How to generate and interpret fire characteristics charts for surface and crown fire behavior
Patricia L. Andrews; Faith Ann Heinsch; Luke Schelvan
2011-01-01
A fire characteristics chart is a graph that presents primary related fire behavior characteristics-rate of spread, flame length, fireline intensity, and heat per unit area. It helps communicate and interpret modeled or observed fire behavior. The Fire Characteristics Chart computer program plots either observed fire behavior or values that have been calculated by...
Fire characteristics charts for fire behavior and U.S. fire danger rating
Faith Ann Heinsch; Pat Andrews
2010-01-01
The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating indices or primary surface or crown fire behavior characteristics. A desktop computer application has been developed to produce fire characteristics charts in a format suitable for inclusion in reports and presentations. Many options include change of scales, colors,...
How to generate and interpret fire characteristics charts for the U.S. fire danger rating system
Faith Ann Heinsch; Patricia L. Andrews; Deb Tirmenstein
2017-01-01
The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating System (NFDRS) indexes and components as well as primary surface or crown fire behavior characteristics. Computer software has been developed to produce fire characteristics charts for both fire danger and fire behavior in a format suitable for inclusion in reports and...
Charts for interpreting wildland fire behavior characteristics
Patricia L. Andrews; Richard C. Rothermel
1982-01-01
The fire characteristics chart is proposed as a graphical method ofpresenting two primary characteristics of fire behavior â spread rate and intensity. Its primary use is communicating and interpreting either site-specific predictions of fire behavior or National Fire-Danger Rating System (NFDRS) indexes and components. Rate of spread, heat per unit area, flame length...
Climatic and weather factors affecting fire occurrence and behavior
Randall P. Benson; John O. Roads; David R. Weise
2009-01-01
Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...
Aids to determining fuel models for estimating fire behavior
Hal E. Anderson
1982-01-01
Presents photographs of wildland vegetation appropriate for the 13 fuel models used in mathematical models of fire behavior. Fuel model descriptions include fire behavior associated with each fuel and its physical characteristics. A similarity chart cross-references the 13 fire behavior fuel models to the 20 fuel models used in the National Fire Danger Rating System....
Paul A. Werth; Brian E. Potter; Martin E. Alexander; Craig B. Clements; Miguel G. Cruz; Mark A. Finney; Jason M. Forthofer; Scott L. Goodrick; Chad Hoffman; W. Matt Jolly; Sara S. McAllister; Roger D. Ottmar; Russell A. Parsons
2016-01-01
The National Wildfire Coordinating Groupâs definition of extreme fire behavior indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/ spotting, presence of fire whirls, and strong convection column. Predictability is...
Synthesis of knowledge of extreme fire behavior: volume I for fire managers
Paul A. Werth; Brian E. Potter; Craig B. Clements; Mark A. Finney; Scott L. Goodrick; Martin E. Alexander; Miguel G. Cruz; Jason A. Forthofer; Sara S. McAllister
2011-01-01
The National Wildfire Coordinating Group definition of extreme fire behavior (EFB) indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/spotting, presence of fire whirls, and strong convection column. Predictability is...
Practical tools for assessing potential crown fire behavior and canopy fuel characteristics
Martin E. Alexander; Miguel G. Cruz
2015-01-01
This presentation recapitulates the main points made at a technology and information transfer workshop held in advance of the conference that provided overviews of two software applications, developed by the authors, for use in assessing crown fire behavior and canopy fuel characteristics. These are the Crown Fire Initiation and Spread (CFIS) software system and the...
Comparison of crown fire modeling systems used in three fire management applications
Joe H. Scott
2006-01-01
The relative behavior of surface-crown fire spread rate modeling systems used in three fire management applications-CFIS (Crown Fire Initiation and Spread), FlamMap and NEXUS- is compared using fire environment characteristics derived from a dataset of destructively measured canopy fuel and associated stand characteristics. Although the surface-crown modeling systems...
Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron
2011-01-01
A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...
Fire behavior sensor package remote trigger design
Dan Jimenez; Jason Forthofer; James Reardon; Bret Butler
2007-01-01
Fire behavior characteristics (such as temperature, radiant and total heat flux, 2- and 3-dimensional velocities, and air flow) are extremely difficult to measure insitu. Although insitu sensor packages are capable of such measurements in realtime, it is also essential to acquire video documentation as a means of better understanding the fire behavior data recorded by...
Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell
2017-01-01
Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...
Alicia L. Reiner; Nicole M. Vaillant; Scott N. Dailey
2012-01-01
The purpose of this study was to provide land managers with information on potential wildfire behavior and tree mortality associated with mastication and masticated/fire treatments in a plantation. Additionally, the effect of pulling fuels away from tree boles before applying fire treatment was studied in relation to tree mortality. Fuel characteristics and tree...
Physical characteristics of chamise as a wildland fuel
Clive M. Countryman; Charles W. Philpot
1970-01-01
Chamise shrubs in southern California were analyzed for the physical characteristics known to affect fire behavior, such as density, fuel loading, and fuel bed porosity. Considerable variation was found, but results are helpful in developing estimates of chamise fuel characteristics for fire control under field conditions.
Nomographs for estimating surface fire behavior characteristics
Joe H. Scott
2007-01-01
A complete set of nomographs for estimating surface fire rate of spread and flame length for the original 13 and new 40 fire behavior fuel models is presented. The nomographs allow calculation of spread rate and flame length for wind in any direction with respect to slope and allow for nonheading spread directions. Basic instructions for use are included.
Jan C. Thomas; Eric V. Mueller; Simon Santamaria; Michael Gallagher; Mohamad El Houssami; Alexander Filkov; Kenneth Clark; Nicholas Skowronski; Rory M. Hadden; William Mell; Albert Simeoni
2017-01-01
An experimental approach has been developed to quantify the characteristics and flux of firebrands during a management-scale wildfire in a pine-dominated ecosystem. By characterizing the local fire behavior and measuring the temporal and spatial variation in firebrand collection, the flux of firebrands has been related to the fire behavior for the first time. This...
David J. Augustine; Justin D. Derner; David P. Smith
2014-01-01
In semi-arid grasslands of the North American Great Plains, fire has traditionally been viewed as having few management applications, and quantitative measurements of fire behavior in the low fuel loads characteristic of this region are lacking. More recently, land managers have recognized potential applications of prescribed fire to control undesirable plant species...
Fuel Characteristic Classification System version 3.0: technical documentation
Susan J. Prichard; David V. Sandberg; Roger D. Ottmar; Ellen Eberhardt; Anne Andreu; Paige Eagle; Kjell Swedin
2013-01-01
The Fuel Characteristic Classification System (FCCS) is a software module that records wildland fuel characteristics and calculates potential fire behavior and hazard potentials based on input environmental variables. The FCCS 3.0 is housed within the Integrated Fuels Treatment Decision Support System (Joint Fire Science Program 2012). It can also be run from command...
Fire danger index efficiency as a function of fuel moisture and fire behavior.
Torres, Fillipe Tamiozzo Pereira; Romeiro, Joyce Machado Nunes; Santos, Ana Carolina de Albuquerque; de Oliveira Neto, Ricardo Rodrigues; Lima, Gumercindo Souza; Zanuncio, José Cola
2018-08-01
Assessment of the performance of forest fire hazard indices is important for prevention and management strategies, such as planning prescribed burnings, public notifications and firefighting resource allocation. The objective of this study was to evaluate the performance of fire hazard indices considering fire behavior variables and susceptibility expressed by the moisture of combustible material. Controlled burns were carried out at different times and information related to meteorological conditions, characteristics of combustible material and fire behavior variables were recorded. All variables analyzed (fire behavior and fuel moisture content) can be explained by the prediction indices. The Brazilian EVAP/P showed the best performance, both at predicting moisture content of the fuel material and fire behavior variables, and the Canadian system showed the best performance to predicting the rate of spread. The coherence of the correlations between the indices and the variables analyzed makes the methodology, which can be applied anywhere, important for decision-making in regions with no records or with only unreliable forest fire data. Copyright © 2018 Elsevier B.V. All rights reserved.
Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla
2011-01-01
Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...
Reformulation of Rothermel's wildland fire behaviour model for heterogeneous fuelbeds.
David V. Sandberg; Cynthia L. Riccardi; Mark D. Schaaf
2007-01-01
Abstract: The Fuel Characteristic Classification System (FCCS) includes equations that calculate energy release and one-dimensional spread rate in quasi-steady-state fires in heterogeneous but spatially uniform wildland fuelbeds, using a reformulation of the widely used Rothermel fire spread model. This reformulation provides an automated means to predict fire behavior...
Burning behavior within a seat armrest cavity
DOT National Transportation Integrated Search
2002-09-01
The purpose of this technical note is to document the results of fire tests conducted to examine the characteristics of fire that may occur in the cavity of an aircraft seat armrest and the fire-containment capacity of the cavity. In all the tests th...
Fire and Children: Learning Survival Skills.
ERIC Educational Resources Information Center
Block, Jeanne H.; And Others
This paper describes a study designed to investigate: (1) children's interest in, anxieties about, attitudes toward, and reactions to fire; (2) the relationship of particular personality characteristics to attitudes about and behavior with potentially hazardous fire material; (3) socialization techniques and teaching strategies of mothers in…
Moisture dynamics in masticated fuelbeds: A preliminary analysis
Jesse Kreye; J. Morgan Varner
2007-01-01
Mastication has become a popular fuels treatment in the Western United States, but predicting subsequent fire behavior and effects has proven difficult. Fire behavior and effects in masticated fuelbeds have been more intense and erratic in comparison with model predictions. While various particle or fuelbed characteristics in these fuels may contribute to the...
Chapter 2: Effects of fire on nonnative invasive plants and invasibility of wildland ecosystems
Kristin Zouhar; Jane Kapler Smith; Steve Sutherland
2008-01-01
Considerable experimental and theoretical work has been done on general concepts regarding nonnative species and disturbance, but experimental research on the effects of fire on nonnative invasive species is sparse. We begin this chapter by connecting fundamental concepts from the literature of invasion ecology to fire. Then we examine fire behavior characteristics,...
Carl W. Adkins
1995-01-01
The Fire Image Analysis System is a tool for quantifying flame geometry and relative position at selected points along a spreading line fire. At present, the system requires uniform terrain (constant slope). The system has been used in field and laboratory studies for determining flame length, depth, cross sectional area, and rate of spread.
Fire Setting Behavior in a Child Welfare System: Prevalence, Characteristics and Co-Occurring Needs
ERIC Educational Resources Information Center
Lyons, John S.; McClelland, Gary; Jordan, Neil
2010-01-01
Fire setting is one of the most challenging behaviors for the child welfare system. However, existing knowledge about its prevalence and correlates has been limited to research on single programs. The Illinois Department of Children and Family Services initiated a uniform assessment process at entry into state custody using a trauma-informed…
Control effects of stimulus paradigms on characteristic firings of parkinsonism
NASA Astrophysics Data System (ADS)
Zhang, Honghui; Wang, Qingyun; Chen, Guanrong
2014-09-01
Experimental studies have shown that neuron population located in the basal ganglia of parkinsonian primates can exhibit characteristic firings with certain firing rates differing from normal brain activities. Motivated by recent experimental findings, we investigate the effects of various stimulation paradigms on the firing rates of parkinsonism based on the proposed dynamical models. Our results show that the closed-loop deep brain stimulation is superior in ameliorating the firing behaviors of the parkinsonism, and other control strategies have similar effects according to the observation of electrophysiological experiments. In addition, in conformity to physiological experiments, we found that there exists optimal delay of input in the closed-loop GPtrain|M1 paradigm, where more normal behaviors can be obtained. More interestingly, we observed that W-shaped curves of the firing rates always appear as stimulus delay varies. We furthermore verify the robustness of the obtained results by studying three pallidal discharge rates of the parkinsonism based on the conductance-based model, as well as the integrate-and-fire-or-burst model. Finally, we show that short-term plasticity can improve the firing rates and optimize the control effects on parkinsonism. Our conclusions may give more theoretical insight into Parkinson's disease studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.
Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuelmore » and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.« less
FuelCalc: A Method for Estimating Fuel Characteristics
Elizabeth Reinhardt; Duncan Lutes; Joe Scott
2006-01-01
This paper describes the FuelCalc computer program. FuelCalc is a tool to compute surface and canopy fuel loads and characteristics from inventory data, to support fuel treatment decisions by simulating effects of a wide range of silvicultural treatments on surface fuels and canopy fuels, and to provide linkages to stand visualization, fire behavior and fire effects...
What kind of cutting and thinning can prevent crown fires?
Mick Harrington
2008-01-01
Many land managers are attempting to lessen the probability of severe wildfire behavior and impacts, especially near communities, by manipulating canopy and surface fuel characteristics. Various interest groups have questioned the value of fuels treatments. In reality, apart from fire exposure when a real fire went through a treated stand, effectiveness of fuel...
Physical characteristics of shrub and conifer fuels for fire behavior models
Jonathan R. Gallacher; Thomas H. Fletcher; Victoria Lansinger; Sydney Hansen; Taylor Ellsworth; David R. Weise
2017-01-01
The physical properties and dimensions of foliage are necessary inputs for some fire spread models. Currently, almost no data exist on these plant characteristics to fill this need. In this report, we measured the physical properties and dimensions of the foliage from 10 live shrub and conifer fuels throughout a 1-year period. We developed models to predict relative...
Evaluating crown fire rate of spread predictions from physics-based models
C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont
2015-01-01
Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...
Potential fire behavior in California: an atlas and guide for forest and brushland managers
Bill C. Ryan
1984-01-01
Potential fire characteristics can be estimated as functions of weather, fuel, and terrain slope. Such information is needed by forest and other land managers--especially for anticipating fire suppression needs and planning prescribed burns. To provide this information, an Atlas has been developed for California. The Atlas includes statistical analyses of spread...
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2015-01-01
Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...
Mark H. Huff; Roger D. Ottmar; Ernesto Alvarado; Robert E. Vihnanek; John F. Lehmkuhl; Paul F. Hessburg; Richard L. Everett
1995-01-01
We compared the potential fire behavior and smoke production of historical and current time periods based on vegetative conditions in forty-nine 5100- to 13 5OO-hectare watersheds in six river basins in eastern Oregon and Washington. Vegetation composition, structure, and patterns were attributed and mapped from aerial photographs taken from 1932 to 1959 (historical)...
Del Bove, Giannetta; Caprara, Gian Vittorio; Pastorelli, Concetta; Paciello, Marinella
2008-06-01
Despite the fact that juvenile fire involvement is associated with significant injuries and is highly correlated with diverse maladjustment characteristics, firesetting has never been empirically evaluated in Italy. Participants included 567 youth between 11 and 18 years of age. This investigation attempted to address four gaps in the literature. The first objective was to examine how common firesetting behavior is among Italian youth. The second goal was to explore whether in Italy firesetting is associated with other types of psychopathology and later maladjustment. Thirdly, this study sought to extend our knowledge of the personal characteristics of firesetters. Finally, the relationship between firesetting and aggression remains an empirical question. Results suggested that almost one in three Italian youth reported engaging in fire involvement. Moreover, firesetting in Italian youth is associated with significant levels of antisocial behavior and psychopathology. In fact, firesetters-only demonstrated higher levels of most measures of maladjustment than did aggressive-only youth. Finally, the findings of this study suggest that aggressive firesetters are not at higher risk than nonaggressive firesetters. Instead, fire involvement appears to be the most important variable when predicting serious behavioral difficulties and anti-sociality. This highlights the importance of fire involvement in both the assessment and prediction of antisocial behavior and psychosocial adjustment in adolescence.
Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands
NASA Astrophysics Data System (ADS)
Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.
2012-04-01
Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using BEHAVE fire behavior prediction system (Andrews, 1989) and experimental fuel data. Fire behavior was simulated by setting different weather scenarios representing the most frequent summer meteorological conditions. The simulation outputs (fireline intensity, rate of spread, flame length) were then analyzed for clustering the different fuel types in relation to their potential fire behavior. The results of this analysis can be used to produce fire behavior fuel maps that are important tools in evaluating fire hazard and risk for land management planning, locating and rating fuel treatments, and aiding in environmental assessments and fire danger programs modeling. This work is supported by FUME Project FP7-ENV-2009-1, Grant Agreement Number 243888 and Proterina-C Project, EU Italia-Francia Marittimo 2007-2013 Programme.
A bio-inspired auditory perception model for amplitude-frequency clustering (keynote Paper)
NASA Astrophysics Data System (ADS)
Arena, Paolo; Fortuna, Luigi; Frasca, Mattia; Ganci, Gaetana; Patane, Luca
2005-06-01
In this paper a model for auditory perception is introduced. This model is based on a network of integrate-and-fire and resonate-and-fire neurons and is aimed to control the phonotaxis behavior of a roving robot. The starting point is the model of phonotaxis in Gryllus Bimaculatus: the model consists of four integrate-and-fire neurons and is able of discriminating the calling song of male cricket and orienting the robot towards the sound source. This paper aims to extend the model to include an amplitude-frequency clustering. The proposed spiking network shows different behaviors associated with different characteristics of the input signals (amplitude and frequency). The behavior implemented on the robot is similar to the cricket behavior, where some frequencies are associated with the calling song of male crickets, while other ones indicate the presence of predators. Therefore, the whole model for auditory perception is devoted to control different responses (attractive or repulsive) depending on the input characteristics. The performance of the control system has been evaluated with several experiments carried out on a roving robot.
Faunal responses to fire in chaparral and sage scrub in California, USA
van Mantgem, Elizabeth; Keeley, Jon E.; Witter, Marti
2015-01-01
Impact of fire on California shrublands has been well studied but nearly all of this work has focused on plant communities. Impact on and recovery of the chaparral fauna has received only scattered attention; this paper synthesizes what is known in this regard for the diversity of animal taxa associated with California shrublands and outlines the primary differences between plant and animal responses to fire. We evaluated the primary faunal modes of resisting fire effects in three categories: 1) endogenous survival in a diapause or diapause-like stage, 2) sheltering in place within unburned refugia, or 3) fleeing and recolonizing. Utilizing these patterns in chaparral and sagescrub, as well as some studies on animals in other mediterranean-climate ecosystems, we derived generalizations about how plants and animals differ in their responses to fire impacts and their post fire recovery. One consequence of these differences is that variation in fire behavior has a much greater potential to affect animals than plants. For example, plants recover from fire endogenously from soil-stored seeds and resprouts, so fire size plays a limited role in determining recovery patterns. However, animals that depend on recolonization of burned sites from metapopulations may be greatly affected by fire size. Animal recolonization may also be greatly affected by regional land use patterns that affect colonization corridors, whereas such regional factors play a minimal role in plant community recovery. Fire characteristics such as rate of spread and fire intensity do not appear to play an important role in determining patterns of chaparral and sage scrub plant recovery after fire. However, these fire behavior characteristics may have a profound role in determining survivorship of some animal populations as slow-moving, smoldering combustion may limit survivorship of animals in burrows, whereas fast-moving, high intensity fires may affect survivorship of animals in above ground refugia or those attempting to flee. Thus, fire regime characteristics may have a much greater effect on postfire recovery of animal communities than plant communities in these shrubland ecosystems.
Fire control method and analytical model for large liquid hydrocarbon pool fires
NASA Technical Reports Server (NTRS)
Fenton, D. L.
1986-01-01
The dominate parameter governing the behavior of a liquid hydrocarbon (JP-5) pool fire is wind speed. The most effective method of controlling wind speed in the vicinity of a large circular (10 m dia.) pool fire is a set of concentric screens located outside the perimeter. Because detailed behavior of the pool fire structure within one pool fire diameter is unknown, an analytical model supported by careful experiments is under development. As a first step toward this development, a regional pool fire model was constructed for the no-wind condition consisting of three zones -- liquid fuel, combustion, and plume -- where the predicted variables are mass burning rate and characteristic temperatures of the combustion and plume zones. This zone pool fire model can be modified to incorporate plume bending by wind, radiation absorption by soot particles, and a different ambient air flow entrainment rate. Results from the zone model are given for a pool diameter of 1.3 m and are found to reproduce values in the literature.
NASA Astrophysics Data System (ADS)
Seaby, L. P.; Tague, C. L.; Hope, A. S.
2006-12-01
The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
Progress in Fire Detection and Suppression Technology for Future Space Missions
NASA Technical Reports Server (NTRS)
Friedman, Robert; Urban, David L.
2000-01-01
Fire intervention technology (detection and suppression) is a critical part of the strategy of spacecraft fire safety. This paper reviews the status, trends, and issues in fire intervention, particularly the technology applied to the protection of the International Space Station and future missions beyond Earth orbit. An important contribution to improvements in spacecraft fire safety is the understanding of the behavior of fires in the non-convective (microgravity) environment of Earth-orbiting and planetary-transit spacecraft. A key finding is the strong influence of ventilation flow on flame characteristics, flammability limits and flame suppression in microgravity. Knowledge of these flow effects will aid the development of effective processes for fire response and technology for fire suppression.
Pollinger, Joyce; Samuels, Laura; Stadolnik, Robert
2005-01-01
Juvenile firesetting behavior has received relatively little research attention and previous attempts to systematically classify this heterogeneous population of children has been only partially successful. Currently there is no literature available that defines treatment and intervention needs of adolescents in residential treatment with problematic firesetting behavior and whether these needs differ from their outpatient cohorts. Data were gathered from a residential (N=17) and outpatient (N=30) sample detailing firesetting history, behavioral functioning, aggression, and personality traits associated with behavioral difficulties. Study subjects were asked to complete the Youth Self Report (Achenbach), Aggression Questionnaire, and Jesness Inventory and to participate in a structured firesetting history interview by project directors. Parents/guardians were asked to complete a Child Behavior Checklist (Achenbach). Adolescents in residential care were significantly more likely to come from a single-parent home, display increased delinquent behaviors, greater depressive symptoms, and report significantly more aggressive thoughts and attitudes than those in outpatient settings. Few differences were found on personality characteristics associated with behavior and conduct problems and few differences were found relative to fire history and firesetting characteristics. Implications for treatment and intervention within a residential setting are discussed as well as factors possibly associated with delaying and/or avoiding initial residential placement.
Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.
2012-01-01
In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268
Karen A. Koestner; Daniel G. Neary; Gerald J. Gottfired; Ruben Morales
2008-01-01
Oak-savannas and woodlands comprise over 80,000 km2 (31,000 mi2) in the mountains and high valleys of the southwestern United States and northern Mexico (Figure 1). Fire, which was once the most important natural disturbance in this system, has been excluded due to over-grazing and fire suppression practices. This has resulted in ecosystem changes and fuel...
A plausible neural circuit for decision making and its formation based on reinforcement learning.
Wei, Hui; Dai, Dawei; Bu, Yijie
2017-06-01
A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control. Finally, this study also helps establish a transitional bridge between the microscopic activity of the nervous system and macroscopic animal behavior.
Clarifying evacuation options through fire behavior and traffic modeling
Carol L. Rice; Ronny J. Coleman; Mike Price
2011-01-01
Communities are becoming increasingly concerned with the variety of choices related to wildfire evacuation. We used ArcView with Network Analyst to evaluate the different options for evacuations during wildfire in a case study community. We tested overlaying fire growth patterns with the road network and population characteristics to determine recommendations for...
Barton D. Clinton; James M. Vose; Wayne T. Swank; Erik C. Berg; David L. Loftis
1998-01-01
We characterized tire behavior and fuel consumption resulting from an understory prescribed burn in a mixed eastern white pine-hardwood stand in the Southern Appalachians. These stands were used for the treatment. Flame lengths, ranging from 0.3 to 1.5 meters (m) for backing fires and from 1.2 to 4.5 m for head fires, reached maximum heights where evergreen understory...
Ramanathan, Kiruthika; Ning, Ning; Dhanasekar, Dhiviya; Li, Guoqi; Shi, Luping; Vadakkepat, Prahlad
2012-08-01
Our paper explores the interaction of persistent firing axonal and presynaptic processes in the generation of short term memory for habituation. We first propose a model of a sensory neuron whose axon is able to switch between passive conduction and persistent firing states, thereby triggering short term retention to the stimulus. Then we propose a model of a habituating synapse and explore all nine of the behavioral characteristics of short term habituation in a two neuron circuit. We couple the persistent firing neuron to the habituation synapse and investigate the behavior of short term retention of habituating response. Simulations show that, depending on the amount of synaptic resources, persistent firing either results in continued habituation or maintains the response, both leading to longer recovery times. The effectiveness of the model as an element in a bio-inspired memory system is discussed.
Wildland Fire Forecasting: Predicting Wildfire Behavior, Growth, and Feedbacks on Weather
NASA Astrophysics Data System (ADS)
Coen, J. L.
2005-12-01
Recent developments in wildland fire research models have represented more complex of fire behavior. The cost has been to increase the computational requirements. When operational constraints are included, such as the need to produce such forecasts faster than real time, the challenge becomes a balance of how much complexity (with corresponding gains in realism) and accuracy can be achieved in producing the quantities of interest while meeting the specified operational constraints. Current field tools are calculator or Palm-Pilot based algorithms such as BEHAVE and BEHAVE Plus that produce timely estimates of instantaneous fire spread rates, flame length, and fire intensity at a point using readily estimated inputs of fuel model, terrain slope, and atmospheric wind speed at a point. At the cost of requiring a PC and slower calculation, FARSITE represents two-dimensional fire spread and adds capabilities including a parameterized representation of crown fire ignition, This work describes how a coupled atmosphere-fire model previously used as a research tool has been adapted for production of real-time forecasts of fire growth and its interactions with weather over a domain focusing on Colorado during summer 2004. The coupled atmosphere-wildland fire-environment (CAWFE) model composed of a 3-dimensional atmospheric prediction model that has been two-way coupled with an empirical fire spread model. The models are connected in that atmospheric conditions (and fuel conditions influenced by the atmosphere) affect the rate and direction of fire propagation, which releases sensible and latent heat (i.e. thermal and water vapor fluxes) to the atmosphere that in turn alter the winds and atmospheric structure around the fire. Thus, it can represent time and spatially-varying weather and the fire feedbacks on the atmospheric which are at the heart of sudden changes in fire behavior and examples of extreme fire behavior such as blow ups, which are now not predictable with current tools. Thus, although this work shows that is it possible to perform more detailed simulations in real time, fire behavior forecasting remains a challenging problem. This is due to challenges in weather prediction, particularly at fine spatial and temporal scales considered "nowcasting" (0-6 hrs), uncertainties in fire behavior even with known meteorological conditions, limitations in quantitative datasets on fuel properties such as fuel loading, and verification. This work describes efforts to advance these capabilities with input from remote sensing data on fuel characteristics and dynamic steering and object-based verification with remotely sensed fire perimeters.
NASA Astrophysics Data System (ADS)
Tang, Wenfu; Arellano, Avelino. F.; Raman, Aishwarya
2015-04-01
Tropical forest fires significantly impact atmospheric composition and regional and global climate. In particular, fires in Equatorial Southern Africa (ESA) and Amazon comprise the two largest contributors to fire emissions of chemically and radiatively-active atmospheric constituents (such as CO, BC, CO2) across the globe. Here, we investigate the spatiotemporal trends in fire characteristics between these regions using combustion signatures observed from space. Our main goals are: 1) To identify key relationships between the trends in co-emitted constituents across these regions, and, 2) To explore linkages of the observed trends in fire characteristics with the main drivers of change such as meteorology, fire practice, development patterns, and ecosystem feedbacks. We take advantage of the similarity in latitude and land area between these regions in understanding some of these drivers. Our approach begins with a multi-species analysis of trends in the observed abundance of CO, NO2, and aerosols over these regions and across the time period 2004 to 2014. We use multi-spectral retrievals of CO from Measurements Of Pollution In The Troposphere (MOPITT), tropospheric column retrievals of NO2 from Ozone Monitoring Instrument (OMI), and aerosol optical depth retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The long records from these retrievals provide a unique opportunity to study atmospheric composition across the most recent decade. While several studies in the past have reported trends over these regions, most of these studies have focused on a particular constituent. A unique aspect of this work involves understanding covariations in co-emitted constituents to provide a more comprehensive look at fire characteristics and behavior, which are yet to be fully understood. Our initial results show that the annual average of CO for ESA (~115 ppbv) is greater than that of Amazon (110 ppbv). This pattern is also seen in NO2 (ESA : ~215 pptv ; Amazon : ~155 pptv). The standard deviation of CO is higher in Amazon (50 ppbv) when compared to ESA (35 ppbv) whereas NO2 shows similar standard deviation in Amazon and ESA (70-90 pptv). We also find changes in the timing patterns of the large fire events across these regions. Since this has important implications to changes in fire behavior (smoldering and flaming phase), we also investigated retrievals of fire radiative power (FRP) from MODIS and information on land cover change and deforestation. We find FRP patterns consistent with our results. Finally, we will explore other measurements available during this period (aircraft field campaigns and in-situ observations) and compare with current fire emission models, such as the Global Fire Emission Database (GFED) to test the robustness of our findings. We note that this exploratory work provides a unique perspective of fire characteristics that will be useful to improve predictive capability of fire emission and atmospheric models for the Amazon and ESA.
Compressive behavior of energy-saving fired facing brick composite wall
NASA Astrophysics Data System (ADS)
Guo, Kai; Wu, Cai
2018-03-01
The energy-saving fired facing brick composite wall has a broad development prospects due to its merits of thermal insulation, energy conservation, beautiful, and natural. The construction and characteristics of this wall are introduced and analyzed in this paper. Experimental studies of samples are also conducted to investigate its compressive performance. The results show that the energy-saving fired facing brick composite wall has high compressive capacity. It has considerable application prospect, the study in this paper provides foundation to further studies.
Canadian and Siberian Boreal Fire Activity during ARCTAS Spring and Summer Phases
NASA Astrophysics Data System (ADS)
Stocks, B. J.; Fromm, M. D.; Soja, A. J.; Servranckx, R.; Lindsey, D.; Hyer, E.
2009-12-01
The summer phase of ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) was designed specifically around forest fire activity in the Canadian boreal forest, and located in areas of northern Canada where summer forest fires are ubiquitous. Lightning fires are most often allowed to burn naturally in these regions, and a number of large free-burning fires in northern Saskatchewan in late June/early July 2008 provided excellent targets during the summer phase of ARCTAS. Smoke generated by a large number of early spring fires in Kazakhstan and southern Siberia unexpectedly made a significant contribution to arctic haze during the Alaska-based spring phase of ARCTAS, Numerous smoke plumes were sampled during the spring phase of ARCTAS, creating interest in the origin and characteristics of the fires in the source regions of East Asia. This presentation is designed to connect aircraft and satellite smoke chemistry/transport measurements with ground-based measurements of fire activity during the spring and summer phases of ARCTAS. The Canadian Forest Fire Danger Rating System (CFFDRS) is used to determine forest fire danger conditions in regions of fire activity, and these measurements are in turn used to project fire behavior characteristics. Fuel consumption, spread rates, and frontal fire intensity are calculated using the CFFDRS. Energy release rates at ground level are related to convection/smoke column development and smoke injection heights.
Jack Pine and Aspen Forest Floors in Northeastern Minnesota
Robert M. Loomis
1977-01-01
Characteristics of upland forest floors under mature jack pine and aspen in northeastern Minnesota were investigated. These fuel measurements were needed as inputs for fire behavior prediction models -- useful for fire management decisions. The forest floor weight averaged 33,955 kg/ha and depth averaged 7.1 cm. Bulk density averaged 17 kg/m3 for the L (litter)...
Effects of fire behavior on prescribed fire smoke characteristics: A case study [Chapter 50
Wayne Einfeld; Darold E. Ward; Colin Hardy
1991-01-01
Biomass burning on a global scale injects a substantial quantity of gaseous and particulate matter emissions into the troposphere. Some of these combustion products are known to accumulate in the atmosphere and are implicated in observed changes in tropospheric composition and chemistry. The practice of open burning of biomass has come under close examination as a...
Fire risk in San Diego County, California: A weighted Bayesian model approach
Kolden, Crystal A.; Weigel, Timothy J.
2007-01-01
Fire risk models are widely utilized to mitigate wildfire hazards, but models are often based on expert opinions of less understood fire-ignition and spread processes. In this study, we used an empirically derived weights-of-evidence model to assess what factors produce fire ignitions east of San Diego, California. We created and validated a dynamic model of fire-ignition risk based on land characteristics and existing fire-ignition history data, and predicted ignition risk for a future urbanization scenario. We then combined our empirical ignition-risk model with a fuzzy fire behavior-risk model developed by wildfire experts to create a hybrid model of overall fire risk. We found that roads influence fire ignitions and that future growth will increase risk in new rural development areas. We conclude that empirically derived risk models and hybrid models offer an alternative method to assess current and future fire risk based on management actions.
NASA Astrophysics Data System (ADS)
Kantzas, Euripides; Quegan, Shaun
2015-04-01
Fire constitutes a violent and unpredictable pathway of carbon from the terrestrial biosphere into the atmosphere. Despite fire emissions being in many biomes of similar magnitude to that of Net Ecosystem Exchange, even the most complex Dynamic Vegetation Models (DVMs) embedded in IPCC General Circulation Models poorly represent fire behavior and dynamics, a fact which still remains understated. As DVMs operate on a deterministic, grid cell-by-grid cell basis they are unable to describe a host of important fire characteristics such as its propagation, magnitude of area burned and stochastic nature. Here we address these issues by describing a model-independent methodology which assimilates Earth Observation (EO) data by employing image analysis techniques and algorithms to offer a realistic fire disturbance regime in a DVM. This novel approach, with minimum model restructuring, manages to retain the Fire Return Interval produced by the model whilst assigning pragmatic characteristics to its fire outputs thus allowing realistic simulations of fire-related processes such as carbon injection into the atmosphere and permafrost degradation. We focus our simulations in the Arctic and specifically Canada and Russia and we offer a snippet of how this approach permits models to engage in post-fire dynamics hitherto absent from any other model regardless of complexity.
Scholl, Andrew E; Taylor, Alan H
2010-03-01
Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.
ERIC Educational Resources Information Center
Pollinger, Joyce; Samuels, Laura; Stadolnik, Robert
2005-01-01
Juvenile firesetting behavior has received relatively little research attention and previous attempts to systematically classify this heterogeneous population of children has been only partially successful. Currently there is no literature available that defines treatment and intervention needs of adolescents in residential treatment with…
Leaching and geochemical behavior of fired bricks containing coal wastes.
Taha, Yassine; Benzaazoua, Mostafa; Edahbi, Mohamed; Mansori, Mohammed; Hakkou, Rachid
2018-03-01
High amounts of mine wastes are continuously produced by the mining industry all over the world. Recycling possibility of some wastes in fired brick making has been investigated and showed promising results. However, little attention is given to the leaching behavior of mine wastes based fired bricks. The objective of this paper is to evaluate the geochemical behavior of fired bricks containing different types of coal wastes. The leachates were analyzed for their concentration of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn and sulfates using different leaching tests; namely Tank Leaching tests (NEN 7375), Toxicity Characteristic Leaching Procedure (TCLP) and pH dependence test (EPA, 1313). The results showed that the release of constituents of potential interest was highly reduced after thermal treatment and were immobilized within the glassy matrix of the fired bricks. Moreover, it was also highlighted that the final pH of all fired samples changed and stabilized around 8-8.5 when the initial pH of leaching solution was in the range 2.5-11.5. The release of heavy metals and metalloids (As) tended to decrease with the increase of pH from acidic to alkaline solutions while Mo displayed a different trend. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pastor, E.; Tarragó, D.; Planas, E.
2012-04-01
Wildfire theoretical modeling endeavors predicting fire behavior characteristics, such as the rate of spread, the flames geometry and the energy released by the fire front by applying the physics and the chemistry laws that govern fire phenomena. Its ultimate aim is to help fire managers to improve fire prevention and suppression and hence reducing damage to population and protecting ecosystems. WFDS is a 3D computational fluid dynamics (CFD) model of a fire-driven flow. It is particularly appropriate for predicting the fire behaviour burning through the wildland-urban interface, since it is able to predict the fire behaviour in the intermix of vegetative and structural fuels that comprise the wildland urban interface. This model is not suitable for operational fire management yet due to computational costs constrains, but given the fact that it is open-source and that it has a detailed description of the fuels and of the combustion and heat transfer mechanisms it is currently a suitable system for research purposes. In this paper we present the most important characteristics of the WFDS simulation tool in terms of the models implemented, the input information required and the outputs that the simulator gives useful for understanding fire phenomena. We briefly discuss its advantages and opportunities through some simulation exercises of Mediterranean ecosystems.
Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter.
Meinier, Romain; Sonnier, Rodolphe; Zavaleta, Pascal; Suard, Sylvain; Ferry, Laurent
2018-01-15
Fires involving electrical cables are one of the main hazards in Nuclear Power Plants (NPPs). Cables are complex assemblies including several polymeric parts (insulation, bedding, sheath) constituting fuel sources. This study provides an in-depth characterization of the fire behavior of two halogen-free flame retardant cables used in NPPs using the cone calorimeter. The influence of two key parameters, namely the external heat flux and the spacing between cables, on the cable fire characteristics is especially investigated. The prominent role of the outer sheath material on the ignition and the burning at early times was highlighted. A parameter of utmost importance called transition heat flux, was identified and depends on the composition and the structure of the cable. Below this heat flux, the decomposition is limited and concerns only the sheath. Above it, fire hazard is greatly enhanced because most often non-flame retarded insulation part contributes to heat release. The influence of spacing appears complex, and depends on the considered fire property. Copyright © 2017 Elsevier B.V. All rights reserved.
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2013-01-01
Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel...
[Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors].
Wang, San; Niu, Shu-Kui; Li, De; Wang, Jing-Hua; Chen, Feng; Sun, Wu
2013-02-01
In order to understand the effects of fuel loadings spatial distribution on forest fire kinds and behaviors, the canopy fuels and floor fuels of Pinus yunnanensis forests with different canopy density, diameter at breast height (DBH), tree height, and stand age and at different altitude, slope grade, position, and aspect in Southwest China were taken as test objects, with the fuel loadings and their spatial distribution characteristics at different vertical layers compared and the fire behaviors in different stands analyzed. The relationships between the fuel loadings and the environmental factors were also analyzed by canonical correspondence analysis (CCA). In different stands, there existed significant differences in the vertical distribution of fuels. Pinus yunnanensis-Qak-Syzygium aromaticum, Pinus yunnanensis-oak, and Pinus yunnanensis forests were likely to occur floor fire but not crown fire, while Pinus yunnanensis-Platycladus orientalis, Pinus yunnanensis-Keteleeria fortune, and Keteleeria fortune-Pinus yunnanensis were not only inclined to occur floor fire, but also, the floor fire could be easily transformed into crown fire. The crown fuels were mainly affected by the stand age, altitude, DBH, and tree height, while the floor fuels were mainly by the canopy density, slope grade, altitude, and stand age.
Robert E. Keane
2006-01-01
The Fire Behavior (FB) method is used to describe the behavior of the fire and the ambient weather and fuel conditions that influence the fire behavior. Fire behavior methods are not plot based and are collected by fire event and time-date. In general, the fire behavior data are used to interpret the fire effects documented in the plot-level sampling. Unlike the other...
Unraveling the Complexity of Wildland Urban Interface Fires.
Mahmoud, Hussam; Chulahwat, Akshat
2018-06-18
Recent wildland urban interface fires have demonstrated the unrelenting destructive nature of these events and have called for an urgent need to address the problem. The Wildfire paradox reinforces the ideology that forest fires are inevitable and are actually beneficial; therefore focus should to be shifted towards minimizing potential losses to communities. This requires the development of vulnerability-based frameworks that can be used to provide holistic understanding of risk. In this study, we devise a probabilistic approach for quantifying community vulnerability to wildfires by applying concepts of graph theory. A directed graph for community in question is developed to model wildfire inside a community by incorporating different fire propagation modes. The model accounts for relevant community-specific characteristics including wind conditions, community layout, individual structural features, and the surrounding wildland vegetation. We calibrate the framework to study the infamous 1991 Oakland fire in an attempt to unravel the complexity of community fires. We use traditional centrality measures to identify critical behavior patterns and to evaluate the effect of fire mitigation strategies. Unlike current practice, the results are shown to be community-specific with substantial dependency of risk on meteorological conditions, environmental factors, and community characteristics and layout.
Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, D.E.; Susott, R.A.; Babbitt, R.E.
1992-09-20
Fires of the tropical forests and savannas are a major source of particulate matter and trace gases affecting the atmosphere globally. A paucity of quantitative information exists for these ecosystems with respect to fuel biomass, smoke emissions, and fire behavior conditions affecting the release of emissions. Five test fires were performed during August and September 1990 in the cerrado (savannalike region) in central Brazil (three fires) and tropical moist forest (two fires) in the eastern Amazon. This paper details the gases released, the ratios of the gases to each other and to particulate matter, fuel loads and the fraction consumedmore » (combustion factors), and the fire behavior associated with biomass consumption. Models are presented for evaluating emission factors for CH{sub 4}, CO{sub 2}, CO, H{sub 2}, and particles less than 2.5 {mu}m diameter (PM2.5) as a function of combustion efficiency. The ratio of carbon released as CO{sub 2} (combustion efficiency) for the cerrado fires averaged 0.94 and for the deforestation fires it decreased from 0.88 for the flaming phase to <0.80 during the smoldering phase of combustion. For tropical ecosystems, emissions of most products of incomplete combustion are projected to be lower than previous estimates for savanna ecosystems and somewhat higher for fires used for deforestation purposes. 59 refs., 9 figs., 10 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne
2012-01-01
Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting thosemore » into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior parameters represent reasonably identifiable stand conditions, being: (1) pine dominated stands with more litter and down woody debriscomponents than other stands, (2) hardwood and pine stands with no shrubs, (3) hardwood dominated stands with low shrub and high non-woody biomass and high down woody debris, (4) stands with high grass and forb (i.e., non-woody) biomass as well as substantial shrub biomass, (5) stands with both high shrub and litter biomass, (6) pine-mixed hardwood stands with moderate litter biomass and low shrub biomass, and (7) baldcypress-tupelo stands. Models representing these stand clusters generated flame lengths from 0.6 to 2.3 musing a 30 km h{sub 1} wind speed and fireline intensities of 100-1500 kW m{sub 1} that are typical within the range of experience on this landscape. The fuel models ranked 1 < 2 < 7 < 5 < 4 < 3 < 6 in terms of both flame length and fireline intensity. The method allows for ecologically complex data to be utilized in order to create a landscape representative of measured fuel conditions and to create models that interface with geospatial fire models.« less
Guan, Di; Lu, Yong-Yue; Liao, Xiao-Lan; Wang, Lei; Chen, Li
2014-12-10
A characteristic behavior in ants is to move rapidly to emission sources of alarm pheromones. The addition of ant alarm pheromones to bait is expected to enhance its attractiveness. To search for candidate compounds for bait enhancement in fire ant control, 13 related alkylpyrazine analogues in addition to synthetic alarm pheromone component were evaluated for electroantennogram (EAG) and behavioral activities in Solenopsis invicta. Most compounds elicited dose-dependent EAG and behavioral responses. There exists a correlation between the EAG and behavioral responses. Among the 14 tested alkylpyrazines, three compounds, 2-ethyl-3,6(5)-dimethyl pyrazine (1), 2,3,5-trimethylpyrazine (7), and 2,3-diethyl-5-methylpyrazine (12), elicited significant alarm responses at a dose range of 0.1-1000 ng. Further bait discovery bioassay with the three most active alkylpyrazines demonstrated that food bait accompanied by sample-treated filter paper disk attracted significantly more fire ant workers in the first 15 min period. EAG and behavioral bioassays with pure pheromone isomers accumulated by semi-preparative high-performance liquid chromatography demonstrated that 2-ethyl-3,6-dimethylpyrazine was significantly more active than 2-ethyl-3,5-dimethylpyrazine.
Matt Jolly; Sara McAllister; Mark Finney; Ann Hadlow
2010-01-01
Living plants are often the primary fuels burning in wildland fire but little is known about the factors that govern their ignition behavior. Moisture content has long been hypothesized to determine the characteristics of fires spreading in live fuels but moisture content alone fails to explain observed differences in the ignition of various species at different times...
Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.
2005-01-01
The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire prone forests.
Spatial fuel data products of the LANDFIRE Project
Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.
Bulent Saglam; Ertugrul Bilgili; Omer Kucuk; Bahar Dinc Durmaz; Ismail Baysal
2007-01-01
The prediction of fire behavior is of vital importance to all fire management planning and decisionmaking processes including fire prevention, presuppression planning, and fire use. The effect of slope on fire behavior is well acknowledged, yet its effect on fire behavior is not well accounted for. Determining the effects of slope on fire behavior under field...
Kline, Joshua C.
2015-01-01
Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. PMID:26490288
Kline, Joshua C; De Luca, Carlo J
2016-01-01
Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Kim, Y. J.; Linn, R.; Sauer, J.; Canfield, J.; Costigan, K. R.; Munoz-Esparza, D.
2014-12-01
The Los Alamos National Laboratory is conducting a research project to understand the physical mechanisms behind the Las Conchas Fire that occurred in Santa Fe National Forest near Los Alamos, New Mexico on June 26, 2011. Between 8 pm on June 26 and 3 am on June 27, the fire grew from 8,000 to 43,000 acres, spreading downhill in sparse fuels and lighter winds than were present during the first several hours of the fire. Fire behavior experts and fire management officers expected the fire to reach 9,000 to 12,000 acres by sunrise due to the anticipated burning conditions, but it actually increased 440% in size before 3 am, surprising everyone. One viable hypothesis was suggested for this baffling fire behavior: a partial collapse of the soot-laden pyrocumulus column (pyro-cu) that towered above the fire, causing a sustained density current carrying fire at high speed. Moreover, another mechanism has been suggested recently that could have significantly affected the fire characteristics around mountainous regions, such as Jemez Mountains near Los Alamos: the drastic changes in the speed, direction, and gustiness of the winds due to the development of mountain waves. The present research tests these hypotheses and attempts to decipher the combination of environmental conditions, due to pyro-cu and mountain wave interactions, and fire behavior dynamics associated with this anomalous wildfire event. Preliminary results from WRF (Weather Research and Forecasting model) and HIGRAD (High-GRADient model developed at LANL) simulations suggest that these two mechanisms may need to be taken into account in order to fully understand and prepare for atypical wildfire behavior in regions with complex topography. It is possible that the Las Conchas Fire could have directly affected the nearby Los Alamos National Laboratory if the fire broke out concurrently with both pyro-cu and strong mountain waves along the upstream of the Laboratory. This research also addresses its implications for the management as well as the research of wildfire in that, in order to prepare for potential wildfire, the topography of the surrounding region as well as the region of importance itself should be taken into account.
The effect of azeotropism on combustion characteristics of blended fuel pool fire.
Ding, Yanming; Wang, Changjian; Lu, Shouxiang
2014-04-30
The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm × 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. Copyright © 2014 Elsevier B.V. All rights reserved.
Mark A. Finney; Charles W. McHugh; Roberta Bartlette; Kelly Close; Paul Langowski
2003-01-01
This report summarizes the progress of the Hayman Fire, its behavior, and the influence of environmental conditions. Data were obtained from narratives from fire behavior analysts assigned to the fire management teams, discussions with fire management staff, meteorology from local weather stations and Bradshaw and others (2003), photographs, satellite imagery, and...
2013-10-24
advance fire science: (1) fire behavior, (2) ecological effects of fire, (3) carbon accounting , (4) emissions characterization, and (5) fire plume...relates to smoke management. 3) Carbon accounting in forest management and prescribed fire programs (including tradeoffs such as prescribed burning...carbon accounting , 4) emissions characterization and 5) fire plume dispersion. 1) Fire behavior. Better characterization of wildland fire behavior is
Smoke and fire characteristics for cerrado and deforestation burns in Brazil - BASE-B experiment
NASA Technical Reports Server (NTRS)
Ward, D. E.; Susott, R. A.; Kauffman, J. B.; Babbitt, R. E.; Cummings, D. L.; Dias, B.; Holben, B. N.; Kaufman, Y. J.; Rasmussen, R. A.; Setzer, A. W.
1992-01-01
Five test fires were performed during August and September 1990 in the cerrado (savannalike region) in central Brazil (three fires) and tropical moist forest (two fires) in the eastern Amazon. This paper details the gases released, the ratios of the gases to each other and to particulate matter, fuel loads, and the fraction consumed (combustion factors), and the fire behavior associated with biomass consumption. Models are presented for evaluating emission factors for CH4, CO2, CO, H2, and particles less than 2.5 micron diam (PM2.5) as a function of combustion efficiency. The ratio of carbon released as CO2 (combustion efficiency) for the cerrado fires averaged 0.94 and for the deforestation fires it decreased from 0.88 for the flaming phase to less than 0.80 during the smoldering phase of combustion. For tropical ecosystems, emissions of most products of incomplete combustion are projected to be lower than previous estimates for savanna ecosystems and somewhat higher for fires used for deforestation purposes.
Vorticity and turbulence observations during a wildland fire on sloped terrain
NASA Astrophysics Data System (ADS)
Contezac, J.; Clements, C. B.; Hall, D.; Seto, D.; Davis, B.
2013-12-01
Fire-atmosphere interactions represent an atmospheric boundary-layer regime typically associated with complex circulations that interact with the fire front. In mountainous terrain, these interactions are compounded by terrain-driven circulations that often lead to extreme fire behavior. To better understand the role of complex terrain on fire behavior, a set of field experiments was conducted in June 2012 in the Coast Range of central California. The experiments were conducted on steep valley sidewalls to allow fires to spread upslope. Instrumentation used to measure fire-atmosphere interactions included three micrometeorological towers arranged along the slope and equipped with sonic anemometers, heat flux radiometers, and fine-wire thermocouples. In addition, a scanning Doppler lidar was used to measured winds within and above the valley, and airborne video imagery was collected to monitor fire behavior characteristics. The experimental site was located on the leeside of a ridge where terrain-induced flow and opposing mesoscale winds aloft interacted to create a zone of high wind shear. During the burn, the interaction between the fire and atmosphere caused the generation of several fire whirls that develop as a result of several environmental conditions including shear-generated vorticity and fire front geometry. Airborne video imagery indicated that upon ignition, the plume tilted in the opposite direction from the fire movement suggesting that higher horizontal momentum from aloft was brought to the surface, resulting in much slower fire spread rates due to opposing winds. However, after the fire front had passed the lowest tower located at the base of the slope, a shift in wind speed and direction caused a fire whirl to develop near an L-shaped kink in the fire front. Preliminary results indicate that at this time, winds at the bottom of the slope began to rotate with horizontal vorticity values of -0.2 s^-1. Increased heat flux values at this time indicated that winds were continuing to transport heat towards the slope. As the winds shifted with the fire whirl, heat flux values returned to ambient indicating the passage of the fire plume. A 0.15 hPa decrease in pressure was also observed at the first tower during this period. Further analyses to be presented include vorticity estimates from the Doppler lidar and turbulence kinetic energy measurements from the in situ towers.
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...
2017-06-18
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Keane, R E; Ryan, K C; Running, S W
1996-03-01
A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.
Fire-resistant materials for aircraft passenger seat construction
NASA Technical Reports Server (NTRS)
Fewell, L. L.; Tesoro, G. C.; Moussa, A.; Kourtides, D. A.
1979-01-01
The thermal response characteristics of fabric and fabric-foam assemblies are described. The various aspects of the ignition behavior of contemporary aircraft passenger seat upholstery fabric materials relative to fabric materials made from thermally stable polymers are evaluated. The role of the polymeric foam backing on the thermal response of the fabric-foam assembly is also ascertained. The optimum utilization of improved fire-resistant fabric and foam materials in the construction of aircraft passenger seats is suggested.
Near real-time estimation of burned area using VIIRS 375 m active fire product
NASA Astrophysics Data System (ADS)
Oliva, P.; Schroeder, W.
2016-12-01
Every year, more than 300 million hectares of land burn globally, causing significant ecological and economic consequences, and associated climatological effects as a result of fire emissions. In recent decades, burned area estimates generated from satellite data have provided systematic global information for ecological analysis of fire impacts, climate and carbon cycle models, and fire regimes studies, among many others. However, there is still need of near real-time burned area estimations in order to assess the impacts of fire and estimate smoke and emissions. The enhanced characteristics of the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m channels on board the Suomi National Polar-orbiting Partnesship (S-NPP) make possible the use of near real-time active fire detection data for burned area estimation. In this study, consecutive VIIRS 375 m active fire detections were aggregated to produce the VIIRS 375 m burned area (BA) estimation over ten ecologically diverse study areas. The accuracy of the BA estimations was assessed by comparison with Landsat-8 supervised burned area classification. The performance of the VIIRS 375 m BA estimates was dependent on the ecosystem characteristics and fire behavior. Higher accuracy was observed in forested areas characterized by large long-duration fires, while grasslands, savannas and agricultural areas showed the highest omission and commission errors. Complementing those analyses, we performed the burned area estimation of the largest fires in Oregon and Washington states during 2015 and the Fort McMurray fire in Canada 2016. The results showed good agreement with NIROPs airborne fire perimeters proving that the VIIRS 375 m BA estimations can be used for near real-time assessments of fire effects.
Different Classes of Glutamate Receptors Mediate Distinct Behaviors in a Single Brainstem Nucleus
NASA Astrophysics Data System (ADS)
Dye, John; Heiligenberg, Walter; Keller, Clifford H.; Kawasaki, Masashi
1989-11-01
We have taken advantage of the increasing understanding of glutamate neuropharmacology to probe mechanisms of well-defined vertebrate behaviors. Here we report a set of experiments that suggests distinct roles for two major classes of glutamate receptors in a discrete premotor nucleus of the brainstem. The medullary pacemaker nucleus of weakly electric fish is an endogenous oscillator that controls the electric organ discharge (EOD). Its regular frequency of firing is modulated during several distinct behaviors. The pacemaker nucleus continues firing regularly when isolated in vitro, and modulatory behaviors can be reproduced by stimulating the descending input pathway. Glutamate agonists applied to the pacemaker in vitro produced increases in frequency, while glutamate antagonists selectively blocked stimulus-induced modulations. Experiments with glutamate antagonists in the intact animal resulted in specific effects on two well-characterized behaviors. Our data indicate that these behaviors are separately mediated in the pacemaker by receptors displaying characteristics of the kainate/quisqualate and N-methyl-D-aspartate subtypes of glutamate receptor, respectively.
Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics
E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton
2009-01-01
Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...
Kooistra, C; Hall, T E; Paveglio, T; Pickering, M
2018-01-01
Disturbances such as wildfire are important features of forested landscapes. The trajectory of changes following wildfires (often referred to as landscape recovery) continues to be an important research topic among ecologists and wildfire scientists. However, the landscape recovery process also has important social dimensions that may or may not correspond to ecological or biophysical perspectives. Perceptions of landscape recovery may affect people's attitudes and behaviors related to forest and wildfire management. We explored the variables that influence people's perceptions of landscape recovery across 25 fires that occurred in 2011 or 2012 in the United States of Washington, Oregon, Idaho, and Montana and that represented a range of fire behavior characteristics and landscape impacts. Residents near each of the 25 fires were randomly selected to receive questionnaires about their experiences with the nearby fire, including perceived impacts and how the landscape had recovered since the fire. People generally perceived landscapes as recovering, even though only one to two years had passed. Regression analysis suggested that perceptions of landscape recovery were positively related to stronger beliefs about the ecological role of fire and negatively related to loss of landscape attachment, concern about erosion, increasing distance from the fire perimeter, and longer lasting fires. Hierarchical linear modeling (HLM) analysis indicated that the above relationships were largely consistent across fires. These findings highlight that perceptions of post-fire landscape recovery are influenced by more than vegetation changes and include emotional and cognitive factors. We discuss the management implications of these findings.
NASA Astrophysics Data System (ADS)
Kooistra, C.; Hall, T. E.; Paveglio, T.; Pickering, M.
2018-01-01
Disturbances such as wildfire are important features of forested landscapes. The trajectory of changes following wildfires (often referred to as landscape recovery) continues to be an important research topic among ecologists and wildfire scientists. However, the landscape recovery process also has important social dimensions that may or may not correspond to ecological or biophysical perspectives. Perceptions of landscape recovery may affect people's attitudes and behaviors related to forest and wildfire management. We explored the variables that influence people's perceptions of landscape recovery across 25 fires that occurred in 2011 or 2012 in the United States of Washington, Oregon, Idaho, and Montana and that represented a range of fire behavior characteristics and landscape impacts. Residents near each of the 25 fires were randomly selected to receive questionnaires about their experiences with the nearby fire, including perceived impacts and how the landscape had recovered since the fire. People generally perceived landscapes as recovering, even though only one to two years had passed. Regression analysis suggested that perceptions of landscape recovery were positively related to stronger beliefs about the ecological role of fire and negatively related to loss of landscape attachment, concern about erosion, increasing distance from the fire perimeter, and longer lasting fires. Hierarchical linear modeling (HLM) analysis indicated that the above relationships were largely consistent across fires. These findings highlight that perceptions of post-fire landscape recovery are influenced by more than vegetation changes and include emotional and cognitive factors. We discuss the management implications of these findings.
Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan
2018-04-15
Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.
Gannon, Theresa A; Ciardha, Caoilte Ó; Barnoux, Magali F L; Tyler, Nichola; Mozova, Katarina; Alleyne, Emma K A
2013-01-01
This study investigated whether a group of firesetters (n = 68) could be distinguished, psychologically, from a matched group of non-firesetting offenders (n = 68). Participants completed measures examining psychological variables relating to fire, emotional/self-regulation, social competency, self-concept, boredom proneness, and impression management. Official prison records were also examined to record offending history and other offense-related variables. A series of MANOVAs were conducted with conceptually related measures identified as the dependent variables. Follow-up discriminant function and clinical cut-off score analyses were also conducted to examine the best discriminating variables for firesetters. Firesetters were clearly distinguishable, statistically, from non-firesetters on three groups of conceptually related measures relating to: fire, emotional/self-regulation, and self-concept. The most successful variables for the discrimination of firesetters determined via statistical and clinical significance testing were higher levels of anger-related cognition, interest in serious fires, and identification with fire and lower levels of perceived fire safety awareness, general self-esteem, and external locus of control. Firesetters appear to be a specialist group of offenders who hold unique psychological characteristics. Firesetters are likely to require specialist treatment to target these psychological needs as opposed to generic offending behavior programs.
NASA Astrophysics Data System (ADS)
Kukavskaya, Elena; Conard, Susan; Buryak, Ludmila; Ivanova, Galina; Soja, Amber; Kalenskaya, Olga; Zhila, Sergey; Zarubin, Denis; Groisman, Pavel
2016-04-01
Wildfires show great variability in the amount of fuel consumed and carbon emitted to the atmosphere. Various types of models are used to calculate global or large scale regional fire emissions. However, in the databases used to estimate fuel consumptions, data for Russia are typically under-represented. Meanwhile, the differences in vegetation and fire regimes in the boreal forests in North America and Eurasia argue strongly for the need of regional ecosystem-specific data. For about 15 years we have been collecting field data on fuel loads and consumption in different ecosystem types of Siberia. We conducted a series of experimental burnings of varying fireline intensity in Scots pine and larch forests of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions. In addition, we examined wildfire behavior and effects in different vegetation types including Scots pine, Siberian pine, fir, birch, poplar, and larch-dominated forests; evergreen coniferous shrubs; grasslands, and peats. We investigated various ecosystem zones of Siberia (central and southern taiga, forest-steppe, steppe, mountains) in the different subjects of the Russian Federation (Krasnoyarsk Kray, Republic of Khakassia, Republic of Buryatia, Tuva Republic, Zabaikalsky Kray). To evaluate the impact of forest practices on fire emissions, burned and unburned logged sites and forest plantations were examined. We found large variations of fuel consumption and fire emission rates among different vegetation types depending on growing conditions, fire behavior characteristics and anthropogenic factors. Changes in the climate system result in an increase in fire frequency, area burned, the number of extreme fires, fire season length, fire season severity, and the number of ignitions from lightning. This leads to an increase of fire-related emissions of carbon to the atmosphere. The field measurement database we compiled is required for improving accuracy of existing biomass burning models and for use by air quality agencies in developing regional strategies to mitigate negative smoke impacts on human health and environment. The research was supported by the Grant of the President of the Russian Federation MK-4646.2015.5, RFBR grant # 15-04-06567, and the NASA LCLUC Program.
NASA Astrophysics Data System (ADS)
Dickinson, M.; Kremens, R.; Bova, A. S.
2012-12-01
Closing the wildland fire heat budget involves characterizing the heat source and energy dissipation across the range of variability in fuels and fire behavior. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire-atmosphere coupling. Here, we focus on the relationships between the fire radiation field, as measured from the zenith, fuel consumption, and the behavior of spreading flame fronts. Experiments were conducted in 8 m x 8 m outdoor plots using pre-conditioned wildland fuels characteristic of mixed-oak forests of the eastern United States. Using dual-band radiometers with a field of view of about 18.5 m^2 at a height of 4.2 m, we found a near-linear increase in fire radiative energy density (FRED) over a range of fuel consumption between 0.15 kg m^-2 to 3.25 kg m^-2. Using an integrated heat budget, we estimate that the fraction of total theoretical combustion energy density radiated from the plot averaged 0.17, the fraction of latent energy transported in the plume averaged 0.08, and the fraction accounted for by the combination of fire convective energy transport and soil heating averaged 0.72. Future work will require, at minimum, instantaneous and time-integrated estimates of energy transported by radiation, convection, and soil heating across a range of fuels. We introduce the Rx-CADRE project through which such measurements are being made.
NASA Astrophysics Data System (ADS)
Kukavskaya, Elena; Conard, Susan; Ivanova, Galina; Buryak, Ludmila; Soja, Amber; Zhila, Sergey
2015-04-01
Boreal forests play a crucial role in carbon budgets with Siberian carbon fluxes and pools making a major contribution to the regional and global carbon cycle. Wildfire is the main ecological disturbance in Siberia that leads to changes in forest species composition and structure and in carbon storage, as well as direct emissions of greenhouse gases and aerosols to the atmosphere. At present, the global scientific community is highly interested in quantitative and accurate estimates of fire emissions. Little research on wildland fuel consumption and carbon emission estimates has been carried out in Russia until recently. From 2000 to 2007 we conducted a series of experimental fires of varying fireline intensity in light-coniferous forest of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions due to fires of known behavior. From 2009 to 2013 we examined a number of burned logged areas to assess the potential impact of forest practices on fire emissions. In 2013-2014 burned areas in dark-coniferous and deciduous forests were examined to determine fuel consumption and carbon emissions. We have combined and analyzed the scarce data available in the literature with data obtained in the course of our long-term research to determine the impact of various factors on fuel consumption and to develop models of carbon emissions for different ecosystems of Siberia. Carbon emissions varied drastically (from 0.5 to 40.9 tC/ha) as a function of vegetation type, weather conditions, anthropogenic effects and fire behavior characteristics and periodicity. Our study provides a basis for better understanding of the feedbacks between wildland fire emissions and changing anthropogenic disturbance patterns and climate. The data obtained could be used by air quality agencies to calculate local emissions and by managers to develop strategies to mitigate negative smoke impacts on the environmentand human health.
Tanner, Alicia; Hasking, Penelope; Martin, Graham
2016-01-01
Co-occurring internalizing and externalizing problem behaviors in adolescence typically marks more severe psychopathology and poorer psychosocial functioning than engagement in a single problem behavior. We examined the negative life events, emotional and behavioral problems, substance use, and suicidality of school-based adolescents reporting both non-suicidal self-injury (NSSI) and repetitive firesetting, compared to those engaging in either behavior alone. Differences in NSSI characteristics among self-injurers who set fires, compared to those who did not, were also assessed. A total of 384 at-risk adolescents aged 12-18 years (58.8% female) completed self-report questionnaires measuring NSSI, firesetting, and key variables of interest. Results suggest that adolescents who both self-injure and deliberately set fires represent a low-prevalence but distinct high-risk subgroup, characterized by increased rates of interpersonal difficulties, mental health problems and substance use, more severe self-injury, and suicidal behavior. Implications for prevention and early intervention initiatives are discussed.
The role of fuels for understanding fire behavior and fire effects
E. Louise Loudermilk; J. Kevin Hiers; Joseph J. O' Brien
2018-01-01
Fire ecology, which has emerged as a critical discipline, links the complex interactions that occur between fire regimes and ecosystems. The ecology of fuels, a first principle in fire ecology, identifies feedbacks between vegetation and fire behavior-a cyclic process that starts with fuels influencing fire behavior, which in turn governs patterns of postfire...
Venkataraman, Sidish S; Claussen, Catherine; Joseph, Michael; Dafny, Nachum
2017-04-01
The use of methylphenidate (MPD), a commonly prescribed drug to treat attention-deficit hyperactivity disorder (ADHD), has steadily increased over the past 25 years. This trend has been accompanied by more MPD abuse by ordinary individuals for its cognitive enhancing effects. Therefore, understanding the effects of MPD on the prefrontal cortex (PFC), a brain area involved in higher cortical processing such as executive function, language, planning, and attention regulation, is of particular importance. The goal of this study is to investigate the effects of acute and chronic dose-response characteristics following MPD exposure on both the PFC neuronal population and behavioral activity in freely behaving animals implanted previously with permanent electrodes within the PFC. Four groups of animals were used: saline (control), 0.6, 2.5, and 10.0mg/kg MPD. It was observed that the same dose of either 0.6, 2.5, or 10.0mg/kg repetitive (chronic) MPD exposure elicited behavioral sensitization in some animals and behavioral tolerance in others, and that the majority of PFC units recorded from animals expressing behavioral sensitization to chronic MPD exposure responded to MPD by increasing their neuronal firing rate, whereas the majority of PFC neurons recorded from animals expressing behavioral tolerance in response to chronic MPD responded by decreasing their neuronal firing rate. This data suggests that in animals that display behavioral sensitization, chronic MPD exposure causes an increase in the number of post-synaptic D1 dopamine receptors leading to an increase in behavioral and neuronal firing rate, while in animals that display behavioral tolerance, chronic MPD exposure causes an increase in the number of post-synaptic D2 dopamine receptors leading to a decrease in behavioral and neuronal firing rate. This dichotomy needs to be further investigated. Copyright © 2017 Elsevier Inc. All rights reserved.
Fire danger and fire behavior modeling systems in Australia, Europe, and North America
Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton
2009-01-01
Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...
Fire Behavior System for the Full Range of Fire Management Needs
Richard C. Rothermel; Patricia L. Andrews
1987-01-01
An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...
Influences of coupled fire-atmosphere interaction on wildfire behavior
NASA Astrophysics Data System (ADS)
Linn, R.; Winterkamp, J.; Jonko, A. K.; Runde, I.; Canfield, J.; Parsons, R.; Sieg, C.
2017-12-01
Two-way interactions between fire and the environment affect fire behavior at scales ranging from buoyancy-induced mixing and turbulence to fire-scale circulations that retard or increase fire spread. Advances in computing have created new opportunities for the exploration of coupled fire-atmosphere behavior using numerical models that represent interactions between the dominant processes driving wildfire behavior, including convective and radiative heat transfer, aerodynamic drag and buoyant response of the atmosphere to heat released by the fire. Such models are not practical for operational, faster-than-real-time fire prediction due to their computational and data requirements. However, they are valuable tools for exploring influences of fire-atmosphere feedbacks on fire behavior as they explicitly simulate atmospheric motions surrounding fires from meter to kilometer scales. We use the coupled fire-atmosphere model FIRETEC to gain new insights into aspects of fire behavior that have been observed in the field and laboratory, to carry out sensitivity analysis that is impractical through observations and to pose new hypotheses that can be tested experimentally. Specifically, we use FIRETEC to study the following multi-scale coupled fire-atmosphere interactions: 1) 3D fire-atmosphere interaction that dictates multi-scale fire line dynamics; 2) influence of vegetation heterogeneity and variability in wind fields on predictability of fire spread; 3) fundamental impacts of topography on fire spread. These numerical studies support new conceptual models for the dominant roles of multi-scale fluid dynamics in determining fire spread, including the roles of crosswind fire line-intensity variations on heat transfer to unburned fuels and the role of fire line depth expansion in upslope acceleration of fires.
Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth
2012-01-01
Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...
Changes in fire weather distributions: effects on predicted fire behavior
Lucy A. Salazar; Larry S. Bradshaw
1984-01-01
Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...
PYRONES: pyro-modeling and evacuation simulation system
NASA Astrophysics Data System (ADS)
Kanellos, Tassos; Doulgerakis, Adam; Georgiou, Eftichia; Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.; Pappou, Theodora; Vrahliotis, Socrates I.; Rekouniotis, Thrasos; Protopsaltis, Byron; Rozenberg, Ofir; Livneh, Ofer
2016-05-01
Structural fires continue to pose a great threat towards human life and property. Due to the complexity and non-deterministic characteristics of a building fire disaster, it is not a straightforward task to assess the effectiveness of fire protection measures embedded in the building design, planned evacuation strategies and potential modes of response for mitigating the fire's consequences. Additionally, there is a lack of means that realistically and accurately recreate the conditions of building fire disasters for the purpose of training personnel in order to be sufficiently prepared when vis-a-vis with such an environment. The propagation of fire within a building, the diffusion of its volatile products, the behavior of the occupants and the sustained injuries not only exhibit non-linear behaviors as individual phenomena, but are also intertwined in a web of co-dependencies. The PYRONES system has been developed to address all these aspects through a comprehensive approach that relies on accurate and realistic computer simulations of the individual phenomena and their interactions. PYRONES offers innovative tools and services to strategically targeted niches in two market domains. In the domain of building design and engineering, PYRONES is seamlessly integrated within existing engineering Building Information Modelling (BIM) workflows and serves as a building performance assessment platform, able to evaluate fire protection systems. On another front, PYRONES penetrates the building security management market, serving as a holistic training platform for specialists in evacuation strategy planning, firefighters and first responders, both at a Command and Control and at an individual trainee level.
Neural control of muscle force: indications from a simulation model
Luca, Carlo J. De
2013-01-01
We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008
Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.
Kauf, Zorica; Fangmeier, Andreas; Rosavec, Roman; Španjol, Željko
2015-03-01
One of the suggested management options for reducing fire danger is the selection of less flammable plant species. Nevertheless, vegetation flammability is both complex and dynamic, making identification of such species challenging. While large efforts have been made to connect plant traits to fire behavior, seasonal changes and within species variability of traits are often neglected. Currently, even the most sophisticated fire danger systems presume that intrinsic characteristics of leaf litter stay unchanged, and plant species flammability lists are often transferred from one area to another. In order to assess if these practices can be improved, we performed a study examining the relationship between morphological characteristics and flammability parameters of leaf litter, thereby taking into account seasonal and local variability. Litter from six Mediterranean tree species was sampled throughout the fire season from three different locations along a climate gradient. Samples were subjected to flammability testing involving an epiradiator operated at 400 °C surface temperature with 3 g sample weight. Specific leaf area, fuel moisture content, average area, and average mass of a single particle had significant influences on flammability parameters. Effects of sampling time and location were significant as well. Due to the standardized testing conditions, these effects could be attributed to changes in intrinsic characteristics of the material. As the aforementioned effects were inconsistent and species specific, these results may potentially limit the generalization of species flammability rankings. Further research is necessary in order to evaluate the importance of our findings for fire danger modeling.
Social and Biophysical Predictors of Public Perceptions of Extreme Fires
NASA Astrophysics Data System (ADS)
Hall, T. E.; Kooistra, C. M.; Paveglio, T.; Gress, S.; Smith, A. M.
2013-12-01
To date, what constitutes an 'extreme' fire has been approached separately by biophysical and social scientists. Research on the biophysical characteristics of fires has identified potential dimensions of extremity, including fire size and vegetation mortality. On the social side, factors such as the degree of immediate impact to one's life and property or the extent of social disruption in the community contribute to a perception of extremity. However, some biophysical characteristics may also contribute to perceptions of extremity, including number of simultaneous ignitions, rapidity of fire spread, atypical fire behavior, and intensity of smoke. Perceptions of these impacts can vary within and across communities, but no studies to date have investigated such perceptions in a comprehensive way. In this study, we address the question, to what extent is the magnitude of impact of fires on WUI residents' well-being explained by measurable biophysical characteristics of the fire and subjective evaluations of the personal and community-level impacts of the fire? We bring together diverse strands of psychological theory, including landscape perception, mental models, risk perception, and community studies. The majority of social science research on fires has been in the form of qualitative case studies, and our study is methodologically unique by using a nested design (hierarchical modeling) to enable generalizable conclusions across a wide range of fires and human communities. We identified fires that burned in 2011 or 2012 in the northern Rocky Mountain region that were at least 1,000 acres and that intersected (within 15 km) urban clusters or identified Census places. For fires where an adequately large number of households was located in proximity to the fire, we drew random samples of approximately 150 individuals for each fire. We used a hybrid internet (Qualtrics) and mail survey, following the Dillman method, to measure individual perceptions. We developed two composite dependent variables: (1) subjective perceptions of the atypicality of the fire; and (2) perceptions of the fire's impact to individual and community well-being. The impact measures were adapted from the hazards and disasters literature and used a multi-item measure of emotional response during and immediately after the fire. Independent variables included both biophysical characteristics of each fire (such as size, duration, and burn severity), obtained from remotely sensed imagery, and perceptual variables measured in the survey. All measures were pilot tested for adequate psychometric properties using a sample of 150 individuals from an on-line panel who had been affected by a wildfire within the past two years. Factor analysis techniques will be used to reduce the data to latent constructs for use in regression modeling. Hierarchical linear modeling will be used to identify factors predicting the impact of fires on individuals (level 1) and whether those factors differ by fire (level 2). Our study provides a unique interdisciplinary perspective on extreme disturbance events, and findings will help land managers and community leaders anticipate how individuals may respond to future fires, as well as how to ameliorate the negative impacts of those fires.
Wayne Cook; Bret W. Butler
2007-01-01
The 2nd Fire Behavior and Fuels Conference: Fire Environment -- Innovations, Management and Policy was held in Destin, FL, March 26-30, 2007. Following on the success of the 1st Fire Behavior and Fuels Conference, this conference was initiated in response to the needs of the National Wildfire Coordinating Group -- Fire Environment Working Team.
LaWen T. Hollingsworth; Laurie L. Kurth; Bernard R. Parresol; Roger D. Ottmar; Susan J. Prichard
2012-01-01
Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation...
Employing Numerical Weather Models to Enhance Fire Weather and Fire Behavior Predictions
Joseph J. Charney; Lesley A. Fusina
2006-01-01
This paper presents an assessment of fire weather and fire behavior predictions produced by a numerical weather prediction model similar to those used by operational weather forecasters when preparing their forecasts. The PSU/NCAR MM5 model is used to simulate the weather conditions associated with three fire episodes in June 2005. Extreme fire behavior was reported...
Ignitability of materials in transitional heating regimes
Mark A. Dietenberger
2004-01-01
Piloted ignition behavior of materials, particularly wood products, during transitions between heating regimes is measured and modeled in a cone calorimetry (ISO 5660) heating environment. These include (1) effect of material thickness, density, moisture content, and paint coating variations on thermal response characteristics, (2) effect of fire retardant treatment...
Predicting fire behavior in U.S. Mediterranean ecosystems
Frank A. Albini; Earl B. Anderson
1982-01-01
Quantification and methods of prediction of wildland fire behavior are discussed briefly and factors of particular relevance to the prediction of fire behavior in Mediterranean ecosystems are reviewed. A computer-based system which uses relevant fuel information and current weather data to predict fire behavior is in operation in southern California. Some of the...
Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest
Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.
2014-01-01
Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas of high severity for post-fire invasive control may be the most efficient means for reducing the chances of post-fire invasive plant outbreaks when conducting prescribed fires in this region.
BehavePlus fire modeling system: Past, present, and future
Patricia L. Andrews
2007-01-01
Use of mathematical fire models to predict fire behavior and fire effects plays an important supporting role in wildland fire management. When used in conjunction with personal fire experience and a basic understanding of the fire models, predictions can be successfully applied to a range of fire management activities including wildfire behavior prediction, prescribed...
Hwang, V; Duchossois, G P; Garcia‐Espana, J F; Durbin, D R
2006-01-01
The objective of this study was to determine the impact of a community based fire prevention intervention directed only to parents on the fire safety knowledge and behavior in elementary school children. This was a prospective, quasi‐randomized controlled study in which third and fourth grade students from two elementary schools in an urban, poor, minority community completed knowledge/behavior surveys at baseline and following completion of the intervention. The intervention group received an in‐home visit from fire department personnel who installed free lithium smoke detectors and provided a fire escape plan. After accounting for a small difference in baseline summary scores of knowledge and behavior between the control and intervention groups, this study found a modest improvement in fire safety behavior among children whose families received a fire prevention intervention reflecting a change in household fire safety practices. However, there was no significant change in fire safety knowledge. PMID:17018679
In-situ characterization of wildland fire behavior
Bret Butler; D. Jimenez; J. Forthofer; Paul Sopko; K. Shannon; Jim Reardon
2010-01-01
A system consisting of two enclosures has been developed to characterize wildand fire behavior: The first enclosure is a sensor/data logger combination that measures and records convective/radiant energy released by the fire. The second is a digital video camera housed in a fire proof enclosure that records visual images of fire behavior. Together this system provides...
Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands
Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.
2007-01-01
In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-24
... Information Collection; Overcoming Barriers to Wildland Fire Defensible Space Behaviors AGENCY: Forest Service... new information collection, Overcoming Barriers to Wildland Fire Defensible Space Behaviors. DATES... time, Monday through Friday. SUPPLEMENTARY INFORMATION: Title: Overcoming Barriers to Wildland Fire...
Collective behavior of networks with linear (VLSI) integrate-and-fire neurons.
Fusi, S; Mattia, M
1999-04-01
We analyze in detail the statistical properties of the spike emission process of a canonical integrate-and-fire neuron, with a linear integrator and a lower bound for the depolarization, as often used in VLSI implementations (Mead, 1989). The spike statistics of such neurons appear to be qualitatively similar to conventional (exponential) integrate-and-fire neurons, which exhibit a wide variety of characteristics observed in cortical recordings. We also show that, contrary to current opinion, the dynamics of a network composed of such neurons has two stable fixed points, even in the purely excitatory network, corresponding to two different states of reverberating activity. The analytical results are compared with numerical simulations and are found to be in good agreement.
Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.
Ponzi, Adam; Wickens, Jeff
2012-01-01
The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.
Input Dependent Cell Assembly Dynamics in a Model of the Striatal Medium Spiny Neuron Network
Ponzi, Adam; Wickens, Jeff
2012-01-01
The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior. PMID:22438838
J. Keith Gilless; Jeremy S. Fried
1998-01-01
A fire behavior module was developed for the California Fire Economics Simulator version 2 (CFES2), a stochastic simulation model of initial attack on wildland fire used by the California Department of Forestry and Fire Protection. Fire rate of spread (ROS) and fire dispatch level (FDL) for simulated fires "occurring" on the same day are determined by making...
Russell A. Parsons; William Mell; Peter McCauley
2010-01-01
Crown fire poses challenges to fire managers and can endanger fire fighters. Understanding of how fire interacts with tree crowns is essential to informed decisions about crown fire. Current operational crown fire predictions in the United States assume homogeneous crown fuels. While a new class of research fire models, which model fire behavior with computational...
Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Wang, Ruwei; Ren, Lele
2017-03-09
Recycled aggregate concrete (RAC) is an environmentally friendly building material. This paper investigates the mechanical behavior of recycled aggregate concrete filled steel tube (RACFST) columns exposed to fire. Two groups of 12 columns were designed and tested, under axial compression, before and after fire, to evaluate the degradation of bearing capacity due to fire exposure. Six specimens were subjected to axial compression tests at room temperature and the other six specimens were subjected to axial compression tests after a fire exposure. The main parameters of the specimens include the wall thickness of the steel tube (steel content) and the type of concrete materials. Several parameters as obtained from the experimental results were compared and analyzed, including the load-bearing capacity, deformation capacity, and failure characteristics of the specimens. Meanwhile, rate of loss of bearing capacity of specimens exposed to fire were calculated based on the standards EC4 and CECS28:90. The results show that concrete material has a large influence on the rate of loss of bearing capacity in the case of a relatively lower steel ratio. While steel content has little effect on the rate of loss of bearing capacity of concrete-filled steel tube (CFST) columns after fire, it has a relatively large influence on the loss rate of bearing capacity of the RACFST columns. The loss of bearing capacity of the specimens from the experiment is more serious than that from the calculation. As the calculated values are less conservative, particular attention should be given to the application of recycled aggregate concrete in actual structures.
Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Wang, Ruwei; Ren, Lele
2017-01-01
Recycled aggregate concrete (RAC) is an environmentally friendly building material. This paper investigates the mechanical behavior of recycled aggregate concrete filled steel tube (RACFST) columns exposed to fire. Two groups of 12 columns were designed and tested, under axial compression, before and after fire, to evaluate the degradation of bearing capacity due to fire exposure. Six specimens were subjected to axial compression tests at room temperature and the other six specimens were subjected to axial compression tests after a fire exposure. The main parameters of the specimens include the wall thickness of the steel tube (steel content) and the type of concrete materials. Several parameters as obtained from the experimental results were compared and analyzed, including the load-bearing capacity, deformation capacity, and failure characteristics of the specimens. Meanwhile, rate of loss of bearing capacity of specimens exposed to fire were calculated based on the standards EC4 and CECS28:90. The results show that concrete material has a large influence on the rate of loss of bearing capacity in the case of a relatively lower steel ratio. While steel content has little effect on the rate of loss of bearing capacity of concrete-filled steel tube (CFST) columns after fire, it has a relatively large influence on the loss rate of bearing capacity of the RACFST columns. The loss of bearing capacity of the specimens from the experiment is more serious than that from the calculation. As the calculated values are less conservative, particular attention should be given to the application of recycled aggregate concrete in actual structures. PMID:28772634
NASA Astrophysics Data System (ADS)
Ruminski, M. G.; Fromm, M. D.; Ramirez, E.
2011-12-01
The Wallow fire in southeast Arizona was the largest wildfire in Arizona history, consuming over 500,000 acres. The fire began on May 29, 2011 and quickly grew to nearly 70,000 acres in size by June 4. This event exhibited anomalous behavioral characteristics as deep pyroconvection was observed for an unprecedented six consecutive days. The rapid spread and extreme pyroconvection occurred in response to a unique confluence of high biomass fuel availability in arid conditions. Strong winds in combination with low relative humidity and atmospheric instability acted to create an environment conducive to explosive fire growth. The resultant smoke from the blaze reached an altitude of nearly 15 km into the upper troposphere/lower stratosphere and eventually crossed the Atlantic reaching Europe. This presentation focuses on the detection and characterization of the Wallow fire from a satellite perspective. Geostationary and polar orbiting satellite platforms have captured various aspects of the fire and resulting smoke plumes. An animation of nearly 100 NOAA polar orbiting 4 micron channel images during the first 2 weeks of the fire illustrate its explosive growth while GOES visible channel animations display the density and coverage of the pall of smoke and the development of pyroconvection. True color MODIS imagery provides higher resolution views of the pyrocumulonimbus clouds at different stages in their evolution. CALIPSO, GOME2, and OMI data detail the vertical structure and composition of the plume as it drifts eastward and expands in coverage, eventually reaching Europe.
Predicting Geomorphic and Hydrologic Risks after Wildfire Using Harmonic and Stochastic Analyses
NASA Astrophysics Data System (ADS)
Mikesell, J.; Kinoshita, A. M.; Florsheim, J. L.; Chin, A.; Nourbakhshbeidokhti, S.
2017-12-01
Wildfire is a landscape-scale disturbance that often alters hydrological processes and sediment flux during subsequent storms. Vegetation loss from wildfires induce changes to sediment supply such as channel erosion and sedimentation and streamflow magnitude or flooding. These changes enhance downstream hazards, threatening human populations and physical aquatic habitat over various time scales. Using Williams Canyon, a basin burned by the Waldo Canyon Fire (2012) as a case study, we utilize deterministic and statistical modeling methods (Fourier series and first order Markov chain) to assess pre- and post-fire geomorphic and hydrologic characteristics, including of precipitation, enhanced vegetation index (EVI, a satellite-based proxy of vegetation biomass), streamflow, and sediment flux. Local precipitation, terrestrial Light Detection and Ranging (LiDAR) scanning, and satellite-based products are used for these time series analyses. We present a framework to assess variability of periodic and nonperiodic climatic and multivariate trends to inform development of a post-wildfire risk assessment methodology. To establish the extent to which a wildfire affects hydrologic and geomorphic patterns, a Fourier series was used to fit pre- and post-fire geomorphic and hydrologic characteristics to yearly temporal cycles and subcycles of 6, 4, 3, and 2.4 months. These cycles were analyzed using least-squares estimates of the harmonic coefficients or amplitudes of each sub-cycle's contribution to fit the overall behavior of a Fourier series. The stochastic variances of these characteristics were analyzed by composing first-order Markov models and probabilistic analysis through direct likelihood estimates. Preliminary results highlight an increased dependence of monthly post-fire hydrologic characteristics on 12 and 6-month temporal cycles. This statistical and probabilistic analysis provides a basis to determine the impact of wildfires on the temporal dependence of geomorphic and hydrologic characteristics, which can be incorporated into post-fire mitigation, management, and recovery-based measures to protect and rehabilitate areas subject to influence from wildfires.
Fire weather and fire behavior in the 1966 loop fire
C.M. Countryman; M.A. Fosberg; R.C. Rothermel; M.J. Schroeder
1968-01-01
Southern California regularly experiences a wind condition known as the Santa Ana winds. This paper describes the phenomenon and the effects it had on fire behavior during the 1966 Loop Fire in the Angeles National Forest, which claimed the lives of 12 fire fighters.
NASA Technical Reports Server (NTRS)
Saveker, D. R. (Editor)
1973-01-01
The preliminary design of a satellite plus computer earth resources information system is proposed for potential uses in fire prevention and control in the wildland fire community. Suggested are satellite characteristics, sensor characteristics, discrimination algorithms, data communication techniques, data processing requirements, display characteristics, and costs in achieving the integrated wildland fire information system.
Differential roles of ventral pallidum subregions during cocaine self-administration behaviors
Root, David H.; Ma, Sisi; Barker, David J.; Megehee, Laura; Striano, Brendan M.; Ralston, Carla M.; Fabbricatore, Anthony T.; West, Mark O.
2012-01-01
The ventral pallidum (VP) is necessary for drug-seeking behavior. VP contains ventromedial (VPvm) and dorsolateral (VPdl) subregions which receive projections from the nucleus accumbens shell and core, respectively. To date, no study has investigated the behavioral functions of the VPdl and VPvm subregions. To address this issue, we investigated whether changes in firing rate (FR) differed between VP subregions during four events: approaching toward, responding on, or retreating away from a cocaine-reinforced operandum, and a cocaine-associated cue. Baseline FR and waveform characteristics did not differ between subregions. VPdl neurons exhibited a greater change in FR compared to VPvm neurons during approaches toward, as well as responses on, the cocaine-reinforced operandum. VPdl neurons were more likely to exhibit a similar change in FR (direction and magnitude) during approach and response than VPvm neurons. In contrast, VPvm firing patterns were heterogeneous, changing FRs during approach or response alone, or both. VP neurons did not discriminate cued behaviors from uncued behaviors. No differences were found between subregions during the retreat and no VP neurons exhibited patterned changes in FR in response to the cocaine-associated cue. The stronger, sustained FR changes of VPdl neurons during approach and response may implicate VPdl in the processing of drug-seeking and drug-taking behavior via projections to subthalamic nucleus and substantia nigra pars reticulata. In contrast, heterogeneous firing patterns of VPvm neurons may implicate VPvm in facilitating mesocortical structures with information related to the sequence of behaviors predicting cocaine self-infusions via projections to mediodorsal thalamus and ventral tegmental area. PMID:22806483
Xie, Qiyuan; Zhang, Heping; Ye, Ruibo
2009-07-30
The objective of this work is to quantitatively study the burning characteristics of thermoplastics. A new experimental setup with a T-shape trough is designed. Based on this setup, the loop mechanism between the wall fire and pool fires induced by the melting and dripping of thermoplastic can be well simulated and studied. Additionally, the flowing characteristics of pool fires can also be quantitatively analyzed. Experiments are conducted for PP and PE sheets with different thicknesses. The maximum distances of the induced flowing pool flame in the T-shape trough are recorded and analyzed. The typical fire parameters, such as heat release rates (HRRs), CO concentrations are also monitored. The results show that the softening and clinging of the thermoplastic sheets plays a considerable role for their vertical wall burning. It is illustrated that the clinging of burning thermoplastic sheet may be mainly related with the softening temperatures and the ignition temperatures of the thermoplastics, as well as their viscosity coefficients. Through comparing the maximum distances of flowing flame of induced pool fires in the T-shape trough for thermoplastic sheets with different thicknesses, it is indicated that the pool fires induced by PE materials are easier to flow away than that of PP materials. Therefore, PE materials may be more dangerous for their faster pool fire spread on the floor. These experimental results preliminarily illustrate that this new experimental setup is helpful for quantitatively studying the special burning feature of thermoplastics although further modifications is needed for this setup in the future.
Charles W. McHugh; Mark A. Finney
2003-01-01
Effects of roads on fire behavior intensity and severity can be studied directly or indirectly. A direct study of road effects would include uses by fire suppression, burnout operations, and delay of fire progress at the roadside. Interpretations after the fire burns are easily confounded by the unknown nature of suppression activities and fire arrival time, and fire...
Bald Mountain Fire, Eagle Cap Wilderness Area, Wallowa-Whitman National Forest, FARSITE analysis
LaWen Hollingsworth
2012-01-01
While the Near Term Fire Behavior analysis option in WFDSS is similar to FARSITE, the advantage of using FARSITE lies in the ability to use gridded winds which produces more reliable fire behavior results in complex terrain. A couple of FARSITE simulations were completed to evaluate fire growth and fire behavior in relation to the values, notably Red's Horse Ranch...
Strategies for and barriers to public adoption of fire safe behavior
Ronald W. Hodgson
1995-01-01
A recent survey of people living in wildland-urban intermix neighborhoods in a portion of the Sierra-Cascade foothills identified perceptions of defensible space that block its rapid and widespread adoption. A companion survey described communication channels used by residents to acquire information about landscaping and identified opinion leadership characteristics....
ERIC Educational Resources Information Center
Coles, Claire D.; Strickland, Dorothy C.; Padgett, Lynne; Bellmoff, Lynnae
2007-01-01
Unintentional injuries are a leading cause of death and disability for children. Those with developmental disabilities, including children affected by prenatal alcohol exposure, are at highest risk for injuries. Although teaching safety skills is recommended to prevent injury, cognitive limitations and behavioral problems characteristic of…
Fire Technology Abstracts, volume 4, issue 1, August, 1981
NASA Astrophysics Data System (ADS)
Holtschlag, L. J.; Kuvshinoff, B. W.; Jernigan, J. B.
This bibliography contains over 400 citations with abstracts addressing various aspects of fire technology. Subjects cover the dynamics of fire, behavior and properties of materials, fire modeling and test burns, fire protection, fire safety, fire service organization, apparatus and equipment, fire prevention, suppression, planning, human behavior, medical problems, codes and standards, hazard identification, safe handling of materials, insurance, economics of loss and prevention, and more.
The LANDFIRE Total Fuel Change Tool (ToFuΔ) user’s guide
Smail, Tobin; Martin, Charley; Napoli, Jim
2011-01-01
LANDFIRE fuel data were originally developed from coarse-scale existing vegetation type, existing vegetation cover, existing vegetation height, and biophysical setting layers. Fire and fuel specialists from across the country provided input to the original LANDFIRE National (LF_1.0.0) fuel layers to help calibrate fuel characteristics on a more localized scale. The LANDFIRE Total Fuel Change Tool (ToFu∆) was developed from this calibration process. Vegetation is subject to constant change – and fuels are therefore also dynamic, necessitating a systematic method for reflecting changes spatially so that fire behavior can be accurately accessed. ToFuΔ allows local experts to quickly produce maps that spatially display any proposed fuel characteristics changes. ToFu∆ works through a Microsoft Access database to produce spatial results in ArcMap based on rule sets devised by the user that take into account the existing vegetation type (EVT), existing vegetation cover (EVC), existing vegetation height (EVH), and biophysical setting (BpS) from the LANDFIRE grid data. There are also options within ToFu∆ to add discrete variables in grid format through use of the wildcard option and for subdividing specific areas for different fuel characteristic assignments through the BpS grid. The ToFu∆ user determines the size of the area for assessment by defining a Management Unit, or “MU.” User-defined rule sets made up of EVT, EVC, EVH, and BpS layers, as well as any wildcard selections, are used to change or refine fuel characteristics within the MU. Once these changes have been made to the fuel characteristics, new grids are created for fire behavior analysis or planning. These grids represent the most common ToFu∆ output. ToFuΔ is currently under development and will continue to be updated in the future. The current beta version (0.12), released in March 2011, is compatible with Windows 7 and will be the last release until the fall of 2011.
Relative impact of weather vs. fuels on fire regimes in coastal California
Jon E. Keeley
2008-01-01
Extreme fire weather is of over riding importance in determining fire behavior in coastal chaparral and on these landscapes fire suppression policy has not resulted in fire exclusion. There is regional variation in foehn winds, which are most important in southern California. Under these severe fire weather conditions fuel age does not constrain fire behavior. As a...
Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior
Russell A. Parsons; William E. Mell; Peter McCauley
2011-01-01
Crownfire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (...
Assessing crown fire potential by linking models of surface and crown fire behavior
Joe H. Scott; Elizabeth D. Reinhardt
2001-01-01
Fire managers are increasingly concerned about the threat of crown fires, yet only now are quantitative methods for assessing crown fire hazard being developed. Links among existing mathematical models of fire behavior are used to develop two indices of crown fire hazard-the Torching Index and Crowning Index. These indices can be used to ordinate different forest...
Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model
Robert Ziel; W. Matt Jolly
2009-01-01
In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...
Joe H. Scott; Robert E. Burgan
2005-01-01
This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.
Estimating fire behavior with FIRECAST: user's manual
Jack D. Cohen
1986-01-01
FIRECAST is a computer program that estimates fire behavior in terms of six fire parameters. Required inputs vary depending on the outputs desired by the fire manager. Fuel model options available to users are these: Northern Forest Fire Laboratory (NFFL), National Fire Danger Rating System (NFDRS), and southern California brushland (SCAL). The program has been...
Modeling the effects of vegetation heterogeneity on wildland fire behavior
NASA Astrophysics Data System (ADS)
Atchley, A. L.; Linn, R.; Sieg, C.; Middleton, R. S.
2017-12-01
Vegetation structure and densities are known to drive fire-spread rate and burn severity. Many fire-spread models incorporate an average, homogenous fuel density in the model domain to drive fire behavior. However, vegetation communities are rarely homogenous and instead present significant heterogeneous structure and fuel densities in the fires path. This results in observed patches of varied burn severities and mosaics of disturbed conditions that affect ecological recovery and hydrologic response. Consequently, to understand the interactions of fire and ecosystem functions, representations of spatially heterogeneous conditions need to be incorporated into fire models. Mechanistic models of fire disturbance offer insight into how fuel load characterization and distribution result in varied fire behavior. Here we use a physically-based 3D combustion model—FIRETEC—that solves conservation of mass, momentum, energy, and chemical species to compare fire behavior on homogenous representations to a heterogeneous vegetation distribution. Results demonstrate the impact vegetation heterogeneity has on the spread rate, intensity, and extent of simulated wildfires thus providing valuable insight in predicted wildland fire evolution and enhanced ability to estimate wildland fire inputs into regional and global climate models.
High-fire-risk behavior in critical fire areas
William S. Folkman
1977-01-01
Observations of fire-related behavior of wildland visitors were made in three types of areas-wilderness, established campground, and built-up commercial and residential areas-within the San Bernardino National Forest, California. Interviews were conducted with all persons so observed. Types of fire-related behavior differed markedly from one area to another, as did the...
Perceived risk of home fire and escape plans in rural households.
Yang, Jingzhen; Peek-Asa, Corinne; Allareddy, Veerasathpurush; Zwerling, Craig; Lundell, John
2006-01-01
Homes in rural areas have a higher fire death rate. Although successful exit from a home fire could greatly reduce fire-related deaths and injuries, little is known about factors associated with behaviors of developing and practicing an escape plan. Between July 2003 and June 2004, a baseline survey was administered, in person, to 691 rural households. Information collected included a history of previous home fire, perceived risk of home fire, existing smoke alarms and their working status, and home fire safety practices, as well as home and occupant characteristics. The association of residents' perceived risk of home fire and fire escape plans was assessed. Forty-two percent of rural households reported having a fire escape plan. Of the households with a plan, less than two thirds (56.9%) discussed or practiced the plan. Households with children were more likely to develop and practice a fire escape plan. Households with an elderly or disabled person were less likely to develop or practice the plan. Compared to respondents who perceived low or very low risk of home fire, those who perceived a high or very high risk had 3.5 times greater odds of having a fire escape plan and 5.5 times greater odds of discussion or practicing their plan. Increasing awareness of the potential risk of home fires may help occupants develop and practice home fire escape plans. In order to reduce fire deaths and injuries, different strategies need to be developed for those households in which the occupants lack the ability to escape.
Calvin A. Farris; Ellis Q. Margolis; John A. Kupfer
2008-01-01
We compared the spatial characteristics of fire severity patches within individual fire ârunsâ (contiguous polygons burned during a given day) resulting from a 72,000 ha fire in centralIdaho in 1994. Our hypothesis was that patch characteristics of four fire severity classes (high, moderate, low, and unburned), as captured by five landscape metrics, would...
Entrainment regimes and flame characteristics of wildland fires
Ralph M. Nelson; Bret W. Butler; David R. Weise
2012-01-01
This paper reports results from a study of the flame characteristics of 22 wind-aided pine litter fires in a laboratory wind tunnel and 32 field fires in southern rough and litter-grass fuels. Flame characteristic and fire behaviour data from these fires, simple theoretical flame models and regression techniques are used to determine whether the data support the...
Stavros, E Natasha; Tane, Zachary; Kane, Van R; Veraverbeke, Sander; McGaughey, Robert J; Lutz, James A; Ramirez, Carlos; Schimel, David
2016-11-01
Megafires have lasting social, ecological, and economic impacts and are increasing in the western contiguous United States. Because of their infrequent nature, there is a limited sample of megafires to investigate their unique behavior, drivers, and relationship to forest management practices. One approach is to characterize critical information pre-, during, and post-fire using remote sensing. In August 2013, the Rim Fire burned 104,131 ha and in September 2014, the King Fire burned 39,545 ha. Both fires occurred in California's Sierra Nevada. The areas burned by these fires were fortuitously surveyed by airborne campaigns, which provided the most recent remote sensing technologies not currently available from satellite. Technologies include an imaging spectrometer spanning the visible to shortwave infrared (0.38-2.5 μm), a multispectral, high-spatial resolution thermal infrared (3.5-13 μm) spectroradiometer, and Light Detection and Ranging that provide spatial resolutions of pixels from 1 × 1 m to 35 × 35 m. Because of the unique information inherently derived from these technologies before the fires, the areas were subsequently surveyed after the fires. We processed and provide free dissemination of these airborne datasets as products of surface reflectance, spectral metrics and forest structural metrics ( http://dx.doi.org/10.3334/ORNLDAAC/1288). These data products provide a unique opportunity to study relationships among and between remote sensing observations and fuel and fire characteristics (e.g., fuel type, condition, structure, and fire severity). The novelty of these data is not only in the unprecedented types of information available from them before, during, and after two megafires, but also in the synergistic use of multiple state of the art technologies for characterizing the environment. The synergy of these data can provide novel information that can improve maps of fuel type, structure, abundance, and condition that may improve predictions of megafire behavior and effects, thus aiding management before, during, and after such events. Key questions that these data could address include: What drives, extinguishes, and results from megafires? How does megafire behavior relate to fire and fuel management? How does the size and severity of a megafire affect the ecological recovery of the system? © 2016 by the Ecological Society of America.
WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model
Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak
2012-01-01
A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...
Temporal scaling behavior of forest and urban fires
NASA Astrophysics Data System (ADS)
Wang, J.; Song, W.; Zheng, H.; Telesca, L.
2009-04-01
It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.
Ecological forestry in the Southeast: Understanding the ecology of fuels
R.J. Mitchell; J.K. Hiers; J. O’Brien; G. Starr
2009-01-01
Fire is a dominant disturbance within many forested ecosystems worldwide. Understanding the complex feedbacks among vegetation as a fuel for fire, the effects of fuels on fire behavior, and the impact of fire behavior on future vegetation are critical for sustaining biodiversity in fire-dependent forests. Nonetheless, understanding in fire ecology has been limited in...
An Overview of FlamMap Fire Modeling Capabilities
Mark A. Finney
2006-01-01
Computerized and manual systems for modeling wildland fire behavior have long been available (Rothermel 1983, Andrews 1986). These systems focus on one-dimensional behaviors and assume the fire geometry is a spreading line-fire (in contrast with point or area-source fires). Models included in these systems were developed to calculate fire spread rate (Rothermel 1972,...
Fire effects on basal area, tiller production, and mortality of the C4 Bunchgrass, Purple Threeawn
USDA-ARS?s Scientific Manuscript database
Fire behavior associated with wild and prescribed fires is variable, but plays a vital role in how a plant responds to fire. The relationship of fire behavior to rangeland plant community response has not been investigated, with a few exceptions, until recently. Fire is an important ecological pro...
Sensitivity of fire behavior simulations to fuel model variations
Lucy A. Salazar
1985-01-01
Stylized fuel models, or numerical descriptions of fuel arrays, are used as inputs to fire behavior simulation models. These fuel models are often chosen on the basis of generalized fuel descriptions, which are related to field observations. Site-specific observations of fuels or fire behavior in the field are not readily available or necessary for most fire management...
Solution Focused Empathy Training Groups for Students with Fire-Setting Behaviors
ERIC Educational Resources Information Center
Froeschle, Janet G.
2006-01-01
Fire-setting students are those who intentionally or unintentionally set one or more fires due to curiosity, stress, a need for attention, or due to criminal delinquency. This article describes the nature of fire-setting behaviors, discusses the profile and risk factors associated with the behavior, and outlines a group program using empathy…
Uncertainty and risk in wildland fire management: A review
Matthew P. Thompson; Dave E. Calkin
2011-01-01
Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to...
How did prefire treatments affect the Biscuit Fire?
Crystal Raymond; David L. Peterson
2005-01-01
Most scientific literature supports forest thinning to reduce the severity of wildland fires, but the effectiveness of thinning in modifying fire behavior has not been well documented. The Biscuit Fire of 2002 offered a great opportunity to study the effects of mechanical thinning on fire behavior during a megafire.
FARSITE: Fire Area Simulator-model development and evaluation
Mark A. Finney
1998-01-01
A computer simulation model, FARSITE, includes existing fire behavior models for surface, crown, spotting, point-source fire acceleration, and fuel moisture. The model's components and assumptions are documented. Simulations were run for simple conditions that illustrate the effect of individual fire behavior models on two-dimensional fire growth.
Monthly fire behavior patterns
Mark J. Schroeder; Craig C. Chandler
1966-01-01
From tabulated frequency distributions of fire danger indexes for a nationwide network of 89 stations, the probabilities of four types of fire behavior ranging from 'fire out' to 'critical' were calculated for each month and are shown in map form.
Larry Bradshaw; Roberta Bartlette; John McGinely; Karl Zeller
2003-01-01
The Hayman Fire in June 2002 was heavily influenced by antecedent regional weather conditions, culminating in a series of daily weather events that aligned to produce widely varying fire behavior. This review of weather conditions associated with the Hayman Fire consists of two parts: 1) A brief overview of prior conditions as described by a regional climate review and...
Fire technology abstracts, volume 4. Cumulative indexes
NASA Astrophysics Data System (ADS)
1982-03-01
Cumulative subject, author, publisher, and report number indexes referencing articles, books, reports, and patents are provided. The dynamics of fire, behavior and properties of materials, fire modeling and test burns, fire protection, fire safety, fire service organization, apparatus and equipment, fire prevention suppression, planning, human behavior, medical problems, codes and standards, hazard identification, safe handling of materials, and insurance economics of loss and prevention are among the subjects covered.
Coles, Claire D; Strickland, Dorothy C; Padgett, Lynne; Bellmoff, Lynnae
2007-01-01
Unintentional injuries are a leading cause of death and disability for children. Those with developmental disabilities, including children affected by prenatal alcohol exposure, are at highest risk for injuries. Although teaching safety skills is recommended to prevent injury, cognitive limitations and behavioral problems characteristic of children with fetal alcohol spectrum disorder make teaching these skills challenging for parents and teachers. In the current study, 32 children, ages 4-10, diagnosed with fetal alcohol syndrome (FAS) and partial FAS, learned fire and street safety through computer games that employed "virtual worlds" to teach recommended safety skills. Children were pretested on verbal knowledge of four safety elements for both fire and street safety conditions and then randomly assigned to one condition. After playing the game until mastery, children were retested verbally and asked to "generalize" their newly acquired skills in a behavioral context. They were retested after 1 week follow-up. Children showed significantly better knowledge of the game to which they were exposed, immediately and at follow-up, and the majority (72%) was able to generalize all four steps within a behavioral setting. Results suggested that this is a highly effective method for teaching safety skills to high-risk children who have learning difficulties.
Combining FIA plot data with topographic variables: Are precise locations needed?
Stephen P. Prisley; Huei-Jin Wang; Philip J Radtke; John Coulston
2009-01-01
Plot data from the USFS FIA program could be combined with terrain variables to attempt to explain how terrain characteristics influence forest growth, species composition, productivity, fire behavior, wildlife habitat, and other phenomena. While some types of analyses using FIA data have been shown to be insensitive to precision of plot locations, it has been...
Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp
2009-01-01
Mechanically masticated fuelbeds are distinct from natural or logging slash fuelbeds, with different particle size distributions, bulk density, and particle shapes, leading to challenges in predicting fire behavior and effects. Our study quantified some physical properties of fuel particles (e.g. squared quadratic mean diameter, proportion of non-cylindrical particles...
Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds
X. Zhou; D.R. Weise; S Mahalingam
2005-01-01
An extensive experimental and numerical study was completed to analyze the marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. Laboratory fire spread experiments were carried out to determine the effects of wind, slope, moisture content, and fuel characteristics on marginal burning in fuel beds of common...
Field procedures for verification and adjustment of fire behavior predictions
Richard C. Rothermel; George C. Rinehart
1983-01-01
The problem of verifying predictions of fire behavior, primarily rate of spread, is discussed in terms of the fire situation for which predictions are made, and the type of fire where data are to be collected. Procedures for collecting data and performing analysis are presented for both readily accessible fires where data should be complete, and for inaccessible fires...
BehavePlus fire modeling system, version 5.0: Design and Features
Faith Ann Heinsch; Patricia L. Andrews
2010-01-01
The BehavePlus fire modeling system is a computer program that is based on mathematical models that describe wildland fire behavior and effects and the fire environment. It is a flexible system that produces tables, graphs, and simple diagrams. It can be used for a host of fire management applications, including projecting the behavior of an ongoing fire, planning...
Simulation of quaking aspen potential fire behavior in Northern Utah, USA
R. Justin DeRose; A. Joshua Leffler
2014-01-01
Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are âfire-proofâ. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and...
Temperate and boreal forest mega-fires: characteristics and challenges
Scott L. Stephens; Neil Burrows; Alexander Buyantuyev; Robert W. Gray; Robert E. Keane; Rick Kubian; Shirong Liu; Francisco Seijo; Lifu Shu; Kevin G. Tolhurst; Jan W. van Wagtendonk
2014-01-01
Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors - climate change, fire exclusion, and antecedent disturbance, collectively referred to as the "mega-fire triangle" - likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate...
Alternative characterization of forest fire regimes: incorporating spatial patterns
Brandon M. Collins; Jens T. Stevens; Jay D. Miller; Scott L. Stephens; Peter M. Brown; Malcolm P. North
2017-01-01
ContextThe proportion of fire area that experienced stand-replacing fire effects is an important attribute of individual fires and fire regimes in forests, and this metric has been used to group forest types into characteristic fire regimes. However, relying on proportion alone ignores important spatial characteristics...
Fire effects in northeastern forests: oak.
Cary Rouse
1986-01-01
Effects of fire on the oak timber type are reviewed. Many oak stands of today originated under severe fire regimes. Fire can ill or injure oak trees. Factors determining direct injury or mortality from fire include: season of year; bark characteristics; size, vigor and form of tree; fire characteristics and stocking level.
NASA Astrophysics Data System (ADS)
Newman, W. I.; Turcotte, D. L.
2002-12-01
We have studied a hybrid model combining the forest-fire model with the site-percolation model in order to better understand the earthquake cycle. We consider a square array of sites. At each time step, a "tree" is dropped on a randomly chosen site and is planted if the site is unoccupied. When a cluster of "trees" spans the site (a percolating cluster), all the trees in the cluster are removed ("burned") in a "fire." The removal of the cluster is analogous to a characteristic earthquake and planting "trees" is analogous to increasing the regional stress. The clusters are analogous to the metastable regions of a fault over which an earthquake rupture can propagate once triggered. We find that the frequency-area statistics of the metastable regions are power-law with a negative exponent of two (as in the forest-fire model). This is analogous to the Gutenberg-Richter distribution of seismicity. This "self-organized critical behavior" can be explained in terms of an inverse cascade of clusters. Individual trees move from small to larger clusters until they are destroyed. This inverse cascade of clusters is self-similar and the power-law distribution of cluster sizes has been shown to have an exponent of two. We have quantified the forecasting of the spanning fires using error diagrams. The assumption that "fires" (earthquakes) are quasi-periodic has moderate predictability. The density of trees gives an improved degree of predictability, while the size of the largest cluster of trees provides a substantial improvement in forecasting a "fire."
Morrongiello, Barbara A; Schwebel, David C; Bell, Melissa; Stewart, Julia; Davis, Aaron L
2012-07-01
Fire is a leading cause of unintentional injury and, although young children are at particularly increased risk, there are very few evidence-based resources available to teach them fire safety knowledge and behaviors. Using a pre-post randomized design, the current study evaluated the effectiveness of a computer game (The Great Escape) for teaching fire safety information to young children (3.5-6 years). Using behavioral enactment procedures, children's knowledge and behaviors related to fire safety were compared to a control group of children before and after receiving the intervention. The results indicated significant improvements in knowledge and fire safety behaviors in the intervention group but not the control. Using computer games can be an effective way to promote young children's understanding of safety and how to react in different hazardous situations.
A mixed integer program to model spatial wildfire behavior and suppression placement decisions
Erin J. Belval; Yu Wei; Michael Bevers
2015-01-01
Wildfire suppression combines multiple objectives and dynamic fire behavior to form a complex problem for decision makers. This paper presents a mixed integer program designed to explore integrating spatial fire behavior and suppression placement decisions into a mathematical programming framework. Fire behavior and suppression placement decisions are modeled using...
Crown fuel spatial variability and predictability of fire spread
Russell A. Parsons; Jeremy Sauer; Rodman R. Linn
2010-01-01
Fire behavior predictions, as well as measures of uncertainty in those predictions, are essential in operational and strategic fire management decisions. While it is becoming common practice to assess uncertainty in fire behavior predictions arising from variability in weather inputs, uncertainty arising from the fire models themselves is difficult to assess. This is...
Stankov Jovanovic, V P; Ilic, M D; Markovic, M S; Mitic, V D; Nikolic Mandic, S D; Stojanovic, G S
2011-09-01
Fire has been considered as an improving factor in soil quality, but only if it is controlled. Severe wild fire occurred in the summer 2007 on the Vidlic Mountain (Serbia) overspreading a huge area of meadows and forests. Main soil characteristics and content of heavy metals (Cu, Pb, Cd, Zn) in different fractions obtained after sequential extraction of soil from post-fire areas and from fire non disturbed areas were studied. In four plant species of Lamiaceae family (Ajuga genevensis L., Lamium galeobdolon (L.) L., Teucrium chamaedrys L., Acinos alpinus (L.) Moench.), that grow in typical habitats of the mountain, distribution of heavy metals in aerial parts and roots was investigated too. For all samples from post-fire area cation exchange capacity and soil organic matter content are increased while rH is decreased. Fire caused slightly increased bioavailability of the observed metals but more significant rise happened in metal amounts bound to oxides and organics. The plants showed variable behavior. T. chamaedrys collected on the post-fire area contained elevated concentrations of all analyzed metals. A. alpinus showed higher phytoaccumulation for Zn and Cd, while the other two plant species for Pb and Cd in the post-fire areas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fire weather and behavior of the Little Sioux fire.
Rodney W. Sando; Donald A. Haines
1972-01-01
In mid-May 1971, a northern Minnesota fire burned almost 15,000 acres of forest land. The extreme fire behavior it exhibited was the product of a number of described features. This paper documents the attendant fuel and weather conditions.
Emily L. Bernhardt; Teresa N. Hollingsworth; F. Stuart Chapin
2011-01-01
Question: How do pre-fire conditions (community composition and environmental characteristics) and climate-driven disturbance characteristics (fire severity) affect post-fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14...
Spike Phase Locking in CA1 Pyramidal Neurons depends on Background Conductance and Firing Rate
Broiche, Tilman; Malerba, Paola; Dorval, Alan D.; Borisyuk, Alla; Fernandez, Fernando R.; White, John A.
2012-01-01
Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency-response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane-potential fluctuations in the living animal. To investigate the frequency-response characteristics of CA1 pyramidal neurons in the presence of high conductance and voltage fluctuations, we performed dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons with noisy stimuli that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent data analysis, we determined action potential phase-locking profiles with respect to background conductance, average firing rate, and frequency of the sinusoidal component. We found that background conductance and firing rate qualitatively change the phase-locking profiles of CA1 pyramidal neurons vs. frequency. In particular, higher average spiking rates promoted band-pass profiles, and the high-conductance state promoted phase-locking at frequencies well above what would be predicted from changes in the membrane time constant. Mechanistically, spike-rate adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping the different phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively change their synchronization properties in response to global changes in activity associated with different behavioral states. PMID:23055508
Fire behavior simulation in Mediterranean forests using the minimum travel time algorithm
Kostas Kalabokidis; Palaiologos Palaiologou; Mark A. Finney
2014-01-01
Recent large wildfires in Greece exemplify the need for pre-fire burn probability assessment and possible landscape fire flow estimation to enhance fire planning and resource allocation. The Minimum Travel Time (MTT) algorithm, incorporated as FlamMap's version five module, provide valuable fire behavior functions, while enabling multi-core utilization for the...
Appraising fuels and flammability in western aspen: a prescribed fire guide
James K. Brown; Dennis G. Simmerman
1986-01-01
Describes a method for appraising fuels and fire behavior potential in aspen forests to guide the use of prescribed fire and the preparation of fire prescriptions. Includes an illustrated classification of aspen fuels; appraisals of fireline intensity, rate of spread, adjective ratings for fire behavior and probability of burn success; and evaluations of seasonal...
Davis Fire: Fire behavior and fire effects analysis
LaWen T. Hollingsworth
2010-01-01
The Davis Fire presents an interesting example of fire behavior in subalpine fir, partially dead lodgepole pine with multiple age classes, and moist site Douglas-fir vegetation types. This has been summer of moderate temperatures and intermittent moisture that has kept live herbaceous and live woody moistures fairly high and dead fuel moistures at a moderate level....
Remote sensing techniques to assess active fire characteristics and post-fire effects
Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson
2006-01-01
Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...
Memory effects on a resonate-and-fire neuron model subjected to Ornstein-Uhlenbeck noise
NASA Astrophysics Data System (ADS)
Paekivi, S.; Mankin, R.; Rekker, A.
2017-10-01
We consider a generalized Langevin equation with an exponentially decaying memory kernel as a model for the firing process of a resonate-and-fire neuron. The effect of temporally correlated random neuronal input is modeled as Ornstein-Uhlenbeck noise. In the noise-induced spiking regime of the neuron, we derive exact analytical formulas for the dependence of some statistical characteristics of the output spike train, such as the probability distribution of the interspike intervals (ISIs) and the survival probability, on the parameters of the input stimulus. Particularly, on the basis of these exact expressions, we have established sufficient conditions for the occurrence of memory-time-induced transitions between unimodal and multimodal structures of the ISI density and a critical damping coefficient which marks a dynamical transition in the behavior of the system.
Erin K. Noonan-Wright; Nicole M. Vaillant; Alicia L. Reiner
2014-01-01
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after...
BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1
Patricia L. Andrews
1986-01-01
Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.
NASA Astrophysics Data System (ADS)
Giancaspro, James William
Lightweight composites and structural sandwich panels are commonly used in marine and aerospace applications. Using carbon, glass, and a host of other high strength fiber types, a broad range of laminate composites and sandwich panels can be developed. Hybrid composites can be constructed by laminating multiple layers of varying fiber types while sandwich panels are manufactured by laminating rigid fiber facings onto a lightweight core. However, the lack of fire resistance of the polymers used for the fabrication remains a very important problem. The research presented in this dissertation deals with an inorganic matrix (Geopolymer) that can be used to manufacture laminate composites and sandwich panels that are resistant up to 1000°C. This dissertation deals with the influence of fiber type on the mechanical behavior and the fire response of hybrid composites and sandwich structures manufactured using this resin. The results are categorized into the following distinct studies. (i) High strength carbon fibers were combined with low cost E-glass fibers to obtain hybrid laminate composites that are both economical and strong. The E-glass fabrics were used as a core while the carbon fibers were placed on the tension face and on both tension and compression faces. (ii) Structural sandwich beams were developed by laminating various types of reinforcement onto the tension and compression faces of balsa wood cores. The flexural behavior of the beams was then analyzed and compared to beams reinforced with organic composite. The effect of core density was evaluated using oak beams reinforced with inorganic composite. (iii) To measure the fire response, balsa wood sandwich panels were manufactured using a thin layer of a fire-resistant paste to serve for fire protection. Seventeen sandwich panels were fabricated and tested to measure the heat release rates and smoke-generating characteristics. The results indicate that Geopolymer can be effectively used to fabricate both high strength composite plates and sandwich panels. A 2 mm thick coating of fireproofing on balsa wood is sufficient to satisfy FAA fire requirements.
Study of thermal and fire behavior of wood fiber/thermoplastic composite materials
NASA Astrophysics Data System (ADS)
Oladipo, Adedejo Bukola
The fire safety characteristics of wood fiber/thermoplastic composite materials were investigated in this study. Composites comprising wood fiber fillers and polymeric binders are known to offer many advantages such as good strength to weight ratio, ease of manufacture, low cost, and the possibility for recycling. In spite of these advantages however, the fire safety question of plastic-based materials is an important one since they can, under certain conditions, drip or run, under fire, thereby potentially spreading fire from one location to the other. It is important therefore to understand the fire behavior of such a composite if the advantages it offers are to be fully utilized. To this end, numerical and experimental studies of opposed flow flame spread over the composite were conducted with emphasis on the influences of gravity, material thermal property variations, and finite-rate chemistry on the rate of spread. The thermal properties of the composite material, needed for opposed flame spread computations, were first determined using a combination of inverse heat conduction and non-linear parameter estimation procedures. The influences of wood fiber mass fraction and temperature on the effective thermal properties of the composite were established. The means for predicting the effective properties from those of the individual constituents were also examined and the results showed that the composite is close to being isotropic. The experimental and numerical methods used to determine the thermal properties of the composite were also adapted for the investigation of various proprietary automobile sound blanket materials to assess their effectiveness as thermal barriers separating the engine compartment from the passenger cabin. The results of opposed flame spread study over the composite suggests that, for opposed flow velocities lower than about 245 cm/s, finite rate chemistry will dominate the spread process when the oxygen mass fraction is 70% or less. Above this limit, heat transfer from the flame to the unburned fuel ahead seems to be the dominant factor. Also, the composite was observed to exhibit wood-like fire behavior when the wood fiber mass fraction is 40% or more.
Physical characteristics of some northern California brush fuels
Clive M. Countryman
1982-01-01
Brush species make up much of the fuel load in forested wildlands. Basic physical and chemical characteristics of these species influence ease of ignition, rate of fire spread, burning time, and fire intensity. Quantitative knowledge of the variations in brush characteristics is essential to progress in fire control and effective use of fire in wildland management....
Warning signals for eruptive events in spreading fires.
Fox, Jerome M; Whitesides, George M
2015-02-24
Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., "wind-fire coupling"-a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind-fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., "blowup fires" in forests).
Roger D. Ottmar; Susan J. Prichard
2012-01-01
Fuel treatment effectiveness in Southern forests has been demonstrated using fire behavior modeling and observations of reduced wildfire area and tree damage. However, assessments of treatment effectiveness may be improved with a more rigorous accounting of the fuel characteristics. We present two case studies to introduce a relatively new approach to characterizing...
Uncertainty in Wildfire Behavior
NASA Astrophysics Data System (ADS)
Finney, M.; Cohen, J. D.
2013-12-01
The challenge of predicting or modeling fire behavior is well recognized by scientists and managers who attempt predictions of fire spread rate or growth. At the scale of the spreading fire, the uncertainty in winds, moisture, fuel structure, and fire location make accurate predictions difficult, and the non-linear response of fire spread to these conditions means that average behavior is poorly represented by average environmental parameters. Even more difficult are estimations of threshold behaviors (e.g. spread/no-spread, crown fire initiation, ember generation and spotting) because the fire responds as a step-function to small changes in one or more environmental variables, translating to dynamical feedbacks and unpredictability. Recent research shows that ignition of fuel particles, itself a threshold phenomenon, depends on flame contact which is absolutely not steady or uniform. Recent studies of flame structure in both spreading and stationary fires reveals that much of the non-steadiness of the flames as they contact fuel particles results from buoyant instabilities that produce quasi-periodic flame structures. With fuel particle ignition produced by time-varying heating and short-range flame contact, future improvements in fire behavior modeling will likely require statistical approaches to deal with the uncertainty at all scales, including the level of heat transfer, the fuel arrangement, and weather.
Toward improving our application and understanding of crown fire behavior
Martin E. Alexander; Miguel G. Cruz; Nicole M. Vaillant
2014-01-01
The suggestion has been made that most wildland fire operations personnel base their expectations of how a fire will behave largely on experience and, to a lesser extent, on guides to predicting fire behavior (Burrows 1984). Experienced judgment is certainly needed in any assessment of wildland fire potential but it does have its limitations. The same can be said for...
Assessment of the FARSITE model for predicting fire behavior in the Southern Appalachian Mountains
Ross J. Phillips; Thomas A. Waldrop; Dean M. Simon
2006-01-01
Fuel reduction treatments are necessary in fire-adapted ecosystems where fire has been excluded for decades and the potential for severe wildfire is high. Using the Fire Area Simulator, FARSITE, we examined the spatial and temporal effects of these treatments on fire behavior in the Southern Appalachian Mountains. With measurements from temperature sensors during...
An uncommon case of random fire-setting behavior associated with Todd paralysis: a case report.
Kanehisa, Masayuki; Morinaga, Katsuhiko; Kohno, Hisae; Maruyama, Yoshihiro; Ninomiya, Taiga; Ishitobi, Yoshinobu; Tanaka, Yoshihiro; Tsuru, Jusen; Hanada, Hiroaki; Yoshikawa, Tomoya; Akiyoshi, Jotaro
2012-08-31
The association between fire-setting behavior and psychiatric or medical disorders remains poorly understood. Although a link between fire-setting behavior and various organic brain disorders has been established, associations between fire setting and focal brain lesions have not yet been reported. Here, we describe the case of a 24-year-old first time arsonist who suffered Todd's paralysis prior to the onset of a bizarre and random fire-setting behavior. A case of a 24-year-old man with a sudden onset of a bizarre and random fire-setting behavior is reported. The man, who had been arrested on felony arson charges, complained of difficulties concentrating and of recent memory disturbances with leg weakness. A video-EEG recording demonstrated a close relationship between the focal motor impairment and a clear-cut epileptic ictal discharge involving the bilateral motor cortical areas. The SPECT result was statistically analyzed by comparing with standard SPECT images obtained from our institute (easy Z-score imaging system; eZIS). eZIS revealed hypoperfusion in cingulate cortex, basal ganglia and hyperperfusion in frontal cortex,. A neuropsychological test battery revealed lower than normal scores for executive function, attention, and memory, consistent with frontal lobe dysfunction. The fire-setting behavior and Todd's paralysis, together with an unremarkable performance on tests measuring executive function fifteen months prior, suggested a causal relationship between this organic brain lesion and the fire-setting behavior. The case describes a rare and as yet unreported association between random, impulse-driven fire-setting behavior and damage to the brain and suggests a disconnection of frontal lobe structures as a possible pathogenic mechanism.
Vaughn, Michael G; Fu, Qiang; Delisi, Matt; Wright, John Paul; Beaver, Kevin M; Perron, Brian E; Howard, Matthew O
2010-01-01
Fire-setting is a serious and costly form of antisocial behavior. Our objective in this study was to examine the prevalence and correlates of intentional fire-setting behavior in the United States. Data were derived from a nationally representative sample of US residents 18 years and older. Structured psychiatric interviews (N = 43,093) were completed by trained lay interviewers between 2001 and 2002. Fire-setting as well as mood, anxiety, substance use, and personality disorders of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition were assessed with the Alcohol Use Disorder and Associated Disabilities Interview Schedule (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) version. The prevalence of lifetime fire-setting in the US population was 1.0%. Respondents who were men, white, 18 to 35 years old, born in the United States, and living in the western region of the United States had significantly higher rates of fire-setting than their counterparts. Fire-setting was significantly associated with a wide range of antisocial behaviors. Multivariate logistic regression analyses identified strong associations between lifetime alcohol and marijuana use disorders, conduct disorder, antisocial and obsessive-compulsive personality disorders, and family history of antisocial behavior. Intentional illicit fire-setting behavior is associated with a broad array of antisocial behaviors and psychiatric comorbidities. Given the substantial personal and social costs related to arson, prevention and treatment interventions targeting fire-setters potentially could save lives and property. 2010 Elsevier Inc. All rights reserved.
Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models
Keith Grabner; John Dwyer; Bruce Cutter
1997-01-01
Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...
NASA Astrophysics Data System (ADS)
Yin, Hang; Jin, Hui; Zhao, Ying; Fan, Yuguang; Qin, Liwu; Chen, Qinghong; Huang, Liya; Jia, Xiang; Liu, Lijie; Dai, Yuhong; Xiao, Ying
2018-03-01
The forest-fire not only brings great loss to natural resources, but also destructs the ecosystem and reduces the soil fertility, causing some natural disasters as soil erosion and debris flow. However, due to the lack of the prognosis for forest fire spreading trend in forest fire fighting, it is difficult to formulate rational and effective fire-fighting scheme. In the event of forest fire, achieving accurate judgment to the fire behavior would greatly improve the fire-fighting efficiency, and reduce heavy losses caused by fire. Researches on forest fire spread simulation can effectively reduce the loss of disasters. The present study focused on the simulation of "29 May 2012" wildfire in windthrow area of Changbai Mountain. Basic data were retrieved from the "29 May 2012" wildfire and field survey. A self-development forest fire behavior simulated program based on Rothermel Model was used in the simulation. Kappa coefficient and Sørensen index were employed to evaluate the simulation accuracy. The results showed that: The perimeter of simulated burned area was 4.66 km, the area was 56.47 hm2 and the overlapped burned area was 33.68 hm2, and the estimated rate of fire spread was 0.259 m/s. Between the simulated fire and actual fire, the Kappa coefficient was 0.7398 and the Sørensen co-efficient was 0.7419. This proved the application of Rothermel model to conduct fire behavior simulation in windthrow meadow was feasible. It can achieve the goal of forecasting for the spread behavior in windthrow area of Changbai Mountain. Thus, our self-development program based on the Rothermel model can provide a effective forecast of fire spread, which will facilitate the fire suppression work.
Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A
2017-01-15
Researchers often rely on simple methods to identify involvement of neurons in a particular motor task. The historical approach has been to inspect large groups of neurons and subjectively separate neurons into groups based on the expertise of the investigator. In cases where neuron populations are small it is reasonable to inspect these neuronal recordings and their firing rates carefully to avoid data omissions. In this paper, a new methodology is presented for automatic objective classification of neurons recorded in association with behavioral tasks into groups. By identifying characteristics of neurons in a particular group, the investigator can then identify functional classes of neurons based on their relationship to the task. The methodology is based on integration of a multiple signal classification (MUSIC) algorithm to extract relevant features from the firing rate and an expectation-maximization Gaussian mixture algorithm (EM-GMM) to cluster the extracted features. The methodology is capable of identifying and clustering similar firing rate profiles automatically based on specific signal features. An empirical wavelet transform (EWT) was used to validate the features found in the MUSIC pseudospectrum and the resulting signal features captured by the methodology. Additionally, this methodology was used to inspect behavioral elements of neurons to physiologically validate the model. This methodology was tested using a set of data collected from awake behaving non-human primates. Copyright © 2016 Elsevier B.V. All rights reserved.
Report of the Army Scientific Advisory Panel Ad Hoc Group on Fire Suppression
1975-07-01
initially should be provided a nucleus of a seven- person technical staff composed of one 0-6 combat arme officer as Director, two senior behavioral ...If the suppressee perceives the fire as being reactive to his own behavior then the personal danger factor will be reinforced,1 Fire...that is not periodic hut also not reactive to his behavior may be like periodic fire in its personal threat except more difficult to
Fire Detection Using tin Oxide Gas Sensors Installed in an Indoor Space
NASA Astrophysics Data System (ADS)
Shibata, Shin-Ichi; Higashino, Tsubasa; Sawada, Ayako; Oyabu, Takashi; Takei, Yoshinori; Nanto, Hidehito; Toko, Kiyoshi
Many lives and facilities were lost by fire. Especially, there are many damages to elderly, toddlers and babies. In Japan, number of deaths over 65 years old reached to 53% in 2004. Number of over 81 years olds went to 20%. It takes for the elderly person more time to sense fire and also to evacuate to safe places. Although it is important to prevent the fire, it also needs to inform the fire breaking as early as possible. Human sense decreases with age and it is difficult to perceive the fire at an early stage. It is desired to develop a higher sensitive element for fire and its system which can detect fire at an early stage. In this experiment, tin oxide gas sensors were adopted to detect a smoldering fire at the early stage. Most common case of fire is the smoldering fire. The reliability of the sensor is higher and it is adopted in a gas alarm detector. The sensor can also detect slight amount of odor molecule. In our previous experiment, it became obvious that it was better to install the sensor to the ceiling to detect odor components generating from smoldering fire. Therefore, five sensors were installed in the ceiling away from each other and the method to detect the fire was examined. As a result, a characteristic was newly derived by adding the sensor outputs for one minute. The sensor output was input every 0.1s. The characteristic is called as the integrated characteristic. After that, the differential characteristic was derived using the integrated characteristic. The fire was determined using the differential characteristics. The materials causing a smoldering fire were woodchip, wallpaper and carpet as subjects. The system could detect the fire in several minutes for whole materials. The sensor is effective to detect the smoldering fire at an early stage. It is necessary to detect a cigarette smoke to distinguish as non fire. In this study, the discrimination was also examined using a quadratic function (ax2+b). The coefficients a and b were effective to identify smoldering fire and cigarette smoke. Principal component analysis for the arrival speed S which meant a kind of odor-speed was also useful to distinguish fire from non fire.
Warning signals for eruptive events in spreading fires
Fox, Jerome M.; Whitesides, George M.
2015-01-01
Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–fire coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests). PMID:25675491
Firing patterns transition and desynchronization induced by time delay in neural networks
NASA Astrophysics Data System (ADS)
Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun
2018-06-01
We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.
Fire-danger rating and observed wildfire behavior in the Northeastern United States.
Donald A. Haines; William A. Main; Albert J. Simard
1986-01-01
Compares the 1978 National Fire-Danger Rating System and its 20 fuel models, along with other danger rating systems, with observed fire behavior and rates the strengths and weaknesses of models and systems.
Behavior of sandwich panels in a fire
NASA Astrophysics Data System (ADS)
Chelekova, Eugenia
2018-03-01
For the last decades there emerged a vast number of buildings and structures erected with the use of sandwich panels. The field of application for this construction material is manifold, especially in the construction of fire and explosion hazardous buildings. In advanced evacu-ation time calculation methods the coefficient of heat losses is defined with dire regard to fire load features, but without account to thermal and physical characteristics of building envelopes, or, to be exact, it is defined for brick and concrete walls with gross heat capacity. That is why the application of the heat loss coefficient expression obtained for buildings of sandwich panels is impossible because of different heat capacity of these panels from the heat capacities of brick and concrete building envelopes. The article conducts an analysis and calculation of the heal loss coefficient for buildings and structures of three layer sandwich panels as building envelopes.
NASA Astrophysics Data System (ADS)
Jia, Bing
2014-05-01
The coexistence of a resting condition and period-1 firing near a subcritical Hopf bifurcation point, lying between the monostable resting condition and period-1 firing, is often observed in neurons of the central nervous systems. Near such a bifurcation point in the Morris—Lecar (ML) model, the attraction domain of the resting condition decreases while that of the coexisting period-1 firing increases as the bifurcation parameter value increases. With the increase of the coupling strength, and parameter and initial value dependent synchronization transition processes from non-synchronization to compete synchronization are simulated in two coupled ML neurons with coexisting behaviors: one neuron chosen as the resting condition and the other the coexisting period-1 firing. The complete synchronization is either a resting condition or period-1 firing dependent on the initial values of period-1 firing when the bifurcation parameter value is small or middle and is period-1 firing when the parameter value is large. As the bifurcation parameter value increases, the probability of the initial values of a period-1 firing neuron that lead to complete synchronization of period-1 firing increases, while that leading to complete synchronization of the resting condition decreases. It shows that the attraction domain of a coexisting behavior is larger, the probability of initial values leading to complete synchronization of this behavior is higher. The bifurcations of the coupled system are investigated and discussed. The results reveal the complex dynamics of synchronization behaviors of the coupled system composed of neurons with the coexisting resting condition and period-1 firing, and are helpful to further identify the dynamics of the spatiotemporal behaviors of the central nervous system.
Pamela G. Sikkink; Theresa B. Jain; James Reardon; Faith Ann Heinsch; Robert E. Keane; Bret Butler; L. Scott Baggett
2017-01-01
Mastication is a silvicultural technique that grinds, shreds, or chops trees or shrubs into pieces and redistributes the biomass onto the forest floor to form a layer of woody debris. Unlike other fuel treatments that remove this biomass, masticated biomass often remains on site, which increases total fuel loading and causes concern over how the masticated particles...
NASA Astrophysics Data System (ADS)
Araneda, A.; Muñoz, V.; Valenzuela, B.; Alvarez, D.; Torrejon, F.; Pedreros, P.; Urrutia, R.
2013-12-01
Traditionally Patagonia has been seen as a very pristine area, being an important reserve of wildlife and clean waters. Nonetheless it was dramatically affected by the first settlers at the beginning of the 20th century, that generated large fires for clearing the land originally covered by native forest. Those fires produced a dramatic impact left behind thousands of dead trees, increasing soil erosion, altering nutrient inputs in the aquatic ecosystems, which in turn affected the aquatic biota. However those impacts have been barely asses, then through the study of the sediment record of lake La Esponja (45°S) we want to evaluate the magnitude of the changes produced by the fires and to determine the resilience capacity of the lake. We analyzed magnetic susceptibility, organic content, charcoal, total phosphorous and a biological proxy (Chironomidae) in a sediment sequence of 60 cm long. Magnetic susceptibility shows a very variable behavior along the profile, being possible to identify a decreasing trend since the bottom, up to the most recent part of the record. An opposite behavior describes the organic content, showing a noticeable increase toward the surficial sediments. The number of charcoal particles -a direct indicator of fires occurrence, shows a peak of fires approximately at seven cm depth, diminishing toward the recent part. Total phosphorous also follow the trend recognized by charcoal, which allow inferring a probable trophic increase of the lake. This trend is partially recognized by chironomid assemblages through the increasing of some taxa typical of a higher nutrient status. Acknowledgements: Fondecyt projects 1120765 and 1120807.
Riley, Karin L.; Loehman, Rachel A.
2016-01-01
Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.
Claussen, Catherine M; Dafny, Nachum
2016-01-01
The misuse and abuse of the psychostimulant, methylphenidate (MPD) the drug of choice in the treatment of attention deficit hyperactivity disorder (ADHD) has seen a sharp uprising in recent years among both youth and adults for its cognitive enhancing effects and for recreational purposes. This uprise in illicit use has lead to many questions concerning the long term consequences of MPD exposure. The objective of this study was to record animal behavior concomitantly with the caudate nucleus (CN) neuronal activity following acute and repetitive (chronic) dose response exposure to methylphenidate (MPD). A saline control and three MPD dose (0.6, 2.5, and 10.0 mg/kg) groups were used. Behaviorally, the same MPD dose in some animals following chronic MPD exposure elicited behavioral sensitization and other animals elicited behavioral tolerance. Based on this finding, the CN neuronal population recorded from animals expressing behavioral sensitization were also evaluated separately from CN neurons recorded from animals expressing behavioral tolerance to chronic MPD exposure, respectively. Significant differences in CN neuronal population responses between the behaviorally sensitized and the behaviorally tolerant animals was observed for the 2.5 and 10.0 mg/kg MPD exposed groups. For 2.5 mg/kg MPD, behaviorally sensitized animals responded by decreasing their firing rates while behaviorally tolerant animals showed mainly an increase in their firing rates. The CN neuronal responses recorded from the behaviorally sensitized animals following 10.0 mg/kg MPD responded by increasing their firing rates whereas the CN neuronal recordings from the behaviorally tolerant animals showed that approximately half decreased their firing rates in response to 10.0 mg/kg MPD exposure. The comparison of percentage change in neuronal firing rates showed that the behaviorally tolerant animals trended to exhibit increases in their neuronal firing rates at ED1 following initial MPD exposure and oppositely at ED10 MPD rechallenge. While the behaviorally sensitized animals in general increased in their percentage change of firing rats were observed following acute 10.0 mg/kg MPD and the behaviorally sensitized 10.0 mg/kg MPD animals and a robust increase in neuronal firing rates at ED1 and ED10 rechallenge. These results suggest the need to first individually analyze animal behavioral activity, and than to evaluate the neuronal responses to the drug based on the animals behavioral response to chronic MPD exposure. PMID:26101057
Fire behavior in northern Rocky Mountain forests
J. S. Barrows
1951-01-01
Knowledge of fire behavior is an essential requirement for firefighters. Successful fire control operations depend, first of all, upon the ability of the protection forces to judge where and when fires will start and how they will behave once ignition takes place. Every member of the firefighting team from ranger to smokechaser must be able to make reliable estimates...
BEHAVE: fire behavior prediction and fuel modeling system - BURN subsystem, Part 2
Patricia L. Andrews; Carolyn H. Chase
1989-01-01
This is the third publication describing the BEHAVE system of computer programs for predicting behavior of wildland fires. This publication adds the following predictive capabilities: distance firebrands are lofted ahead of a wind-driven surface fire, probabilities of firebrands igniting spot fires, scorch height of trees, and percentage of tree mortality. The system...
Putting out fire with gasoline: pitfalls in the silvicultural treatment of canopy fuels
Christopher R. Keyes; J. Morgan Varner
2007-01-01
There is little question that forest stand structure is directly related to fire behavior, and that canopy fuel structure may be altered using silvicultural methods to successfully modify forest fire behavior and reduce susceptibility to crown fire initiation and spread. Silvicultural treatments can remediate hazardous stand structures that have developed as a result...
Modeling fuels and fire effects in 3D: Model description and applications
Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn
2016-01-01
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...
Chapter 2: Fire and Fuels Extension: Model description
Sarah J. Beukema; Elizabeth D. Reinhardt; Julee A. Greenough; Donald C. E. Robinson; Werner A. Kurz
2003-01-01
The Fire and Fuels Extension to the Forest Vegetation Simulator is a model that simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. Existing models are used to represent forest stand development (the Forest Vegetation Simulator, Wykoff and others 1982), fire behavior (Rothermel 1972, Van Wagner 1977, and...
Research efforts on fuels, fuel models, and fire behavior in eastern hardwood forests
Thomas A. Waldrop; Lucy Brudnak; Ross J. Phillips; Patrick H. Brose
2006-01-01
Although fire was historically important to most eastern hardwood systems, its reintroduction by prescribed burning programs has been slow. As a result, less information is available on these systems to fire managers. Recent research and nationwide programs are beginning to produce usable products to predict fuel accumulation and fire behavior. We introduce some of...
Fire fighting aboard ships. Volume 1: Hazard analysis and behavior of combustible materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavitskiy, M.G.; Kortunov, M.F.; Sidoryuk, V.M.
1983-01-01
The volume zeros in on fire hazards on ships afloat or under construction/repair. It examines fire hazards peculiar to ships carrying particular cargoes, such as dry-cargo ships, tankers, and factory and fishing vessels. This volume examines specific features of fire-fighting equipment, along with the thermal behavior of materials used in shipbuilding.
Potential fire behavior in pine flatwood forests following three different fuel reduction techniques
Patrick Brose; Dale Wade
2002-01-01
A computer modeling study to determine the potential fire behavior in pine flatwood forests following three fuel hazard reduction treatments: herbicide, prescribed fire and thinning was conducted in Florida following the 1998 wildfire season. Prescribed fire provided immediate protection but this protection quickly disappeared as the rough recovered. Thinning had a...
Measuring fire behavior with photography
Hubert B. Clements; Darold E. Ward; Carl W. Adkins
1983-01-01
Photography is practical for recording and measuring some aspects of forest fire behavior if the scale and perspective can be determined. This paper describes a photogrammetric method for measuring flame height and rate of spread for fires on flat terrain. The flames are photographed at known times with a camera in front of the advancing fire. Scale and perspective of...
How will climate change affect wildland fire severity in the western US?
Sean A. Parks; Carol Miller; John T. Abatzoglou; Lisa M. Holsinger; Marc-Andre Parisien; Solomon Z. Dobrowski
2016-01-01
Fire regime characteristics in North America are expected to change over the next several decades as a result of anthropogenic climate change. Although some fire regime characteristics (e.g., area burned and fire season length) are relatively well-studied in the context of a changing climate, fire severity has received less attention. In this study, we used...
Forest Fire Danger Rating (FFDR) Prediction over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Song, B.; Won, M.; Jang, K.; Yoon, S.; Lim, J.
2016-12-01
Approximately five hundred forest fires occur and inflict the losses of both life and property each year in Korea during the forest fire seasons in the spring and autumn. Thus, an accurate prediction of forest fire is essential for effective forest fire prevention. The meteorology is one of important factors to predict and understand the fire occurrence as well as its behaviors and spread. In this study, we present the Forest Fire Danger Rating Systems (FFDRS) on the Korean Peninsula based on the Daily Weather Index (DWI) which represents the meteorological characteristics related to forest fire. The thematic maps including temperature, humidity, and wind speed produced from Korea Meteorology Administration (KMA) were applied to the forest fire occurrence probability model by logistic regression to analyze the DWI over the Korean Peninsula. The regional data assimilation and prediction system (RDAPS) and the improved digital forecast model were used to verify the sensitivity of DWI. The result of verification test revealed that the improved digital forecast model dataset showed better agreements with the real-time weather data. The forest fire danger rating index (FFDRI) calculated by the improved digital forecast model dataset showed a good agreement with the real-time weather dataset at the 233 administrative districts (R2=0.854). In addition, FFDRI were compared with observation-based FFDRI at 76 national weather stations. The mean difference was 0.5 at the site-level. The results produced in this study indicate that the improved digital forecast model dataset can be useful to predict the FFDRI in the Korean Peninsula successfully.
Risk factors for rural residential fires.
Allareddy, Veerasathpurush; Peek-Asa, Corinne; Yang, Jingzhen; Zwerling, Craig
2007-01-01
Rural households report high fire-related mortality and injury rates, but few studies have examined the risk factors for fires. This study aims to identify occupant and household characteristics that are associated with residential fires in a rural cohort. Of 1,005 households contacted in a single rural county, 691 (68.8%) agreed to participate. One household with missing information on a reported fire was excluded from the analysis. We used logistic regression to examine the independent association of occupant and household characteristics with reported fires, controlling for years lived in the residence. We also examined the association between the occurrence of previous fires and the adoption of safety measures. A total of 78 (11.3%) households reported a residential fire. Occupant characteristics that were associated with significantly higher odds of reported fires included the presence of an occupant with alcohol problems (OR = 1.82, 95% CI = 1.01-3.28) and being married (OR = 2.11, 95% CI = 1.14-3.91). Rural farm households were associated with significantly higher odds (OR = 1.72, 95% CI = 1.01-2.93) of reporting a fire when compared to residences in towns, after controlling for all other occupant and household characteristics. The presence of a fire extinguisher (OR = 2.00, 95% CI = 1.10-3.64) was the only fire safety measure that had a statistically significant association with reported fire. Rural farm households report higher incidences of fire when compared to households located in towns. Experiencing a fire is not associated with an increased likelihood of adopting safety measures to prevent injuries once a fire has started.
Modeling fire behavior on tropical islands with high-resolution weather data
John W. Benoit; Francis M. Fujioka; David R. Weise
2009-01-01
In this study, we consider fire behavior simulation in tropical island scenarios such as Hawaii and Puerto Rico. The development of a system to provide real-time fire behavior prediction in Hawaii is discussed. This involves obtaining fuels and topography information at a fine scale, as well as supplying daily high-resolution weather forecast data for the area of...
Probabilistic models to estimate fire-induced cable damage at nuclear power plants
NASA Astrophysics Data System (ADS)
Valbuena, Genebelin R.
Even though numerous PRAs have shown that fire can be a major contributor to nuclear power plant risk, there are some specific areas of knowledge related to this issue, such as the prediction of fire-induced damage to electrical cables and circuits, and their potential effects in the safety of the nuclear power plant, that still constitute a practical enigma, particularly for the lack of approaches/models to perform consistent and objective assessments. This report contains a discussion of three different models to estimate fire-induced cable damage likelihood given a specified fire profile: the kinetic, the heat transfer and the IR "K Factor" model. These models not only are based on statistical analysis of data available in the open literature, but to the greatest extent possible they use physics based principles to describe the underlying mechanism of failures that take place among the electrical cables upon heating due to external fires. The characterization of cable damage, and consequently the loss of functionality of electrical cables in fire is a complex phenomenon that depends on a variety of intrinsic factors such as cable materials and dimensions, and extrinsic factors such as electrical and mechanical loads on the cables, heat flux severity, and exposure time. Some of these factors are difficult to estimate even in a well-characterized fire, not only for the variability related to the unknown material composition and physical arrangements, but also for the lack of objective frameworks and theoretical models to study the behavior of polymeric wire cable insulation under dynamic external thermal insults. The results of this research will (1) help to develop a consistent framework to predict fire-induced cable failure modes likelihood, and (2) develop some guidance to evaluate and/or reduce the risk associated with these failure modes in existing and new power plant facilities. Among the models evaluated, the physics-based heat transfer model takes into account the properties and characteristics of the cables and cable materials, and the characteristics of the thermal insult. This model can be used to estimate the probability of cable damage under different thermal conditions.
Defining pyromes and global syndromes of fire regimes.
Archibald, Sally; Lehmann, Caroline E R; Gómez-Dans, Jose L; Bradstock, Ross A
2013-04-16
Fire is a ubiquitous component of the Earth system that is poorly understood. To date, a global-scale understanding of fire is largely limited to the annual extent of burning as detected by satellites. This is problematic because fire is multidimensional, and focus on a single metric belies its complexity and importance within the Earth system. To address this, we identified five key characteristics of fire regimes--size, frequency, intensity, season, and extent--and combined new and existing global datasets to represent each. We assessed how these global fire regime characteristics are related to patterns of climate, vegetation (biomes), and human activity. Cross-correlations demonstrate that only certain combinations of fire characteristics are possible, reflecting fundamental constraints in the types of fire regimes that can exist. A Bayesian clustering algorithm identified five global syndromes of fire regimes, or pyromes. Four pyromes represent distinctions between crown, litter, and grass-fueled fires, and the relationship of these to biomes and climate are not deterministic. Pyromes were partially discriminated on the basis of available moisture and rainfall seasonality. Human impacts also affected pyromes and are globally apparent as the driver of a fifth and unique pyrome that represents human-engineered modifications to fire characteristics. Differing biomes and climates may be represented within the same pyrome, implying that pathways of change in future fire regimes in response to changes in climate and human activity may be difficult to predict.
Defining pyromes and global syndromes of fire regimes
Archibald, Sally; Lehmann, Caroline E. R.; Gómez-Dans, Jose L.; Bradstock, Ross A.
2013-01-01
Fire is a ubiquitous component of the Earth system that is poorly understood. To date, a global-scale understanding of fire is largely limited to the annual extent of burning as detected by satellites. This is problematic because fire is multidimensional, and focus on a single metric belies its complexity and importance within the Earth system. To address this, we identified five key characteristics of fire regimes—size, frequency, intensity, season, and extent—and combined new and existing global datasets to represent each. We assessed how these global fire regime characteristics are related to patterns of climate, vegetation (biomes), and human activity. Cross-correlations demonstrate that only certain combinations of fire characteristics are possible, reflecting fundamental constraints in the types of fire regimes that can exist. A Bayesian clustering algorithm identified five global syndromes of fire regimes, or pyromes. Four pyromes represent distinctions between crown, litter, and grass-fueled fires, and the relationship of these to biomes and climate are not deterministic. Pyromes were partially discriminated on the basis of available moisture and rainfall seasonality. Human impacts also affected pyromes and are globally apparent as the driver of a fifth and unique pyrome that represents human-engineered modifications to fire characteristics. Differing biomes and climates may be represented within the same pyrome, implying that pathways of change in future fire regimes in response to changes in climate and human activity may be difficult to predict. PMID:23559374
Resistance is not futile: The response of hardwoods to fire-caused wounding
Elaine Kennedy Sutherland; Kevin Smith
2000-01-01
Fires wound trees; but not all of them, and not always. Specific fire behavior and differences among tree species and individual trees produce variable patterns of wounding and wound response. Our work focuses on the relationships between fire behavior and tree biology to better understand how hardwood trees resist injury to the lower stem and either survive or succumb...
Exposure to fire setting behavior on YouTube.
Thomas, Meara; Mackay, Sherri; Salsbury, Debbie
2012-07-01
This study is a preliminary examination of fire setting behaviors on YouTube. Data are based on a 1 day search of YouTube. Results indicate YouTube is replete with inappropriate models of fire setting. The findings have potential implications for intervention with fire setting youth. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
K. E. Gibos; A. Slijepcevic; T. Wells; L. Fogarty
2015-01-01
Wildland fire managers must frequently make meaning from chaos in order to protect communities and infrastructure from the negative impacts of fire. Fire management personnel are increasingly turning to science to support their experience-based decision-making processes and to provide clear, confident leadership for communities frequently exposed to risk from wildfire...
Predicting behavior and size of crown fires in the northern Rocky Mountains
Richard C. Rothermel
1991-01-01
Describes methods for approximating behavior and size of a wind-driven crown fire in mountainous terrain. Covers estimation of average rate of spread, energy release from tree crowns and surface fuel, fireline intensity, flame length, and unit area power of the fire and ambient wind. Plume-dominated fires, which may produce unexpectedly fast spread rates even with low...
Utilization of remote sensing techniques for the quantification of fire behavior in two pine stands
Eric V. Mueller; Nicholas Skowronski; Kenneth Clark; Michael Gallagher; Robert Kremens; Jan C. Thomas; Mohamad El Houssami; Alexander Filkov; Rory M. Hadden; William Mell; Albert Simeoni
2017-01-01
Quantification of field-scale fire behavior is necessary to improve the current scientific understanding of wildland fires and to develop and test relevant, physics-based models. In particular, detailed descriptions of individual fires are required, for which the available literature is limited. In this work, two such field-scale experiments, carried out in pine stands...
Robert W. Gray; Susan J. Prichard
2015-01-01
The incidence of large, costly landscape-scale fires in western North America is increasing. To combat these fires, researchers and managers have expressed increased interest in investigating the effectiveness of past, stand-replacing wildfires as bottom-up controls on fire spread and severity. Specifically, how effective are past wildfires in mitigating the behavior...
Warning signals for eruptive events in spreading fires
Fox, Jerome M.; Whitesides, George M.
2015-02-09
Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This study describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–firemore » coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. Here, in this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Lastly, findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests).« less
Warning signals for eruptive events in spreading fires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Jerome M.; Whitesides, George M.
Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This study describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–firemore » coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. Here, in this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Lastly, findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests).« less
Using behavioral science to improve fire escape behaviors in response to a smoke alarm.
Thompson, N J; Waterman, M B; Sleet, D A
2004-01-01
Although the likelihood of fire-related death in homes with smoke alarms is about one-half that in homes without alarms, alarm effectiveness is limited by behavior. Only 16% of residents of homes with alarms have developed and practiced plans for escape when the alarm sounds. We reviewed literature to identify behavioral constructs that influence smoke alarm use. We then convened experts in the behavioral aspects of smoke alarms who reviewed the constructs and determined that the appropriate areas for behavioral focus were formulating, practicing, and implementing escape plans should an alarm sound. They subsequently identified important behaviors to be addressed by burn-prevention programs and incorporated the constructs into a behavioral model for use in such programs. Finally, we organized the available literature to support this model and make programmatic recommendations. Many gaps remain in behavioral research to improve fire escape planning and practice. Future research must select the target behavior, apply behavioral theories, and distinguish between initiation and maintenance of behaviors associated with planning, practicing, and implementing home fire escape plans.
Castillo, Miguel E; Molina, Juan R; Rodríguez Y Silva, Francisco; García-Chevesich, Pablo; Garfias, Roberto
2017-02-01
Wildfires constitute the greatest economic disruption to Mediterranean ecosystems, from a socio-economic and ecological perspective (Molina et al., 2014). This study proposes to classify fire intensity levels based on potential fire behavior in different types of Mediterranean vegetation types, using two geographical scales. The study considered >4 thousand wildfires over a period of 25years, identifying fire behavior on each event, based on simulations using "KITRAL", a model developed in Chile in 1993 and currently used in the entire country. Fire intensity values allowed results to be classified into six fire effects categories (levels), each of them with field indicators linking energy values with damage related to burned vegetation and wildland urban interface zone. These indicators also facilitated a preliminary assessment of wildfire impact on different Mediterranean land uses and, are therefore, a useful tool to prioritize future interventions. Copyright © 2016 Elsevier B.V. All rights reserved.
Joint Analysis of Bulk Wildfire Characteristics from Multiple Satellite Retrievals
NASA Astrophysics Data System (ADS)
Tang, W.; Arellano, A. F.
2015-12-01
Biomass burning significantly impacts atmospheric composition, as well as regional and global climate. Here, we investigate the spatiotemporal trends in fire characteristics in several major fire regions using combustion signatures observed from space. Our main goals is to identify key relationships between the trends in co-emitted constituents across these regions, as well as linkages to main drivers of change such as meteorology, fire practice, development patterns, and ecosystem feedbacks. Our approach begins with a multi-species analysis of trends in the observed abundance of CO, NO2, and aerosols over these regions and across the time period 2005 to 2014. We use MOPITT multi-spectral CO, OMI tropospheric NO2 column, MODIS AOD, and MODIS FRP retrievals. The long records from these retrievals provide a unique opportunity to study atmospheric composition across the most recent decade. While several studies in the past have reported trends over these regions, most of these studies have focused on a particular constituent. A unique aspect of this work involves understanding co-variations in co-emitted constituents to provide a more comprehensive look at fire characteristics, which are yet to be fully understood. Here, we introduce a derived quantity (called smoke index) to represent bulk fire characteristics (e.g., flaming versus smoldering). The smoke index is calculated as the ratio of the geometric mean of CO and AOD fire enhancements to that of NO2 fire enhancements. Our initial results, which focused on the Amazon region, show that: 1) deforestation fires are dominantly flaming fires while non-deforestation fires are more likely to be dominantly smoldering fires; and 2) droughts have larger influence on non-deforestation (possibly understorey) fires than deforestation fires. Here, we will present an extension of this analysis to other fire regions around the globe (tropical, temperate and boreal fires) and explore other measurements available during this period for comparisons. We will also compare with current fire emission models, such as GFED and FINN, to test the robustness of our findings. We note that this exploratory work provides a unique perspective of fire characteristics that will be useful to improve predictive capability of fire emission and atmospheric models.
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Sauer, J.; Linn, R.
2015-12-01
Anomalous and unexpected fire behavior in complex terrain continues to result in substantial loss of property and extremely dangerous conditions for firefighting field personnel. We briefly discuss proposed hypotheses of fire interactions with atmospheric flows over complex terrain that can lead to poorly-understood and potentially catastrophic scenarios. Then, our recent results of numerical investigations via large-eddy simulation of coupled atmosphere-topography-fire phenomenology with the Los Alamos National Laboratory, HiGrad-Firetec model are presented as an example of the potential for increased understanding of these complex processes. This investigation focuses on the influence of downslope surface wind enhancement through stably stratified flow over an isolated hill, and the resulting dramatic changes in fire behavior including spread rate, and intensity. Implications with respect to counter-intuitive fire behavior and extreme fire events are discussed. This work demonstrates a tremendous opportunity to immediately create safer and more effective policy for field personnel through improved predictability of atmospheric conditions over complex terrain
The use of fuel breaks in landscape fire management
Agee, James K.; Bahro, Berni; Finney, Mark A.; Omi, Philip N.; Sapsis, David B.; Skinner, Carl N.; Van Wagtendonk, Jan W.; Weatherspoon, C. Phillip
2000-01-01
Shaded fuelbreaks and larger landscape fuel treatments, such as prescribed fire, are receiving renewed interest as forest protection strategies in the western United States. The effectiveness of fuelbreaks remains a subject of debate because of differing fuelbreak objectives, prescriptions for creation and maintenance, and their placement in landscapes with differing fire regimes. A well-designed fuelbreak will alter the behavior of wildland fire entering the fuel-altered zone. Both surface and crown fire behavior may be reduced. Shaded fuelbreaks must be created in the context of the landscape within which they are placed. No absolute standards for fuelbreak width or fuel reduction are possible, although recent proposals for forested fuelbreaks suggest 400 m wide bands where surface fuels are reduced and crown fuels are thinned. Landscape-level treatments such as prescribed fire can use shaded fuelbreaks as anchor points, and extend the zone of altered fire behavior to larger proportions of the landscape. Coupling fuelbreaks with area-wide fuel treatments can reduce the size, intensity, and effects of wildland fires.
Neurons in the Amygdala with Response-Selectivity for Anxiety in Two Ethologically Based Tests
Wang, Dong V.; Wang, Fang; Liu, Jun; Zhang, Lu; Wang, Zhiru; Lin, Longnian
2011-01-01
The amygdala is a key area in the brain for detecting potential threats or dangers, and further mediating anxiety. However, the neuronal mechanisms of anxiety in the amygdala have not been well characterized. Here we report that in freely-behaving mice, a group of neurons in the basolateral amygdala (BLA) fires tonically under anxiety conditions in both open-field and elevated plus-maze tests. The firing patterns of these neurons displayed a characteristic slow onset and progressively increased firing rates. Specifically, these firing patterns were correlated to a gradual development of anxiety-like behaviors in the open-field test. Moreover, these neurons could be activated by any impoverished environment similar to an open-field; and introduction of both comfortable and uncomfortable stimuli temporarily suppressed the activity of these BLA neurons. Importantly, the excitability of these BLA neurons correlated well with levels of anxiety. These results demonstrate that this type of BLA neuron is likely to represent anxiety and/or emotional values of anxiety elicited by anxiogenic environmental stressors. PMID:21494567
E. Matthew Hansen; Morris C. Johnson; Barbara J. Bentz; James C. Vandygriff; A. Steven Munson
2015-01-01
Recent bark beetle outbreaks in western North America have led to concerns regarding changes in fuel profiles and associated changes in fire behavior. Data are lacking for a range of infestation severities and time since outbreak, especially for relatively arid cover types. We surveyed fuel loads and simulated fire behavior for ponderosa pine stands of the...
Peter R. Robichaud; Hakjun Rhee; Sarah A. Lewis
2014-01-01
Over 1200 post-fire assessment and treatment implementation reports from four decades (1970s-2000s) of western US forest fires have been examined to identify decadal patterns in fire characteristics and the justifications and expenditures for the post-fire treatments. The main trends found were: (1) the area burned by wildfire increased over time and the rate of...
Temperate and boreal forest mega-fires: characteristics and challenges
Stephens, Scott L.; Burrows, Neil; Buyantuyev, Alexander; Gray, Robert W.; Keane, Robert E.; Kubian, Rick; Liu, Shirong; Seijo, Francisco; Shu, Lifu; Tolhurst, Kevin G.; Van Wagtendonk, Jan W.
2014-01-01
Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors – climate change, fire exclusion, and antecedent disturbance, collectively referred to as the “mega-fire triangle” – likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate historical fire regimes and can therefore sustain healthy fire-prone ecosystems, but other attributes decrease ecosystem resiliency. A good example of a program that seeks to mitigate mega-fires is located in Western Australia, where prescribed burning reduces wildfire intensity while conserving ecosystems. Crown-fire-adapted ecosystems are likely at higher risk of frequent mega-fires as a result of climate change, as compared with other ecosystems once subject to frequent less severe fires. Fire and forest managers should recognize that mega-fires will be a part of future wildland fire regimes and should develop strategies to reduce their undesired impacts.
Probability model for analyzing fire management alternatives: theory and structure
Frederick W. Bratten
1982-01-01
A theoretical probability model has been developed for analyzing program alternatives in fire management. It includes submodels or modules for predicting probabilities of fire behavior, fire occurrence, fire suppression, effects of fire on land resources, and financial effects of fire. Generalized "fire management situations" are used to represent actual fire...
Haiganoush Preisler; Alan Ager
2013-01-01
For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...
Alan A. Ager; Nicole M. Vaillant; Mark A. Finney
2011-01-01
Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...
Fire behavior in masticated fuels: a review
Jesse K. Kreye; Nolan W. Brewer; Penelope Morgan; J. Morgan Varner; Alistair M.S. Smith; Chad M. Hoffman; Roger D. Ottmar
2014-01-01
Mastication is an increasingly common fuels treatment that redistributes ââladderââ fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely...
Thomas Waldrop; Ross J. Phillips; Dean A. Simon
2010-01-01
This study tested the success of fuel reduction treatments for mitigating wildfire behavior in an area that has had little previous research on fire, the southern Appalachian Mountains. A secondary objective of treatments was to restore the community to an open woodland condition. Three blocks of four treatments were installed in a mature hardwood forest in western...
Chad M. Hoffman; Penelope Morgan; William Mell; Russell Parsons; Eva Strand; Steve Cook
2013-01-01
Recent bark beetle outbreaks have had a significant impact on forests throughout western North America and have generated concerns about interactions and feedbacks between beetle attacks and fire. However, research has been hindered by a lack of experimental studies and the use of fire behavior models incapable of accounting for the heterogeneous fuel complexes. We...
Fuel and fire behavior in high-elevation five-needle pines affected by mountain pine beetle
Michael J. Jenkins
2011-01-01
Bark beetle-caused tree mortality in conifer forests affects the quantity and quality of forest fuels and has long been assumed to increase fire hazard and potential fire behavior. In reality, bark beetles and their effects on fuel accumulation and subsequent fire hazard have only recently been described. We have extensively sampled fuels in three conifer forest types...
Numerical Field Model Simulation of Full Scale Fire Tests in a Closed Spherical/Cylindrical Vessel.
1987-12-01
the behavior of an actual fire on board a ship. The computer model will be verified by the experimental data obtained in Fire-l. It is important to... behavior in simulations where convection is important. The upwind differencing scheme takes into account the unsymmetrical phenomenon of convection by using...TANK CELL ON THE NORTH SIDE) FOR A * * PARTICULAR FIRE CELL * * COSUMS (I,J) = THE ARRAY TO STORE THE SIMILIAR VALUE FOR THE FIRE * * CELL TO THE SOUTH
The compensatory interaction between motor unit firing behavior and muscle force during fatigue
De Luca, Carlo J.; Kline, Joshua C.
2016-01-01
Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. PMID:27385798
The compensatory interaction between motor unit firing behavior and muscle force during fatigue.
Contessa, Paola; De Luca, Carlo J; Kline, Joshua C
2016-10-01
Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.
Numerical modeling of laboratory-scale surface-to-crown fire transition
NASA Astrophysics Data System (ADS)
Castle, Drew Clayton
Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed ignition which closely matched the trends reported in the laboratory experiments.
Flame characteristics for fires in southern fuels
Ralph M. Nelson
1980-01-01
A flame model and analytical method are used to derive forest fire flame characteristics. Approximate solutions are used to express flame lengths, angles, heights, and tip velocities of headfires and calm-air fires in terms of fire intensity. Equations are compared with data from low-intensity controlled burns in southern fuels and with data from the literature.
Sharon M. Hood; Robert E. Keane; Helen Y. Smith; Joel Egan; Lisa Holsinger
2018-01-01
Understanding the impacts of mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) on fire behavior is important from both an ecological and land management viewpoint. However, numerous uncertainties exist in the linkages of MPB-caused treemortality to changes in canopy and surface fuels (e.g., fuel loading, arrangement, and availability) and the...
Kuligowski, Erica
2017-01-01
The traditional social science disciplines can provide many benefits to the field of human behavior in fire (HBiF). First, the social sciences delve further into insights only marginally examined by HBiF researchers, in turn, expanding the depth of HBiF research. In this paper, I present examples of studies from the fields of social psychology and sociology that would expand HBiF research into non-engineering or "unobservable" aspects of behavior during a fire event. Second, the social sciences can provide insight into new areas of research; in turn, expanding the scope of HBiF research. In this section, I introduce pre- and post-fire studies and explore potential research questions that fall outside of the response period of a fire, the phase upon which most focus is currently placed. Third, the social sciences elucidate the value of research methods available to study human behavior. Qualitative research methods are specifically highlighted. These three benefits will allow HBiF researchers to collect a wider range of data, further develop and expand current behavioral knowledge, and increase the impact of this research for both social and engineering applications. Finally, I end with a discussion on possible ways to better integrate the social sciences within human behavior in fire.
Insel, Nathan; Barnes, Carol A.
2015-01-01
The medial prefrontal cortex is thought to be important for guiding behavior according to an animal's expectations. Efforts to decode the region have focused not only on the question of what information it computes, but also how distinct circuit components become engaged during behavior. We find that the activity of regular-firing, putative projection neurons contains rich information about behavioral context and firing fields cluster around reward sites, while activity among putative inhibitory and fast-spiking neurons is most associated with movement and accompanying sensory stimulation. These dissociations were observed even between adjacent neurons with apparently reciprocal, inhibitory–excitatory connections. A smaller population of projection neurons with burst-firing patterns did not show clustered firing fields around rewards; these neurons, although heterogeneous, were generally less selective for behavioral context than regular-firing cells. The data suggest a network that tracks an animal's behavioral situation while, at the same time, regulating excitation levels to emphasize high valued positions. In this scenario, the function of fast-spiking inhibitory neurons is to constrain network output relative to incoming sensory flow. This scheme could serve as a bridge between abstract sensorimotor information and single-dimensional codes for value, providing a neural framework to generate expectations from behavioral state. PMID:24700585
Anishchenko, Anastasia; Treves, Alessandro
2006-10-01
The metric structure of synaptic connections is obviously an important factor in shaping the properties of neural networks, in particular the capacity to retrieve memories, with which are endowed autoassociative nets operating via attractor dynamics. Qualitatively, some real networks in the brain could be characterized as 'small worlds', in the sense that the structure of their connections is intermediate between the extremes of an orderly geometric arrangement and of a geometry-independent random mesh. Small worlds can be defined more precisely in terms of their mean path length and clustering coefficient; but is such a precise description useful for a better understanding of how the type of connectivity affects memory retrieval? We have simulated an autoassociative memory network of integrate-and-fire units, positioned on a ring, with the network connectivity varied parametrically between ordered and random. We find that the network retrieves previously stored memory patterns when the connectivity is close to random, and displays the characteristic behavior of ordered nets (localized 'bumps' of activity) when the connectivity is close to ordered. Recent analytical work shows that these two behaviors can coexist in a network of simple threshold-linear units, leading to localized retrieval states. We find that they tend to be mutually exclusive behaviors, however, with our integrate-and-fire units. Moreover, the transition between the two occurs for values of the connectivity parameter which are not simply related to the notion of small worlds.
Post-fire analysis of construction materials
NASA Astrophysics Data System (ADS)
Schroeder, Robert Allen
The objective of this thesis is to determine and document the extent to which the fire damage in wood, concrete, and gypsum wallboard can be used to determine the time and heat flux exposure of the incipient stages of an uncontrolled fire event. A literature review outlines the state-of-the-art in three distinct areas: (1) Fire investigation; (2) The physical properties of wood, concrete, and gypsum wallboard, and (3) The fire response characteristics of those materials and their use in fire investigations. The results from quantitative experimental fire exposures of the subject materials are presented. The experiments were conducted under controlled conditions with the intent to develop standards for macroscopic and microscopic states of the materials for a given heat flux exposure and temperature. Standards and procedures are introduced for field sample collection, laboratory testing of the field samples, and interpretation of results. There are three major conclusions to be derived from this dissertation. The first two are that (1) wood and (2) concrete should not be viewed as reliable sources of information for a fire investigator to use for an analysis of how an actual fire ignited or spread. On the other hand the third major conclusion is that (3) gypsum wallboard can be considered a reliable source of information of fire behavior. The basis of each these conclusions is described in each of the chapters associated with each of the materials. One of the most important findings in this research is the use of X-ray diffraction to determine the maximum temperature reached by a sample of gypsum wallboard. Then by using the plots of isotherm progression it is possible to estimate the approximate length of exposure to a given heat flux. The use of gypsum-based post evidence is much more accurate than any available for wood or for concrete.
Harrison, Tyler R; Muhamad, Jessica Wendorf; Yang, Fan; Morgan, Susan E; Talavera, Ed; Caban-Martinez, Alberto; Kobetz, Erin
2018-04-01
Firefighters are exposed to carcinogens such as volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during fires and from their personal protective equipment (PPE). Recent research has shown that decontamination processes can reduce contamination on both gear and skin. While firefighter cultures that honor dirty gear are changing, little is known about current attitudes and behaviors toward decontamination in the fire service. Four hundred eighty-five firefighters from four departments completed surveys about their attitudes, beliefs, perceived norms, barriers, and behaviors toward post-fire decontamination processes. Overall, firefighters reported positive attitudes, beliefs, and perceived norms about decontamination, but showering after a fire was the only decontamination process that occurred regularly, with field decontamination, use of cleansing wipes, routine gear cleaning, and other behaviors all occurring less frequently. Firefighters reported time and concerns over wet gear as barriers to decontamination.
Joseph J. Charney; Brian E. Potter
2017-01-01
Convection and downbursts are connected meteorological phenomena with the potential to affect fire behavior and thereby alter the evolution of a wildland fire. Meteorological phenomena related to convection and downbursts are often discussed in the context of fire behavior and smoke. The physical mechanisms that contribute to these phenomena are interrelated, but the...
NASA Technical Reports Server (NTRS)
Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.
2018-01-01
The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.
Piqué, Míriam; Domènech, Rut
2018-03-15
Fuel treatments can mitigate present and future impacts of climate change by reducing fire intensity and severity. In recent years, Pinus nigra forests in the Mediterranean basin have been dramatically affected by the new risk of highly intense and extreme fires and its distribution area has been reduced. New tools are necessary for assessing the management of these forests so they can adapt to the challenges to come. Our main goal was to evaluate the effects of different fuel treatments on Mediterranean Pinus nigra forests. We assessed the forest response, in terms of forest structure and fire behavior, to different intensities of low thinning treatments followed by different slash prescriptions (resulting in: light thinning and lop and scatter; light thinning and burn; heavy thinning and lop and scatter; heavy thinning and burn; and, untreated control). Treatments that used fire to decrease the resulting slash were the most effective for reducing active crown fires decreasing the rate of spread and flame length more than 89%. Low thinning had an effect on torching potential, but there was no difference between intensities of thinning. Only an outcoming crown fire could spread actively if it was sustained by a high-enough constant wind speed and enough surface fuel load. Overall, treatments reduce fire intensity and treated areas have a more homogenous fire behavior response than untreated areas. This provides opportunities to extinguish the fire and reduce the probability of trees dying from the fire. It would be helpful to include ecological principles and fire behavior criteria in silvicultural treatment guidelines in order to perform more efficient management techniques in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Greene, Michael A
2012-06-01
Comparison of characteristics of fire with non-fire households to determine factors differentially associated with fire households (fire risk factors). National household telephone survey in 2004-2005 by the US Consumer Product Safety Commission with 916 fire households and a comparison sample of 2161 non-fire households. There were an estimated 7.4 million fires (96.6% not reported to fire departments) with 130,000 injuries. Bivariate analysis and multivariate logistic regression analyses to assess differences in household characteristics. Significant factors associated with fire households were renting vs. owning (OR 1.988 p<0.0001); household members under 18 year of age (OR 1.277 p<0.0001); lack of residents over 64 years old (OR 0.552 p=0.0007); and college or higher education (some college OR 1.444 p=0.0360, college graduate OR 1.873, p<0.0001, postgraduate OR 2.156 p<0.0001). Not significant were age of house; race; ethnicity; and income. Number of smokers was borderline significant (OR 1.132 p=0.1019) but was significant in the subset of fire households with non-cooking fires (OR 1.383 p=0.0011). Single family houses were associated with non-fire households in the bivariate analysis but not in the multivariate analyses. Renting, household members under 18 years old and smokers are risk factors for unattended fires, similar to the literature for fatal and injury fires. Differences included household members over 65 years old (associated with non-fire households), college/postgraduate education (associated with fire households) and lack of significance of income. Preventing cooking fires (64% of survey incidents), smoking prevention efforts and fire prevention education for families with young children have the potential for reducing unattended fires and injuries.
Forecasting wildland fire behavior using high-resolution large-eddy simulations
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.
2016-12-01
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.
Forecasting wildland fire behavior using high-resolution large-eddy simulations
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.
2017-12-01
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.
NASA Technical Reports Server (NTRS)
Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.
2017-01-01
The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change.
NASA Astrophysics Data System (ADS)
Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.
2016-12-01
Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire spread and intensity is affect by the antecedent eco-hydrological condition, which then affects the resulting tree mortality patterns.
... motels Expand sub-navigation Hotel fire safety tips Marijuana grow & extraction facilities Nightclubs and other assembly occupancies ... Fire behavior research Fire loss and injury research Benefits of home fire sprinklers Expand sub-navigation Environmental ...
Fire behavior and risk analysis in spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Sacksteder, Kurt R.
1988-01-01
Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.
ERIC Educational Resources Information Center
Ruan, Lian J.
2011-01-01
Fire service field staff instructors seek and share information and use information sources during their instructional work of teaching, training and curriculum development. This study is the first attempt to study their information-seeking and sharing behaviors, which have not previously been investigated empirically. Twenty-five fire service…
A multi-scale conceptual model of fire and disease interactions in North American forests
NASA Astrophysics Data System (ADS)
Varner, J. M.; Kreye, J. K.; Sherriff, R.; Metz, M.
2013-12-01
One aspect of global change with increasing attention is the interactions between irruptive pests and diseases and wildland fire behavior and effects. These pests and diseases affect fire behavior and effects in spatially and temporally complex ways. Models of fire and pathogen interactions have been constructed for individual pests or diseases, but to date, no synthesis of this complexity has been attempted. Here we synthesize North American fire-pathogen interactions into syndromes with similarities in spatial extent and temporal duration. We base our models on fire interactions with three examples: sudden oak death (caused by the pathogen Phytopthora ramorum) and the native tree tanoak (Notholithocarpus densiflorus); mountain pine beetle (Dendroctonus ponderosae) and western Pinus spp.; and hemlock woolly adelgid (Adelges tsugae) on Tsuga spp. We evaluate each across spatial (severity of attack from branch to landscape scale) and temporal scales (from attack to decades after) and link each change to its coincident effects on fuels and potential fire behavior. These syndromes differ in their spatial and temporal severity, differentially affecting windows of increased or decreased community flammability. We evaluate these models with two examples: the recently emergent ambrosia beetle-vectored laurel wilt (caused by the pathogen Raffaelea lauricola) in native members of the Lauraceae and the early 20th century chestnut blight (caused by the pathogen Cryphonectria parasitica) that led to the decline of American chestnut (Castanea dentata). Some changes (e.g., reduced foliar moisture content) have short-term consequences for potential fire behavior while others (functional extirpation) have more complex indirect effects on community flammability. As non-native emergent diseases and pests continue, synthetic models that aid in prediction of fire behavior and effects will enable the research and management community to prioritize mitigation efforts to realized effects.
Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason
2013-01-01
This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.
Pruetz, Jill D; LaDuke, Thomas C
2010-04-01
The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the "behavior" of fire may be a synapomorphic trait characterizing the human-chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. (c) 2009 Wiley-Liss, Inc.
Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
Toptas, Asli; Yildirim, Yeliz; Duman, Gozde; Yanik, Jale
2015-02-01
In this study, the combustion behavior of different kinds of torrefied biomass (lignocellulosic and animal wastes) and their blends with lignite was investigated via non-isothermal thermogravimetric method under air atmosphere. For comparison, combustion characteristics of raw biomasses were also determined. Torrefaction process improved the reactivity of char combustion step of biomasses. Characteristic combustion parameters for blends showed non-additivity behavior. It was found that the mixture of torrefied biomasses and lignite at a ratio of 1:1 had a lower ignition and burnout temperature than the coal-only sample. Although no interactions were observed between the lignite and torrefied biomass at initial step of combustion, a certain degree of interaction between the components occurred at char combustion step. Kinetic parameters of combustion were calculated by using the Coats Redfern model. Overall, this study showed that poultry litters can be used as a substitute fuel in coal/biomass co-firing systems by blending with lignocellulosic biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.
Inaja Fire - 1956, Pine Hills Fire - 1967...similar, yet different
Mark J. Schroeder; Bernadine B. Taylor
1968-01-01
Two fires burned in the same area in southern California under nearly similar weather conditions, 11 years apart. Yet the Inaja fire of 1956 was much more disastrous than the Pine Hills fire of 1967. The earlier fire claimed 11 lives, and covered an area five times larger than the 1967 fire. Differences in fuels, topography, fire behavior, fire-control action, and...
An unusual case of random fire-setting behavior associated with lacunar stroke.
Bosshart, Herbert; Capek, Sonia
2011-06-15
A case of a 47-year-old man with a sudden onset of a bizarre and random fire-setting behavior is reported. The man, who had been arrested on felony arson charges, complained of difficulties concentrating and of recent memory impairment. Axial T1-weighted magnetic resonance imaging showed a low intensity lacunar lesion in the genu and anterior limb of the left internal capsule. A neuropsychological test battery revealed lower than normal scores for executive functions, attention and memory, consistent with frontal lobe dysfunction. The recent onset of fire-setting behavior and the chronic nature of the lacunar lesion, together with an unremarkable performance on tests measuring executive functions two years prior, suggested a causal relationship between this organic brain lesion and the fire-setting behavior. The present case describes a rare and as yet unreported association between random impulse-driven fire-setting behavior and damage to the left internal capsule and suggests a disconnection of frontal lobe structures as a possible pathogenic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size
Ragsdale, Alexandria K.; McCoy, Earl D.; Mushinsky, Henry R.
2016-01-01
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. PMID:26976940
Preparation and properties of sol-gel derived PZT thin films for decoupling capacitor applications
NASA Astrophysics Data System (ADS)
Schwartz, R. W.; Dimos, D.; Lockwood, S. J.; Torres, V. M.
The use of ceramic thin films as decoupling capacitors offers the possibility of capacitor integration within the integrated circuit (IC) package and, potentially, directly onto the IC itself. Since these configurations minimize series inductance, higher operational speeds are possible. In the present study, the authors have investigated the dielectric and leakage characteristics of sol-gel PZT films. For compositions near the morphotropic phase boundary, dielectric constants of 1000, and loss tangents of about 0.02, are observed. The current-voltage behavior of the capacitors is characterized by a non-linear response, and significant asymmetry in both the leakage and breakdown characteristics as a function of bias sign is observed. Breakdown fields for PZT 53/47 thin films are typically approximately 800 kV/cm at 25 C. The authors have also studied the effects of La and Nb dopant additions and alternate firing strategies on film leakage characteristics. Donor doping at 2 - 5 mol % lowers leakage currents by a factor of 10(exp 3). For films prepared by a multilayering approach, firing each layer to crystallization results in leakage currents that are a factor of 10(exp 2) lower than films prepared by the standard process.
Fire tolerance of a resprouting Artemisia (Asteraceae) shrub
Winter, S.L.; Fuhlendorf, S.D.; Goad, C.L.; Davis, C.A.; Hickman, K.R.; Leslie, David M.
2011-01-01
In North America, most Artemisia (Asteraceae) shrub species lack the ability to resprout after disturbances that remove aboveground biomass. We studied the response of one of the few resprouting Artemisia shrubs, Artemisia filifolia (sand sagebrush), to the effects of prescribed fires. We collected data on A. filifolia density and structural characteristics (height, canopy area, and canopy volume) in an A. filifolia shrubland in the southern Great Plains of North America. Our study sites included areas that had not been treated with prescribed fire, areas that had been treated with only one prescribed fire within the previous 5 years, and areas that had been treated with two prescribed fires within the previous 10 years. Our data were collected at time periods ranging from 1/2 to 5 years after the prescribed fires. Density of A. filifolia was not affected by one or two fires. Structural characteristics, although initially altered by prescribed fire, recovered to levels characteristic of unburned areas in 3-4 years after those fires. In contrast to most non-sprouting North American Artemisia shrub species, our research suggested that the resprouting A. filifolia is highly tolerant to the effects of fire. ?? 2011 Springer Science+Business Media B.V.
A review of fire interactions and mass fires
Mark A. Finney; Sara S. McAllister
2011-01-01
The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire...
FireWorks educational program and its effectiveness
Jane Kapler Smith; Nancy E. McMurray
2004-01-01
FireWorks is an educational program that provides interactive, hands-on activities for studying fire behavior, fire ecology, and human influences on three fire-dependent forest types-ponderosa pine (Pinus ponderosa), interior lodgepolepine (P. contorta var.latifolia), and whitebark pine (P. albicaulis)....
Biomass and fuel characteristics of chaparral in southern California
J.C. Regelbrugge; S.G. Conard
2002-01-01
Knowledge of biomass components and fuel characteristics of southern California chaparral plant communities is important for planning prescribed fires, suppressing wildfires, managing the fire regime, and understanding the ecological interactions between fire and chaparral community development and succession. To improve our understanding of the relationship between...
Estimating suppression expenditures for individual large wildland fires
Krista M. Gebert; David E. Calkin; Jonathan Yoder
2007-01-01
The extreme cost of fighting wildland fires has brought fire suppression expenditures to the forefront of budgetary and policy debate in the United States. Inasmuch as large fires are responsible for the bulk of fire suppression expenditures, understanding fire characteristics that influence expenditures is important for both strategic fire planning and onsite fire...
Selection of fire spread model for Russian fire behavior prediction system
Alexandra V. Volokitina; Kevin C. Ryan; Tatiana M. Sofronova; Mark A. Sofronov
2010-01-01
Mathematical modeling of fire behavior prediction is only possible if the models are supplied with an information database that provides spatially explicit input parameters for modeled area. Mathematical models can be of three kinds: 1) physical; 2) empirical; and 3) quasi-empirical (Sullivan, 2009). Physical models (Grishin, 1992) are of academic interest only because...
Williams, Dian L; Clements, Paul T
2007-01-01
Fire setting in youth has often been overlooked and misunderstood as a coping skill for expressing rage. The act of deliberate fire setting, if uninterrupted, may continue throughout an individual's lifetime. Forensic examiners, mental health care providers, and criminal justice professionals can help guide referral and treatment through better understanding of behaviors and intrapsychic dynamics.
Invasive grasses change landscape structure and fire behavior in Hawaii
Lisa M. Ellsworth; Creighton M. Litton; Alexander P. Dale; Tomoaki Miura
2014-01-01
How does potential fire behavior differ in grass-invaded non-native forests vs open grasslands? How has land cover changed from 1950â2011 along two grassland/forest ecotones in Hawaii with repeated fires? A study on non-native forest with invasive grass understory and invasive grassland (Megathyrsus maximus) ecosystems on Oahu, Hawaii, USA was...
ERIC Educational Resources Information Center
Mechling, Linda C.; Gast, David L.; Gustafson, Melissa R.
2009-01-01
This study evaluated the effectiveness of video modeling to teach fire extinguishing behaviors to three young adults with moderate intellectual disabilities. A multiple probe design across three fire extinguishing behaviors and replicated across three students was used to evaluate the effectiveness of the video-based program. Results indicate that…
Establishing Fire Safety Skills Using Behavioral Skills Training
ERIC Educational Resources Information Center
Houvouras, Andrew J., IV; Harvey, Mark T.
2014-01-01
The use of behavioral skills training (BST) to educate 3 adolescent boys on the risks of lighters and fire setting was evaluated using in situ assessment in a school setting. Two participants had a history of fire setting. After training, all participants adhered to established rules: (a) avoid a deactivated lighter, (b) leave the training area,…
Fuel treatment longevity in a Sierra Nevada mixed conifer forest
Scott. L. Stephens; Brandon M. Collins; Gary. Roller
2012-01-01
Understanding the longevity of fuel treatments in terms of their ability to maintain fire behavior and effects within a desired range is an important question. The objective of this study was to determine how fuels, forest structure, and predicted fire behavior changed 7-years after initial treatments. Three different treatments: mechanical only, mechanical plus fire,...
Early fire history near Papineau lake, Ontario
Daniel C. Dey; Richard P. Guyette
1996-01-01
Research that defines the role of fire in upland red oak-pine ecosystems in central Ontario is being conducted by the Great Lakes-St. Lawrence Silviculture program. Site-specific fire histories are being developed that document fire frequency, fire behavior, fire effects on forest regeneration and grwoth, and the influnce of human activites on fire disturbances. This...
Forecasting distribution of numbers of large fires
Haiganoush K. Preisler; Jeff Eidenshink; Stephen Howard; Robert E. Burgan
2015-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the...
Electric ants: A cross-disciplinary approach to understanding insect behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slowik, T.J.; Thorvilson, H.G.; Green, B.L.
1996-12-31
The response and attraction of the red imported fire ant, Solenopsis invicta, to electrical equipment was examined using an interdisciplinary approach. Entomologists specializing in fire ant behavior combined expertise with electrical engineers to investigate the economically damaging interaction of fire ants with electrical circuitry. Knowledge from the realms of physics, engineering, and biology were integrated in experimentation to test for a fire ant response to electric fields and magnetic fields associated with electrical equipment. It was determined that fire ants react to electrified conductive material and the alternating-current magnetic fields associated with electricity.
Fire hazards at the urban-wildland interface: What the public expects
NASA Astrophysics Data System (ADS)
Cortner, Hanna J.; Gardner, Philip D.; Taylor, Jonathan G.
1990-01-01
Urban-wildland issues have become among the most contentious and problematic issues for forest managers. Using data drawn from surveys conducted by the authors and others, this article discusses how public knowledge and perceptions of fire policies and fire hazards change over time, the kinds of policy responses homeowners prefer as a way of preventing fire hazards at the urban-wildland interface, and how citizens view their own obligations as participants in interface issues. These data show that public attitudes toward fire have changed significantly over the past two decades and that educating the public about fire and the managers' use of fire can have positive effects on behavior. Yet, modifying the individual's behavior in regard to interface fire risks must also deal with important issues of individual incentives, the distribution of costs, and unanticipated policy impacts.
Fire hazards at the urban-wildland interface: what the public expects
Cortner, Hanna J.; Gardner, Philip D.; Taylor, Jonathan G.
1990-01-01
Urban-wildland issues have become among the most contentious and problematic issues for forest managers. Using data drawn from surveys conducted by the authors and others, this article discusses how public knowledge and perceptions of fire policies and fire hazards change over time, the kinds of policy responses homeowners prefer as a way of preventing fire hazards at the urban-wildland interface, and how citizens view their own obligations as participants in interface issues. These data show that public attitudes toward fire have changed significantly over the past two decades and that educating the public about fire and the managers' use of fire can have positive effects on behavior. Yet, modifying the individual's behavior in regard to interface fire risks must also deal with important issues of individual incentives, the distribution of costs, and unanticipated policy impacts.
Blanco, Carlos; Alegría, Analucía A; Petry, Nancy M; Grant, Jon E; Simpson, H Blair; Liu, Shang-Min; Grant, Bridget F; Hasin, Deborah S
2010-09-01
To estimate the prevalence, sociodemographic correlates, comorbidity, and rates of mental health service utilization of fire-setters in the general population. A face-to-face survey of more than 43,000 adults aged 18 years and older residing in households was conducted during the 2001-2002 period. Diagnoses of mood, anxiety, substance use disorders, and personality disorders were based on the Alcohol Use Disorder and Associated Disabilities Interview Schedule-DSM-IV Version (AUDADIS-IV). The prevalence of lifetime fire-setting in the US population was 1.13 (95% CI, 1.0-1.3). Being male, never married, and US-born and having a yearly income over $70,000 were risk factors for lifetime fire-setting, while being Asian or Hispanic and older than 30 years were protective factors for lifetime fire-setting. The strongest associations with fire-setting were with disorders often associated with deficits in impulse control, such as antisocial personality disorder (ASPD) (odds ratio [OR] = 21.8; CI, 6.6-28.5), drug dependence (OR = 7.6; 95% CI, 5.2-10.9), bipolar disorder (OR = 5.6; 95% CI, 4.0-7.9), and pathological gambling (OR = 4.8; 95% CI, 2.4-9.5). Associations between fire-setting and all antisocial behaviors were positive and significant. A lifetime history of fire-setting, even in the absence of an ASPD diagnosis, was strongly associated with substantial rates of Axis I comorbidity, a history of antisocial behavior, a family history of other antisocial behaviors, decreased functioning, and higher treatment-seeking rates. Our findings suggest that fire-setting may be better understood as a behavioral manifestation of a broader impaired control syndrome and part of the externalizing spectrum. Fire-setting and other antisocial behaviors tend to be strongly associated with each other and increase the risk of lifetime and current psychiatric disorders, even in the absence of a DSM-IV diagnosis of ASPD. © Copyright 2010 Physicians Postgraduate Press, Inc.
Cynthia L. Riccardi; Susan J. Prichard; David V. Sandberg; Roger D. Ottmar
2007-01-01
Wildland fuel characteristics are used in many applications of operational fire predictions and to understand fire effects and behaviour. Even so, there is a shortage of information on basic fuel properties and the physical characteristics of wildland fuels. The Fuel Characteristic Classification System (FCCS) builds and catalogues fuelbed descriptions based on...
Robert E. Keane; Stacy A. Drury; Eva C. Karau; Paul F. Hessburg; Keith M. Reynolds
2010-01-01
This paper presents modeling methods for mapping fire hazard and fire risk using a research model called FIREHARM (FIRE Hazard and Risk Model) that computes common measures of fire behavior, fire danger, and fire effects to spatially portray fire hazard over space. FIREHARM can compute a measure of risk associated with the distribution of these measures over time using...
Andrew T. Hudak; Patrick H. Freeborn; Sarah A. Lewis; Sharon M. Hood; Helen Y. Smith; Colin C. Hardy; Robert J. Kremens; Bret W. Butler; Casey Teske; Robert G. Tissell; Lloyd P. Queen; Bryce L. Nordgren; Benjamin C. Bright; Penelope Morgan; Philip J. Riggan; Lee Macholz; Leigh B. Lentile; James P. Riddering; Edward E. Mathews
2018-01-01
The Cooney Ridge Fire Experiment conducted by fire scientists in 2003 was a burnout operation supported by a fire suppression crew on the active Cooney Ridge wildfire incident. The fire experiment included measurements of pre-fire fuels, active fire behavior, and immediate post-fire effects. Heat flux measurements collected at multiple scales with multiple ground and...
Carrington, M.E.; Keeley, J.E.
1999-01-01
I Both fire regimes and the conditions under which fires occur vary widely. Abiotic conditions (such as climate) in combination with fire season, frequency and intensity could influence vegetation responses to fire. A variety of adaptations facilitate post-fire recruitment in mediterranean climate ecosystems, but responses of other communities are less well known. We evaluated the importance of climate by comparing sites with mediterranean and subtropical climates. 2 We used paired burned and mature sites in chamise chaparral, mixed chaparral and coastal sage scrub (California), and rosemary scrub, sand pine scrub and sand-hill (Florida), to test whether (i) patterns of pre-fire and post-fire seedling recruitment are more similar between communities within a region than between regions, and (ii) post-fire stimulation of seedling establishment is greater in regions with marked fire-induced contrasts in abiotic site characteristics. 3 Post-fire seedling densities were more similar among sites within climatic regions than between regions. Both seedling densities and proportions of species represented by seedlings after fires were generally higher in California. 4 The only site characteristic showing a pre-fire-post-fire contrast was percentage open canopy, and the effect was greater in California than in Florida. Soil properties were unaffected by fire. 5 Mediterranean climate ecosystems in other regions have nutrient-poor soils similar to our subtropical Florida sites, but show post-fire seedling recruitment patterns more similar to the nutrient-rich sites in California. Climate therefore appears to play a more major role than soil characteristics.
Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy
NASA Astrophysics Data System (ADS)
Wang, Changshuai; Su, Haijun; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang
2017-09-01
Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy, considered as boiler and turbine materials in 700 °C advanced ultra-supercritical coal-fired power plants, have been investigated by differential thermal analysis and directional solidification quenching technique. Results reveal that P decreases the solidus temperature, but only has negligible influence on liquidus temperature. After P was added, the solidification sequence has no apparent change, but the width of the mushy zone increases and dendritic structures become coarser. Moreover, P increases the amount and changes the morphology of MC carbide. Energy-dispersive spectroscopy analysis reveals that P has obvious influence on the segregation behavior of the constitute elements with equilibrium partition coefficients (ki) far away from unity, whereas has negligible effect on the constituent elements with ki close to unity and has more influence on the final stage of solidification than at early stage. The distribution profiles reveal that P atoms pile up ahead of the solid/liquid (S/L) interface and strongly segregate to the interdendritic liquid region. The influence of P on solidification characteristics and segregation behavior of Ni-Fe-Cr-based alloy could be attributed to the accumulation of P ahead of the S/L interface during solidification.
Fire Increases Genetic Diversity of Populations of Six-Lined Racerunner.
Ragsdale, Alexandria K; Frederick, Bridget M; Dukes, David W; Liebl, Andrea L; Ashton, Kyle G; McCoy, Earl D; Mushinsky, Henry R; Schrey, Aaron W
2016-01-01
Wildfires are highly variable and can disturb habitats, leading to direct and indirect effects on the genetic characteristics of local populations. Florida scrub is a fire-dependent, highly fragmented, and severely threatened habitat. Understanding the effect of fire on genetic characteristics of the species that use this habitat is critically important. We investigated one such lizard, the Six-lined Racerunner (Aspidoscelis sexlineata), which has a strong preference for open areas. We collected Six-lined Racerunners (n = 154) from 11 sites in Highlands County, FL, and defined 2 time-since-last-fire (TSF) categories: recently burned and long unburned. We screened genetic variation at 6 microsatellites to estimate genetic differentiation and compare genetic diversity among sites to determine the relationship with TSF. A clear pattern exists between genetic diversity and TSF in the absence of strong genetic differentiation. Genetic diversity was greater and inbreeding was lower in sites with more recent TSF, and genetic characteristics had significantly larger variance in long unburned sites compared with more recently burned sites. Our results suggest that fire suppression increases variance in genetic characteristics of the Six-lined Racerunner. More generally, fire may benefit genetic characteristics of some species that use fire-dependent habitats and management efforts for such severely fragmented habitat will be challenged by the presence of multiple species with incompatible fire preferences. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Barrett, Kirsten; Kasischke, Eric S.
2013-01-01
Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation is the most fire prone, but deciduous vegetation is not particularly fire resistant, as the proportion of active fire detections in deciduous stands is roughly the same as the fraction of deciduous vegetation in the region. Qualitative differences between periods of high and low fire activity are likely to reflect important differences in fire severity. Large fire years are likely to be more severe, characterized by more late season fires and a greater proportion of residual burning. Given the potential for severe fires to effect changes in vegetation cover, the shift toward a greater proportion of area burning during large fire years may influence vegetation patterns in the region over the medium to long term.
Fire behavior modeling-a decision tool
Jack Cohen; Bill Bradshaw
1986-01-01
The usefulness of an analytical model as a fire management decision tool is determined by the correspondence of its descriptive capability to the specific decision context. Fire managers must determine the usefulness of fire models as a decision tool when applied to varied situations. Because the wildland fire phenomenon is complex, analytical fire spread models will...
Domains of Risk in the Developmental Continuity of Fire Setting
ERIC Educational Resources Information Center
McCarty, Carolyn A.; McMahon, Robert J.
2005-01-01
Juvenile fire setting is a serious, dangerous, and costly behavior. The majority of research examining youth fire setting has been cross-sectional. We sought to examine early risk attributes that could differentiate fire setters from non-fire setters, in addition to examining their association with the developmental continuity of fire-setting…
Fire growth maps for the 1988 Greater Yellowstone Area Fires
Richard C. Rothermel; Roberta A Hartford; Carolyn H. Chase
1994-01-01
Daily fire growth maps display the growth of the 1988 fires in the Greater Yellowstone Area. Information and data sources included daily infrared photography flights, satellite imagery, ground and aerial reconnaissance, command center intelligence, and the personal recollections of fire behavior observers. Fire position was digitized from topographic maps using GRASS...
Little Bear Fire Summary Report
Sarah McCaffrey; Melanie Stidham; Hannah. Brenkert-Smith
2013-01-01
In June 2012, immediately after the Little Bear Fire burned outside Ruidoso, New Mexico, a team of researchers interviewed fire managers, local personnel, and residents to understand perceptions of the event itself, communication, evacuation, and pre-fire preparedness. The intensity of fire behavior and resulting loss of 242 homes made this a complex fire with a...
On meteor-generated infrasound. [propagation characteristics during entry into earth atmosphere
NASA Technical Reports Server (NTRS)
Revelle, D. O.
1976-01-01
The characteristics of generation and propagation of infrasonic pressure waves excited during meteor entry into the earth's atmosphere are studied. Existing line source blast wave theory is applied to infrasonic airwave data from four bright fire-balls. It is shown that the strong shock behavior of the blast wave is confined to a cylinderical region with a radius proportional to the product of the meteor Mach number and its diameter. A description of the wave form far from the source is provided. Infrasonic data reported elsewhere are analyzed. All the results should be considered as preliminary, and additional work is under way to refine the estimates obtained.
MacKay, Sherri; Henderson, Joanna; Del Bove, Giannetta; Marton, Peter; Warling, Diane; Root, Carol
2006-09-01
In the DSM-IV-TR, firesetting is included as a criterion for the diagnoses of conduct disorder and pyromania. The link between firesetting and antisocial behavior is well established in the empirical literature. Although theoretical models of firesetting often include fire interest as a putative risk factor, there is little research on the role of fire interest in firesetting or on the construct of pyromania. The present study evaluated a sample of children and adolescents referred to an outpatient specialty program for juvenile firesetters with firesetting as the primary presenting problem. By assessing fire interest and antisocial behavior concurrently, the contribution of fire interest to firesetting after controlling for the role of conduct problems was evaluated. Results revealed that fire interest and antisocial behavior were significantly and positively correlated. Moreover, variations in fire interest added to the prediction of firesetting severity at assessment and firesetting recidivism at 18-month follow-up above and beyond what was predicted by antisociality alone. These findings have implications for an empirically derived taxonomy of pathological firesetting.
Wildland fire in ecosystems: effects of fire on flora
James K. Brown; Jane Kapler Smith
2000-01-01
VOLUME 2: This state-of-knowledge review about the effects of fire on flora and fuels can assist land managers with ecosystem and fire management planning and in their efforts to inform others about the ecological role of fire. Chapter topics include fire regime classification, autecological effects of fire, fire regime characteristics and postfire plant community...
Development of an external ceramic insulation for the space shuttle orbiter. Part 2: Optimization
NASA Technical Reports Server (NTRS)
Tanzilli, R. A. (Editor)
1973-01-01
The basic insulation improvement study concentrated upon evaluating variables which could result in significant near-term gains in mechanical behavior and insulation effectiveness of the baseline system. The approaches undertaken included: evaluation of small diameter fibers, optimization of binder: slurry characteristics, evaluation of techniques for controlling fiber orientation, optimization of firing cycle, and the evaluation of methods for improving insulation efficiency. A detailed discussion of these basic insulation improvement studies is presented.
Application of data fusion technology based on D-S evidence theory in fire detection
NASA Astrophysics Data System (ADS)
Cai, Zhishan; Chen, Musheng
2015-12-01
Judgment and identification based on single fire characteristic parameter information in fire detection is subject to environmental disturbances, and accordingly its detection performance is limited with the increase of false positive rate and false negative rate. The compound fire detector employs information fusion technology to judge and identify multiple fire characteristic parameters in order to improve the reliability and accuracy of fire detection. The D-S evidence theory is applied to the multi-sensor data-fusion: first normalize the data from all sensors to obtain the normalized basic probability function of the fire occurrence; then conduct the fusion processing using the D-S evidence theory; finally give the judgment results. The results show that the method meets the goal of accurate fire signal identification and increases the accuracy of fire alarm, and therefore is simple and effective.
Laboratory fire behavior measurements of chaparral crown fire
C. Sanpakit; S. Omodan; D. Weise; M Princevac
2015-01-01
In 2013, there was an estimated 9,900 wildland fires that claimed more than 577,000 acres of land. That same year, about 542 prescribed fires were used to treat 48,554 acres by several agencies in California. Being able to understand fires using laboratory models can better prepare individuals to combat or use fires. Our research focused on chaparral crown fires....
Fire and Smoke Model Evaluation Experiment (FASMEE): Modeling gaps and data needs
Yongqiang Liu; Adam Kochanski; Kirk Baker; Ruddy Mell; Rodman Linn; Ronan Paugam; Jan Mandel; Aime Fournier; Mary Ann Jenkins; Scott Goodrick; Gary Achtemeier; Andrew Hudak; Matthew Dickson; Brian Potter; Craig Clements; Shawn Urbanski; Roger Ottmar; Narasimhan Larkin; Timothy Brown; Nancy French; Susan Prichard; Adam Watts; Derek McNamara
2017-01-01
Fire and smoke models are numerical tools for simulating fire behavior, smoke dynamics, and air quality impacts of wildland fires. Fire models are developed based on the fundamental chemistry and physics of combustion and fire spread or statistical analysis of experimental data (Sullivan 2009). They provide information on fire spread and fuel consumption for safe and...
NASA Astrophysics Data System (ADS)
Dupéy, Lauren Nicole; Smith, Jordan W.
2018-06-01
Social science research from a variety of disciplines has generated a collective understanding of how individuals prepare for, and respond to, the risks associated with prescribed burning and wildfire. We provide a systematic compilation, review, and quantification of dominant trends in this literature by collecting all empirical research conducted within the U.S. that has addressed perceptions and behaviors surrounding various aspects of prescribed burning and wildfire. We reviewed and quantified this literature using four thematic categories covering: (1) the theory and methods that have been used in previous research; (2) the psychosocial aspects of prescribed burning and wildfire that have been studied; (3) the biophysical characteristics of the fires which have been studied; and (4) the types of fire and management approaches that have been examined. Our integrative review builds on previous literature reviews on the subject by offering new insight on the dominant trends, underutilized approaches, and under-studied topics within each thematic category. For example, we found that a select set of theories (e.g., Protection Motivation Theory, Attribution Theory, etc.) and approaches (e.g., mixed-methods) have only been used sparingly in previous research, even though these theories and approaches can produce insightful results that can readily be implemented by fire-management professionals and decision makers. By identifying trends and gaps in the literature across the thematic categories, we were able to answer four questions that address how future research can make the greatest contribution to our understanding of perceptions and behaviors related to prescribed burning and wildfire.
Dupéy, Lauren Nicole; Smith, Jordan W
2018-06-01
Social science research from a variety of disciplines has generated a collective understanding of how individuals prepare for, and respond to, the risks associated with prescribed burning and wildfire. We provide a systematic compilation, review, and quantification of dominant trends in this literature by collecting all empirical research conducted within the U.S. that has addressed perceptions and behaviors surrounding various aspects of prescribed burning and wildfire. We reviewed and quantified this literature using four thematic categories covering: (1) the theory and methods that have been used in previous research; (2) the psychosocial aspects of prescribed burning and wildfire that have been studied; (3) the biophysical characteristics of the fires which have been studied; and (4) the types of fire and management approaches that have been examined. Our integrative review builds on previous literature reviews on the subject by offering new insight on the dominant trends, underutilized approaches, and under-studied topics within each thematic category. For example, we found that a select set of theories (e.g., Protection Motivation Theory, Attribution Theory, etc.) and approaches (e.g., mixed-methods) have only been used sparingly in previous research, even though these theories and approaches can produce insightful results that can readily be implemented by fire-management professionals and decision makers. By identifying trends and gaps in the literature across the thematic categories, we were able to answer four questions that address how future research can make the greatest contribution to our understanding of perceptions and behaviors related to prescribed burning and wildfire.
Response of Bighead Carp and Silver Carp to repeated water gun operation in an enclosed shallow pond
Romine, Jason G.; Jensen, Nathan; Parsley, Michael J.; Gaugush, Robert F.; Severson, Todd J.; Hatton, Tyson W.; Adams, Ryan F.; Gaikowski, Mark P.
2015-01-01
The Bighead Carp Hypophthalmichthys nobilis and Silver Carp H. molitrix are nonnative species that pose a threat to Great Lakes ecosystems should they advance into those areas. Thus, technologies to impede Asian carp movement into the Great Lakes are needed; one potential technology is the seismic water gun. We evaluated the efficacy of a water gun array as a behavioral deterrent to the movement of acoustic-tagged Bighead Carp and Silver Carp in an experimental pond. Behavioral responses were evaluated by using four metrics: (1) fish distance from the water guns (D); (2) spatial area of the fish's utilization distribution (UD); (3) persistence velocity (Vp); and (4) number of times a fish transited the water gun array. For both species, average D increased by 10 m during the firing period relative to the pre-firing period. During the firing period, the spatial area of use within the pond decreased. Carp were located throughout the pond during the pre-firing period but were concentrated in the north end of the pond during the firing period, thus reducing their UDs by roughly 50%. Overall, Vp decreased during the firing period relative to the pre-firing period, as fish movement became more tortuous and confined, suggesting that the firing of the guns elicited a change in carp behavior. The water gun array was partially successful at impeding carp movement, but some fish did transit the array. Bighead Carp moved past the guns a total of 78 times during the pre-firing period and 15 times during the firing period; Silver Carp moved past the guns 96 times during the pre-firing period and 13 times during the firing period. Although the water guns did alter carp behavior, causing the fish to move away from the guns, this method was not 100% effective as a passage deterrent.
Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size.
Schrey, Aaron W; Ragsdale, Alexandria K; McCoy, Earl D; Mushinsky, Henry R
2016-07-01
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A tilting wind tunnel for fire behavior studies
David R. Weise
1994-01-01
The combined effects of wind velocity and slope on wildland fire behavior can be studied in the laboratory using a tilting wind tunnel. The tilting wind tunnel requires a commercially available fan to induce wind and can be positioned to simulate heading and backing fires spreading up and down slope. The tunnel is portable and can be disassembled for transport using a...
Patrick H. Brose
2009-01-01
A field guide of 45 pairs of photographs depicting ericaceous shrub, leaf litter, and logging slash fuel types of eastern oak forests and observed fire behavior of these fuel types during prescribed burning. The guide contains instructions on how to use the photo guide to choose appropriate fuel models for prescribed fire planning.
A simplified test for adhesive behavior in wood sections exposed to fire
E. L. Schaffer
1968-01-01
A relatively simple test procedure was developed to evaluate the behavior of various adhesives near fire-exposed surfaces in laminated constructions. A number of sections cut from laminated blocks were exposed to fire on one surface. After this exposure, the sections were transversely cut, and the gluelines were examined for separation depth. In addition, the cool...
1st Fire Behavior and Fuels Conference: Fuels Management-How to Measure Success
Patricia L. Andrews
2006-01-01
The 1st Fire Behavior and Fuels Conference: Fuels Management -- How to Measure Success was held in Portland, Oregon, March 28-30, 2006. The International Association of Wildland Fire (IAWF) initiated a conference on this timely topic primarily in response to the needs of the U.S. National Interagency Fuels Coordinating Group (http://www.nifc.gov/).
Photo Series for Estimating Post-Hurricane Residues and Fire Behavior in Southern Pine
Dale D. Wade; James K. Forbus; James M. Saveland
1993-01-01
Following Hurricane Hugo, fuels were sampled on nine 2-acre blocks which were then burned during the spring wildfire season. The study was superimposed on dormant-season fire-interval research plots established in 1958 on the Francis Marion National Forest near Charleston, SC. Photographs of preburn fuel loads, fire behavior, and postburn fuel loads were taken to...
Evaluating potential changes in fire risk from Eucalyptus plantings in the Southern United States
Scott L. Goodrick; John A. Stanturf
2012-01-01
Renewed interest in short-rotation woody crops for bioenergy and bioproducts has prompted a reevaluation of the Eucalyptus species for the southern United States. One question that arises about the potential effects of introducing a nonnative species is what effect will there be on fire behavior. Our approximate answer based on modeling fire behavior...
NASA Technical Reports Server (NTRS)
Anderson, R. A.; Arnold, D. B.; Johnson, G. A.; Tustin, E. A.
1978-01-01
A test was conducted to evaluate the fire containment characteristics of a Boeing 747 lavatory module. Results showed that the fire was contained within the lavatory during the 30-minute test period with the door closed. The resistance of the lavatory wall and ceiling panels and general lavatory construction to burn-through under the test conditions was demonstrated.
Exploring occupational and health behavioral causes of firefighter obesity: a qualitative study.
Dobson, Marnie; Choi, BongKyoo; Schnall, Peter L; Wigger, Erin; Garcia-Rivas, Javier; Israel, Leslie; Baker, Dean B
2013-07-01
Firefighters, as an occupational group, have one of the highest prevalence rates of obesity. A qualitative study investigated occupational and health behavioral determinants of obesity among firefighters. Four focus groups were conducted with firefighters of every rank as Phase I of the FORWARD study which was designed to assess health behavioral and occupational characteristics related to obesity in firefighters. Analysis revealed five main themes of central importance to firefighters: (1) fire station eating culture; (2) night calls and sleep interruption; (3) supervisor leadership and physical fitness; (4) sedentary work; and (5) age and generational influences. The results showed a strong interrelationship between occupational and health behavioral causes of obesity in firefighters. The relevance of these qualitative findings are discussed along with the implications for future obesity interventions with firefighters. Copyright © 2013 Wiley Periodicals, Inc.
Smoke Alarms for People Who Are Deaf or Hard-of-Hearing
... motels Expand sub-navigation Hotel fire safety tips Marijuana grow & extraction facilities Nightclubs and other assembly occupancies ... Fire behavior research Fire loss and injury research Benefits of home fire sprinklers Expand sub-navigation Environmental ...
Thermal surface characteristics of coal fires 1 results of in-situ measurements
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Kuenzer, Claudia
2007-12-01
Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling. In a second paper named "Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires" [ Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.
Simulating spatial and temporally related fire weather
Isaac C. Grenfell; Mark Finney; Matt Jolly
2010-01-01
Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...
Matthew P. Thompson
2015-01-01
The management of wildfire is a dynamic, complex, and fundamentally uncertain enterprise. Fire managers face uncertainties regarding fire weather and subsequent influence on fire behavior, the effects of fire on socioeconomic and ecological resources, and the efficacy of alternative suppression actions on fire outcomes. In these types of difficult decision environments...
Atmospheric turbulence observations in the vicinity of surface fires in forested environments
Warren E. Heilman; Xindi Bian; Kenneth L. Clark; Nicholas S. Skowronski; John L. Hom; Michael R. Gallagher
2017-01-01
Ambient and fire-induced atmospheric turbulence in the vicinity of wildland fires can affect the behavior of those fires and the dispersion of smoke. The presence of forest overstory vegetation can further complicate the evolution of local turbulence regimes and their interaction with spreading fires and smoke plumes. Previous observational studies of wildland fire...
Decision modeling for analyzing fire action outcomes
Donald MacGregor; Armando Gonzalez-Caban
2008-01-01
A methodology for incident decomposition and reconstruction is developed based on the concept of an "event-frame model." The event-frame model characterizes a fire incident in terms of (a) environmental events that pertain to the fire and the fire context (e.g., fire behavior, weather, fuels) and (b) management events that represent responses to the fire...
Shift in fire-ecosystems and weather changes
Bongani Finiza
2013-01-01
During recent decades too much focus fell on fire suppression and fire engineering methods. Little attention has been given to understanding the shift in the changing fire weather resulting from the global change in weather patterns. Weather change have gradually changed the way vegetation cover respond to fire occurrence and brought about changes in fire behavior and...
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Fire hazard reflects the potential fire behavior and magnitude of effects as a function of fuel conditions. This fact sheet discusses crown fuels, surface fuels, and ground fuels and their contribution and involvement in wildland fire.Other publications in this series...
The fire environment--innovations, management, and policy; conference proceedings
Bret W. Butler; Wayne Cook
2007-01-01
The International Association of Wildland Fire sponsored the second Fire Behavior and Fuels conference in Destin, Florida. The conference theme was "Fire Environment--Innovations, Management, and Policy." Over 450 attendees participated in presentations on the latest innovations in wildland fire management, examples of successful and maybe not so successful...
LOX/Hydrocarbon Combustion Instability Investigation
NASA Technical Reports Server (NTRS)
Jensen, R. J.; Dodson, H. C.; Claflin, S. E.
1989-01-01
The LOX/Hydrocarbon Combustion Instability Investigation Program was structured to determine if the use of light hydrocarbon combustion fuels with liquid oxygen (LOX) produces combustion performance and stability behavior similar to the LOX/hydrogen propellant combination. In particular methane was investigated to determine if that fuel can be rated for combustion instability using the same techniques as previously used for LOX/hydrogen. These techniques included fuel temperature ramping and stability bomb tests. The hot fire program probed the combustion behavior of methane from ambient to subambient temperatures. Very interesting results were obtained from this program that have potential importance to future LOX/methane development programs. A very thorough and carefully reasoned documentation of the experimental data obtained is contained. The hot fire test logic and the associated tests are discussed. Subscale performance and stability rating testing was accomplished using 40,000 lb. thrust class hardware. Stability rating tests used both bombs and fuel temperature ramping techniques. The test program was successful in generating data for the evaluation of the methane stability characteristics relative to hydrogen and to anchor stability models. Data correlations, performance analysis, stability analyses, and key stability margin enhancement parameters are discussed.
NASA Astrophysics Data System (ADS)
Huang, Jun-Lin; Zhou, Ke-Yi; Wang, Xin-Meng; Tu, Yi-You; Xu, Jian-Qun
2014-07-01
Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.
Resource allocation for wildland fire suppression planning using a stochastic program
Alex Taylor Masarie
2011-01-01
Resource allocation for wildland fire suppression problems, referred to here as Fire-S problems, have been studied for over a century. Not only have the many variants of the base Fire-S problem made it such a durable one to study, but advances in suppression technology and our ever-expanding knowledge of and experience with wildland fire behavior have required almost...
Helen H. Mohr; Thomas A. Waldrop; Sandra Rideout; Ross J. Phillips; Charles T. Flint
2004-01-01
The need for fuel reduction has increased in United States forests due to decades of fire exclusion. Excessive fuel buildup has led to uncharacteristically severe fires in areas with historically short-interval, low-to-moderate-intensity fire regimes. The National Fire and Fire Surrogate (NFFS) Study compared the impacts of three fuel-reduction treatments on numerous...
Fire and forest history at Mount Rushmore.
Brown, Peter M; Wienk, Cody L; Symstad, Amy J
2008-12-01
Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a catastrophic wildfire occurs and adversely impacts the ecological and aesthetic setting of the Mount Rushmore sculpture.
William H. Romme; Thomas T. Veblen; Merrill R. Kaufmann; Rosemary Sherriff; Claudia M. Regan
2003-01-01
To address historical and current fire regimes in the Hayman landscape, we first present the concepts of âhistorical range of variabilityâ and âfire regimeâ to provide the necessary conceptual tools for evaluating fire occurrence, fire behavior, and fire effects. Next we summarize historical (pre-1860) fire frequency and fire effects for the major forest types of the...
The investigation of identifying method on grass fire by FY-3 VIRR images
NASA Astrophysics Data System (ADS)
Jiang, Youyan; Han, Tao; Wang, Dawei
2018-03-01
Grassland fire has the characteristics of fierce fire and rapid spreading, and many fires occur in sparsely populated places. Satellite remote sensing has the characteristics of fast imaging period and wide coverage, and plays an important role in the rapid monitoring and evaluation of grassland fire. FY-3 satellite has been widely used since its launch in September 2008, and this paper uses the fire information of Gansu grassland from 2011 to 2016, based on the more mature MODIS and NOAA-AVHRR fire identification method. The results show that the accuracy of FY-3/VIRR satellite data fire detection are higher than that of NOAA-AVHRR satellite, and the accuracy of FY-3/VIRR satellite data is described. There is a greater improvement, the ability to identify slightly worse than the MODIS satellite, the region is relatively large fire detection accuracy is higher.
The application of machine vision in fire protection system
NASA Astrophysics Data System (ADS)
Rong, Jiang
2018-04-01
Based on the previous research, this paper introduces the theory of wavelet, collects the situation through the video system, and calculates the key information needed in the fire protection system. That is, through the algorithm to collect the information, according to the flame color characteristics and smoke characteristics were extracted, and as the characteristic information corresponding processing. Alarm system set the corresponding alarm threshold, when more than this alarm threshold, the system will alarm. This combination of flame color characteristics and smoke characteristics of the fire method not only improve the accuracy of judgment, but also improve the efficiency of judgments. Experiments show that the scheme is feasible.
Michael Harrington; Erin Noonan-Wright
2010-01-01
Extensive forested areas have received fuels treatments in recent decades and significant funding is available for additional treatments in an attempt to mitigate undesirable high wildfire intensities and impacts. Fuel treatment successes and failures in moderating fire behavior and effects can be found in quantified and anecdotal reports. Questions remain about the...
Predicting the effect of climate change on wildfire behavior and initial attack success
Jeremy S. Fried; J. Keith Gilless; William J. Riley; Tadashi J. Moody; Clara Simon de Blas; Katharine Hayhoe; Max Mortiz; Scott Stephens; Margaret Torn
2008-01-01
This study focused on how climate change-induced effects on weather will translate into changes in wildland fire severity and outcomes in California, particularly on the effectiveness of initial attack at limiting the number of fires that escape initial attack. The results indicate that subtle shifts in fire behavior of the sort that might be induced by the climate...
Use of models to study forest fire behavior
Wallace L. Fons
1961-01-01
The U.S. Forest Service has started a laboratory study with the ultimate objective of determining model laws for fire behavior. The study includes an examination of the effect of such variables as species of wood, density of wood, moisture content, size of fuel particle, spacing, dimensions of fuel bed, wind, and slope on the rate of spread of fire and the partition of...
Wild Fire Computer Model Helps Firefighters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canfield, Jesse
2012-09-04
A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.
Wild Fire Computer Model Helps Firefighters
Canfield, Jesse
2018-02-14
A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.
Diane M. Gercke; Susan A. Stewart
2006-01-01
In 2005, eight U.S. Forest Service and Bureau of Land Management interdisciplinary teams participated in a test of strategic placement of treatments (SPOTS) techniques to maximize the effectiveness of fuel treatments in reducing problem fire behavior, adverse fire effects, and suppression costs. This interagency approach to standardizing the assessment of risks and...
Female Fire-Setters: Gender-Associated Psychological and Psychopathological Features.
Alleyne, Emma; Gannon, Theresa A; Mozova, Katarina; Page, Thomas E; Ó Ciardha, Caoilte
2016-01-01
Female fire-setters are reported to commit nearly one-third of deliberately set fires, yet there are limited studies examining the characteristics that distinguish them from suitable comparison groups. The aim of this study is to compare incarcerated female fire-setters with incarcerated male fire-setters and female offender controls on psychopathological and psychological features that could be targeted via therapeutic interventions. We recruited 65 female fire-setters, 128 male fire-setters, and 63 female offenders from the prison estate. Participants completed a battery of validated tools assessing psychiatric traits and psychological characteristics (i.e., inappropriate fire interest, emotion/self-regulation, social competence, self-concept, offense-supportive attitudes, and boredom proneness) highlighted in the existing literature. Major depression and an internal locus of control distinguished female fire-setters from male fire-setters. Alcohol dependence, serious/problematic fire interest, and more effective anger regulation distinguished female fire-setters from the female offender control group. This is the first study to examine differences between female fire-setters, male fire-setters, and female control offenders on both psychopathological features and psychological traits. These findings highlight the gender-specific and offense-specific needs of female fire-setters that clinicians need to consider when implementing programs that ensure client responsivity.
Predicting wildfire behavior in black spruce forests in Alaska.
Rodney A. Norum
1982-01-01
The current fire behavior system, when properly adjusted, accurately predicts forward rate of spread and flame length of wildfires in black spruce (Picea mariana (Mill.) B.S.P.) forests in Alaska. After fire behavior was observed and quantified, adjustment factors were calculated and assigned to the selected fuel models to correct the outputs to...
Landslides, forest fires, and earthquakes: examples of self-organized critical behavior
NASA Astrophysics Data System (ADS)
Turcotte, Donald L.; Malamud, Bruce D.
2004-09-01
Per Bak conceived self-organized criticality as an explanation for the behavior of the sandpile model. Subsequently, many cellular automata models were found to exhibit similar behavior. Two examples are the forest-fire and slider-block models. Each of these models can be associated with a serious natural hazard: the sandpile model with landslides, the forest-fire model with actual forest fires, and the slider-block model with earthquakes. We examine the noncumulative frequency-area statistics for each natural hazard, and show that each has a robust power-law (fractal) distribution. We propose an inverse-cascade model as a general explanation for the power-law frequency-area statistics of the three cellular-automata models and their ‘associated’ natural hazards.
Fire behavior of transformer dielectric insulating fluids
DOT National Transportation Integrated Search
1980-01-31
This report presents results for the fire behavior of pure and askarel-contaminated fluids which are candidates for use as railroad transformer dielectric insulating fluids. In the study a hydrocarbon and a dimethyl-siloxane fluid were examined. The ...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., etc.) shall be designed against acting as passageways for fire and smoke and representative... structural flooring assembly to perform as a barrier against under-vehicle fires. The fire resistance period... Flammability and Smoke Emission Characteristics of Materials Used in Passenger Cars and Locomotive Cabs B...
Relationships between fire frequency and woody canopy cover in a semi-arid African savanna
Andrew T. Hudak; Bruce H. Brockett
2003-01-01
Landscape-scale fire patterns result from complex interactions among weather, ignition sources, vegetation type and the biophysical environment (Hargrove et al. 2000, Morgan et al. 2001, Keane et al. 2002, Hudak, Fairbanks & Brockett in press). Patch characteristics (e.g. woody canopy cover) influence fire characteristics, which in turn influence patch...
Development and mapping of fuel characteristics and associated fire potentials for South America
M. Lucrecia Pettinari; Roger D. Ottmar; Susan J. Prichard; Anne G. Andreu; Emilio Chuvieco
2014-01-01
The characteristics and spatial distribution of fuels are critical for assessing fire hazard, fuel consumption, greenhouse gas emissions and other fire effects. However, fuel maps are difficult to generate and update, because many regions of the world lack fuel descriptions or adequate mapped vegetation attributes to assign these fuelbeds spatially across the landscape...
NASA Astrophysics Data System (ADS)
Peterson, D. A.; Hyer, E. J.; Campbell, J. R.; Fromm, M. D.; Hair, J. W.; Butler, C. F.; Fenn, M. A.
2014-12-01
A variety of regional smoke forecasting applications are currently available to identify air quality, visibility, and societal impacts during large fire events. However, these systems typically assume persistent fire activity, and therefore can have large errors before, during, and after short-term periods of extreme fire behavior. This study employs a wide variety of ground, airborne, and satellite observations, including data collected during a major NASA airborne and field campaign, to examine the conditions required for both extreme spread and pyrocumulonimbus (pyroCb) development. Results highlight the importance of upper-level and nocturnal meteorology, as well as the limitations of traditional fire weather indices. Increasing values of fire radiative power (FRP) at the pixel and sub-pixel level are shown to systematically correspond to higher altitude smoke plumes, and an increased probability of injection above the boundary layer. Lidar data collected during the 2013 Rim Fire, one of the most severe fire events in California's history, show that high FRP observed during extreme spread can facilitate long-distance smoke transport, but fails to loft smoke to the altitude of a large pyroCb. The most extreme fire spread was also observed on days without pyroCb activity or significant regional convection. By incorporating additional fire events across North America, conflicting hypotheses surrounding the primary source of moisture during pyroCb development are examined. The majority of large pyroCbs, and therefore the highest direct injection altitude of smoke particles, is shown to occur with conditions very similar to those that produce dry thunderstorms. The current suite of automated forecasting applications predict only general trends in fire behavior, and specifically do not predict (1) extreme fire spread events and (2) injection of smoke to high altitudes. While (1) and (2) are related, results show that they are not predicted by the same set of conditions and variables. The combination of meteorology from numerical forecast models and satellite observations exhibits great potential for improving regional forecasts of fire behavior and smoke production in automated systems, especially in remote areas where detailed observations are unavailable
Variability of fire behavior, fire effects, and emissions in Scotch pine forests of central Siberia
D. J. McRae; Susan Conard; G. A. Ivanova; A. I. Sukhinin; Steve Baker; Y. N. Samsonov; T. W. Blake; V. A. Ivanov; A. V. Ivanov; T. V. Churkina; WeiMin Hao; K. P. Koutzenogij; Nataly Kovaleva
2006-01-01
As part of the Russian FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project, replicated 4-ha experimental fires were conducted on a dry Scotch pine (Pinus sylvestris)/lichen (Cladonia sp.)/feathermoss (Pleurozeum schreberi) forest site in central Siberia. Observations from the initial seven surface fires (2000-2001) ignited under a range of burning...
Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests
Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens
2006-01-01
Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...
Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley
2010-01-01
Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...
Progression and Behavior of the Canoe Fire in Coast Redwood
Hugh Scanlon
2007-01-01
Lightning caused fires occur in coast redwood forests, but large fires have been rare since the 1930s. Coast redwood (Sequoia sempervirens) is considered fire resistant. In 2003, the Canoe Fire, a lightning fire started in an old-growth redwood stand in Humboldt Redwoods State Park, burned 5,554 hectares (13,774 acres) before it was contained. Fuel...
Wilderness fire science: A state of knowledge review
James K. Agee
2000-01-01
Wilderness fire science has progressed since the last major review of the topic, but it was significantly affected by the large fire events of 1988. Strides have been made in both fire behavior and fire effects, and in the issues of scaling, yet much of the progress has not been specifically tied to wilderness areas or funding. Although the management of fire in...
Space station internal environmental and safety concerns
NASA Technical Reports Server (NTRS)
Cole, Matthew B.
1987-01-01
Space station environmental and safety concerns, especially those involving fires, are discussed. Several types of space station modules and the particular hazards associated with each are briefly surveyed. A brief history of fire detection and suppression aboard spacecraft is given. Microgravity fire behavior, spacecraft fire detector systems, space station fire suppression equipment and procedures, and fire safety in hyperbaric chambers are discussed.
Value and challenges of conducting rapid response research on wildland fires
L. Lentile; P. Morgan; C. Hardy; A. Hudak; R. Means; R. Ottmar; P. Robichaud; E. Kennedy Sutherland; J. Szymoniak; F. Way; J. Fites-Kaufman; S. Lewis; E. Mathews; H. Shovik; K. Ryan
2007-01-01
Rapid Response Research is conducted during and immediately after wildland fires, in coordination with fire management teams, in order to collect information that can best be garnered in situ and in real-time. This information often includes fire behavior and fire effects data, which can be used to generate practical tools such as predictive fire models for managers....
BehavePlus fire modeling system, version 4.0: User's Guide
Patricia L. Andrews; Collin D. Bevins; Robert C. Seli
2005-01-01
The BehavePlus fire modeling system is a program for personal computers that is a collection of mathematical models that describe fire and the fire environment. It is a flexible system that produces tables, graphs, and simple diagrams. It can be used for a multitude of fire management applications including projecting the behavior of an ongoing fire, planning...
Thermocouple Probe Orientation Affects Prescribed Fire Behavior Estimation.
Coates, T Adam; Chow, Alex T; Hagan, Donald L; Waldrop, Thomas A; Wang, G Geoff; Bridges, William C; Rogers, Mary-Frances; Dozier, James H
2018-01-01
Understanding the relationship between fire intensity and fuel mass is essential information for scientists and forest managers seeking to manage forests using prescribed fires. Peak burning temperature, duration of heating, and area under the temperature profile are fire behavior metrics obtained from thermocouple-datalogger assemblies used to characterize prescribed burns. Despite their recurrent usage in prescribed burn studies, there is no simple protocol established to guide the orientation of thermocouple installation. Our results from dormant and growing season burns in coastal longleaf pine ( Mill.) forests in South Carolina suggest that thermocouples located horizontally at the litter-soil interface record significantly higher estimates of peak burning temperature, duration of heating, and area under the temperature profile than thermocouples extending 28 cm vertically above the litter-soil interface ( < 0.01). Surprisingly, vertical and horizontal estimates of these measures did not show strong correlation with one another ( ≤ 0.14). The horizontal duration of heating values were greater in growing season burns than in dormant season burns ( < 0.01), but the vertical values did not indicate this difference ( = 0.52). Field measures of fuel mass and depth before and after fire showed promise as significant predictive variables ( ≤ 0.05) for the fire behavior metrics. However, all correlation coefficients were less than or equal to = 0.41. Given these findings, we encourage scientists, researchers, and managers to carefully consider thermocouple orientation when investigating fire behavior metrics, as orientation may affect estimates of fire intensity and the distinction of fire treatment effects, particularly in forests with litter-dominated surface fuels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Sean A. Parks; Carol Miller; Cara R. Nelson; Zachary A. Holden
2014-01-01
Wildland fire is an important natural process in many ecosystems. However, fire exclusion has reduced frequency of fire and area burned in many dry forest types, which may affect vegetation structure and composition, and potential fire behavior. In forests of the western U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological...
Molly E. Hunter; Jose M. Iniguez; Leigh B. Lentile
2011-01-01
Prescribed and resource benefit fires are used to manage fuels in fire-prone landscapes in the Southwest. These practices, however, typically occur under different conditions, potentially leading to differences in fire behavior and effects. The objectives of this study were to investigate the effects of recent prescribed fires, resource benefit fires, and repeated...
NASA Astrophysics Data System (ADS)
Schroeder, W.; Coen, J.; Oliva, P.
2013-12-01
Availability of spatially refined satellite active fire detection data is gradually increasing. For example, the new 375 m Visible Infrared Imaging Radiometer Suite (VIIRS) data show improved active fire detection performance for both small and large size fires. The VIIRS data have proved superior to MODIS for mapping of wildfires events spanning several days to weeks of either continued or intermittent activity, delivering 12-h active fire data of improved spatial fidelity. The VIIRS active fire data are complemented by other satellite active fire data sets of similar or higher spatial resolution, including the new 30 m Landsat-8. Additional assets should include the upcoming 20 m Sentinel-2 Landsat-class satellite program by the European Space Agency to be launched in 2014-15. These improved active fire data sets are fostering new applications that rely on higher resolution input fire data. In this study, we describe the characteristics of the new VIIRS and Landsat-8 data and demonstrate one such new application of satellite active fire data in support of fire behavior modeling. We present results for a wildfire observed in June 2012 in New Mexico using an innovative approach to improving the simulation of large, long-duration wildfires, either for retrospective studies or forecasting in a number of geophysical applications. The approach uses (1) the Coupled Atmosphere-Wildland Fire Environment (CAWFE) Model, a numerical weather prediction model two-way coupled with a module representing the rate of spread of a wildfire's flaming front, its rate of consumption of different wildland fuels, and the feedback of this heat release upon the atmosphere - i.e. 'how a fire creates its own weather', combined with (2) spatially refined 375 m VIIRS active fire data, which is used for initialization of a wildfire already in progress in the model and evaluation of its simulated progression at the time of the next pass. Results show that initializing a fire that is 'in progress' with VIIRS data and a weather simulation based on more recent atmospheric analyses can overcome several issues and improve the simulation of late-developing fires and of later periods (particularly those with growth periods separated by lulls) in a long-lived fire.
Launchbaugh, Karen; Brammer, Bob; Brooks, Matthew L.; Bunting, Stephen C.; Clark, Patrick; Davison, Jay; Fleming, Mark; Kay, Ron; Pellant, Mike; Pyke, David A.
2008-01-01
A series of wildland fires were ignited by lightning in sagebrush and grassland communities near the Idaho-Nevada border southwest of Twin Falls, Idaho in July 2007. The fires burned for over two weeks and encompassed more than 650,000 acres. A team of scientists, habitat specialists, and land managers was called together by Tom Dyer, Idaho BLM State Director, to examine initial information from the Murphy Wildland Fire Complex in relation to plant communities and patterns of livestock grazing. Three approaches were used to examine this topic: (1) identify potential for livestock grazing to modify fuel loads and affect fire behavior using fire models applied to various vegetation types, fuel loads, and fire conditions; (2) compare levels of fuel consumed within and among major vegetation types; and (3) examine several observed lines of difference and discontinuity in fuel consumed to determine what factors created these contrasts. The team found that much of the Murphy Wildland Fire Complex burned under extreme fuel and weather conditions that likely overshadowed livestock grazing as a factor influencing fire extent and fuel consumption in many areas where these fires burned. Differences and abrupt contrast lines in the level of fuels consumed were affected mostly by the plant communities that existed on a site before fire. A few abrupt contrasts in burn severity coincided with apparent differences in grazing patterns of livestock, observed as fence-line contrasts. Fire modeling revealed that grazing in grassland vegetation can reduce surface rate of spread and fire-line intensity to a greater extent than in shrubland types. Under extreme fire conditions (low fuel moisture, high temperatures, and gusty winds), grazing applied at moderate utilization levels has limited or negligible effects on fire behavior. However, when weather and fuel-moisture conditions are less extreme, grazing may reduce the rate of spread and intensity of fires allowing for patchy burns with low levels of fuel consumption. The team suggested that targeted grazing to accomplish fuel objectives holds promise but requires detailed planning that includes clearly defined goals for fuel modification and appropriate monitoring to assess effectiveness. It was recommended that a pilot plan be devised to strategically place grazed blocks across a landscape to create fuel-reduction bands capable of influencing fire behavior. Also suggested was the development of a general technical report that highlights information and examples of how livestock grazing influences fire extent, severity, and intensity. Finally, the team encouraged continued research and monitoring of the effects of the Murphy Wildland Fire Complex. Much more can be learned from the effects of this extensive fire complex that may offer insight for future management decisions.
Simulations of Forest Fires by the Cellular Automata Model "ABBAMPAU"
NASA Astrophysics Data System (ADS)
di Gregorio, S.; Bendicenti, E.
2003-04-01
Forest fires represent a serious environmental problem, whose negative impact is becoming day by day more worrisome. Forest fires are very complex phenomena; that need an interdisciplinary approach. The adopted method to modelling involves the definition of local rules, from which the global behaviour of the system can emerge. The paradigm of Cellular Automata was applied and the model ABBAMPAU was projected to simulate the evolution of forest fires. Cellular Automata features (parallelism and a-centrism) seem to match the system "forest fire"; the parameters, describing globally a forest fire, i.e. propagation rate, flame length and direction, fireline intensity, fire duration time et c. are mainly depending on some local characteristics i.e. vegetation type (live and dead fuel), relative humidity, fuel moisture, heat, territory morphology (altitude, slope), et c.. The only global characteristic is given by wind velocity and direction, but wind velocity and direction is locally altered according to the morphology; therefore wind has also to be considered at local level. ABBAMPAU accounts for the following aspects of the phenomenon: effects of combustion in surface and crown fire inside the cell, crown fire triggering off; surface and crown fire spread, determination of the local wind rate and direction. A validation of ABBAMPAU was tested on a real case of forest fire, in the territory of Villaputzu, Sardinia island, August 22nd, 1998. First simulations account for the main characteristics of the phenomenon and agree with the observations. The results show that the model could be applied for the forest fire preventions, the productions of risk scenarios and the evaluation of the forest fire environmental impact.
Post-fire vegetation and fuel development influences fire severity patterns in reburns.
Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M
2016-04-01
In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.
Robert H. White; Mark A. Dietenberger
1999-01-01
Fire safety is an important concern in all types of construction. The high level of national concern for fire safety is reflected in limitations and design requirements in building codes. These code requirements are discussed in the context of fire safety design and evaluation in the initial section of this chapter. Since basic data on fire behavior of wood products...
Linking complex forest fuel structure and fire behavior at fine scales
EL Loudermilk; Joseph O' Brien; RJ Mitchell; JK Hiers; WP Cropper; S Grunwald; J Grego; J Fernandez
2012-01-01
Improved fire management of savannas and open woodlands requires better understanding of the fundamental connection between fuel heterogeneity, variation in fire behaviour and the influence of fire variation on vegetation feedbacks. In this study, we introduce a novel approach to predicting fire behaviour at the submetre scale, including measurements of forest...
Benefits of hindsight: reestablishing fire on the landscape.
Sally Duncan
2001-01-01
Well-intentioned fire suppression efforts during the last 80 to 100 years have altered the structure of low-elevation forests in the interior Northwest. Historically, nondestructive, frequent, low-intensity fires have given way to larger, infrequent, severe, high-intensity fires. Because of altered fire behavior, forests now have increased fuel, and consequently, are...
Fire in southern forest landscapes
John A. Stanturf; Dale D. Wade; Thomas A. Waldrop; Deborah K. Kennard; Gary L. Achtemeier
2002-01-01
Other than land clearing for urban development (Wear and others 1998), no disturbance is more common in southern forests than fire. The pervasive role of fire predates human activity in the South (Komarek 1964, 1974), and humans magnified that role. Repeating patterns of fire behavior lead to recognizable fire regimes, with temporal and spatial dimensions....
Comparison of six fire severity classification methods using Montana and Washington wildland fires
Pamela G. Sikkink
2015-01-01
Fire severity classifications are used in the post-fire environment to describe fire effects, such as soil alteration or fuel consumption, on the forest floor. Most of the developed classifications are limited because they address very specific fire effects or post-burn characteristics in the burned environment. However, because fire effects vary so much among soil,...
Assessment of the Utility of the Advanced Himawari Imager to Detect Active Fire Over Australia
NASA Astrophysics Data System (ADS)
Hally, B.; Wallace, L.; Reinke, K.; Jones, S.
2016-06-01
Wildfire detection and attribution is an issue of importance due to the socio-economic impact of fires in Australia. Early detection of fires allows emergency response agencies to make informed decisions in order to minimise loss of life and protect strategic resources in threatened areas. Until recently, the ability of land management authorities to accurately assess fire through satellite observations of Australia was limited to those made by polar orbiting satellites. The launch of the Japan Meteorological Agency (JMA) Himawari-8 satellite, with the 16-band Advanced Himawari Imager (AHI-8) onboard, in October 2014 presents a significant opportunity to improve the timeliness of satellite fire detection across Australia. The near real-time availability of images, at a ten minute frequency, may also provide contextual information (background temperature) leading to improvements in the assessment of fire characteristics. This paper investigates the application of the high frequency observation data supplied by this sensor for fire detection and attribution. As AHI-8 is a new sensor we have performed an analysis of the noise characteristics of the two spectral bands used for fire attribution across various land use types which occur in Australia. Using this information we have adapted existing algorithms, based upon least squares error minimisation and Kalman filtering, which utilise high frequency observations of surface temperature to detect and attribute fire. The fire detection and attribution information provided by these algorithms is then compared to existing satellite based fire products as well as in-situ information provided by land management agencies. These comparisons were made Australia-wide for an entire fire season - including many significant fire events (wildfires and prescribed burns). Preliminary detection results suggest that these methods for fire detection perform comparably to existing fire products and fire incident reporting from relevant fire authorities but with the advantage of being near-real time. Issues remain for detection due to cloud and smoke obscuration, along with validation of the attribution of fire characteristics using these algorithms.
David J. Ganz; David S. Saah; Klaus Barber; Mark Nechodom
2007-01-01
The fire behavior modeling described here, conducted as part of the Biomass to Energy (B2E) life cycle assessment, is funded by the California Energy Commission to evaluate the potential net benefits associated with treating and utilizing forest biomass. The B2E project facilitates economic, environmental, energy, and effectiveness assessments of the potential public...
NASA Astrophysics Data System (ADS)
Miller, V. V.; Kochanski, A.; Mandel, J.; Herr, V.; Schranz, S.
2016-12-01
This presentation will discuss the fire simulation system based on WRF-SFIRE and assimilation of satellite Active Fires detection to estimate the socio-economic impact of Earth observations and fire behavior modeling for the 2011 Las Conchas fire in New Mexico. Multiple scenarios will be developed with the WRF-SFIRE simulation based on value of information (VOI) provided by retired incident commanders, whose decision inputs will steer scenario development and simulation. The scenarios will differ according to the Earth observations available through NASA and then deemed useful to incident commanders. Each scenario will be evaluated in terms of its socio-economic impact as specified by NASA (2012) for its wildland fire program. This presentation is a proposed supplement to NASA grant NNX13AH59G Wildland Fire Behavior and Risk Forecasting, Sher Schranz, PI.
Jeremy S. Littell; David L. Peterson; Karin L. Riley; Yongqiang Liu; Charles H. Luce
2016-01-01
Historical and presettlement relationships between drought and wildfire have been well documented in much of North America, with forest fire occurrence and area burned clearly increasing in response to drought. Drought interacts with other controls (forest productivity, topography, and fire weather) to affect fire intensity and severity. Fire regime characteristics (...
Neurophysiology of Flight in Wild-Type and a Mutant Drosophila
Levine, Jon D.; Wyman, Robert J.
1973-01-01
We report the flight motor output pattern in Drosophila melanogaster and the neural network responsible for it, and describe the bursting motor output pattern in a mutant. There are 26 singly-innervated muscle fibers. There are two basic firing patterns: phase progression, shown by units that receive a common input but have no cross-connections, and phase stability, in which synergic units, receiving a common input and inhibiting each other, fire in a repeating sequence. Flies carrying the mutation stripe cannot fly. Their motor output is reduced to a short duration, high-frequency burst, but the patterning within bursts shows many of the characteristics of the wild type. The mutation is restricted in its effect, as the nervous system has normal morphology by light microscopy and other behaviors of the mutant are normal. Images PMID:4197927
Catching fire? Social interactions, beliefs, and wildfire risk mitigation behaviors
Katherine Dickinson; Hannah Brenkert-Smith; Patricia Champ; Nicholas Flores
2015-01-01
Social interactions are widely recognized as a potential influence on risk-related behaviors. We present a mediation model in which social interactions (classified as formal/informal and generic-fire-specific) are associated with beliefs about wildfire risk and mitigation options, which in turn shape wildfire mitigation behaviors. We test this model using survey data...
Rachel Benton; James Reardon
2006-01-01
National Park Service policies stipulate that each park with vegetation capable of burning will prepare a fire management plan. Badlands National Park completed its fire management plan in 2004. Fossils are a principle resource of the park and the fire sensitivity of fossils is the focus of this study. The surface temperatures of fossil specimens and fire behavior...
Thomas A. Spies; David B. Lindenmayer; A. Malcolm Gill; Scott L. Stephens; James K. Agee
2012-01-01
Conserving biodiversity in fire-prone forest ecosystems is challenging for several reasons including differing and incomplete conceptual models of fire-related ecological processes, major gaps in ecological and management knowledge, high variability in fire behavior and ecological responses to fires, altered fire regimes as a result of land-use history and climate...
Janice L. Coen; Philip J Riggan
2014-01-01
The 2006 Esperanza Fire in Riverside County, California, was simulated with the Coupled Atmosphere-Wildland Fire Environment (CAWFE) model to examine how dynamic interactions of the atmosphere with large-scale fire spread and energy release may affect observed patterns of fire behavior as mapped using the FireMapper thermal imaging radiometer. CAWFE simulated the...
Charles W. McHugh; Paul Gleason
2003-01-01
The purpose of this report is to document the suppression actions taken during the Hayman Fire. The long duration of suppression activities (June 8 through July 18), and multiple incident management teams assigned to the fire, makes this a challenging task. Original records and reports produced independently by the various teams assigned to different portions of the...
Post-fire logging reduces surface woody fuels up to four decades following wildfire
David W. Peterson; Erich Kyle Dodson; Richy J. Harrod
2015-01-01
Severe wildfires create pulses of dead trees that influence future fuel loads, fire behavior, and fire effects as they decay and deposit surface woody fuels. Harvesting fire-killed trees may reduce future surface woody fuels and related fire hazards, but the magnitude and timing of post-fire logging effects on woody fuels have not been fully assessed. To address this...
Lu, Zhixin; Squires, Shane; Ott, Edward; Girvan, Michelle
2016-12-01
We study the firing dynamics of a discrete-state and discrete-time version of an integrate-and-fire neuronal network model with both excitatory and inhibitory neurons. When the integer-valued state of a neuron exceeds a threshold value, the neuron fires, sends out state-changing signals to its connected neurons, and returns to the resting state. In this model, a continuous phase transition from non-ceaseless firing to ceaseless firing is observed. At criticality, power-law distributions of avalanche size and duration with the previously derived exponents, -3/2 and -2, respectively, are observed. Using a mean-field approach, we show analytically how the critical point depends on model parameters. Our main result is that the combined presence of both inhibitory neurons and integrate-and-fire dynamics greatly enhances the robustness of critical power-law behavior (i.e., there is an increased range of parameters, including both sub- and supercritical values, for which several decades of power-law behavior occurs).
BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem
Robert E. Burgan; Richard C. Rothermel
1984-01-01
This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.
W. Wang; J.J. Qu; X. Hao; Y. Liu
2009-01-01
In the southeastern United States, most wildland fires are of low intensity. Asubstantial number of these fires cannot be detected by the MODIS contextual algorithm. Toimprove the accuracy of fire detection for this region, the remote-sensed characteristics ofthese fires have to be systematically...
Review of vortices in wildland fire
Jason M. Forthofer; Scott L. Goodrick
2011-01-01
Vortices are almost always present in the wildland fire environment and can sometimes interact with the fire in unpredictable ways, causing extreme fire behavior and safety concerns. In this paper, the current state of knowledge of the interaction of wildland fire and vortices is examined and reviewed. A basic introduction to vorticity is given, and the two common...
Use of prescribed fire to reduce wildfire potential
Robert E. Martin; J. Boone Kauffman
1989-01-01
Fires were a part of our wildlands prehistorically. Prescribed burning reduces fire hazard and potential fire behavior primarily by reducing fuel quantity and continuity. Fuel continuity should be considered on the micro scale within stands, the mid-scale among, and the macro-scale among watersheds or entire forests. Prescribed fire is only one of the tools which can...
A simulation of wildfire behavior in piedmont forests
Helen H. Mohr; Thomas A. Waldrop
2006-01-01
Decades of fire exclusion have increased the need for fuel reduction in U.S. forests. The buildup of excessive fuels has led to uncharacteristically severe fires in areas with historically short-interval, low to moderate intensity fire regimes. The National Fire and Fire Surrogate Study compares the impacts of three fuel reduction treatments on numerous response...
Fire on the mountain: birds and burns in the Rocky Mountains
Natasha B. Kotliar; Victoria A. Saab; Richard L. Hutto
2005-01-01
The diversity of climate and topography across the Rocky Mountains has resulted in a broad spectrum of fire regimes ranging from frequent, low-severity fires to infrequent stand-replacement events. Such variation in fire history contributes to landscape structure and dynamics, and in turn can influence subsequent fire behavior (Allen et al. 2002). In essence,...
Invasive plant species and the Joint Fire Science Program.
Heather E. Erickson; Rachel White
2007-01-01
Invasive nonnative plants may be responsible for serious, long-term ecological impacts, including altering fire behavior and fire regimes. Therefore, knowing how to successfully manage invasive plants and their impacts on natural resources is crucial. We present a summary of research on invasive plants and fire that has been generated through the Joint Fire Science...
Fire Prevention in California's Riverside County Headstart Project: An Evaluation.
ERIC Educational Resources Information Center
Folkman, William S.; Taylor, Jean
Results of evaluation are reported for a safety program devised by Head Start teachers and California Division of Forestry personnel to teach fire prevention education to Head Start children. Chapters describe the place of fire prevention in Head Start and causes of fire starting behavior in children. The Head Start Fire Prevention Kit is also…
Measuring the rate of spread of chaparral prescribed fires in northern California
S. L. Stephens; D. R. Weise; D. L. Fry; R. J. Keiffer; J. Dawson; E. Koo; J. Potts; P. J. Pagni
2008-01-01
Prescribed fire is a common method used to produce desired ecological effects in chaparral by mimicking the natural role of fire. Since prescribed fires are usually conducted in moderate fuel and weather conditions, models that accurately predict fire behavior and effects under these scenarios are important for management. In this study, explosive audio devices and...
FireWorks curriculum featuring ponderosa, lodgepole, and whitebark pine forests
Jane Kapler Smith; Nancy E. McMurray
2000-01-01
FireWorks is an educational program for students in grades 1-10. The program consists of the curriculum in this report and a trunk of laboratory materials, specimens, and reference materials. It provides interactive, hands-on activities for studying fire ecology, fire behavior, and the influences of people on three fire-dependent forest types - Pinus ponderosa...
Massachusetts Public Fire and Safety Education Curriculum Planning Guidebook. Second Version.
ERIC Educational Resources Information Center
Massachusetts Department of Fire Services, Stow.
This updated curriculum planning guidebook is a resource for fire educators throughout the state of Massachusetts. It is designed to be a tool in efforts to: identify fire problems in the community; select appropriate behaviors and lessons to correct the fire problems; design fire education programs; and implement and evaluate the programs. The…
Economic efficiency and risk character of fire management programs, Northern Rocky Mountains
Thomas J. Mills; Frederick W. Bratten
1988-01-01
Economic efficiency and risk have long been considered during the selection of fire management programs and the design of fire management polices. The risk considerations was largely subjective, however, and efficiency has only recently been calculated for selected portions of the fire management program. The highly stochastic behavior of the fire system and the high...
Safety Performance of Exterior Wall Insulation Material Based on Large Security Concept
NASA Astrophysics Data System (ADS)
Zuo, Q. L.; Wang, Y. J.; Li, J. S.
2018-05-01
In order to evaluate the fire spread characteristics of building insulation materials under corner fire, an experiment is carried out with small-scale fire spread test system. The change rule of the parameters such as the average height of the flame, the average temperature of the flame and the shape of the flame are analyzed. The variations of the fire spread characteristic parameters of the building insulation materials are investigated. The results show that the average temperature of Expanded Polystyrene (EPS) board, with different thickness, decrease - rise - decrease - increase. During the combustion process, the fire of 4cm thick plate spreads faster.
Thuault, Sébastien J.; Malleret, Gaël; Constantinople, Christine M.; Nicholls, Russell; Chen, Irene; Zhu, Judy; Panteleyev, Andrey; Vronskaya, Svetlana; Nolan, Matthew F.; Bruno, Randy
2013-01-01
In many cortical neurons, HCN1 channels are the major contributors to Ih, the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of Ih in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of Ih decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or Ih blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question. PMID:23966682
NASA Astrophysics Data System (ADS)
Dickinson, M. B.; Dietenberger, M.; Ellicott, E. A.; Hardy, C.; Hudak, A. T.; Kremens, R.; Mathews, W.; Schroeder, W.; Smith, A. M.; Strand, E. K.
2016-12-01
Few measurement techniques offer broad-scale insight on the extent and characteristics of biomass combustion during wildland fires. Remotely-sensed radiation is one of these techniques but its measurement suffers from several limitations and, when quantified, its use to derive variables of real interest depends on an understanding of the fire's mass and energy budget. In this talk, we will review certain assumptions of wildland fire radiation measurement and explore the use of those measurements to infer the fates of biomass and the dissipation of combustion energy. Recent measurements show that the perspective of the sensor (nadir vs oblique) matters relative to estimates of fire radiated power. Other considerations for producing accurate estimates of fire radiation from remote sensing include obscuration by an intervening forest canopy and to what extent measurements that are based on the assumption of graybody/blackbody behavior underestimate fire radiation. Fire radiation measurements are generally a means of quantifying other variables and are often not of interest in and of themselves. Use of fire radiation measurements as a means of inference currently relies on correlations with variables of interest such as biomass consumption and sensible and latent heat and emissions fluxes. Radiation is an imperfect basis for these correlations in that it accounts for a minority of combustion energy ( 15-30%) and is not a constant as is often assumed. Measurements suggest that fire convective energy accounts for the majority of combustion energy and (after radiation) is followed by latent energy, soil heating, and pyrolysis energy, more or less in that order. Combustion energy in and of itself is not its potential maximum, but is reduced to an effective heat of combustion by combustion inefficiency and by work done to pyrolyze fuel (important in char production) and in moisture vaporization. The effective heat of combustion is often on the order of 65% of its potential maximum. Through consideration of available data and modeling, we conclude that there is substantial scope to improve the science behind fire radiation measurements and the inferences derived from those measurements.
Current State of European Railway Fire Safety Research
DOT National Transportation Integrated Search
1985-06-01
This report describes the recent fire safety research and practical fire experience of the major European railways. It includes a summary of the main causes and characteristics of railway vehicle fires, general approaches to the problem, and existing...
Grace, Anthony A
2010-11-01
The dopamine system is under multiple forms of regulation, and in turn provides effective modulation of system responses. Dopamine neurons are known to exist in several states of activity. The population activity, or the proportion of dopamine neurons firing spontaneously, is controlled by the ventral subiculum of the hippocampus. In contrast, burst firing, which is proposed to be the behaviorally salient output of the dopamine system, is driven by the brainstem pedunculopontine tegmentum (PPTg). When an animal is exposed to a behaviorally salient stimulus, the PPTg elicits a burst of action potentials in the dopamine neurons. However, this bursting only occurs in the portion of the dopamine neuron population that is firing spontaneously. This proportion is regulated by the ventral subiculum. Therefore, the ventral subiculum provides the gain, or the amplification factor, for the behaviorally salient stimulus. The ventral subiculum itself is proposed to carry information related to the environmental context. Thus, the ventral subiculum will adjust the responsivity of the dopamine system based on the needs of the organism and the characteristics of the environment. However, this finely tuned system can be disrupted in disease states. In schizophrenia, a disruption of interneuronal regulation of the ventral subiculum is proposed to lead to an overdrive of the dopamine system, rendering the system in a constant hypervigilant state. Moreover, amphetamine sensitization and stressors also appear to cause an abnormal dopaminergic drive. Such an interaction could underlie the risk factors of drug abuse and stress in the precipitation of a psychotic event. On the other hand, this could point to the ventral subiculum as an effective site of therapeutic intervention in the treatment or even the prevention of schizophrenia.
Mann Gulch fire: A race that couldn't be won
Richard C. Rothermel
1993-01-01
Describes the final 20 minutes of a smokejumper fire-fighting crew and the fire that overran 16 men as they were attempting to escape. The foreman and two firefighters escaped. Comparison with the behavior of a crew trapped by a fire in 1985 is described.
The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report.
Trevino, Michael A; Herda, Trent J; Cooper, Michael A
2014-09-06
Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike for the healthy participants. Finally, healthy participants exhibited changes in all electromyographic parameters during the repetitive muscle actions despite successfully completing all contractions with only a slight reduction in force. Thus, caution is warranted when quantifying muscular fatigue via motor unit firing rates and other electromyographic parameters since the parameters changed despite successful completing of all contractions with only a moderate reduction in strength in healthy subjects.
Post-fire Water Quality Response and Associated Physical Drivers
NASA Astrophysics Data System (ADS)
Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.
2017-12-01
The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response. Ultimately, improved understanding of post-fire response and related drivers will advance potential mitigation and treatment strategies as well as aid in the parametrization of post-fire models of water quality.
NASA Technical Reports Server (NTRS)
Coy, James; Schultz, Christopher J.; Case, Jonathan L.
2017-01-01
Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.
Simulating wildfire spread behavior between two NASA Active Fire data timeframes
NASA Astrophysics Data System (ADS)
Adhikari, B.; Hodza, P.; Xu, C.; Minckley, T. A.
2017-12-01
Although NASA's Active Fire dataset is considered valuable in mapping the spatial distribution and extent of wildfires across the world, the data is only available at approximately 12-hour time intervals, creating uncertainties and risks associated with fire spread and behavior between the two Visible Infrared Imaging Radiometer Satellite (VIIRS) data collection timeframes. Our study seeks to close the information gap for the United States by using the latest Active Fire data collected for instance around 0130 hours as an ignition source and critical inputs to a wildfire model by uniquely incorporating forecasted and real-time weather conditions for predicting fire perimeter at the next 12 hour reporting time (i.e. around 1330 hours). The model ingests highly dynamic variables such as fuel moisture, temperature, relative humidity, wind among others, and prompts a Monte Carlo simulation exercise that uses a varying range of possible values for evaluating all possible wildfire behaviors. The Monte Carlo simulation implemented in this model provides a measure of the relative wildfire risk levels at various locations based on the number of times those sites are intersected by simulated fire perimeters. Model calibration is achieved using data at next reporting time (i.e. after 12 hours) to enhance the predictive quality at further time steps. While initial results indicate that the calibrated model can predict the overall geometry and direction of wildland fire spread, the model seems to over-predict the sizes of most fire perimeters possibly due to unaccounted fire suppression activities. Nonetheless, the results of this study show great promise in aiding wildland fire tracking, fighting and risk management.
Robert A. Mickler; Miriam Rorig; Christopher D. Geron; Gary L. Achtemier; Andrew D. Bailey; Candice Krull; David Brownlie
2007-01-01
Wildland fuels have been accumulating in the United States during at least the past half-century due to wildland fire management practices and policies. The additional fuels contribute to intense fire behavior, increase the costs of wildland fire control, and contribute to the degradation of local and regional air quality. The management of prescribed and wildland fire...
Fire Safety in Extraterrestrial Environments
NASA Technical Reports Server (NTRS)
Friedman, Robert
1998-01-01
Despite rigorous fire-safety policies and practices, fire incidents are possible during lunar and Martian missions. Fire behavior and hence preventive and responsive safety actions in the missions are strongly influenced by the low-gravity environments in flight and on the planetary surfaces. This paper reviews the understanding and key issues of fire safety in the missions, stressing flame spread, fire detection, suppression, and combustion performance of propellants produced from Martian resources.
Self-extinguishing behavior of kerosene spray fire in a completely enclosed compartment
NASA Astrophysics Data System (ADS)
Wang, Changjian; Guo, Jin; Yan, Weigang; Lu, Shouxiang
2013-10-01
The self-extinguishing behavior of kerosene spray fire was investigated in a completely enclosed compartment with the size of 3 m × 3 m × 3.4 m. The spray was generated by locating one BETE nozzle at the center of the bottom wall. A series of spray fire videos were obtained by changing BETE nozzle type and injecting pressure. The results show that spray fire undergoes four stages: the growth stage, the quasi-steady stage, the stretch stage and the self-extinguishing stage. Consumption of large quantities of oxygen causes spray fire to first be stretched and then quench. In this process, fire base migrates away from spray region and leads to the emergence of ghosting fire. Ghosting fire promotes the instability of spray fire and large fluctuation of its height, which provides help to its self-extinguishing. With increasing the injecting pressure or the nozzle diameter, the self-extinguishing time decreases. It is found that the self-extinguishing time is approximately in inverse relation with injecting flow rate. Additionally, we also observed the occurrence of two-phase deflagration just after ignition, and it accelerates the spray fire growth and induces a larger fire height than the following quasi-steady spray fire. The deflagration turns stronger with increasing the injecting pressure.
Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests
Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C.
2006-01-01
In forests, the effects of different life forms on fire behavior may vary depending on their contributions to total fuel loads. We examined the distribution of fuel components before fire, their effects on fire behavior, and the effects of fire on subsequent fuel recovery in pine forests within the National Key Deer Refuge in the Florida Keys. We conducted a burning experiment in six blocks, within each of which we assigned 1-ha plots to three treatments: control, summer, and winter burn. Owing to logistical constraints, we burned only 11 plots, three in winter and eight in summer, over a 4-year period from 1998 to 2001. We used path analysis to model the effects of fuel type and char height, an indicator of fire intensity, on fuel consumption. Fire intensity increased with surface fuel loads, but was negatively related to the quantity of hardwood shrub fuels, probably because these fuels are associated with a moist microenvironment within hardwood patches, and therefore tend to resist fire. Winter fires were milder than summer fires, and were less effective at inhibiting shrub encroachment. A mixed seasonal approach is suggested for fire management, with burns applied opportunistically under a range of winter and summer conditions, but more frequently than that prevalent in the recent past. ?? IAWF 2006.
Identification of Soldier Behaviors Associated with Search and Target Acquisition (STA)
2010-05-01
specifically concentrated on representing Soldier and small unit behavior engaging "non-acquired" targets and "non-standard" entities, such as: muzzle ...Forces Are Targeting (e.g., weapon orientation, bullet impacts) Area Where Fire Coming From (e.g., muzzle Flash) Target Handoff...Surveys Cue Average Sum* Participants Muzzle Flash 7.51 34 Hostile Behaviors 7.35 40 Outgoing Fire 7.22 18 Suspicious Behaviors/Activities 6.91
Fire Streams. Fire Service Certification Series. Unit FSCS-FF-10-80.
ERIC Educational Resources Information Center
Pribyl, Paul F.
This training unit on fire streams is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 8-hour unit is to provide the fire fighters with an understanding of the characteristics, use, and application…
Determinants of Post-fire Water Quality in the Western United States
NASA Astrophysics Data System (ADS)
Rust, A.; Saxe, S.; Dolan, F.; Hogue, T. S.; McCray, J. E.
2015-12-01
Large wildfires are becoming increasingly common in the Western United States. Wildfires that consume greater than twenty percent of the watershed impact river water quality. The surface waters of the arid West are limited and in demand by the aquatic ecosystems, irrigated agriculture, and the region's growing human population. A range of studies, typically focused on individual fires, have observed mobilization of contaminants, nutrients (including nitrates), and sediments into receiving streams. Post-fire metal concentrations have also been observed to increase when fires were located in streams close to urban centers. The objective of this work was to assemble an extensive historical water quality database through data mining from federal, state and local agencies into a fire-database. Data from previous studies on individual fires by the co-authors was also included. The fire-database includes observations of water quality, discharge, geospatial and land characteristics from over 200 fire-impacted watersheds in the western U.S. since 1985. Water quality data from burn impacted watersheds was examined for trends in water quality response using statistical analysis. Watersheds where there was no change in water quality after fire were also examined to determine characteristics of the watershed that make it more resilient to fire. The ultimate goal is to evaluate trends in post-fire water quality response and identify key drivers of resiliency and post-fire response. The fire-database will eventually be publicly available.Large wildfires are becoming increasingly common in the Western United States. Wildfires that consume greater than twenty percent of the watershed impact river water quality. The surface waters of the arid West are limited and in demand by the aquatic ecosystems, irrigated agriculture, and the region's growing human population. A range of studies, typically focused on individual fires, have observed mobilization of contaminants, nutrients (including nitrates), and sediments into receiving streams. Post-fire metal concentrations have also been observed to increase when fires were located in streams close to urban centers. The objective of this work was to assemble an extensive historical water quality database through data mining from federal, state and local agencies into a fire-database. Data from previous studies on individual fires by the co-authors was also included. The fire-database includes observations of water quality, discharge, geospatial and land characteristics from over 200 fire-impacted watersheds in the western U.S. since 1985. Water quality data from burn impacted watersheds was examined for trends in water quality response using statistical analysis. Watersheds where there was no change in water quality after fire were also examined to determine characteristics of the watershed that make it more resilient to fire. The ultimate goal is to evaluate trends in post-fire water quality response and identify key drivers of resiliency and post-fire response. The fire-database will eventually be publicly available.
Prevalence of behaviors related to cigarette‐caused fires: a survey of Ontario smokers
O'Connor, R J; Bauer, J E; Giovino, G A; Hammond, D; Hyland, A; Fong, G T; Cummings, K M
2007-01-01
Objective To identify the prevalence and correlates of behaviors related to the risk of cigarette‐caused fires. Design and setting Random‐digit‐dialed telephone survey in Ontario, Canada, July–September, 2005. Subjects 596 current cigarette smokers. Outcome measures Prevalence of fire‐risk events and behaviors such as burning clothing or objects in the home, leaving lit cigarettes unattended, dozing while smoking, and smoking in bed and correlates of these behaviors. Respondents were also asked if they ever worry about cigarette‐caused fires. Results One in four smokers admitted to leaving lit cigarettes unattended in the last 30 days, while 15% admitted to smoking while in bed. Leaving lit cigarettes unattended was independent of demographic, socioeconomic or nicotine dependence indicators, but was related to worry about burning other persons with a cigarette (OR 1.72, 95% CI 1.04 to 2.85) and smoking inside the home (OR 2.98, 95% CI 1.66 to 5.35). Persons who were not white (OR 3.97, 95% CI 1.80 to 8.80), aged 18–24 years (OR 3.75, 95% CI 1.41 to 9.96), who had high nicotine dependence (OR 9.13, 95% CI 2.22 to 37.52) and worried about burning objects in their home (OR 2.43, 95% CI 1.31 to 4.52) were more likely to smoke in bed. 10 (1.7%) smokers reported having ever had a fire in their home started by a cigarette. Conclusions Smokers engage in behaviors such as smoking in bed and leaving lit cigarettes unattended that may place them at an increased risk of cigarette‐caused fires. As governments move to regulate cigarette ignition propensity, it is important to establish surveillance for behaviors related to fire risk. PMID:17686933
NASA Technical Reports Server (NTRS)
Barrett, K.; Kasischke, E. S.; McGuire, A. D.; Turetsky, M. R.; Kane, E. S.
2010-01-01
Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.
Barrett, Kirsten M.; Kasischke, E.S.; McGuire, A.D.; Turetsky, M.R.; Kane, E.S.
2010-01-01
Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.
Risks and issues in fire safety on the Space Station
NASA Technical Reports Server (NTRS)
Friedman, Robert
1993-01-01
A fire in the inhabited portion of a spacecraft is a greatly feared hazard, but fire protection in space operations is complicated by two factors. First, the spacecraft cabin is an enclosed volume, which limits the resources for fire fighting and the options for crew escape. Second, an orbiting spacecraft experiences a balance of forces, creating a near-zero-gravity (microgravity) environment that profoundly affects the characteristics of fire initiation, spread, and suppression. The current Shuttle Orbiter is protected by a fire-detection and suppression system whose requirements are derived of necessity from accepted terrestrial and aircraft standards. While experience has shown that Shuttle fire safety is adequate, designers recognize that improved systems to respond specifically to microgravity fire characteristics are highly desirable. Innovative technology is particularly advisable for the Space Station, a forthcoming space community with a complex configuration and long-duration orbital missions, in which the effectiveness of current fire-protection systems is unpredictable. The development of risk assessments to evaluate the probabilities and consequences of fire incidents in spacecraft are briefly reviewed. It further discusses the important unresolved issues and needs for improved fire safety in the Space Station, including those of material selection, spacecraft atmospheres, fire detection, fire suppression, and post-fire restoration.
An examination of fuel particle heating during fire spread
Jack D. Cohen; Mark A. Finney
2010-01-01
Recent high intensity wildfires and our demonstrated inability to control extreme fire behavior suggest a need for alternative approaches for preventing wildfire disasters. Current fire spread models are not sufficiently based on a basic understanding of fire spread processes to provide more effective management alternatives. An experimental and theoretical approach...
Design of structures against fire. Civil engineering/buildings, architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anchor, R.D.; Malhotra, H.L.; Purkiss, J.A.
1986-01-01
The book covers structural design criteria, along with background theory on fire protection methods for structures from a variety of materials, including timber, steel, and concrete. Research on the behavior of structural materials in the presence of fire is highlighted, and the need for fire-resistant materials is addressed.
Keeping Haines Real - Or Really Changing Haines?
Brian E. Potter; Dan Borsum; Don Haines
2002-01-01
Most incident command teams can handle low- to moderate-intensity fires with few unanticipated problems. However, high-intensity situations, especially the plume-dominated fires that often develop when winds are low and erratic behavior is unexpected, can create dangerous situations even for well-trained, experienced fire crews (Rothermel 1991). Plume-dominated fires...
Public perspectives on the "wildfire problem."
Antony S. Cheng; Dennis R. Becker
2005-01-01
Just as wildland fire managers must have a working knowledge of fire behavior, they must also understand the social dimensions of wildland fire in order to effectively engage the public.Social scientists are therefore gathering information about public attitudes toward wildland fire and wildfire mitigation. How do people see the "wildfire problem"? What...
FOCUS: a fire management planning system -- final report
Frederick W. Bratten; James B. Davis; George T. Flatman; Jerold W. Keith; Stanley R. Rapp; Theodore G. Storey
1981-01-01
FOCUS (Fire Operational Characteristics Using Simulation) is a computer simulation model for evaluating alternative fire management plans. This final report provides a broad overview of the FOCUS system, describes two major modules-fire suppression and cost, explains the role in the system of gaming large fires, and outlines the support programs and ways of...
FEES: design of a Fire Economics Evaluation System
Thomas J. Mills; Frederick W. Bratten
1982-01-01
The Fire Economics Evaluation System (FEES)--a simulation model--is being designed for long-term planning application by all public agencies with wildland fire management responsibilities. A fully operational version of FEES will be capable of estimating the economic efficiency, fire-induced changes in resource outputs, and risk characteristics of a range of fire...
A neutral model of low-severity fire regimes
Don McKenzie; Amy E. Hessl
2008-01-01
Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire occurrence is a stochastic process, an understanding of baseline variability is necessary in order to identify constraints on surface fire regimes. With a suitable null, or neutral, model, characteristics of natural fire regimes estimated...
Fire hazard considerations for composites in vehicle design
NASA Technical Reports Server (NTRS)
Gordon, Rex B.
1994-01-01
Military ground vehicles fires are a significant cause of system loss, equipment damage, and crew injury in both combat and non-combat situations. During combat, the ability to successfully fight an internal fire, without losing fighting and mobility capabilities, is often the key to crew survival and mission success. In addition to enemy hits in combat, vehicle fires are initiated by electrical system failures, fuel line leaks, munitions mishaps and improper personnel actions. If not controlled, such fires can spread to other areas of the vehicle, causing extensive damage and the potential for personnel injury and death. The inherent fire safety characteristics (i.e. ignitability, compartments of these vehicles play a major roll in determining rather a newly started fire becomes a fizzle or a catastrophe. This paper addresses a systems approach to assuring optimum vehicle fire safety during the design phase of complex vehicle systems utilizing extensive uses of composites, plastic and related materials. It provides practical means for defining the potential fire hazard risks during a conceptual design phase, and criteria for the selection of composite materials based on its fire safety characteristics.
Weather, fuels, fire behavior, plumes, and smoke - the nexus of fire meteorology
Scott L. Goodrick; Timothy J. Brown; W. Matt Jolly
2017-01-01
In a pair of review papers, Potter (2012a, 2012b) summarized the significant fire weather research findings over about the past hundred years. Our scientific understanding of wildland fire-atmosphere interactions has evolved: from simple correlations supporting the notion that hot, dry, and windy conditions lead to more intense fires, we have moved towards more...
Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study
Nolan W. Brewer; Alistair M.S. Smith; Jeffery A. Hatten; Philip E. Higuera; Andrew T. Hudak; Roger D. Ottmar; Wade T. Tinkham
2013-01-01
Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-altered carbon is...
The Fire and Fuels Extension to the Forest Vegetation Simulator
Elizabeth Reinhardt; Nicholas L. Crookston
2003-01-01
The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behaviour over time, in the context of stand development and management. Existing models of fire behavior and fire effects were added to FVS to form this extension. New submodels representing snag and fuel dynamics were created to complete the linkages...
Frank K. Lake
2013-01-01
Indigenous peopleâs detailed traditional knowledge about fire, although superficially referenced in various writings, has not for the most part been analyzed in detail or simulated by resource managers, wildlife biologists, and ecologists. . . . Instead, scientists have developed the principles and theories of fire ecology, fire behavior and effects models, and...
High-severity fire: Evaluating its key drivers and mapping its probability across western US forests
Sean A. Parks; Lisa M. Holsinger; Matthew H. Panunto; W. Matt Jolly; Solomon Z. Dobrowski; Gregory K. Dillon
2018-01-01
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the...
An assessment of climate and fire danger rating in the Northern Rockies during the 1910 fire season
Charles W. McHugh; Mark A. Finney; Larry S. Bradshaw
2010-01-01
The 1910 fires of western Montana and northern Idaho have received much publicity in the popular media but little scientific attention regarding the factors that contribute to fire behavior and fire danger. Here we present information surrounding the weather, and reconstructed measures of Palmer Drought Severity Index (PDSI), Keetch-Byram Drought Index (KBDI), Energy...
Analysis of weather condition influencing fire regime in Italy
NASA Astrophysics Data System (ADS)
Bacciu, Valentina; Masala, Francesco; Salis, Michele; Sirca, Costantino; Spano, Donatella
2014-05-01
Fires have a crucial role within Mediterranean ecosystems, with both negative and positive impacts on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In addition, several authors are in agreement suggesting that, during the past decades, changes on fire patterns have occurred, especially in terms of fire-prone areas expansion and fire season lengthening. Climate and weather are two of the main controlling agents, directly and indirectly, of fire regime influencing vegetation productivity, causing water stress, igniting fires through lightning, or modulating fire behavior through wind. On the other hand, these relationships could be not warranted in areas where most ignitions are caused by people (Moreno et al. 2009). Specific analyses of the driving forces of fire regime across countries and scales are thus still required in order to better anticipate fire seasons and also to advance our knowledge of future fire regimes. The objective of this work was to improve our knowledge of the relative effects of several weather variables on forest fires in Italy for the period 1985-2008. Meteorological data were obtained through the MARS (Monitoring Agricultural Resources) database, interpolated at 25x25 km scale. Fire data were provided by the JRC (Join Research Center) and the CFVA (Corpo Forestale e di Vigilanza Ambientale, Sardinia). A hierarchical cluster analysis, based on fire and weather data, allowed the identification of six homogeneous areas in terms of fire occurrence and climate (pyro-climatic areas). Two statistical techniques (linear and non-parametric models) were applied in order to assess if inter-annual variability in weather pattern and fire events had a significant trend. Then, through correlation analysis and multi-linear regression modeling, we investigated the influence of weather variables on fire activity across a range of time- and spatial-scales. The analysis revealed a general decrease of both number of fires and burned area, although not everywhere with the same magnitude. Overall, regression models where highly significant (p<0.001), and the explained variance ranged from 36% to 80% for fire number and from 37% to 76% for burned area, depending on pyro-climatic area. Moreover, our results contributed in determining the relative importance of climate variables acting at different timescales as control on intrinsic (i.e. flammability and moisture) and extrinsic (i.e. fuel amount and structure) characteristics of vegetation, thus strongly influencing fire occurrence. The good performance of our models, especially in the most fire affected pyro-climatic areas of Italy, and the better understanding of the main driver of fire variability gained through this work could be of great help for fire management among the different pyro-climatic areas.
Predicted fire behavior and societal benefits in three eastern Sierra Nevada vegetation types
C.A. Dicus; K. Delfino; D.R. Weise
2009-01-01
We investigated potential fire behavior and various societal benefits (air pollution removal, carbon sequestration, and carbon storage) provided by woodlands of pinyon pine (Pinus monophylla) and juniper (Juniperus californica), shrublands of Great Basin sagebrush (Artemisia tridentata) and rabbitbrush (Ericameria nauseosa...
Fan, Yanhua; Pereira, Roberto M; Kilic, Engin; Casella, George; Keyhani, Nemat O
2012-01-01
Fire ants are one of the world's most damaging invasive pests, with few means for their effective control. Although ecologically friendly alternatives to chemical pesticides such as the insecticidal fungus Beauveria bassiana have been suggested for the control of fire ant populations, their use has been limited due to the low virulence of the fungus and the length of time it takes to kill its target. We present a means of increasing the virulence of the fungal agent by expressing a fire ant neuropeptide. Expression of the fire ant (Solenopsis invicta) pyrokinin β-neuropeptide (β-NP) by B. bassiana increased fungal virulence six-fold towards fire ants, decreased the LT(50), but did not affect virulence towards the lepidopteran, Galleria mellonella. Intriguingly, ants killed by the β-NP expressing fungus were disrupted in the removal of dead colony members, i.e. necrophoretic behavior. Furthermore, synthetic C-terminal amidated β-NP but not the non-amidated peptide had a dramatic effect on necrophoretic behavior. These data link chemical sensing of a specific peptide to a complex social behavior. Our results also confirm a new approach to insect control in which expression of host molecules in an insect pathogen can by exploited for target specific augmentation of virulence. The minimization of the development of potential insect resistance by our approach is discussed.
Fan, Yanhua; Pereira, Roberto M.; Kilic, Engin; Casella, George; Keyhani, Nemat O.
2012-01-01
Fire ants are one of the world's most damaging invasive pests, with few means for their effective control. Although ecologically friendly alternatives to chemical pesticides such as the insecticidal fungus Beauveria bassiana have been suggested for the control of fire ant populations, their use has been limited due to the low virulence of the fungus and the length of time it takes to kill its target. We present a means of increasing the virulence of the fungal agent by expressing a fire ant neuropeptide. Expression of the fire ant (Solenopsis invicta) pyrokinin β -neuropeptide (β-NP) by B. bassiana increased fungal virulence six-fold towards fire ants, decreased the LT50, but did not affect virulence towards the lepidopteran, Galleria mellonella. Intriguingly, ants killed by the β-NP expressing fungus were disrupted in the removal of dead colony members, i.e. necrophoretic behavior. Furthermore, synthetic C-terminal amidated β-NP but not the non-amidated peptide had a dramatic effect on necrophoretic behavior. These data link chemical sensing of a specific peptide to a complex social behavior. Our results also confirm a new approach to insect control in which expression of host molecules in an insect pathogen can by exploited for target specific augmentation of virulence. The minimization of the development of potential insect resistance by our approach is discussed. PMID:22238569
McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.
2010-01-01
Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.
Parente, Joana; Pereira, Mário G; Tonini, Marj
2016-07-15
The present study focuses on the dependence of the space-time permutation scan statistics (STPSS) (1) on the input database's characteristics and (2) on the use of this methodology to assess changes on the fire regime due to different type of climate and fire management activities. Based on the very strong relationship between weather and the fire incidence in Portugal, the detected clusters will be interpreted in terms of the atmospheric conditions. Apart from being the country most affected by the fires in the European context, Portugal meets all the conditions required to carry out this study, namely: (i) two long and comprehensive official datasets, i.e. the Portuguese Rural Fire Database (PRFD) and the National Mapping Burnt Areas (NMBA), respectively based on ground and satellite measurements; (ii) the two types of climate (Csb in the north and Csa in the south) that characterizes the Mediterranean basin regions most affected by the fires also divide the mainland Portuguese area; and, (iii) the national plan for the defence of forest against fires was approved a decade ago and it is now reasonable to assess its impacts. Results confirmed (1) the influence of the dataset's characteristics on the detected clusters, (2) the existence of two different fire regimes in the country promoted by the different types of climate, (3) the positive impacts of the fire prevention policy decisions and (4) the ability of the STPSS to correctly identify clusters, regarding their number, location, and space-time size in spite of eventual space and/or time splits of the datasets. Finally, the role of the weather on days when clustered fires were active was confirmed for the classes of small, medium and large fires. Copyright © 2016 Elsevier B.V. All rights reserved.
Alan H. Taylor; Carl N. Skinner
2003-01-01
Fire exclusion in mixed conifer forests has increased the risk of fire due to decades of fuel accumulation. Restoration of fire into altered forests is a challenge because of a poor understanding of the spatial and temporal dynamics of fire regimes. In this study the spatial and temporal characteristics of fire regimes and forest age structure are reconstructed in a...
Fire characteristics associated with firefighter injury on large federal wildland fires.
Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne
2013-02-01
Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.
Tania Schoennagel; Thomas T. Veblen; Jose F. Negron; Jeremy M. Smith
2012-01-01
In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared...
Long-term trends in fire behavior and changes in population at risk
Long-term trends in fire behavior and changes in population at risk Rappold AG, Peterson GC, US EPA Matt Jolly, USFS Air pollution regulations and technological advances have successfully reduced emissions of air pollutants from many anthropogenic sources in recent decades. Duri...
Self-organization, the cascade model, and natural hazards.
Turcotte, Donald L; Malamud, Bruce D; Guzzetti, Fausto; Reichenbach, Paola
2002-02-19
We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions.
Self-organization, the cascade model, and natural hazards
Turcotte, Donald L.; Malamud, Bruce D.; Guzzetti, Fausto; Reichenbach, Paola
2002-01-01
We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions. PMID:11875206
A generalized linear integrate-and-fire neural model produces diverse spiking behaviors.
Mihalaş, Stefan; Niebur, Ernst
2009-03-01
For simulations of neural networks, there is a trade-off between the size of the network that can be simulated and the complexity of the model used for individual neurons. In this study, we describe a generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors while still being analytically solvable between firings. For different parameter values, the model produces spiking or bursting, tonic, phasic or adapting responses, depolarizing or hyperpolarizing after potentials and so forth. The model consists of a diagonalizable set of linear differential equations describing the time evolution of membrane potential, a variable threshold, and an arbitrary number of firing-induced currents. Each of these variables is modified by an update rule when the potential reaches threshold. The variables used are intuitive and have biological significance. The model's rich behavior does not come from the differential equations, which are linear, but rather from complex update rules. This single-neuron model can be implemented using algorithms similar to the standard integrate-and-fire model. It is a natural match with event-driven algorithms for which the firing times are obtained as a solution of a polynomial equation.
A Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors
Mihalaş, Ştefan; Niebur, Ernst
2010-01-01
For simulations of neural networks, there is a trade-off between the size of the network that can be simulated and the complexity of the model used for individual neurons. In this study, we describe a generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors while still being analytically solvable between firings. For different parameter values, the model produces spiking or bursting, tonic, phasic or adapting responses, depolarizing or hyperpolarizing after potentials and so forth. The model consists of a diagonalizable set of linear differential equations describing the time evolution of membrane potential, a variable threshold, and an arbitrary number of firing-induced currents. Each of these variables is modified by an update rule when the potential reaches threshold. The variables used are intuitive and have biological significance. The model’s rich behavior does not come from the differential equations, which are linear, but rather from complex update rules. This single-neuron model can be implemented using algorithms similar to the standard integrate-and-fire model. It is a natural match with event-driven algorithms for which the firing times are obtained as a solution of a polynomial equation. PMID:18928368
Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.
Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H
2014-01-01
Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.
Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range
Sherriff, Rosemary L.; Platt, Rutherford V.; Veblen, Thomas T.; Schoennagel, Tania L.; Gartner, Meredith H.
2014-01-01
Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions. PMID:25251103
Larson, Diane L.; Newton, Wesley E.; Anderson, Patrick J.; Stein, Steven J.
1999-01-01
The objectives of this study were to determine the effects of fire retardantchemical (Phos-Chek G75-F*) and fire suppressant foam (Silv-Ex) application,alone and in combination with fire, on Great Basin shrub steppe vegetation. Wemeasured growth, resprouting, flowering, and incidence of galling insects onChrysothamnus viscidiflorusandArtemisia tridentata. These characteristics were notaffected by any chemical treatment. We measured community characteristics,including species richness, evenness, and diversity, and number of stems ofwoody and herbaceous plants in riparian and upland plots. Of these characteristics, only species richness and number ofstems/m2 clearly responded to the chemicaltreatments, and the response was modified by fire. In general, speciesrichness declined, especially after Phos-Chek application. However, by the endof the growing season, species richness did not differ between treated andcontrol plots. Acanonical variate analysis suggested that burning had agreater influence on community composition than did the chemical treatments.In general, riparian areas showed more significant responses to the treatmentsthan did upland areas, and June applications produced greater changes inspecies richness and stem density than did July applications.
Co-firing switchgrass in a 50 MW pulverized coal boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragland, K.W.; Aerts, D.J.; Weiss, C.
1996-12-31
Switchgrass is being co-fired with pulverized coal in a 50 MW wall-fired, radiant boiler at MG&E`s Blount Street generating station. Shredded switchgrass is fed to a hammermill onto a live bottom storage bunker. Twin screw augers move the switchgrass onto a belt conveyor which leads to a rotary air lock valve and through a pressurized pipe to the boiler where it is injected into the furnace at two points between first and second level coal burners. The main objective of the project is to evaluate the boiler performance, slagging behavior, and emissions of the co-fired switchgrass at replacement of ratesmore » of up to 20% by mass (13% by heat input). Initial co-firing tests to examine fuel handling and feeding, combustion behavior, boiler response and emissions are favorable. In November a 100 hour co-fire test is planned.« less
NASA Astrophysics Data System (ADS)
Kasischke, Eric S.; Turetsky, Merritt R.
2006-05-01
We used historic records from 1959-99 to explore fire regime characteristics at ecozone scales across the entire North American boreal region (NABR). Shifts in the NABR fire regime between the 1960s/70s and the 1980s/90s were characterized by a doubling of annual burned area and more than a doubling of the frequency of larger fire years because of more large fire events (>1,000 km2). The proportion of total burned area from human-ignited fires decreased over this same time period, while the proportion of burning during the early and late- growing-seasons increased. Trends in increased burned area were consistent across the NABR ecozones, though the western ecozones experienced greater increases in larger fire years compared to the eastern ecozones. Seasonal patterns of burning differed among ecozones. Along with the climate warming, changes in the fire regime characteristics may be an important driver of future ecosystem processes in the NABR.
High-resolution observations of combustion in heterogeneous surface fuels
E. Louise Loudermilk; Gary L. Achtemeier; Joseph J. O' Brien; J. Kevin Hiers; Benjamin S. Hornsby
2014-01-01
In ecosystems with frequent surface fires, fire and fuel heterogeneity at relevant scales have been largely ignored. This could be because complete burns give an impression of homogeneity, or due to the difficulty in capturing fine-scale variation in fuel characteristics and fire behaviour. Fire movement between patches of fuel can have implications for modelling fire...
W. Wang; J.J. Qu; X. Hao; Y. Liu
2009-01-01
In the southeastern United States, most wildland fires are of low intensity. A substantial number of these fires cannot be detected by the MODIS contextual algorithm. To improve the accuracy of fire detection for this region, the remote-sensed characteristics of these fires have to be...
Effects of fire on birds in Madrean forests and woodlands
Joseph L. Ganey; William M. Block; Paul F. Boucher
1996-01-01
Fire usually affects birds indirectly, by altering habitat or food resources. Bird response may be positive or negative, depending on life-history characteristics and fire extent, intensity, and duration. Disruption of natural fire regimes may have far-reaching consequences for these birds and their habitat. The effects of fire on forest birds should be studied...
Fire risk in east-side forests.
Valerie. Rapp
2002-01-01
Wildfire was a natural part of ecosystems in east-side Oregon and Washington before the 20th century. The fire regimes, or characteristic patterns of firehow often, how hot, how big, what time of yearhelped create and maintain various types of forests.Forests are dynamic, and fire interacts with other ecological processes. Fires, forests...
Kenneth A. Baerenklau; Armando González-Cabán; Catrina I. Páez; Edgard Chávez
2009-01-01
The U.S. Forest Service is responsible for developing tools to facilitate effective and efficient fire management on wildlands and urban-wildland interfaces. Existing GIS-based fire modeling software only permits estimation of the costs of fire prevention and mitigation efforts as well as the effects of those efforts on fire behavior. This research demonstrates how the...
Estimating fuel consumption during prescribed fires in Arkansas
Virginia L. McDaniel; James M. Guldin; Roger W. Perry
2012-01-01
While prescribed fire is essential to maintaining numerous plant communities, fine particles produced in smoke can impair human health and reduce visibility in scenic areas. The Arkansas Smoke Management Program was established to mitigate the impacts of smoke from prescribed fires. This program uses fuel loading and consumption estimates from standard fire-behavior...
Behavioral and cognitive evaluation of FireWorks education trunk
Linda R. Thomas; James A. Walsh; Jane Kapler Smith
2000-01-01
This study assessed the effectiveness of FireWorks, an educational trunk about wildland fire, in increasing student understanding, enabling students to apply classroom learning in a field setting, and improving the learning environment. Students who were in classrooms using the FireWorks educational trunk demonstrated more knowledge in both classroom and field-based...
How to predict the spread and intensity of forest and range fires
Richard C. Rothermel
1983-01-01
This manual documents procedures for estimating the rate of forward spread, intensity, flame length, and size of fires burning in forests and rangelands. Contains instructions for obtaining fuel and weather data, calculating fire behavior, and interpreting the results for application to actual fire problems. This is a companion publication to "
Understanding the long-term fire risks in forests affected by sudden oak death
Yana Valachovic; Chris Lee; Radoslaw Glebocki; Hugh Scanlon; J. Morgan Varner; David Rizzo
2010-01-01
It is assumed that large numbers of dead and down tanoak in forests infested by Phytophthora ramorum contribute to increased fire hazard risk and fuel loading. We studied the impact of P. ramorum infestation on surface fuel loading, potential fire hazard, and potential fire behavior in Douglas-fir- (Pseudotsuga...
Retrospective fire modeling: Quantifying the impacts of fire suppression
Brett H. Davis; Carol Miller; Sean A. Parks
2010-01-01
Land management agencies need to understand and monitor the consequences of their fire suppression decisions. We developed a framework for retrospective fire behavior modeling and impact assessment to determine where ignitions would have spread had they not been suppressed and to assess the cumulative effects that would have resulted. This document is a general...
Developing the U.S. Wildland Fire Decision Support System
Erin Noonan-Wright; Tonja S. Opperman; Mark A. Finney; Tom Zimmerman; Robert C. Seli; Lisa M. Elenz; David E. Calkin; John R. Fiedler
2011-01-01
A new decision support tool, the Wildland Fire Decision Support System (WFDSS) has been developed to support risk-informed decision-making for individual fires in the United States. WFDSS accesses national weather data and forecasts, fire behavior prediction, economic assessment, smoke management assessment, and landscape databases to efficiently formulate and apply...
Frequency and season of prescribed fire affect understory plant communities in longleaf pine stands
James D. Haywood
2012-01-01
Prescribed fire research on the Kisatchie National Forest in Louisiana spanned the last 7 decades and led to a greater understanding of fire behavior and the importance of fire in longleaf pine (Pinus palustris Mill.) stands. Early research focused on management of the bluestem (Andropogon spp. and Schizachyrium...
Brooke Baldauf McBride; Anne E. Black
2012-01-01
This study examined the effects of organizational, environmental, group and individual characteristics on five components of safety climate in the US federal fire management community (HRO Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity). Multiple analyses of variance revealed that all types of characteristics had a significant effect on...
Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico
NASA Astrophysics Data System (ADS)
Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.
2013-05-01
Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments that correspond to deserts. Application of PFR model to fire management is discussed.
Implementation of two new resource management information systems in Australia
NASA Astrophysics Data System (ADS)
Kessell, Stephen R.; Good, Roger B.; Hopkins, Angas J. M.
1984-05-01
This paper describes the development and implementation of PREPLAN, A Pristine Environment Planning Language and Simulator, for two conservation areas in Australia, Kosciusko National Park (New South Wales) and Tutanning Nature Reserve (Western Australia). PREPLAN was derived from the North American gradient modeling systems and the Forest Planning Language and Simulator (FORPLAN), but includes unique characteristics not previously available. PREPLAN includes an integrated resource management data base, modules for predicting site-specific vegetation, fuels, animals, fire behavior, and fire effects, and an English language instruction set. PREPLAN was developed specifically to provide available information and understanding of ecosystems to managers in a readily accessible and usable form, and to provide the motivation to conduct additional required research projects. An evaluation of the system's advantages and limitations is presented, and the way the utilization of such systems is improving natural area decision making throughout Australia is discussed.
Review of BART "C" Car Fire Safety Characteristics
DOT National Transportation Integrated Search
1987-09-01
The report presents the results of a review of the fire safety characteristics of the prototype BART "C" Car. Initiated in response to a request from the Urban Mass Transportation Administration (UMTA) Region IX Administrator, the review has been str...
NASA Astrophysics Data System (ADS)
Santin, Cristina; Doerr, Stefan; Arcenegui, Vicky; Otero, Xose Luis
2017-04-01
Wildland fires leave a powdery residue on the ground: wildfire ash, which consists of mineral materials and charred organic components. Its quantities and characteristics depend mainly on the total amount and type of fuel burnt and the fire characteristics. Up to several tens of tons of ash per hectare have been quantified in different post-fire environments. As a new material present after a wildland fire, ash can have profound effects on ecosystems. It affects biogeochemical cycles, including the carbon cycle, stimulates microbial activity and helps the recovery of vegetation. Ash incorporated into the soil increases soil pH and nutrient pools temporarily and changes soil physical properties such as albedo, soil texture and hydraulic properties. Ash also modifies soil and landscape-scale hydrological behaviour. Its high porosity makes it very effective at absorbing rainfall, but it can also contribute to catastrophic debris flows when ash is mobilised by large storm events. Its 'fragile' nature makes ash very susceptible to wind and water erosion, facilitating its transfer to the hydrological system. Runoff containing ash from burnt areas carries soluble nutrients and pollutants, which can have detrimental impacts on aquatic ecosystems and the supply of potable water. In this presentation we will report for the first time on the physical characteristics, chemical composition and associated water pollution risk from ash produced in four typical Canadian boreal forest fires: two high-intensity fires in jack pine stands, and one high-intensity and one smouldering fire in black spruce stands.
77 FR 33158 - Plumas National Forest, California, Sugarloaf Hazardous Fuels Reduction Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... to the economic stability of rural communities through: fuels treatments; group selections (GS); area... (DFPZs), modify fire behavior, promote forest and watershed health, while contributing to the economic stability of rural communities in Plumas County, CA. Fire behavior needs to be modified in selected forest...
Barber, Annika F; Erion, Renske; Holmes, Todd C; Sehgal, Amita
2016-12-01
Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology. © 2016 Barber et al.; Published by Cold Spring Harbor Laboratory Press.
AEGIS: a wildfire prevention and management information system
NASA Astrophysics Data System (ADS)
Kalabokidis, Kostas; Ager, Alan; Finney, Mark; Athanasis, Nikos; Palaiologou, Palaiologos; Vasilakos, Christos
2016-03-01
We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to information that is essential for wildfire management. The system uses a number of spatial and non-spatial data sources to support key system functionalities. Land use/land cover maps were produced by combining field inventory data with high-resolution multispectral satellite images (RapidEye). These data support wildfire simulation tools that allow the users to examine potential fire behavior and hazard with the Minimum Travel Time fire spread algorithm. End-users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations, i.e., single-fire propagation, point-scale calculation of potential fire behavior, and burn probability analysis, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANNs) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps are used to generate integrated output map of fire hazard prediction. The system also incorporates weather information obtained from remote automatic weather stations and weather forecast maps. The system and associated computation algorithms leverage parallel processing techniques (i.e., High Performance Computing and Cloud Computing) that ensure computational power required for real-time application. All AEGIS functionalities are accessible to authorized end-users through a web-based graphical user interface. An innovative smartphone application, AEGIS App, also provides mobile access to the web-based version of the system.
Changes in contaminant loading and hydro-chemical storm behavior after the Station Fire
NASA Astrophysics Data System (ADS)
Burke, M. P.; Hogue, T. S.; Barco, J.; Wessel, C. J.
2010-12-01
The 2009 Station Fire, currently noted as the largest fire in Los Angeles County history, consumed over 650 square kilometers of National Forest land in the San Gabriel Mountain Range. These mountains, located on the east side (leeward) of the Los Angeles basin, are known to have some of the highest deposition rates of atmospheric pollutants in the nation. Even pre-fire, urban-fringe basins in this mountain range serve as an upstream source of contaminants to downstream urban streams. Burned watersheds undergo significant physical and chemical changes that dramatically alter hydrologic flowpaths, erosion potential, surface soil chemistry, and pollutant delivery. Much of the degradation in water quality is attributed to the extensive soil erosion during post-fire runoff events which carry large sediment loads, mobilizing and transporting contaminants to and within downstream waters. High resolution storm samples collected from a small front range watershed provide a unique opportunity to investigate the impacts of wildfire contaminant loading in a watershed that is significantly impacted by high atmospheric deposition of urban contaminates. Data includes four events from WY 2009 (pre-fire) and WY 2010 (post-fire), along with inter-storm grab samples from each storm season. Samples were analyzed for basic anions, nutrients, trace metals, and total suspended solids. Following the fire, storms with similar precipitation patterns yielded loads up to three orders of magnitude greater than pre-fire for some toxic metals, including lead and cadmium. Dramatic increases were also observed in trace metal concentrations typically associated with particulates, while weathering solute concentrations decreased. Post fire intra-storm dynamics exhibited a shift back toward pre-fire behavior by the end of the first rainy season for most of the measured constituents. Additionally, some unexpected behaviors were observed; specifically mercury loads continued to increase throughout the first post-fire rainy season regardless of storm size.
Karin L. Riley; Rachel A. Loehman
2016-01-01
Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st- century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains....
Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.
2011-01-01
As wildfires have increased in frequency and extent, so have the number of homes developed in the wildland-urban interface. In California, the predominant approach to mitigating fire risk is construction of fuel breaks, but there has been little empirical study of their role in controlling large fires.We constructed a spatial database of fuel breaks on the Los Padres National Forest in southern California to better understand characteristics of fuel breaks that affect the behaviour of large fires and to map where fires and fuel breaks most commonly intersect. We evaluated whether fires stopped or crossed over fuel breaks over a 28-year period and compared the outcomes with physical characteristics of the sites, weather and firefighting activities during the fire event. Many fuel breaks never intersected fires, but others intersected several, primarily in historically fire-prone areas. Fires stopped at fuel breaks 46% of the time, almost invariably owing to fire suppression activities. Firefighter access to treatments, smaller fires and longer fuel breaks were significant direct influences, and younger vegetation and fuel break maintenance indirectly improved the outcome by facilitating firefighter access. This study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities.
Contribution from motor unit firing adaptations and muscle co-activation during fatigue.
Contessa, Paola; Letizi, John; De Luca, Gianluca; Kline, Joshua C
2018-03-14
The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles - including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the co-activation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue.
Irresistible ants: exposure to novel toxic prey increases consumption over multiple temporal scales.
Herr, Mark W; Robbins, Travis R; Centi, Alan; Thawley, Christopher J; Langkilde, Tracy
2016-07-01
As species become increasingly exposed to novel challenges, it is critical to understand how evolutionary (i.e., generational) and plastic (i.e., within lifetime) responses work together to determine a species' fate or predict its distribution. The introduction of non-native species imposes novel pressures on the native species that they encounter. Understanding how native species exposed to toxic or distasteful invaders change their feeding behavior can provide insight into their ability to cope with these novel threats as well as broader questions about the evolution of this behavior. We demonstrated that native eastern fence lizards do not avoid consuming invasive fire ants following repeated exposure to this toxic prey. Rather fence lizards increased their consumption of these ants following exposure on three different temporal scales. Lizards ate more fire ants when they were exposed to this toxic prey over successive days. Lizards consumed more fire ants if they had been exposed to fire ants as juveniles 6 months earlier. Finally, lizards from populations exposed to fire ants over multiple generations consumed more fire ants than those from fire ant-free areas. These results suggest that the potentially lethal consumption of fire ants may carry benefits resulting in selection for this behavior, and learning that persists long after initial exposure. Future research on the response of native predators to venomous prey over multiple temporal scales will be valuable in determining the long-term effects of invasion by these novel threats.
2014-03-27
ISS039-E-005726 (27 March 2014) --- Expedition 39 Flight Engineer Rick Mastracchio performs inflight maintenance on an experiment called Burning and Suppression of Solids (BASS)-II. The investigation examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The BASS-II experiment will guide strategies for materials flammability screening for use in spacecraft as well as provide valuable data on solid fuel burning behavior in microgravity. BASS-II results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2014-08-02
Image taken on card 8 during BASS-II flame test session with reduced O2 partial pressure. Session conducted on GMT 213. The Burning and Suppression of Solids - II (BASS-II) investigation examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The BASS-II experiment will guide strategies for materials flammability screening for use in spacecraft as well as provide valuable data on solid fuel burning behavior in microgravity. BASS-II results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
Flammability Parameters of Candles
NASA Astrophysics Data System (ADS)
Balog, Karol; Kobetičová, Hana; Štefko, Tomáš
2017-06-01
The paper deals with the assessment of selected fire safety characteristics of candles. Weight loss of a candle during the burning process, candle burning rate, soot index, heat release rate and yield of carbon oxides were determined. Soot index was determined according to EN 15426: 2007 - Candles - Specification for Sooting Behavior. All samples met the prescribed amount of produced soot. Weight loss, heat release rate and the yield of carbon oxides were determined for one selected sample. While yield of CO increased during the measurement, the yield of CO2 decreased by half in 40 minutes.
NASA Astrophysics Data System (ADS)
Sun, Ruiyu
It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a probabilistic prediction method is warranted. Of the two contributors to the variability in fire growth in the grass fire simulations in the ABL, fire-induced convection, as opposed to the turbulent ABL wind, appears to be the more important one. One mechanism associated with enhanced fire-induced flow is the downdraft behind the frontal fireline. The downdraft is the direct result of the random interaction between the fire plume and the large eddies in the ABL. This study indicates a connection between fire variability in rate of spread and area burnt and so-called convective velocity scale, and it may be possible to use this boundary-layer scale parameter to account for the effects of ABL turbulence on fire spread and fire behavior in today's operational fire prediction systems.
Ullah, Habib; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Zhou, Chuncai
2017-12-01
The combustion characteristics, kinetic analysis and selenium retention-emission behavior during co-combustion of high ash coal (HAC) with pine wood (PW) biomass and torrefied pine wood (TPW) were investigated through a combination of thermogravimetric analysis (TGA) and laboratory-based circulating fluidized bed combustion experiment. Improved ignition behavior and thermal reactivity of HAC were observed through the addition of a suitable proportion of biomass and torrefied. During combustion of blends, higher values of relative enrichment factors in fly ash revealed the maximum content of condensing volatile selenium on fly ash particles, and depleted level in bottom ash. Selenium emission in blends decreased by the increasing ratio of both PW and TPW. Higher reductions in the total Se volatilization were found for HAC/TPW than individual HAC sample, recommending that TPW have the best potential of selenium retention. The interaction amongst selenium and fly ash particles may cause the retention of selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.
A multimodal 3D framework for fire characteristics estimation
NASA Astrophysics Data System (ADS)
Toulouse, T.; Rossi, L.; Akhloufi, M. A.; Pieri, A.; Maldague, X.
2018-02-01
In the last decade we have witnessed an increasing interest in using computer vision and image processing in forest fire research. Image processing techniques have been successfully used in different fire analysis areas such as early detection, monitoring, modeling and fire front characteristics estimation. While the majority of the work deals with the use of 2D visible spectrum images, recent work has introduced the use of 3D vision in this field. This work proposes a new multimodal vision framework permitting the extraction of the three-dimensional geometrical characteristics of fires captured by multiple 3D vision systems. The 3D system is a multispectral stereo system operating in both the visible and near-infrared (NIR) spectral bands. The framework supports the use of multiple stereo pairs positioned so as to capture complementary views of the fire front during its propagation. Multimodal registration is conducted using the captured views in order to build a complete 3D model of the fire front. The registration process is achieved using multisensory fusion based on visual data (2D and NIR images), GPS positions and IMU inertial data. Experiments were conducted outdoors in order to show the performance of the proposed framework. The obtained results are promising and show the potential of using the proposed framework in operational scenarios for wildland fire research and as a decision management system in fighting.
HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin
Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less
HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; ...
2015-02-13
Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less
Du, Jian-Hua; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc. PMID:28797055
Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.
Alistair M.S. Smith; Martin J. Wooster; Nick A. Drake; Frederick M. Dipotso; Michael J. Falkowski; Andrew T. Hudak
2005-01-01
The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were...
The influences of drought and humans on the fire regimes of northern Pennsylvania, USA
Patrick H. Brose; Daniel C. Dey; Richard P. Guyette; Joseph M. Marschall; Michael C. Stambaugh
2013-01-01
Understanding past fire regimes is necessary to justify and implement restoration of disturbance-associated forests via prescribed fire programs. In eastern North America, the characteristics of many presettlement fire regimes are unclear because of the passage of time. To help clarify this situation, we developed a 435-year fire history for the former conifer forests...
Post-fire surface fuel dynamics in California forests across three burn severity classes
Bianca N. I. Eskelson; Vicente J. Monleon
2018-01-01
Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...
Wave of fire: an anthropogenic signal in historical fire regimes across central Pennsylvania, USA
Michael C. Stambaugh; Joseph M. Marschall; Erin R. Abadir; Benjamin C. Jones; Patrick H. Brose; Daniel C. Dey; Richard P. Guyette
2018-01-01
Increasingly detailed records of long-term fire regime characteristics are needed to test ecological concepts and inform natural resource management and policymaking. We reconstructed and analyzed twelve 350+ yr-long fire scar records developed from 2612 tree-ring dated fire scars on 432 living and dead pine (Pinus pungens, Pinus rigida, Pinus resinosa, Pinus...
Prescribed fire effects on activity and movement of cattle in mesic sagebrush steppe
USDA-ARS?s Scientific Manuscript database
Prescribed fire has long been used worldwide for livestock and wildlife management. The efficacy of prescribed fire for manipulating grazing animal distribution and diet quality has been well studied in many ecosystems but prescribed-fire effects on activity budgets and movement path characteristic...