NASA Astrophysics Data System (ADS)
Hano, Mitsuo; Hotta, Masashi
A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.
Discontinuous finite element method for vector radiative transfer
NASA Astrophysics Data System (ADS)
Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping
2017-03-01
The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.
NASA Astrophysics Data System (ADS)
Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.
2018-04-01
The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.
Poisson traces, D-modules, and symplectic resolutions
NASA Astrophysics Data System (ADS)
Etingof, Pavel; Schedler, Travis
2018-03-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
Poisson traces, D-modules, and symplectic resolutions.
Etingof, Pavel; Schedler, Travis
2018-01-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
Lie theory and control systems defined on spheres
NASA Technical Reports Server (NTRS)
Brockett, R. W.
1972-01-01
It is shown that in constructing a theory for the most elementary class of control problems defined on spheres, some results from the Lie theory play a natural role. To understand controllability, optimal control, and certain properties of stochastic equations, Lie theoretic ideas are needed. The framework considered here is the most natural departure from the usual linear system/vector space problems which have dominated control systems literature. For this reason results are compared with those previously available for the finite dimensional vector space case.
Unified control/structure design and modeling research
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.; Blelloch, P. A.; Adamian, A.
1986-01-01
To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed.
NASA Technical Reports Server (NTRS)
Geering, H. P.; Athans, M.
1973-01-01
A complete theory of necessary and sufficient conditions is discussed for a control to be superior with respect to a nonscalar-valued performance criterion. The latter maps into a finite dimensional, integrally closed directed, partially ordered linear space. The applicability of the theory to the analysis of dynamic vector estimation problems and to a class of uncertain optimal control problems is demonstrated.
Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach
NASA Astrophysics Data System (ADS)
Chowdhury, R.; Adhikari, S.
2012-10-01
Uncertainty propagation engineering systems possess significant computational challenges. This paper explores the possibility of using correlated function expansion based metamodelling approach when uncertain system parameters are modeled using Fuzzy variables. In particular, the application of High-Dimensional Model Representation (HDMR) is proposed for fuzzy finite element analysis of dynamical systems. The HDMR expansion is a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The input variables may be either finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space RM) or may be infinite-dimensional as in the function space CM[0,1]. The computational effort to determine the expansion functions using the alpha cut method scales polynomially with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is integrated with a commercial Finite Element software. Modal analysis of a simplified aircraft wing with Fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations.
2016-09-13
lems arising, for example, after discretization of optimal control problems. Lucien developed a general framework for quantifying near-optimality...Polak, E., Da Cunha, N.O.: Constrainedminimization under vector valued-criteria in finite dimensional spaces. J. Math . Anal. Appl. 19(1), 103–124...1969) 12. Pironneau, O., Polak, E.: On the rate of convergence of certain methods of centers. Math . Program. 2(2), 230–258 (1972) 13. Polak, E., Sargent
Averaging of random walks and shift-invariant measures on a Hilbert space
NASA Astrophysics Data System (ADS)
Sakbaev, V. Zh.
2017-06-01
We study random walks in a Hilbert space H and representations using them of solutions of the Cauchy problem for differential equations whose initial conditions are numerical functions on H. We construct a finitely additive analogue of the Lebesgue measure: a nonnegative finitely additive measure λ that is defined on a minimal subset ring of an infinite-dimensional Hilbert space H containing all infinite-dimensional rectangles with absolutely converging products of the side lengths and is invariant under shifts and rotations in H. We define the Hilbert space H of equivalence classes of complex-valued functions on H that are square integrable with respect to a shift-invariant measure λ. Using averaging of the shift operator in H over random vectors in H with a distribution given by a one-parameter semigroup (with respect to convolution) of Gaussian measures on H, we define a one-parameter semigroup of contracting self-adjoint transformations on H, whose generator is called the diffusion operator. We obtain a representation of solutions of the Cauchy problem for the Schrödinger equation whose Hamiltonian is the diffusion operator.
NASA Astrophysics Data System (ADS)
Pötz, Walter
2017-11-01
A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.
Finite size effects in the thermodynamics of a free neutral scalar field
NASA Astrophysics Data System (ADS)
Parvan, A. S.
2018-04-01
The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.
Vector calculus in non-integer dimensional space and its applications to fractal media
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
Dissipative N-point-vortex Models in the Plane
NASA Astrophysics Data System (ADS)
Shashikanth, Banavara N.
2010-02-01
A method is presented for constructing point vortex models in the plane that dissipate the Hamiltonian function at any prescribed rate and yet conserve the level sets of the invariants of the Hamiltonian model arising from the SE (2) symmetries. The method is purely geometric in that it uses the level sets of the Hamiltonian and the invariants to construct the dissipative field and is based on elementary classical geometry in ℝ3. Extension to higher-dimensional spaces, such as the point vortex phase space, is done using exterior algebra. The method is in fact general enough to apply to any smooth finite-dimensional system with conserved quantities, and, for certain special cases, the dissipative vector field constructed can be associated with an appropriately defined double Nambu-Poisson bracket. The most interesting feature of this method is that it allows for an infinite sequence of such dissipative vector fields to be constructed by repeated application of a symmetric linear operator (matrix) at each point of the intersection of the level sets.
Using algebra for massively parallel processor design and utilization
NASA Technical Reports Server (NTRS)
Campbell, Lowell; Fellows, Michael R.
1990-01-01
This paper summarizes the author's advances in the design of dense processor networks. Within is reported a collection of recent constructions of dense symmetric networks that provide the largest know values for the number of nodes that can be placed in a network of a given degree and diameter. The constructions are in the range of current potential engineering significance and are based on groups of automorphisms of finite-dimensional vector spaces.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1990-01-01
The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J
Software solves the three-dimensional Poisson equation div(k(grad(u)) = f, by the finite element method for the case when material properties, k, are distributed over hierarchy of edges, facets and tetrahedra in the finite element mesh. Method is described in Weiss, CJ, Finite element analysis for model parameters distributed on a hierarchy of geometric simplices, Geophysics, v82, E155-167, doi:10.1190/GEO2017-0058.1 (2017). A standard finite element method for solving Poisson’s equation is augmented by including in the 3D stiffness matrix additional 2D and 1D stiffness matrices representing the contributions from material properties associated with mesh faces and edges, respectively. The resulting linear systemmore » is solved iteratively using the conjugate gradient method with Jacobi preconditioning. To minimize computer storage for program execution, the linear solver computes matrix-vector contractions element-by-element over the mesh, without explicit storage of the global stiffness matrix. Program output vtk compliant for visualization and rendering by 3rd party software. Program uses dynamic memory allocation and as such there are no hard limits on problem size outside of those imposed by the operating system and configuration on which the software is run. Dimension, N, of the finite element solution vector is constrained by the the addressable space in 32-vs-64 bit operating systems. Total storage requirements for the problem. Total working space required for the program is approximately 13*N double precision words.« less
Phases and approximations of baryonic popcorn in a low-dimensional analogue of holographic QCD
NASA Astrophysics Data System (ADS)
Elliot-Ripley, Matthew
2015-07-01
The Sakai-Sugimoto model is the most pre-eminent model of holographic QCD, in which baryons correspond to topological solitons in a five-dimensional bulk spacetime. Recently it has been shown that a single soliton in this model can be well approximated by a flat-space self-dual Yang-Mills instanton with a small size, although studies of multi-solitons and solitons at finite density are currently beyond numerical computations. A lower-dimensional analogue of the model has also been studied in which the Sakai-Sugimoto soliton is replaced by a baby Skyrmion in three spacetime dimensions with a warped metric. The lower dimensionality of this model means that full numerical field calculations are possible, and static multi-solitons and solitons at finite density were both investigated, in particular the baryonic popcorn phase transitions at high densities. Here we present and investigate an alternative lower-dimensional analogue of the Sakai-Sugimoto model in which the Sakai-Sugimoto soliton is replaced by an O(3)-sigma model instanton in a warped three-dimensional spacetime stabilized by a massive vector meson. A more detailed range of baryonic popcorn phase transitions are found, and the low-dimensional model is used as a testing ground to check the validity of common approximations made in the full five-dimensional model, namely approximating fields using their flat-space equations of motion, and performing a leading order expansion in the metric.
Vectorized and multitasked solution of the few-group neutron diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zee, S.K.; Turinsky, P.J.; Shayer, Z.
1989-03-01
A numerical algorithm with parallelism was used to solve the two-group, multidimensional neutron diffusion equations on computers characterized by shared memory, vector pipeline, and multi-CPU architecture features. Specifically, solutions were obtained on the Cray X/MP-48, the IBM-3090 with vector facilities, and the FPS-164. The material-centered mesh finite difference method approximation and outer-inner iteration method were employed. Parallelism was introduced in the inner iterations using the cyclic line successive overrelaxation iterative method and solving in parallel across lines. The outer iterations were completed using the Chebyshev semi-iterative method that allows parallelism to be introduced in both space and energy groups. Formore » the three-dimensional model, power, soluble boron, and transient fission product feedbacks were included. Concentrating on the pressurized water reactor (PWR), the thermal-hydraulic calculation of moderator density assumed single-phase flow and a closed flow channel, allowing parallelism to be introduced in the solution across the radial plane. Using a pinwise detail, quarter-core model of a typical PWR in cycle 1, for the two-dimensional model without feedback the measured million floating point operations per second (MFLOPS)/vector speedups were 83/11.7. 18/2.2, and 2.4/5.6 on the Cray, IBM, and FPS without multitasking, respectively. Lower performance was observed with a coarser mesh, i.e., shorter vector length, due to vector pipeline start-up. For an 18 x 18 x 30 (x-y-z) three-dimensional model with feedback of the same core, MFLOPS/vector speedups of --61/6.7 and an execution time of 0.8 CPU seconds on the Cray without multitasking were measured. Finally, using two CPUs and the vector pipelines of the Cray, a multitasking efficiency of 81% was noted for the three-dimensional model.« less
Generalized continued fractions and ergodic theory
NASA Astrophysics Data System (ADS)
Pustyl'nikov, L. D.
2003-02-01
In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest.
NASA Astrophysics Data System (ADS)
Daoud, Mohammed; Kibler, Maurice
2018-04-01
A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d-1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl-Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level) states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space) is describable by a N-qubit vector (in a N-dimensional space). In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini-Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d=3 (i.e., N = 2), this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d=4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.
Anisotropic fractal media by vector calculus in non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
The Grand Tour via Geodesic Interpolation of 2-frames
NASA Technical Reports Server (NTRS)
Asimov, Daniel; Buja, Andreas
1994-01-01
Grand tours are a class of methods for visualizing multivariate data, or any finite set of points in n-space. The idea is to create an animation of data projections by moving a 2-dimensional projection plane through n-space. The path of planes used in the animation is chosen so that it becomes dense, that is, it comes arbitrarily close to any plane. One of the original inspirations for the grand tour was the experience of trying to comprehend an abstract sculpture in a museum. One tends to walk around the sculpture, viewing it from many different angles. A useful class of grand tours is based on the idea of continuously interpolating an infinite sequence of randomly chosen planes. Visiting randomly (more precisely: uniformly) distributed planes guarantees denseness of the interpolating path. In computer implementations, 2-dimensional orthogonal projections are specified by two 1-dimensional projections which map to the horizontal and vertical screen dimensions, respectively. Hence, a grand tour is specified by a path of pairs of orthonormal projection vectors. This paper describes an interpolation scheme for smoothly connecting two pairs of orthonormal vectors, and thus for constructing interpolating grand tours. The scheme is optimal in the sense that connecting paths are geodesics in a natural Riemannian geometry.
ERIC Educational Resources Information Center
Aminu, Abdulhadi
2010-01-01
By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…
Differentiable representations of finite dimensional Lie groups in rigged Hilbert spaces
NASA Astrophysics Data System (ADS)
Wickramasekara, Sujeewa
The inceptive motivation for introducing rigged Hilbert spaces (RHS) in quantum physics in the mid 1960's was to provide the already well established Dirac formalism with a proper mathematical context. It has since become clear, however, that this mathematical framework is lissome enough to accommodate a class of solutions to the dynamical equations of quantum physics that includes some which are not possible in the normative Hilbert space theory. Among the additional solutions, in particular, are those which describe aspects of scattering and decay phenomena that have eluded the orthodox quantum physics. In this light, the RHS formulation seems to provide a mathematical rubric under which various phenomenological observations and calculational techniques, commonly known in the study of resonance scattering and decay as ``effective theories'' (e.g., the Wigner- Weisskopf method), receive a unified theoretical foundation. These observations lead to the inference that a theory founded upon the RHS mathematics may prove to be of better utility and value in understanding quantum physical phenomena. This dissertation primarily aims to contribute to the general formalism of the RHS theory of quantum mechanics by undertaking a study of differentiable representations of finite dimensional Lie groups. In particular, it is shown that a finite dimensional operator Lie algebra G in a rigged Hilbert space can be always integrated, provided one parameter integrability holds true for the elements of any basis for G . This result differs from and extends the well known integration theorem of E. Nelson and the subsequent works of others on unitary representations in that it does not require any assumptions on the existence of analytic vectors. Also presented here is a construction of a particular rigged Hilbert space of Hardy class functions that appears useful in formulating a relativistic version of the RHS theory of resonances and decay. As a contexture for the construction, a synopsis of the new relativistic theory is presented.
Experimental study of Bloch vector analysis in nonlinear, finite, dissipative systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aguanno, G.; Mattiucci, N.; C. M. Bowden Facility, Building 7804, RDECOM, Redstone Arsenal, Alabama 35898
2010-01-15
We have investigated and experimentally demonstrated the applicability of the Bloch vector for one-dimensional, nonlinear, finite, dissipative systems. The case studied is the second harmonic generation from metallodielectric multilayer filters. In particular, we have applied the Bloch vector analysis to Ag/Ta{sub 2}O{sub 5} thin-film multilayer samples and shown the importance of the phase matching calculated through the Bloch vector. The nonlinear coefficients extracted from experimental results are consistent with previous studies. Nowadays, metal-based nanostructures play a fundamental role in nonlinear nanophotonics and nanoplasmonics. Our results clearly suggest that even in these forefront fields the Bloch vector continues to play anmore » essential role.« less
The canonical quantization of chaotic maps on the torus
NASA Astrophysics Data System (ADS)
Rubin, Ron Shai
In this thesis, a quantization method for classical maps on the torus is presented. The quantum algebra of observables is defined as the quantization of measurable functions on the torus with generators exp (2/pi ix) and exp (2/pi ip). The Hilbert space we use remains the infinite-dimensional L2/ (/IR, dx). The dynamics is given by a unitary quantum propagator such that as /hbar /to 0, the classical dynamics is returned. We construct such a quantization for the Kronecker map, the cat map, the baker's map, the kick map, and the Harper map. For the cat map, we find the same for the propagator on the plane the same integral kernel conjectured in (HB) using semiclassical methods. We also define a quantum 'integral over phase space' as a trace over the quantum algebra. Using this definition, we proceed to define quantum ergodicity and mixing for maps on the torus. We prove that the quantum cat map and Kronecker map are both ergodic, but only the cat map is mixing, true to its classical origins. For Planck's constant satisfying the integrality condition h = 1/N, with N/in doubz+, we construct an explicit isomorphism between L2/ (/IR, dx) and the Hilbert space of sections of an N-dimensional vector bundle over a θ-torus T2 of boundary conditions. The basis functions are distributions in L2/ (/IR, dx), given by an infinite comb of Dirac δ-functions. In Bargmann space these distributions take on the form of Jacobi ϑ-functions. Transformations from position to momentum representation can be implemented via a finite N-dimensional discrete Fourier transform. With the θ-torus, we provide a connection between the finite-dimensional quantum maps given in the physics literature and the canonical quantization presented here and found in the language of pseudo-differential operators elsewhere in mathematics circles. Specifically, at a fixed point of the dynamics on the θ-torus, we return a finite-dimensional matrix propagator. We present this connection explicitly for several examples.
Dynamic analysis of suspension cable based on vector form intrinsic finite element method
NASA Astrophysics Data System (ADS)
Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun
2017-10-01
A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Bienvenido; Novo, Vicente
We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Frechet differentiable objective function between two normed spaces. We also establish second-order sufficient conditionsmore » when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, G.; Belouettar, S.
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less
The Infinitesimal Moduli Space of Heterotic G 2 Systems
NASA Astrophysics Data System (ADS)
de la Ossa, Xenia; Larfors, Magdalena; Svanes, Eirik E.
2018-06-01
Heterotic string compactifications on integrable G 2 structure manifolds Y with instanton bundles {(V,A), (TY,\\tilde{θ})} yield supersymmetric three-dimensional vacua that are of interest in physics. In this paper, we define a covariant exterior derivative D and show that it is equivalent to a heterotic G 2 system encoding the geometry of the heterotic string compactifications. This operator D acts on a bundle Q}=T^*Y \\oplus End(V) \\oplus End(TY)} and satisfies a nilpotency condition \\check{{D^2=0} , for an appropriate projection of D. Furthermore, we determine the infinitesimal moduli space of these systems and show that it corresponds to the finite-dimensional cohomology group H^1_{D}(Q). We comment on the similarities and differences of our result with Atiyah's well-known analysis of deformations of holomorphic vector bundles over complex manifolds. Our analysis leads to results that are of relevance to all orders in the {α'} expansion.
Multi-dimensional Fokker-Planck equation analysis using the modified finite element method
NASA Astrophysics Data System (ADS)
Náprstek, J.; Král, R.
2016-09-01
The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only. So the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.
2008-01-09
The image data as acquired from the sensor is a data cloud in multi- dimensional space with each band generating an axis of dimension. When the data... The color of a material is defined by the direction of its unit vector in n- dimensional spectral space . The length of the vector relates only to how...to n- dimensional space . SAM determines the similarity
Lie-Hamilton systems on the plane: Properties, classification and applications
NASA Astrophysics Data System (ADS)
Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.
2015-04-01
We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.
Anisotropic fractal media by vector calculus in non-integer dimensional space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less
Piecewise linear approximation for hereditary control problems
NASA Technical Reports Server (NTRS)
Propst, Georg
1987-01-01
Finite dimensional approximations are presented for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems when a quadratic cost integral has to be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in case the cost integral ranges over a finite time interval as well as in the case it ranges over an infinite time interval. The arguments in the latter case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense. This feature is established using a vector-component stability criterion in the state space R(n) x L(2) and the favorable eigenvalue behavior of the piecewise linear approximations.
A semi-implicit finite difference model for three-dimensional tidal circulation,
Casulli, V.; Cheng, R.T.
1992-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.
NASA Technical Reports Server (NTRS)
Greene, William H.
1989-01-01
A study has been performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semianalytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models.
Nilpotent representations of classical quantum groups at roots of unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, Yuuki; Nakashima, Toshiki
2005-11-01
Properly specializing the parameters in 'Schnizer modules', for types A,B,C, and D, we get its unique primitive vector. Then we show that the module generated by the primitive vector is an irreducible highest weight module of finite dimensional classical quantum groups at roots of unity.
Regularization by Functions of Bounded Variation and Applications to Image Enhancement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casas, E.; Kunisch, K.; Pola, C.
1999-09-15
Optimization problems regularized by bounded variation seminorms are analyzed. The optimality system is obtained and finite-dimensional approximations of bounded variation function spaces as well as of the optimization problems are studied. It is demonstrated that the choice of the vector norm in the definition of the bounded variation seminorm is of special importance for approximating subspaces consisting of piecewise constant functions. Algorithms based on a primal-dual framework that exploit the structure of these nondifferentiable optimization problems are proposed. Numerical examples are given for denoising of blocky images with very high noise.
Capelli bitableaux and Z-forms of general linear Lie superalgebras.
Brini, A; Teolis, A G
1990-01-01
The combinatorics of the enveloping algebra UQ(pl(L)) of the general linear Lie superalgebra of a finite dimensional Z2-graded Q-vector space is studied. Three non-equivalent Z-forms of UQ(pl(L)) are introduced: one of these Z-forms is a version of the Kostant Z-form and the others are Lie algebra analogs of Rota and Stein's straightening formulae for the supersymmetric algebra Super[L P] and for its dual Super[L* P*]. The method is based on an extension of Capelli's technique of variabili ausiliarie to algebras containing positively and negatively signed elements. PMID:11607048
1984-12-30
as three dimensional, when the assumption is made that all SUTRA parameters and coefficients have a constant value in the third space direction. A...finite element. The type of element employed by SUTRA for two-dimensional simulation is a quadrilateral which has a finite thickness in the third ... space dimension. This type of a quad- rilateral element and a typical two-dimensional mesh is shown in Figure 3.1. - All twelve edges of the two
Manifolds for pose tracking from monocular video
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2015-03-01
We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).
The MUSIC algorithm for impedance tomography of small inclusions from discrete data
NASA Astrophysics Data System (ADS)
Lechleiter, A.
2015-09-01
We consider a point-electrode model for electrical impedance tomography and show that current-to-voltage measurements from finitely many electrodes are sufficient to characterize the positions of a finite number of point-like inclusions. More precisely, we consider an asymptotic expansion with respect to the size of the small inclusions of the relative Neumann-to-Dirichlet operator in the framework of the point electrode model. This operator is naturally finite-dimensional and models difference measurements by finitely many small electrodes of the electric potential with and without the small inclusions. Moreover, its leading-order term explicitly characterizes the centers of the small inclusions if the (finite) number of point electrodes is large enough. This characterization is based on finite-dimensional test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion centers. We show both the feasibility and limitations of this imaging technique via two-dimensional numerical experiments, considering in particular the influence of the number of point electrodes on the algorithm’s images.
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.
On the n-symplectic structure of faithful irreducible representations
NASA Astrophysics Data System (ADS)
Norris, L. K.
2017-04-01
Each faithful irreducible representation of an N-dimensional vector space V1 on an n-dimensional vector space V2 is shown to define a unique irreducible n-symplectic structure on the product manifold V1×V2 . The basic details of the associated Poisson algebra are developed for the special case N = n2, and 2n-dimensional symplectic submanifolds are shown to exist.
A three-dimensional nonlinear Timoshenko beam based on the core-congruential formulation
NASA Technical Reports Server (NTRS)
Crivelli, Luis A.; Felippa, Carlos A.
1992-01-01
A three-dimensional, geometrically nonlinear two-node Timoshenkoo beam element based on the total Larangrian description is derived. The element behavior is assumed to be linear elastic, but no restrictions are placed on magnitude of finite rotations. The resulting element has twelve degrees of freedom: six translational components and six rotational-vector components. The formulation uses the Green-Lagrange strains and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for the bending-stretching and bending-torsional coupling effects without special provisions. The core-congruential formulation (CCF) is used to derived the discrete equations in a staged manner. Core equations involving the internal force vector and tangent stiffness matrix are developed at the particle level. A sequence of matrix transformations carries these equations to beam cross-sections and finally to the element nodal degrees of freedom. The choice of finite rotation measure is made in the next-to-last transformation stage, and the choice of over-the-element interpolation in the last one. The tangent stiffness matrix is found to retain symmetry if the rotational vector is chosen to measure finite rotations. An extensive set of numerical examples is presented to test and validate the present element.
A Thin Codimension-One Decomposition of the Hilbert Cube
ERIC Educational Resources Information Center
Phon-On, Aniruth
2010-01-01
For cell-like upper semicontinuous (usc) decompositions "G" of finite dimensional manifolds "M", the decomposition space "M/G" turns out to be an ANR provided "M/G" is finite dimensional ([Dav07], page 129). Furthermore, if "M/G" is finite dimensional and has the Disjoint Disks Property (DDP), then "M/G" is homeomorphic to "M" ([Dav07], page 181).…
All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector
NASA Astrophysics Data System (ADS)
Chudecki, Adam
2016-12-01
Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.
Nonnormal operators in physics, a singular-vectors approach: illustration in polarization optics.
Tudor, Tiberiu
2016-04-20
The singular-vectors analysis of a general nonnormal operator defined on a finite-dimensional complex vector space is given in the frame of a pure operatorial ("nonmatrix," "coordinate-free") approach, performed in a Dirac language. The general results are applied in the field of polarization optics, where the nonnormal operators are widespread as operators of various polarization devices. Two nonnormal polarization devices representative for the class of nonnormal and even pathological operators-the standard two-layer elliptical ideal polarizer (singular operator) and the three-layer ambidextrous ideal polarizer (singular and defective operator)-are analyzed in detail. It is pointed out that the unitary polar component of the operator exists and preserves, in such pathological case too, its role of converting the input singular basis of the operator in its output singular basis. It is shown that for any nonnormal ideal polarizer a complementary one exists, so that the tandem of their operators uniquely determines their (common) unitary polar component.
Finite Geometries in Quantum Theory:. from Galois (fields) to Hjelmslev (rings)
NASA Astrophysics Data System (ADS)
Saniga, Metod; Planat, Michel
Geometries over Galois fields (and related finite combinatorial structures/algebras) have recently been recognized to play an ever-increasing role in quantum theory, especially when addressing properties of mutually unbiased bases (MUBs). The purpose of this contribution is to show that completely new vistas open up if we consider a generalized class of finite (projective) geometries, viz. those defined over Galois rings and/or other finite Hjelmslev rings. The case is illustrated by demonstrating that the basic combinatorial properties of a complete set of MUBs of a q-dimensional Hilbert space { H}q, q = pr with p being a prime and r a positive integer, are qualitatively mimicked by the configuration of points lying on a proper conic in a projective Hjelmslev plane defined over a Galois ring of characteristic p2 and rank r. The q vectors of a basis of { H}q correspond to the q points of a (so-called) neighbour class and the q + 1 MUBs answer to the total number of (pairwise disjoint) neighbour classes on the conic. Although this remarkable analogy is still established at the level of cardinalities only, we currently work on constructing an explicit mapping by associating a MUB to each neighbour class of the points of the conic and a state vector of this MUB to a particular point of the class. Further research in this direction may prove to be of great relevance for many areas of quantum information theory, in particular for quantum information processing.
Fundamental Principles of Classical Mechanics: a Geometrical Perspectives
NASA Astrophysics Data System (ADS)
Lam, Kai S.
2014-07-01
Classical mechanics is the quantitative study of the laws of motion for oscopic physical systems with mass. The fundamental laws of this subject, known as Newton's Laws of Motion, are expressed in terms of second-order differential equations governing the time evolution of vectors in a so-called configuration space of a system (see Chapter 12). In an elementary setting, these are usually vectors in 3-dimensional Euclidean space, such as position vectors of point particles; but typically they can be vectors in higher dimensional and more abstract spaces. A general knowledge of the mathematical properties of vectors, not only in their most intuitive incarnations as directed arrows in physical space but as elements of abstract linear vector spaces, and those of linear operators (transformations) on vector spaces as well, is then indispensable in laying the groundwork for both the physical and the more advanced mathematical - more precisely topological and geometrical - concepts that will prove to be vital in our subject. In this beginning chapter we will review these properties, and introduce the all-important related notions of dual spaces and tensor products of vector spaces. The notational convention for vectorial and tensorial indices used for the rest of this book (except when otherwise specified) will also be established...
Young—Capelli symmetrizers in superalgebras†
Brini, Andrea; Teolis, Antonio G. B.
1989-01-01
Let Supern[U [unk] V] be the nth homogeneous subspace of the supersymmetric algebra of U [unk] V, where U and V are Z2-graded vector spaces over a field K of characteristic zero. The actions of the general linear Lie superalgebras pl(U) and pl(V) span two finite-dimensional K-subalgebras B and [unk] of EndK(Supern[U [unk] V]) that are the centralizers of each other. Young—Capelli symmetrizers and Young—Capelli *-symmetrizers give rise to K-linear bases of B and [unk] containing orthogonal systems of idempotents; thus they yield complete decompositions of B and [unk] into minimal left and right ideals, respectively. PMID:16594014
Method of orbit sums in the theory of modular vector invariants
NASA Astrophysics Data System (ADS)
Stepanov, S. A.
2006-12-01
Let F be a field, V a finite-dimensional F-vector space, G\\leqslant \\operatorname{GL}_F(V) a finite group, and V^m=V\\oplus\\dots\\oplus V the m-fold direct sum with the diagonal action of G. The group G acts naturally on the symmetric graded algebra A_m=F \\lbrack V^m \\rbrack as a group of non-degenerate linear transformations of the variables. Let A_m^G be the subalgebra of invariants of the polynomial algebra A_m with respect to G. A classical result of Noether [1] says that if \\operatorname{char}F=0, then A_m^G is generated as an F-algebra by homogeneous polynomials of degree at most \\vert G\\vert, no matter how large m can be. On the other hand, it was proved by Richman [2], [3] that this result does not hold when the characteristic of F is positive and divides the order \\vert G\\vert of G. Let p, p>2, be a prime number, F=F_p a finite field of p elements, V a linear F_p-vector space of dimension n, and H\\leqslant \\operatorname{GL}_{F_p}(V) a cyclic group of order p generated by a matrix \\gamma of a certain special form. In this paper we describe explicitly (Theorem 1) one complete set of generators of A_m^H. After that, for an arbitrary complete set of generators of this algebra we find a lower bound for the highest degree of the generating elements of this algebra. This is a significant extension of the corresponding result of Campbell and Hughes [4] for the particular case of n=2. As a consequence we show (Theorem 3) that if m>n and G\\ge H is an arbitrary finite group, then each complete set of generators of A_m^G contains an element of degree at least 2(m-n+2r)(p-1)/r, where r=r(H) is a positive integer dependent on the structure of the generating matrix \\gamma of the group H. This result refines considerably the earlier lower bound obtained by Richman [3].
Some exact solutions for maximally symmetric topological defects in Anti de Sitter space
NASA Astrophysics Data System (ADS)
Alvarez, Orlando; Haddad, Matthew
2018-03-01
We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.
A k-Space Method for Moderately Nonlinear Wave Propagation
Jing, Yun; Wang, Tianren; Clement, Greg T.
2013-01-01
A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant–Friedrichs–Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation. PMID:22899114
A fast direct solver for a class of two-dimensional separable elliptic equations on the sphere
NASA Technical Reports Server (NTRS)
Moorthi, Shrinivas; Higgins, R. Wayne
1992-01-01
An efficient, direct, second-order solver for the discrete solution of two-dimensional separable elliptic equations on the sphere is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wavenumber and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.
LFSPMC: Linear feature selection program using the probability of misclassification
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.; Marion, B. P.
1975-01-01
The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.
Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements
NASA Technical Reports Server (NTRS)
Truman, W. M.; Balanis, C. A.
1977-01-01
The three-dimensional vector interaction between a microwave radiometer and a wave tank was modeled. Computer programs for predicting the response of the radiometer to the brightness temperature characteristics of the surroundings were developed along with a computer program that can invert (restore) the radiometer measurements. It is shown that the computer programs can be used to simulate the viewing of large bodies of water, and is applicable to radiometer measurements received from satellites monitoring the ocean. The water temperature, salinity, and wind speed can be determined.
Time Alignment as a Necessary Step in the Analysis of Sleep Probabilistic Curves
NASA Astrophysics Data System (ADS)
Rošt'áková, Zuzana; Rosipal, Roman
2018-02-01
Sleep can be characterised as a dynamic process that has a finite set of sleep stages during the night. The standard Rechtschaffen and Kales sleep model produces discrete representation of sleep and does not take into account its dynamic structure. In contrast, the continuous sleep representation provided by the probabilistic sleep model accounts for the dynamics of the sleep process. However, analysis of the sleep probabilistic curves is problematic when time misalignment is present. In this study, we highlight the necessity of curve synchronisation before further analysis. Original and in time aligned sleep probabilistic curves were transformed into a finite dimensional vector space, and their ability to predict subjects' age or daily measures is evaluated. We conclude that curve alignment significantly improves the prediction of the daily measures, especially in the case of the S2-related sleep states or slow wave sleep.
1979-07-31
3 x 3 t Strain vector a ij,j Space derivative of the stress tensor Fi Force vector per unit volume o Density x CHAPTER III F Total force K Stiffness...matrix 6Vector displacements M Mass matrix B Space operating matrix DO Matrix moduli 2 x 3 DZ Operating matrix in Z direction N Matrix of shape...dissipating medium the deformation of a solid is a function of time, temperature and space . Creep phenomenon is a deformation process in which there is
A hybrid LBG/lattice vector quantizer for high quality image coding
NASA Technical Reports Server (NTRS)
Ramamoorthy, V.; Sayood, K.; Arikan, E. (Editor)
1991-01-01
It is well known that a vector quantizer is an efficient coder offering a good trade-off between quantization distortion and bit rate. The performance of a vector quantizer asymptotically approaches the optimum bound with increasing dimensionality. A vector quantized image suffers from the following types of degradations: (1) edge regions in the coded image contain staircase effects, (2) quasi-constant or slowly varying regions suffer from contouring effects, and (3) textured regions lose details and suffer from granular noise. All three of these degradations are due to the finite size of the code book, the distortion measures used in the design, and due to the finite training procedure involved in the construction of the code book. In this paper, we present an adaptive technique which attempts to ameliorate the edge distortion and contouring effects.
Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids
Naff, R.L.; Russell, T.F.; Wilson, J.D.; ,; ,; ,; ,; ,
2000-01-01
Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1986-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1989-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
Positivity of the universal pairing in 3 dimensions
NASA Astrophysics Data System (ADS)
Calegari, Danny; Freedman, Michael H.; Walker, Kevin
2010-01-01
Associated to a closed, oriented surface S is the complex vector space with basis the set of all compact, oriented 3 -manifolds which it bounds. Gluing along S defines a Hermitian pairing on this space with values in the complex vector space with basis all closed, oriented 3 -manifolds. The main result in this paper is that this pairing is positive, i.e. that the result of pairing a nonzero vector with itself is nonzero. This has bearing on the question of what kinds of topological information can be extracted in principle from unitary (2+1) -dimensional TQFTs. The proof involves the construction of a suitable complexity function c on all closed 3 -manifolds, satisfying a gluing axiom which we call the topological Cauchy-Schwarz inequality, namely that c(AB) le max(c(AA),c(BB)) for all A,B which bound S , with equality if and only if A=B . The complexity function c involves input from many aspects of 3 -manifold topology, and in the process of establishing its key properties we obtain a number of results of independent interest. For example, we show that when two finite-volume hyperbolic 3 -manifolds are glued along an incompressible acylindrical surface, the resulting hyperbolic 3 -manifold has minimal volume only when the gluing can be done along a totally geodesic surface; this generalizes a similar theorem for closed hyperbolic 3 -manifolds due to Agol-Storm-Thurston.
Accurate solutions for transonic viscous flow over finite wings
NASA Technical Reports Server (NTRS)
Vatsa, V. N.
1986-01-01
An explicit multistage Runge-Kutta type time-stepping scheme is used for solving the three-dimensional, compressible, thin-layer Navier-Stokes equations. A finite-volume formulation is employed to facilitate treatment of complex grid topologies encountered in three-dimensional calculations. Convergence to steady state is expedited through usage of acceleration techniques. Further numerical efficiency is achieved through vectorization of the computer code. The accuracy of the overall scheme is evaluated by comparing the computed solutions with the experimental data for a finite wing under different test conditions in the transonic regime. A grid refinement study ir conducted to estimate the grid requirements for adequate resolution of salient features of such flows.
A parallel variable metric optimization algorithm
NASA Technical Reports Server (NTRS)
Straeter, T. A.
1973-01-01
An algorithm, designed to exploit the parallel computing or vector streaming (pipeline) capabilities of computers is presented. When p is the degree of parallelism, then one cycle of the parallel variable metric algorithm is defined as follows: first, the function and its gradient are computed in parallel at p different values of the independent variable; then the metric is modified by p rank-one corrections; and finally, a single univariant minimization is carried out in the Newton-like direction. Several properties of this algorithm are established. The convergence of the iterates to the solution is proved for a quadratic functional on a real separable Hilbert space. For a finite-dimensional space the convergence is in one cycle when p equals the dimension of the space. Results of numerical experiments indicate that the new algorithm will exploit parallel or pipeline computing capabilities to effect faster convergence than serial techniques.
Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagarello, F., E-mail: fabio.bagarello@unipa.it
In a recent paper we have introduced several possible inequivalent descriptions of the dynamics and of the transition probabilities of a quantum system when its Hamiltonian is not self-adjoint. Our analysis was carried out in finite dimensional Hilbert spaces. This is useful, but quite restrictive since many physically relevant quantum systems live in infinite dimensional Hilbert spaces. In this paper we consider this situation, and we discuss some applications to well known models, introduced in the literature in recent years: the extended harmonic oscillator, the Swanson model and a generalized version of the Landau levels Hamiltonian. Not surprisingly we willmore » find new interesting features not previously found in finite dimensional Hilbert spaces, useful for a deeper comprehension of this kind of physical systems.« less
Support vector machines for nuclear reactor state estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavaljevski, N.; Gross, K. C.
2000-02-14
Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less
NASA Technical Reports Server (NTRS)
Melis, Matthew E.
2003-01-01
NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, Carol G.
2012-02-01
We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.
A parallel finite-difference method for computational aerodynamics
NASA Technical Reports Server (NTRS)
Swisshelm, Julie M.
1989-01-01
A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed.
On infinite-dimensional state spaces
NASA Astrophysics Data System (ADS)
Fritz, Tobias
2013-05-01
It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Zapp, John; Hsa, Chang-Yu; Volakis, John L.
1990-01-01
An extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation (FFT) is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. By virtue of the finite element method, the algorithm is applicable to structures of arbitrary material composition. Several improvements to the two dimensional algorithm are also described. These include: (1) modifications for terminating the mesh at circular boundaries without distorting the convolutionality of the boundary integrals; (2) the development of nonproprietary mesh generation routines for two dimensional applications; (3) the development of preprocessors for interfacing SDRC IDEAS with the main algorithm; and (4) the development of post-processing algorithms based on the public domain package GRAFIC to generate two and three dimensional gray level and color field maps.
Development of advanced Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan
1994-01-01
The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.
Are Bred Vectors The Same As Lyapunov Vectors?
NASA Astrophysics Data System (ADS)
Kalnay, E.; Corazza, M.; Cai, M.
Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the perturbations remain approximately linear (for example, for atmospheric models the interval for rescaling could be varied between a single time step and 1 day without affecting qualitatively the characteristics of the bred vectors. However, the finite-amplitude, finite-time, and lack of orthogonalization of the BVs introduces important differences with LVs: 1) In regions that undergo strong instabilities, the bred vectors tend to be locally domi- 1 nated by simple, low-dimensional structures. Patil et al (2001) showed that the BV-dim (appendix) gives a good estimate of the number of dominant directions (shapes) of the local k bred vectors. For example, if half of them are aligned in one direction, and half in a different direction, the BV-dim is about two. If the majority of the bred vectors are aligned predominantly in one direction and only a few are aligned in a second direction, then the BV-dim is between 1 and 2. Patil et al., (2001) showed that the regions with low dimensionality cover about 20% of the atmosphere. They also found that these low-dimensionality regions have a very well defined vertical structure, and a typical lifetime of 3-7 days. The low dimensionality identifies regions where the in- stability of the basic flow has manifested itself in a low number of preferred directions of perturbation growth. 2) Using a Quasi-Geostrophic simulation system of data assimilation developed by Morss (1999), Corazza et al (2001a, b) found that bred vectors have structures that closely resemble the background (short forecasts used as first guess) errors, which in turn dominate the local analysis errors. This is especially true in regions of low dimensionality, which is not surprising if these are unstable regions where errors grow in preferred shapes. 3) The number of bred vectors needed to represent the unstable subspace in the QG system is small (about 6-10). This was shown by computing the local BV-dim as a function of the number of independent bred vectors. Convergence in the local dimen- sion starts to occur at about 6 BVs, and is essentially complete when the number of vectors is about 10-15 (Corazza et al, 2001a). This should be contrasted with the re- sults of Snyder and Joly (1998) and Palmer et al (1998) who showed that hundreds of Lyapunov vectors with positive Lyapunov exponents are needed to represent the attractor of the system in quasi-geostrophic models. 4) Since only a few bred vectors are needed, and background errors project strongly in the subspace of bred vectors, Corazza et al (2001b) were able to develop cost-efficient methods to improve the 3D-Var data assimilation by adding to the background error covariance terms proportional to the outer product of the bred vectors, thus represent- ing the "errors of the day". This approach led to a reduction of analysis error variance of about 40% at very low cost. 5) The fact that BVs have finite amplitude provides a natural way to filter out instabil- ities present in the system that have fast growth, but saturate nonlinearly at such small amplitudes that they are irrelevant for ensemble perturbations. As shown by Lorenz (1996) Lyapunov vectors (and singular vectors) of models including these physical phenomena would be dominated by the fast but small amplitude instabilities, unless they are explicitly excluded from the linearized models. Bred vectors, on the other 2 hand, through the choice of an appropriate size for the perturbation, provide a natural filter based on nonlinear saturation of fast but irrelevant instabilities. 6) Every bred vector is qualitatively similar to the *leading* LV. LVs beyond the leading LV are obtained by orthogonalization after each time step with respect to the previous LVs subspace. The orthogonalization requires the introduction of a norm. With an enstrophy norm, the successive LVs have larger and larger horizontal scales, and a choice of a stream function norm would lead to successively smaller scales in the LVs. Beyond the first few LVs, there is little qualitative similarity between the background errors and the LVs. In summary, in a system like the atmosphere with enough physical space for several independent local instabilities, BVs and LVs share some properties but they also have significant differences. BV are finite-amplitude, finite-time, and because they are not globally orthogonalized, they have local properties in space. Bred vectors are akin to the leading LV, but bred vectors derived from different arbitrary initial perturba- tions remain distinct from each other, instead of collapsing into a single leading vec- tor, presumably because the nonlinear terms and physical parameterizations introduce sufficient stochastic forcing to avoid such convergence. As a result, there is no need for global orthogonalization, and the number of bred vectors required to describe the natural instabilities in an atmospheric system (from a local point of view) is much smaller than the number of Lyapunov vectors with positive Lyapunov exponents. The BVs are independent of the norm, whereas the LVs beyond the first one do depend on the choice of norm: for example, they become larger in scale with a vorticity norm, and smaller with a stream function norm. These properties of BVs result in significant advantages for data assimilation and en- semble forecasting for the atmosphere. Errors in the analysis have structures very similar to bred vectors, and it is found that they project very strongly on the subspace of a few bred vectors. This is not true for either Lyapunov vectors beyond the lead- ing LVs, or for singular vectors unless they are constructed with a norm based on the analysis error covariance matrix (or a bred vector covariance). The similarity between bred vectors and analysis errors leads to the ability to include "errors of the day" in the background error covariance and a significant improvement of the analysis beyond 3D-Var at a very low cost (Corazza, 2001b). References Alligood K. T., T. D. Sauer and J. A. Yorke, 1996: Chaos: an introduction to dynamical systems. Springer-Verlag, New York. Buizza R., J. Tribbia, F. Molteni and T. Palmer, 1993: Computation of optimal unstable 3 structures for numerical weather prediction models. Tellus, 45A, 388-407. Cai, M., E. Kalnay and Z. Toth, 2001: Potential impact of bred vectors on ensemble forecasting and data assimilation in the Zebiak-Cane model. Submitted to J of Climate. Corazza, M., E. Kalnay, D. J. Patil, R. Morss, M. Cai, I. Szunyogh, B. R. Hunt, E. Ott and J. Yorke, 2001: Use of the breeding technique to determine the structure of the "errors of the day". Submitted to Nonlinear Processes in Geophysics. Corazza, M., E. Kalnay, DJ Patil, E. Ott, J. Yorke, I Szunyogh and M. Cai, 2001: Use of the breeding technique in the estimation of the background error covariance matrix for a quasigeostrophic model. AMS Symposium on Observations, Data Assimilation and Predictability, Preprints volume, Orlando, FA, 14-17 January 2002. Farrell, B., 1988: Small error dynamics and the predictability of atmospheric flow, J. Atmos. Sciences, 45, 163-172. Kalnay, E 2002: Atmospheric modeling, data assimilation and predictability. Chapter 6. Cambridge University Press, UK. In press. Kalnay E and Z Toth 1994: Removing growing errors in the analysis. Preprints, Tenth Conference on Numerical Weather Prediction, pp 212-215. Amer. Meteor. Soc., July 18-22, 1994. Lorenz, E.N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 21, 289-307. Lorenz, E.N., 1996: Predictability- A problem partly solved. Proceedings of the ECMWF Seminar on Predictability, Reading, England, Vol. 1 1-18. Molteni F. and TN Palmer, 1993: Predictability and finite-time instability of the north- ern winter circulation. Q. J. Roy. Meteorol. Soc. 119, 269-298. Morss, R.E.: 1999: Adaptive observations: Idealized sampling strategies for improving numerical weather prediction. Ph.D. Thesis, Massachussetts Institute of Technology, 225pp. Ott, E., 1993: Chaos in Dynamical Systems. Cambridge University Press. New York. Palmer, TN, R. Gelaro, J. Barkmeijer and R. Buizza, 1998: Singular vectors, metrics and adaptive observations. J. Atmos Sciences, 55, 633-653. Patil, DJ, BR Hunt, E Kalnay, J. Yorke, and E. Ott, 2001: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 5878. Patil, DJ, I. Szunyogh, BR Hunt, E Kalnay, E Ott, and J. Yorke, 2001: Using large 4 member ensembles to isolate local low dimensionality of atmospheric dynamics. AMS Symposium on Observations, Data Assimilation and Predictability, Preprints volume, Orlando, FA, 14-17 January 2002. Snyder, C. and A. Joly, 1998: Development of perturbations within growing baroclinic waves. Q. J. Roy. Meteor. Soc., 124, pp 1961. Szunyogh, I, E. Kalnay and Z. Toth, 1997: A comparison of Lyapunov and Singular vectors in a low resolution GCM. Tellus, 49A, 200-227. Toth, Z and E Kalnay 1993: Ensemble forecasting at NMC - the generation of pertur- bations. Bull. Amer. Meteorol. Soc., 74, 2317-2330. Toth, Z and E Kalnay 1997: Ensemble forecasting at NCEP and the breeding method. Mon Wea Rev, 125, 3297-3319. * Corresponding author address: Eugenia Kalnay, Meteorology Depart- ment, University of Maryland, College Park, MD 20742-2425, USA; email: ekalnay@atmos.umd.edu Appendix: BV-dimension Patil et al., (2001) defined local bred vectors around a point in the 3-dimensional grid of the model by taking the 24 closest horizontal neighbors. If there are k bred vectors available, and N model variables for each grid point, the k local bred vectors form the columns of a 25Nxk matrix B. The kxk covariance matrix is C=B^T B. Its eigen- values are positive, and its eigenvectors v(i) are the singular vectors of the local bred vector subspace. The Bred Vector dimension (BV-dim) measures the local effective dimension: BV-dim[s,s,...,s(k)]={SUM[s(i)]}^2/SUM[s(i)]^2 where s(i) are the square roots of the eigenvalues of the covariance matrix. 5
Numerical simulation using vorticity-vector potential formulation
NASA Technical Reports Server (NTRS)
Tokunaga, Hiroshi
1993-01-01
An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the computational method. We present the computational method and apply the present method to computations of flows in a square cavity at large Reynolds number in order to investigate its effectiveness.
Diffusion with finite-helicity field tensor: A mechanism of generating heterogeneity
NASA Astrophysics Data System (ADS)
Sato, N.; Yoshida, Z.
2018-02-01
Topological constraints on a dynamical system often manifest themselves as breaking of the Hamiltonian structure; well-known examples are nonholonomic constraints on Lagrangian mechanics. The statistical mechanics under such topological constraints is the subject of this study. Conventional arguments based on phase spaces, Jacobi identity, invariant measure, or the H theorem are no longer applicable since all these notions stem from the symplectic geometry underlying canonical Hamiltonian systems. Remembering that Hamiltonian systems are endowed with field tensors (canonical 2-forms) that have zero helicity, our mission is to extend the scope toward the class of systems governed by finite-helicity field tensors. Here, we introduce a class of field tensors that are characterized by Beltrami vectors. We prove an H theorem for this Beltrami class. The most general class of energy-conserving systems are non-Beltrami, for which we identify the "field charge" that prevents the entropy to maximize, resulting in creation of heterogeneous distributions. The essence of the theory can be delineated by classifying three-dimensional dynamics. We then generalize to arbitrary (finite) dimensions.
Recent Developments In Theory Of Balanced Linear Systems
NASA Technical Reports Server (NTRS)
Gawronski, Wodek
1994-01-01
Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.
Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements
NASA Technical Reports Server (NTRS)
Truman, W. M.; Balanis, C. A.; Holmes, J. J.
1977-01-01
In this paper, a three-dimensional Fourier transform inversion method describing the interaction between water surface emitted radiation from a flat finite wave tank and antenna radiation characteristics is reported. The transform technique represents the scanning of the antenna mathematically as a correlation. Computation time is reduced by using the efficient and economical fast Fourier transform algorithm. To verify the inversion method, computations have been made and compared with known data and other available results. The technique has been used to restore data of the finite wave tank system and other available antenna temperature measurements made at the Cape Cod Canal. The restored brightness temperatures serve as better representations of the emitted radiation than the measured antenna temperatures.
NASA Astrophysics Data System (ADS)
Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie
2018-03-01
Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.
Trading spaces: building three-dimensional nets from two-dimensional tilings
Castle, Toen; Evans, Myfanwy E.; Hyde, Stephen T.; Ramsden, Stuart; Robins, Vanessa
2012-01-01
We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S2), Euclidean (E2) and hyperbolic (H2) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions. PMID:24098839
NASA Technical Reports Server (NTRS)
Kumar, A.
1984-01-01
A computer program NASCRIN has been developed for analyzing two-dimensional flow fields in high-speed inlets. It solves the two-dimensional Euler or Navier-Stokes equations in conservation form by an explicit, two-step finite-difference method. An explicit-implicit method can also be used at the user's discretion for viscous flow calculations. For turbulent flow, an algebraic, two-layer eddy-viscosity model is used. The code is operational on the CDC CYBER 203 computer system and is highly vectorized to take full advantage of the vector-processing capability of the system. It is highly user oriented and is structured in such a way that for most supersonic flow problems, the user has to make only a few changes. Although the code is primarily written for supersonic internal flow, it can be used with suitable changes in the boundary conditions for a variety of other problems.
Application of Bred Vectors To Data Assimilation
NASA Astrophysics Data System (ADS)
Corazza, M.; Kalnay, E.; Patil, Dj
We introduced a statistic, the BV-dimension, to measure the effective local finite-time dimensionality of the atmosphere. We show that this dimension is often quite low, and suggest that this finding has important implications for data assimilation and the accuracy of weather forecasting (Patil et al, 2001). The original database for this study was the forecasts of the NCEP global ensemble forecasting system. The initial differences between the control forecast and the per- turbed forecasts are called bred vectors. The control and perturbed initial conditions valid at time t=n(t are evolved using the forecast model until time t=(n+1) (t. The differences between the perturbed and the control forecasts are scaled down to their initial amplitude, and constitute the bred vectors valid at (n+1) (t. Their growth rate is typically about 1.5/day. The bred vectors are similar by construction to leading Lya- punov vectors except that they have small but finite amplitude, and they are valid at finite times. The original NCEP ensemble data set has 5 independent bred vectors. We define a local bred vector at each grid point by choosing the 5 by 5 grid points centered at the grid point (a region of about 1100km by 1100km), and using the north-south and east- west velocity components at 500mb pressure level to form a 50 dimensional column vector. Since we have k=5 global bred vectors, we also have k local bred vectors at each grid point. We estimate the effective dimensionality of the subspace spanned by the local bred vectors by performing a singular value decomposition (EOF analysis). The k local bred vector columns form a 50xk matrix M. The singular values s(i) of M measure the extent to which the k column unit vectors making up the matrix M point in the direction of v(i). We define the bred vector dimension as BVDIM={Sum[s(i)]}^2/{Sum[s(i)]^2} For example, if 4 out of the 5 vectors lie along v, and one lies along v, the BV- dimension would be BVDIM[sqrt(4), 1, 0,0,0]=1.8, less than 2 because one direction is more dominant than the other in representing the original data. The results (Patil et al, 2001) show that there are large regions where the bred vectors span a subspace of substantially lower dimension than that of the full space. These low dimensionality regions are dominant in the baroclinic extratropics, typically have a lifetime of 3-7 days, have a well-defined horizontal and vertical structure that spans 1 most of the atmosphere, and tend to move eastward. New results with a large number of ensemble members confirm these results and indicate that the low dimensionality regions are quite robust, and depend only on the verification time (i.e., the underlying flow). Corazza et al (2001) have performed experiments with a data assimilation system based on a quasi-geostrophic model and simulated observations (Morss, 1999, Hamill et al, 2000). A 3D-variational data assimilation scheme for a quasi-geostrophic chan- nel model is used to study the structure of the background error and its relationship to the corresponding bred vectors. The "true" evolution of the model atmosphere is defined by an integration of the model and "rawinsonde observations" are simulated by randomly perturbing the true state at fixed locations. It is found that after 3-5 days the bred vectors develop well organized structures which are very similar for the two different norms considered in this paper (potential vorticity norm and streamfunction norm). The results show that the bred vectors do indeed represent well the characteristics of the data assimilation forecast errors, and that the subspace of bred vectors contains most of the forecast error, except in areas where the forecast errors are small. For example, the angle between the 6hr forecast error and the subspace spanned by 10 bred vectors is less than 10o over 90% of the domain, indicating a pattern correlation of more than 98.5% between the forecast error and its projection onto the bred vector subspace. The presence of low-dimensional regions in the perturbations of the basic flow has important implications for data assimilation. At any given time, there is a difference between the true atmospheric state and the model forecast. Assuming that model er- rors are not the dominant source of errors, in a region of low BV-dimensionality the difference between the true state and the forecast should lie substantially in the low dimensional unstable subspace of the few bred vectors that contribute most strongly to the low BV-dimension. This information should yield a substantial improvement in the forecast: the data assimilation algorithm should correct the model state by moving it closer to the observations along the unstable subspace, since this is where the true state most likely lies. Preliminary experiments have been conducted with the quasi-geostrophic data assim- ilation system testing whether it is possible to add "errors of the day" based on bred vectors to the standard (constant) 3D-Var background error covariance in order to capture these important errors. The results are extremely encouraging, indicating a significant reduction (about 40%) in the analysis errors at a very low computational cost. References: 2 Corazza, M., E. Kalnay, DJ Patil, R. Morss, M Cai, I. Szunyogh, BR Hunt, E Ott and JA Yorke, 2001: Use of the breeding technique to estimate the structure of the analysis "errors of the day". Submitted to Nonlinear Processes in Geophysics. Hamill, T.M., Snyder, C., and Morss, R.E., 2000: A Comparison of Probabilistic Fore- casts from Bred, Singular-Vector and Perturbed Observation Ensembles, Mon. Wea. Rev., 128, 18351851. Kalnay, E., and Z. Toth, 1994: Removing growing errors in the analysis cycle. Preprints of the Tenth Conference on Numerical Weather Prediction, Amer. Meteor. Soc., 1994, 212-215. Morss, R. E., 1999: Adaptive observations: Idealized sampling strategies for improv- ing numerical weather prediction. PHD thesis, Massachussetts Institute of technology, 225pp. Patil, D. J. S., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott., 2001: Local Low Dimensionality of Atmospheric Dynamics. Phys. Rev. Lett., 86, 5878. 3
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
A finite element approach for solution of the 3D Euler equations
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.; Dechaumphai, P.
1986-01-01
Prediction of thermal deformations and stresses has prime importance in the design of the next generation of high speed flight vehicles. Aerothermal load computations for complex three-dimensional shapes necessitate development of procedures to solve the full Navier-Stokes equations. This paper details the development of a three-dimensional inviscid flow approach which can be extended for three-dimensional viscous flows. A finite element formulation, based on a Taylor series expansion in time, is employed to solve the compressible Euler equations. Model generation and results display are done using a commercially available program, PATRAN, and vectorizing strategies are incorporated to ensure computational efficiency. Sample problems are presented to demonstrate the validity of the approach for analyzing high speed compressible flows.
Data-driven probability concentration and sampling on manifold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu
2016-09-15
A new methodology is proposed for generating realizations of a random vector with values in a finite-dimensional Euclidean space that are statistically consistent with a dataset of observations of this vector. The probability distribution of this random vector, while a priori not known, is presumed to be concentrated on an unknown subset of the Euclidean space. A random matrix is introduced whose columns are independent copies of the random vector and for which the number of columns is the number of data points in the dataset. The approach is based on the use of (i) the multidimensional kernel-density estimation methodmore » for estimating the probability distribution of the random matrix, (ii) a MCMC method for generating realizations for the random matrix, (iii) the diffusion-maps approach for discovering and characterizing the geometry and the structure of the dataset, and (iv) a reduced-order representation of the random matrix, which is constructed using the diffusion-maps vectors associated with the first eigenvalues of the transition matrix relative to the given dataset. The convergence aspects of the proposed methodology are analyzed and a numerical validation is explored through three applications of increasing complexity. The proposed method is found to be robust to noise levels and data complexity as well as to the intrinsic dimension of data and the size of experimental datasets. Both the methodology and the underlying mathematical framework presented in this paper contribute new capabilities and perspectives at the interface of uncertainty quantification, statistical data analysis, stochastic modeling and associated statistical inverse problems.« less
Differential Calculus on h-Deformed Spaces
NASA Astrophysics Data System (ADS)
Herlemont, Basile; Ogievetsky, Oleg
2017-10-01
We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).
On infinite-dimensional state spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Tobias
It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context frommore » which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V{sup -1}U{sup 2}V=U{sup 3}, then finite-dimensionality entails the relation UV{sup -1}UV=V{sup -1}UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V{sup -1}U{sup 2}V=U{sup 3} holds only up to {epsilon} and then yields a lower bound on the dimension.« less
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less
Human pose tracking from monocular video by traversing an image motion mapped body pose manifold
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2010-01-01
Tracking human pose from monocular video sequences is a challenging problem due to the large number of independent parameters affecting image appearance and nonlinear relationships between generating parameters and the resultant images. Unlike the current practice of fitting interpolation functions to point correspondences between underlying pose parameters and image appearance, we exploit the relationship between pose parameters and image motion flow vectors in a physically meaningful way. Change in image appearance due to pose change is realized as navigating a low dimensional submanifold of the infinite dimensional Lie group of diffeomorphisms of the two dimensional sphere S2. For small changes in pose, image motion flow vectors lie on the tangent space of the submanifold. Any observed image motion flow vector field is decomposed into the basis motion vector flow fields on the tangent space and combination weights are used to update corresponding pose changes in the different dimensions of the pose parameter space. Image motion flow vectors are largely invariant to style changes in experiments with synthetic and real data where the subjects exhibit variation in appearance and clothing. The experiments demonstrate the robustness of our method (within +/-4° of ground truth) to style variance.
Comparison of SOM point densities based on different criteria.
Kohonen, T
1999-11-15
Point densities of model (codebook) vectors in self-organizing maps (SOMs) are evaluated in this article. For a few one-dimensional SOMs with finite grid lengths and a given probability density function of the input, the numerically exact point densities have been computed. The point density derived from the SOM algorithm turned out to be different from that minimizing the SOM distortion measure, showing that the model vectors produced by the basic SOM algorithm in general do not exactly coincide with the optimum of the distortion measure. A new computing technique based on the calculus of variations has been introduced. It was applied to the computation of point densities derived from the distortion measure for both the classical vector quantization and the SOM with general but equal dimensionality of the input vectors and the grid, respectively. The power laws in the continuum limit obtained in these cases were found to be identical.
NASA Astrophysics Data System (ADS)
Kokurin, M. Yu.
2010-11-01
A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.
Dynamic current-current susceptibility in three-dimensional Dirac and Weyl semimetals
NASA Astrophysics Data System (ADS)
Thakur, Anmol; Sadhukhan, Krishanu; Agarwal, Amit
2018-01-01
We study the linear response of doped three-dimensional Dirac and Weyl semimetals to vector potentials, by calculating the wave-vector- and frequency-dependent current-current response function analytically. The longitudinal part of the dynamic current-current response function is then used to study the plasmon dispersion and the optical conductivity. The transverse response in the static limit yields the orbital magnetic susceptibility. In a Weyl semimetal, along with the current-current response function, all these quantities are significantly impacted by the presence of parallel electric and magnetic fields (a finite E .B term) and can be used to experimentally explore the chiral anomaly.
NASA Technical Reports Server (NTRS)
Moorthi, Shrinivas; Higgins, R. W.
1993-01-01
An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
A low-dimensional analogue of holographic baryons
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Sutcliffe, Paul
2014-04-01
Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.
Quadratic obstructions to small-time local controllability for scalar-input systems
NASA Astrophysics Data System (ADS)
Beauchard, Karine; Marbach, Frédéric
2018-03-01
We consider nonlinear finite-dimensional scalar-input control systems in the vicinity of an equilibrium. When the linearized system is controllable, the nonlinear system is smoothly small-time locally controllable: whatever m > 0 and T > 0, the state can reach a whole neighborhood of the equilibrium at time T with controls arbitrary small in Cm-norm. When the linearized system is not controllable, we prove that: either the state is constrained to live within a smooth strict manifold, up to a cubic residual, or the quadratic order adds a signed drift with respect to it. This drift holds along a Lie bracket of length (2 k + 1), is quantified in terms of an H-k-norm of the control, holds for controls small in W 2 k , ∞-norm and these spaces are optimal. Our proof requires only C3 regularity of the vector field. This work underlines the importance of the norm used in the smallness assumption on the control, even in finite dimension.
Hypercyclic subspaces for Frechet space operators
NASA Astrophysics Data System (ADS)
Petersson, Henrik
2006-07-01
A continuous linear operator is hypercyclic if there is an such that the orbit {Tnx} is dense, and such a vector x is said to be hypercyclic for T. Recent progress show that it is possible to characterize Banach space operators that have a hypercyclic subspace, i.e., an infinite dimensional closed subspace of, except for zero, hypercyclic vectors. The following is known to hold: A Banach space operator T has a hypercyclic subspace if there is a sequence (ni) and an infinite dimensional closed subspace such that T is hereditarily hypercyclic for (ni) and Tni->0 pointwise on E. In this note we extend this result to the setting of Frechet spaces that admit a continuous norm, and study some applications for important function spaces. As an application we also prove that any infinite dimensional separable Frechet space with a continuous norm admits an operator with a hypercyclic subspace.
1+1 dimensional compactifications of string theory.
Goheer, Naureen; Kleban, Matthew; Susskind, Leonard
2004-05-14
We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti-de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero, the conflict is resolved.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
Almendros, J.; Chouet, B.; Dawson, P.
2001-01-01
We present a probabilistic method to locate the source of seismic events using seismic antennas. The method is based on a comparison of the event azimuths and slownesses derived from frequency-slowness analyses of array data, with a slowness vector model. Several slowness vector models are considered including both homogeneous and horizontally layered half-spaces and also a more complex medium representing the actual topography and three-dimensional velocity structure of the region under study. In this latter model the slowness vector is obtained from frequency-slowness analyses of synthetic signals. These signals are generated using the finite difference method and include the effects of topography and velocity structure to reproduce as closely as possible the behavior of the observed wave fields. A comparison of these results with those obtained with a homogeneous half-space demonstrates the importance of structural and topographic effects, which, if ignored, lead to a bias in the source location. We use synthetic seismograms to test the accuracy and stability of the method and to investigate the effect of our choice of probability distributions. We conclude that this location method can provide the source position of shallow events within a complex volcanic structure such as Kilauea Volcano with an error of ??200 m. Copyright 2001 by the American Geophysical Union.
CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES
GILLETTE, ANDREW; RAND, ALEXANDER; BAJAJ, CHANDRAJIT
2016-01-01
We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. PMID:28077939
CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES.
Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit
2016-10-01
We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.
Electric and magnetic superlattices in trilayer graphene
NASA Astrophysics Data System (ADS)
Uddin, Salah; Chan, K. S.
2016-01-01
The properties of one dimensional Kronig-Penney type of periodic electric and vector potential on ABC-trilayer graphene superlattices are investigated. The energy spectra obtained with periodic vector potentials shows the emergence of extra Dirac points in the energy spectrum with finite energies. For identical barrier and well widths, the original as well as the extra Dirac points are located in the ky = 0 plane. An asymmetry between the barrier and well widths causes a shift in the extra Dirac points away from the ky = 0 plane. Extra Dirac points having same electron hole crossing energy as that of the original Dirac point as well as finite energy Dirac points are generated in the energy spectrum when periodic electric potential is applied to the system. By applying electric and vector potential together, the symmetry of the energy spectrum about the Fermi level is broken. A tunable band gap is induced in the energy spectrum by applying both electric and vector potential simultaneously with different barrier and well widths.
The finite-dimensional Freeman thesis.
Rudolph, Lee
2008-06-01
I suggest a modification--and mathematization--of Freeman's thesis on the relations among "perception", "the finite brain", and "the world", based on my recent proposal that the theory of finite topological spaces is both an adequate and a natural mathematical foundation for human psychology.
Asymptotic symmetries of Rindler space at the horizon and null infinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Hyeyoun
2010-08-15
We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler spacemore » at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.« less
Convergence of an hp-Adaptive Finite Element Strategy in Two and Three Space-Dimensions
NASA Astrophysics Data System (ADS)
Bürg, Markus; Dörfler, Willy
2010-09-01
We show convergence of an automatic hp-adaptive refinement strategy for the finite element method on the elliptic boundary value problem. The strategy is a generalization of a refinement strategy proposed for one-dimensional situations to problems in two and three space-dimensions.
A Ring Construction Using Finite Directed Graphs
ERIC Educational Resources Information Center
Bardzell, Michael
2012-01-01
In this paper we discuss an interesting class of noncommutative rings which can be constructed using finite directed graphs. This construction also creates a vector space. These structures provide undergraduate students connections between ring theory and graph theory and, among other things, allow them to see a ring unity element that looks quite…
Zhang, Lijia; Liu, Bo; Xin, Xiangjun
2015-06-15
A secure enhanced coherent optical multi-carrier system based on Stokes vector scrambling is proposed and experimentally demonstrated. The optical signal with four-dimensional (4D) modulation space has been scrambled intra- and inter-subcarriers, where a multi-layer logistic map is adopted as the chaotic model. An experiment with 61.71-Gb/s encrypted multi-carrier signal is successfully demonstrated with the proposed method. The results indicate a promising solution for the physical secure optical communication.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
Explorations in fuzzy physics and non-commutative geometry
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Seckin
Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.
Bundles over nearly-Kahler homogeneous spaces in heterotic string theory
NASA Astrophysics Data System (ADS)
Klaput, Michael; Lukas, Andre; Matti, Cyril
2011-09-01
We construct heterotic vacua based on six-dimensional nearly-Kahler homogeneous manifolds and non-trivial vector bundles thereon. Our examples are based on three specific group coset spaces. It is shown how to construct line bundles over these spaces, compute their properties and build up vector bundles consistent with supersymmetry and anomaly cancelation. It turns out that the most interesting coset is SU(3)/U(1)2. This space supports a large number of vector bundles which lead to consistent heterotic vacua, some of them with three chiral families.
Computational methods for the identification of spatially varying stiffness and damping in beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Rosen, I. G.
1986-01-01
A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Wang, R.; Secunde, R.
1992-01-01
A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.
Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Freels, J. D.
1989-01-01
A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.
Robust Task Space Trajectory Tracking Control of Robotic Manipulators
NASA Astrophysics Data System (ADS)
Galicki, M.
2016-08-01
This work deals with the problem of the accurate task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-effector. Furthermore, the movement is to be accomplished in such a way as to reduce both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of chattering-free robust controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
The Laplace method for probability measures in Banach spaces
NASA Astrophysics Data System (ADS)
Piterbarg, V. I.; Fatalov, V. R.
1995-12-01
Contents §1. Introduction Chapter I. Asymptotic analysis of continual integrals in Banach space, depending on a large parameter §2. The large deviation principle and logarithmic asymptotics of continual integrals §3. Exact asymptotics of Gaussian integrals in Banach spaces: the Laplace method 3.1. The Laplace method for Gaussian integrals taken over the whole Hilbert space: isolated minimum points ([167], I) 3.2. The Laplace method for Gaussian integrals in Hilbert space: the manifold of minimum points ([167], II) 3.3. The Laplace method for Gaussian integrals in Banach space ([90], [174], [176]) 3.4. Exact asymptotics of large deviations of Gaussian norms §4. The Laplace method for distributions of sums of independent random elements with values in Banach space 4.1. The case of a non-degenerate minimum point ([137], I) 4.2. A degenerate isolated minimum point and the manifold of minimum points ([137], II) §5. Further examples 5.1. The Laplace method for the local time functional of a Markov symmetric process ([217]) 5.2. The Laplace method for diffusion processes, a finite number of non-degenerate minimum points ([116]) 5.3. Asymptotics of large deviations for Brownian motion in the Hölder norm 5.4. Non-asymptotic expansion of a strong stable law in Hilbert space ([41]) Chapter II. The double sum method - a version of the Laplace method in the space of continuous functions §6. Pickands' method of double sums 6.1. General situations 6.2. Asymptotics of the distribution of the maximum of a Gaussian stationary process 6.3. Asymptotics of the probability of a large excursion of a Gaussian non-stationary process §7. Probabilities of large deviations of trajectories of Gaussian fields 7.1. Homogeneous fields and fields with constant dispersion 7.2. Finitely many maximum points of dispersion 7.3. Manifold of maximum points of dispersion 7.4. Asymptotics of distributions of maxima of Wiener fields §8. Exact asymptotics of large deviations of the norm of Gaussian vectors and processes with values in the spaces L_k^p and l^2. Gaussian fields with the set of parameters in Hilbert space 8.1 Exact asymptotics of the distribution of the l_k^p-norm of a Gaussian finite-dimensional vector with dependent coordinates, p > 1 8.2. Exact asymptotics of probabilities of high excursions of trajectories of processes of type \\chi^2 8.3. Asymptotics of the probabilities of large deviations of Gaussian processes with a set of parameters in Hilbert space [74] 8.4. Asymptotics of distributions of maxima of the norms of l^2-valued Gaussian processes 8.5. Exact asymptotics of large deviations for the l^2-valued Ornstein-Uhlenbeck process Bibliography
Existence of Lipschitz selections of the Steiner map
NASA Astrophysics Data System (ADS)
Bednov, B. B.; Borodin, P. A.; Chesnokova, K. V.
2018-02-01
This paper is concerned with the problem of the existence of Lipschitz selections of the Steiner map {St}_n, which associates with n points of a Banach space X the set of their Steiner points. The answer to this problem depends on the geometric properties of the unit sphere S(X) of X, its dimension, and the number n. For n≥slant 4 general conditions are obtained on the space X under which {St}_n admits no Lipschitz selection. When X is finite dimensional it is shown that, if n≥slant 4 is even, the map {St}_n has a Lipschitz selection if and only if S(X) is a finite polytope; this is not true if n≥slant 3 is odd. For n=3 the (single-valued) map {St}_3 is shown to be Lipschitz continuous in any smooth strictly-convex two-dimensional space; this ceases to be true in three-dimensional spaces. Bibliography: 21 titles.
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.
1999-01-01
We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.
Using trees to compute approximate solutions to ordinary differential equations exactly
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow
Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.
1993-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.
NASA Technical Reports Server (NTRS)
Balas, M. J.; Kaufman, H.; Wen, J.
1985-01-01
A command generator tracker approach to model following contol of linear distributed parameter systems (DPS) whose dynamics are described on infinite dimensional Hilbert spaces is presented. This method generates finite dimensional controllers capable of exponentially stable tracking of the reference trajectories when certain ideal trajectories are known to exist for the open loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asymptotically) stable finite dimensional control of the infinite dimensional DPS.
NASA Technical Reports Server (NTRS)
Wang, Ren H.
1991-01-01
A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.
Lp harmonic 1-forms on minimal hypersurfaces with finite index
NASA Astrophysics Data System (ADS)
Choi, Hagyun; Seo, Keomkyo
2018-07-01
Let N be a complete simply connected Riemannian manifold with sectional curvature KN satisfying -k2 ≤KN ≤ 0 for a nonzero constant k. In this paper we prove that if M is an n(≥ 3) -dimensional complete minimal hypersurface with finite index in N, then the space of Lp harmonic 1-forms on M must be finite dimensional for certain p > 0 provided the bottom of the spectrum of the Laplace operator is sufficiently large. In particular, M has finitely many ends. These results can be regarded as an extension of Li-Wang (2002).
Cross-entropy embedding of high-dimensional data using the neural gas model.
Estévez, Pablo A; Figueroa, Cristián J; Saito, Kazumi
2005-01-01
A cross-entropy approach to mapping high-dimensional data into a low-dimensional space embedding is presented. The method allows to project simultaneously the input data and the codebook vectors, obtained with the Neural Gas (NG) quantizer algorithm, into a low-dimensional output space. The aim of this approach is to preserve the relationship defined by the NG neighborhood function for each pair of input and codebook vectors. A cost function based on the cross-entropy between input and output probabilities is minimized by using a Newton-Raphson method. The new approach is compared with Sammon's non-linear mapping (NLM) and the hierarchical approach of combining a vector quantizer such as the self-organizing feature map (SOM) or NG with the NLM recall algorithm. In comparison with these techniques, our method delivers a clear visualization of both data points and codebooks, and it achieves a better mapping quality in terms of the topology preservation measure q(m).
NASA Astrophysics Data System (ADS)
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is explored and implemented.
Universal moduli spaces of Riemann surfaces
NASA Astrophysics Data System (ADS)
Ji, Lizhen; Jost, Jürgen
2017-04-01
We construct a moduli space for Riemann surfaces that is universal in the sense that it represents compact Riemann surfaces of any finite genus. This moduli space is a connected complex subspace of an infinite dimensional complex space, and is stratified according to genus such that each stratum has a compact closure, and it carries a metric and a measure that induce a Riemannian metric and a finite volume measure on each stratum. Applications to the Plateau-Douglas problem for minimal surfaces of varying genus and to the partition function of Bosonic string theory are outlined. The construction starts with a universal moduli space of Abelian varieties. This space carries a structure of an infinite dimensional locally symmetric space which is of interest in its own right. The key to our construction of the universal moduli space then is the Torelli map that assigns to every Riemann surface its Jacobian and its extension to the Satake-Baily-Borel compactifications.
Fractal electrodynamics via non-integer dimensional space approach
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Ice Shape Characterization Using Self-Organizing Maps
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Tino, Peter; Kreeger, Richard E.
2011-01-01
A method for characterizing ice shapes using a self-organizing map (SOM) technique is presented. Self-organizing maps are neural-network techniques for representing noisy, multi-dimensional data aligned along a lower-dimensional and possibly nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. In information processing, the intent of SOM methods is to transmit the codebook vectors, which contains far fewer elements and requires much less memory or bandwidth, than the original noisy data set. When applied to airfoil ice accretion shapes, the properties of the codebook vectors and the statistical nature of the SOM methods allows for a quantitative comparison of experimentally measured mean or average ice shapes to ice shapes predicted using computer codes such as LEWICE. The nature of the codebook vectors also enables grid generation and surface roughness descriptions for use with the discrete-element roughness approach. In the present study, SOM characterizations are applied to a rime ice shape, a glaze ice shape at an angle of attack, a bi-modal glaze ice shape, and a multi-horn glaze ice shape. Improvements and future explorations will be discussed.
On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorbatsevich, V V
2014-05-31
In this paper, the frames of spaces of complex n-dimensional Lie algebras (that is, the intersections of all irreducible components of these spaces) are studied. A complete description of the frames and their projectivizations for n ≤ 6 is given. It is also proved that for n ≤ 6 the projectivizations of these spaces are simply connected. Bibliography: 7 titles.
The theory of pseudo-differential operators on the noncommutative n-torus
NASA Astrophysics Data System (ADS)
Tao, J.
2018-02-01
The methods of spectral geometry are useful for investigating the metric aspects of noncommutative geometry and in these contexts require extensive use of pseudo-differential operators. In a foundational paper, Connes showed that, by direct analogy with the theory of pseudo-differential operators on finite-dimensional real vector spaces, one may derive a similar pseudo-differential calculus on noncommutative n-tori, and with the development of this calculus came many results concerning the local differential geometry of noncommutative tori for n=2,4, as shown in the groundbreaking paper in which the Gauss-Bonnet theorem on the noncommutative two-torus is proved and later papers. Certain details of the proofs in the original derivation of the calculus were omitted, such as the evaluation of oscillatory integrals, so we make it the objective of this paper to fill in all the details. After reproving in more detail the formula for the symbol of the adjoint of a pseudo-differential operator and the formula for the symbol of a product of two pseudo-differential operators, we extend these results to finitely generated projective right modules over the noncommutative n-torus. Then we define the corresponding analog of Sobolev spaces and prove equivalents of the Sobolev and Rellich lemmas.
An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed for predicting the turbulent and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellani, Marco; Giuli, Massimiliano, E-mail: massimiliano.giuli@univaq.it
2016-02-15
We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered.
Computation of transonic potential flow about 3 dimensional inlets, ducts, and bodies
NASA Technical Reports Server (NTRS)
Reyhner, T. A.
1982-01-01
An analysis was developed and a computer code, P465 Version A, written for the prediction of transonic potential flow about three dimensional objects including inlet, duct, and body geometries. Finite differences and line relaxation are used to solve the complete potential flow equation. The coordinate system used for the calculations is independent of body geometry. Cylindrical coordinates are used for the computer code. The analysis is programmed in extended FORTRAN 4 for the CYBER 203 vector computer. The programming of the analysis is oriented toward taking advantage of the vector processing capabilities of this computer. Comparisons of computed results with experimental measurements are presented to verify the analysis. Descriptions of program input and output formats are also presented.
1 / f α noise and generalized diffusion in random Heisenberg spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Kartiek; Demler, Eugene; Martin, Ivar
2015-11-01
We study the “flux-noise” spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq (f ), at finite wave vector q, exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T = 0 and T =∞. The low-frequency power-law behavior of the structure factormore » is inherited by any generic probe with a finite bandwidth and is of the form 1/f α with 0.5 < α < 1. An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings.More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusionwhich directly follows from a generalized spin-diffusion propagator.We also argue that 1/f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1/f α behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1/f α noise in SQUIDs.« less
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Kinematically Optimal Robust Control of Redundant Manipulators
NASA Astrophysics Data System (ADS)
Galicki, M.
2017-12-01
This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
NASA Technical Reports Server (NTRS)
Kumar, A.; Rudy, D. H.; Drummond, J. P.; Harris, J. E.
1982-01-01
Several two- and three-dimensional external and internal flow problems solved on the STAR-100 and CYBER-203 vector processing computers are described. The flow field was described by the full Navier-Stokes equations which were then solved by explicit finite-difference algorithms. Problem results and computer system requirements are presented. Program organization and data base structure for three-dimensional computer codes which will eliminate or improve on page faulting, are discussed. Storage requirements for three-dimensional codes are reduced by calculating transformation metric data in each step. As a result, in-core grid points were increased in number by 50% to 150,000, with a 10% execution time increase. An assessment of current and future machine requirements shows that even on the CYBER-205 computer only a few problems can be solved realistically. Estimates reveal that the present situation is more storage limited than compute rate limited, but advancements in both storage and speed are essential to realistically calculate three-dimensional flow.
Value at 2 of the L-function of an elliptic curve
NASA Astrophysics Data System (ADS)
Brunault, Francois
2006-02-01
We study the special value at 2 of L-functions of modular forms of weight 2 on congruence subgroups of the modular group. We prove an explicit version of Beilinson's theorem for the modular curve X_1(N). When N is prime, we deduce that the target space of Beilinson's regulator map is generated by the images of Milnor symbols associated to modular units of X_1(N). We also suggest a reformulation of Zagier's conjecture on L(E,2) for the jacobian J_1(N) of X_1(N), where E is an elliptic curve of conductor N. In this direction we define an analogue of the elliptic dilogarithm for any jacobian J : it is a function R_J from the complex points of J to a finite-dimensional vector space. In the case J=J_1(N), we establish a link between the aforementioned L-values and the function R_J evaluated at Q-rational points of the cuspidal subgroup of J.
Research in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.
Elasticity of fractal materials using the continuum model with non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
Energy theorem for (2+1)-dimensional gravity.
NASA Astrophysics Data System (ADS)
Menotti, P.; Seminara, D.
1995-05-01
We prove a positive energy theorem in (2+1)-dimensional gravity for open universes and any matter energy-momentum tensor satisfying the dominant energy condition. We consider on the space-like initial value surface a family of widening Wilson loops and show that the energy-momentum of the enclosed subsystem is a future directed time-like vector whose mass is an increasing function of the loop, until it reaches the value 1/4G corresponding to a deficit angle of 2π. At this point the energy-momentum of the system evolves, depending on the nature of a zero norm vector appearing in the evolution equations, either into a time-like vector of a universe which closes kinematically or into a Gott-like universe whose energy momentum vector, as first recognized by Deser, Jackiw, and 't Hooft (1984) is space-like. This treatment generalizes results obtained by Carroll, Fahri, Guth, and Olum (1994) for a system of point-like spinless particle, to the most general form of matter whose energy-momentum tensor satisfies the dominant energy condition. The treatment is also given for the anti-de Sitter (2+1)-dimensional gravity.
IIB supergravity and the E 6(6) covariant vector-tensor hierarchy
Ciceri, Franz; de Wit, Bernard; Varela, Oscar
2015-04-20
IIB supergravity is reformulated with a manifest local USp(8) invariance that makes the embedding of five-dimensional maximal supergravities transparent. In this formulation the ten-dimensional theory exhibits all the 27 one-form fields and 22 of the 27 two-form fields that are required by the vector-tensor hierarchy of the five-dimensional theory. The missing 5 two-form fields must transform in the same representation as a descendant of the ten-dimensional ‘dual graviton’. The invariant E 6(6) symmetric tensor that appears in the vector-tensor hierarchy is reproduced. Generalized vielbeine are derived from the supersymmetry transformations of the vector fields, as well as consistent expressions formore » the USp(8) covariant fermion fields. Implications are further discussed for the consistency of the truncation of IIB supergravity compactified on the five-sphere to maximal gauged supergravity in five space-time dimensions with an SO(6) gauge group.« less
A path model for Whittaker vectors
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Kedem, Rinat; Turmunkh, Bolor
2017-06-01
In this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra U_q(slr+1) . This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the q-difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way.
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
Finite dimensional approximation of a class of constrained nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Hou, L. S.
1994-01-01
An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.
Vectors in Use in a 3D Juggling Game Simulation
ERIC Educational Resources Information Center
Kynigos, Chronis; Latsi, Maria
2006-01-01
The new representations enabled by the educational computer game the "Juggler" can place vectors in a central role both for controlling and measuring the behaviours of objects in a virtual environment simulating motion in three-dimensional spaces. The mathematical meanings constructed by 13 year-old students in relation to vectors as…
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Wang, R.
1990-01-01
This paper describes the results of application of three well known 3D magnetic vector potential (MVP) based finite element formulations for computation of magnetostatic fields in electrical devices. The three methods were identically applied to three practical examples, the first of which contains only one medium (free space), while the second and third examples contained a mix of free space and iron. The first of these methods is based on the unconstrained curl-curl of the MVP, while the second and third methods are predicated upon constraining the divergence of the MVP 10 zero (Coulomb's Gauge). It was found that the two latter methods cease to give useful and meaningful results when the global solution region contains a mix of media of high and low permeabilities. Furthermore, it was found that their results do not achieve the intended zero constraint on the divergence of the MVP.
Vectors and Rotations in 3-Dimensions: Vector Algebra for the C++ Programmer
2016-12-01
Proving Ground, MD 21005-5068 This report describes 2 C++ classes: a Vector class for performing vector algebra in 3-dimensional space ( 3D ) and a Rotation...class for performing rotations of vectors in 3D . Each class is self-contained in a single header file (Vector.h and Rotation.h) so that a C...vector, rotation, 3D , quaternion, C++ tools, rotation sequence, Euler angles, yaw, pitch, roll, orientation 98 Richard Saucier 410-278-6721Unclassified
NASA Astrophysics Data System (ADS)
Kraus, Hal G.
1993-02-01
Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.
Field Computation and Nonpropositional Knowledge.
1987-09-01
field computer It is based on xeneralization of Taylor’s theorem to continuous dimensional vector spaces. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21...generalization of Taylor’s theorem to continuous dimensional vector -5paces A number of field computations are illustrated, including several Lransforma...paradigm. The "old" Al has been quite successful in performing a number of difficult tasks, such as theorem prov- ing, chess playing, medical diagnosis and
Origin and structures of solar eruptions II: Magnetic modeling
NASA Astrophysics Data System (ADS)
Guo, Yang; Cheng, Xin; Ding, MingDe
2017-07-01
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.
NASA Technical Reports Server (NTRS)
Nett, C. N.; Jacobson, C. A.; Balas, M. J.
1983-01-01
This paper reviews and extends the fractional representation theory. In particular, new and powerful robustness results are presented. This new theory is utilized to develop a preliminary design methodology for finite dimensional control of a class of linear evolution equations on a Banach space. The design is for stability in an input-output sense, but particular attention is paid to internal stability as well.
Conformal Nets II: Conformal Blocks
NASA Astrophysics Data System (ADS)
Bartels, Arthur; Douglas, Christopher L.; Henriques, André
2017-08-01
Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.
A k-space method for large-scale models of wave propagation in tissue.
Mast, T D; Souriau, L P; Liu, D L; Tabei, M; Nachman, A I; Waag, R C
2001-03-01
Large-scale simulation of ultrasonic pulse propagation in inhomogeneous tissue is important for the study of ultrasound-tissue interaction as well as for development of new imaging methods. Typical scales of interest span hundreds of wavelengths; most current two-dimensional methods, such as finite-difference and finite-element methods, are unable to compute propagation on this scale with the efficiency needed for imaging studies. Furthermore, for most available methods of simulating ultrasonic propagation, large-scale, three-dimensional computations of ultrasonic scattering are infeasible. Some of these difficulties have been overcome by previous pseudospectral and k-space methods, which allow substantial portions of the necessary computations to be executed using fast Fourier transforms. This paper presents a simplified derivation of the k-space method for a medium of variable sound speed and density; the derivation clearly shows the relationship of this k-space method to both past k-space methods and pseudospectral methods. In the present method, the spatial differential equations are solved by a simple Fourier transform method, and temporal iteration is performed using a k-t space propagator. The temporal iteration procedure is shown to be exact for homogeneous media, unconditionally stable for "slow" (c(x) < or = c0) media, and highly accurate for general weakly scattering media. The applicability of the k-space method to large-scale soft tissue modeling is shown by simulating two-dimensional propagation of an incident plane wave through several tissue-mimicking cylinders as well as a model chest wall cross section. A three-dimensional implementation of the k-space method is also employed for the example problem of propagation through a tissue-mimicking sphere. Numerical results indicate that the k-space method is accurate for large-scale soft tissue computations with much greater efficiency than that of an analogous leapfrog pseudospectral method or a 2-4 finite difference time-domain method. However, numerical results also indicate that the k-space method is less accurate than the finite-difference method for a high contrast scatterer with bone-like properties, although qualitative results can still be obtained by the k-space method with high efficiency. Possible extensions to the method, including representation of absorption effects, absorbing boundary conditions, elastic-wave propagation, and acoustic nonlinearity, are discussed.
NASA Technical Reports Server (NTRS)
Greene, William H.
1990-01-01
A study was performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal of the study was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semi-analytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models. In several cases this fixed mode approach resulted in very poor approximations of the stress sensitivities. Almost all of the original modes were required for an accurate sensitivity and for small numbers of modes, the accuracy was extremely poor. To overcome this poor accuracy, two semi-analytical techniques were developed. The first technique accounts for the change in eigenvectors through approximate eigenvector derivatives. The second technique applies the mode acceleration method of transient analysis to the sensitivity calculations. Both result in accurate values of the stress sensitivities with a small number of modes and much lower computational costs than if the vibration modes were recalculated and then used in an overall finite difference method.
NASA Technical Reports Server (NTRS)
Lee, Kimyeong; Holman, Richard; Kolb, Edward W.
1987-01-01
Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.
Finite element based electric motor design optimization
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1993-01-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
Intertwined Hamiltonians in two-dimensional curved spaces
NASA Astrophysics Data System (ADS)
Aghababaei Samani, Keivan; Zarei, Mina
2005-04-01
The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincaré half plane (AdS2), de Sitter plane (dS2), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle.
Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres.
Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L A; Yodh, A G; Torquato, Salvatore
2015-01-01
Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.
Maximum-entropy reconstruction method for moment-based solution of the Boltzmann equation
NASA Astrophysics Data System (ADS)
Summy, Dustin; Pullin, Dale
2013-11-01
We describe a method for a moment-based solution of the Boltzmann equation. This starts with moment equations for a 10 + 9 N , N = 0 , 1 , 2 . . . -moment representation. The partial-differential equations (PDEs) for these moments are unclosed, containing both higher-order moments and molecular-collision terms. These are evaluated using a maximum-entropy construction of the velocity distribution function f (c , x , t) , using the known moments, within a finite-box domain of single-particle-velocity (c) space. Use of a finite-domain alleviates known problems (Junk and Unterreiter, Continuum Mech. Thermodyn., 2002) concerning existence and uniqueness of the reconstruction. Unclosed moments are evaluated with quadrature while collision terms are calculated using a Monte-Carlo method. This allows integration of the moment PDEs in time. Illustrative examples will include zero-space- dimensional relaxation of f (c , t) from a Mott-Smith-like initial condition toward equilibrium and one-space dimensional, finite Knudsen number, planar Couette flow. Comparison with results using the direct-simulation Monte-Carlo method will be presented.
Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres
NASA Astrophysics Data System (ADS)
Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L. A.; Yodh, A. G.; Torquato, Salvatore
2015-01-01
Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.
The finite state projection algorithm for the solution of the chemical master equation.
Munsky, Brian; Khammash, Mustafa
2006-01-28
This article introduces the finite state projection (FSP) method for use in the stochastic analysis of chemically reacting systems. One can describe the chemical populations of such systems with probability density vectors that evolve according to a set of linear ordinary differential equations known as the chemical master equation (CME). Unlike Monte Carlo methods such as the stochastic simulation algorithm (SSA) or tau leaping, the FSP directly solves or approximates the solution of the CME. If the CME describes a system that has a finite number of distinct population vectors, the FSP method provides an exact analytical solution. When an infinite or extremely large number of population variations is possible, the state space can be truncated, and the FSP method provides a certificate of accuracy for how closely the truncated space approximation matches the true solution. The proposed FSP algorithm systematically increases the projection space in order to meet prespecified tolerance in the total probability density error. For any system in which a sufficiently accurate FSP exists, the FSP algorithm is shown to converge in a finite number of steps. The FSP is utilized to solve two examples taken from the field of systems biology, and comparisons are made between the FSP, the SSA, and tau leaping algorithms. In both examples, the FSP outperforms the SSA in terms of accuracy as well as computational efficiency. Furthermore, due to very small molecular counts in these particular examples, the FSP also performs far more effectively than tau leaping methods.
Combined-probability space and certainty or uncertainty relations for a finite-level quantum system
NASA Astrophysics Data System (ADS)
Sehrawat, Arun
2017-08-01
The Born rule provides a probability vector (distribution) with a quantum state for a measurement setting. For two settings, we have a pair of vectors from the same quantum state. Each pair forms a combined-probability vector that obeys certain quantum constraints, which are triangle inequalities in our case. Such a restricted set of combined vectors, called the combined-probability space, is presented here for a d -level quantum system (qudit). The combined space is a compact convex subset of a Euclidean space, and all its extreme points come from a family of parametric curves. Considering a suitable concave function on the combined space to estimate the uncertainty, we deliver an uncertainty relation by finding its global minimum on the curves for a qudit. If one chooses an appropriate concave (or convex) function, then there is no need to search for the absolute minimum (maximum) over the whole space; it will be on the parametric curves. So these curves are quite useful for establishing an uncertainty (or a certainty) relation for a general pair of settings. We also demonstrate that many known tight certainty or uncertainty relations for a qubit can be obtained with the triangle inequalities.
Direct solution of the H(1s)-H + long-range interaction problem in momentum space
NASA Astrophysics Data System (ADS)
Koga, Toshikatsu
1985-02-01
Perturbation equations for the H(1s)-H+ long-range interaction are solved directly in momentum space up to the fourth order with respect to the reciprocal of the internuclear distance. As in the hydrogen atom problem, the Fock transformation is used which projects the momentum vector of an electron from the three-dimensional hyperplane onto the four-dimensional hypersphere. Solutions are given as linear combinations of several four-dimensional spherical harmonics. The present results add an example to the momentum-space solution of the nonspherical potential problem.
Graph theory approach to the eigenvalue problem of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.; Bainum, P. M.
1981-01-01
Graph theory is used to obtain numerical solutions to eigenvalue problems of large space structures (LSS) characterized by a state vector of large dimensions. The LSS are considered as large, flexible systems requiring both orientation and surface shape control. Graphic interpretation of the determinant of a matrix is employed to reduce a higher dimensional matrix into combinations of smaller dimensional sub-matrices. The reduction is implemented by means of a Boolean equivalent of the original matrices formulated to obtain smaller dimensional equivalents of the original numerical matrix. Computation time becomes less and more accurate solutions are possible. An example is provided in the form of a free-free square plate. Linearized system equations and numerical values of a stiffness matrix are presented, featuring a state vector with 16 components.
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
NASA Technical Reports Server (NTRS)
Sohn, Kiho D.; Ip, Shek-Se P.
1988-01-01
Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEneaney, William M.
2004-08-15
Stochastic games under imperfect information are typically computationally intractable even in the discrete-time/discrete-state case considered here. We consider a problem where one player has perfect information.A function of a conditional probability distribution is proposed as an information state.In the problem form here, the payoff is only a function of the terminal state of the system,and the initial information state is either linear ora sum of max-plus delta functions.When the initial information state belongs to these classes, its propagation is finite-dimensional.The state feedback value function is also finite-dimensional,and obtained via dynamic programming,but has a nonstandard form due to the necessity ofmore » an expanded state variable.Under a saddle point assumption,Certainty Equivalence is obtained and the proposed function is indeed an information state.« less
Fault Tolerant Optimal Control.
1982-08-01
subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification
One-dimensional high-order compact method for solving Euler's equations
NASA Astrophysics Data System (ADS)
Mohamad, M. A. H.; Basri, S.; Basuno, B.
2012-06-01
In the field of computational fluid dynamics, many numerical algorithms have been developed to simulate inviscid, compressible flows problems. Among those most famous and relevant are based on flux vector splitting and Godunov-type schemes. Previously, this system was developed through computational studies by Mawlood [1]. However the new test cases for compressible flows, the shock tube problems namely the receding flow and shock waves were not investigated before by Mawlood [1]. Thus, the objective of this study is to develop a high-order compact (HOC) finite difference solver for onedimensional Euler equation. Before developing the solver, a detailed investigation was conducted to assess the performance of the basic third-order compact central discretization schemes. Spatial discretization of the Euler equation is based on flux-vector splitting. From this observation, discretization of the convective flux terms of the Euler equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. The AUSM scheme is based on the third-order compact scheme to the approximate finite difference equation was completely analyzed consequently. In one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration method. In addition to that, development and modification of source code for the one-dimensional flow is validated with four test cases namely, unsteady shock tube, quasi-one-dimensional supersonic-subsonic nozzle flow, receding flow and shock waves in shock tubes. From these results, it was also carried out to ensure that the definition of Riemann problem can be identified. Further analysis had also been done in comparing the characteristic of AUSM scheme against experimental results, obtained from previous works and also comparative analysis with computational results generated by van Leer, KFVS and AUSMPW schemes. Furthermore, there is a remarkable improvement with the extension of the AUSM scheme from first-order to third-order accuracy in terms of shocks, contact discontinuities and rarefaction waves.
Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benatti, Fabio, E-mail: benatti@ts.infn.it; Oskouei, Samad Khabbazi, E-mail: kh.oskuei@ut.ac.ir; Deh Abad, Ahmad Shafiei, E-mail: shafiei@khayam.ut.ac.ir
We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.
Handy elementary algebraic properties of the geometry of entanglement
NASA Astrophysics Data System (ADS)
Blair, Howard A.; Alsing, Paul M.
2013-05-01
The space of separable states of a quantum system is a hyperbolic surface in a high dimensional linear space, which we call the separation surface, within the exponentially high dimensional linear space containing the quantum states of an n component multipartite quantum system. A vector in the linear space is representable as an n-dimensional hypermatrix with respect to bases of the component linear spaces. A vector will be on the separation surface iff every determinant of every 2-dimensional, 2-by-2 submatrix of the hypermatrix vanishes. This highly rigid constraint can be tested merely in time asymptotically proportional to d, where d is the dimension of the state space of the system due to the extreme interdependence of the 2-by-2 submatrices. The constraint on 2-by-2 determinants entails an elementary closed formformula for a parametric characterization of the entire separation surface with d-1 parameters in the char- acterization. The state of a factor of a partially separable state can be calculated in time asymptotically proportional to the dimension of the state space of the component. If all components of the system have approximately the same dimension, the time complexity of calculating a component state as a function of the parameters is asymptotically pro- portional to the time required to sort the basis. Metric-based entanglement measures of pure states are characterized in terms of the separation hypersurface.
On the explicit construction of Parisi landscapes in finite dimensional Euclidean spaces
NASA Astrophysics Data System (ADS)
Fyodorov, Y. V.; Bouchaud, J.-P.
2007-12-01
An N-dimensional Gaussian landscape with multiscale translation-invariant logarithmic correlations has been constructed, and the statistical mechanics of a single particle in this environment has been investigated. In the limit of a high dimensional N → ∞, the free energy of the system in the thermodynamic limit coincides with the most general version of Derrida’s generalized random energy model. The low-temperature behavior depends essentially on the spectrum of length scales involved in the construction of the landscape. The construction is argued to be valid in any finite spatial dimensions N ≥1.
On Anholonomic Deformation, Geometry, and Differentiation
2013-02-01
αβχ are not necessarily Levi - Civita connection coefficients). The vector cross product × obeys, for two vectors V and W and two covectors α and β , V...three-dimensional space. 2.2.5. Euclidean space. Let GAB(X ) = GA · GB be the metric tensor of the space. The Levi - Civita connection coefficients of GAB...curvature tensor of the Levi - Civita connection vanishes identically: G R A BCD = 2 ( ∂[B G A C]D + G A[B|E|G EC]D ) = 0. (43) In n
User's and test case manual for FEMATS
NASA Technical Reports Server (NTRS)
Chatterjee, Arindam; Volakis, John; Nurnberger, Mike; Natzke, John
1995-01-01
The FEMATS program incorporates first-order edge-based finite elements and vector absorbing boundary conditions into the scattered field formulation for computation of the scattering from three-dimensional geometries. The code has been validated extensively for a large class of geometries containing inhomogeneities and satisfying transition conditions. For geometries that are too large for the workstation environment, the FEMATS code has been optimized to run on various supercomputers. Currently, FEMATS has been configured to run on the HP 9000 workstation, vectorized for the Cray Y-MP, and parallelized to run on the Kendall Square Research (KSR) architecture and the Intel Paragon.
Approximation of Optimal Infinite Dimensional Compensators for Flexible Structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.; Adamian, A.; Jabbari, F.
1985-01-01
The infinite dimensional compensator for a large class of flexible structures, modeled as distributed systems are discussed, as well as an approximation scheme for designing finite dimensional compensators to approximate the infinite dimensional compensator. The approximation scheme is applied to develop a compensator for a space antenna model based on wrap-rib antennas being built currently. While the present model has been simplified, it retains the salient features of rigid body modes and several distributed components of different characteristics. The control and estimator gains are represented by functional gains, which provide graphical representations of the control and estimator laws. These functional gains also indicate the convergence of the finite dimensional compensators and show which modes the optimal compensator ignores.
Modeling and control of flexible space structures
NASA Technical Reports Server (NTRS)
Wie, B.; Bryson, A. E., Jr.
1981-01-01
The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.
Glassy phase in quenched disordered crystalline membranes
NASA Astrophysics Data System (ADS)
Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.
2018-03-01
We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.
Electromagnetic analysis of arbitrarily shaped pinched carpets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, Guillaume; Guenneau, Sebastien; Enoch, Stefan
2010-09-15
We derive the expressions for the anisotropic heterogeneous tensors of permittivity and permeability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map an arbitrary region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components. Moreover, a reduced set of parameters leads to nonmagnetic two-dimensional carpets in p polarization (i.e., for a magnetic field orthogonal to the plane containing the carpet). Such an arbitrarily shaped carpet is shown to work over amore » finite bandwidth when it is approximated by a checkerboard with 190 homogeneous cells of piecewise constant anisotropic permittivity. We finally perform some finite element computations in the full vector three-dimensional case for a plane wave in normal incidence and a Gaussian beam in oblique incidence. The latter requires perfectly matched layers set in a rotated coordinate axis which exemplifies the role played by geometric transforms in computational electromagnetism.« less
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1991-01-01
A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.
The BRST complex of homological Poisson reduction
NASA Astrophysics Data System (ADS)
Müller-Lennert, Martin
2017-02-01
BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.
Vectoring of parallel synthetic jets: A parametric study
NASA Astrophysics Data System (ADS)
Berk, Tim; Gomit, Guillaume; Ganapathisubramani, Bharathram
2016-11-01
The vectoring of a pair of parallel synthetic jets can be described using five dimensionless parameters: the aspect ratio of the slots, the Strouhal number, the Reynolds number, the phase difference between the jets and the spacing between the slots. In the present study, the influence of the latter four on the vectoring behaviour of the jets is examined experimentally using particle image velocimetry. Time-averaged velocity maps are used to study the variations in vectoring behaviour for a parametric sweep of each of the four parameters independently. A topological map is constructed for the full four-dimensional parameter space. The vectoring behaviour is described both qualitatively and quantitatively. A vectoring mechanism is proposed, based on measured vortex positions. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472).
Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A
2014-01-01
Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).
An algorithm for the basis of the finite Fourier transform
NASA Technical Reports Server (NTRS)
Santhanam, Thalanayar S.
1995-01-01
The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.
Three-dimensional Hybrid Simulation Study of Anisotropic Turbulence in the Proton Kinetic Regime
NASA Astrophysics Data System (ADS)
Vasquez, Bernard J.; Markovskii, Sergei A.; Chandran, Benjamin D. G.
2014-06-01
Three-dimensional numerical hybrid simulations with particle protons and quasi-neutralizing fluid electrons are conducted for a freely decaying turbulence that is anisotropic with respect to the background magnetic field. The turbulence evolution is determined by both the combined root-mean-square (rms) amplitude for fluctuating proton bulk velocity and magnetic field and by the ratio of perpendicular to parallel wavenumbers. This kind of relationship had been considered in the past with regard to interplanetary turbulence. The fluctuations nonlinearly evolve to a turbulent phase whose net wave vector anisotropy is usually more perpendicular than the initial one, irrespective of the initial ratio of perpendicular to parallel wavenumbers. Self-similar anisotropy evolution is found as a function of the rms amplitude and parallel wavenumber. Proton heating rates in the turbulent phase vary strongly with the rms amplitude but only weakly with the initial wave vector anisotropy. Even in the limit where wave vectors are confined to the plane perpendicular to the background magnetic field, the heating rate remains close to the corresponding case with finite parallel wave vector components. Simulation results obtained as a function of proton plasma to background magnetic pressure ratio β p in the range 0.1-0.5 show that the wave vector anisotropy also weakly depends on β p .
A general algorithm using finite element method for aerodynamic configurations at low speeds
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1975-01-01
A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.
NASA Technical Reports Server (NTRS)
Iida, H. T.
1966-01-01
Computational procedure reduces the numerical effort whenever the method of finite differences is used to solve ablation problems for which the surface recession is large relative to the initial slab thickness. The number of numerical operations required for a given maximum space mesh size is reduced.
Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets.
Demartines, P; Herault, J
1997-01-01
We present a new strategy called "curvilinear component analysis" (CCA) for dimensionality reduction and representation of multidimensional data sets. The principle of CCA is a self-organized neural network performing two tasks: vector quantization (VQ) of the submanifold in the data set (input space); and nonlinear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
Semi-implicit finite difference methods for three-dimensional shallow water flow
Casulli, Vincenzo; Cheng, Ralph T.
1992-01-01
A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.
Measurement-based quantum teleportation on finite AKLT chains
NASA Astrophysics Data System (ADS)
Fujii, Akihiko; Feder, David
In the measurement-based model of quantum computation, universal quantum operations are effected by making repeated local measurements on resource states which contain suitable entanglement. Resource states include two-dimensional cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the honeycomb lattice. Recent studies suggest that measurements on one-dimensional systems in the Haldane phase teleport perfect single-qubit gates in the correlation space, protected by the underlying symmetry. As laboratory realizations of symmetry-protected states will necessarily be finite, we investigate the potential for quantum gate teleportation in finite chains of a bilinear-biquadratic Hamiltonian which is a generalization of the AKLT model representing the full Haldane phase.
NASA Astrophysics Data System (ADS)
Tjong, Tiffany; Yihaa’ Roodhiyah, Lisa; Nurhasan; Sutarno, Doddy
2018-04-01
In this work, an inversion scheme was performed using a vector finite element (VFE) based 2-D magnetotelluric (MT) forward modelling. We use an inversion scheme with Singular value decomposition (SVD) method toimprove the accuracy of MT inversion.The inversion scheme was applied to transverse electric (TE) mode of MT. SVD method was used in this inversion to decompose the Jacobian matrices. Singular values which obtained from the decomposition process were analyzed. This enabled us to determine the importance of data and therefore to define a threshold for truncation process. The truncation of singular value in inversion processcould improve the resulted model.
Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms.
Cady, J.W.
1980-01-01
An equation is derived for the vertical gravity field due to a homogeneous body with polygonal cross‐section and finite strike‐length. The equation can be separated into the two‐dimensional (2-D) terms of Talwani et al. (1959) and exact terms for the contributions of the ends of the prism. Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973), who coined the term “two‐and‐a‐half dimensional” (2 1/2-D) to describe the geometry. Magnetic intensities are expressed as a vector sum, from which the common dot product formulation can be obtained by binomial expansion.
Keegan, Lindsay; Dushoff, Jonathan
2014-05-01
The basic reproductive number, R0, provides a foundation for evaluating how various factors affect the incidence of infectious diseases. Recently, it has been suggested that, particularly for vector-transmitted diseases, R0 should be modified to account for the effects of finite host population within a single disease transmission generation. Here, we use a transmission factor approach to calculate such "finite-population reproductive numbers," under the assumption of homogeneous mixing, for both vector-borne and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-population reproductive numbers for both host-to-host and vector-to-vector generations, assuming that the vector population is effectively infinite. We find simple, interpretable formulas for all three of these quantities. In the direct case, we find that finite-population reproductive numbers diverge from R0 before R0 reaches half of the population size. In the vector-transmitted case, we find that the host-to-host number diverges at even lower values of R0, while the vector-to-vector number diverges very little over realistic parameter ranges.
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, C. M.; Tanner, John A.
1989-01-01
A computational procedure is presented for reducing the size of the analysis models of tires having unsymmetric material, geometry and/or loading. The two key elements of the procedure when applied to anisotropic tires are: (1) decomposition of the stiffness matrix into the sum of an orthotropic and nonorthotropic parts; and (2) successive application of the finite-element method and the classical Rayleigh-Ritz technique. The finite-element method is first used to generate few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The proposed technique has high potential for handling practical tire problems with anisotropic materials, unsymmetric imperfections and asymmetric loading. It is also particularly useful for use with three-dimensional finite-element models of tires.
Ghorai, Santanu; Mukherjee, Anirban; Dutta, Pranab K
2010-06-01
In this brief we have proposed the multiclass data classification by computationally inexpensive discriminant analysis through vector-valued regularized kernel function approximation (VVRKFA). VVRKFA being an extension of fast regularized kernel function approximation (FRKFA), provides the vector-valued response at single step. The VVRKFA finds a linear operator and a bias vector by using a reduced kernel that maps a pattern from feature space into the low dimensional label space. The classification of patterns is carried out in this low dimensional label subspace. A test pattern is classified depending on its proximity to class centroids. The effectiveness of the proposed method is experimentally verified and compared with multiclass support vector machine (SVM) on several benchmark data sets as well as on gene microarray data for multi-category cancer classification. The results indicate the significant improvement in both training and testing time compared to that of multiclass SVM with comparable testing accuracy principally in large data sets. Experiments in this brief also serve as comparison of performance of VVRKFA with stratified random sampling and sub-sampling.
Gauged supergravities from M-theory reductions
NASA Astrophysics Data System (ADS)
Katmadas, Stefanos; Tomasiello, Alessandro
2018-04-01
In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.
NASA Astrophysics Data System (ADS)
Voznyuk, I.; Litman, A.; Tortel, H.
2015-08-01
A Quasi-Newton method for reconstructing the constitutive parameters of three-dimensional (3D) penetrable scatterers from scattered field measurements is presented. This method is adapted for handling large-scale electromagnetic problems while keeping the memory requirement and the time flexibility as low as possible. The forward scattering problem is solved by applying the finite-element tearing and interconnecting full-dual-primal (FETI-FDP2) method which shares the same spirit as the domain decomposition methods for finite element methods. The idea is to split the computational domain into smaller non-overlapping sub-domains in order to simultaneously solve local sub-problems. Various strategies are proposed in order to efficiently couple the inversion algorithm with the FETI-FDP2 method: a separation into permanent and non-permanent subdomains is performed, iterative solvers are favorized for resolving the interface problem and a marching-on-in-anything initial guess selection further accelerates the process. The computational burden is also reduced by applying the adjoint state vector methodology. Finally, the inversion algorithm is confronted to measurements extracted from the 3D Fresnel database.
Navier-Stokes dynamics on a differential one-form
NASA Astrophysics Data System (ADS)
Story, Troy L.
2006-11-01
After transforming the Navier-Stokes dynamic equation into a characteristic differential one-form on an odd-dimensional differentiable manifold, exterior calculus is used to construct a pair of differential equations and tangent vector(vortex vector) characteristic of Hamiltonian geometry. A solution to the Navier-Stokes dynamic equation is then obtained by solving this pair of equations for the position x^k and the conjugate to the position bk as functions of time. The solution bk is shown to be divergence-free by contracting the differential 3-form corresponding to the divergence of the gradient of the velocity with a triple of tangent vectors, implying constraints on two of the tangent vectors for the system. Analysis of the solution bk shows it is bounded since it remains finite as | x^k | ->,, and is physically reasonable since the square of the gradient of the principal function is bounded. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian is obtained.
NASA Astrophysics Data System (ADS)
Bakhvalov, Yu A.; Grechikhin, V. V.; Yufanova, A. L.
2016-04-01
The article describes the calculation of the magnetic fields in the problems diagnostic of technical systems based on the full-scale modeling experiment. Use of gridless fundamental solution method and its variants in combination with grid methods (finite differences and finite elements) are allowed to considerably reduce the dimensionality task of the field calculation and hence to reduce calculation time. When implementing the method are used fictitious magnetic charges. In addition, much attention is given to the calculation accuracy. Error occurs when wrong choice of the distance between the charges. The authors are proposing to use vector magnetic dipoles to improve the accuracy of magnetic fields calculation. Examples of this approacharegiven. The article shows the results of research. They are allowed to recommend the use of this approach in the method of fundamental solutions for the full-scale modeling tests of technical systems.
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
Geometric Representations of Condition Queries on Three-Dimensional Vector Fields
NASA Technical Reports Server (NTRS)
Henze, Chris
1999-01-01
Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.
NASA Technical Reports Server (NTRS)
Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.
1987-01-01
A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.
Wigner analysis of three dimensional pupil with finite lateral aperture
Chen, Hsi-Hsun; Oh, Se Baek; Zhai, Xiaomin; Tsai, Jui-Chang; Cao, Liang-Cai; Barbastathis, George; Luo, Yuan
2015-01-01
A three dimensional (3D) pupil is an optical element, most commonly implemented on a volume hologram, that processes the incident optical field on a 3D fashion. Here we analyze the diffraction properties of a 3D pupil with finite lateral aperture in the 4-f imaging system configuration, using the Wigner Distribution Function (WDF) formulation. Since 3D imaging pupil is finite in both lateral and longitudinal directions, the WDF of the volume holographic 4-f imager theoretically predicts distinct Bragg diffraction patterns in phase space. These result in asymmetric profiles of diffracted coherent point spread function between degenerate diffraction and Bragg diffraction, elucidating the fundamental performance of volume holographic imaging. Experimental measurements are also presented, confirming the theoretical predictions. PMID:25836443
Metriplectic integrators for the Landau collision operator
Kraus, Michael; Hirvijoki, Eero
2017-10-02
Here, we present a novel framework for addressing the nonlinear Landau collision integral in terms of finite element and other subspace projection methods. We employ the underlying metriplectic structure of the Landau collision integral and, using a Galerkin discretization for the velocity space, we transform the infinite-dimensional system into a finite-dimensional, time-continuous metriplectic system. Temporal discretization is accomplished using the concept of discrete gradients. The conservation of energy, momentum, and particle densities, as well as the production of entropy is demonstrated algebraically for the fully discrete system. Due to the generality of our approach, the conservation properties and the monotonicmore » behavior of entropy are guaranteed for finite element discretizations, in general, independently of the mesh configuration.« less
Finite element methods and Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Cuvelier, C.; Segal, A.; van Steenhoven, A. A.
This book is devoted to two and three-dimensional FEM analysis of the Navier-Stokes (NS) equations describing one flow of a viscous incompressible fluid. Three different approaches to the NS equations are described: a direct method, a penalty method, and a method that constructs discrete solenoidal vector fields. Subjects of current research which are important from the industrial/technological viewpoint are considered, including capillary-free boundaries, nonisothermal flows, turbulence, and non-Newtonian fluids.
On the Partitioning of Squared Euclidean Distance and Its Applications in Cluster Analysis.
ERIC Educational Resources Information Center
Carter, Randy L.; And Others
1989-01-01
The partitioning of squared Euclidean--E(sup 2)--distance between two vectors in M-dimensional space into the sum of squared lengths of vectors in mutually orthogonal subspaces is discussed. Applications to specific cluster analysis problems are provided (i.e., to design Monte Carlo studies for performance comparisons of several clustering methods…
Geometry of quantum dynamics in infinite-dimensional Hilbert space
NASA Astrophysics Data System (ADS)
Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana
2018-04-01
We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.
Finite Rotation Analysis of Highly Thin and Flexible Structures
NASA Technical Reports Server (NTRS)
Clarke, Greg V.; Lee, Keejoo; Lee, Sung W.; Broduer, Stephen J. (Technical Monitor)
2001-01-01
Deployable space structures such as sunshields and solar sails are extremely thin and highly flexible with limited bending rigidity. For analytical investigation of their responses during deployment and operation in space, these structures can be modeled as thin shells. The present work examines the applicability of the solid shell element formulation to modeling of deployable space structures. The solid shell element formulation that models a shell as a three-dimensional solid is convenient in that no rotational parameters are needed for the description of kinematics of deformation. However, shell elements may suffer from element locking as the thickness becomes smaller unless special care is taken. It is shown that, when combined with the assumed strain formulation, the solid shell element formulation results in finite element models that are free of locking even for extremely thin structures. Accordingly, they can be used for analysis of highly flexible space structures undergoing geometrically nonlinear finite rotations.
Structural weights analysis of advanced aerospace vehicles using finite element analysis
NASA Technical Reports Server (NTRS)
Bush, Lance B.; Lentz, Christopher A.; Rehder, John J.; Naftel, J. Chris; Cerro, Jeffrey A.
1989-01-01
A conceptual/preliminary level structural design system has been developed for structural integrity analysis and weight estimation of advanced space transportation vehicles. The system includes a three-dimensional interactive geometry modeler, a finite element pre- and post-processor, a finite element analyzer, and a structural sizing program. Inputs to the system include the geometry, surface temperature, material constants, construction methods, and aerodynamic and inertial loads. The results are a sized vehicle structure capable of withstanding the static loads incurred during assembly, transportation, operations, and missions, and a corresponding structural weight. An analysis of the Space Shuttle external tank is included in this paper as a validation and benchmark case of the system.
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.
Mathematics of Quantization and Quantum Fields
NASA Astrophysics Data System (ADS)
Dereziński, Jan; Gérard, Christian
2013-03-01
Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.
NASA Astrophysics Data System (ADS)
Rost, E.; Shephard, J. R.
1992-08-01
This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self-consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the (triangle)-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to (bar p)p yields (bar lambda)lambda reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.
Precomputed state dependent digital control of a nuclear rocket engine
NASA Technical Reports Server (NTRS)
Johnson, M. R.
1972-01-01
A control method applicable to multiple-input multiple-output nonlinear time-invariant systems in which desired behavior can be expressed explicitly as a trajectory in system state space is developed. The precomputed state dependent control method is basically a synthesis technique in which a suboptimal control law is developed off-line, prior to system operation. This law is obtained by conducting searches at a finite number of points in state space, in the vicinity of some desired trajectory, to obtain a set of constant control vectors which tend to return the system to the desired trajectory. These vectors are used to evaluate the unknown coefficients in a control law having an assumed hyperellipsoidal form. The resulting coefficients constitute the heart of the controller and are used in the on-line computation of control vectors. Two examples of PSDC are given prior to the more detailed description of the NERVA control system development.
Dynamic tailoring of surface plasmon polaritons through incident angle modulation.
Qiu, Peizhen; Zhang, Dawei; Jing, Ming; Lu, Taiguo; Yu, Binbin; Zhan, Qiwen; Zhuang, Songlin
2018-04-16
Dynamic tailoring of the propagating surface plasmon polaritons (SPPs) through incident angle modulation is proposed and numerically demonstrated. The generation and tailoring mechanism of the SPPs are discussed. The relationship formula between the incident angle and the generated SPP wave vector direction is theoretically derived. The correctness of the formula is verified with three different approaches using finite difference time domain method. Using this formula, the generated SPP wave vector direction can be precisely modulated by changing the incident angle. The precise modulation results of two dimensional Bessel-like SPP beam and SPP bottle beam array are given. The results can deepen the understanding of the generation and modulation mechanism of the SPPs.
Design of single-polarization wavelength splitter based on photonic crystal fiber.
Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan
2011-12-20
A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.
2017-01-01
We study the G-strand equations that are extensions of the classical chiral model of particle physics in the particular setting of broken symmetries described by symmetric spaces. These equations are simple field theory models whose configuration space is a Lie group, or in this case a symmetric space. In this class of systems, we derive several models that are completely integrable on finite dimensional Lie group G, and we treat in more detail examples with symmetric space SU(2)/S1 and SO(4)/SO(3). The latter model simplifies to an apparently new integrable nine-dimensional system. We also study the G-strands on the infinite dimensional group of diffeomorphisms, which gives, together with the Sobolev norm, systems of 1+2 Camassa–Holm equations. The solutions of these equations on the complementary space related to the Witt algebra decomposition are the odd function solutions. PMID:28413343
A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, D., E-mail: Daniel.Brinkman@asu.edu; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287; Heitzinger, C., E-mail: Clemens.Heitzinger@asu.edu
2014-01-15
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.
Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.
No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu
2016-11-14
High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.
Three dimensional δf simulations of beams in the SSC
NASA Astrophysics Data System (ADS)
Koga, J.; Tajima, T.; Machida, S.
1993-12-01
A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.
A 3-D turbulent flow analysis using finite elements with k-ɛ model
NASA Astrophysics Data System (ADS)
Okuda, H.; Yagawa, G.; Eguchi, Y.
1989-03-01
This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.
A one-dimensional model of subsurface hillslope flow
Jason C. Fisher
1997-01-01
Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...
Quantitative analysis of eyes and other optical systems in linear optics.
Harris, William F; Evans, Tanya; van Gool, Radboud D
2017-05-01
To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Valuation of financial models with non-linear state spaces
NASA Astrophysics Data System (ADS)
Webber, Nick
2001-02-01
A common assumption in valuation models for derivative securities is that the underlying state variables take values in a linear state space. We discuss numerical implementation issues in an interest rate model with a simple non-linear state space, formulating and comparing Monte Carlo, finite difference and lattice numerical solution methods. We conclude that, at least in low dimensional spaces, non-linear interest rate models may be viable.
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A Heisenberg Algebra Bundle of a Vector Field in Three-Space and its Weyl Quantization
NASA Astrophysics Data System (ADS)
Binz, Ernst; Pods, Sonja
2006-01-01
In these notes we associate a natural Heisenberg group bundle Ha with a singularity free smooth vector field X = (id,a) on a submanifold M in a Euclidean three-space. This bundle yields naturally an infinite dimensional Heisenberg group HX∞. A representation of the C*-group algebra of HX∞ is a quantization. It causes a natural Weyl-deformation quantization of X. The influence of the topological structure of M on this quantization is encoded in the Chern class of a canonical complex line bundle inside Ha.
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee; McCaughan, Frances E.
1998-01-01
Stationary onset of convection due to surface tension variation in an unbounded multicomponent fluid layer is considered. Surface deformation is included and general flux boundary conditions are imposed on the stratifying agencies (temperature/composition) disturbance equations. Exact solutions are obtained to the general N-component problem for both finite and infinitesimal wavenumbers. Long wavelength instability may coexist with a finite wavelength instability for certain sets of parameter values, often referred to as frontier points. For an impermeable/insulated upper boundary and a permeable/conductive lower boundary, frontier boundaries are computed in the space of Bond number, Bo, versus Crispation number, Cr, over the range 5 x 10(exp -7) less than or equal to Bo less than or equal to 1. The loci of frontier points in (Bo, Cr) space for different values of N, diffusivity ratios, and, Marangoni numbers, collapsed to a single curve in (Bo, D(dimensional variable)Cr) space, where D(dimensional variable) is a Marangoni number weighted diffusivity ratio.
A new parallel-vector finite element analysis software on distributed-memory computers
NASA Technical Reports Server (NTRS)
Qin, Jiangning; Nguyen, Duc T.
1993-01-01
A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.
Overview of the relevant CFD work at Thiokol Corporation
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Loh, Hai-Tien
1992-01-01
An in-house developed proprietary advanced computational fluid dynamics code called SHARP (Trademark) is a primary tool for many flow simulations and design analyses. The SHARP code is a time dependent, two dimensional (2-D) axisymmetric numerical solution technique for the compressible Navier-Stokes equations. The solution technique in SHARP uses a vectorizable implicit, second order accurate in time and space, finite volume scheme based on an upwind flux-difference splitting of a Roe-type approximated Riemann solver, Van Leer's flux vector splitting, and a fourth order artificial dissipation scheme with a preconditioning to accelerate the flow solution. Turbulence is simulated by an algebraic model, and ultimately the kappa-epsilon model. Some other capabilities of the code are 2-D two-phase Lagrangian particle tracking and cell blockages. Extensive development and testing has been conducted on the 3-D version of the code with flow, combustion, and turbulence interactions. The emphasis here is on the specific applications of SHARP in Solid Rocket Motor design. Information is given in viewgraph form.
Closedness of orbits in a space with SU(2) Poisson structure
NASA Astrophysics Data System (ADS)
Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad
2014-06-01
The closedness of orbits of central forces is addressed in a three-dimensional space in which the Poisson bracket among the coordinates is that of the SU(2) Lie algebra. In particular it is shown that among problems with spherically symmetric potential energies, it is only the Kepler problem for which all bounded orbits are closed. In analogy with the case of the ordinary space, a conserved vector (apart from the angular momentum) is explicitly constructed, which is responsible for the orbits being closed. This is the analog of the Laplace-Runge-Lenz vector. The algebra of the constants of the motion is also worked out.
Lecture Notes on Multigrid Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevski, P S
The Lecture Notes are primarily based on a sequence of lectures given by the author while been a Fulbright scholar at 'St. Kliment Ohridski' University of Sofia, Sofia, Bulgaria during the winter semester of 2009-2010 academic year. The notes are somewhat expanded version of the actual one semester class he taught there. The material covered is slightly modified and adapted version of similar topics covered in the author's monograph 'Multilevel Block-Factorization Preconditioners' published in 2008 by Springer. The author tried to keep the notes as self-contained as possible. That is why the lecture notes begin with some basic introductory matrix-vectormore » linear algebra, numerical PDEs (finite element) facts emphasizing the relations between functions in finite dimensional spaces and their coefficient vectors and respective norms. Then, some additional facts on the implementation of finite elements based on relation tables using the popular compressed sparse row (CSR) format are given. Also, typical condition number estimates of stiffness and mass matrices, the global matrix assembly from local element matrices are given as well. Finally, some basic introductory facts about stationary iterative methods, such as Gauss-Seidel and its symmetrized version are presented. The introductory material ends up with the smoothing property of the classical iterative methods and the main definition of two-grid iterative methods. From here on, the second part of the notes begins which deals with the various aspects of the principal TG and the numerous versions of the MG cycles. At the end, in part III, we briefly introduce algebraic versions of MG referred to as AMG, focusing on classes of AMG specialized for finite element matrices.« less
An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium
NASA Technical Reports Server (NTRS)
Eppard, W. M.; Grossman, B.
1993-01-01
We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.
Solutions to Yang-Mills Equations on Four-Dimensional de Sitter Space
NASA Astrophysics Data System (ADS)
Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.
2017-08-01
We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter space dS4 and construct a smooth and spatially homogeneous magnetic solution to the Yang-Mills equations. Slicing dS4 as R ×S3, via an SU(2)-equivariant ansatz, we reduce the Yang-Mills equations to ordinary matrix differential equations and further to Newtonian dynamics in a double-well potential. Its local maximum yields a Yang-Mills solution whose color-magnetic field at time τ ∈R is given by B˜a=-1/2 Ia/(R2cosh2τ ), where Ia for a =1 , 2, 3 are the SU(2) generators and R is the de Sitter radius. At any moment, this spatially homogeneous configuration has finite energy, but its action is also finite and of the value -1/2 j (j +1 )(2 j +1 )π3 in a spin-j representation. Similarly, the double-well bounce produces a family of homogeneous finite-action electric-magnetic solutions with the same energy. There is a continuum of other solutions whose energy and action extend down to zero.
NASA Technical Reports Server (NTRS)
Volakis, John L.
1990-01-01
There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. Second, the diffraction by a material discontinuity in a thick dielectric/ferrite layer is considered by modeling the layer as a distributed current sheet obeying generalized sheet transition conditions (GSTC's).
ERIC Educational Resources Information Center
Altshuler, Ken
1994-01-01
Presents a method using art classics to teach that a third vector axis is required to represent orientations in three-dimensional space. Helps students understand the importance of perspective, frame of reference, balance, and color theory. (MVL)
A Functional Central Limit Theorem for the Becker-Döring Model
NASA Astrophysics Data System (ADS)
Sun, Wen
2018-04-01
We investigate the fluctuations of the stochastic Becker-Döring model of polymerization when the initial size of the system converges to infinity. A functional central limit problem is proved for the vector of the number of polymers of a given size. It is shown that the stochastic process associated to fluctuations is converging to the strong solution of an infinite dimensional stochastic differential equation (SDE) in a Hilbert space. We also prove that, at equilibrium, the solution of this SDE is a Gaussian process. The proofs are based on a specific representation of the evolution equations, the introduction of a convenient Hilbert space and several technical estimates to control the fluctuations, especially of the first coordinate which interacts with all components of the infinite dimensional vector representing the state of the process.
SIC-POVMS and MUBS: Geometrical Relationships in Prime Dimension
NASA Astrophysics Data System (ADS)
Appleby, D. M.
2009-03-01
The paper concerns Weyl-Heisenberg covariant SIC-POVMs (symmetric informationally complete positive operator valued measures) and full sets of MUBs (mutually unbiased bases) in prime dimension. When represented as vectors in generalized Bloch space a SIC-POVM forms a d2-1 dimensional regular simplex (d being the Hilbert space dimension). By contrast, the generalized Bloch vectors representing a full set of MUBs form d+1 mutually orthogonal d-1 dimensional regular simplices. In this paper we show that, in the Weyl-Heisenberg case, there are some simple geometrical relationships between the single SIC-POVM simplex and the d+1 MUB simplices. We go on to give geometrical interpretations of the minimum uncertainty states introduced by Wootters and Sussman, and by Appleby, Dang and Fuchs, and of the fiduciality condition given by Appleby, Dang and Fuchs.
Classifier performance prediction for computer-aided diagnosis using a limited dataset.
Sahiner, Berkman; Chan, Heang-Ping; Hadjiiski, Lubomir
2008-04-01
In a practical classifier design problem, the true population is generally unknown and the available sample is finite-sized. A common approach is to use a resampling technique to estimate the performance of the classifier that will be trained with the available sample. We conducted a Monte Carlo simulation study to compare the ability of the different resampling techniques in training the classifier and predicting its performance under the constraint of a finite-sized sample. The true population for the two classes was assumed to be multivariate normal distributions with known covariance matrices. Finite sets of sample vectors were drawn from the population. The true performance of the classifier is defined as the area under the receiver operating characteristic curve (AUC) when the classifier designed with the specific sample is applied to the true population. We investigated methods based on the Fukunaga-Hayes and the leave-one-out techniques, as well as three different types of bootstrap methods, namely, the ordinary, 0.632, and 0.632+ bootstrap. The Fisher's linear discriminant analysis was used as the classifier. The dimensionality of the feature space was varied from 3 to 15. The sample size n2 from the positive class was varied between 25 and 60, while the number of cases from the negative class was either equal to n2 or 3n2. Each experiment was performed with an independent dataset randomly drawn from the true population. Using a total of 1000 experiments for each simulation condition, we compared the bias, the variance, and the root-mean-squared error (RMSE) of the AUC estimated using the different resampling techniques relative to the true AUC (obtained from training on a finite dataset and testing on the population). Our results indicated that, under the study conditions, there can be a large difference in the RMSE obtained using different resampling methods, especially when the feature space dimensionality is relatively large and the sample size is small. Under this type of conditions, the 0.632 and 0.632+ bootstrap methods have the lowest RMSE, indicating that the difference between the estimated and the true performances obtained using the 0.632 and 0.632+ bootstrap will be statistically smaller than those obtained using the other three resampling methods. Of the three bootstrap methods, the 0.632+ bootstrap provides the lowest bias. Although this investigation is performed under some specific conditions, it reveals important trends for the problem of classifier performance prediction under the constraint of a limited dataset.
Compatible-strain mixed finite element methods for incompressible nonlinear elasticity
NASA Astrophysics Data System (ADS)
Faghih Shojaei, Mostafa; Yavari, Arash
2018-05-01
We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.
Preconditioning for the Navier-Stokes equations with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Godfrey, Andrew G.
1993-01-01
The extension of Van Leer's preconditioning procedure to generalized finite-rate chemistry is discussed. Application to viscous flow is begun with the proper preconditioning matrix for the one-dimensional Navier-Stokes equations. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from nearly stagnant flow to hypersonic. Specific benefits are realized at the low and transonic flow speeds typical of complete propulsion-system simulations. The extended preconditioning matrix necessarily accounts for both thermal and chemical nonequilibrium. Numerical analysis reveals the possible theoretical improvements from using a preconditioner for all Mach number regimes. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number areas. Van Leer, Lee, and Roe recently developed an optimal, analytic preconditioning technique to reduce eigenvalue stiffness over the full Mach-number range. By multiplying the flux-balance residual with the preconditioning matrix, the acoustic wave speeds are scaled so that all waves propagate at the same rate, an essential property to eliminate inherent eigenvalue stiffness. This session discusses a synthesis of the thermochemical nonequilibrium flux-splitting developed by Grossman and Cinnella and the characteristic wave preconditioning of Van Leer into a powerful tool for implicitly solving two and three-dimensional flows with generalized finite-rate chemistry. For finite-rate chemistry, the state vector of unknowns is variable in length. Therefore, the preconditioning matrix extended to generalized finite-rate chemistry must accommodate a flexible system of moving waves. Fortunately, no new kind of wave appears in the system. The only existing waves are entropy and vorticity waves, which move with the fluid, and acoustic waves, which propagate in Mach number dependent directions. The nonequilibrium vibrational energies and species densities in the unknown state vector act strictly as convective waves. The essential concept for extending the preconditioning to generalized chemistry models is determining the differential variables which symmetrize the flux Jacobians. The extension is then straight-forward. This algorithm research effort will be released in a future version of the production level computational code coined the General Aerodynamic Simulation Program (GASP), developed by Walters, Slack, and McGrory.
Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Suzuki, Hiroshi
2015-03-01
It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.
Parsons, T.
2002-01-01
The M = 7.8 1906 San Francisco earthquake cast a stress shadow across the San Andreas fault system, inhibiting other large earthquakes for at least 75 years. The duration of the stress shadow is a key question in San Francisco Bay area seismic hazard assessment. This study presents a three-dimensional (3-D) finite element simulation of post-1906 stress recovery. The model reproduces observed geologic slip rates on major strike-slip faults and produces surface velocity vectors comparable to geodetic measurements. Fault stressing rates calculated with the finite element model are evaluated against numbers calculated using deep dislocation slip. In the finite element model, tectonic stressing is distributed throughout the crust and upper mantle, whereas tectonic stressing calculated with dislocations is focused mostly on faults. In addition, the finite element model incorporates postseismic effects such as deep afterslip and viscoelastic relaxation in the upper mantle. More distributed stressing and postseismic effects in the finite element model lead to lower calculated tectonic stressing rates and longer stress shadow durations (17-74 years compared with 7-54 years). All models considered indicate that the 1906 stress shadow was completely erased by tectonic loading no later than 1980. However, the stress shadow still affects present-day earthquake probability. Use of stressing rate parameters calculated with the finite element model yields a 7-12% reduction in 30-year probability caused by the 1906 stress shadow as compared with calculations not incorporating interactions. The aggregate interaction-based probability on selected segments (not including the ruptured San Andreas fault) is 53-70% versus the noninteraction range of 65-77%.
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems
NASA Technical Reports Server (NTRS)
Chen, Hsin-Chu; He, Ai-Fang
1993-01-01
The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.
Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1989-01-01
A new computer code was developed for predicting the turbulent, and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, 3-D Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.
Theory of the Lattice Boltzmann Equation: Symmetry properties of Discrete Velocity Sets
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Luo, Li-Shi
2007-01-01
In the lattice Boltzmann equation, continuous particle velocity space is replaced by a finite dimensional discrete set. The number of linearly independent velocity moments in a lattice Boltzmann model cannot exceed the number of discrete velocities. Thus, finite dimensionality introduces linear dependencies among the moments that do not exist in the exact continuous theory. Given a discrete velocity set, it is important to know to exactly what order moments are free of these dependencies. Elementary group theory is applied to the solution of this problem. It is found that by decomposing the velocity set into subsets that transform among themselves under an appropriate symmetry group, it becomes relatively straightforward to assess the behavior of moments in the theory. The construction of some standard two- and three-dimensional models is reviewed from this viewpoint, and procedures for constructing some new higher dimensional models are suggested.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
1987-03-01
the VLSI Implementation of the Electromagnetic Field of an Arbitrary Current Source" B.A. Hoyt, A.J. Terzuoli, A.V. Lair ., Air Force Institute of...method is that cavities of arbitrary three dimensional shapes and nonuniform lossy materials can be analyzed. THEORY OF VECTOR POTENTIAL FINITE...elements used to model the cavity. The method includes the effects of nonuniform lossy materials and can analyze cavities of a wide variety of two- and
1993-08-27
rever"_? if necessary and identify by block number) FIELD SUB- GROUP Electromagnetic wave scattering, radiation boundary -. ... conditions, finite...international engineering electromagnetics symposia and in related journals has risen from a level of less than 10 per year (published primarily by my group ) to...Rzpoxs and Non -Refereed Papers: 3, as follows- I. D. S. Katz, A. Taflove, J. P. Brooks and E. Harrigan, "Large-scale methods in computational
Characteristic-based algorithms for flows in thermo-chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Walters, Robert W.; Cinnella, Pasquale; Slack, David C.; Halt, David
1990-01-01
A generalized finite-rate chemistry algorithm with Steger-Warming, Van Leer, and Roe characteristic-based flux splittings is presented in three-dimensional generalized coordinates for the Navier-Stokes equations. Attention is placed on convergence to steady-state solutions with fully coupled chemistry. Time integration schemes including explicit m-stage Runge-Kutta, implicit approximate-factorization, relaxation and LU decomposition are investigated and compared in terms of residual reduction per unit of CPU time. Practical issues such as code vectorization and memory usage on modern supercomputers are discussed.
Computation of output feedback gains for linear stochastic systems using the Zangwill-Powell method
NASA Technical Reports Server (NTRS)
Kaufman, H.
1977-01-01
Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell.
Vector representation of lithium and other mica compositions
NASA Technical Reports Server (NTRS)
Burt, Donald M.
1991-01-01
In contrast to mathematics, where a vector of one component defines a line, in chemical petrology a one-component system is a point, and two components are needed to define a line, three for a plane, and four for a space. Here, an attempt is made to show how these differences in the definition of a component can be resolved, with lithium micas used as an example. In particular, the condensed composition space theoretically accessible to Li-Fe-Al micas is shown to be an irregular three-dimensional polyhedron, rather than the triangle Al(3+)-Fe(2+)-Li(+), used by some researchers. This result is demonstrated starting with the annite composition and using exchange operators graphically as vectors that generate all of the other mica compositions.
Vectorization of a particle simulation method for hypersonic rarefied flow
NASA Technical Reports Server (NTRS)
Mcdonald, Jeffrey D.; Baganoff, Donald
1988-01-01
An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry.
NASA Astrophysics Data System (ADS)
Beckstein, Pascal; Galindo, Vladimir; Vukčević, Vuko
2017-09-01
Eddy-current problems occur in a wide range of industrial and metallurgical applications where conducting material is processed inductively. Motivated by realising coupled multi-physics simulations, we present a new method for the solution of such problems in the finite volume framework of foam-extend, an extended version of the very popular OpenFOAM software. The numerical procedure involves a semi-coupled multi-mesh approach to solve Maxwell's equations for non-magnetic materials by means of the Coulomb gauged magnetic vector potential A and the electric scalar potential ϕ. The concept is further extended on the basis of the impressed and reduced magnetic vector potential and its usage in accordance with Biot-Savart's law to achieve a very efficient overall modelling even for complex three-dimensional geometries. Moreover, we present a special discretisation scheme to account for possible discontinuities in the electrical conductivity. To complement our numerical method, an extensive validation is completing the paper, which provides insight into the behaviour and the potential of our approach.
Rarefied gas flow through two-dimensional nozzles
NASA Technical Reports Server (NTRS)
De Witt, Kenneth J.; Jeng, Duen-Ren; Keith, Theo G., Jr.; Chung, Chan-Hong
1989-01-01
A kinetic theory analysis is made of the flow of a rarefied gas from one reservoir to another through two-dimensional nozzles with arbitrary curvature. The Boltzmann equation simplified by a model collision integral is solved by means of finite-difference approximations with the discrete ordinate method. The physical space is transformed by a general grid generation technique and the velocity space is transformed to a polar coordinate system. A numerical code is developed which can be applied to any two-dimensional passage of complicated geometry for the flow regimes from free-molecular to slip. Numerical values of flow quantities can be calculated for the entire physical space including both inside the nozzle and in the outside plume. Predictions are made for the case of parallel slots and compared with existing literature data. Also, results for the cases of convergent or divergent slots and two-dimensional nozzles with arbitrary curvature at arbitrary knudsen number are presented.
Three dimensional finite temperature SU(3) gauge theory near the phase transition
NASA Astrophysics Data System (ADS)
Bialas, P.; Daniel, L.; Morel, A.; Petersson, B.
2013-06-01
We have measured the correlation function of Polyakov loops on the lattice in three dimensional SU(3) gauge theory near its finite temperature phase transition. Using a new and powerful application of finite size scaling, we furthermore extend the measurements of the critical couplings to considerably larger values of the lattice sizes, both in the temperature and space directions, than was investigated earlier in this theory. With the help of these measurements we perform a detailed finite size scaling analysis, showing that for the critical exponents of the two dimensional three state Potts model the mass and the susceptibility fall on unique scaling curves. This strongly supports the expectation that the gauge theory is in the same universality class. The Nambu-Goto string model on the other hand predicts that the exponent ν has the mean field value, which is quite different from the value in the abovementioned Potts model. Using our values of the critical couplings we also determine the continuum limit of the value of the critical temperature in terms of the square root of the zero temperature string tension. This value is very near to the prediction of the Nambu-Goto string model in spite of the different critical behaviour.
Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Modal test/analysis correlation of Space Station structures using nonlinear sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.; ...
2015-12-20
We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Some novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. Furthermore, these considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution ofmore » a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities.« less
Relativistic thermal electron scale instabilities in sheared flow plasma
NASA Astrophysics Data System (ADS)
Miller, Evan D.; Rogers, Barrett N.
2016-04-01
> The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.
Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi
2018-01-01
The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (p<0.001). Fatigue crack initiation was primarily observed at implant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Using a multifrontal sparse solver in a high performance, finite element code
NASA Technical Reports Server (NTRS)
King, Scott D.; Lucas, Robert; Raefsky, Arthur
1990-01-01
We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP.
Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Hathaway, A. W.
1978-01-01
Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.
Accelerating 4D flow MRI by exploiting vector field divergence regularization.
Santelli, Claudio; Loecher, Michael; Busch, Julia; Wieben, Oliver; Schaeffter, Tobias; Kozerke, Sebastian
2016-01-01
To improve velocity vector field reconstruction from undersampled four-dimensional (4D) flow MRI by penalizing divergence of the measured flow field. Iterative image reconstruction in which magnitude and phase are regularized separately in alternating iterations was implemented. The approach allows incorporating prior knowledge of the flow field being imaged. In the present work, velocity data were regularized to reduce divergence, using either divergence-free wavelets (DFW) or a finite difference (FD) method using the ℓ1-norm of divergence and curl. The reconstruction methods were tested on a numerical phantom and in vivo data. Results of the DFW and FD approaches were compared with data obtained with standard compressed sensing (CS) reconstruction. Relative to standard CS, directional errors of vector fields and divergence were reduced by 55-60% and 38-48% for three- and six-fold undersampled data with the DFW and FD methods. Velocity vector displays of the numerical phantom and in vivo data were found to be improved upon DFW or FD reconstruction. Regularization of vector field divergence in image reconstruction from undersampled 4D flow data is a valuable approach to improve reconstruction accuracy of velocity vector fields. © 2014 Wiley Periodicals, Inc.
Domination Problem for Vector Measures and Applications to Nonstationary Processes.
1981-09-23
meas- ures, which have p-semi-variation finite, I a p a 2 . The work here do- pieda in part on an inequality of Grothendieck- Pietsch . The rest of the...7], Corol. 2 to Thi. 4.3 and Prop. 3.1, the Latter is the Grothendieck- Pietsch inequality alluded to in the Introduction), the space I - C(S) being
Close range fault tolerant noncontacting position sensor
Bingham, D.N.; Anderson, A.A.
1996-02-20
A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.
NASA Technical Reports Server (NTRS)
Downer, Janice Diane
1990-01-01
The dynamic analysis of three dimensional elastic beams which experience large rotational and large deformational motions are examined. The beam motion is modeled using an inertial reference for the translational displacements and a body-fixed reference for the rotational quantities. Finite strain rod theories are then defined in conjunction with the beam kinematic description which accounts for the effects of stretching, bending, torsion, and transverse shear deformations. A convected coordinate representation of the Cauchy stress tensor and a conjugate strain definition is introduced to model the beam deformation. To treat the beam dynamics, a two-stage modification of the central difference algorithm is presented to integrate the translational coordinates and the angular velocity vector. The angular orientation is then obtained from the application of an implicit integration algorithm to the Euler parameter/angular velocity kinematical relation. The combined developments of the objective internal force computation with the dynamic solution procedures result in the computational preservation of total energy for undamped systems. The present methodology is also extended to model the dynamics of deployment/retrieval of the flexible members. A moving spatial grid corresponding to the configuration of a deployed rigid beam is employed as a reference for the dynamic variables. A transient integration scheme which accurately accounts for the deforming spatial grid is derived from a space-time finite element discretization of a Hamiltonian variational statement. The computational results of this general deforming finite element beam formulation are compared to reported results for a planar inverse-spaghetti problem.
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Curvature of Super Diff(S/sup 1/)/S/sup 1/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, P.; Ramond, P.
Motivated by the work of Bowick and Rajeev, we calculate the curvature of the infinite-dimensional flag manifolds DiffS/sup 1//S/sup 1/ and Super DiffS/sup 1//S/sup 1/ using standard finite-dimensional coset space techniques. We regularize the infinity by zeta-function regularization and recover the conformal and superconformal anomalies respectively for a specific choice of the torsion.
A more accurate modeling of the effects of actuators in large space structures
NASA Technical Reports Server (NTRS)
Hablani, H. B.
1981-01-01
The paper deals with finite actuators. A nonspinning three-axis stabilized space vehicle having a two-dimensional large structure and a rigid body at the center is chosen for analysis. The torquers acting on the vehicle are modeled as antisymmetric forces distributed in a small but finite area. In the limit they represent point torquers which also are treated as a special case of surface distribution of dipoles. Ordinary and partial differential equations governing the forced vibrations of the vehicle are derived by using Hamilton's principle. Associated modal inputs are obtained for both the distributed moments and the distributed forces. It is shown that the finite torquers excite the higher modes less than the point torquers. Modal cost analysis proves to be a suitable methodology to this end.
Essential uncontrollability of discrete linear, time-invariant, dynamical systems
NASA Technical Reports Server (NTRS)
Cliff, E. M.
1975-01-01
The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.
Stabilization of a locally minimal forest
NASA Astrophysics Data System (ADS)
Ivanov, A. O.; Mel'nikova, A. E.; Tuzhilin, A. A.
2014-03-01
The method of partial stabilization of locally minimal networks, which was invented by Ivanov and Tuzhilin to construct examples of shortest trees with given topology, is developed. According to this method, boundary vertices of degree 2 are not added to all edges of the original locally minimal tree, but only to some of them. The problem of partial stabilization of locally minimal trees in a finite-dimensional Euclidean space is solved completely in the paper, that is, without any restrictions imposed on the number of edges remaining free of subdivision. A criterion for the realizability of such stabilization is established. In addition, the general problem of searching for the shortest forest connecting a finite family of boundary compact sets in an arbitrary metric space is formalized; it is shown that such forests exist for any family of compact sets if and only if for any finite subset of the ambient space there exists a shortest tree connecting it. The theory developed here allows us to establish further generalizations of the stabilization theorem both for arbitrary metric spaces and for metric spaces with some special properties. Bibliography: 10 titles.
Finite-action solutions of Yang-Mills equations on de Sitter dS4 and anti-de Sitter AdS4 spaces
NASA Astrophysics Data System (ADS)
Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.
2017-11-01
We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter dS4 and anti-de Sitter AdS4 spaces and construct various solutions to the Yang-Mills equations. On de Sitter space we reduce the Yang-Mills equations via an SU(2)-equivariant ansatz to Newtonian mechanics of a particle moving in R^3 under the influence of a quartic potential. Then we describe magnetic and electric-magnetic solutions, both Abelian and non-Abelian, all having finite energy and finite action. A similar reduction on anti-de Sitter space also yields Yang-Mills solutions with finite energy and action. We propose a lower bound for the action on both backgrounds. Employing another metric on AdS4, the SU(2) Yang-Mills equations are reduced to an analytic continuation of the above particle mechanics from R^3 to R^{2,1} . We discuss analytical solutions to these equations, which produce infinite-action configurations. After a Euclidean continuation of dS4 and AdS4 we also present self-dual (instanton-type) Yang-Mills solutions on these backgrounds.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis
This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.
Higher-order nonclassicalities of finite dimensional coherent states: A comparative study
NASA Astrophysics Data System (ADS)
Alam, Nasir; Verma, Amit; Pathak, Anirban
2018-07-01
Conventional coherent states (CSs) are defined in various ways. For example, CS is defined as an infinite Poissonian expansion in Fock states, as displaced vacuum state, or as an eigenket of annihilation operator. In the infinite dimensional Hilbert space, these definitions are equivalent. However, these definitions are not equivalent for the finite dimensional systems. In this work, we present a comparative description of the lower- and higher-order nonclassical properties of the finite dimensional CSs which are also referred to as qudit CSs (QCSs). For the comparison, nonclassical properties of two types of QCSs are used: (i) nonlinear QCS produced by applying a truncated displacement operator on the vacuum and (ii) linear QCS produced by the Poissonian expansion in Fock states of the CS truncated at (d - 1)-photon Fock state. The comparison is performed using a set of nonclassicality witnesses (e.g., higher order antibunching, higher order sub-Poissonian statistics, higher order squeezing, Agarwal-Tara parameter, Klyshko's criterion) and a set of quantitative measures of nonclassicality (e.g., negativity potential, concurrence potential and anticlassicality). The higher order nonclassicality witnesses have found to reveal the existence of higher order nonclassical properties of QCS for the first time.
Three-dimensional multigrid algorithms for the flux-split Euler equations
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.
1988-01-01
The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.
Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
Nagaoka, Tomoaki; Watanabe, Soichi
2011-01-01
Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.
Decentralized Dimensionality Reduction for Distributed Tensor Data Across Sensor Networks.
Liang, Junli; Yu, Guoyang; Chen, Badong; Zhao, Minghua
2016-11-01
This paper develops a novel decentralized dimensionality reduction algorithm for the distributed tensor data across sensor networks. The main contributions of this paper are as follows. First, conventional centralized methods, which utilize entire data to simultaneously determine all the vectors of the projection matrix along each tensor mode, are not suitable for the network environment. Here, we relax the simultaneous processing manner into the one-vector-by-one-vector (OVBOV) manner, i.e., determining the projection vectors (PVs) related to each tensor mode one by one. Second, we prove that in the OVBOV manner each PV can be determined without modifying any tensor data, which simplifies corresponding computations. Third, we cast the decentralized PV determination problem as a set of subproblems with consensus constraints, so that it can be solved in the network environment only by local computations and information communications among neighboring nodes. Fourth, we introduce the null space and transform the PV determination problem with complex orthogonality constraints into an equivalent hidden convex one without any orthogonality constraint, which can be solved by the Lagrange multiplier method. Finally, experimental results are given to show that the proposed algorithm is an effective dimensionality reduction scheme for the distributed tensor data across the sensor networks.
Inversion of geophysical potential field data using the finite element method
NASA Astrophysics Data System (ADS)
Lamichhane, Bishnu P.; Gross, Lutz
2017-12-01
The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.
Compressed Sensing and Electron Microscopy
2010-01-01
dimensional space IRn and so there is a lot of collapsing of information. For example, any vector η in the null space N = N (Φ) of Φ is mapped...assignment of the pixel intensity f̂P in the image. Thus, the pixels size is the same as the grid spacing h and we can ( with only a slight abuse of notation...offers a fresh view of signal/image acquisition and reconstruction.
Comparing hard and soft prior bounds in geophysical inverse problems
NASA Technical Reports Server (NTRS)
Backus, George E.
1988-01-01
In linear inversion of a finite-dimensional data vector y to estimate a finite-dimensional prediction vector z, prior information about X sub E is essential if y is to supply useful limits for z. The one exception occurs when all the prediction functionals are linear combinations of the data functionals. Two forms of prior information are compared: a soft bound on X sub E is a probability distribution p sub x on X which describes the observer's opinion about where X sub E is likely to be in X; a hard bound on X sub E is an inequality Q sub x(X sub E, X sub E) is equal to or less than 1, where Q sub x is a positive definite quadratic form on X. A hard bound Q sub x can be softened to many different probability distributions p sub x, but all these p sub x's carry much new information about X sub E which is absent from Q sub x, and some information which contradicts Q sub x. Both stochastic inversion (SI) and Bayesian inference (BI) estimate z from y and a soft prior bound p sub x. If that probability distribution was obtained by softening a hard prior bound Q sub x, rather than by objective statistical inference independent of y, then p sub x contains so much unsupported new information absent from Q sub x that conclusions about z obtained with SI or BI would seen to be suspect.
Comparing hard and soft prior bounds in geophysical inverse problems
NASA Technical Reports Server (NTRS)
Backus, George E.
1987-01-01
In linear inversion of a finite-dimensional data vector y to estimate a finite-dimensional prediction vector z, prior information about X sub E is essential if y is to supply useful limits for z. The one exception occurs when all the prediction functionals are linear combinations of the data functionals. Two forms of prior information are compared: a soft bound on X sub E is a probability distribution p sub x on X which describeds the observer's opinion about where X sub E is likely to be in X; a hard bound on X sub E is an inequality Q sub x(X sub E, X sub E) is equal to or less than 1, where Q sub x is a positive definite quadratic form on X. A hard bound Q sub x can be softened to many different probability distributions p sub x, but all these p sub x's carry much new information about X sub E which is absent from Q sub x, and some information which contradicts Q sub x. Both stochastic inversion (SI) and Bayesian inference (BI) estimate z from y and a soft prior bound p sub x. If that probability distribution was obtained by softening a hard prior bound Q sub x, rather than by objective statistical inference independent of y, then p sub x contains so much unsupported new information absent from Q sub x that conclusions about z obtained with SI or BI would seen to be suspect.
Perfect commuting-operator strategies for linear system games
NASA Astrophysics Data System (ADS)
Cleve, Richard; Liu, Li; Slofstra, William
2017-01-01
Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.
Spillover, nonlinearity, and flexible structures
NASA Technical Reports Server (NTRS)
Bass, Robert W.; Zes, Dean
1991-01-01
Many systems whose evolution in time is governed by Partial Differential Equations (PDEs) are linearized around a known equilibrium before Computer Aided Control Engineering (CACE) is considered. In this case, there are infinitely many independent vibrational modes, and it is intuitively evident on physical grounds that infinitely many actuators would be needed in order to control all modes. A more precise, general formulation of this grave difficulty (spillover problem) is due to A.V. Balakrishnan. A possible route to circumvention of this difficulty lies in leaving the PDE in its original nonlinear form, and adding the essentially finite dimensional control action prior to linearization. One possibly applicable technique is the Liapunov Schmidt rigorous reduction of singular infinite dimensional implicit function problems to finite dimensional implicit function problems. Omitting details of Banach space rigor, the formalities of this approach are given.
Assessment of Ice Shape Roughness Using a Self-Orgainizing Map Approach
NASA Technical Reports Server (NTRS)
Mcclain, Stephen T.; Kreeger, Richard E.
2013-01-01
Self-organizing maps are neural-network techniques for representing noisy, multidimensional data aligned along a lower-dimensional and nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. Prior investigations of ice shapes have focused on using self-organizing maps to characterize mean ice forms. The Icing Research Branch has recently acquired a high resolution three dimensional scanner system capable of resolving ice shape surface roughness. A method is presented for the evaluation of surface roughness variations using high-resolution surface scans based on a self-organizing map representation of the mean ice shape. The new method is demonstrated for 1) an 18-in. NACA 23012 airfoil 2 AOA just after the initial ice coverage of the leading 5 of the suction surface of the airfoil, 2) a 21-in. NACA 0012 at 0AOA following coverage of the leading 10 of the airfoil surface, and 3) a cold-soaked 21-in.NACA 0012 airfoil without ice. The SOM method resulted in descriptions of the statistical coverage limits and a quantitative representation of early stages of ice roughness formation on the airfoils. Limitations of the SOM method are explored, and the uncertainty limits of the method are investigated using the non-iced NACA 0012 airfoil measurements.
Quantized discrete space oscillators
NASA Technical Reports Server (NTRS)
Uzes, C. A.; Kapuscik, Edward
1993-01-01
A quasi-canonical sequence of finite dimensional quantizations was found which has canonical quantization as its limit. In order to demonstrate its practical utility and its numerical convergence, this formalism is applied to the eigenvalue and 'eigenfunction' problem of several harmonic and anharmonic oscillators.
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
NASA Astrophysics Data System (ADS)
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
A Newton method for the magnetohydrodynamic equilibrium equations
NASA Astrophysics Data System (ADS)
Oliver, Hilary James
We have developed and implemented a (J, B) space Newton method to solve the full nonlinear three dimensional magnetohydrodynamic equilibrium equations in toroidal geometry. Various cases have been run successfully, demonstrating significant improvement over Picard iteration, including a 3D stellarator equilibrium at β = 2%. The algorithm first solves the equilibrium force balance equation for the current density J, given a guess for the magnetic field B. This step is taken from the Picard-iterative PIES 3D equilibrium code. Next, we apply Newton's method to Ampere's Law by expansion of the functional J(B), which is defined by the first step. An analytic calculation in magnetic coordinates, of how the Pfirsch-Schlüter currents vary in the plasma in response to a small change in the magnetic field, yields the Newton gradient term (analogous to ∇f . δx in Newton's method for f(x) = 0). The algorithm is computationally feasible because we do this analytically, and because the gradient term is flux surface local when expressed in terms of a vector potential in an Ar=0 gauge. The equations are discretized by a hybrid spectral/offset grid finite difference technique, and leading order radial dependence is factored from Fourier coefficients to improve finite- difference accuracy near the polar-like origin. After calculating the Newton gradient term we transfer the equation from the magnetic grid to a fixed background grid, which greatly improves the code's performance.
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID:27711246
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.
Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1986-01-01
The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.
Thermal-structural analyses of Space Shuttle Main Engine (SSME) hot section components
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Thompson, Robert L.
1988-01-01
Three dimensional nonlinear finite element heat transfer and structural analyses were performed for the first stage high pressure fuel turbopump (HPFTP) blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 and single crystal (SC) PWA-1480 material properties were used for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress strain histories were calculated by using the MARC finite element computer code. The structural response of an SSME turbine blade was assessed and a greater understanding of blade damage mechanisms, convective cooling effects, and thermal mechanical effects was gained.
Vector analysis of chemical variation in the lavas of Parícutin volcano, Mexico
Miesch, A.T.
1979-01-01
Compositional variations in the lavas of Parícutin volcano, Mexico, have been examined by an extended method of Q-mode factor analysis. Each sample composition is treated as a vector projected from an original eight-dimensional space into a vector system of three dimensions. The compositions represented by the vectors after projection are closely similar to the original compositions except for Na2Oand Fe2O3.The vectors in the three-dimensional system cluster about three different planes that represent three stages of compositional change in the Parícutin lavas. Because chemical data on the compositions of the minerals in the lavas are presently lacking, interpretations of the mineral phases that may have been involved in fractional crystallization are based on CIPW norm calculations. Changes during the first stage are attributed largely to the fractional crystallization of plagioclase and olivine. Changes during the second stage can be explained by the separation of plagioclase and pyroxene. Changes during the final stage may have resulted mostly from the assimilation of a granitic material, as previously proposed by R. E. Wilcox.
Harnessing Multivariate Statistics for Ellipsoidal Data in Structural Geology
NASA Astrophysics Data System (ADS)
Roberts, N.; Davis, J. R.; Titus, S.; Tikoff, B.
2015-12-01
Most structural geology articles do not state significance levels, report confidence intervals, or perform regressions to find trends. This is, in part, because structural data tend to include directions, orientations, ellipsoids, and tensors, which are not treatable by elementary statistics. We describe a full procedural methodology for the statistical treatment of ellipsoidal data. We use a reconstructed dataset of deformed ooids in Maryland from Cloos (1947) to illustrate the process. Normalized ellipsoids have five degrees of freedom and can be represented by a second order tensor. This tensor can be permuted into a five dimensional vector that belongs to a vector space and can be treated with standard multivariate statistics. Cloos made several claims about the distribution of deformation in the South Mountain fold, Maryland, and we reexamine two particular claims using hypothesis testing: 1) octahedral shear strain increases towards the axial plane of the fold; 2) finite strain orientation varies systematically along the trend of the axial trace as it bends with the Appalachian orogen. We then test the null hypothesis that the southern segment of South Mountain is the same as the northern segment. This test illustrates the application of ellipsoidal statistics, which combine both orientation and shape. We report confidence intervals for each test, and graphically display our results with novel plots. This poster illustrates the importance of statistics in structural geology, especially when working with noisy or small datasets.
A Generic multi-dimensional feature extraction method using multiobjective genetic programming.
Zhang, Yang; Rockett, Peter I
2009-01-01
In this paper, we present a generic feature extraction method for pattern classification using multiobjective genetic programming. This not only evolves the (near-)optimal set of mappings from a pattern space to a multi-dimensional decision space, but also simultaneously optimizes the dimensionality of that decision space. The presented framework evolves vector-to-vector feature extractors that maximize class separability. We demonstrate the efficacy of our approach by making statistically-founded comparisons with a wide variety of established classifier paradigms over a range of datasets and find that for most of the pairwise comparisons, our evolutionary method delivers statistically smaller misclassification errors. At very worst, our method displays no statistical difference in a few pairwise comparisons with established classifier/dataset combinations; crucially, none of the misclassification results produced by our method is worse than any comparator classifier. Although principally focused on feature extraction, feature selection is also performed as an implicit side effect; we show that both feature extraction and selection are important to the success of our technique. The presented method has the practical consequence of obviating the need to exhaustively evaluate a large family of conventional classifiers when faced with a new pattern recognition problem in order to attain a good classification accuracy.
Carbó-Dorca, Ramon; Gallegos, Ana; Sánchez, Angel J
2009-05-01
Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. 2008 Wiley Periodicals, Inc.
Managing the resilience space of the German energy system - A vector analysis.
Schlör, Holger; Venghaus, Sandra; Märker, Carolin; Hake, Jürgen-Friedrich
2018-07-15
The UN Sustainable Development Goals formulated in 2016 confirmed the sustainability concept of the Earth Summit of 1992 and supported UNEP's green economy transition concept. The transformation of the energy system (Energiewende) is the keystone of Germany's sustainability strategy and of the German green economy concept. We use ten updated energy-related indicators of the German sustainability strategy to analyse the German energy system. The development of the sustainable indicators is examined in the monitoring process by a vector analysis performed in two-dimensional Euclidean space (Euclidean plane). The aim of the novel vector analysis is to measure the current status of the Energiewende in Germany and thereby provide decision makers with information about the strains for the specific remaining pathway of the single indicators and of the total system in order to meet the sustainability targets of the Energiewende. Within this vector model, three vectors (the normative sustainable development vector, the real development vector, and the green economy vector) define the resilience space of our analysis. The resilience space encloses a number of vectors representing different pathways with different technological and socio-economic strains to achieve a sustainable development of the green economy. In this space, the decision will be made as to whether the government measures will lead to a resilient energy system or whether a readjustment of indicator targets or political measures is necessary. The vector analysis enables us to analyse both the government's ambitiousness, which is expressed in the sustainability target for the indicators at the start of the sustainability strategy representing the starting preference order of the German government (SPO) and, secondly, the current preference order of German society in order to bridge the remaining distance to reach the specific sustainability goals of the strategy summarized in the current preference order (CPO). Copyright © 2018 Elsevier Ltd. All rights reserved.
Rényi and Tsallis formulations of separability conditions in finite dimensions
NASA Astrophysics Data System (ADS)
Rastegin, Alexey E.
2017-12-01
Separability conditions for a bipartite quantum system of finite-dimensional subsystems are formulated in terms of Rényi and Tsallis entropies. Entropic uncertainty relations often lead to entanglement criteria. We propose new approach based on the convolution of discrete probability distributions. Measurements on a total system are constructed of local ones according to the convolution scheme. Separability conditions are derived on the base of uncertainty relations of the Maassen-Uffink type as well as majorization relations. On each of subsystems, we use a pair of sets of subnormalized vectors that form rank-one POVMs. We also obtain entropic separability conditions for local measurements with a special structure, such as mutually unbiased bases and symmetric informationally complete measurements. The relevance of the derived separability conditions is demonstrated with several examples.
Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition
Cheng, Yujie; Zhou, Bo; Lu, Chen; Yang, Chao
2017-01-01
Fault diagnosis for rolling bearings has attracted increasing attention in recent years. However, few studies have focused on fault diagnosis for rolling bearings under variable conditions. This paper introduces a fault diagnosis method for rolling bearings under variable conditions based on visual cognition. The proposed method includes the following steps. First, the vibration signal data are transformed into a recurrence plot (RP), which is a two-dimensional image. Then, inspired by the visual invariance characteristic of the human visual system (HVS), we utilize speed up robust feature to extract fault features from the two-dimensional RP and generate a 64-dimensional feature vector, which is invariant to image translation, rotation, scaling variation, etc. Third, based on the manifold perception characteristic of HVS, isometric mapping, a manifold learning method that can reflect the intrinsic manifold embedded in the high-dimensional space, is employed to obtain a low-dimensional feature vector. Finally, a classical classification method, support vector machine, is utilized to realize fault diagnosis. Verification data were collected from Case Western Reserve University Bearing Data Center, and the experimental result indicates that the proposed fault diagnosis method based on visual cognition is highly effective for rolling bearings under variable conditions, thus providing a promising approach from the cognitive computing field. PMID:28772943
General n-dimensional quadrature transform and its application to interferogram demodulation.
Servin, Manuel; Quiroga, Juan Antonio; Marroquin, Jose Luis
2003-05-01
Quadrature operators are useful for obtaining the modulating phase phi in interferometry and temporal signals in electrical communications. In carrier-frequency interferometry and electrical communications, one uses the Hilbert transform to obtain the quadrature of the signal. In these cases the Hilbert transform gives the desired quadrature because the modulating phase is monotonically increasing. We propose an n-dimensional quadrature operator that transforms cos(phi) into -sin(phi) regardless of the frequency spectrum of the signal. With the quadrature of the phase-modulated signal, one can easily calculate the value of phi over all the domain of interest. Our quadrature operator is composed of two n-dimensional vector fields: One is related to the gradient of the image normalized with respect to local frequency magnitude, and the other is related to the sign of the local frequency of the signal. The inner product of these two vector fields gives us the desired quadrature signal. This quadrature operator is derived in the image space by use of differential vector calculus and in the frequency domain by use of a n-dimensional generalization of the Hilbert transform. A robust numerical algorithm is given to find the modulating phase of two-dimensional single-image closed-fringe interferograms by use of the ideas put forward.
Quench-induced breathing mode of one-dimensional Bose gases.
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-18
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
Quench-Induced Breathing Mode of One-Dimensional Bose Gases
NASA Astrophysics Data System (ADS)
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-01
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
Verifiable Secret Redistribution for Threshold Sharing Schemes
2002-02-01
complete verification in our protocol, old shareholders broadcast a commitment to the secret to the new shareholders. We prove that the new...of an m − 1 degree polynomial from m of n points yields a constant term in 1 the polynomial that corresponds to the secret . In Blakley’s scheme [Bla79...the intersection of m of n vector spaces yields a one-dimensional vector that corresponds to the secret . Desmedt surveys other sharing schemes
NASA Astrophysics Data System (ADS)
Dhurandhar, Sanjeev; Gupta, Anuradha; Gadre, Bhooshan; Bose, Sukanta
2017-11-01
We describe a general mathematical framework for χ2 discriminators in the context of the compact binary coalescence (CBC) search. We show that with any χ2 is associated a vector bundle over the signal manifold, that is, the manifold traced out by the signal waveforms in the function space of data segments. The χ2 is then defined as the square of the L2 norm of the data vector projected onto a finite-dimensional subspace (the fibre) of the Hilbert space of data trains and orthogonal to the signal waveform. Any such fibre leads to a χ2 discriminator, and the full vector bundle comprising the subspaces and the base manifold constitute the χ2 discriminator. We show that the χ2 discriminators used so far in the CBC searches correspond to different fibre structures constituting different vector bundles on the same base manifold, namely, the parameter space. Several benefits accrue from this general formulation. It most importantly shows that there are a plethora of χ2's available and further gives useful insights into the vetoing procedure. It indicates procedures to formulate new χ2's that could be more effective in discriminating against commonly occurring glitches in the data. It also shows that no χ2 with a reasonable number of degrees of freedom is foolproof. It could also shed light on understanding why the traditional χ2 works so well. We show how to construct a generic χ2 given an arbitrary set of vectors in the function space of data segments. These vectors could be chosen such that glitches have maximum projection on them. Further, for glitches that can be modeled, we are able to quantify the efficiency of a given χ2 discriminator by a probability. Second, we propose a family of ambiguity χ2 discriminators that is an alternative to the traditional one [B. Allen, Phys. Rev. D 71, 062001 (2005), 10.1103/PhysRevD.71.062001, B. Allen et al., Phys. Rev. D 85, 122006 (2012)., 10.1103/PhysRevD.85.122006]. Any such ambiguity χ2 makes use of the filtered output of the template bank, thus adding negligible cost to the overall search. It is termed so because it makes significant use of the ambiguity function. We first describe the formulation with the help of the Newtonian waveform, apply the ambiguity χ2 to the spinless TaylorF2 waveforms, and test it on simulated data. We show that the ambiguity χ2 essentially gives a clean separation between glitches and signals. We indicate how the ambiguity χ2 can be generalized to detector networks for coherent observations. The effects of mismatch between signal and templates on a χ2 discriminator using general arguments and the geometrical framework are also investigated.
On orthogonal projectors induced by compact groups and Haar measures
NASA Astrophysics Data System (ADS)
Niezgoda, Marek
2008-02-01
We study the difference of two orthogonal projectors induced by compact groups of linear operators acting on a vector space. An upper bound for the difference is derived using the Haar measures of the groups. A particular attention is paid to finite groups. Some applications are given for complex matrices and unitarily invariant norms. Majorization inequalities of Fan and Hoffmann and of Causey are rediscovered.
Many-body delocalization with random vector potentials
NASA Astrophysics Data System (ADS)
Cheng, Chen; Mondaini, Rubem
2016-11-01
We study the ergodic properties of excited states in a model of interacting fermions in quasi-one-dimensional chains subjected to a random vector potential. In the noninteracting limit, we show that arbitrarily small values of this complex off-diagonal disorder trigger localization for the whole spectrum; the divergence of the localization length in the single-particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. When short-range interactions are included, the localization is lost, and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields.
2008-11-01
support to the value of the approach. 9. Scheduling and Control of Mobile Communications Networks with Randomly Time Varying Channels by Stability ...biological systems . Many examples arise in communications and queueing, due to the finite speed of signal transmission, the nonnegligible time required...without delays, the system state takes values in a subset of some finite -dimensional Euclidean space, and the control is a functional of the current
NASA Astrophysics Data System (ADS)
Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan
2017-10-01
We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy
NASA Astrophysics Data System (ADS)
Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei
2015-06-01
We studied the lattice vibrations of two interpenetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. As the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a nonzero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a "devil's staircase" behavior at a finite temperature.
NASA Astrophysics Data System (ADS)
Hertog, Thomas; Tartaglino-Mazzucchelli, Gabriele; Van Riet, Thomas; Venken, Gerben
2018-02-01
We put forward new explicit realisations of dS/CFT that relate N = 2 supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to specific supersymmetric Vasiliev theories in four-dimensional de Sitter space. The partition function of the free supersymmetric vector model deformed by a range of low spin deformations that preserve supersymmetry appears to specify a well-defined wave function with asymptotic de Sitter boundary conditions in the bulk. In particular we find the wave function is globally peaked at undeformed de Sitter space, with a low amplitude for strong deformations. This suggests that supersymmetric de Sitter space is stable in higher-spin gravity and in particular free from ghosts. We speculate this is a limiting case of the de Sitter realizations in exotic string theories.
Interacting vector fields in relativity without relativity
NASA Astrophysics Data System (ADS)
Anderson, Edward; Barbour, Julian
2002-06-01
Barbour, Foster and Ó Murchadha have recently developed a new framework, called here the 3-space approach, for the formulation of classical bosonic dynamics. Neither time nor a locally Minkowskian structure of spacetime are presupposed. Both arise as emergent features of the world from geodesic-type dynamics on a space of three-dimensional metric-matter configurations. In fact gravity, the universal light-cone and Abelian gauge theory minimally coupled to gravity all arise naturally through a single common mechanism. It yields relativity - and more - without presupposing relativity. This paper completes the recovery of the presently known bosonic sector within the 3-space approach. We show, for a rather general ansatz, that 3-vector fields can interact among themselves only as Yang-Mills fields minimally coupled to gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, B.E.
1979-10-01
GRAPE is a display program for three-dimensional polygon and polyhedral models. It can produce line-drawing and continuous-tone black and white or color images in still frame or movie mode. The code was written specifically to be a post-processor for finite element and finite difference analyses. It runs on the CDC 7600 computer, and is compiled with the LLL FTN system. The allocation of storage is dynamic. There are presently three data paths into the code. The first is the binary inerface from the analyses codes and this with the other databases is described. The second data path is the SAMPPmore » format, and the last is the MOVIE format. The code structure is described first; then the commands are discussed in general terms to try to give the user some feel for what they do. The next section deals with the exact format of the commands by overlay. Then examples are given and discussed. Next, the various output options are covered. 57 figures. (RWR)« less
Finite element analysis of provisional structures of implant-supported complete prostheses.
Carneiro, Bruno Albuquerque; de Brito, Rui Barbosa; França, Fabiana Mantovani Gomes
2014-04-01
The use of provisional resin implant-supported complete dentures is a fast and safe procedure to restore mastication and esthetics of patients soon after surgery and during the adaptation phase to the new denture. This study assessed stress distribution of provisional implant-supported fixed dentures and the all-on-4 concept using self-curing acrylic resin (Tempron) and bis-acrylic resin (Luxatemp) to simulate functional loads through the three-dimensional finite element method. Solidworks software was used to build three-dimensional models using acrylic resin (Tempron, model A) and bis-acrylic resin (Luxatemp, model B) for denture captions. Two loading patterns were applied on each model: (1) right unilateral axial loading of 150 N on the occlusal surfaces of posterior teeth and (2) oblique loading vector of 150 N at 45°. The results showed that higher stress was found on the bone crest below oblique load application with a maximum value of 187.57 MPa on model A and 167.45 MPa on model B. It was concluded that model B improved stress distribution on the denture compared with model A.
NASA Astrophysics Data System (ADS)
Li, Xiaomin; Guo, Xueli; Guo, Haiyan
2018-06-01
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.
Han, Yaohui; Mou, Lan; Xu, Gengchi; Yang, Yiqiang; Ge, Zhenlin
2015-03-01
To construct a three-dimensional finite element model comparing between one-step and two-step methods in torque control of anterior teeth during space closure. Dicom image data including maxilla and upper teeth were obtained though cone-beam CT. A three-dimensional model was set up and the maxilla, upper teeth and periodontium were separated using Mimics software. The models were instantiated using Pro/Engineer software, and Abaqus finite element analysis software was used to simulate the sliding mechanics by loading 1.47 Nforce on traction hooks with different heights (2, 4, 6, 8, 10, 12 and 14 mm, respectively) in order to compare the initial displacement between six maxillary anterior teeth (one-step method) and four maxillary anterior teeth (two-step method). When moving anterior teeth bodily, initial displacements of central incisors in two-step method and in one-step method were 29.26 × 10⁻⁶ mm and 15.75 × 10⁻⁶ mm, respectively. The initial displacements of lateral incisors in two-step method and in one-step method were 46.76 × 10(-6) mm and 23.18 × 10(-6) mm, respectively. Under the same amount of light force, the initial displacement of anterior teeth in two-step method was doubled compared with that in one-step method. The root and crown of the canine couldn't obtain the same amount of displacement in one-step method. Two-step method could produce more initial displacement than one-step method. Therefore, two-step method was easier to achieve torque control of the anterior teeth during space closure.
A progress report on estuary modeling by the finite-element method
Gray, William G.
1978-01-01
Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Agapiou, Sergios; Burger, Martin; Dashti, Masoumeh; Helin, Tapio
2018-04-01
We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map {{\\mathcal G}} . We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.
Supercomputer implementation of finite element algorithms for high speed compressible flows
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.
1986-01-01
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.
Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator
NASA Astrophysics Data System (ADS)
Vabishchevich, P. N.
2018-03-01
A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.
Observability under recurrent loss of data
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok; Halevi, Yoram
1992-01-01
An account is given of the concept of extended observability in finite-dimensional linear time-invariant systems under recurrent loss of data, where the state vector has to be reconstructed from an ensemble of sensor data at nonconsecutive samples. An at once necessary and sufficient condition for extended observability that can be expressed via a recursive relation is presented, together with such conditions for this as may be related to the characteristic polynomial of the state transition matrix in a discrete-time setting, or of the system matrix in a continuous-time setting.
Navier-Stokes calculations for DFVLR F5-wing in wind tunnel using Runge-Kutta time-stepping scheme
NASA Technical Reports Server (NTRS)
Vatsa, V. N.; Wedan, B. W.
1988-01-01
A three-dimensional Navier-Stokes code using an explicit multistage Runge-Kutta type of time-stepping scheme is used for solving the transonic flow past a finite wing mounted inside a wind tunnel. Flow past the same wing in free air was also computed to assess the effect of wind-tunnel walls on such flows. Numerical efficiency is enhanced through vectorization of the computer code. A Cyber 205 computer with 32 million words of internal memory was used for these computations.
Li, Jing; Wu, Xiaoping
2011-10-10
In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.
High-order ENO schemes applied to two- and three-dimensional compressible flow
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang; Erlebacher, Gordon; Zang, Thomas A.; Whitaker, David; Osher, Stanley
1991-01-01
High order essentially non-oscillatory (ENO) finite difference schemes are applied to the 2-D and 3-D compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods, and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.
Li, Jing; Wu, Xiaoping
2011-01-01
In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam. PMID:21997083
Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves
2008-04-01
The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.
NASA Astrophysics Data System (ADS)
Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno
2017-01-01
Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.
Trimming and procrastination as inversion techniques
NASA Astrophysics Data System (ADS)
Backus, George E.
1996-12-01
By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, Carl M.; Tanner, John A.
1987-01-01
A simple and efficient computational strategy for reducing both the size of a tire model and the cost of the analysis of tires in the presence of symmetry-breaking conditions (unsymmetry in the tire material, geometry, or loading) is presented. The strategy is based on approximating the unsymmetric response of the tire with a linear combination of symmetric and antisymmetric global approximation vectors (or modes). Details are presented for the three main elements of the computational strategy, which include: use of special three-field mixed finite-element models, use of operator splitting, and substantial reduction in the number of degrees of freedom. The proposed computational stategy is applied to three quasi-symmetric problems of tires: linear analysis of anisotropic tires, through use of semianalytic finite elements, nonlinear analysis of anisotropic tires through use of two-dimensional shell finite elements, and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry (and their combinations) exhibited by the tire response are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorda, Paolo; Zanardi, Paolo; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
We analyze the dynamical-algebraic approach to universal quantum control introduced in P. Zanardi and S. Lloyd, e-print quant-ph/0305013. The quantum state space H encoding information decomposes into irreducible sectors and subsystems associated with the group of available evolutions. If this group coincides with the unitary part of the group algebra CK of some group K then universal control is achievable over the K-irreducible components of H. This general strategy is applied to different kinds of bosonic systems. We first consider massive bosons in a double well and show how to achieve universal control over all finite-dimensional Fock sectors. We thenmore » discuss a multimode massless case giving the conditions for generating the whole infinite-dimensional multimode Heisenberg-Weyl enveloping algebra. Finally we show how to use an auxiliary bosonic mode coupled to finite-dimensional systems to generate high-order nonlinearities needed for universal control.« less
Damping of Bogoliubov excitations in optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Shunji; Department of Physics, Waseda University, 3-4-1 Okubo, Tokyo 169-8555; Griffin, Allan
2004-08-01
Extending recent work to finite temperatures, we calculate the Landau damping of a Bogoliubov excitation in an optical lattice, due to the coupling to a thermal cloud of such excitations. For simplicity, we consider a one-dimensional Bose-Hubbard model and restrict ourselves to the first energy band. For energy conservation to be satisfied, the excitations in the collision processes must exhibit ''anomalous dispersion,'' analogous to phonons in superfluid {sup 4}He. This leads to the disappearance of all damping processes when Un{sup c0}{>=}6J, where U is the on-site interaction, J is the hopping matrix element, and n{sup c0}(T) is the number ofmore » condensate atoms at a lattice site. This phenomenon also occurs in two-dimensional and three-dimensional optical lattices. The disappearance of Beliaev damping above a threshold wave vector is noted.« less
Optimization with Fuzzy Data via Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Kosiński, Witold
2010-09-01
Order fuzzy numbers (OFN) that make possible to deal with fuzzy inputs quantitatively, exactly in the same way as with real numbers, have been recently defined by the author and his 2 coworkers. The set of OFN forms a normed space and is a partially ordered ring. The case when the numbers are presented in the form of step functions, with finite resolution, simplifies all operations and the representation of defuzzification functionals. A general optimization problem with fuzzy data is formulated. Its fitness function attains fuzzy values. Since the adjoint space to the space of OFN is finite dimensional, a convex combination of all linear defuzzification functionals may be used to introduce a total order and a real-valued fitness function. Genetic operations on individuals representing fuzzy data are defined.
NASA Astrophysics Data System (ADS)
Melis, Matthew E.
2003-01-01
Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.
2003-01-01
Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.
Full characterization of modular values for finite-dimensional systems
NASA Astrophysics Data System (ADS)
Ho, Le Bin; Imoto, Nobuyuki
2016-06-01
Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak value for specific coupling strengths [14]. Here we give a general expression for the modular value in the n-dimensional Hilbert space using the weak values up to (n - 1)th order of an arbitrary observable for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a linear relationship between the weak value and the modular value. We also relate the modular value of the sum of observables to the weak value of their product.
Large margin nearest neighbor classifiers.
Domeniconi, Carlotta; Gunopulos, Dimitrios; Peng, Jing
2005-07-01
The nearest neighbor technique is a simple and appealing approach to addressing classification problems. It relies on the assumption of locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with a finite number of examples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. The employment of a locally adaptive metric becomes crucial in order to keep class conditional probabilities close to uniform, thereby minimizing the bias of estimates. We propose a technique that computes a locally flexible metric by means of support vector machines (SVMs). The decision function constructed by SVMs is used to determine the most discriminant direction in a neighborhood around the query. Such a direction provides a local feature weighting scheme. We formally show that our method increases the margin in the weighted space where classification takes place. Moreover, our method has the important advantage of online computational efficiency over competing locally adaptive techniques for nearest neighbor classification. We demonstrate the efficacy of our method using both real and simulated data.
Optimal SVM parameter selection for non-separable and unbalanced datasets.
Jiang, Peng; Missoum, Samy; Chen, Zhao
2014-10-01
This article presents a study of three validation metrics used for the selection of optimal parameters of a support vector machine (SVM) classifier in the case of non-separable and unbalanced datasets. This situation is often encountered when the data is obtained experimentally or clinically. The three metrics selected in this work are the area under the ROC curve (AUC), accuracy, and balanced accuracy. These validation metrics are tested using computational data only, which enables the creation of fully separable sets of data. This way, non-separable datasets, representative of a real-world problem, can be created by projection onto a lower dimensional sub-space. The knowledge of the separable dataset, unknown in real-world problems, provides a reference to compare the three validation metrics using a quantity referred to as the "weighted likelihood". As an application example, the study investigates a classification model for hip fracture prediction. The data is obtained from a parameterized finite element model of a femur. The performance of the various validation metrics is studied for several levels of separability, ratios of unbalance, and training set sizes.
2008-06-01
Geometry Interpolation The function space , VpH , consists of discontinuous, piecewise-polynomials. This work used a polynomial basis for VpH such...between a piecewise-constant and smooth variation of viscosity in both a one- dimensional and multi- dimensional setting. Before continuing with the ...inviscid, transonic flow past a NACA 0012 at zero angle of attack and freestream Mach number of M∞ = 0.95. The
Neuronal models in infinite-dimensional spaces and their finite-dimensional projections: Part II.
Brzychczy, S; Leszczyński, H; Poznanski, R R
2012-09-01
Application of comparison theorem is used to examine the validitiy of the "lumped parameter assumption" in describing the behavior of solutions of the continuous cable equation U(t) = DU(xx)+f(U) with the discrete cable equation dV(n)/dt = d*(V(n+1) - 2V(n) + V(n-1)) + f(V(n)), where f is a nonlinear functional describing the internal diffusion of electrical potential in single neurons. While the discrete cable equation looks like a finite difference approximation of the continuous cable equation, solutions of the two reveal significantly different behavior which imply that the compartmental models (spiking neurons) are poor quantifiers of neurons, contrary to what is commonly accepted in computational neuroscience.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1998-01-01
This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.
Existence and amplitude bounds for irrotational water waves in finite depth
NASA Astrophysics Data System (ADS)
Kogelbauer, Florian
2017-12-01
We prove the existence of solutions to the irrotational water-wave problem in finite depth and derive an explicit upper bound on the amplitude of the nonlinear solutions in terms of the wavenumber, the total hydraulic head, the wave speed and the relative mass flux. Our approach relies upon a reformulation of the water-wave problem as a one-dimensional pseudo-differential equation and the Newton-Kantorovich iteration for Banach spaces. This article is part of the theme issue 'Nonlinear water waves'.
NASA Astrophysics Data System (ADS)
Tondu, Bertrand
2003-05-01
The mathematical modelling of industrial robots is based on the vectorial nature of the n-dimensional joint space of the robot, defined as a kinematic chain with n degrees of freedom. However, in our opinion, the vectorial nature of the joint space has been insufficiently discussed in the literature. We establish the vectorial nature of the joint space of an industrial robot from the fundamental studies of B. Roth on screws. To cite this article: B. Tondu, C. R. Mecanique 331 (2003).
Incommensurate crystallography without additional dimensions.
Kocian, Philippe
2013-07-01
It is shown that the Euclidean group of translations, when treated as a Lie group, generates translations not only in Euclidean space but on any space, curved or not. Translations are then not necessarily vectors (straight lines); they can be any curve compatible with the parameterization of the considered space. In particular, attention is drawn to the fact that one and only one finite and free module of the Lie algebra of the group of translations can generate both modulated and non-modulated lattices, the modulated character being given only by the parameterization of the space in which the lattice is generated. Moreover, it is shown that the diffraction pattern of a structure is directly linked to the action of that free and finite module. In the Fourier transform of a whole structure, the Fourier transform of the electron density of one unit cell (i.e. the structure factor) appears concretely, whether the structure is modulated or not. Thus, there exists a neat separation: the geometrical aspect on the one hand and the action of the group on the other, without requiring additional dimensions.
Flame trench analysis of NLS vehicles
NASA Technical Reports Server (NTRS)
Zeytinoglu, Nuri
1993-01-01
The present study takes the initial steps of establishing a better flame trench design criteria for future National Launch System vehicles. A three-dimensional finite element computer model for predicting the transient thermal and structural behavior of the flame trench walls was developed using both I-DEAS and MSC/NASTRAN software packages. The results of JANNAF Standardized Plume flowfield calculations of sea-level exhaust plume of the Space Shuttle Main Engine (SSME), Space Transportation Main Engine (STME), and Advanced Solid Rocket Motors (ASRM) were analyzed for different axial distances. The results of sample calculations, using the developed finite element model, are included. The further suggestions are also reported for enhancing the overall analysis of the flame trench model.
An optical flow-based state-space model of the vocal folds.
Granados, Alba; Brunskog, Jonas
2017-06-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.
Gonda, Tomoya; Yasuda, Daiisa; Ikebe, Kazunori; Maeda, Yoshinobu
2014-01-01
Although the risks of using a cantilever to treat missing teeth have been described, the mechanisms remain unclear. This study aimed to reveal these mechanisms from a biomechanical perspective. The effects of various implant sites, number of implants, and superstructural connections on stress distribution in the marginal bone were analyzed with three-dimensional finite element models based on mandibular computed tomography data. Forces from the masseter, temporalis, and internal pterygoid were applied as vectors. Two three-dimensional finite element models were created with the edentulous mandible showing severe and relatively modest residual ridge resorption. Cantilevers of the premolar and molar were simulated in the superstructures in the models. The following conditions were also included as factors in the models to investigate changes: poor bone quality, shortened dental arch, posterior occlusion, lateral occlusion, double force of the masseter, and short implant. Multiple linear regression analysis with a forced-entry method was performed with stress values as the objective variable and the factors as the explanatory variable. When bone mass was high, stress around the implant caused by differences in implantation sites was reduced. When bone mass was low, the presence of a cantilever was a possible risk factor. The stress around the implant increased significantly if bone quality was poor or if increased force (eg, bruxism) was applied. The addition of a cantilever to the superstructure increased stress around implants. When large muscle forces were applied to a superstructure with cantilevers or if bone quality was poor, stress around the implants increased.
Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding
Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping
2015-01-01
Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771
ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.
2018-07-01
We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved space-times. In this paper, we assume the background space-time to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local time-stepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed space-times. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.
A kinematically driven anisotropic viscoelastic constitutive model applied to tires
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1995-01-01
Aircraft tires are composite structures manufactured with viscoelastic materials such as carbon black filled rubber and nylon cords. When loaded they experience large deflections and moderately large strains. Detailed structural models of tires require the use of either nonlinear shell or nonlinear three dimensional solid finite elements. Computational predictions of the dynamic response of tires must consider the composite viscoelastic material behavior in a realistic fashion. We describe a modification to a nonlinear anisotropic shell finite element so it can be used to model viscoelastic stresses during general deformations. The model is developed by introducing internal variables of the type used to model elastic strain energy. The internal variables are strains, curvatures, and transverse shear angles which are in a one-to-one correspondence with the generalized coordinates used to model the elastic strain energy for nonlinear response. A difference-relaxation equation is used to relate changes in the observable strain field to changes in the internal strain field. The internal stress state is introduced into the equilibrium equations by converting it to nodal loads associated with the element's displacement degrees of freedom. In this form the tangent matrix in the Newton-Raphson solution algorithm is not modified from its form for the nonlinear statics problem. Only the gradient vector is modified and the modification is not computationally costly. The existing finite element model for the Space Shuttle nose gear tire is used to provide examples of the algorithm. In the first example, the tire's rim is displaced at a constant rate up to a fixed value. In the second example, the tire's rim is enforced to follow a saw tooth load and unload curve to generate hysteresis loops.
A kinematically driven anisotropic viscoelastic constitutive model applied to tires
NASA Astrophysics Data System (ADS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1995-08-01
Aircraft tires are composite structures manufactured with viscoelastic materials such as carbon black filled rubber and nylon cords. When loaded they experience large deflections and moderately large strains. Detailed structural models of tires require the use of either nonlinear shell or nonlinear three dimensional solid finite elements. Computational predictions of the dynamic response of tires must consider the composite viscoelastic material behavior in a realistic fashion. We describe a modification to a nonlinear anisotropic shell finite element so it can be used to model viscoelastic stresses during general deformations. The model is developed by introducing internal variables of the type used to model elastic strain energy. The internal variables are strains, curvatures, and transverse shear angles which are in a one-to-one correspondence with the generalized coordinates used to model the elastic strain energy for nonlinear response. A difference-relaxation equation is used to relate changes in the observable strain field to changes in the internal strain field. The internal stress state is introduced into the equilibrium equations by converting it to nodal loads associated with the element's displacement degrees of freedom. In this form the tangent matrix in the Newton-Raphson solution algorithm is not modified from its form for the nonlinear statics problem. Only the gradient vector is modified and the modification is not computationally costly. The existing finite element model for the Space Shuttle nose gear tire is used to provide examples of the algorithm. In the first example, the tire's rim is displaced at a constant rate up to a fixed value. In the second example, the tire's rim is enforced to follow a saw tooth load and unload curve to generate hysteresis loops.
The Use of Decentralized Control in the Design of a Large Segmented Space Reflector
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen; Mirmirani, Maj; Rad, Khosrow; Morales, Mauricio; Velazquez, Efrain; Chassiakos, Anastasios; Luzardo, Jose-Alberto
1997-01-01
The 3-dimensional model for a segmented reflector telescope is developed using finite element techniques. The structure is decomposed into six subsystems. System control design using neural networks is performed. Performance evaluation is demonstrated via simulation using PRO-MATLAB and SIMULINK.
Probabilistic structural analysis methods for space propulsion system components
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1986-01-01
The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.
Husimi coordinates of multipartite separable states
NASA Astrophysics Data System (ADS)
Parfionov, Georges; Zapatrin, Romàn R.
2010-12-01
A parametrization of multipartite separable states in a finite-dimensional Hilbert space is suggested. It is proved to be a diffeomorphism between the set of zero-trace operators and the interior of the set of separable density operators. The result is applicable to any tensor product decomposition of the state space. An analytical criterion for separability of density operators is established in terms of the boundedness of a sequence of operators.
Numerical study of supersonic combustion using a finite rate chemistry model
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.; Kumar, A.; Drummond, J. P.
1986-01-01
The governing equations of two-dimensional chemically reacting flows are presented together with a global two-step chemistry model for H2-air combustion. The explicit unsplit MacCormack finite difference algorithm is used to advance the discrete system of the governing equations in time until convergence is attained. The source terms in the species equations are evaluated implicitly to alleviate stiffness associated with fast reactions. With implicit source terms, the species equations give rise to a block-diagonal system which can be solved very efficiently on vector-processing computers. A supersonic reacting flow in an inlet-combustor configuration is calculated for the case where H2 is injected into the flow from the side walls and the strut. Results of the calculation are compared against the results obtained by using a complete reaction model.
High dimensional linear regression models under long memory dependence and measurement error
NASA Astrophysics Data System (ADS)
Kaul, Abhishek
This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.
NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor)
2003-01-01
A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.
Process for structural geologic analysis of topography and point data
Eliason, Jay R.; Eliason, Valerie L. C.
1987-01-01
A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.
Gong, Ang; Zhao, Xiubin; Pang, Chunlei; Duan, Rong; Wang, Yong
2015-12-02
For Global Navigation Satellite System (GNSS) single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali
1996-01-01
Thermal and structural finite-element analyses were performed on the first high pressure fuel turbopump turbine blade of the space shuttle main engine (SSME). A two-dimensional (2-D) finite-element model of the blade and firtree disk attachment was analyzed using the general purpose MARC (finite-element) code. The loading history applied is a typical test stand engine cycle mission, which consists of a startup condition with two thermal spikes, a steady state and a shutdown transient. The blade material is a directionally solidified (DS) Mar-M 246 alloy, the blade rotor is forged with waspalloy material. Thermal responses under steady-state and transient conditions were calculated. The stresses and strains under the influence of mechanical and thermal loadings were also determined. The critical regions that exhibited high stresses and severe localized plastic deformation were the blade-rotor gaps.
Lenarda, P; Paggi, M
A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.
NASA Astrophysics Data System (ADS)
Schlickeiser, R.
2012-01-01
A systematic calculation of the electromagnetic properties (Poynting vector, electromagnetic energy, and pressure) of the collective transverse fluctuations in unmagnetized plasmas with velocity-anisotropic plasma particle distributions functions is presented. Time-averaged electromagnetic properties for monochromatic weakly damped wave-like fluctuations and space-averaged electromagnetic properties for monochromatic weakly propagating and aperiodic fluctuations are calculated. For aperiodic fluctuations, the Poynting vector as well as the sum of the space-averaged electric and magnetic field energy densities vanish. However, aperiodic fluctuations possess a positive pressure given by its magnetic energy density. This finite pressure density pa of aperiodic fluctuations has important consequences for the dynamics of cosmic unmagnetized plasmas such as the intergalactic medium after reionization. Adopting the standard cosmological evolution model, we show that this additional pressure changes the expansion law of the universe leading to further deceleration. Negative vacuum pressure counterbalances this deceleration to an accelerating universe provided that the negative vacuum pressure is greater than 1.5pa, which we estimate to be of the order 2.1 . 10-16 dyn cm-2.
Neutron Electric Dipole Moment from Gauge-String Duality.
Bartolini, Lorenzo; Bigazzi, Francesco; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea
2017-03-03
We compute the electric dipole moment of nucleons in the large N_{c} QCD model by Witten, Sakai, and Sugimoto with N_{f}=2 degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological θ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result-a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be d_{n}=1.8×10^{-16}θ e cm. The electric dipole moment of the proton is exactly the opposite.
Reduced state feedback gain computation. [optimization and control theory for aircraft control
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
Because application of conventional optimal linear regulator theory to flight controller design requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. Therefore, a stochastic linear model that was developed is presented which accounts for aircraft parameter and initial uncertainty, measurement noise, turbulence, pilot command and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.
Computation of output feedback gains for linear stochastic systems using the Zangnill-Powell Method
NASA Technical Reports Server (NTRS)
Kaufman, H.
1975-01-01
Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.
Simplifying the representation of complex free-energy landscapes using sketch-map
Ceriotti, Michele; Tribello, Gareth A.; Parrinello, Michele
2011-01-01
A new scheme, sketch-map, for obtaining a low-dimensional representation of the region of phase space explored during an enhanced dynamics simulation is proposed. We show evidence, from an examination of the distribution of pairwise distances between frames, that some features of the free-energy surface are inherently high-dimensional. This makes dimensionality reduction problematic because the data does not satisfy the assumptions made in conventional manifold learning algorithms We therefore propose that when dimensionality reduction is performed on trajectory data one should think of the resultant embedding as a quickly sketched set of directions rather than a road map. In other words, the embedding tells one about the connectivity between states but does not provide the vectors that correspond to the slow degrees of freedom. This realization informs the development of sketch-map, which endeavors to reproduce the proximity information from the high-dimensionality description in a space of lower dimensionality even when a faithful embedding is not possible. PMID:21730167
Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics
NASA Astrophysics Data System (ADS)
Kordy, Michal Adam
The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for low-frequency. In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the case of the right hand analytically dependent on frequency. The operator's null space is treated by decomposing the solution into the part in the null space and orthogonal to it.
NASA Technical Reports Server (NTRS)
Ojalvo, I. U.; Austin, F.; Levy, A.
1974-01-01
An efficient iterative procedure is described for the vibration and modal stress analysis of reusable surface insulation (RSI) of multi-tiled space shuttle panels. The method, which is quite general, is rapidly convergent and highly useful for this application. A user-oriented computer program based upon this procedure and titled RESIST (REusable Surface Insulation Stresses) has been prepared for the analysis of compact, widely spaced, stringer-stiffened panels. RESIST, which uses finite element methods, obtains three dimensional tile stresses in the isolator, arrestor (if any) and RSI materials. Two dimensional stresses are obtained in the tile coating and the stringer-stiffened primary structure plate. A special feature of the program is that all the usual detailed finite element grid data is generated internally from a minimum of input data. The program can accommodate tile idealizations with up to 850 nodes (2550 degrees-of-freedom) and primary structure idealizations with a maximum of 10,000 degrees-of-freedom. The primary structure vibration capability is achieved through the development of a new rapid eigenvalue program named ALARM (Automatic LArge Reduction of Matrices to tridiagonal form).
A finite state projection algorithm for the stationary solution of the chemical master equation.
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-21
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.
A finite state projection algorithm for the stationary solution of the chemical master equation
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-01
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.
Navier-Stokes solution on the CYBER-203 by a pseudospectral technique
NASA Technical Reports Server (NTRS)
Lambiotte, J. J.; Hussaini, M. Y.; Bokhari, S.; Orszag, S. A.
1983-01-01
A three-level, time-split, mixed spectral/finite difference method for the numerical solution of the three-dimensional, compressible Navier-Stokes equations has been developed and implemented on the Control Data Corporation (CDC) CYBER-203. This method uses a spectral representation for the flow variables in the streamwise and spanwise coordinates, and central differences in the normal direction. The five dependent variables are interleaved one horizontal plane at a time and the array of their values at the grid points of each horizontal plane is a typical vector in the computation. The code is organized so as to require, per time step, a single forward-backward pass through the entire data base. The one-and two-dimensional Fast Fourier Transforms are performed using software especially developed for the CYBER-203.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation theory and computational methods are developed for the determination of optimal linear-quadratic feedback control, observers and compensators for infinite dimensional discrete-time systems. Particular attention is paid to systems whose open-loop dynamics are described by semigroups of operators on Hilbert spaces. The approach taken is based on the finite dimensional approximation of the infinite dimensional operator Riccati equations which characterize the optimal feedback control and observer gains. Theoretical convergence results are presented and discussed. Numerical results for an example involving a heat equation with boundary control are presented and used to demonstrate the feasibility of the method.
Constructing space difference schemes which satisfy a cell entropy inequality
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1989-01-01
A numerical methodology for solving convection problems is presented, using finite difference schemes which satisfy the second law of thermodynamics on a cell-by-cell basis in addition to the usual conservation laws. It is shown that satisfaction of a cell entropy inequality is sufficient, in some cases, to guarantee nonlinear stability. Some details are given for several one-dimensional problems, including the quasi-one-dimensional Euler equations applied to flow in a nozzle.
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
On three-dimensional misorientation spaces.
Krakow, Robert; Bennett, Robbie J; Johnstone, Duncan N; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J; Einsle, Joshua F; Midgley, Paul A; Rae, Catherine M F; Hielscher, Ralf
2017-10-01
Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.
On three-dimensional misorientation spaces
NASA Astrophysics Data System (ADS)
Krakow, Robert; Bennett, Robbie J.; Johnstone, Duncan N.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf
2017-10-01
Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.
Thermal History and Mantle Dynamics of Venus
NASA Technical Reports Server (NTRS)
Hsui, Albert T.
1997-01-01
One objective of this research proposal is to develop a 3-D thermal history model for Venus. The basis of our study is a finite-element computer model to simulate thermal convection of fluids with highly temperature- and pressure-dependent viscosities in a three-dimensional spherical shell. A three-dimensional model for thermal history studies is necessary for the following reasons. To study planetary thermal evolution, one needs to consider global heat budgets of a planet throughout its evolution history. Hence, three-dimensional models are necessary. This is in contrasts to studies of some local phenomena or local structures where models of lower dimensions may be sufficient. There are different approaches to treat three-dimensional thermal convection problems. Each approach has its own advantages and disadvantages. Therefore, the choice of the various approaches is subjective and dependent on the problem addressed. In our case, we are interested in the effects of viscosities that are highly temperature dependent and that their magnitudes within the computing domain can vary over many orders of magnitude. In order to resolve the rapid change of viscosities, small grid spacings are often necessary. To optimize the amount of computing, variable grids become desirable. Thus, the finite-element numerical approach is chosen for its ability to place grid elements of different sizes over the complete computational domain. For this research proposal, we did not start from scratch and develop the finite element codes from the beginning. Instead, we adopted a finite-element model developed by Baumgardner, a collaborator of this research proposal, for three-dimensional thermal convection with constant viscosity. Over the duration supported by this research proposal, a significant amount of advancements have been accomplished.
de Sitter space as a tensor network: Cosmic no-hair, complementarity, and complexity
NASA Astrophysics Data System (ADS)
Bao, Ning; Cao, ChunJun; Carroll, Sean M.; Chatwin-Davies, Aidan
2017-12-01
We investigate the proposed connection between de Sitter spacetime and the multiscale entanglement renormalization ansatz (MERA) tensor network, and ask what can be learned via such a construction. We show that the quantum state obeys a cosmic no-hair theorem: the reduced density operator describing a causal patch of the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with a positive cosmological constant asymptote to de Sitter space. The MERA is potentially compatible with a weak form of complementarity (local physics only describes single patches at a time, but the overall Hilbert space is infinite dimensional) or, with certain specific modifications to the tensor structure, a strong form (the entire theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert space). We also suggest that de Sitter evolution has an interpretation in terms of circuit complexity, as has been conjectured for anti-de Sitter space.
Disentangling the Cosmic Web with Lagrangian Submanifold
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Medvedev, Mikhail V.
2016-10-01
The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.
A Re-Unification of Two Competing Models for Document Retrieval.
ERIC Educational Resources Information Center
Bodoff, David
1999-01-01
Examines query-oriented versus document-oriented information retrieval and feedback learning. Highlights include a reunification of the two approaches for probabilistic document retrieval and for vector space model (VSM) retrieval; learning in VSM and in probabilistic models; multi-dimensional scaling; and ongoing field studies. (LRW)
Free stream capturing in fluid conservation law for moving coordinates in three dimensions
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.
STARS: A general-purpose finite element computer program for analysis of engineering structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1984-01-01
STARS (Structural Analysis Routines) is primarily an interactive, graphics-oriented, finite-element computer program for analyzing the static, stability, free vibration, and dynamic responses of damped and undamped structures, including rotating systems. The element library consists of one-dimensional (1-D) line elements, two-dimensional (2-D) triangular and quadrilateral shell elements, and three-dimensional (3-D) tetrahedral and hexahedral solid elements. These elements enable the solution of structural problems that include truss, beam, space frame, plane, plate, shell, and solid structures, or any combination thereof. Zero, finite, and interdependent deflection boundary conditions can be implemented by the program. The associated dynamic response analysis capability provides for initial deformation and velocity inputs, whereas the transient excitation may be either forces or accelerations. An effective in-core or out-of-core solution strategy is automatically employed by the program, depending on the size of the problem. Data input may be at random within a data set, and the program offers certain automatic data-generation features. Input data are formatted as an optimal combination of free and fixed formats. Interactive graphics capabilities enable convenient display of nodal deformations, mode shapes, and element stresses.
NASA Astrophysics Data System (ADS)
Bijnens, Johan; Relefors, Johan
2017-12-01
We calculate vector-vector correlation functions at two loops using partially quenched chiral perturbation theory including finite volume effects and twisted boundary conditions. We present expressions for the flavor neutral cases and the flavor charged case with equal masses. Using these expressions we give an estimate for the ratio of disconnected to connected contributions for the strange part of the electromagnetic current. We give numerical examples for the effects of partial quenching, finite volume and twisting and suggest the use of different twists to check the size of finite volume effects. The main use of this work is expected to be for lattice QCD calculations of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.
Illustrating dynamical symmetries in classical mechanics: The Laplace-Runge-Lenz vector revisited
NASA Astrophysics Data System (ADS)
O'Connell, Ross C.; Jagannathan, Kannan
2003-03-01
The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetries. We define a conserved dynamical variable α that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable β for the isotropic harmonic oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canonical one-parameter group of transformations generated by α(β). Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to use them as a coordinate-momentum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of dynamics in phase space. The procedure we use is in the spirit of the Hamilton-Jacobi method.
Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II
DOE R&D Accomplishments Database
Salam, Abdus; Delbourgo, Robert
1964-01-01
The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).
Generation Algorithm of Discrete Line in Multi-Dimensional Grids
NASA Astrophysics Data System (ADS)
Du, L.; Ben, J.; Li, Y.; Wang, R.
2017-09-01
Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.
Kumano, Hirokazu; Nakamura, Yoshinori; Kanbara, Ryo; Takada, Yukyo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-01-01
The finite element method has been considered to be excellent evaluative technique to study magnetic circuit optimization. The present study analyzed and quantitatively evaluated the different effects of magnetic circuit on attractive force and magnetic flux density using a three-dimensional finite element method for comparative evaluation. The diameter of a non-magnetic material in the shield disk of a magnetic assembly was variably increased by 0.1 mm to a maximum 2.0 mm in this study design. The analysis results demonstrate that attractive force increases until the diameter of the non-magnetic spacing material reaches a diameter of 0.5 mm where it peaks and then decreases as the overall diameter increases over 0.5 mm. The present analysis suggested that the attractive force for a magnetic attachment is optimized with an appropriate magnetic assembly shield disk diameter using a non-magnetic material to effectively change the magnetic circuit efficiency and resulting retention.
Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems
NASA Astrophysics Data System (ADS)
Kotyczka, Paul; Maschke, Bernhard; Lefèvre, Laurent
2018-05-01
We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.
NASA Astrophysics Data System (ADS)
Krsolarlak, Ilona
We analyze a certain class of von Neumann algebras generated by selfadjoint elements , for satisfying the general commutation relations:
Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingping; Wu, Lijun; Welch, David O.
2015-06-17
We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less
Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector
NASA Technical Reports Server (NTRS)
Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)
2001-01-01
Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto
2018-04-01
Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.
Action Direction of Muscle Synergies in Three-Dimensional Force Space
Hagio, Shota; Kouzaki, Motoki
2015-01-01
Redundancy in the musculoskeletal system was supposed to be simplified by muscle synergies, which modularly organize muscles. To clarify the underlying mechanisms of motor control using muscle synergies, it is important to examine the spatiotemporal contribution of muscle synergies in the task space. In this study, we quantified the mechanical contribution of muscle synergies as considering spatiotemporal correlation between the activation of muscle synergies and endpoint force fluctuations. Subjects performed isometric force generation in the three-dimensional force space. The muscle-weighting vectors of muscle synergies and their activation traces across different trials were extracted from electromyogram data using decomposing technique. We then estimated mechanical contribution of muscle synergies across each trial based on cross-correlation analysis. The contributing vectors were averaged for all trials, and the averaging was defined as action direction (AD) of muscle synergies. As a result, we extracted approximately five muscle synergies. The ADs of muscle synergies mainly depended on the anatomical functions of their weighting muscles. Furthermore, the AD of each muscle indicated the synchronous activation of muscles, which composed of the same muscle synergy. These results provide the spatiotemporal characteristics of muscle synergies as neural basis. PMID:26618156
Action Direction of Muscle Synergies in Three-Dimensional Force Space.
Hagio, Shota; Kouzaki, Motoki
2015-01-01
Redundancy in the musculoskeletal system was supposed to be simplified by muscle synergies, which modularly organize muscles. To clarify the underlying mechanisms of motor control using muscle synergies, it is important to examine the spatiotemporal contribution of muscle synergies in the task space. In this study, we quantified the mechanical contribution of muscle synergies as considering spatiotemporal correlation between the activation of muscle synergies and endpoint force fluctuations. Subjects performed isometric force generation in the three-dimensional force space. The muscle-weighting vectors of muscle synergies and their activation traces across different trials were extracted from electromyogram data using decomposing technique. We then estimated mechanical contribution of muscle synergies across each trial based on cross-correlation analysis. The contributing vectors were averaged for all trials, and the averaging was defined as action direction (AD) of muscle synergies. As a result, we extracted approximately five muscle synergies. The ADs of muscle synergies mainly depended on the anatomical functions of their weighting muscles. Furthermore, the AD of each muscle indicated the synchronous activation of muscles, which composed of the same muscle synergy. These results provide the spatiotemporal characteristics of muscle synergies as neural basis.
A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model
NASA Astrophysics Data System (ADS)
Pouliot, George Antoine
2000-10-01
The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high-resolution topographic data set and the variable resolution grid, sets of experiments with increasing resolution were performed over specific regions of interest. Using realistic initial conditions derived from re-analysis fields, nonhydrostatic effects were significant for grid spacings on the order of 0.1 degrees with orographic forcing. If the model code was adapted for use in a message passing interface (MPI) on a parallel supercomputer today, it was estimated that a global grid spacing of 0.1 degrees would be achievable for a global model. In this case, nonhydrostatic effects would be significant for most areas. A variable resolution grid in a global model provides a unified and flexible approach to many climate and numerical weather prediction problems. The ability to configure the model from very fine to very coarse resolutions allows for the simulation of atmospheric phenomena at different scales using the same code. We have developed a dynamical core illustrating the feasibility of using a variable resolution in a global model.
NASA Astrophysics Data System (ADS)
Sharma, Abhiraj; Suryanarayana, Phanish
2018-05-01
We present an accurate and efficient real-space Density Functional Theory (DFT) framework for the ab initio study of non-orthogonal crystal systems. Specifically, employing a local reformulation of the electrostatics, we develop a novel Kronecker product formulation of the real-space kinetic energy operator that significantly reduces the number of operations associated with the Laplacian-vector multiplication, the dominant cost in practical computations. In particular, we reduce the scaling with respect to finite-difference order from quadratic to linear, thereby significantly bridging the gap in computational cost between non-orthogonal and orthogonal systems. We verify the accuracy and efficiency of the proposed methodology through selected examples.
Linear Transceiver Design for Interference Alignment: Complexity and Computation
2010-07-01
restriction on the choice of beamforming vector of node b. Thus, for any fixed transmit node b in H , there are multiple restriction sets, each...signal space can be chosen. The receive nodes in H can achieve interference alignment if and only if these restricted sets of one-dimensional signal...total number of restriction sets is at most linear in the number of edges in H and each restriction set contains at most two one-dimensional
Exact Results for the Nonergodicity of d -Dimensional Generalized Lévy Walks
NASA Astrophysics Data System (ADS)
Albers, Tony; Radons, Günter
2018-03-01
We provide analytical results for the ensemble-averaged and time-averaged squared displacement, and the randomness of the latter, in the full two-dimensional parameter space of the d -dimensional generalized Lévy walk introduced by Shlesinger et al. [Phys. Rev. Lett. 58, 1100 (1987), 10.1103/PhysRevLett.58.1100]. In certain regions of the parameter plane, we obtain surprising results such as the divergence of the mean-squared displacements, the divergence of the ergodicity breaking parameter despite a finite mean-squared displacement, and subdiffusion which appears superdiffusive when one only considers time averages.
Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows
NASA Astrophysics Data System (ADS)
Ohkitani, Koji
2002-04-01
The nonlinear vortex stretching in incompressible Navier-Stokes turbulence is compared with a linear stretching process of passive vectors (PVs). In particular, we pay special attention to the difference of these processes under long and short time evolutions. For finite time evolution, we confirm our previous finding that the stretching effect of vorticity is weaker than that of general passive vectors for a majority of the initial conditions with the same energy spectra. The above difference can be explained qualitatively by examining the Biot-Savart formula. In order to see to what extent infinitesimal time development explains the above difference, we examine the probability density functions (PDFs) of the stretching rates of the passive vectors in the vicinity of a solution of Navier-Stokes equations. It is found that the PDFs are found to have a Gaussian distribution, suggesting that there are equally many PVs that stretched less and more than the vorticity. This suggests the importance of the vorticity-strain correlation built up over finite time in turbulence. We also discuss the case of Euler equations, where the dynamics of the Jacobian matrix relating the physical and material coordinates is examined numerically. A kind of alignment problem associated with the Cauchy-Green tensor is proposed and studied using the results of numerical simulations. It is found that vorticity tends to align itself with the most compressing eigenvector of the Cauchy-Green tensor. A two-dimensional counterpart of active-passive comparison is briefly studied. There is no essential difference between stretching of vorticity gradients and that of passive scalar gradients and a physical interpretation is given to it.
The Tangent Linear and Adjoint of the FV3 Dynamical Core: Development and Applications
NASA Technical Reports Server (NTRS)
Holdaway, Daniel
2018-01-01
GMAO (NASA's Global Modeling and Assimilation Office) has developed a highly sophisticated adjoint modeling system based on the most recent version of the finite volume cubed sphere (FV3) dynamical core. This provides a mechanism for investigating sensitivity to initial conditions and examining observation impacts. It also allows for the computation of singular vectors and for the implementation of hybrid 4DVAR (4-Dimensional Variational Assimilation). In this work we will present the scientific assessment of the new adjoint system and show results from a number of research application of the adjoint system.
Probability Distributions of Minkowski Distances between Discrete Random Variables.
ERIC Educational Resources Information Center
Schroger, Erich; And Others
1993-01-01
Minkowski distances are used to indicate similarity of two vectors in an N-dimensional space. How to compute the probability function, the expectation, and the variance for Minkowski distances and the special cases City-block distance and Euclidean distance. Critical values for tests of significance are presented in tables. (SLD)
Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Tessler, Alexander
2007-01-01
Two finite element based computational methods, Smoothing Element Analysis (SEA) and the inverse Finite Element Method (iFEM), are reviewed, and examples of their use for structural health monitoring are discussed. Due to their versatility, robustness, and computational efficiency, the methods are well suited for real-time structural health monitoring of future space vehicles, large space structures, and habitats. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future Structural Health Management (SHM) systems.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali
1993-01-01
A two-dimensional finite element fracture mechanics analysis of a space shuttle main engine (SSME) turbine blade firtree was performed using the MARC finite element code. The analysis was conducted under combined effects of thermal and mechanical loads at steady-state conditions. Data from a typical engine stand cycle of the SSME were used to run a heat transfer analysis and, subsequently, a thermal structural fracture mechanics analysis. Temperature and stress contours for the firtree under these operating conditions were generated. High stresses were found at the firtree lobes where crack initiation was triggered. A life assessment of the firtree was done by assuming an initial and a final crack size.
Real time evolution at finite temperatures with operator space matrix product states
NASA Astrophysics Data System (ADS)
Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias
2014-07-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.
Mean-Potential Law in Evolutionary Games
NASA Astrophysics Data System (ADS)
Nałecz-Jawecki, Paweł; Miekisz, Jacek
2018-01-01
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.
Lorentz symmetric n-particle systems without ``multiple times''
NASA Astrophysics Data System (ADS)
Smith, Felix
2013-05-01
The need for multiple times in relativistic n-particle dynamics is a consequence of Minkowski's postulated symmetry between space and time coordinates in a space-time s = [x1 , . . ,x4 ] = [ x , y , z , ict ] , Eq. (1). Poincaré doubted the need for this space-time symmetry, believing Lorentz covariance could also prevail in some geometries with a three-dimensional position space and a quite different time coordinate. The Hubble expansion observed later justifies a specific geometry of this kind, a negatively curved position 3-space expanding with time at the Hubble rate lH (t) =lH , 0 + cΔt (F. T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005) and 35, 395 (2010)). Its position 4-vector is not s but q = [x1 , . . ,x4 ] = [ x , y , z , ilH (t) ] , and shows no 4-space symmetry. What is observed is always a difference 4-vector Δq = [ Δx , Δy , Δz , icΔt ] , and this displays the structure of Eq. (1) perfectly. Thus we find the standard 4-vector of special relativity in a geometry that does not require a Minkowski space-time at all, but a quite different geometry with a expanding 3-space symmetry and an independent time. The same Lorentz symmetry with but a single time extends to 2 and n-body systems.
Geometric MCMC for infinite-dimensional inverse problems
NASA Astrophysics Data System (ADS)
Beskos, Alexandros; Girolami, Mark; Lan, Shiwei; Farrell, Patrick E.; Stuart, Andrew M.
2017-04-01
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon mesh-refinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and thus are expensive as a function of dimension. Recently, a new class of MCMC methods with mesh-independent convergence times has emerged. However, few of them take into account the geometry of the posterior informed by the data. At the same time, recently developed geometric MCMC algorithms have been found to be powerful in exploring complicated distributions that deviate significantly from elliptic Gaussian laws, but are in general computationally intractable for models defined in infinite dimensions. In this work, we combine geometric methods on a finite-dimensional subspace with mesh-independent infinite-dimensional approaches. Our objective is to speed up MCMC mixing times, without significantly increasing the computational cost per step (for instance, in comparison with the vanilla preconditioned Crank-Nicolson (pCN) method). This is achieved by using ideas from geometric MCMC to probe the complex structure of an intrinsic finite-dimensional subspace where most data information concentrates, while retaining robust mixing times as the dimension grows by using pCN-like methods in the complementary subspace. The resulting algorithms are demonstrated in the context of three challenging inverse problems arising in subsurface flow, heat conduction and incompressible flow control. The algorithms exhibit up to two orders of magnitude improvement in sampling efficiency when compared with the pCN method.
A Fourier dimensionality reduction model for big data interferometric imaging
NASA Astrophysics Data System (ADS)
Vijay Kartik, S.; Carrillo, Rafael E.; Thiran, Jean-Philippe; Wiaux, Yves
2017-06-01
Data dimensionality reduction in radio interferometry can provide savings of computational resources for image reconstruction through reduced memory footprints and lighter computations per iteration, which is important for the scalability of imaging methods to the big data setting of the next-generation telescopes. This article sheds new light on dimensionality reduction from the perspective of the compressed sensing theory and studies its interplay with imaging algorithms designed in the context of convex optimization. We propose a post-gridding linear data embedding to the space spanned by the left singular vectors of the measurement operator, providing a dimensionality reduction below image size. This embedding preserves the null space of the measurement operator and hence its sampling properties are also preserved in light of the compressed sensing theory. We show that this can be approximated by first computing the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain the final reduced data vector. This Fourier dimensionality reduction model ensures a fast implementation of the full measurement operator, essential for any iterative image reconstruction method. The proposed reduction also preserves the independent and identically distributed Gaussian properties of the original measurement noise. For convex optimization-based imaging algorithms, this is key to justify the use of the standard ℓ2-norm as the data fidelity term. Our simulations confirm that this dimensionality reduction approach can be leveraged by convex optimization algorithms with no loss in imaging quality relative to reconstructing the image from the complete visibility data set. Reconstruction results in simulation settings with no direction dependent effects or calibration errors show promising performance of the proposed dimensionality reduction. Further tests on real data are planned as an extension of the current work. matlab code implementing the proposed reduction method is available on GitHub.
NASA Astrophysics Data System (ADS)
Ferhat, Ipar
With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector. To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system. Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form. Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form. Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples. System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers.
Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method
NASA Technical Reports Server (NTRS)
Chander, R.
1990-01-01
The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.
Mechanical topological insulator in zero dimensions
NASA Astrophysics Data System (ADS)
Lera, Natalia; Alvarez, J. V.
2018-04-01
We study linear vibrational modes in finite isostatic Maxwell lattices, mechanical systems where the number of degrees of freedom matches the number of constraints. Recent progress in topological mechanics exploits the nontrivial topology of BDI class Hamiltonians in one dimenson and arising topological floppy modes at the edges. A finite frame, or zero-dimensional system, also exhibits a nonzero topological index according to the classification table. We construct mechanical insulating models in zero dimensions that complete the BDI classification in the available real space dimensions. We compute and interpret its nontrivial invariant Z2.
An interacting boundary layer model for cascades
NASA Technical Reports Server (NTRS)
Davis, R. T.; Rothmayer, A. P.
1983-01-01
A laminar, incompressible interacting boundary layer model is developed for two-dimensional cascades. In the limit of large cascade spacing these equations reduce to the interacting boundary layer equations for a single body immersed in an infinite stream. A fully implicit numerical method is used to solve the governing equations, and is found to be at least as efficient as the same technique applied to the single body problem. Solutions are then presented for a cascade of finite flat plates and a cascade of finite sine-waves, with cusped leading and trailing edges.
Propagation of Bessel-X pulses in a hybrid photonic crystal
NASA Astrophysics Data System (ADS)
Chung, K. B.
2018-05-01
We report the propagation of Bessel-X pulses in a two-dimensional hybrid photonic crystal, investigated by the finite-difference time-domain method, in which broadband super-collimation and the propagation of self-collimated ultrashort pulses were reported. We first show the propagation of Bessel-X pulses in two-dimensional free space, whose transverse branches diverge rapidly with propagation. We then show that Bessel-X pulses propagate with their transverse and longitudinal shapes almost unchanged in the hybrid photonic crystal.
Very high order discontinuous Galerkin method in elliptic problems
NASA Astrophysics Data System (ADS)
Jaśkowiec, Jan
2017-09-01
The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.
Very high order discontinuous Galerkin method in elliptic problems
NASA Astrophysics Data System (ADS)
Jaśkowiec, Jan
2018-07-01
The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.
NASA Astrophysics Data System (ADS)
Khan, Abu M. A. S.
We study the continuous spin representation (CSR) of the Poincare group in arbitrary dimensions. In d dimensions, the CSRs are characterized by the length of the light-cone vector and the Dynkin labels of the SO(d-3) short little group which leaves the light-cone vector invariant. In addition to these, a solid angle Od-3 which specifies the direction of the light-cone vector is also required to label the states. We also find supersymmetric generalizations of the CSRs. In four dimensions, the supermultiplet contains one bosonic and one fermionic CSRs which transform into each other under the action of the supercharges. In a five dimensional case, the supermultiplet contains two bosonic and two fermionic CSRs which is like N = 2 supersymmetry in four dimensions. When constructed using Grassmann parameters, the light-cone vector becomes nilpotent. This makes the representation finite dimensional, but at the expense of introducing central charges even though the representation is massless. This leads to zero or negative norm states. The nilpotent constructions are valid only for even dimensions. We also show how the CSRs in four dimensions can be obtained from five dimensions by the combinations of Kaluza-Klein (KK) dimensional reduction and the Inonu-Wigner group contraction. The group contraction is a singular transformation. We show that the group contraction is equivalent to imposing periodic boundary condition along one direction and taking a double singular limit. In this form the contraction parameter is interpreted as the inverse KK radius. We apply this technique to both five dimensional regular massless and massive representations. For the regular massless case, we find that the contraction gives the CSR in four dimensions under a double singular limit and the representation wavefunction is the Bessel function. For the massive case, we use Majorana's infinite component theory as a model for the SO(4) little group. In this case, a triple singular limit is required to yield any CSR in four dimensions. The representation wavefunction is the Bessel function, as expected, but the scale factor is not the length of the light-cone vector. The amplitude and the scale factor are implicit functions of the parameter y which is a ratio of the internal and external coordinates. We also state under what conditions our solutions become identical to Wigner's solution.
Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D
2014-01-01
The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu
2011-07-18
Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.
On a modified form of navier-stokes equations for three-dimensional flows.
Venetis, J
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces.
On a Modified Form of Navier-Stokes Equations for Three-Dimensional Flows
Venetis, J.
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces. PMID:25918743
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1988-01-01
In Kanerva's Sparse Distributed Memory, writing to and reading from the memory are done in relation to spheres in an n-dimensional binary vector space. Thus it is important to know how many points are in the intersection of two spheres in this space. Two proofs are given of Wang's formula for spheres of unequal radii, and an integral approximation for the intersection in this case.
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
NASA Astrophysics Data System (ADS)
Attarzadeh, M. A.; Nouh, M.
2018-05-01
One-dimensional phononic materials with material fields traveling simultaneously in space and time have been shown to break elastodynamic reciprocity resulting in unique wave propagation features. In the present work, a comprehensive mathematical analysis is presented to characterize and fully predict the non-reciprocal wave dispersion in two-dimensional space. The analytical dispersion relations, in the presence of the spatiotemporal material variations, are validated numerically using finite 2D membranes with a prescribed number of cells. Using omnidirectional excitations at the membrane's center, wave propagations are shown to exhibit directional asymmetry that increases drastically in the direction of the material travel and vanishes in the direction perpendicular to it. The topological nature of the predicted dispersion in different propagation directions are evaluated using the computed Chern numbers. Finally, the degree of the 2D non-reciprocity is quantified using a non-reciprocity index (NRI) which confirms the theoretical dispersion predictions as well as the finite simulations. The presented framework can be extended to plate-type structures as well as 3D spatiotemporally modulated phononic crystals.
An algebraic structure of discrete-time biaffine systems
NASA Technical Reports Server (NTRS)
Tarn, T.-J.; Nonoyama, S.
1979-01-01
New results on the realization of finite-dimensional, discrete-time, internally biaffine systems are presented in this paper. The external behavior of such systems is described by multiaffine functions and the state space is constructed via Nerode equivalence relations. We prove that the state space is an affine space. An algorithm which amounts to choosing a frame for the affine space is presented. Our algorithm reduces in the linear and bilinear case to a generalization of algorithms existing in the literature. Explicit existence criteria for span-canonical realizations as well as an affine isomorphism theorem are given.
NASA Astrophysics Data System (ADS)
Kalay, Ziya
2012-06-01
Despite the apparent need to study reversible reactions between molecules confined to a two-dimensional space such as the cell membrane, exact Green’s functions for this case have not been reported. Here we present exact analytical Green’s functions for a Brownian particle reversibly reacting with a fixed reaction center in a finite two-dimensional circular region with reflecting or absorbing boundaries, considering either a spherically symmetric initial distribution or a particle that is initially bound. We show that Green’s function can be used to predict the effect of measurement uncertainties on the outcome of single-particle/molecule-tracking experiments in which molecular interactions are investigated. Hence, we bridge the gap between previously known solutions in one dimension (Agmon 1984 J. Chem. Phys. 81 2811) and three dimensions (Kim and Shin 1999 Phys. Rev. Lett. 82 1578), and provide an example of how the knowledge of Green’s function can be used to predict experimentally accessible quantities.
Vertex Operators, Grassmannians, and Hilbert Schemes
NASA Astrophysics Data System (ADS)
Carlsson, Erik
2010-12-01
We approximate the infinite Grassmannian by finite-dimensional cutoffs, and define a family of fermionic vertex operators as the limit of geometric correspondences on the equivariant cohomology groups, with respect to a one-dimensional torus action. We prove that in the localization basis, these are the well-known fermionic vertex operators on the infinite wedge representation. Furthermore, the boson-fermion correspondence, locality, and intertwining properties with the Virasoro algebra are the limits of relations on the finite-dimensional cutoff spaces, which are true for geometric reasons. We then show that these operators are also, almost by definition, the vertex operators defined by Okounkov and the author in Carlsson and Okounkov (
On three-dimensional misorientation spaces
Bennett, Robbie J.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf
2017-01-01
Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance. PMID:29118660
Method of generating a surface mesh
Shepherd, Jason F [Albuquerque, NM; Benzley, Steven [Provo, UT; Grover, Benjamin T [Tracy, CA
2008-03-04
A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.
Dominant phonon wave vectors and strain-induced splitting of the 2D Raman mode of graphene
NASA Astrophysics Data System (ADS)
Narula, Rohit; Bonini, Nicola; Marzari, Nicola; Reich, Stephanie
2012-03-01
The dominant phonon wave vectors q* probed by the 2D Raman mode of pristine and uniaxially strained graphene are determined via a combination of ab initio calculations and a full two-dimensional integration of the transition matrix. We show that q* are highly anisotropic and rotate about K with the polarizer and analyzer condition relative to the lattice. The corresponding phonon-mediated electronic transitions show a finite component along K-Γ that sensitively determines q*. We invalidate the notion of “inner” and “outer” processes. The characteristic splitting of the 2D mode of graphene under uniaxial tensile strain and given polarizer and analyzer setting is correctly predicted only if the strain-induced distortion and red-shift of the in-plane transverse optical (iTO) phonon dispersion as well as the changes in the electronic band structure are taken into account.
Polarization splitter based on interference effects in all-solid photonic crystal fibers.
Mao, Dong; Guan, Chunying; Yuan, Libo
2010-07-01
We propose a novel kind of polarization splitter in all-solid photonic crystal fibers based on the mode interference effects. Both the full-vector finite-element method and the semi-vector three-dimensional beam propagation method are employed to design and analyze the characteristics of the splitter. Numerical simulations show that x-polarized and y-polarized modes are split entirely along with 6.8 mm long propagation. An extinction ratio of more than 20 dB and a crosstalk of less than -20 dB are obtained within the wavelength range of 1.541-1.556 microm. The extinction ratio and the crosstalk at 1.55 microm are 28.9 and -29.0 dB for x polarization, while the extinction ratio and the crosstalk at 1.55 microm are 29.9 and -29.8 dB for y polarization, respectively.
NASA Astrophysics Data System (ADS)
Núñez, Alvaro; Starinets, Andrei O.
2003-06-01
We use the Lorentzian AdS/CFT prescription to find the poles of the retarded thermal Green’s functions of N=4 SU(N) supersymmetric Yang-Mills theory in the limit of large N and large ’t Hooft coupling. In the process, we propose a natural definition for quasinormal modes in an asymptotically AdS spacetime, with boundary conditions dictated by the AdS/CFT correspondence. The corresponding frequencies determine the dispersion laws for the quasiparticle excitations in the dual finite-temperature gauge theory. Correlation functions of operators dual to massive scalar, vector and gravitational perturbations in a five-dimensional AdS-Schwarzschild background are considered. We find asymptotic formulas for quasinormal frequencies in the massive scalar and tensor cases, and an exact expression for vector perturbations. In the long-distance, low-frequency limit we recover results of the hydrodynamic approximation to thermal Yang-Mills theory.
Two-dimensional PCA-based human gait identification
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Wu, Rongteng
2012-11-01
It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.
Using sketch-map coordinates to analyze and bias molecular dynamics simulations
Tribello, Gareth A.; Ceriotti, Michele; Parrinello, Michele
2012-01-01
When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about the process of interest, serve this purpose. Because finding these CVs is the most difficult part of any investigation, we recently developed a dimensionality reduction algorithm, sketch-map, that can be used to build a low-dimensional map of a phase space of high-dimensionality. In this paper we discuss how these machine-generated CVs can be used to accelerate the exploration of phase space and to reconstruct free-energy landscapes. To do so, we develop a formalism in which high-dimensional configurations are no longer represented by low-dimensional position vectors. Instead, for each configuration we calculate a probability distribution, which has a domain that encompasses the entirety of the low-dimensional space. To construct a biasing potential, we exploit an analogy with metadynamics and use the trajectory to adaptively construct a repulsive, history-dependent bias from the distributions that correspond to the previously visited configurations. This potential forces the system to explore more of phase space by making it desirable to adopt configurations whose distributions do not overlap with the bias. We apply this algorithm to a small model protein and succeed in reproducing the free-energy surface that we obtain from a parallel tempering calculation. PMID:22427357
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Rosen, I. G.
1988-01-01
In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.
Flux vector splitting of the inviscid equations with application to finite difference methods
NASA Technical Reports Server (NTRS)
Steger, J. L.; Warming, R. F.
1979-01-01
The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.
Sharp Estimates in Ruelle Theorems for Matrix Transfer Operators
NASA Astrophysics Data System (ADS)
Campbell, J.; Latushkin, Y.
A matrix coefficient transfer operator , on the space of -sections of an m-dimensional vector bundle over n-dimensional compact manifold is considered. The spectral radius of is estimated bya; and the essential spectral radius by
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Hamilton, H. H., II
1981-01-01
A computational technique for computing the three-dimensional inviscid flow over blunt bodies having large regions of embedded subsonic flow is detailed. Results, which were obtained using the CDC Cyber 203 vector processing computer, are presented for several analytic shapes with some comparison to experimental data. Finally, windward surface pressure computations over the first third of the Space Shuttle vehicle are compared with experimental data for angles of attack between 25 and 45 degrees.
Domain decomposition methods for systems of conservation laws: Spectral collocation approximations
NASA Technical Reports Server (NTRS)
Quarteroni, Alfio
1989-01-01
Hyperbolic systems of conversation laws are considered which are discretized in space by spectral collocation methods and advanced in time by finite difference schemes. At any time-level a domain deposition method based on an iteration by subdomain procedure was introduced yielding at each step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously. The method is set for a general nonlinear problem in several space variables. The convergence analysis, however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form of the error reduction factor at each iteration is derived. Although the method is applied here to the case of spectral collocation approximation only, the idea is fairly general and can be used in a different context as well. For instance, its application to space discretization by finite differences is straight forward.
Modeling and analysis of the space shuttle nose-gear tire with semianalytic finite elements
NASA Technical Reports Server (NTRS)
Kim, Kyun O.; Noor, Ahmed K.; Tanner, John A.
1990-01-01
A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The Space Shuttle Orbiter nose gear tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynominals in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell. Numerical results of the Space Shuttle Orbiter nose gear tire model are compared with experimental measurements of the tire subjected to inflation loading.
NASA Technical Reports Server (NTRS)
Mathison, Steven R.; Herakovich, Carl T.; Pindera, Marek-Jerzy; Shuart, Mark J.
1987-01-01
The objective was to determine the effect of nonlinear material behavior on the response and failure of unnotched and notched angle-ply laminates under uniaxial compressive loading. The endochronic theory was chosen as the constitutive theory to model the AS4/3502 graphite-epoxy material system. Three-dimensional finite element analysis incorporating the endochronic theory was used to determine the stresses and strains in the laminates. An incremental/iterative initial strain algorithm was used in the finite element program. To increase computational efficiency, a 180 deg rotational symmetry relationship was utilized and the finite element program was vectorized to run on a supercomputer. Laminate response was compared to experimentation revealing excellent agreement for both the unnotched and notched angle-ply laminates. Predicted stresses in the region of the hole were examined and are presented, comparing linear elastic analysis to the inelastic endochronic theory analysis. A failure analysis of the unnotched and notched laminates was performed using the quadratic tensor polynomial. Predicted fracture loads compared well with experimentation for the unnotched laminates, but were very conservative in comparison with experiments for the notched laminates.
NASA Astrophysics Data System (ADS)
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
NASA Astrophysics Data System (ADS)
Giovanis, D. G.; Shields, M. D.
2018-07-01
This paper addresses uncertainty quantification (UQ) for problems where scalar (or low-dimensional vector) response quantities are insufficient and, instead, full-field (very high-dimensional) responses are of interest. To do so, an adaptive stochastic simulation-based methodology is introduced that refines the probability space based on Grassmann manifold variations. The proposed method has a multi-element character discretizing the probability space into simplex elements using a Delaunay triangulation. For every simplex, the high-dimensional solutions corresponding to its vertices (sample points) are projected onto the Grassmann manifold. The pairwise distances between these points are calculated using appropriately defined metrics and the elements with large total distance are sub-sampled and refined. As a result, regions of the probability space that produce significant changes in the full-field solution are accurately resolved. An added benefit is that an approximation of the solution within each element can be obtained by interpolation on the Grassmann manifold. The method is applied to study the probability of shear band formation in a bulk metallic glass using the shear transformation zone theory.
Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs
2013-06-28
of the graph in a low dimensional space . Of course, the various definitions of curvature in the ... with a velocity depending on the mean curvature of the front. Recently, there has been an increasing interest in using ideas from continuum PDEs...functions V → R and E the space of all skew-symmetric4 functions E → R. Again to simplify notation, we extend each ϕ ∈ E to a function ϕ : V 2 → R
User's Manual for FEMOM3DS. Version 1.0
NASA Technical Reports Server (NTRS)
Reddy, C.J.; Deshpande, M. D.
1997-01-01
FEMOM3DS is a computer code written in FORTRAN 77 to compute electromagnetic(EM) scattering characteristics of a three dimensional object with complex materials using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity and the triangular elements with the basis functions similar to that described for MoM at the outer boundary. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.
Three-dimensional unsteady Euler equations solutions on dynamic grids
NASA Technical Reports Server (NTRS)
Belk, D. M.; Janus, J. M.; Whitfield, D. L.
1985-01-01
A method is presented for solving the three-dimensional unsteady Euler equations on dynamic grids based on flux vector splitting. The equations are cast in curvilinear coordinates and a finite volume discretization is used for handling arbitrary geometries. The discretized equations are solved using an explicit upwind second-order predictor corrector scheme that is stable for a CFL of 2. Characteristic variable boundary conditions are developed and used for unsteady impermeable surfaces and for the far-field boundary. Dynamic-grid results are presented for an oscillating air-foil and for a store separating from a reflection plate. For the cases considered of stores separating from a reflection plate, the unsteady aerodynamic forces on the store are significantly different from forces obtained by steady-state aerodynamics with the body inclination angle changed to account for plunge velocity.
Performance of a three-dimensional Navier-Stokes code on CYBER 205 for high-speed juncture flows
NASA Technical Reports Server (NTRS)
Lakshmanan, B.; Tiwari, S. N.
1987-01-01
A vectorized 3D Navier-Stokes code has been implemented on CYBER 205 for solving the supersonic laminar flow over a swept fin/flat plate junction. The code extends MacCormack's predictor-corrector finite volume scheme to a generalized coordinate system in a locally one dimensional time split fashion. A systematic parametric study is conducted to examine the effect of fin sweep on the computed flow field. Calculated results for the pressure distribution on the flat plate and fin leading edge are compared with the experimental measurements of a right angle blunt fin/flat plate junction. The decrease in the extent of the separated flow region and peak pressure on the fin leading edge, and weakening of the two reversed supersonic zones with increase in fin sweep have been clearly observed in the numerical simulation.
Chekmarev, Sergei F
2013-10-14
Using the Helmholtz decomposition of the vector field of folding fluxes in a two-dimensional space of collective variables, a potential of the driving force for protein folding is introduced. The potential has two components. One component is responsible for the source and sink of the folding flows, which represent respectively, the unfolded states and the native state of the protein, and the other, which accounts for the flow vorticity inherently generated at the periphery of the flow field, is responsible for the canalization of the flow between the source and sink. The theoretical consideration is illustrated by calculations for a model β-hairpin protein.
Exact Solution of Klein-Gordon and Dirac Equations with Snyder-de Sitter Algebra
NASA Astrophysics Data System (ADS)
Merad, M.; Hadj Moussa, M.
2018-01-01
In this paper, we present the exact solution of the (1+1)-dimensional relativistic Klein-Gordon and Dirac equations with linear vector and scalar potentials in the framework of deformed Snyder-de Sitter model. We introduce some changes of variables, we show that a one-dimensional linear potential for the relativistic system in a space deformed can be equivalent to the trigonometric Rosen-Morse potential in a regular space. In both cases, we determine explicitly the energy eigenvalues and their corresponding eigenfunctions expressed in terms of Romonovski polynomials. The limiting cases are analyzed for α 1 and α 2 → 0 and are compared with those of literature.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Shu, Haisheng; Liang, Shanjun; Shi, Xiaona; An, Shuowei; Ren, Wanyue; Zhu, Jie
2018-05-01
The torsional wave band gap properties of a two-dimensional generalized phononic crystal (GPC) are investigated in this paper. The GPC structure considered is consisted of two different materials being arranged with radial and circumferential periodicities simultaneously. Based on the viewpoint of energy distribution and the finite element method, the power flow, energy density, sound intensity vector together with the stress field of the structure excited by torsional load are numerically calculated and discussed. Our results show that, the band gap of Bragg type exists in these two-dimensional composite structures, and the band gap range is mainly determined by radial periodicity while the circumferential periodicity would result in some transmission peaks within the band gap. These peaks are mainly produced by two different mechanisms, the energy leakage occurred in circumferential channels and the excitation of the local eigenmodes of certain scatterers. These results may be useful in torsional vibration control for various rotational parts and components, and in the application of energy harvesting, etc.
A dimension-wise analysis method for the structural-acoustic system with interval parameters
NASA Astrophysics Data System (ADS)
Xu, Menghui; Du, Jianke; Wang, Chong; Li, Yunlong
2017-04-01
The interval structural-acoustic analysis is mainly accomplished by interval and subinterval perturbation methods. Potential limitations for these intrusive methods include overestimation or interval translation effect for the former and prohibitive computational cost for the latter. In this paper, a dimension-wise analysis method is thus proposed to overcome these potential limitations. In this method, a sectional curve of the system response surface along each input dimensionality is firstly extracted, the minimal and maximal points of which are identified based on its Legendre polynomial approximation. And two input vectors, i.e. the minimal and maximal input vectors, are dimension-wisely assembled by the minimal and maximal points of all sectional curves. Finally, the lower and upper bounds of system response are computed by deterministic finite element analysis at the two input vectors. Two numerical examples are studied to demonstrate the effectiveness of the proposed method and show that, compared to the interval and subinterval perturbation method, a better accuracy is achieved without much compromise on efficiency by the proposed method, especially for nonlinear problems with large interval parameters.
A Robust Absorbing Boundary Condition for Compressible Flows
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; orgenson, Philip C. E.
2005-01-01
An absorbing non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented with theoretical proof. This paper is a continuation and improvement of a previous paper by the author. The absorbing NRBC technique is based on a first principle of non reflecting, which contains the essential physics that a plane wave solution of the Euler equations remains intact across the boundary. The technique is theoretically shown to work for a large class of finite volume approaches. When combined with the hyperbolic conservation laws, the NRBC is simple, robust and truly multi-dimensional; no additional implementation is needed except the prescribed physical boundary conditions. Several numerical examples in multi-dimensional spaces using two different finite volume schemes are illustrated to demonstrate its robustness in practical computations. Limitations and remedies of the technique are also discussed.
A three-dimensional, finite element model for coastal and estuarine circulation
Walters, R.A.
1992-01-01
This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.
Eisenstein series for infinite-dimensional U-duality groups
NASA Astrophysics Data System (ADS)
Fleig, Philipp; Kleinschmidt, Axel
2012-06-01
We consider Eisenstein series appearing as coefficients of curvature corrections in the low-energy expansion of type II string theory four-graviton scattering amplitudes. We define these Eisenstein series over all groups in the E n series of string duality groups, and in particular for the infinite-dimensional Kac-Moody groups E 9, E 10 and E 11. We show that, remarkably, the so-called constant term of Kac-Moody-Eisenstein series contains only a finite number of terms for particular choices of a parameter appearing in the definition of the series. This resonates with the idea that the constant term of the Eisenstein series encodes perturbative string corrections in BPS-protected sectors allowing only a finite number of corrections. We underpin our findings with an extensive discussion of physical degeneration limits in D < 3 space-time dimensions.
A characterization of positive linear maps and criteria of entanglement for quantum states
NASA Astrophysics Data System (ADS)
Hou, Jinchuan
2010-09-01
Let H and K be (finite- or infinite-dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from {\\mathcal B}(H) into {\\mathcal B}(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied to give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is given which shows that a state ρ on HotimesK is separable if and only if (ΦotimesI)ρ >= 0 for all positive finite-rank elementary operators Φ. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.
NASA Astrophysics Data System (ADS)
de Wit, Bernard; Reys, Valentin
2017-12-01
Supergravity with eight supercharges in a four-dimensional Euclidean space is constructed at the full non-linear level by performing an off-shell time-like reduction of five-dimensional supergravity. The resulting four-dimensional theory is realized off-shell with the Weyl, vector and tensor supermultiplets and a corresponding multiplet calculus. Hypermultiplets are included as well, but they are themselves only realized with on-shell supersymmetry. We also briefly discuss the non-linear supermultiplet. The off-shell reduction leads to a full understanding of the Euclidean theory. A complete multiplet calculus is presented along the lines of the Minkowskian theory. Unlike in Minkowski space, chiral and anti-chiral multiplets are real and supersymmetric actions are generally unbounded from below. Precisely as in the Minkowski case, where one has different formulations of Poincaré supergravity upon introducing different compensating supermultiplets, one can also obtain different versions of Euclidean supergravity.
NASA Astrophysics Data System (ADS)
Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu
2017-11-01
This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.
Direct discriminant locality preserving projection with Hammerstein polynomial expansion.
Chen, Xi; Zhang, Jiashu; Li, Defang
2012-12-01
Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.
Exceptional quantum geometry and particle physics
NASA Astrophysics Data System (ADS)
Dubois-Violette, Michel
2016-11-01
Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.
Effective-medium theory of elastic waves in random networks of rods.
Katz, J I; Hoffman, J J; Conradi, M S; Miller, J G
2012-06-01
We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector k the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels, or trabecular bone.
NASA Technical Reports Server (NTRS)
Falls, L. W.; Crutcher, H. L.
1976-01-01
Transformation of statistics from a dimensional set to another dimensional set involves linear functions of the original set of statistics. Similarly, linear functions will transform statistics within a dimensional set such that the new statistics are relevant to a new set of coordinate axes. A restricted case of the latter is the rotation of axes in a coordinate system involving any two correlated random variables. A special case is the transformation for horizontal wind distributions. Wind statistics are usually provided in terms of wind speed and direction (measured clockwise from north) or in east-west and north-south components. A direct application of this technique allows the determination of appropriate wind statistics parallel and normal to any preselected flight path of a space vehicle. Among the constraints for launching space vehicles are critical values selected from the distribution of the expected winds parallel to and normal to the flight path. These procedures are applied to space vehicle launches at Cape Kennedy, Florida.
Split Space-Marching Finite-Volume Method for Chemically Reacting Supersonic Flow
NASA Technical Reports Server (NTRS)
Rizzi, Arthur W.; Bailey, Harry E.
1976-01-01
A space-marching finite-volume method employing a nonorthogonal coordinate system and using a split differencing scheme for calculating steady supersonic flow over aerodynamic shapes is presented. It is a second-order-accurate mixed explicit-implicit procedure that solves the inviscid adiabatic and nondiffusive equations for chemically reacting flow in integral conservation-law form. The relationship between the finite-volume and differential forms of the equations is examined and the relative merits of each discussed. The method admits initial Cauchy data situated on any arbitrary surface and integrates them forward along a general curvilinear coordinate, distorting and deforming the surface as it advances. The chemical kinetics term is split from the convective terms which are themselves dimensionally split, thereby freeing the fluid operators from the restricted step size imposed by the chemical reactions and increasing the computational efficiency. The accuracy of this splitting technique is analyzed, a sufficient stability criterion is established, a representative flow computation is discussed, and some comparisons are made with another method.
Numerical simulation of rarefied gas flow through a slit
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Jeng, Duen-Ren; De Witt, Kenneth J.; Chung, Chan-Hong
1990-01-01
Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas from one reservoir to another through a two-dimensional slit. The cases considered are for hard vacuum downstream pressure, finite pressure ratios, and isobaric pressure with thermal diffusion, which are not well established in spite of the simplicity of the flow field. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, three kinds of collision sampling techniques, the time counter (TC) method, the null collision (NC) method, and the no time counter (NTC) method, are used.
Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu
2016-01-01
This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method. PMID:27258271
Goode, D.J.; Appel, C.A.
1992-01-01
More accurate alternatives to the widely used harmonic mean interblock transmissivity are proposed for block-centered finite-difference models of ground-water flow in unconfined aquifers and in aquifers having smoothly varying transmissivity. The harmonic mean is the exact interblock transmissivity for steady-state one-dimensional flow with no recharge if the transmissivity is assumed to be spatially uniform over each finite-difference block, changing abruptly at the block interface. However, the harmonic mean may be inferior to other means if transmissivity varies in a continuous or smooth manner between nodes. Alternative interblock transmissivity functions are analytically derived for the case of steady-state one-dimensional flow with no recharge. The second author has previously derived the exact interblock transmissivity, the logarithmic mean, for one-dimensional flow when transmissivity is a linear function of distance in the direction of flow. We show that the logarithmic mean transmissivity is also exact for uniform flow parallel to the direction of changing transmissivity in a two- or three-dimensional model, regardless of grid orientation relative to the flow vector. For the case of horizontal flow in a homogeneous unconfined or water-table aquifer with a horizontal bottom and with areally distributed recharge, the exact interblock transmissivity is the unweighted arithmetic mean of transmissivity at the nodes. This mean also exhibits no grid-orientation effect for unidirectional flow in a two-dimensional model. For horizontal flow in an unconfined aquifer with no recharge where hydraulic conductivity is a linear function of distance in the direction of flow the exact interblock transmissivity is the product of the arithmetic mean saturated thickness and the logarithmic mean hydraulic conductivity. For several hypothetical two- and three-dimensional cases with smoothly varying transmissivity or hydraulic conductivity, the harmonic mean is shown to yield the least accurate solution to the flow equation of the alternatives considered. Application of the alternative interblock transmissivities to a regional aquifer system model indicates that the changes in computed heads and fluxes are typically small, relative to model calibration error. For this example, the use of alternative interblock transmissivities resulted in an increase in computational effort of less than 3 percent. Numerical algorithms to compute alternative interblock transmissivity functions in a modular three-dimensional flow model are presented and documented.
NASA Technical Reports Server (NTRS)
Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard
1991-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
NASA Technical Reports Server (NTRS)
Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.
1992-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
In situ three-dimensional reciprocal-space mapping during mechanical deformation.
Cornelius, T W; Davydok, A; Jacques, V L R; Grifone, R; Schülli, T; Richard, M I; Beutier, G; Verdier, M; Metzger, T H; Pietsch, U; Thomas, O
2012-09-01
Mechanical deformation of a SiGe island epitaxically grown on Si(001) was studied by a specially adapted atomic force microscope and nanofocused X-ray diffraction. The deformation was monitored during in situ mechanical loading by recording three-dimensional reciprocal-space maps around a selected Bragg peak. Scanning the energy of the incident beam instead of rocking the sample allowed the safe and reliable measurement of the reciprocal-space maps without removal of the mechanical load. The crystal truncation rods originating from the island side facets rotate to steeper angles with increasing mechanical load. Simulations of the displacement field and the intensity distribution, based on the finite-element method, reveal that the change in orientation of the side facets of about 25° corresponds to an applied pressure of 2-3 GPa on the island top plane.
Mean-Potential Law in Evolutionary Games.
Nałęcz-Jawecki, Paweł; Miękisz, Jacek
2018-01-12
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images
Srivastava, Anuj
2010-01-01
We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692
A support vector machine based test for incongruence between sets of trees in tree space
2012-01-01
Background The increased use of multi-locus data sets for phylogenetic reconstruction has increased the need to determine whether a set of gene trees significantly deviate from the phylogenetic patterns of other genes. Such unusual gene trees may have been influenced by other evolutionary processes such as selection, gene duplication, or horizontal gene transfer. Results Motivated by this problem we propose a nonparametric goodness-of-fit test for two empirical distributions of gene trees, and we developed the software GeneOut to estimate a p-value for the test. Our approach maps trees into a multi-dimensional vector space and then applies support vector machines (SVMs) to measure the separation between two sets of pre-defined trees. We use a permutation test to assess the significance of the SVM separation. To demonstrate the performance of GeneOut, we applied it to the comparison of gene trees simulated within different species trees across a range of species tree depths. Applied directly to sets of simulated gene trees with large sample sizes, GeneOut was able to detect very small differences between two set of gene trees generated under different species trees. Our statistical test can also include tree reconstruction into its test framework through a variety of phylogenetic optimality criteria. When applied to DNA sequence data simulated from different sets of gene trees, results in the form of receiver operating characteristic (ROC) curves indicated that GeneOut performed well in the detection of differences between sets of trees with different distributions in a multi-dimensional space. Furthermore, it controlled false positive and false negative rates very well, indicating a high degree of accuracy. Conclusions The non-parametric nature of our statistical test provides fast and efficient analyses, and makes it an applicable test for any scenario where evolutionary or other factors can lead to trees with different multi-dimensional distributions. The software GeneOut is freely available under the GNU public license. PMID:22909268
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Koblinsky, Chester (Technical Monitor)
2001-01-01
A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel computer architecture has been implemented for the Poseidon ocean circulation model and tested with a Pacific Basin model configuration. There are about two million prognostic state-vector variables. Parallelism for the data assimilation step is achieved by regionalization of the background-error covariances that are calculated from the phase-space distribution of the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the background-error covariances are given compact support by means of a Hadamard (element by element) product with a three-dimensional canonical correlation function. The methodology and the MvEnKF configuration are discussed. It is shown that the regionalization of the background covariances; has a negligible impact on the quality of the analyses. The parallel algorithm is very efficient for large numbers of observations but does not scale well beyond 100 PEs at the current model resolution. On a platform with distributed memory, memory rather than speed is the limiting factor.
NASA Astrophysics Data System (ADS)
Mišković, Olivera; Olea, Rodrigo
2011-01-01
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso
2011-01-15
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, itmore » extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.« less
Lightweight In-Plane Actuated Deformable Mirrors for Space Telescopes
2006-09-01
dimensional beam-string and axisymmetric plate-membrane. The beam-string (a clamped beam simultaneously under an axial load ) is an important...Tensile load versus radius. . . . . . . . . . . . . . . . . . . . . . 175 7.4. Actuation voltage functions. . . . . . . . . . . . . . . . . . . . 179...membrane Asymptotic finite element Flint and De- noyer [45] 2003 In-plane Circular membrane Numerical least squares fit Actuators modelled as line loads
On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator
NASA Astrophysics Data System (ADS)
Korda, Milan; Mezić, Igor
2018-04-01
Extended dynamic mode decomposition (EDMD) (Williams et al. in J Nonlinear Sci 25(6):1307-1346, 2015) is an algorithm that approximates the action of the Koopman operator on an N-dimensional subspace of the space of observables by sampling at M points in the state space. Assuming that the samples are drawn either independently or ergodically from some measure μ , it was shown in Klus et al. (J Comput Dyn 3(1):51-79, 2016) that, in the limit as M→ ∞, the EDMD operator K_{N,M} converges to K_N, where K_N is the L_2(μ )-orthogonal projection of the action of the Koopman operator on the finite-dimensional subspace of observables. We show that, as N → ∞, the operator K_N converges in the strong operator topology to the Koopman operator. This in particular implies convergence of the predictions of future values of a given observable over any finite time horizon, a fact important for practical applications such as forecasting, estimation and control. In addition, we show that accumulation points of the spectra of K_N correspond to the eigenvalues of the Koopman operator with the associated eigenfunctions converging weakly to an eigenfunction of the Koopman operator, provided that the weak limit of the eigenfunctions is nonzero. As a by-product, we propose an analytic version of the EDMD algorithm which, under some assumptions, allows one to construct K_N directly, without the use of sampling. Finally, under additional assumptions, we analyze convergence of K_{N,N} (i.e., M=N), proving convergence, along a subsequence, to weak eigenfunctions (or eigendistributions) related to the eigenmeasures of the Perron-Frobenius operator. No assumptions on the observables belonging to a finite-dimensional invariant subspace of the Koopman operator are required throughout.
NASA Astrophysics Data System (ADS)
Mancho, Ana M.; Wiggins, Stephen; Curbelo, Jezabel; Mendoza, Carolina
2013-11-01
Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a ``heuristic argument'' that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field (``time averages''). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We thank CESGA for computing facilities. This research was supported by MINECO grants: MTM2011-26696, I-Math C3-0104, ICMAT Severo Ochoa project SEV-2011-0087, and CSIC grant OCEANTECH. SW acknowledges the support of the ONR (Grant No. N00014-01-1-0769).
Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Halem, Milton (Technical Monitor)
2000-01-01
We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.
Euclidean chemical spaces from molecular fingerprints: Hamming distance and Hempel's ravens.
Martin, Eric; Cao, Eddie
2015-05-01
Molecules are often characterized by sparse binary fingerprints, where 1s represent the presence of substructures and 0s represent their absence. Fingerprints are especially useful for similarity calculations, such as database searching or clustering, generally measuring similarity as the Tanimoto coefficient. In other cases, such as visualization, design of experiments, or latent variable regression, a low-dimensional Euclidian "chemical space" is more useful, where proximity between points reflects chemical similarity. A temptation is to apply principal components analysis (PCA) directly to these fingerprints to obtain a low dimensional continuous chemical space. However, Gower has shown that distances from PCA on bit vectors are proportional to the square root of Hamming distance. Unlike Tanimoto similarity, Hamming similarity (HS) gives equal weight to shared 0s as to shared 1s, that is, HS gives as much weight to substructures that neither molecule contains, as to substructures which both molecules contain. Illustrative examples show that proximity in the corresponding chemical space reflects mainly similar size and complexity rather than shared chemical substructures. These spaces are ill-suited for visualizing and optimizing coverage of chemical space, or as latent variables for regression. A more suitable alternative is shown to be Multi-dimensional scaling on the Tanimoto distance matrix, which produces a space where proximity does reflect structural similarity.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2002-08-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2005-11-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
Nonlinear heat transfer and structural analyses of SSME turbine blades
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; Kaufman, A.
1987-01-01
Three-dimensional nonlinear finite-element heat transfer and structural analyses were performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 material properties were considered for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress-strain histories were calculated using MARC finite-element computer code. The study was undertaken to assess the structural response of an SSME turbine blade and to gain greater understanding of blade damage mechanisms, convective cooling effects, and the thermal-mechanical effects.
SPAR data set contents. [finite element structural analysis system
NASA Technical Reports Server (NTRS)
Cunningham, S. W.
1981-01-01
The contents of the stored data sets of the SPAR (space processing applications rocket) finite element structural analysis system are documented. The data generated by each of the system's processors are stored in a data file organized as a library. Each data set, containing a two-dimensional table or matrix, is identified by a four-word name listed in a table of contents. The creating SPAR processor, number of rows and columns, and definitions of each of the data items are listed for each data set. An example SPAR problem using these data sets is also presented.
Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong
2014-01-01
We discuss and analyze an H 1-Galerkin mixed finite element (H 1-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H 1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H 1-GMFE method. Based on the discussion on the theoretical error analysis in L 2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H 1-norm. Moreover, we derive and analyze the stability of H 1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure. PMID:25184148
Scaling in biomechanical experimentation: a finite similitude approach.
Ochoa-Cabrero, Raul; Alonso-Rasgado, Teresa; Davey, Keith
2018-06-01
Biological experimentation has many obstacles: resource limitations, unavailability of materials, manufacturing complexities and ethical compliance issues; any approach that resolves all or some of these is of some interest. The aim of this study is applying the recently discovered concept of finite similitude as a novel approach for the design of scaled biomechanical experiments supported with analysis using a commercial finite-element package and validated by means of image correlation software. The study of isotropic scaling of synthetic bones leads to the selection of three-dimensional (3D) printed materials for the trial-space materials. These materials conforming to the theory are analysed in finite-element models of a cylinder and femur geometries undergoing compression, tension, torsion and bending tests to assess the efficacy of the approach using reverse scaling of the approach. The finite-element results show similar strain patterns in the surface for the cylinder with a maximum difference of less than 10% and for the femur with a maximum difference of less than 4% across all tests. Finally, the trial-space, physical-trial experimentation using 3D printed materials for compression and bending testing provides a good agreement in a Bland-Altman statistical analysis, providing good supporting evidence for the practicality of the approach. © 2018 The Author(s).
Inferring the Limit Behavior of Some Elementary Cellular Automata
NASA Astrophysics Data System (ADS)
Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.
Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.
Minimum Dimension of a Hilbert Space Needed to Generate a Quantum Correlation.
Sikora, Jamie; Varvitsiotis, Antonios; Wei, Zhaohui
2016-08-05
Consider a two-party correlation that can be generated by performing local measurements on a bipartite quantum system. A question of fundamental importance is to understand how many resources, which we quantify by the dimension of the underlying quantum system, are needed to reproduce this correlation. In this Letter, we identify an easy-to-compute lower bound on the smallest Hilbert space dimension needed to generate a given two-party quantum correlation. We show that our bound is tight on many well-known correlations and discuss how it can rule out correlations of having a finite-dimensional quantum representation. We show that our bound is multiplicative under product correlations and also that it can witness the nonconvexity of certain restricted-dimensional quantum correlations.
NASA Astrophysics Data System (ADS)
Qin, Shanlin; Liu, Fawang; Turner, Ian W.
2018-03-01
The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.
Analysis and test for space shuttle propellant dynamics
NASA Technical Reports Server (NTRS)
Berry, R. L.; Demchak, L. J.; Tegart, J. R.
1983-01-01
This report presents the results of a study to develop an analytical model capable of predicting the dynamic interaction forces on the Shuttle External Tank, due to large amplitude propellant slosh during RTLS separation. The report details low-g drop tower and KC-135 test programs that were conducted to investigate propellant reorientation during RTLS. In addition, the development of a nonlinear finite element slosh model (LAMPS2, two dimensional, and one LAMPS3, three dimensional) is presented. Correlation between the model and test data is presented as a verification of the modeling approach.