in the beginning of this century. PMID:18941299

  4. Three-dimensional finite element modelling of muscle forces during mastication.

    PubMed

    Röhrle, Oliver; Pullan, Andrew J

    2007-01-01

    This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.

  5. The Particle inside a Ring: A Two-Dimensional Quantum Problem Visualized by Scanning Tunneling Microscopy

    ERIC Educational Resources Information Center

    Ellison, Mark D.

    2008-01-01

    The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…

  6. The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Belloni, M.; Robinett, R. W.

    2014-07-01

    The infinite square well and the attractive Dirac delta function potentials are arguably two of the most widely used models of one-dimensional bound-state systems in quantum mechanics. These models frequently appear in the research literature and are staples in the teaching of quantum theory on all levels. We review the history, mathematical properties, and visualization of these models, their many variations, and their applications to physical systems. For the ISW and the attractive DDF potentials, Eq. (4) implies, as expected, that energy eigenfunctions will have a kink-a discontinuous first derivative at the location of the infinite jump(s) in the potentials. However, the large |p| behavior of the momentum-space energy eigenfunction given by Eq. (5) will be |ϕ(p)|∝1/p2. Therefore for the ISW and the attractive DDF potentials, expectation value of p will be finite, but even powers of p higher than 2 will not lead to convergent integrals. This analysis proves that despite the kinks in the ISW and attractive DDF eigenfunctions, is finite, and therefore yield appropriate solutions to the Schrödinger equation.The existence of power-law ‘tails’ of a momentum distribution as indicated in Eq. (5) in the case of ‘less than perfect’ potentials [41], including a 1/p2 power-law dependence for a singular potential (such as the DDF form) may seem a mathematical artifact, but we note two explicit realizations of exactly this type of behavior in well-studied quantum systems.As noted below (in Section 6.2) the momentum-space energy eigenfunction of the ground state of one of the most familiar (and singular) potentials, namely that of the Coulomb problem, is given by ϕ1,0,0(p)=√{8p0/π}p0/2 where p0=ħ/a0 with a0 the Bohr radius. This prediction for the p-dependence of the hydrogen ground state momentum-space distribution was verified by Weigold [42] and collaborators with measurements taken out to p-values beyond 1.4p0; well out onto the power-law ‘tail’.More recently, Tan [43] and others [44,45] have noted that for condensed matter or atomic systems with a large scattering length, so that the short-range interactions can actually be modeled as singular δ-functions, the momentum distribution also exhibits a large momentum ‘tail’ which falls off as C/k4. The constant of proportionality, C (or contact as it has come to be known), encodes important information on the microscopic physics, in much the way that the constants in Eq. (5) are related to the details of the 1D potential. In fact, in one review [46] of these developments, this connection has been described as “How the tail wags the dog in ultracold atomic gases”. Just as with the H-atom momentum distribution, experiments have verified this power-law behavior for both fermion [47,48] and more recently Bose systems [49].It is these connections, namely of exemplary results derived in simpler one-dimensional systems such as the ISW and DDF potentials which find parallels in more fundamental physical realizations, that motivate us to review many of the basic mathematical and physical results of these two ‘benchmark’ model potentials. We hope that both students and instructors alike involved in advanced undergraduate and graduate courses in quantum mechanics will find this survey useful. We trust that it will aid readers in exploring a wide array of physical effects, using rigorous mathematical methods, in the context of familiar one-dimensional systems, making use of otherwise hard-to-find results.

  7. Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Sosa-Martinez, H.; Riofrío, C. A.; Deutsch, Ivan H.; Jessen, Poul S.

    2015-06-01

    Unitary transformations are the most general input-output maps available in closed quantum systems. Good control protocols have been developed for qubits, but questions remain about the use of optimal control theory to design unitary maps in high-dimensional Hilbert spaces, and about the feasibility of their robust implementation in the laboratory. Here we design and implement unitary maps in a 16-dimensional Hilbert space associated with the 6 S1 /2 ground state of 133Cs, achieving fidelities >0.98 with built-in robustness to static and dynamic perturbations. Our work has relevance for quantum information processing and provides a template for similar advances on other physical platforms.

  8. Quantum walks: The first detected passage time problem

    NASA Astrophysics Data System (ADS)

    Friedman, H.; Kessler, D. A.; Barkai, E.

    2017-03-01

    Even after decades of research, the problem of first passage time statistics for quantum dynamics remains a challenging topic of fundamental and practical importance. Using a projective measurement approach, with a sampling time τ , we obtain the statistics of first detection events for quantum dynamics on a lattice, with the detector located at the origin. A quantum renewal equation for a first detection wave function, in terms of which the first detection probability can be calculated, is derived. This formula gives the relation between first detection statistics and the solution of the corresponding Schrödinger equation in the absence of measurement. We illustrate our results with tight-binding quantum walk models. We examine a closed system, i.e., a ring, and reveal the intricate influence of the sampling time τ on the statistics of detection, discussing the quantum Zeno effect, half dark states, revivals, and optimal detection. The initial condition modifies the statistics of a quantum walk on a finite ring in surprising ways. In some cases, the average detection time is independent of the sampling time while in others the average exhibits multiple divergences as the sampling time is modified. For an unbounded one-dimensional quantum walk, the probability of first detection decays like (time)(-3 ) with superimposed oscillations, with exceptional behavior when the sampling period τ times the tunneling rate γ is a multiple of π /2 . The amplitude of the power-law decay is suppressed as τ →0 due to the Zeno effect. Our work, an extended version of our previously published paper, predicts rich physical behaviors compared with classical Brownian motion, for which the first passage probability density decays monotonically like (time)-3 /2, as elucidated by Schrödinger in 1915.

  9. QED multi-dimensional vacuum polarization finite-difference solver

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  10. Quantum criticality of a spin-1 XY model with easy-plane single-ion anisotropy via a two-time Green function approach avoiding the Anderson-Callen decoupling

    NASA Astrophysics Data System (ADS)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2016-04-01

    In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.

  11. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  12. Exact special twist method for quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro

    2016-12-01

    We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.

  13. Chiral anomaly and anomalous finite-size conductivity in graphene

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing; Li, Chang-An; Niu, Qian

    2017-09-01

    Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.

  14. The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.

    PubMed

    Plotnitsky, Arkady

    2016-05-28

    Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT. © 2016 The Author(s).

  15. Quantum multicriticality in disordered Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Luo, Xunlong; Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi

    2018-01-01

    In electronic band structure of solid-state material, two band-touching points with linear dispersion appear in pairs in the momentum space. When they annihilate each other, the system undergoes a quantum phase transition from a three-dimensional (3D) Weyl semimetal (WSM) phase to a band insulator phase such as a Chern band insulator (CI) phase. The phase transition is described by a new critical theory with a "magnetic dipole"-like object in the momentum space. In this paper, we reveal that the critical theory hosts a novel disorder-driven quantum multicritical point, which is encompassed by three quantum phases: a renormalized WSM phase, a CI phase, and a diffusive metal (DM) phase. Based on the renormalization group argument, we first clarify scaling properties around the band-touching points at the quantum multicritical point as well as all phase boundaries among these three phases. Based on numerical calculations of localization length, density of states, and critical conductance distribution, we next prove that a localization-delocalization transition between the CI phase with a finite zero-energy density of states (zDOS) and DM phase belongs to an ordinary 3D unitary class. Meanwhile, a localization-delocalization transition between the Chern insulator phase with zero zDOS and a renormalized WSM phase turns out to be a direct phase transition whose critical exponent ν =0.80 ±0.01 . We interpret these numerical results by a renormalization group analysis on the critical theory.

  16. Quantum Bio-Informatics IV

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Freudenberg, Wolfgang; Ohya, Masanori

    2011-01-01

    The QP-DYN algorithms / L. Accardi, M. Regoli and M. Ohya -- Study of transcriptional regulatory network based on Cis module database / S. Akasaka ... [et al.] -- On Lie group-Lie algebra correspondences of unitary groups in finite von Neumann algebras / H. Ando, I. Ojima and Y. Matsuzawa -- On a general form of time operators of a Hamiltonian with purely discrete spectrum / A. Arai -- Quantum uncertainty and decision-making in game theory / M. Asano ... [et al.] -- New types of quantum entropies and additive information capacities / V. P. Belavkin -- Non-Markovian dynamics of quantum systems / D. Chruscinski and A. Kossakowski -- Self-collapses of quantum systems and brain activities / K.-H. Fichtner ... [et al.] -- Statistical analysis of random number generators / L. Accardi and M. Gabler -- Entangled effects of two consecutive pairs in residues and its use in alignment / T. Ham, K. Sato and M. Ohya -- The passage from digital to analogue in white noise analysis and applications / T. Hida -- Remarks on the degree of entanglement / D. Chruscinski ... [et al.] -- A completely discrete particle model derived from a stochastic partial differential equation by point systems / K.-H. Fichtner, K. Inoue and M. Ohya -- On quantum algorithm for exptime problem / S. Iriyama and M. Ohya -- On sufficient algebraic conditions for identification of quantum states / A. Jamiolkowski -- Concurrence and its estimations by entanglement witnesses / J. Jurkowski -- Classical wave model of quantum-like processing in brain / A. Khrennikov -- Entanglement mapping vs. quantum conditional probability operator / D. Chruscinski ... [et al.] -- Constructing multipartite entanglement witnesses / M. Michalski -- On Kadison-Schwarz property of quantum quadratic operators on M[symbol](C) / F. Mukhamedov and A. Abduganiev -- On phase transitions in quantum Markov chains on Cayley Tree / L. Accardi, F. Mukhamedov and M. Saburov -- Space(-time) emergence as symmetry breaking effect / I. Ojima.Use of cryptographic ideas to interpret biological phenomena (and vice versa) / M. Regoli -- Discrete approximation to operators in white noise analysis / Si Si -- Bogoliubov type equations via infinite-dimensional equations for measures / V. V. Kozlov and O. G. Smolyanov -- Analysis of several categorical data using measure of proportional reduction in variation / K. Yamamoto ... [et al.] -- The electron reservoir hypothesis for two-dimensional electron systems / K. Yamada ... [et al.] -- On the correspondence between Newtonian and functional mechanics / E. V. Piskovskiy and I. V. Volovich -- Quantile-quantile plots: An approach for the inter-species comparison of promoter architecture in eukaryotes / K. Feldmeier ... [et al.] -- Entropy type complexities in quantum dynamical processes / N. Watanabe -- A fair sampling test for Ekert protocol / G. Adenier, A. Yu. Khrennikov and N. Watanabe -- Brownian dynamics simulation of macromolecule diffusion in a protocell / T. Ando and J. Skolnick -- Signaling network of environmental sensing and adaptation in plants: Key roles of calcium ion / K. Kuchitsu and T. Kurusu -- NetzCope: A tool for displaying and analyzing complex networks / M. J. Barber, L. Streit and O. Strogan -- Study of HIV-1 evolution by coding theory and entropic chaos degree / K. Sato -- The prediction of botulinum toxin structure based on in silico and in vitro analysis / T. Suzuki and S. Miyazaki -- On the mechanism of D-wave high T[symbol] superconductivity by the interplay of Jahn-Teller physics and Mott physics / H. Ushio, S. Matsuno and H. Kamimura.

  17. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    PubMed

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-05

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

  18. Preparing and probing many-body correlated systems in a Quantum Gas Microscope by engineering arbitrary landscape potentials

    NASA Astrophysics Data System (ADS)

    Rispoli, Matthew; Lukin, Alexander; Ma, Ruichao; Preiss, Philipp; Tai, M. Eric; Islam, Rajibul; Greiner, Markus

    2015-05-01

    Ultracold atoms in optical lattices provide a versatile tool box for observing the emergence of strongly correlated physics in quantum systems. Dynamic control of optical potentials on the single-site level allows us to prepare and probe many-body quantum states through local Hamiltonian engineering. We achieve these high precision levels of optical control through spatial light modulation with a DMD (digital micro-mirror device). This allows for both arbitrary beam shaping and aberration compensation in our imaging system to produce high fidelity optical potentials. We use these techniques to control state initialization, Hamiltonian dynamics, and measurement in experiments investigating low-dimensional many-body physics - from one-dimensional correlated quantum walks to characterizing entanglement.

  19. Four-dimensional symmetry from a broad viewpoint. II Invariant distribution of quantized field oscillators and questions on infinities

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1983-01-01

    The foundation of the quantum field theory is changed by introducing a new universal probability principle into field operators: one single inherent and invariant probability distribution P(/k/) is postulated for boson and fermion field oscillators. This can be accomplished only when one treats the four-dimensional symmetry from a broad viewpoint. Special relativity is too restrictive to allow such a universal probability principle. A radical length, R, appears in physics through the probability distribution P(/k/). The force between two point particles vanishes when their relative distance tends to zero. This appears to be a general property for all forces and resembles the property of asymptotic freedom. The usual infinities in vacuum fluctuations and in local interactions, however complicated they may be, are all removed from quantum field theories. In appendix A a simple finite and unitary theory of unified electroweak interactions is discussed without assuming Higgs scalar bosons.

  20. A Back-to-Front Derivation: The Equal Spacing of Quantum Levels Is a Proof of Simple Harmonic Oscillator Physics

    ERIC Educational Resources Information Center

    Andrews, David L.; Romero, Luciana C. Davila

    2009-01-01

    The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…

  1. Entanglement by Path Identity.

    PubMed

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-24

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  2. Entanglement by Path Identity

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-01

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  3. Three-Dimensional Finite Element Ablative Thermal Response and Thermostructural Design of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2011-01-01

    A finite element ablation and thermal response program is presented for simulation of three-dimensional transient thermostructural analysis. The three-dimensional governing differential equations and finite element formulation are summarized. A novel probabilistic design methodology for thermal protection systems is presented. The design methodology is an eight step process beginning with a parameter sensitivity study and is followed by a deterministic analysis whereby an optimum design can determined. The design process concludes with a Monte Carlo simulation where the probabilities of exceeding design specifications are estimated. The design methodology is demonstrated by applying the methodology to the carbon phenolic compression pads of the Crew Exploration Vehicle. The maximum allowed values of bondline temperature and tensile stress are used as the design specifications in this study.

  4. Quantum phase slip phenomenon in ultra-narrow superconducting nanorings

    NASA Astrophysics Data System (ADS)

    Arutyunov, Konstantin Yu.; Hongisto, Terhi T.; Lehtinen, Janne S.; Leino, Leena I.; Vasiliev, Alexander L.

    2012-02-01

    The smaller the system, typically - the higher is the impact of fluctuations. In narrow superconducting wires sufficiently close to the critical temperature Tc thermal fluctuations are responsible for the experimentally observable finite resistance. Quite recently it became possible to fabricate sub-10 nm superconducting structures, where the finite resistivity was reported within the whole range of experimentally obtainable temperatures. The observation has been associated with quantum fluctuations capable to quench zero resistivity in superconducting nanowires even at temperatures T-->0. Here we demonstrate that in tiny superconducting nanorings the same phenomenon is responsible for suppression of another basic attribute of superconductivity - persistent currents - dramatically affecting their magnitude, the period and the shape of the current-phase relation. The effect is of fundamental importance demonstrating the impact of quantum fluctuations on the ground state of a macroscopically coherent system, and should be taken into consideration in various nanoelectronic applications.

  5. Parametrically driven hybrid qubit-photon systems: Dissipation-induced quantum entanglement and photon production from vacuum

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-10-01

    We consider a dissipative evolution of a parametrically driven qubit-cavity system under the periodic modulation of coupling energy between two subsystems, which leads to the amplification of counter-rotating processes. We reveal a very rich dynamical behavior of this hybrid system. In particular, we find that the energy dissipation in one of the subsystems can enhance quantum effects in another subsystem. For instance, optimal cavity decay assists the stabilization of entanglement and quantum correlations between qubits even in the steady state and the compensation of finite qubit relaxation. On the contrary, energy dissipation in qubit subsystems results in enhanced photon production from vacuum for strong modulation but destroys both quantum concurrence and quantum mutual information between qubits. Our results provide deeper insights to nonstationary cavity quantum electrodynamics in the context of quantum information processing and might be of importance for dissipative quantum state engineering.

  6. Introduction to quantized LIE groups and algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjin, T.

    1992-10-10

    In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl[sub 2] is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxtermore » equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl[sub 2] algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.« less

  7. SO(3) "Nuclear Physics" with ultracold Gases

    NASA Astrophysics Data System (ADS)

    Rico, E.; Dalmonte, M.; Zoller, P.; Banerjee, D.; Bögli, M.; Stebler, P.; Wiese, U.-J.

    2018-06-01

    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S = 3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.

  8. Manipulating Nonlinear Emission and Cooperative Effect of CdSe/ZnS Quantum Dots by Coupling to a Silver Nanorod Complex Cavity

    PubMed Central

    Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan

    2014-01-01

    Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617

  9. Energy levels of a hydrogenic impurity in a parabolic quantum well with a magnetic field

    NASA Astrophysics Data System (ADS)

    Zang, J. X.; Rustgi, M. L.

    1993-07-01

    In this paper, we present a calculation of the energy levels of a hydrogenic impurity (or a hydrogenic atom) at the bottom of a one-dimensional parabolic quantum well with a magnetic field normal to the plane of the well. The finite-basis-set variational method is used to calculate the ground state and the excited states with major quantum number less than or equal to 3. The limit of small radial distance and the limit of great radial distance are considered to choose a set of proper basis functions. The results in the limit that the parabolic parameter α=0 are compared with the data of Rösner et al. [J. Phys. B 17, 29 (1984)]. The comparison shows that the present calculation is quite accurate. It is found that the energy levels increase with increasing parabolic parameter α and increase with increasing normalized magnetic-field strength γ except those levels with magnetic quantum number m<0 at small γ.

  10. Quantum spin liquid signatures in Kitaev-like frustrated magnets

    NASA Astrophysics Data System (ADS)

    Gohlke, Matthias; Wachtel, Gideon; Yamaji, Youhei; Pollmann, Frank; Kim, Yong Baek

    2018-02-01

    Motivated by recent experiments on α -RuCl3 , we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the K -Γ model, where K and Γ represent the Kitaev and symmetric-anisotropic interactions between spin-1/2 moments on the honeycomb lattice. Using the infinite density matrix renormalization group, we provide compelling evidence for the existence of quantum spin liquid phases in an extended region of the phase diagram. In particular, we use transfer-matrix spectra to show the evolution of two-particle excitations with well-defined two-dimensional dispersion, which is a strong signature of a quantum spin liquid. These results are compared with predictions from Majorana mean-field theory and used to infer the quasiparticle excitation spectra. Further, we compute the dynamical structure factor using finite-size cluster computations and show that the results resemble the scattering continuum seen in neutron-scattering experiments on α -RuCl3 . We discuss these results in light of recent and future experiments.

  11. Maximizing the quantum efficiency of microchannel plate detectors - The collection of photoelectrons from the interchannel web using an electric field

    NASA Technical Reports Server (NTRS)

    Taylor, R. C.; Hettrick, M. C.; Malina, R. F.

    1983-01-01

    High quantum efficiency and two-dimensional imaging capabilities make the microchannel plate (MCP) a suitable detector for a sky survey instrument. The Extreme Ultraviolet Explorer satellite, to be launched in 1987, will use MCP detectors. A feature which limits MCP efficiency is related to the walls of individual channels. The walls are of finite thickness and thus form an interchannel web. Under normal circumstances, this web does not contribute to the detector's quantum efficiency. Panitz and Foesch (1976) have found that in the case of a bombardment with ions, electrons were ejected from the electrode material coating the web. By applying a small electric field, the electrons were returned to the MCP surface where they were detected. The present investigation is concerned with the enhancement of quantum efficiencies in the case of extreme UV wavelengths. Attention is given to a model and a computer simulation which quantitatively reproduce the experimental results.

  12. Anonymous voting for multi-dimensional CV quantum system

    NASA Astrophysics Data System (ADS)

    Rong-Hua, Shi; Yi, Xiao; Jin-Jing, Shi; Ying, Guo; Moon-Ho, Lee

    2016-06-01

    We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), and the MEST-NRF of Korea (Grant No. 2012-002521).

  13. Observation of spinon spin currents in one-dimensional spin liquid

    NASA Astrophysics Data System (ADS)

    Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji

    To date, two types of spin current have been explored experimentally: conduction-electron spin current and spin-wave spin current. Here, we newly present spinon spin current in quantum spin liquid. An archetype of quantum spin liquid is realized in one-dimensional spin-1/2 chains with the spins coupled via antiferromagnetic interaction. Elementary excitation in such a system is known as a spinon. Theories have predicted that the correlation of spinons reaches over a long distance. This suggests that spin current may propagate via one-dimensional spinons even in spin liquid states. In this talk, we report the experimental observation that a spin liquid in a spin-1/2 quantum chain generates and conveys spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow via quantum fluctuation in spite of the absence of magnetic order, suggesting that a variety of quantum spin systems can be applied to spintronics. Spin Quantum Rectification Project, ERATO, JST, Japan; PRESTO, JST, Japan.

  14. Control landscapes are almost always trap free: a geometric assessment

    NASA Astrophysics Data System (ADS)

    Russell, Benjamin; Rabitz, Herschel; Wu, Re-Bing

    2017-05-01

    A proof is presented that almost all closed, finite dimensional quantum systems have trap free (i.e. free from local optima) landscapes for a large and physically general class of circumstances, which includes qubit evolutions in quantum computing. This result offers an explanation for why gradient-based methods succeed so frequently in quantum control. The role of singular controls is analyzed using geometric tools in the case of the control of the propagator, and thus in the case of observables as well. Singular controls have been implicated as a source of landscape traps. The conditions under which singular controls can introduce traps, and thus interrupt the progress of a control optimization, are discussed and a geometrical characterization of the issue is presented. It is shown that a control being singular is not sufficient to cause control optimization progress to halt, and sufficient conditions for a trap free landscape are presented. It is further shown that the local surjectivity (full rank) assumption of landscape analysis can be refined to the condition that the end-point map is transverse to each of the level sets of the fidelity function. This mild condition is shown to be sufficient for a quantum system’s landscape to be trap free. The control landscape is shown to be trap free for all but a null set of Hamiltonians using a geometric technique based on the parametric transversality theorem. Numerical evidence confirming this analysis is also presented. This new result is the analogue of the work of Altifini, wherein it was shown that controllability holds for all but a null set of quantum systems in the dipole approximation. These collective results indicate that the availability of adequate control resources remains the most physically relevant issue for achieving high fidelity control performance while also avoiding landscape traps.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apel, V.M.; Curilef, S.; Plastino, A.R., E-mail: arplastino@unnoba.edu.ar

    We explore the entanglement-related features exhibited by the dynamics of a composite quantum system consisting of a particle and an apparatus (here referred to as the “pointer”) that measures the position of the particle. We consider measurements of finite duration, and also the limit case of instantaneous measurements. We investigate the time evolution of the quantum entanglement between the particle and the pointer, with special emphasis on the final entanglement associated with the limit case of an impulsive interaction. We consider entanglement indicators based on the expectation values of an appropriate family of observables, and also an entanglement measure computedmore » on particular exact analytical solutions of the particle–pointer Schrödinger equation. The general behavior exhibited by the entanglement indicators is consistent with that shown by the entanglement measure evaluated on particular analytical solutions of the Schrödinger equation. In the limit of instantaneous measurements the system’s entanglement dynamics corresponds to that of an ideal quantum measurement process. On the contrary, we show that the entanglement evolution corresponding to measurements of finite duration departs in important ways from the behavior associated with ideal measurements. In particular, highly localized initial states of the particle lead to highly entangled final states of the particle–pointer system. This indicates that the above mentioned initial states, in spite of having an arbitrarily small position uncertainty, are not left unchanged by a finite-duration position measurement process. - Highlights: • We explore entanglement features of a quantum position measurement. • We consider instantaneous and finite-duration measurements. • We evaluate the entanglement of exact time-dependent particle–pointer states.« less

  16. Matrix-Product-State Algorithm for Finite Fractional Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Bhatt, R. N.

    2015-09-01

    Exact diagonalization is a powerful tool to study fractional quantum Hall (FQH) systems. However, its capability is limited by the exponentially increasing computational cost. In order to overcome this difficulty, density-matrix-renormalization-group (DMRG) algorithms were developed for much larger system sizes. Very recently, it was realized that some model FQH states have exact matrix-product-state (MPS) representation. Motivated by this, here we report a MPS code, which is closely related to, but different from traditional DMRG language, for finite FQH systems on the cylinder geometry. By representing the many-body Hamiltonian as a matrix-product-operator (MPO) and using single-site update and density matrix correction, we show that our code can efficiently search the ground state of various FQH systems. We also compare the performance of our code with traditional DMRG. The possible generalization of our code to infinite FQH systems and other physical systems is also discussed.

  17. Programmable dispersion on a photonic integrated circuit for classical and quantum applications.

    PubMed

    Notaros, Jelena; Mower, Jacob; Heuck, Mikkel; Lupo, Cosmo; Harris, Nicholas C; Steinbrecher, Gregory R; Bunandar, Darius; Baehr-Jones, Tom; Hochberg, Michael; Lloyd, Seth; Englund, Dirk

    2017-09-04

    We demonstrate a large-scale tunable-coupling ring resonator array, suitable for high-dimensional classical and quantum transforms, in a CMOS-compatible silicon photonics platform. The device consists of a waveguide coupled to 15 ring-based dispersive elements with programmable linewidths and resonance frequencies. The ability to control both quality factor and frequency of each ring provides an unprecedented 30 degrees of freedom in dispersion control on a single spatial channel. This programmable dispersion control system has a range of applications, including mode-locked lasers, quantum key distribution, and photon-pair generation. We also propose a novel application enabled by this circuit - high-speed quantum communications using temporal-mode-based quantum data locking - and discuss the utility of the system for performing the high-dimensional unitary optical transformations necessary for a quantum data locking demonstration.

  18. Interaction quenched ultracold few-boson ensembles in periodically driven lattices

    NASA Astrophysics Data System (ADS)

    Mistakidis, Simeon; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2017-04-01

    The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. It is shown that periodic driving enforces the bosons in the outer wells of the finite lattice to exhibit out-of-phase dipole-like modes, while in the central well the atomic cloud experiences a local breathing mode. The dynamical behavior is investigated with varying driving frequency, revealing a resonant-like behavior of the intra-well dynamics. An interaction quench in the periodically driven lattice gives rise to admixtures of different excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. We observe then multiple resonances between the inter- and intra-well dynamics at different quench amplitudes, with the position of the resonances being tunable via the driving frequency. Our results pave the way for future investigations on the use of combined driving protocols in order to excite different inter- and intra-well modes and to subsequently control them. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  19. High-Temperature Nonequilibrium Bose Condensation Induced by a Hot Needle.

    PubMed

    Schnell, Alexander; Vorberg, Daniel; Ketzmerick, Roland; Eckardt, André

    2017-10-06

    We investigate theoretically a one-dimensional ideal Bose gas that is driven into a steady state far from equilibrium via the coupling to two heat baths: a global bath of temperature T and a "hot needle," a bath of temperature T_{h}≫T with localized coupling to the system. Remarkably, this system features a crossover to finite-size Bose condensation at temperatures T that are orders of magnitude larger than the equilibrium condensation temperature. This counterintuitive effect is explained by a suppression of long-wavelength excitations resulting from the competition between both baths. Moreover, for sufficiently large needle temperatures ground-state condensation is superseded by condensation into an excited state, which is favored by its weaker coupling to the hot needle. Our results suggest a general strategy for the preparation of quantum degenerate nonequilibrium steady states with unconventional properties and at large temperatures.

  20. Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Shen, Junling; Liu, Xiaolian; Ni, Lu; Wang, Saili

    2017-09-01

    The relative coupling efficiency of two-dimensional (2D) grating based on surface plasmon for very long wavelength quantum well infrared detector is analyzed by using the three-dimensional finite-difference time domain (3D-FDTD) method algorithm. The relative coupling efficiency with respect to the grating parameters, such as grating pitch, duty ratio, and grating thickness, is analyzed. The calculated results show that the relative coupling efficiency would reach the largest value for the 14.5 μm incident infrared light when taking the grating pitch as 4.4 μm, the duty ratio as 0.325, and the grating thickness as 0.07 μm, respectively.

  1. Central Charges and the Sign of Entanglement in 4D Conformal Field Theories.

    PubMed

    Perlmutter, Eric; Rangamani, Mukund; Rota, Massimiliano

    2015-10-23

    We explore properties of the universal terms in the entanglement entropy and logarithmic negativity in 4D conformal field theories, aiming to clarify the ways in which they behave like the analogous entanglement measures in quantum mechanics. We show that, unlike entanglement entropy in finite-dimensional systems, the sign of the universal part of entanglement entropy is indeterminate. In particular, if and only if the central charges obey a>c, the entanglement across certain classes of entangling surfaces can become arbitrarily negative, depending on the geometry and topology of the surface. The negative contribution is proportional to the product of a-c and the genus of the surface. Similarly, we show that in a>c theories, the logarithmic negativity does not always exceed the entanglement entropy.

  2. Bounds on the entanglement entropy of droplet states in the XXZ spin chain

    NASA Astrophysics Data System (ADS)

    Beaud, V.; Warzel, S.

    2018-01-01

    We consider a class of one-dimensional quantum spin systems on the finite lattice Λ ⊂Z , related to the XXZ spin chain in its Ising phase. It includes in particular the so-called droplet Hamiltonian. The entanglement entropy of energetically low-lying states over a bipartition Λ = B ∪ Bc is investigated and proven to satisfy a logarithmic bound in terms of min{n, |B|, |Bc|}, where n denotes the maximal number of down spins in the considered state. Upon addition of any (positive) random potential, the bound becomes uniformly constant on average, thereby establishing an area law. The proof is based on spectral methods: a deterministic bound on the local (many-body integrated) density of states is derived from an energetically motivated Combes-Thomas estimate.

  3. Magnetic field effect on photoionization cross-section of hydrogen-like impurity in cylindrical quantum wire

    NASA Astrophysics Data System (ADS)

    Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.

    2008-01-01

    We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.

  4. Spectral Automorphisms in Quantum Logics

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexandru; Caragheorgheopol, Dan

    2010-12-01

    In quantum mechanics, the Hilbert space formalism might be physically justified in terms of some axioms based on the orthomodular lattice (OML) mathematical structure (Piron in Foundations of Quantum Physics, Benjamin, Reading, 1976). We intend to investigate the extent to which some fundamental physical facts can be described in the more general framework of OMLs, without the support of Hilbert space-specific tools. We consider the study of lattice automorphisms properties as a “substitute” for Hilbert space techniques in investigating the spectral properties of observables. This is why we introduce the notion of spectral automorphism of an OML. Properties of spectral automorphisms and of their spectra are studied. We prove that the presence of nontrivial spectral automorphisms allow us to distinguish between classical and nonclassical theories. We also prove, for finite dimensional OMLs, that for every spectral automorphism there is a basis of invariant atoms. This is an analogue of the spectral theorem for unitary operators having purely point spectrum.

  5. Phase-space finite elements in a least-squares solution of the transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less

  6. Quantum Coherence and Random Fields at Mesoscopic Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbaum, Thomas F.

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets tomore » antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.« less

  7. Quantum stream instability in coupled two-dimensional plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-08-01

    In this paper the quantum counter-streaming instability problem is studied in planar two-dimensional (2D) quantum plasmas using the coupled quantum hydrodynamic (CQHD) model which incorporates the most important quantum features such as the statistical Fermi-Dirac electron pressure, the electron-exchange potential and the quantum diffraction effect. The instability is investigated for different 2D quantum electron systems using the dynamics of Coulomb-coupled carriers on each plasma sheet when these plasmas are both monolayer doped graphene or metalfilm (corresponding to 2D Dirac or Fermi electron fluids). It is revealed that there are fundamental differences between these two cases regarding the effects of Bohm's quantum potential and the electron-exchange on the instability criteria. These differences mark yet another interesting feature of the effect of the energy band dispersion of Dirac electrons in graphene. Moreover, the effects of plasma number-density and coupling parameter on the instability criteria are shown to be significant. This study is most relevant to low dimensional graphene-based field-effect-transistor (FET) devices. The current study helps in understanding the collective interactions of the low-dimensional coupled ballistic conductors and the nanofabrication of future graphene-based integrated circuits.

  8. Coexistence of unlimited bipartite and genuine multipartite entanglement: Promiscuous quantum correlations arising from discrete to continuous-variable systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adesso, Gerardo; CNR-INFM Coherentia , Naples; Grup d'Informacio Quantica, Universitat Autonoma de Barcelona, E-08193 Bellaterra

    2007-08-15

    Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e., simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N{>=}4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding, and potential exploitation of shared quantummore » correlations in continuous variable systems. We discuss how promiscuity gradually arises when considering simple families of discrete variable states, with increasing Hilbert space dimension towards the continuous variable limit. Such models are somehow analogous to Gaussian states with asymptotically diverging, but finite, squeezing. In this respect, we find that non-Gaussian states (which in general are more entangled than Gaussian states) exhibit also the interesting feature that their entanglement is more shareable: in the non-Gaussian multipartite arena, unlimited promiscuity can be already achieved among three entangled parties, while this is impossible for Gaussian, even infinitely squeezed states.« less

  9. Energy efficient quantum machines

    NASA Astrophysics Data System (ADS)

    Abah, Obinna; Lutz, Eric

    2017-05-01

    We investigate the performance of a quantum thermal machine operating in finite time based on shortcut-to-adiabaticity techniques. We compute efficiency and power for a paradigmatic harmonic quantum Otto engine by taking the energetic cost of the shortcut driving explicitly into account. We demonstrate that shortcut-to-adiabaticity machines outperform conventional ones for fast cycles. We further derive generic upper bounds on both quantities, valid for any heat engine cycle, using the notion of quantum speed limit for driven systems. We establish that these quantum bounds are tighter than those stemming from the second law of thermodynamics.

  10. On the geometry of mixed states and the Fisher information tensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras, I., E-mail: icontrer@illinois.edu; Ercolessi, E., E-mail: ercolessi@bo.infn.it; Schiavina, M., E-mail: michele.schiavina@math.uzh.ch

    2016-06-15

    In this paper, we will review the co-adjoint orbit formulation of finite dimensional quantum mechanics, and in this framework, we will interpret the notion of quantum Fisher information index (and metric). Following previous work of part of the authors, who introduced the definition of Fisher information tensor, we will show how its antisymmetric part is the pullback of the natural Kostant–Kirillov–Souriau symplectic form along some natural diffeomorphism. In order to do this, we will need to understand the symmetric logarithmic derivative as a proper 1-form, settling the issues about its very definition and explicit computation. Moreover, the fibration of co-adjointmore » orbits, seen as spaces of mixed states, is also discussed.« less

  11. Classical and quantum analysis of repulsive singularities in four-dimensional extended supergravity

    NASA Astrophysics Data System (ADS)

    Gaida, I.; Hollmann, H. R.; Stewart, J. M.

    1999-07-01

    Non-minimal repulsive singularities (`repulsons') in extended supergravity theories are investigated. The short-distance antigravity properties of the repulsons are tested at the classical and the quantum level by a scalar test-particle. Using a partial wave expansion it is shown that the particle is totally reflected at the origin. A high-frequency incoming particle undergoes a phase shift of icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/>/2. However, the phase shift for a low-frequency particle depends upon the physical data of the repulson. The curvature singularity at a finite distance rh turns out to be transparent for the scalar test-particle and the coordinate singularity at the origin serves as the repulsive barrier to bounce back the particles.

  12. Bases for qudits from a nonstandard approach to SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kibler, M. R., E-mail: kibler@ipnl.in2p3.fr

    2011-06-15

    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1 + p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1 + p mutually unbiased bases in C{sup p}. Repeated application of the formula can be used for generating mutually unbiased bases in C{sup d} with d = p{sup e} (e {>=} 2) a power of a prime integer. A connection between mutually unbiasedmore » bases and the unitary group SU(d) is briefly discussed in the case d = p{sup e}.« less

  13. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    DOE PAGES

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; ...

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setupmore » to eliminate nontopological contributions from the side surface.« less

  14. Interacting lattice systems with quantum dissipation: A quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Pollet, Lode; Lou, Jie; Wang, Xiaoqun; Chen, Yan; Cai, Zi

    2018-01-01

    Quantum dissipation arises when a large system can be split in a quantum system and an environment to which the energy of the former flows. Understanding the effect of dissipation on quantum many-body systems is of particular importance due to its potential relationship with quantum information. We propose a conceptually simple approach to introduce dissipation into interacting quantum systems in a thermodynamical context, in which every site of a one-dimensional (1D) lattice is coupled off-diagonally to its own bath. The interplay between quantum dissipation and interactions gives rise to counterintuitive interpretations such as a compressible zero-temperature state with spontaneous discrete symmetry breaking and a thermal phase transition in a 1D dissipative quantum many-body system as revealed by quantum Monte Carlo path-integral simulations.

  15. Fractional Quantum Hall Effect in Infinite-Layer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naud, J. D.; Pryadko, Leonid P.; Sondhi, S. L.

    2000-12-18

    Stacked two dimensional electron systems in transverse magnetic fields exhibit three dimensional fractional quantum Hall phases. We analyze the simplest such phases and find novel bulk properties, e.g., irrational braiding. These phases host ''one and a half'' dimensional surface phases in which motion in one direction is chiral. We offer a general analysis of conduction in the latter by combining sum rule and renormalization group arguments, and find that when interlayer tunneling is marginal or irrelevant they are chiral semimetals that conduct only at T>0 or with disorder.

  16. Quantum thermodynamic cycles and quantum heat engines. II.

    PubMed

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  17. The electronic and optical properties of quantum nano-structures

    NASA Astrophysics Data System (ADS)

    Ham, Heon

    In semiconducting quantum nano-structures, the excitonic effects play an important role when we fabricate opto-electronic devices, such as lasers, diodes, detectors, etc. To gain a better understanding of the excitonic effects in quantum nano-structures, we investigated the exciton binding energy, oscillator strength, and linewidth in quantum nano-structures using both the infinite and finite well models. We investigated also the hydrogenic impurity binding energy and the photoionization cross section of the hydrogenic impurity in a spherical quantum dot. In our work, the variational approach is used in all calculations, because the Hamiltonian of the system is not separable, due to the different symmetries of the Coulomb and confining potentials. In the infinite well model of the semiconducting quantum nanostructures, the binding energy of the exciton increases with decreasing width of the potential barriers due to the increase in the effective strength of the Coulomb interaction between the electron and hole. In the finite well model, the exciton binding energy reaches a peak value, and the binding energy decreases with further decrease in the width of the potential barriers. The exciton linewidth in the infinite well model increases with decreasing wire radius, because the scattering rate of the exciton increases with decreasing wire radius. In the finite well model, the exciton linewidth in a cylindrical quantum wire reaches a peak value and the exciton linewidth decreases with further decrease in the wire radius, because the exciton is not well confined at very smaller wire radii. The binding energy of the hydrogenic impurity in a spherical quantum dot has also calculated using both the infinite and the finite well models. The binding energy of the hydrogenic impurity was calculated for on center and off center impurities in the spherical quantum dots. With decreasing radii of the dots, the binding energy of the hydrogenic impurity increases in the infinite well model. The binding energy of the hydrogenic impurity in the finite well model reaches a peak value and decreases with further decrease in the dot radii for both on center and off center impurities. We have calculated the photoionization cross section as a function of the radius and the frequency using both the infinite and finite well models. The photoionizaton cross section has a peak value at a frequency where the photon energy equals the difference between the final and initial state energies of the impurity. The behavior of the cross section with dot radius depends upon the location of the impurity and the polarization of the electromagnetic field.

  18. Size-scaling behaviour of the electronic polarizability of one-dimensional interacting systems

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Louis, E.; Vergés, J. A.

    2018-05-01

    Electronic polarizability of finite chains is accurately calculated from the total energy variation of the system produced by small but finite static electric fields applied along the chain direction. Normalized polarizability, that is, polarizability divided by chain length, diverges as the second power of length for metallic systems but approaches a constant value for insulating systems. This behaviour provides a very convenient way to characterize the wave-function malleability of finite systems as it avoids the need of attaching infinite contacts to the chain ends. Hubbard model calculations at half filling show that the method works for a small U  =  1 interaction value that corresponds to a really small spectral gap of 0.005 (hopping t  =  ‑1 is assumed). Once successfully checked, the method has been applied to the long-range hopping model of Gebhard and Ruckenstein showing 1/r hopping decay (Gebhard and Ruckenstein 1992 Phys. Rev. Lett. 68 244; Gebhard et al 1994 Phys. Rev. B 49 10926). Metallicity for U values below the reported metal-insulator transition is obtained but the surprise comes for U values larger than the critical one (when a gap appears in the spectral density of states) because a steady increase of the normalized polarizability with size is obtained. This critical size-scaling behaviour can be understood as corresponding to a molecule which polarizability is unbounded. We have checked that a real transfer of charge from one chain end to the opposite occurs as a response to very small electric fields in spite of the existence of a large gap of the order of U for one-particle excitations. Finally, ab initio quantum chemistry calculations of realistic poly-acetylene chains prove that the occurrence of such critical behaviour in real systems is unlikely.

  19. Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Decca, R. S.; Fischbach, E.; Klimchitskaya, G. L.; Krause, D. E.; López, D.; Mostepanenko, V. M.

    2003-12-01

    We report new constraints on extra-dimensional models and other physics beyond the standard model based on measurements of the Casimir force between two dissimilar metals for separations in the range 0.2 1.2 μm. The Casimir force between a Au-coated sphere and a Cu-coated plate of a microelectromechanical torsional oscillator was measured statically with an absolute error of 0.3 pN. In addition, the Casimir pressure between two parallel plates was determined dynamically with an absolute error of ≈0.6 mPa. Within the limits of experimental and theoretical errors, the results are in agreement with a theory that takes into account the finite conductivity and roughness of the two metals. The level of agreement between experiment and theory was then used to set limits on the predictions of extra-dimensional physics and thermal quantum field theory. It is shown that two theoretical approaches to the thermal Casimir force which predict effects linear in temperature are ruled out by these experiments. Finally, constraints on Yukawa corrections to Newton’s law of gravity are strengthened by more than an order of magnitude in the range 56 330 nm.

  20. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

Top