USDA-ARS?s Scientific Manuscript database
Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large effect QTL for fire blight resistance has been pre...
USDA-ARS?s Scientific Manuscript database
Since its first report almost 200 years ago, fire blight, caused by the gram negative bacterium Erwinia amylovora, has threatened apple and pear production globally. Identifying novel genes and their functional alleles is a prerequisite to developing apple cultivars with enhanced fire blight resist...
2012-01-01
Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor previously associated with fire blight resistance. However, this QTL was not observed in the New Zealand or German populations. Conclusions The results suggest that the upper region of ‘Robusta 5’ linkage group 3 contains multiple genes contributing to fire blight resistance and that their contributions to resistance can vary depending upon pathogen virulence and other factors. Mapping markers derived from putative fire blight resistance genes has proved a useful aid in defining these QTLs and developing markers for marker-assisted breeding of fire blight resistance. PMID:22471693
Aćimović, Srđan G.; Zeng, Quan; McGhee, Gayle C.; Sundin, George W.; Wise, John C.
2015-01-01
Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1–2 apple tree injections of either streptomycin, potassium phosphites (PH), or acibenzolar-S-methyl (ASM), significant reduction of blossom and shoot blight symptoms was observed compared to water injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2, and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR) under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control. PMID:25717330
'Sunrise': A new early maturing fire blight resistant pear cultivar
USDA-ARS?s Scientific Manuscript database
'Sunrise' is a new pear (Pyrus communis L.) cultivar released by the U.S. Department of Agriculture, Agricultural Research Service. It combines a high degree of resistance to fire blight with excellent fruit quality. The sources of resistance in the pedigree are the old American cultivar, 'Seckel'...
Fire blight resistance in wild accessions of Malus sieversii
USDA-ARS?s Scientific Manuscript database
Fire blight (Erwinia amylovora) is a devastating bacterial disease in apple that results in severe economic losses. Epidemics are becoming more common as susceptible cultivars and rootstocks are being planted, and control is becoming more difficult as antibiotic-resistant strains develop. Resistan...
Rootstock-regulated gene expression patterns associated with fire blight resistance in apple
USDA-ARS?s Scientific Manuscript database
Background: Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks. Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia amylovora, which causes fire blight, the most serious bacterial disease of apple....
Induction of antimicrobial 3-deoxyflavonoids in pome fruit trees controls fire blight.
Halbwirth, Heidrun; Fischer, Thilo C; Roemmelt, Susanne; Spinelli, Francesco; Schlangen, Karin; Peterek, Silke; Sabatini, Emidio; Messina, Christian; Speakman, John-Bryan; Andreotti, Carlo; Rademacher, Wilhelm; Bazzi, Carlo; Costa, Guglielmo; Treutter, Dieter; Forkmann, Gert; Stich, Karl
2003-01-01
Fire blight, a devastating bacterial disease in pome fruits, causes severe economic losses worldwide. Hitherto, an effective control could only be achieved by using antibiotics, but this implies potential risks for human health, livestock and environment. A new approach allows transient inhibition of a step in the flavonoid pathway, thereby inducing the formation of a novel antimicrobial 3-deoxyflavonoid controlling fire blight in apple and pear leaves. This compound is closely related to natural phytoalexins in sorghum. The approach does not only provide a safe method to control fire blight: Resistance against different pathogens is also induced in other crop plants.
Broggini, Giovanni A L; Wöhner, Thomas; Fahrentrapp, Johannes; Kost, Thomas D; Flachowsky, Henryk; Peil, Andreas; Hanke, Maria-Viola; Richter, Klaus; Patocchi, Andrea; Gessler, Cesare
2014-08-01
The fire blight susceptible apple cultivar Malus × domestica Borkh. cv. 'Gala' was transformed with the candidate fire blight resistance gene FB_MR5 originating from the crab apple accession Malus × robusta 5 (Mr5). A total of five different transgenic lines were obtained. All transgenic lines were shown to be stably transformed and originate from different transgenic events. The transgenic lines express the FB_MR5 either driven by the constitutive CaMV 35S promoter and the ocs terminator or by its native promoter and terminator sequences. Phenotyping experiments were performed with Mr5-virulent and Mr5-avirulent strains of Erwinia amylovora, the causal agent of fire blight. Significantly less disease symptoms were detected on transgenic lines after inoculation with two different Mr5-avirulent E. amylovora strains, while significantly more shoot necrosis was observed after inoculation with the Mr5-virulent mutant strain ZYRKD3_1. The results of these experiments demonstrated the ability of a single gene isolated from the native gene pool of apple to protect a susceptible cultivar from fire blight. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship Mr5-E. amylovora. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Durel, C-E; Denancé, C; Brisset, M-N
2009-02-01
Fire blight, caused by the bacterium Erwinia amylovora, is one of the most destructive diseases of apple (Malus xdomestica) worldwide. No major, qualitative gene for resistance to this disease has been identified so far in apple. A quantitative trait locus (QTL) analysis was performed in two F1 progenies derived from two controled crosses: one between the susceptible rootstock cultivar 'MM106' and the resistant ornamental cultivar 'Evereste' and the other one between the moderately susceptible cultivar 'Golden Delicious' and the wild apple Malus floribunda clone 821, with unknown level of fire blight resistance. Both progenies were inoculated in the greenhouse with the same reference strain of E. amylovora. The length of stem necrosis was scored 7 and 14 days after inoculation. A strong QTL effect was identified in both 'Evereste' and M. floribunda 821 at a similar position on the distal region of linkage group 12 of the apple genome. From 50% to 70% of the phenotypic variation was explained by the QTL in 'Evereste' progeny according to the scored trait. More than 40% of the phenotypic variation was explained by the M. floribunda QTL in the second progeny. It was shown that 'Evereste' and M. floribunda 821 carried distinct QTL alleles at that genomic position. A small additional QTL was identified in 'Evereste' on linkage group 15, which explained about 6% of the phenotypic variation. Although it was not possible to confirm whether or not 'Evereste' and M. floribunda QTL belonged to the same locus or two distinct closely related loci, these QTL can be valuable targets in marker-assisted selection to obtain fire blight resistant apple cultivars and form a starting point for discovering the function of the genes controlling apple fire blight resistance.
Integrated Control of Fire Blight with Bacterial Antagonists and Oxytetracycline
USDA-ARS?s Scientific Manuscript database
In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora were prevalent. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory acti...
Integrated Control of Fire Blight with Antagonists and Oxytetracycline
USDA-ARS?s Scientific Manuscript database
In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora arose. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory activity of o...
Schlathölter, Ina; Jänsch, Melanie; Flachowsky, Henryk; Broggini, Giovanni Antonio Lodovico; Hanke, Magda-Viola; Patocchi, Andrea
2018-06-01
The approach presented here can be applied to reduce the time needed to introduce traits from wild apples into null segregant advanced selections by one-fourth. Interesting traits like resistances to pathogens are often found within the wild apple gene pool. However, the long juvenile phase of apple seedlings hampers the rapid introduction of these traits into new cultivars. The rapid crop cycle breeding approach used in this paper is based on the overexpression of the birch (Betula pendula) MADS4 transcription factor in apple. Using the early flowering line T1190 and 'Evereste' as source of the fire blight resistance (Fb_E locus), we successfully established 18 advanced selections of the fifth generation in the greenhouse within 7 years. Fifteen individuals showed the habitus expected of a regular apple seedling, while three showed very short internodes. The null segregants possessing a regular habitus maintained the high level of fire blight resistance typical for 'Evereste'. Using SSR markers, we estimated the percentage of genetic drag from 'Evereste' still associated with Fb_E on linkage group 12 (LG12). Eight out of the 18 selections had only 4% of 'Evereste' genome left. Since genotypes carrying the apple scab resistance gene Rvi6 and the fire blight resistance QTL Fb_F7 were used as parents in the course of the experiments, these resistances were also identified in some of the null segregants. One seedling is particularly interesting as, beside Fb_E, it also carries Fb_F7 heterozygously and Rvi6 homozygously. If null segregants obtained using this method will be considered as not genetically modified in Europe, as is already the case in the USA, this genotype could be a very promising parent for breeding new fire blight and scab-resistant apple cultivars in European apple breeding programs.
Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion
2016-02-17
The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.
Kamber, Tim; Buchmann, Jan P.; Pothier, Joël F.; Smits, Theo H. M.; Wicker, Thomas; Duffy, Brion
2016-01-01
The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora. PMID:26883568
Budagovsky 9 rootstock: uncovering a novel resistance to fire blight
USDA-ARS?s Scientific Manuscript database
Budagovsky 9 (B.9) apple rootstock, displayed a high level of susceptibility (similar to M.9 rootstock) to fire blight bacteria (Erwinia amylovora) when leaves of non-grafted B.9 plants were inoculated. However, when older B.9 rootstock tissue was inoculated directly with E. amylovora, rootstock tis...
USDA-ARS?s Scientific Manuscript database
The AvrRpt2EA effector protein of Erwinia amylovora is important for pathogen recognition in the fire blight resistant crabapple Malus ×robusta 5; however, little is known about its role in susceptible apple genotypes. In order to study its function in planta, we expressed a plant optimized version...
Development of the First Cisgenic Apple with Increased Resistance to Fire Blight
Kost, Thomas D.; Gessler, Cesare; Jänsch, Melanie; Flachowsky, Henryk; Patocchi, Andrea; Broggini, Giovanni A. L.
2015-01-01
The generation and selection of novel fire blight resistant apple genotypes would greatly improve the management of this devastating disease, caused by Erwinia amylovora. Such resistant genotypes are currently developed by conventional breeding, but novel breeding technologies including cisgenesis could be an alternative approach. A cisgenic apple line C44.4.146 was regenerated using the cisgene FB_MR5 from wild apple Malus ×robusta 5 (Mr5), and the previously established method involving A. tumefaciens-mediated transformation of the fire blight susceptible cultivar ‘Gala Galaxy’ using the binary vector p9-Dao-FLPi. The line C44.4.146 was shown to carry only the cisgene FB_MR5, controlled by its native regulatory sequences and no transgenes were detected by PCR or Southern blot following heat induced recombinase-mediated elimination of the selectable markers. Although this line contains up to 452 bp of vector sequences, it still matches the original definition of cisgenesis. A single insertion of T-DNA into the genome of 'Gala Galaxy' in chromosome 16 was identified. Transcription of FB_MR5 in line C44.4.146 was similar to the transcription in classically bred descendants of Mr5. Three independent shoot inoculation experiments with a Mr5 avirulent strain of Erwinia amylovora were performed using scissors or syringe. Significantly lower disease symptoms were detected on shoots of the cisgenic line compared to those of untransformed 'Gala Galaxy'. Despite the fact that the pathogen can overcome this resistance by a single nucleotide mutation, this is, to our knowledge, the first prototype of a cisgenic apple with increased resistance to fire blight. PMID:26624292
[Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].
Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I
2013-01-01
Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.
McGhee, Gayle C; Sundin, George W
2011-02-01
The emergence and spread of streptomycin-resistant strains of Erwinia amylovora in Michigan has necessitated the evaluation of new compounds effective for fire blight control. The aminoglycoside antibiotic kasugamycin (Ks) targets the bacterial ribosome and is particularly active against E. amylovora. The efficacy of Ks formulated as Kasumin 2L for control of fire blight was evaluated in six experiments conducted over four field seasons in our experimental orchards in East Lansing, MI. Blossom blight control was statistically equivalent to the industry standard streptomycin in all experiments. E. amylovora populations remained constant on apple flower stigmas pretreated with Kasumin and were ≈100-fold lower than on stigmas treated with water. Kasumin applied to apple trees in the field also resulted in a 100-fold reduced total culturable bacterial population compared with trees treated with water. We performed a prospective analysis of the potential for kasugamycin resistance (Ks(R)) development in E. amylovora which focused on spontaneous resistance development and acquisition of a transferrable Ks(R) gene. In replicated lab experiments, the development of spontaneous resistance in E. amylovora to Ks at 250 or 500 ppm was not observed when cells were directly plated on medium containing high concentrations of the antibiotic. However, exposure to increasing concentrations of Ks in media (initial concentration 25 μg ml(-1)) resulted in the selection of Ks resistance (at 150 μg ml(-1)) in the E. amylovora strains Ea110, Ea273, and Ea1189. Analysis of mutants indicated that they harbored mutations in the kasugamycin target ksgA gene and that all mutants were impacted in relative fitness observable through a reduced growth rate in vitro and decreased virulence in immature pear fruit. The possible occurrence of a reservoir of Ks(R) genes in orchard environments was also examined. Culturable gram-negative bacteria were surveyed from six experimental apple orchards that had received at least one Kasumin application. In total, 401 Ks(R) isolates (42 different species) were recovered from apple flowers and leaves and orchard soil samples. Although we have not established the presence of a transferrable Ks(R) gene in orchard bacteria, the frequency, number of species, and presence of Ks(R) enterobacterial species in orchard samples suggests the possible role of nontarget bacteria in the future transfer of a Ks(R) gene to E. amylovora. Our data confirm the importance of kasugamycin as an alternate antibiotic for fire blight management and lay the groundwork for the development and incorporation of resistance management strategies.
Identification of QTLs for resistance to fire blight (Erwinia amylovora) in Malus sieversii
USDA-ARS?s Scientific Manuscript database
Malus sieversii (Ms) is the progenitor of the domestic apple. Ms PI613981 is elite scion material collected at a xerophytic site in Kazakhstan from a tree free of disease and insect damage. The F1 family GMAL4593 (‘Royal Gala’ X PI631981) is segregating for resistance to both apple scab and fire bl...
Gene-for-gene relationship in the host-pathogen system Malus × robusta 5-Erwinia amylovora.
Vogt, Isabelle; Wöhner, Thomas; Richter, Klaus; Flachowsky, Henryk; Sundin, George W; Wensing, Annette; Savory, Elizabeth A; Geider, Klaus; Day, Brad; Hanke, Magda-Viola; Peil, Andreas
2013-03-01
Fire blight is a destructive bacterial disease caused by Erwinia amylovora affecting plants in the family Rosaceae, including apple. Host resistance to fire blight is present mainly in accessions of Malus spp. and is thought to be quantitative in this pathosystem. In this study we analyzed the importance of the E. amylovora effector avrRpt2(EA) , a homolog of Pseudomonas syringae avrRpt2, for resistance of Malus × robusta 5 (Mr5). The deletion mutant E. amylovora Ea1189ΔavrRpt2(EA) was able to overcome the fire blight resistance of Mr5. One single nucleotide polymorphism (SNP), resulting in an exchange of cysteine to serine in the encoded protein, was detected in avrRpt2(EA) of several Erwinia strains differing in virulence to Mr5. E. amylovora strains encoding serine (S-allele) were able to overcome resistance of Mr5, whereas strains encoding cysteine (C-allele) were not. Allele specificity was also observed in a coexpression assay with Arabidopsis thaliana RIN4 in Nicotiana benthamiana. A homolog of RIN4 has been detected and isolated in Mr5. These results suggest a system similar to the interaction of RPS2 from A. thaliana and AvrRpt2 from P. syringae with RIN4 as guard. Our data are suggestive of a gene-for-gene relationship for the host-pathogen system Mr5 and E. amylovora. No claim to original US government works. New Phytologist © 2013 New Phytologist Trust.
Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants.
McManus, Patricia S
2014-06-01
Antibiotics are applied to plants to prevent bacterial diseases, although the diversity of antibiotics and total amounts used are dwarfed by antibiotic use in animal agriculture. Nevertheless, the release of antibiotics into the open environment during crop treatment draws scrutiny for its potential impact on the global pool of resistance genes. The main use of antibiotics on plants is application of streptomycin to prevent fire blight, a serious disease of apple and pear trees. A series of recent studies identified and quantified antibiotic resistance genes and profiled bacterial communities in apple orchard plots that were or were not sprayed with streptomycin. While the specific objectives and methods varied, the results of these studies suggest that streptomycin application for fire blight control does not influence bacterial community structure or increase the abundance of resistance genes in orchards. Copyright © 2014 Elsevier Ltd. All rights reserved.
Patel, Ravi R; Sundin, George W; Yang, Ching-Hong; Wang, Jie; Huntley, Regan B; Yuan, Xiaochen; Zeng, Quan
2017-01-01
Erwinia amylovora is a Gram-negative bacterial plant pathogen in the family Enterobacteriaceae and is the causal agent of fire blight, a devastating disease of apple and pear. Fire blight is traditionally managed by the application of the antibiotic streptomycin during bloom, but this strategy has been challenged by the development and spread of streptomycin resistance. Thus, there is an urgent need for effective, specific, and sustainable control alternatives for fire blight. Antisense antimicrobials are oligomers of nucleic acid homologs with antisense sequence of essential genes in bacteria. The binding of these molecules to the mRNA of essential genes can result in translational repression and antimicrobial effect. Here, we explored the possibility of developing antisense antimicrobials against E. amylovora and using these compounds in fire blight control. We determined that a 10-nucleotide oligomer of peptide nucleic acid (PNA) targeting the start codon region of an essential gene acpP is able to cause complete growth inhibition of E. amylovora . We found that conjugation of cell penetrating peptide (CPP) to PNA is essential for the antimicrobial effect, with CPP1 [(KFF)3K] being the most effective against E. amylovora . The minimal inhibitory concentration (MIC) of anti- acpP -CPP1 (2.5 μM) is comparable to the MIC of streptomycin (2 μM). Examination of the antimicrobial mechanisms demonstrated that anti- acpP -CPP1 caused dose-dependent reduction of acpP mRNA in E. amylovora upon treatment and resulted in cell death (bactericidal effect). Anti- acpP -CPP1 (100 μM) is able to effectively limit the pathogen growth on stigmas of apple flowers, although less effective than streptomycin. Finally, unlike streptomycin that does not display any specificity in inhibiting pathogen growth, anti- acpP -CPP1 has more specific antimicrobial effect against E. amylovora . In summary, we demonstrated that PNA-CPP can cause an effective, specific antimicrobial effect against E. amylovora and may provide the basis for a novel approach for fire blight control.
Patel, Ravi R.; Sundin, George W.; Yang, Ching-Hong; Wang, Jie; Huntley, Regan B.; Yuan, Xiaochen; Zeng, Quan
2017-01-01
Erwinia amylovora is a Gram-negative bacterial plant pathogen in the family Enterobacteriaceae and is the causal agent of fire blight, a devastating disease of apple and pear. Fire blight is traditionally managed by the application of the antibiotic streptomycin during bloom, but this strategy has been challenged by the development and spread of streptomycin resistance. Thus, there is an urgent need for effective, specific, and sustainable control alternatives for fire blight. Antisense antimicrobials are oligomers of nucleic acid homologs with antisense sequence of essential genes in bacteria. The binding of these molecules to the mRNA of essential genes can result in translational repression and antimicrobial effect. Here, we explored the possibility of developing antisense antimicrobials against E. amylovora and using these compounds in fire blight control. We determined that a 10-nucleotide oligomer of peptide nucleic acid (PNA) targeting the start codon region of an essential gene acpP is able to cause complete growth inhibition of E. amylovora. We found that conjugation of cell penetrating peptide (CPP) to PNA is essential for the antimicrobial effect, with CPP1 [(KFF)3K] being the most effective against E. amylovora. The minimal inhibitory concentration (MIC) of anti-acpP-CPP1 (2.5 μM) is comparable to the MIC of streptomycin (2 μM). Examination of the antimicrobial mechanisms demonstrated that anti-acpP-CPP1 caused dose-dependent reduction of acpP mRNA in E. amylovora upon treatment and resulted in cell death (bactericidal effect). Anti-acpP-CPP1 (100 μM) is able to effectively limit the pathogen growth on stigmas of apple flowers, although less effective than streptomycin. Finally, unlike streptomycin that does not display any specificity in inhibiting pathogen growth, anti-acpP-CPP1 has more specific antimicrobial effect against E. amylovora. In summary, we demonstrated that PNA–CPP can cause an effective, specific antimicrobial effect against E. amylovora and may provide the basis for a novel approach for fire blight control. PMID:28469617
USDA-ARS?s Scientific Manuscript database
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The nonhost plant Arabidopsis serves as a powerful system to dissect mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found ...
Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy.
Ramos, L S; Sinn, J P; Lehman, B L; Pfeufer, E E; Peter, K A; McNellis, T W
2015-06-01
Erwinia amylovora bacteria cause fire blight disease, which affects apple and pear production worldwide. The Erw. amylovora pyrC gene encodes a predicted dihydroorotase enzyme involved in pyrimidine biosynthesis. Here, we discovered that the Erw. amylovora pyrC244::Tn5 mutant was a uracil auxotroph. Unexpectedly, the Erw. amylovora pyrC244::Tn5 mutant grew as well as the wild-type in detached immature apple and pear fruits. Fire blight symptoms caused by the pyrC244::Tn5 mutant in immature apple and pear fruits were attenuated compared to those caused by the wild-type. The pyrC244::Tn5 mutant also caused severe fire blight symptoms in apple tree shoots. A plasmid-borne copy of the wild-type pyrC gene restored prototrophy and symptom induction in apple and pear fruit to the pyrC244::Tn5 mutant. These results suggest that Erw. amylovora can obtain sufficient pyrimidine from the host to support bacterial growth and fire blight disease development, although de novo pyrimidine synthesis by Erw. amylovora is required for full symptom development in fruits. Significance and impact of the study: This study provides information about the fire blight host-pathogen interaction. Although the Erwinia amylovora pyrC mutant was strictly auxotrophic for pyrimidine, it grew as well as the wild-type in immature pear and apple fruits and caused severe fire blight disease in apple trees. This suggests that Erw. amylovora can obtain sufficient pyrimidines from host tissue to support growth and fire blight disease development. This situation contrasts with findings in some human bacterial pathogens, which require de novo pyrimidine synthesis for growth in host blood, for example. © 2015 The Society for Applied Microbiology.
Coyne, Sébastien; Chizzali, Cornelia; Khalil, Mohammed N A; Litomska, Agnieszka; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian
2013-09-27
Sulfur for fire: The molecular basis for the biosynthesis of the antimetabolite 6-thioguanine (6TG) was unveiled in Erwinia amylovora, the causative agent of fire blight. Bioinformatics, heterologous pathway reconstitution in E. coli, and mutational analyses indicate that the protein YcfA mediates guanine thionation in analogy to 2-thiouridylase. Assays in planta and in cell cultures reveal for the first time a crucial role of 6TG in fire blight pathogenesis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flachowsky, Henryk; Halbwirth, Heidi; Treutter, Dieter; Richter, Klaus; Hanke, Magda-Viola; Szankowski, Iris; Gosch, Christian; Stich, Karl; Fischer, Thilo C
2012-02-01
Transgenic antisense flavanone-3-hydroxylase apple plants were produced to mimic the effect of the agrochemical prohexadione-Ca on apple leaves. This enzyme inhibitor for 2-oxoglutarate dependent dioxygenases is used as a growth retardant and for control of secondary fire blight of leaves. Like using the agent, silencing of flavanone-3-hydroxylase leads to an accumulation of flavanones in leaves, but in contrast not to the formation of 3-deoxyflavonoids. In prohexadione-Ca treated leaves the 3-deoxyflavonoid luteoforol is formed from accumulating flavanones, acting as an antimicrobial compound against the fire blight pathogen Erwinia amylovora. Seemingly, the silencing of just one of the 2-oxoglutarate dependent dioxygenases (in apple also flavonol synthase and anthocyanidin synthase take part downstream in the pathway) does not provide a sufficiently high ratio of flavanones to dihydroflavonols. This seems to be needed to let the dihydroflavonol-4-reductase/flavanone-4-reductase enzyme reduce flavanones to luteoforol, and to let this be reduced by the leucoanthocyanidin-4-reductase/3-deoxyleucoanthocyanidin-4-reductase, each acting with their respective weak secondary activities. Accordingly, also the intended inducible resistance to fire blight by prohexadione-Ca is not observed with the antisense flavanone-3-hydroxylase apple plants. On the other hand, for most transgenic lines with strong flavanone-4-reductase down-regulation, up-regulation of gene expression for the other flavonoid genes was found. This provides further evidence for the feedback regulation of flavonoid gene expression having been previously reported for the prohexadione-Ca inhibited apple plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Geneva apple rootstock performance in New York state and progress in commercialization
USDA-ARS?s Scientific Manuscript database
A number of new apple rootstocks from the Cornell/USDA apple rootstock breeding project, located at Geneva NY which are resistant to the bacterial disease fire blight (Erwinia amylovora) are rapidly becoming available. Some named rootstock genotypes from this program have previously been tested in s...
American chestnut as an allelopath in the southern Appalachians
D.B. Vandermast; David H. van Lear; B.D. Clinton
2002-01-01
Prior to the chestnut blight (Crypkonectria parasitica), American chestnut (Castanea dentata (Marsh.) Borkh.) was the most common overstory tree in eastern deciduous forests. Chestnut's dominance has often been attributed to its resistance to fire and subsequent propensity to sprout vigorously and grow rapidly. Its role as an allelopath has...
USDA-ARS?s Scientific Manuscript database
The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceae species, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-...
USDA-ARS?s Scientific Manuscript database
A number of new apple rootstocks from the Cornell/USDA apple rootstock breeding project, located at Geneva, NY which are resistant to fire blight are rapidly becoming available to the industry. These rootstocks are also dwarfing, tolerant to replant disease and productive. Data on cumulative yield...
Gaucher, Matthieu; Dugé de Bernonville, Thomas; Guyot, Sylvain; Dat, James F; Brisset, Marie-Noëlle
2013-11-01
The necrogenic bacterium Erwinia amylovora responsible for the fire blight disease causes cell death in apple tissues to enrich intercellular spaces with nutrients. Apple leaves contain large amounts of dihydrochalcones (DHCs), including phloridzin and its aglycone phloretin. Previous work showed an important decrease in the constitutive DHCs stock in infected leaves, probably caused by transformation reactions during the infection process. At least two flavonoid transformation pathways have been described so far: deglucosylation and oxidation. The aim of the present study was to determine whether DHCs are differentially converted in two apple genotypes displaying contrasted susceptibilities to the disease. Different analyses were performed: i) enzymatic activity assays in infected leaves, ii) identification/quantification of end-products obtained after in vitro enzymatic reactions with DHCs, iii) evaluation of the bactericidal activity of end-products. The results of the enzymatic assays showed that deglucosylation was dominant over oxidation in the susceptible genotype MM106 while the opposite was observed in the resistant genotype Evereste. These data were confirmed by LC-UV/Vis-MS analysis of in vitro reaction mixtures, especially because higher levels of o-quinoid oxidation products of phloretin were measured by using the enzymatic extracts of Evereste infected leaves. Their presence correlated well with a strong bactericidal activity of the reaction mixtures. Thus, our results suggest that a differential transformation of DHCs occur in apple genotypes with a potential involvement in the establishment of the susceptibility or the resistance to fire blight, through the release of glucose or of highly bactericidal compounds respectively. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Plasmid Content of Isolates of Erwinia amylovora from Orchards in Washington and Oregon in the USA
USDA-ARS?s Scientific Manuscript database
Washington (WA) and Oregon (OR) represent a major pome fruit production region of the United States, and streptomycin-resistant isolates of the fire blight pathogen Erwinia amylovora are common in orchards in this region. We examined the plasmid content of a collection of more than 200 isolates of ...
Gusberti, Michele; Klemm, Urs; Meier, Matthias S; Maurhofer, Monika; Hunger-Glaser, Isabel
2015-09-11
Fire blight (FB), caused by Erwinia amylovora, is one of the most important pome fruit pathogens worldwide. To control this devastating disease, various chemical and biological treatments are commonly applied in Switzerland, but they fail to keep the infection at an acceptable level in years of heavy disease pressure. The Swiss authorities therefore currently allow the controlled use of the antibiotic streptomycin against FB in years that are predicted to have heavy infection periods, but only one treatment per season is permitted. Another strategy for controlling Erwinia is to breed resistant/tolerant apple cultivars. One way of accelerating the breeding process is to obtain resistant cultivars by inserting one or several major resistance genes, using genetic engineering. To date, no study summarizing the impact of different FB control measures on the environment and on human health has been performed. This study consequently aims to compare different disease-control measures (biological control, chemical control, control by antibiotics and by resistant/tolerant apple cultivars obtained through conventional or molecular breeding) applied against E. amylovora, considering different protection goals (protection of human health, environment, agricultural diversity and economic interest), with special emphasis on biosafety aspects. Information on each FB control measure in relation to the specified protection goal was assessed by literature searches and by interviews with experts. Based on our results it can be concluded that the FB control measures currently applied in Switzerland are safe for consumers, workers and the environment. However, there are several gaps in our knowledge of the human health and environmental impacts analyzed: data are missing (1) on long term studies on the efficacy of most of the analyzed FB control measures; (2) on the safety of operators handling streptomycin; (3) on residue analyses of Equisetum plant extract, the copper and aluminum compounds used in apple production; and (4) on the effect of biological and chemical control measures on non-target fauna and flora. These gaps urgently need to be addressed in the near future.
Gusberti, Michele; Klemm, Urs; Meier, Matthias S.; Maurhofer, Monika; Hunger-Glaser, Isabel
2015-01-01
Fire blight (FB), caused by Erwinia amylovora, is one of the most important pome fruit pathogens worldwide. To control this devastating disease, various chemical and biological treatments are commonly applied in Switzerland, but they fail to keep the infection at an acceptable level in years of heavy disease pressure. The Swiss authorities therefore currently allow the controlled use of the antibiotic streptomycin against FB in years that are predicted to have heavy infection periods, but only one treatment per season is permitted. Another strategy for controlling Erwinia is to breed resistant/tolerant apple cultivars. One way of accelerating the breeding process is to obtain resistant cultivars by inserting one or several major resistance genes, using genetic engineering. To date, no study summarizing the impact of different FB control measures on the environment and on human health has been performed. This study consequently aims to compare different disease-control measures (biological control, chemical control, control by antibiotics and by resistant/tolerant apple cultivars obtained through conventional or molecular breeding) applied against E. amylovora, considering different protection goals (protection of human health, environment, agricultural diversity and economic interest), with special emphasis on biosafety aspects. Information on each FB control measure in relation to the specified protection goal was assessed by literature searches and by interviews with experts. Based on our results it can be concluded that the FB control measures currently applied in Switzerland are safe for consumers, workers and the environment. However, there are several gaps in our knowledge of the human health and environmental impacts analyzed: data are missing (1) on long term studies on the efficacy of most of the analyzed FB control measures; (2) on the safety of operators handling streptomycin; (3) on residue analyses of Equisetum plant extract, the copper and aluminum compounds used in apple production; and (4) on the effect of biological and chemical control measures on non-target fauna and flora. These gaps urgently need to be addressed in the near future. PMID:26378562
Molecular genetics of Erwinia amylovora involved in the development of fire blight.
Oh, Chang-Sik; Beer, Steven V
2005-12-15
The bacterial plant pathogen, Erwinia amylovora, causes the devastating disease known as fire blight in some Rosaceous plants like apple, pear, quince, raspberry and several ornamentals. Knowledge of the factors affecting the development of fire blight has mushroomed in the last quarter century. On the molecular level, genes encoding a Hrp type III secretion system, genes encoding enzymes involved in synthesis of extracellular polysaccharides and genes facilitating the growth of E. amylovora in its host plants have been characterized. The Hrp pathogenicity island, delimited by genes suggesting horizontal gene transfer, is composed of four distinct regions, the hrp/hrc region, the HEE (Hrp effectors and elicitors) region, the HAE (Hrp-associated enzymes) region, and the IT (Island transfer) region. The Hrp pathogenicity island encodes a Hrp type III secretion system (TTSS), which delivers several proteins from bacteria to plant apoplasts or cytoplasm. E. amylovora produces two exopolysaccharides, amylovoran and levan, which cause the characteristic fire blight wilting symptom in host plants. In addition, other genes, and their encoded proteins, have been characterized as virulence factors of E. amylovora that encode enzymes facilitating sorbitol metabolism, proteolytic activity and iron harvesting. This review summarizes our understanding of the genes and gene products of E. amylovora that are involved in the development of the fire blight disease.
Deckers, T; Schoofs, H; Verjans, W; De Maeyer, L
2010-01-01
Fire blight, caused by the bacterium Erwinia amylovora (Burill Winslow et al.), is a very important bacterial disease on apple and pear orchards with devastating effects in some production area and in some years. Fire blight control consists in a whole strategy of measures that should start with control measures in and around the fruit tree nurseries. Only the use of Vacciplant (Laminarin), an inducer of the self-defence mechanism, is registered in Belgium since 2009. In other European countries Fosethyl-Al has been registered for fire blight control. Recently, research trials have been done at Pcfruit research station for several years on the activity of ALiette (fosethyl-Al) against fire blight. Fosethyl-Al, also a plant defence enhancing molecule, applied preventively 3 times at a dose of 3.75 kg/ha standard orchard (3 x 3000 g a.i./ha standard orchard), showed a reduction in the host susceptibility and decreased the disease development on artificial inoculated flower clusters and shoots. Also a clear reduction in the ooze droplet formation on artificially inoculated immature fruitlets has been observed with this molecule. This reduction in the bacterial ooze formation is considered as a very important factor in the spread of the disease in the orchard.
Comparative Programs for Arthropod, Disease and Weed Management in New York Organic Apples
Agnello, Arthur; Cox, Kerik; Lordan, Jaume; Francescatto, Poliana; Robinson, Terence
2017-01-01
Organic apple production in the eastern US is small and is mostly based on existing varieties, which are susceptible to scab, and rootstocks, which are susceptible to fire blight. This requires numerous sprays per year of various pesticides to produce acceptable fruit. From 2014 to 2016, we tested different arthropod, disease and weed management programs in an advanced tall spindle high-density production system that included disease-resistant cultivars and rootstocks, in an organic research planting of apples in Geneva, New York. Arthropod and disease management regimens were characterized as Advanced Organic, Minimal Organic, or Untreated Control. Results varied by year and variety, but, in general, the Advanced program was more effective than the Minimal program in preventing damage from internal-feeding Lepidoptera, plum curculio, and obliquebanded leafroller, and less effective than the Minimal program against damage by foliar insects. Both organic programs provided comparable control of sooty blotch, cedar apple rust, and fire blight, with some variability across cultivars and years. The advanced selection CC1009 and Modi seemed to possess complete resistance to cedar apple rust, while Pristine had partial resistance. For weed control, bark chip mulch, organic soap sprays, and limonene sprays tended to be most effective, while mechanical tillage and flame weeding had lower success. PMID:28869562
Fire blight: applied genomic insights of the pathogen and host
USDA-ARS?s Scientific Manuscript database
The enterobacterial phytopathogen, Erwinia amylovora, causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that ty...
USDA-ARS?s Scientific Manuscript database
To assess the effectiveness of genotype resistance to potato late blight, foliar blight development, area under disease progress curves (AUDPC) and tuber blight were quantified. Late blight resistant potato genotypes (R-gene free) were assessed for yield performance and stability at early (90 days) ...
Flower biology and biologically-based integrated fire blight management
USDA-ARS?s Scientific Manuscript database
Fire blight infection is generally initiated in flowers, and thus, research has been directed to the biology and microbial ecology of flowers as related to this disease. In addition to investigations involving apple and pear flowers, Manchurian crab apple (Malus manchurica), closely related to appl...
Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight
USDA-ARS?s Scientific Manuscript database
Microencapsulation and controlled release of Pantoea agglomerans strain E325 (E325), which is an antagonist to bacterial pathogen (Erwinia amylovora) of fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 µm in diamet...
Pantoea applied genomics to understand and improve biocontrol activity against fire blight
USDA-ARS?s Scientific Manuscript database
Pantoea agglomerans and P. vagans (ex. Erwinia herbicola) are common epiphytes of pome fruit flowers and three strains (E325, P10c, C9-1) have been commercially developed as effective biocontrol products for managing fire blight (Erwinia amylovora). Antibiotics as a standard, reliable chemical optio...
Field Susceptibility of Quince Hybrids to Fire Blight in Bulgaria
USDA-ARS?s Scientific Manuscript database
Spread of fire blight in Bulgaria during the last 20 years has nearly eliminated commercial production of pear and quince. Damage has increased in both nurseries and orchards, yet susceptible cultivars continue to be planted. Quince is the host most frequently attacked by Erwinia amylovora in Bulgar...
Quince (Cydonia oblonga) emerges from the ashes of fire blight
USDA-ARS?s Scientific Manuscript database
The two-decade history of fire blight in Bulgaria revealed quince as one of the most frequently attacked hosts and its production on a large scale has almost been entirely eliminated. Nevertheless, this species will play an important epidemiological role as a permanent source of inoculum for other p...
USDA-ARS?s Scientific Manuscript database
Fire blight caused by Erwinia amylovora (EA) is one of the most serious diseases of plants in the family Rosaceae, and Quince (Cydonia oblonga Mill.) is considered one of the most susceptible host genera. Apple (Malus sp.) and pear (Pyrus sp.) cultivars ranging from most susceptible to most resistan...
Al-Karablieh, Nehaya; Weingart, Helge; Ullrich, Matthias S
2009-07-01
Erwinia amylovora causes fire blight on several plant species such as apple and pear, which produce diverse phytoalexins as defence mechanisms. An evolutionary successful pathogen thus must develop resistance mechanisms towards these toxic compounds. The E. amylovora outer membrane protein, TolC, might mediate phytoalexin resistance through its interaction with the multidrug efflux pump, AcrAB. To prove this, a tolC mutant and an acrB/tolC double mutant were constructed. The minimal inhibitory concentrations of diverse antimicrobials and phytoalexins were determined for these mutants and compared with that of a previously generated acrB mutant. The tolC and arcB/tolC mutants were considerably more susceptible than the wild type but showed similar levels as the acrB mutant. The results clearly indicated that neither TolC nor AcrAB significantly interacted with other transport systems during the efflux of the tested toxic compounds. Survival and virulence assays on inoculated apple plants showed that pathogenicity and the ability of E. amylovora to colonize plant tissue were equally impaired by mutations of tolC and acrB/tolC. Our results allowed the conclusion that TolC plays an important role as a virulence and fitness factor of E. amylovora by mediating resistance towards phytoalexins through its exclusive interaction with AcrAB. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
Pantoea agglomerans biocontrol strain E325 is the active ingredient in a commercial product for fire blight, a destructive disease of apple and pear initiated by Erwinia amylovora in flowers. Osmoadaptation, involving the combination of saline osmotic stress and osmolyte amendment to growth media, w...
Maryblyt v. 7.1 for Windows: an improved fire blight forecasting program for apples and pears
USDA-ARS?s Scientific Manuscript database
This article describes updates found in Version 7.1 of the fire blight prediction model Maryblyt, originally developed by Paul Steiner and Gary Lightner. In addition, a brief history of the development of the Maryblyt model is given. The article ends with examples comparing the performance of Versio...
Late blight-resistant tuber-bearing Solanum species in field and laboratory trials
USDA-ARS?s Scientific Manuscript database
Late blight, caused by Phytophthora infestans, is the most disastrous and widespread disease of potato. One of the most effective means of controlling late blight is through the use of resistant cultivars, but newly developed resistant cultivars often lose their resistance after a few years of comm...
Santander, Ricardo D; Biosca, Elena G
2017-01-01
The fire blight pathogen Erwinia amylovora can be considered a psychrotrophic bacterial species since it can grow at temperatures ranging from 4 °C to 37 °C, with an optimum of 28 °C. In many plant pathogens the expression of virulence determinants is restricted to a certain range of temperatures. In the case of E. amylovora, temperatures above 18 °C are required for blossom blight epidemics under field conditions. Moreover, this bacterium is able to infect a variety of host tissues/organs apart from flowers, but it is still unknown how environmental temperatures, especially those below 18 °C, affect the pathogen ability to cause fire blight disease symptoms in such tissues/organs. There is also scarce information on how temperatures below 18 °C affect the E. amylovora starvation-survival responses, which might determine its persistence in the environment and probably contribute to the seasonal development of fire blight disease, as occurs in other pathogens. To characterize the virulence and survival of E. amylovora at temperate and low temperatures, we evaluated the effect of three temperatures (4 °C, 14 °C, 28 °C) on symptom development, and on different parameters linked to starvation and virulence. E. amylovora was pathogenic at the three assayed temperatures, with a slow-down of symptom development correlating with colder temperatures and slower growth rates. Siderophore secretion and motility also decreased in parallel to incubation temperatures. However, production of the exopolysaccharides amylovoran and levan was enhanced at 4 °C and 14 °C, respectively. Similarly, biofilm formation, and oxidative stress resistance were improved at 14 °C, with this temperature also favoring the maintenance of culturability, together with a reduction in cell size and the acquisition of rounded shapes in E. amylovora cells subjected to long-term starvation. However, starvation at 28 °C and 4 °C induced an enhanced viable but nonculturable (VBNC) response (to a lesser extent at 4 °C). This work reveals E. amylovora as a highly adaptable pathogen that retains its pathogenic potential even at the minimal growth temperatures, with an improved exopolysaccharide synthesis, biofilm formation or oxidative stress resistance at 14 °C, with respect to the optimal growth temperature (28 °C). Finally, our results also demonstrate the thermal modulation of starvation responses in E. amylovora, suggesting that the starvation-survival and the VBNC states are part of its life cycle. These results confirm the particular psychrotrophic adaptations of E. amylovora , revealing its pathogenic potential and survival at temperate and low environmental temperatures, which have probably contributed to its successful spread to countries with different climates. This knowledge might improve integrated control measures against fire blight.
Santander, Ricardo D.
2017-01-01
The fire blight pathogen Erwinia amylovora can be considered a psychrotrophic bacterial species since it can grow at temperatures ranging from 4 °C to 37 °C, with an optimum of 28 °C. In many plant pathogens the expression of virulence determinants is restricted to a certain range of temperatures. In the case of E. amylovora, temperatures above 18 °C are required for blossom blight epidemics under field conditions. Moreover, this bacterium is able to infect a variety of host tissues/organs apart from flowers, but it is still unknown how environmental temperatures, especially those below 18 °C, affect the pathogen ability to cause fire blight disease symptoms in such tissues/organs. There is also scarce information on how temperatures below 18 °C affect the E. amylovora starvation-survival responses, which might determine its persistence in the environment and probably contribute to the seasonal development of fire blight disease, as occurs in other pathogens. To characterize the virulence and survival of E. amylovora at temperate and low temperatures, we evaluated the effect of three temperatures (4 °C, 14 °C, 28 °C) on symptom development, and on different parameters linked to starvation and virulence. E. amylovora was pathogenic at the three assayed temperatures, with a slow-down of symptom development correlating with colder temperatures and slower growth rates. Siderophore secretion and motility also decreased in parallel to incubation temperatures. However, production of the exopolysaccharides amylovoran and levan was enhanced at 4 °C and 14 °C, respectively. Similarly, biofilm formation, and oxidative stress resistance were improved at 14 °C, with this temperature also favoring the maintenance of culturability, together with a reduction in cell size and the acquisition of rounded shapes in E. amylovora cells subjected to long-term starvation. However, starvation at 28 °C and 4 °C induced an enhanced viable but nonculturable (VBNC) response (to a lesser extent at 4 °C). This work reveals E. amylovora as a highly adaptable pathogen that retains its pathogenic potential even at the minimal growth temperatures, with an improved exopolysaccharide synthesis, biofilm formation or oxidative stress resistance at 14 °C, with respect to the optimal growth temperature (28 °C). Finally, our results also demonstrate the thermal modulation of starvation responses in E. amylovora, suggesting that the starvation-survival and the VBNC states are part of its life cycle. These results confirm the particular psychrotrophic adaptations of E. amylovora, revealing its pathogenic potential and survival at temperate and low environmental temperatures, which have probably contributed to its successful spread to countries with different climates. This knowledge might improve integrated control measures against fire blight. PMID:29085749
USDA-ARS?s Scientific Manuscript database
The biological control agents Pseudomonas fluorescens A506 and Pantoea vagans C9-1 were evaluated individually and in combination for the suppression of fire blight of pear or apple in ten field trials inoculated with the pathogen Erwinia amylovora. The formulation of pathogen inoculum applied to b...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... Application for Emergency Exemption for Use on Apples in Michigan, Solicitation of Public Comment AGENCY... treat up to 10,000 acres of apples to control fire blight. The applicant proposes the use of a new... kasugamycin on apples to control fire blight. Information in accordance with 40 CFR part 166 was submitted as...
Jakovljevic, Vladimir; Jock, Susanne; Du, Zhiqiang; Geider, Klaus
2008-01-01
Summary Fire blight caused by the Gram‐negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl‐homoserine lactone for bacterial cell‐to‐cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight. PMID:21261861
Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian
2014-02-10
Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Datta, K; Baisakh, N; Thet, K Maung; Tu, J; Datta, S K
2002-12-01
Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani.
[Erwinia amylovora--the fire blight pathogen of trees in Ukraine].
Iakovleva, L M; Moroz, S N; Shcherbina, T N; Ogorodnik, L E; Gvozdiak, R I; Patyka, V F
2014-01-01
Niduses of fire blight of fruit and ornamental trees have been found in the Kyiv and Vinnitsa regions of Ukraine. Pathogen Erwinia amylovora was isolated between April and October. The pathogen was often accompanied by bacteria Pseudomonas syringae pv. syringae. Artificial infection with a mixture of bacteria E. amylovora and P. syringae pv. syringae accelerates and enhances the disease process in the laboratory.
Borejsza-Wysocka, Ewa; Norelli, John L; Aldwinckle, Herb S; Malnoy, Mickael
2010-06-03
Transgenic trees currently are being produced by Agrobacterium-mediated transformation and biolistics. The future use of transformed trees on a commercial basis depends upon thorough evaluation of the potential environmental and public health risk of the modified plants, transgene stability over a prolonged period of time and the effect of the gene on tree and fruit characteristics. We studied the stability of expression and the effect on resistance to the fire blight disease of the lytic protein gene, attacin E, in the apple cultivar 'Galaxy' grown in the field for 12 years. Using Southern and western blot analysis, we compared transgene copy number and observed stability of expression of this gene in the leaves and fruit in several transformed lines during a 12 year period. No silenced transgenic plant was detected. Also the expression of this gene resulted in an increase in resistance to fire blight throughout 12 years of orchard trial and did not affect fruit shape, size, acidity, firmness, weight or sugar level, tree morphology, leaf shape or flower morphology or color compared to the control. Overall, these results suggest that transgene expression in perennial species, such as fruit trees, remains stable in time and space, over extended periods and in different organs. This report shows that it is possible to improve a desirable trait in apple, such as the resistance to a pathogen, through genetic engineering, without adverse alteration of fruit characteristics and tree shape.
Pletzer, Daniel; Schweizer, Gabriel
2014-01-01
Transcriptional regulators of the AraC/XylS family have been associated with multidrug resistance, organic solvent tolerance, oxidative stress, and virulence in clinically relevant enterobacteria. In the present study, we identified four homologous AraC/XylS regulators, Rob, SoxS, PliA, and OpiA, from the fire blight pathogen Erwinia amylovora Ea1189. Previous studies have shown that the regulators MarA, Rob, and SoxS from Escherichia coli mediate multiple-antibiotic resistance, primarily by upregulating the AcrAB-TolC efflux system. However, none of the four AraC/XylS regulators from E. amylovora was able to induce a multidrug resistance phenotype in the plant pathogen. Overexpression of rob led to a 2-fold increased expression of the acrA gene. However, the rob-overexpressing strain showed increased resistance to only a limited number of antibiotics. Furthermore, Rob was able to induce tolerance to organic solvents in E. amylovora by mechanisms other than efflux. We demonstrated that SoxS from E. amylovora is involved in superoxide resistance. A soxS-deficient mutant of Ea1189 was not able to grow on agar plates supplemented with the superoxide-generating agent paraquat. Furthermore, expression of soxS was induced by redox cycling agents. We identified two novel members of the AraC/XylS family in E. amylovora. PliA was highly upregulated during the early infection phase in apple rootstock and immature pear fruits. Multiple compounds were able to induce the expression of pliA, including apple leaf extracts, phenolic compounds, redox cycling agents, heavy metals, and decanoate. OpiA was shown to play a role in the regulation of osmotic and alkaline pH stress responses. PMID:24936054
Pletzer, Daniel; Weingart, Helge
2014-01-21
Multidrug efflux pumps are membrane translocases that have the ability to extrude a variety of structurally unrelated compounds from the cell. AcrD, a resistance-nodulation-cell division (RND) transporter, was shown to be involved in efflux of highly hydrophilic aminoglycosides and a limited number of amphiphilic compounds in E. coli. Here, a homologue of AcrD in the plant pathogen and causal agent of fire blight disease Erwinia amylovora was identified. The substrate specificity of AcrD was studied by overexpression of the corresponding gene from a high-copy plasmid in E. amylovora Ea1189-3, which is hypersensitive to many drugs due to a deficiency of the major multidrug pump AcrB. AcrD mediated resistance to several amphiphilic compounds including clotrimazole and luteolin, two compounds hitherto not described as substrates of AcrD in enterobacteria. However, AcrD was not able to expel aminoglycosides. An acrD mutant exhibited full virulence on apple rootstock and immature pear fruits. RT-PCR analysis revealed an induction of acrD expression in infected apple tissue but not on pear fruits. Moreover, a direct binding of BaeR, the response regulator of the two-component regulatory system BaeSR, to the acrD promoter was observed as has already been shown in other enterobacteria. AcrD from E. amylovora is involved in resistance to a limited number of amphiphilic compounds, but in contrast to AcrD of E. coli, it is not involved in resistance to aminoglycosides. The expression of acrD was up-regulated by addition of the substrates deoxycholate, naringenin, tetracycline and zinc. AcrD appears to be regulated by the BaeSR two-component system, an envelope stress signal transduction pathway.
2014-01-01
Background Multidrug efflux pumps are membrane translocases that have the ability to extrude a variety of structurally unrelated compounds from the cell. AcrD, a resistance-nodulation-cell division (RND) transporter, was shown to be involved in efflux of highly hydrophilic aminoglycosides and a limited number of amphiphilic compounds in E. coli. Here, a homologue of AcrD in the plant pathogen and causal agent of fire blight disease Erwinia amylovora was identified. Results The substrate specificity of AcrD was studied by overexpression of the corresponding gene from a high-copy plasmid in E. amylovora Ea1189-3, which is hypersensitive to many drugs due to a deficiency of the major multidrug pump AcrB. AcrD mediated resistance to several amphiphilic compounds including clotrimazole and luteolin, two compounds hitherto not described as substrates of AcrD in enterobacteria. However, AcrD was not able to expel aminoglycosides. An acrD mutant exhibited full virulence on apple rootstock and immature pear fruits. RT-PCR analysis revealed an induction of acrD expression in infected apple tissue but not on pear fruits. Moreover, a direct binding of BaeR, the response regulator of the two-component regulatory system BaeSR, to the acrD promoter was observed as has already been shown in other enterobacteria. Conclusions AcrD from E. amylovora is involved in resistance to a limited number of amphiphilic compounds, but in contrast to AcrD of E. coli, it is not involved in resistance to aminoglycosides. The expression of acrD was up-regulated by addition of the substrates deoxycholate, naringenin, tetracycline and zinc. AcrD appears to be regulated by the BaeSR two-component system, an envelope stress signal transduction pathway. PMID:24443882
USDA-ARS?s Scientific Manuscript database
Early blight, caused by Alternaria solani, is the second most important foliar disease in potatoes, after late blight, around the world. Heritable early blight resistance was previously identified in a diploid hybrid population of Solanum phureja-S. stenotomum (phu-stn). Seventy-two clones, consis...
Improved genetic disease resistance solutions for potato
USDA-ARS?s Scientific Manuscript database
The Halterman Lab research program is focused on understanding the genetic basis of disease resistance in potato. Several diseases, such as late blight, early blight, potato virus Y, and verticillium wilt, are particularly problematic in Wisconsin. With the exception of early blight, major genes hav...
Flachowsky, Henryk; Le Roux, Pierre-Marie; Peil, Andreas; Patocchi, Andrea; Richter, Klaus; Hanke, Magda-Viola
2011-10-01
Breeding of apple (Malus × domestica) remains a slow process because of protracted generation cycles. Shortening the juvenile phase to achieve the introgression of traits from wild species into prebreeding material within a reasonable time frame is a great challenge. In this study, we evaluated early flowering transgenic apple lines overexpressing the BpMADS4 gene of silver birch with regard to tree morphology in glasshouse conditions. Based on the results obtained, line T1190 was selected for further analysis and application to fast breeding. The DNA sequences flanking the T-DNA were isolated and the T-DNA integration site was mapped on linkage group 4. The inheritance and correctness of the T-DNA integration were confirmed after meiosis. A crossbred breeding programme was initiated by crossing T1190 with the fire blight-resistant wild species Malus fusca. Transgenic early flowering F(1) seedlings were selected and backcrossed with 'Regia' and 98/6-10 in order to introgress the apple scab Rvi2, Rvi4 and powdery mildew Pl-1, Pl-2 resistance genes and the fire blight resistance quantitative trait locus FB-F7 present in 'Regia'. Three transgenic BC'1 seedlings pyramiding Rvi2, Rvi4 and FB-F7, as well as three other BC'1 seedlings combining Pl-1 and Pl-2, were identified. Thus, the first transgenic early flowering-based apple breeding programme combined with marker-assisted selection was established. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Ordax, Mónica; Piquer-Salcedo, Jaime E; Santander, Ricardo D; Sabater-Muñoz, Beatriz; Biosca, Elena G; López, María M; Marco-Noales, Ester
2015-01-01
Monitoring the ability of bacterial plant pathogens to survive in insects is required for elucidating unknown aspects of their epidemiology and for designing appropriate control strategies. Erwinia amylovora is a plant pathogenic bacterium that causes fire blight, a devastating disease in apple and pear commercial orchards. Studies on fire blight spread by insects have mainly focused on pollinating agents, such as honeybees. However, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae), one of the most damaging fruit pests worldwide, is also common in pome fruit orchards. The main objective of the study was to investigate whether E. amylovora can survive and be transmitted by the medfly. Our experimental results show: i) E. amylovora can survive for at least 8 days inside the digestive tract of the medfly and until 28 days on its external surface, and ii) medflies are able to transmit the bacteria from inoculated apples to both detached shoots and pear plants, being the pathogen recovered from lesions in both cases. This is the first report on E. amylovora internalization and survival in/on C. capitata, as well as the experimental transmission of the fire blight pathogen by this insect. Our results suggest that medfly can act as a potential vector for E. amylovora, and expand our knowledge on the possible role of these and other insects in its life cycle.
Jock, Susanne; Wensing, Annette; Pulawska, Joanna; Drenova, Nataliya; Dreo, Tanja; Geider, Klaus
2013-08-25
Fire blight, a bacteriosis of apple and pear, was assayed with molecular tools to associate its origin in Russia, Slovenia and south-eastern Austria with neighboring countries. The identification of all investigated strains was confirmed by MALDI-TOF mass spectroscopy except one. Independent isolation was verified by the level of amylovoran synthesis and by the number of short sequence DNA repeats in plasmid pEA29. DNA of gently lysed E. amylovora strains from Russia, Slovenia, Austria, Hungary, Italy, Spain, Croatia, Poland, Central Europe and Iran was treated with restriction enzymes XbaI and SpeI to create typical banding patterns for PFGE analysis. The pattern Pt2 indicated that most Russian E. amylovora strains were related to strains from Turkey and Iran. Strains from Slovenia exhibited patterns Pt3 and Pt2, both present in the neighboring countries. Strains were also probed for the recently described plasmid pEI70 detected in Pt1 strains from Poland and in Pt3 strains from other countries. The distribution of pattern Pt3 suggests distribution of fire blight from Belgium and the Netherlands to Central Spain and Northern Italy and then north to Carinthia. The PFGE patterns indicate that trade of plants may have introduced fire blight into southern parts of Europe proceeded by sequential spread. Copyright © 2013 Elsevier GmbH. All rights reserved.
Ordax, Mónica; Piquer-Salcedo, Jaime E.; Santander, Ricardo D.; Sabater-Muñoz, Beatriz; Biosca, Elena G.; López, María M.; Marco-Noales, Ester
2015-01-01
Monitoring the ability of bacterial plant pathogens to survive in insects is required for elucidating unknown aspects of their epidemiology and for designing appropriate control strategies. Erwinia amylovora is a plant pathogenic bacterium that causes fire blight, a devastating disease in apple and pear commercial orchards. Studies on fire blight spread by insects have mainly focused on pollinating agents, such as honeybees. However, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae), one of the most damaging fruit pests worldwide, is also common in pome fruit orchards. The main objective of the study was to investigate whether E. amylovora can survive and be transmitted by the medfly. Our experimental results show: i) E. amylovora can survive for at least 8 days inside the digestive tract of the medfly and until 28 days on its external surface, and ii) medflies are able to transmit the bacteria from inoculated apples to both detached shoots and pear plants, being the pathogen recovered from lesions in both cases. This is the first report on E. amylovora internalization and survival in/on C. capitata, as well as the experimental transmission of the fire blight pathogen by this insect. Our results suggest that medfly can act as a potential vector for E. amylovora, and expand our knowledge on the possible role of these and other insects in its life cycle. PMID:25978369
Álvarez, María F.; Angarita, Myrian; Delgado, María C.; García, Celsa; Jiménez-Gomez, José; Gebhardt, Christiane; Mosquera, Teresa
2017-01-01
The genetic basis of quantitative disease resistance has been studied in crops for several decades as an alternative to R gene mediated resistance. The most important disease in the potato crop is late blight, caused by the oomycete Phytophthora infestans. Quantitative disease resistance (QDR), as any other quantitative trait in plants, can be genetically mapped to understand the genetic architecture. Association mapping using DNA-based markers has been implemented in many crops to dissect quantitative traits. We used an association mapping approach with candidate genes to identify the first genes associated with quantitative resistance to late blight in Solanum tuberosum Group Phureja. Twenty-nine candidate genes were selected from a set of genes that were differentially expressed during the resistance response to late blight in tetraploid European potato cultivars. The 29 genes were amplified and sequenced in 104 accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs in the selected genes and tested them for association with resistance to late blight. The phenotypic data were obtained under field conditions by determining the area under disease progress curve (AUDPC) in two seasons and in two locations. Two genes were associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein (StTL15A) and a stem 28 kDa glycoprotein (StGP28). Key message: A first association mapping experiment was conducted in Solanum tuberosum Group Phureja germplasm, which identified among 29 candidates two genes associated with quantitative resistance to late blight. PMID:28674545
Álvarez, María F; Angarita, Myrian; Delgado, María C; García, Celsa; Jiménez-Gomez, José; Gebhardt, Christiane; Mosquera, Teresa
2017-01-01
The genetic basis of quantitative disease resistance has been studied in crops for several decades as an alternative to R gene mediated resistance. The most important disease in the potato crop is late blight, caused by the oomycete Phytophthora infestans. Quantitative disease resistance (QDR), as any other quantitative trait in plants, can be genetically mapped to understand the genetic architecture. Association mapping using DNA-based markers has been implemented in many crops to dissect quantitative traits. We used an association mapping approach with candidate genes to identify the first genes associated with quantitative resistance to late blight in Solanum tuberosum Group Phureja. Twenty-nine candidate genes were selected from a set of genes that were differentially expressed during the resistance response to late blight in tetraploid European potato cultivars. The 29 genes were amplified and sequenced in 104 accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs in the selected genes and tested them for association with resistance to late blight. The phenotypic data were obtained under field conditions by determining the area under disease progress curve (AUDPC) in two seasons and in two locations. Two genes were associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein ( StTL15A ) and a stem 28 kDa glycoprotein ( StGP28 ). Key message : A first association mapping experiment was conducted in Solanum tuberosum Group Phureja germplasm, which identified among 29 candidates two genes associated with quantitative resistance to late blight.
N. R. LaBonte; J.R. McKenna; K. Woeste
2016-01-01
A recently developed detached-leaf blight resistance assay has generated interest because it could reduce the amount of time needed to evaluate backcrossed hybrid trees in the American chestnut blight resistance breeding programme. We evaluated the leaf inoculation technique on a sample of advanced progeny from the Indiana state chapter American Chestnut Foundation...
USDA-ARS?s Scientific Manuscript database
Bacterial blight, caused by Pseudomonas cannabina pv. alisalensis, attacks the leaves of most brassica vegetables, including mustard greens (Brassica juncea). ‘Carolina Broadleaf,’ a new mustard cultivar, is resistant to bacterial blight. Acibenzolar-S-methyl (trade name Actigard) has been used to m...
Allelic analysis of sheath blight resistance with association mapping in rice
USDA-ARS?s Scientific Manuscript database
Sheath blight is one of the most devastating diseases world-wide in rice. For the first time, we adopted association mapping to identify quantitative trait loci for sheath blight resistance from the USDA rice mini-core collection. The phenotyping was conducted with a newly developed micro-chamber me...
A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.
Ismail, Emadeldeen; Blom, Jochen; Bultreys, Alain; Ivanović, Milan; Obradović, Aleksa; van Doorn, Joop; Bergsma-Vlami, Maria; Maes, Martine; Willems, Anne; Duffy, Brion; Stockwell, Virginia O; Smits, Theo H M; Puławska, Joanna
2014-12-01
Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.
Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad; Taheri, Parissa; Kjøller, Annelise Helene; Brejnrod, Asker; Madsen, Jonas Stenløkke; Sørensen, Søren Johannes
2017-03-30
Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora , the causal agent for fire blight disease, in addition to several other pathogenic and non-pathogenic bacteria. Copyright © 2017 Habibi et al.
2010-01-01
Background The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceaespecies, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E. amylovora in host plants has yet been characterized, recent work has identified some molecular events which occur in resistant and/or susceptible host interaction with E. amylovora: In order to understand the mechanisms that characterize responses to FB, differentially expressed genes were identified by cDNA-AFLP analysis in resistant and susceptible apple genotypes after inoculation with E. amylovora. Results cDNA were isolated from M.26 (susceptible) and G.41 (resistant) apple tissues collected 2 h and 48 h after challenge with a virulent E. amylovora strain or mock (buffer) inoculated. To identify differentially expressed transcripts, electrophoretic banding patterns were obtained from cDNAs. In the AFLP experiments, M.26 and G.41 showed different patterns of expression, including genes specifically induced, not induced, or repressed by E. amylovora. In total, 190 ESTs differentially expressed between M.26 and G.41 were identified using 42 pairs of AFLP primers. cDNA-AFLP analysis of global EST expression in a resistant and a susceptible apple genotype identified different major classes of genes. EST sequencing data showed that genes linked to resistance, encoding proteins involved in recognition, signaling, defense and apoptosis, were modulated by E. amylovora in its host plant. The expression time course of some of these ESTs selected via a bioinformatic analysis has been characterized. Conclusion These data are being used to develop hypotheses of resistance or susceptibility mechanisms in Malus to E. amylovora and provide an initial categorization of genes possibly involved in recognition events, early signaling responses the subsequent development of resistance or susceptibility. These data also provided potential candidates for improving apple resistance to fire blight either by marker-assisted selection or genetic engineering. PMID:20047654
Stacy L. Clark; Scott E. Schlarbaum; Arnold M. Saxton; Frederick V. Hebard
2016-01-01
European and American chestnut species (Castanea) have been decimated by exotic species, most notably chestnut blight (Cryphonectria parasitica), since the early nineteenth century. Backcross breeding programs that transfer blight disease resistance from Chinese chestnut (C. mollissima) into American...
Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus
2013-11-01
Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.
Jock, Susanne; Völksch, Beate; Mansvelt, Lucienne; Geider, Klaus
2002-06-04
In order to find reasons for the absence of fire blight in most countries of the Southern hemisphere, bark samples from apple and pear trees in orchards of the Western Cape region in South Africa were extracted for bacteria which could be antagonistic to Erwinia amylovora. Screening was done in the late growth season and mainly Gram-positive bacteria were isolated. Approximately half of them produced growth inhibition zones on a lawn of E. amylovora. Most isolates were classified as Bacillus megaterium by microbiological assays and in API 50 test systems. They were visualized in the light microscope as non-motile large rods. These strains may not be responsible for the absence of fire blight in orchards, but they may indicate unfavourable climatic conditions for Gram-negative bacteria including E. amylovora. They may reduce the ability of E. amylovora to establish fire blight and could also be useful for application in biological disease control.
Pletzer, Daniel; Schweizer, Gabriel; Weingart, Helge
2014-09-01
Transcriptional regulators of the AraC/XylS family have been associated with multidrug resistance, organic solvent tolerance, oxidative stress, and virulence in clinically relevant enterobacteria. In the present study, we identified four homologous AraC/XylS regulators, Rob, SoxS, PliA, and OpiA, from the fire blight pathogen Erwinia amylovora Ea1189. Previous studies have shown that the regulators MarA, Rob, and SoxS from Escherichia coli mediate multiple-antibiotic resistance, primarily by upregulating the AcrAB-TolC efflux system. However, none of the four AraC/XylS regulators from E. amylovora was able to induce a multidrug resistance phenotype in the plant pathogen. Overexpression of rob led to a 2-fold increased expression of the acrA gene. However, the rob-overexpressing strain showed increased resistance to only a limited number of antibiotics. Furthermore, Rob was able to induce tolerance to organic solvents in E. amylovora by mechanisms other than efflux. We demonstrated that SoxS from E. amylovora is involved in superoxide resistance. A soxS-deficient mutant of Ea1189 was not able to grow on agar plates supplemented with the superoxide-generating agent paraquat. Furthermore, expression of soxS was induced by redox cycling agents. We identified two novel members of the AraC/XylS family in E. amylovora. PliA was highly upregulated during the early infection phase in apple rootstock and immature pear fruits. Multiple compounds were able to induce the expression of pliA, including apple leaf extracts, phenolic compounds, redox cycling agents, heavy metals, and decanoate. OpiA was shown to play a role in the regulation of osmotic and alkaline pH stress responses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Tar'an, B; Warkentin, T D; Tullu, A; Vandenberg, A
2007-01-01
Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Lab., is one of the most devastating diseases of chickpea (Cicer arietinum L.) worldwide. Research was conducted to map genetic factors for resistance to ascochyta blight using a linkage map constructed with 144 simple sequence repeat markers and 1 morphological marker (fc, flower colour). Stem cutting was used to vegetatively propagate 186 F2 plants derived from a cross between Cicer arietinum L. 'ICCV96029' and 'CDC Frontier'. A total of 556 cutting-derived plants were evaluated for their reaction to ascochyta blight under controlled conditions. Disease reaction of the F1 and F2 plants demonstrated that the resistance was dominantly inherited. A Fain's test based on the means and variances of the ascochyta blight reaction of the F3 families showed that a few genes were segregating in the population. Composite interval mapping identified 3 genomic regions that were associated with the reaction to ascochyta blight. One quantitative trait locus (QTL) on each of LG3, LG4, and LG6 accounted for 13%, 29%, and 12%, respectively, of the total estimated phenotypic variation for the reaction to ascochyta blight. Together, these loci controlled 56% of the total estimated phenotypic variation. The QTL on LG4 and LG6 were in common with the previously reported QTL for ascochyta blight resistance, whereas the QTL on LG3 was unique to the current population.
USDA-ARS?s Scientific Manuscript database
Foliar late blight, caused by Phytophthora infestans, is an important disease problem worldwide. Foliar resistance to late blight was found in a hybrid population of the cultivated diploid species Solanum phureja-S. stenotomum (phu-stn). The objective of this study was to determine if resistance t...
Silencing of six susceptibility genes results in potato late blight resistance.
Sun, Kaile; Wolters, Anne-Marie A; Vossen, Jack H; Rouwet, Maarten E; Loonen, Annelies E H M; Jacobsen, Evert; Visser, Richard G F; Bai, Yuling
2016-10-01
Phytophthora infestans, the causal agent of late blight, is a major threat to commercial potato production worldwide. Significant costs are required for crop protection to secure yield. Many dominant genes for resistance (R-genes) to potato late blight have been identified, and some of these R-genes have been applied in potato breeding. However, the P. infestans population rapidly accumulates new virulent strains that render R-genes ineffective. Here we introduce a new class of resistance which is based on the loss-of-function of a susceptibility gene (S-gene) encoding a product exploited by pathogens during infection and colonization. Impaired S-genes primarily result in recessive resistance traits in contrast to recognition-based resistance that is governed by dominant R-genes. In Arabidopsis thaliana, many S-genes have been detected in screens of mutant populations. In the present study, we selected 11 A. thaliana S-genes and silenced orthologous genes in the potato cultivar Desiree, which is highly susceptible to late blight. The silencing of five genes resulted in complete resistance to the P. infestans isolate Pic99189, and the silencing of a sixth S-gene resulted in reduced susceptibility. The application of S-genes to potato breeding for resistance to late blight is further discussed.
The fire blight pathogen Erwinia amylovora requires the rpoN gene for pathogenicity in apple.
Ramos, Laura S; Lehman, Brian L; Sinn, Judith P; Pfeufer, Emily E; Halbrendt, Noemi O; McNellis, Timothy W
2013-10-01
RpoN is a σ(54) factor regulating essential virulence gene expression in several plant pathogenic bacteria, including Pseudomonas syringae and Pectobacterium carotovorum. In this study, we found that mutation of rpoN in the fire blight pathogen Erwinia amylovora caused a nonpathogenic phenotype. The E. amylovora rpoN Tn5 transposon mutant rpoN1250::Tn5 did not cause fire blight disease symptoms on shoots of mature apple trees. In detached immature apple fruits, the rpoN1250::Tn5 mutant failed to cause fire blight disease symptoms and grew to population levels 12 orders of magnitude lower than the wild-type. In addition, the rpoN1250::Tn5 mutant failed to elicit a hypersensitive response when infiltrated into nonhost tobacco plant leaves, and rpoN1250::Tn5 cells failed to express HrpN protein when grown in hrp (hypersensitive response and pathogenicity)-inducing liquid medium. A plasmid-borne copy of the wild-type rpoN gene complemented all the rpoN1250::Tn5 mutant phenotypes tested. The rpoN1250::Tn5 mutant was prototrophic on minimal solid and liquid media, indicating that the rpoN1250::Tn5 nonpathogenic phenotype was not caused by a defect in basic metabolism or growth. This study provides clear genetic evidence that rpoN is an essential virulence gene of E. amylovora, suggesting that rpoN has the same function in E. amylovora as in P. syringae and Pe. carotovorum. 2013 BSPP and JOHN WILEY & SONS LTD
Meczker, Katalin; Dömötör, Dóra; Vass, János; Rákhely, Gábor; Schneider, György; Kovács, Tamás
2014-01-01
The enterobacterium Erwinia amylovora is the causal agent of fire blight. This study presents the analysis of the complete genome of phage PhiEaH1, isolated from the soil surrounding an E. amylovora-infected apple tree in Hungary. Its genome is 218 kb in size, containing 244 ORFs. PhiEaH1 is the second E. amylovora infecting phage from the Siphoviridae family whose complete genome sequence was determined. Beside PhiEaH2, PhiEaH1 is the other active component of Erwiphage, the first bacteriophage-based pesticide on the market against E. amylovora. Comparative genome analysis in this study has revealed that PhiEaH1 not only differs from the 10 formerly sequenced E. amylovora bacteriophages belonging to other phage families, but also from PhiEaH2. Sequencing of more Siphoviridae phage genomes might reveal further diversity, providing opportunities for the development of even more effective biological control agents, phage cocktails against Erwinia fire blight disease of commercial fruit crops.
Braun-Kiewnick, A; Altenbach, D; Oberhänsli, T; Bitterlin, W; Duffy, B
2011-10-01
Fire blight is an invasive disease caused by Erwinia amylovora that threatens pome fruit production globally. Effective implementation of phytosanitary control measures depends upon rapid, reliable pathogen detection and disease diagnosis. We developed a lateral-flow immunoassay specific for E. amylovora with a detection limit of log 5.7 CFU/ml, typical of pathogen concentrations in symptomatic plant material. The simple assay had comparable sensitivity to standard culture plating, serum agglutination and nested PCR when validated for application in a phytosanitary laboratory as a confirmatory test of cultured isolates and for first-line diagnosis of phytosanitary samples that represent the full range of commercial, ornamental and forestry host species. On-site validation in ring-trials with local plant inspectors demonstrated robust and reliable detection (compared to subsequent plating and PCR analysis). The simplicity, inspector acceptance and facilitation of expedited diagnosis (from 2 days for laboratory submitted samples to 15 min with the immunoassay), offers a valuable tool for improved phytosanitary control of fire blight. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Changyan; Wei, Jing; Lin, Yongjun; Chen, Hao
2012-05-01
Resistant germplasm resources are valuable for developing resistant varieties in agricultural production. However, recessive resistance genes are usually overlooked in hybrid breeding. Compared with dominant traits, however, they may confer resistance to different pathogenic races or pest biotypes with different mechanisms of action. The recessive rice bacterial blight resistance gene xa13, also involved in pollen development, has been cloned and its resistance mechanism has been recently characterized. This report describes the conversion of bacterial blight resistance mediated by the recessive xa13 gene into a dominant trait to facilitate its use in a breeding program. This was achieved by knockdown of the corresponding dominant allele Xa13 in transgenic rice using recently developed artificial microRNA technology. Tissue-specific promoters were used to exclude most of the expression of artificial microRNA in the anther to ensure that Xa13 functioned normally during pollen development. A battery of highly bacterial blight resistant transgenic plants with normal seed setting rates were acquired, indicating that highly specific gene silencing had been achieved. Our success with xa13 provides a paradigm that can be adapted to other recessive resistance genes.
Selection of bean lines that combine resistance to web blight and common bacterial blight
USDA-ARS?s Scientific Manuscript database
Web blight caused by Thanatephorus cucumeris Frank (Donk) causes significant reductions in the yield and quality of beans produced in the humid, lowland tropics. A total of 644 lines from different breeding programs were evaluated for reaction to web blight and other diseases using conventional plan...
Analysis of rice PDR-like ABC transporter genes in sheath blight resistance
USDA-ARS?s Scientific Manuscript database
Sheath blight caused by Rhizoctonia solani is one of the most damaging diseases of rice worldwide. To understand the molecular mechanism of resistance, we identified 450 differentially expressed genes in a resistant rice cultivar Jasmine 85 after R. solani infection with a combination of DNA microar...
The reintroduction of the American Chestnut
Stacy L Clark
2013-01-01
Successful reintroduction of the American chestnut will require far more than blight resistance. The greatest challenge will be the ability of blight-resistant seedlings to survive and reproduce in a forest that presents both native and non-native threats
The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice.
Liu, Qing; Yang, Jianyuan; Yan, Shijuan; Zhang, Shaohong; Zhao, Junliang; Wang, Wenjuan; Yang, Tifeng; Wang, Xiaofei; Mao, Xingxue; Dong, Jingfang; Zhu, Xiaoyuan; Liu, Bin
2016-11-01
This is the first report that GLP gene (OsGLP2-1) is involved in panicle blast and bacterial blight resistance in rice. In addition to its resistance to blast and bacterial blight, OsGLP2-1 has also been reported to co-localize with a QTLs for sheath blight resistance in rice. These suggest that the disease resistance provided by OsGLP2-1 is quantitative and broad spectrum. Its good resistance to these major diseases in rice makes it to be a promising target in rice breeding. Rice (Oryza sativa) blast caused by Magnaporthe oryzae and bacterial blight caused by Xanthomonas oryzae pv. oryzae are the two most destructive rice diseases worldwide. Germin-like protein (GLP) gene family is one of the important defense gene families which have been reported to be involved in disease resistance in plants. Although GLP proteins have been demonstrated to positively regulate leaf blast resistance in rice, their involvement in resistance to panicle blast and bacterial blight, has not been reported. In this study, we reported that one of the rice GLP genes, OsGLP2-1, was significantly induced by blast fungus. Overexpression of OsGLP2-1 quantitatively enhanced resistance to leaf blast, panicle blast and bacterial blight. The temporal and spatial expression analysis revealed that OsGLP2-1is highly expressed in leaves and panicles and sub-localized in the cell wall. Compared with empty vector transformed (control) plants, the OsGLP2-1 overexpressing plants exhibited higher levels of H 2 O 2 both before and after pathogen inoculation. Moreover, OsGLP2-1 was significantly induced by jasmonic acid (JA). Overexpression of OsGLP2-1 induced three well-characterized defense-related genes which are associated in JA-dependent pathway after pathogen infection. Higher endogenous level of JA was also identified in OsGLP2-1 overexpressing plants than in control plants both before and after pathogen inoculation. Together, these results suggest that OsGLP2-1 functions as a positive regulator to modulate disease resistance. Its good quantitative resistance to the two major diseases in rice makes it to be a promising target in rice breeding.
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) has become one of the most damaging wheat diseases in humid and semi-humid regions around the world. Breeding efforts have focused on resistance mechanisms that limit the spread once a spike is infected, or type II resistance. But resistance to initial infection, type I re...
USDA-ARS?s Scientific Manuscript database
Much effort has been directed at identifying sources of resistance to Fusarium head blight (FHB) in wheat. We sought to identify molecular markers for what we hypothesized was a new major FHB resistance locus originating from the wheat cultivar 'Freedom' and introgressed into the susceptible wheat c...
Cabrefiga, J; Francés, J; Montesinos, E; Bonaterra, A
2014-10-01
To study the effect of lyoprotectants and osmoadaptation on viability of Pseudomonas fluorescens EPS62e during freeze-drying and storage and to evaluate the formulation in terms of efficacy in biocontrol and fitness on pear flowers. A wettable powder formulation of a biocontrol agent of fire blight was optimized by means of lyoprotectants and culture osmoadaptation. Freeze-drying was used to obtain dehydrated cells, and the best viability (70% of survival) was obtained using lactose as lyoprotectant. Survival during lyophilization was additionally improved using physiological adaptation of cells during cultivation under salt-amended medium (osmoadaptation). The procedure increased the survival of cells after freeze-drying attaining viability values close to a 100% in the lactose-formulated product (3 × 10(11) CFU g(-1) ), and through the storage period of 1 year at 4°C. The dry formulation showed also an improved biocontrol efficacy and survival of EPS62e on pear flowers under low relative humidity conditions. Cell viability after freeze-drying was improved using lactose as lyoprotectant combined with a procedure of osmoadaptation during cultivation. The powder-formulated product remained active for 12 months and retained biocontrol levels similar to that of fresh cells. The formulation showed an improved survival of EPS62e on flowers and an increase of the efficacy of biocontrol of fire blight at low relative humidity. The results have a potential value for commercial application in biocontrol agents not only of fire blight but also of other plant diseases. © 2014 The Society for Applied Microbiology.
Gomi, Kenji; Satoh, Masaru; Ozawa, Rika; Shinonaga, Yumi; Sanada, Sachiyo; Sasaki, Katsutomo; Matsumura, Masaya; Ohashi, Yuko; Kanno, Hiroo; Akimitsu, Kazuya; Takabayashi, Junji
2010-01-01
A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.
Born, Yannick; Fieseler, Lars; Thöny, Valentin; Leimer, Nadja; Duffy, Brion; Loessner, Martin J
2017-06-15
Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 ( dpoL1-C ) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68 , under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2:: dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2:: luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora , is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance biocontrol efficacy, we combined the desired properties of two phages, Y2 (broad host range) and L1 (depolymerase for capsule degradation) in a single recombinant phage. This phage showed enhanced biocontrol and could reduce E. amylovora on flowers. Phage Y2 was also genetically engineered into a luciferase reporter phage, which transduces bacterial bioluminescence into infected cells and allows detection of low numbers of viable target bacteria. The combination of speed, sensitivity, and specificity is superior to previously used diagnostic methods. In conclusion, genetic engineering could improve the properties of phage Y2 toward better killing efficacy and sensitive detection of E. amylovora cells. Copyright © 2017 American Society for Microbiology.
Born, Yannick; Fieseler, Lars; Thöny, Valentin; Leimer, Nadja; Duffy, Brion
2017-01-01
ABSTRACT Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae. Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 (dpoL1-C) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68, under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2::dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2::luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora, is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance biocontrol efficacy, we combined the desired properties of two phages, Y2 (broad host range) and L1 (depolymerase for capsule degradation) in a single recombinant phage. This phage showed enhanced biocontrol and could reduce E. amylovora on flowers. Phage Y2 was also genetically engineered into a luciferase reporter phage, which transduces bacterial bioluminescence into infected cells and allows detection of low numbers of viable target bacteria. The combination of speed, sensitivity, and specificity is superior to previously used diagnostic methods. In conclusion, genetic engineering could improve the properties of phage Y2 toward better killing efficacy and sensitive detection of E. amylovora cells. PMID:28389547
USDA-ARS?s Scientific Manuscript database
The purpose of this research was to evaluate the efficacy in tubers of a late blight resistance gene, RPi-ber, originating from Solanum berthaultii. Experiments were conducted in the field and laboratory. Inoculation of tubers in field trials occurred via sporangia produced on infections in the foli...
USDA-ARS?s Scientific Manuscript database
The Chinese wheat Ning7840 (Triticum aestivum L.) contains Fhb1, a major quantitative trait locus (QTL) for Fusarium head blight (FHB) resistance, and has been widely used as a resistant parent in breeding programs worldwide, but due to its poor adaptation in the US, its progenies usually exhibit re...
USDA-ARS?s Scientific Manuscript database
Solanum bulbocastanum comprising a CC-NBS-LRR gene RB/Rpi-blb1 confers broad-spectrum resistance to Phytophthora infestans and is currently employed in potato breeding for durable late blight (LB) resistance. Genomes of several Solanum species were reported to contain RB homologues with confirmed b...
Chen, Can; Li, Chentong; Kang, Yanmei
2018-02-14
Fire blight is one of the most devastating plant diseases in the world. This paper proposes a Filippov fire-blight model incorporating cutting off infected branches and replanting susceptible trees. The Filippov-type model is formulated by considering that no control strategy is taken if the number of infected trees is less than an infected threshold level I c ; further, we cut off infected branches once the number of infected trees exceeds I c ; meanwhile, we replant trees if the number of susceptible trees is less than a susceptible threshold level S c . The global dynamical behaviour of the Filippov system is investigated. It is shown that model solutions ultimately converge to the positive equilibrium that lies in the region above I c , or below I c , or on I=I c , as we vary the susceptible and infected threshold values S c and I c . Our results indicate that proper combinations of the susceptible and infected threshold values based on the threshold policy can lead the number of infected trees to an acceptable level, when complete eradication is not economically desirable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Puławska, Joanna; Kałużna, Monika; Warabieda, Wojciech; Mikiciński, Artur
2017-11-13
Erwinia amylovora is generally considered to be a homogeneous species in terms of phenotypic and genetic features. However, strains show variation in their virulence, particularly on hosts with different susceptibility to fire blight. We applied the RNA-seq technique to elucidate transcriptome-level changes of the lowly virulent E. amylovora 650 strain during infection of shoots of susceptible (Idared) and resistant (Free Redstar) apple cultivars. The highest number of differentially expressed E. amylovora genes between the two apple genotypes was observed at 24 h after inoculation. Six days after inoculation, only a few bacterial genes were differentially expressed in the susceptible and resistant apple cultivars. The analysis of differentially expressed gene functions showed that generally, higher expression of genes related to stress response and defence against toxic compounds was observed in Free Redstar. Also in this cultivar, higher expression of flagellar genes (FlaI), which are recognized as PAMP (pathogen-associated molecular pattern) by the innate immune systems of plants, was noted. Additionally, several genes that have not yet been proven to play a role in the pathogenic abilities of E. amylovora were found to be differentially expressed in the two apple cultivars. This RNA-seq analysis generated a novel dataset describing the transcriptional response of the lowly virulent strain of E. amylovora in susceptible and resistant apple cultivar. Most genes were regulated in the same way in both apple cultivars, but there were also some cultivar-specific responses suggesting that the environment in Free Redstar is more stressful for bacteria what can be the reason of their inability to infect of this cultivar. Among genes with the highest fold change in expression between experimental combinations or with the highest transcript abundance, there are many genes without ascribed functions, which have never been tested for their role in pathogenicity. Overall, this study provides the first transcriptional profile by RNA-seq of E. amylovora during infection of a host plant and insights into the transcriptional response of this pathogen in the environments of susceptible and resistant apple plants.
Lee, Xiaoyun; Azevedo, Mark D; Armstrong, Donald J; Banowetz, Gary M; Reimmann, Cornelia
2013-02-01
The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) shares biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproducing AMB weakly interfered with seed germination of the grassy weed Poa annua and strongly inhibited growth of Erwinia amylovora, the causal agent of the devastating orchard crop disease known as fire blight. AMB was active against a 4-formylaminooxyvinylglycine-resistant isolate of E. amylovora, suggesting that the molecular targets of the two oxyvinylglycines in Erwinia do not, or not entirely, overlap. The AMB biosynthesis and transport genes were shown to be organized in two separate transcriptional units, ambA and ambBCDE, which were successfully expressed from IPTG-inducible tac promoters in the heterologous host P. fluorescens CHA0. Engineered AMB production enabled this model biocontrol strain to become inhibitory against E. amylovora and to weakly interfere with the germination of several graminaceous seeds. We conclude that AMB production requires no additional genes besides ambABCDE and we speculate that their expression in marketed fire blight biocontrol strains could potentially contribute to disease control. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Zengerer, Veronika; Schmid, Michael; Bieri, Marco; Müller, Denise C.; Remus-Emsermann, Mitja N. P.; Ahrens, Christian H.; Pelludat, Cosima
2018-01-01
In light of public concerns over the use of pesticides and antibiotics in plant protection and the subsequent selection for spread of resistant bacteria in the environment, it is inevitable to broaden our knowledge about viable alternatives, such as natural antagonists and their mode of action. The genus Pseudomonas is known for its metabolic versatility and genetic plasticity, encompassing pathogens as well as antagonists. We characterized strain Pseudomonas orientalis F9, an isolate from apple flowers in a Swiss orchard, and determined its antagonistic activity against several phytopathogenic bacteria, in particular Erwinia amylovora, the causal agent of fire blight. P. orientalis F9 displayed antagonistic activity against a broad suite of phytopathogenic bacteria in the in vitro tests. The promising results from this analysis led to an ex vivo assay with E. amylovora CFBP1430Rif and P. orientalis F9 infected detached apple flowers. F9 diminished the fire blight pathogen in the flowers but also revealed phytotoxic traits. The experimental results were discussed in light of the complete genome sequence of F9, which revealed the strain to carry phenazine genes. Phenazines are known to contribute to antagonistic activity of bacterial strains against soil pathogens. When tested in the cress assay with Pythium ultimum as pathogen, F9 showed results comparable to the known antagonist P. protegens CHA0. PMID:29479340
Schnabel, Elise L.; Jones, Alan L.
2001-01-01
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages φEa1 and φEa7 and 3 novel phages named φEa100, φEa125, and φEa116C, were identified based on differences in genome size and restriction fragment pattern. φEa1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages φEa100, φEa7, and φEa125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. φEa116C contained an approximately 75-kb genome. φEa1, φEa7, φEa100, φEa125, and φEa116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. φEa116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 105 CFU. PMID:11133428
Testing American chestnuts for blight resistance
Jesse D. Diller
1957-01-01
It has now been over half a century since chestnut blight, caused by the fungus Endothia parasitica (Murr.) A. & A., was introduced into America from the Orient. In that time the blight has spread relentlessly and has destroyed all of our commercial stands of this once most valuable hardwood species of the East.
Outlook for blight-resistant American chestnut trees
Paul H. Sisco
2009-01-01
Culminating 20 years of breeding efforts, in spring 2008, The American Chestnut Foundation (TACF) delivered its first 500 chestnuts to the USDA Forest Service for testing on National Forest lands. The expectation is that these seedlings will be more resistant to chestnut blight (Cryphonectria parasitica) than are pure American chestnut trees (
Douglass F. Jacobs
2010-01-01
Traditional breeding for blight resistance has led to the potential to restore American chestnut (Castanea dentata (Marsh.) Borkh.) to Eastern United States forests using a blight resistant hybrid chestnut tree. With prospects of pending wide-scale reintroduction, restoration strategies based on ecological and biological characteristics of the...
Fusarium head blight resistance loci in a stratified population of wheat landraces and varieties
USDA-ARS?s Scientific Manuscript database
To determine if Chinese and Japanese wheat landraces and varieties have unique sources of Fusarium head blight (FHB) resistance, an association mapping panel of 195 wheat accessions including both commercial varieties and landraces was genotyped with 364 genome-wide simple sequence repeat (SSR) and ...
Can our chestnut survive another invasion?
Lynne K. Rieske; W. Rodney Cooper
2011-01-01
Plant breeders and land managers have been actively pursuing development of an American chestnut with desirable silvicultural characteristics that demonstrates resistance to the chestnut blight fungus. As progress towards development of a blight-resistant chestnut continues, questions arise as to how these plants will interact with pre-existing stresses. The Asian...
Shiver, Anthony L.; Osadnik, Hendrik; Kritikos, George; ...
2016-06-29
Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basismore » for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. As a result, the loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens.« less
Shiver, Anthony L.; Kritikos, George; Li, Bo; Krogan, Nevan; Typas, Athanasios
2016-01-01
Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens. PMID:27355376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiver, Anthony L.; Osadnik, Hendrik; Kritikos, George
Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basismore » for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. As a result, the loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens.« less
USDA-ARS?s Scientific Manuscript database
Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. We examined the interaction between two independent QTL, SAP6 and SU91, which condition resistance to CBB.The QTL were studied in a pinto bean F2 population a cross between Othello (sap6 sap6 //...
Responses of high O/L peanut cultivars to fungicide for control of Sclerotinia blight
USDA-ARS?s Scientific Manuscript database
Sclerotinia blight, caused by Sclerotinia minor, remains an important disease of peanuts in Oklahoma where it causes severe damage when prolonged periods of wet weather occur during mid to late season. Progress has been made in increasing the resistance of peanut cultivars to Sclerotinia blight. S...
Metabolomics analysis of the effect of elevated co2 on wheat resistance to Fusarium head blight
USDA-ARS?s Scientific Manuscript database
Climate change is expected to intensify Fusarium head blight (FHB) contamination of wheat and increase the associated risk of mycotoxin contamination in food and feed. Rising CO2 levels are part of climate change with still unknown effects on natural wheat resistance mechanisms against Fusarium gram...
High-resolution genetic and physical mapping of eastern filbert blight resistance in hazelnut
Vidyasagar Sathuvall; Shawn A. Mehlenbacher
2012-01-01
Eastern filbert blight (EFB), caused by the pyrenomycete Anisogramma anomala, is a serious threat to the hazelnut (Corylus avellana L.) industry in the Pacific Northwest. A dominant allele at a single locus from the obsolete pollenizer 'Gasaway' confers a very high level of resistance, and has been extensively used in...
USDA-ARS?s Scientific Manuscript database
Molecular markers associated with known quantitative trait loci (QTLs) for type 2 resistance to Fusarium head blight (FHB) in bi-parental mapping populations usually have more than two alleles in breeding populations. Therefore, understanding the association of each allele with FHB response is parti...
USDA-ARS?s Scientific Manuscript database
Palisade Russet is a medium-late maturing, lightly russeted potato breeding clone notable for its resistance to late blight (Phytophthora infestans) infection of foliage and tuber. Palisade Russet is suitable for processing with low tuber glucose concentrations observed following long-term storage ...
RAPD markers linked to eastern filbert blight resistance in Corylus avellana
S.A. Mehlenbacher; R.N. Brown; J.W. Davis; H. Chen; N.V. Bassil; D.C. Smith; Thomas L. Kubisiak
2004-01-01
A total of 1,110 decamer primers were screened for RAPD markers linked to a dominant allele in hazelnut (Corylus avellana) that confers resistance to eastern filbert blight caused by Anisogramma anomnala. Twenty RAPD markers linked in coupling, and five markers linked in repulsion, were found. A seedling population was used to...
USDA-ARS?s Scientific Manuscript database
Fusarium Head Blight (FHB) is one of the most damaging diseases of wheat. It lowers the grain yield and quality, and contaminates grain with the mycotoxin deoxynivalenol (DON). Genetic resistance is a critical control measure and breeding objective. Many studies have focused on the genetic basis of ...
USDA-ARS?s Scientific Manuscript database
A study was initiated to understand Burkholderia glumae, the major causal agent for bacterial panicle blight disease of rice; to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. Burkholderia glumae was frequently isolated from infected p...
USDA-ARS?s Scientific Manuscript database
A study was initiated to understand Burkholderia glumae (major causal agent for bacterial panicle blight disease of rice) to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. B. glumae was frequently isolated from symptomatic panicles on...
Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea
Thomas L. Kubisiak; F.V. Hebard; C. Dana Nelson; Jiansu Zhang; R. Bernatzky; H. Huang; S.L. Anagnostakis; R.L. Doudrick
1997-01-01
A three-generation American chestnut x Chinese chestnut pedigree was used to construct a genetic linkage map for chestnut and to investigate the control of resistance to Endothia parasitica (chestnut blight fungus). DNA genotypes for 241 polymorphic markers (eight isozymes, 17 restriction fragment length polymorphisms [RFLPs], and 216 random...
USDA-ARS?s Scientific Manuscript database
Durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) is the preferred wheat for preparing pasta products. Current durum cultivars have little resistance to a ravaging fungal disease, Fusarium head blight (FHB), or scab. In our Durum Germplasm Enhancement (DGE) project, we previously show...
USDA-ARS?s Scientific Manuscript database
Durum wheat (Triticum turgidum L. subsp. durum) is a unique class of commercial wheat specifically for making pasta products. Durum production has been seriously challenged by the Fusarium head blight (FHB) disease in the United States in the past decade. Although utilization of resistant cultivar...
Use of mycelium and detached leaves in bioassays for assessing resistance to boxwood blight
USDA-ARS?s Scientific Manuscript database
Boxwood blight caused by Calonectria pseudonaviculata is a newly emergent disease of boxwood (Buxus L.) in the United States that causes leaf drop, stem lesions, and plant death. A rapid and reliable laboratory assay that enables screening hundreds of boxwood genotypes for resistance to boxwood blig...
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe, is a devastatingve disease in wheat (Triticum aestivum L.). Use of host resistance is one of the most effective strategies to minimize the disease damage. Haiyanzhong (HYZ) is a Chinese wheat landrace that shows a high level of resi...
Smits, Theo H. M.; Rezzonico, Fabio; Kamber, Tim; Blom, Jochen; Goesmann, Alexander; Ishimaru, Carol A.; Frey, Jürg E.; Stockwell, Virginia O.; Duffy, Brion
2011-01-01
Background Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. Principal Findings Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. Conclusions Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems. PMID:21789243
Mosquera, Teresa; Alvarez, Maria Fernanda; Jiménez-Gómez, José M; Muktar, Meki Shehabu; Paulo, Maria João; Steinemann, Sebastian; Li, Jinquan; Draffehn, Astrid; Hofmann, Andrea; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhardt; Walkemeier, Birgit; Gebhardt, Christiane
2016-01-01
The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.
Jiménez-Gómez, José M.; Muktar, Meki Shehabu; Paulo, Maria João; Steinemann, Sebastian; Li, Jinquan; Draffehn, Astrid; Hofmann, Andrea; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhardt; Walkemeier, Birgit; Gebhardt, Christiane
2016-01-01
The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications. PMID:27281327
USDA-ARS?s Scientific Manuscript database
Potato virus S (PVS) has a widespread distribution in the U.S. However, only two complete nucleotide sequences have been published. A recent survey of potato fields in the state of Washington confirms that PVS is widely prevalent. Late blight resistant (LBR) potato cultivars and genotypes were sho...
USDA-ARS?s Scientific Manuscript database
Brassica leafy greens (Brassica juncea and Brassica rapa) represent one of the most economically important vegetable crop groups in the southeastern United States. In the last 10 years, numerous occurrences of a leaf blight disease on these leafy vegetables have been reported in several states. One ...
USDA-ARS?s Scientific Manuscript database
Phytophthora capsici is responsible for multiple disease syndromes of Capsicum annuum but the resistance mechanism is still unknown. Evaluating gene expression during foliar blight can be used to identify expression patterns associated with resistance in Capsicum species. This study reports a direct...
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) is one of the most important wheat diseases worldwide and host resistance displays complex genetic control. A genome-wide association study (GWAS) was performed on 273 winter wheat breeding lines from the mid-western and eastern regions of the US to identify chromosomal re...
USDA-ARS?s Scientific Manuscript database
Southern Leaf Blight [(SLB), causal agent Cochliobolus heterostrophus race O] is an important fungal disease of maize in the United States. Teosinte (Zea mays ssp. parviglumis), the wild progenitor of maize, offers a novel source of resistance alleles that may have been lost during domestication. T...
USDA-ARS?s Scientific Manuscript database
Septoria tritici blotch (STB) and Fusarium head blight (FHB) are two of the most devastating diseases of wheat. Breeding for host resistance is an important component of integrated strategies for STB and FHB control. We identify genes and functional gene markers that can be used to expedite the proc...
Molecular markers linked to resistance to Cryphonectria parasitica in chestnut
Thomas L. Kubisiak
1996-01-01
Kubisiak describes how he came to work on the chestnut blight problem. He touches on the underlying theory behind recombinational linkage mapping, mentions some current results in work with chestnut, and discusses how these results compare to prior knowledge regarding the suspected pattern of inheritance of blight resistance. Finally, the author looks ahead and...
USDA-ARS?s Scientific Manuscript database
Fusarium graminaerum (Fusarium head blight; FHB) and Puccinia recondita Roberge ex Desmaz. f. sp. tritici Eriks. & E. Henn (leaf rust; LR) are two major fungal pathogens threatening the wheat crop; consequently identifying resistance genes from various sources is always of importance to wheat breede...
USDA-ARS?s Scientific Manuscript database
Common bacterial blight caused by the pathogen Xanthomonas axonopodis pv. phaseoli (Xap) is an important biotic factor limiting common bean (Phaseolus vulgaris L.) production. A few interspecific bean breeding lines such as VAX 6 exhibit a high level of resistance to a wide range of Xap strains repr...
USDA-ARS?s Scientific Manuscript database
The wild emmer wheat (Triticum dicoccoides)-derived Fusarium head blight (FHB) resistance quantitative trait locus (QTL) Qfhs.ndsu-3AS previously mapped to the short arm of chromosome 3A (3AS) in a population of recombinant inbred chromosome lines (RICLs). This study aimed to attain a better unders...
Hossain, Md Kamal; Jena, Kshirod Kumar; Bhuiyan, Md Atiqur Rahman; Wickneswari, Ratnam
2016-01-01
Sheath blight is considered the most significant disease of rice and causes enormous yield losses over the world. Breeding for resistant varieties is the only viable option to combat the disease efficiently. Seventeen diverged rice genotypes along with 17 QTL-linked SSR markers were evaluated under greenhouse conditions. Pearson’s correlation showed only the flag leaf angle had a significant correlation with sheath blight resistance under greenhouse screening. Multivariate analysis based on UPGMA clustering and principal component analysis (PCA) indicated that the flag leaf angle, flag leaf length, and plant compactness were significantly associated with the following SSR marker alleles: RM209 (116,130), RM202 (176), RM224 (126), RM257 (156), RM426 (175), and RM6971 (196), which are linked to the SB QTLs: QRlh11, qSBR11-3, qSBR11-1, qSBR9-1, qShB3-2, and qSB-9. A Mantel test suggested a weak relationship between the observed phenotypes and allelic variation patterns, implying the independent nature of morphological and molecular variations. Teqing and Tetep were found to be the most resistant cultivars. IR65482-4-136-2-2, MR219-4, and MR264 showed improved resistance potentials. These results suggest that the morphological traits and QTLs which have been found to associate with sheath blight resistance are a good choice to enhance resistance through pyramiding either 2 QTLs or QTLs and traits in susceptible rice cultivars. PMID:27795687
Draffehn, Astrid M; Li, Li; Krezdorn, Nicolas; Ding, Jia; Lübeck, Jens; Strahwald, Josef; Muktar, Meki S; Walkemeier, Birgit; Rotter, Björn; Gebhardt, Christiane
2013-01-01
Resistance to pathogens is essential for survival of wild and cultivated plants. Pathogen susceptibility causes major losses of crop yield and quality. Durable field resistance combined with high yield and other superior agronomic characters are therefore, important objectives in every crop breeding program. Precision and efficacy of resistance breeding can be enhanced by molecular diagnostic tools, which result from knowledge of the molecular basis of resistance and susceptibility. Breeding uses resistance conferred by single R genes and polygenic quantitative resistance. The latter is partial but considered more durable. Molecular mechanisms of plant pathogen interactions are elucidated mainly in experimental systems involving single R genes, whereas most genes important for quantitative resistance in crops like potato are unknown. Quantitative resistance of potato to Phytophthora infestans causing late blight is often compromised by late plant maturity, a negative agronomic character. Our objective was to identify candidate genes for quantitative resistance to late blight not compromised by late plant maturity. We used diagnostic DNA-markers to select plants with different field levels of maturity corrected resistance (MCR) to late blight and compared their leaf transcriptomes before and after infection with P. infestans using SuperSAGE (serial analysis of gene expression) technology and next generation sequencing. We identified 2034 transcripts up or down regulated upon infection, including a homolog of the kiwi fruit allergen kiwellin. 806 transcripts showed differential expression between groups of genotypes with contrasting MCR levels. The observed expression patterns suggest that MCR is in part controlled by differential transcript levels in uninfected plants. Functional annotation suggests that, besides biotic and abiotic stress responses, general cellular processes such as photosynthesis, protein biosynthesis, and degradation play a role in MCR.
Yang, Qin; He, Yijian; Kabahuma, Mercy; Chaya, Timothy; Kelly, Amy; Borrego, Eli; Bian, Yang; El Kasmi, Farid; Yang, Li; Teixeira, Paulo; Kolkman, Judith; Nelson, Rebecca; Kolomiets, Michael; L Dangl, Jeffery; Wisser, Randall; Caplan, Jeffrey; Li, Xu; Lauter, Nick; Balint-Kurti, Peter
2017-09-01
Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr 9.02 , associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr 9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.
Pletzer, Daniel; Weingart, Helge
2014-07-11
The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in resistance to plant antimicrobials, maybe including flavonoids, which were identified as substrates of both pumps. Furthermore, we found that the mdtABC operon belongs to the regulon of the two-component regulator BaeR suggesting a role of this RND transporter in the cell envelope stress response of E. amylovora.
2014-01-01
Background The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. Results To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. Conclusions The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in resistance to plant antimicrobials, maybe including flavonoids, which were identified as substrates of both pumps. Furthermore, we found that the mdtABC operon belongs to the regulon of the two-component regulator BaeR suggesting a role of this RND transporter in the cell envelope stress response of E. amylovora. PMID:25012600
USDA-ARS?s Scientific Manuscript database
Rice sheath blight (RSB) caused by the soil borne pathogen Rhizoctonia solani, is one of the most destructive diseases of rice, causing severe losses in rice yield and quality annually. The major gene (s) governing the resistance to RSB have not been found in cultivated rice worldwide. However, ri...
Transgenic American chestnuts show enhanced blight resistance and transmit the trait to T1 progeny.
Newhouse, Andrew E; Polin-McGuigan, Linda D; Baier, Kathleen A; Valletta, Kristia E R; Rottmann, William H; Tschaplinski, Timothy J; Maynard, Charles A; Powell, William A
2014-11-01
American chestnut (Castanea dentata) is a classic example of a native keystone species that was nearly eradicated by an introduced fungal pathogen. This report describes progress made toward producing a fully American chestnut tree with enhanced resistance to the blight fungus (Cryphonectria parasitica). The transgenic American chestnut 'Darling4,' produced through an Agrobacterium co-transformation procedure to express a wheat oxalate oxidase gene driven by the VspB vascular promoter, shows enhanced blight resistance at a level intermediate between susceptible American chestnut and resistant Chinese chestnut (Castanea mollissima). Enhanced resistance was identified first with a leaf-inoculation assay using young chestnuts grown indoors, and confirmed with traditional stem inoculations on 3- and 4-year-old field-grown trees. Pollen from 'Darling4' and other events was used to produce transgenic T1 seedlings, which also expressed the enhanced resistance trait in leaf assays. Outcrossed transgenic seedlings have several advantages over tissue-cultured plantlets, including increased genetic diversity and faster initial growth. This represents a major step toward the restoration of the majestic American chestnut. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Jones, Richard W; Perez, Frances G
2016-03-18
Expression of a gene encoding the family 1 cellulose binding domain protein CBD1, identified in the cellulosic cell wall of the potato late blight pathogen Phytophthora infestans, was tested in transgenic potato to determine if it had an influence on plant cell walls and resistance to late blight. Multiple regenerants of potato (cv. Bintje) were developed and selected for high expression of CBD 1 transcripts. Tests with detached leaflets showed no evidence of increased or decreased resistance to P. infestans, in comparison with the blight susceptible Bintje controls, however, changes in plant morphology were evident in CBD 1 transgenics. Plant height increases were evident, and most importantly, the ability to produce seed berries from a previously sterile cultivar. Immunolocalization of CBD 1 in seed berries revealed the presence throughout the tissue. While Bintje control plants are male and female sterile, CBD 1 transgenics were female fertile. Crosses made using pollen from the late blight resistant Sarpo Mira and transgenic CBD1 Bintje as the female parent demonstrated the ability to introgress P. infestans targeted resistance genes, as well as genes responsible for color and tuber shape, into Bintje germplasm. A family 1 cellulose-binding domain (CBD 1) encoding gene from the potato late blight pathogen P. infestans was used to develop transgenic Bintje potato plants. Transgenic plants became female fertile, allowing for a previously sterile cultivar to be used in breeding improvement. Selection for the absence of the CBD transgene in progeny should allow for immediate use of a genetically enhanced material. Potential for use in other Solanaceous crops is proposed.
Arafa, Ramadan A.; Rakha, Mohamed T.; Kamel, Said M.
2017-01-01
Tomato late blight caused by Phytophthora infestans (Mont.) de Bary, also known as the Irish famine pathogen, is one of the most destructive plant diseases. Wild relatives of tomato possess useful resistance genes against this disease, and could therefore be used in breeding to improve cultivated varieties. In the genome of a wild relative of tomato, Solanum habrochaites accession LA1777, we identified a new quantitative trait locus for resistance against blight caused by an aggressive Egyptian isolate of P. infestans. Using double-digest restriction site–associated DNA sequencing (ddRAD-Seq) technology, we determined 6,514 genome-wide SNP genotypes of an F2 population derived from an interspecific cross. Subsequent association analysis of genotypes and phenotypes of the mapping population revealed that a 6.8 Mb genome region on chromosome 6 was a candidate locus for disease resistance. Whole-genome resequencing analysis revealed that 298 genes in this region potentially had functional differences between the parental lines. Among of them, two genes with missense mutations, Solyc06g071810.1 and Solyc06g083640.3, were considered to be potential candidates for disease resistance. SNP and SSR markers linking to this region can be used in marker-assisted selection in future breeding programs for late blight disease, including introgression of new genetic loci from wild species. In addition, the approach developed in this study provides a model for identification of other genes for attractive agronomical traits. PMID:29253902
Liu, Wen; Yan, Yu; Zeng, Hongqiu; Li, Xiaolin; Wei, Yunxie; Liu, Guoyin; He, Chaozu; Shi, Haitao
2018-05-19
Cassava is a major food crop in tropical areas, but its productivity and quality are seriously limited by cassava bacterial blight. So far, the key factors regulating cassava immune response remain elusive. In this study, we identified three cassava Whirly genes (MeWHYs) in cassava variety of South China 124 (SC124), and explored the possible roles and utilization of MeWHYs in cassava disease resistance. Gene expression analysis revealed that the transcripts of three MeWHYs were commonly regulated by the highly conserved N-terminal epitope of f lagellin (flg22) and Xanthomonas axonopodis pv. manihotis Hainan (Xam HN) treatments. Overexpression of MeWHYs improved plant disease resistance against X. axonopodis pv. manihotis, while MeWHYs-silenced cassava plants by virus-induced gene silencing exhibited decreased disease resistance. Notably, MeWRKY75 physically interacted with three MeWHYs in yeast and in planta, and served as a transcriptional activator of MeWHY3. Moreover, the physical interaction between MeWHYs and MeWRKY75 promoted the transcriptional activities of each other. Consistently, MeWRKY75 also positively regulated disease resistance against cassava bacterial blight. Taken together, our observations suggested that MeWRKY75 and MeWHYs confer improved disease resistance against cassava bacterial blight through forming an interacting complex of MeWRKY75-MeWHY1/2/3 and transcriptional module of MeWRKY75-MeWHY3. This study facilitates our understanding of the positive effect of the MeWRKY75-MeWHY3 transcriptional module in plant disease resistance.
Costanzo, S; Simko, I; Christ, B J; Haynes, K G
2005-08-01
Field resistance to Phytophthora infestans (Mont.) de Bary, the causal agent of late blight in potatoes, has been characterized in a potato segregating family of 230 full-sib progenies derived from a cross between two hybrid Solanum phureja x S. stenotomum clones. The distribution of area under the disease progress curve values, measured in different years and locations, was consistent with the inheritance of multigenic resistance. Relatively high levels of resistance and transgressive segregations were also observed within this family. A genetic linkage map of this population was constructed with the intent of mapping quantitative trait loci (QTLs) associated with this late blight field resistance. A total of 132 clones from this family were genotyped based on 162 restriction fragment length polymorphism (RFLP) markers. The genome coverage by the map (855.2 cM) is estimated to be at least 70% and includes 112 segregating RFLP markers and two phenotypic markers, with an average distance of 7.7 cM between two markers. Two methods were employed to determine trait-marker association, the non-parametric Kruskal-Wallis test and interval mapping analysis. Three major QTLs were detected on linkage group III, V, and XI, explaining 23, 17, and 10%, respectively, of the total phenotypic variation. The present study revealed the presence of potentially new genetic loci in this diploid potato family contributing to general resistance against late blight. The identification of these QTLs represents the first step toward their introgression into cultivated tetraploid potato cultivars through marker-assisted selection.
Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern
Xu, Feifei; Tang, Yongchao; Gao, Ying
2017-01-01
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly conserved in the Oryza genus but absent in other plant species by searching the plant database, suggesting that Xa23 originated along with the diversification of the Oryza genus from the grass family during evolution. This research offers a potential for flexible use of novel Xa23 alleles in rice breeding programs and provide a model for evolution analysis of other executor R genes. PMID:28982185
Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern.
Cui, Hua; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Zhao, Kaijun
2017-01-01
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly conserved in the Oryza genus but absent in other plant species by searching the plant database, suggesting that Xa23 originated along with the diversification of the Oryza genus from the grass family during evolution. This research offers a potential for flexible use of novel Xa23 alleles in rice breeding programs and provide a model for evolution analysis of other executor R genes.
Using barley genomics to develop Fusarium head blight resistant wheat and barley
USDA-ARS?s Scientific Manuscript database
Fusarium head blight, caused by Fusarium graminearum, is a major problem for wheat and barley growers. During infection, F. graminearum produces trichothecene mycotoxins (e.g., deoxynivalenol or DON) that increases fungal virulence and reduces grain quality and yield. Previous work in Arabidopsis sh...
Validation of Fusarium Head Blight resistance QTL in US winter wheat
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB), primarily caused by Fusarium graminearum Schwabe [telemorph: Gibberella zeae Schw. (Petch)], can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. Two US soft red winter wheat cultivars, Bess and NC-Neuse, have moderate...
Validation of fusarium head blight resistance QTL in US winter wheat
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB), primarily caused by Fusarium graminearum Schwabe [telemorph: Gibberella zeae Schw. (Petch)], can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. Two US soft red winter wheat cultivars, Bess and NC-Neuse, have moderate...
Genotype-Dependent Interaction of Lentil Lines with Ascochyta lentis
Sari, Ehsan; Bhadauria, Vijai; Vandenberg, Albert; Banniza, Sabine
2017-01-01
Ascochyta blight of lentil is a prevalent disease in many lentil producing regions and can cause major yield and grain quality losses. The most environmentally acceptable and economically profitable method of control is to develop varieties with high levels of durable resistance. Genetic studies to date suggest that ascochyta blight resistance genes (R-gene) in lentil lines CDC Robin, ILL 7537, 964a-46, and ILL 1704 are non-allelic. To understand how different R-genes manifest resistance in these genotypes and an accession of Lens ervoides, L-01-827A, with high level of resistance to ascochyta blight, cellular and molecular defense responses were compared after inoculation with the causal pathogen Ascochyta lentis. Pathogenicity testing of the resistant lines to A. lentis inoculation revealed significantly lower disease severity on CDC Robin and ILL 7537 compared to ILL 1704 and 964a-46, and no symptoms of disease were observed on L-01-827A. Histological examinations indicated that cell death triggered by the pathogen might be disrupted as a mechanism of resistance in CDC Robin. In contrast, limiting colonization of epidermal cells by A. lentis is a suggested mechanism of resistance in 964a-46. A time-series comparison of the expressions of hallmark genes in salicylic acid (SA) and jasmonic acid (JA) signal transduction pathways between CDC Robin and 964a-46 was conducted. These partially resistant genotypes differed in the timing and the magnitude of SA and JA signaling pathway activation. The SA signaling pathway was only triggered in 964a-46, whereas the JA pathway was triggered in both partially resistant genotypes CDC Robin and 964a-46. The expression of JA-associated genes was lower in 964a-46 than CDC Robin. These observations corroborate the existence of diverse ascochyta blight resistance mechanisms in lentil genotypes carrying different R-genes. PMID:28539932
Güell, Imma; Cabrefiga, Jordi; Badosa, Esther; Ferre, Rafael; Talleda, Montserrat; Bardají, Eduard; Planas, Marta; Feliu, Lidia; Montesinos, Emilio
2011-01-01
A set of 31 undecapeptides, incorporating 1 to 11 d-amino acids and derived from the antimicrobial peptide BP100 (KKLFKKILKYL-NH2), was designed and synthesized. This set was evaluated for inhibition of growth of the plant-pathogenic bacteria Erwinia amylovora, Pseudomonas syringae pv. syringae, and Xanthomonas axonopodis pv. vesicatoria, hemolysis, and protease degradation. Two derivatives were as active as BP100, and 10 peptides displayed improved activity, with the all-d isomer being the most active. Twenty-six peptides were less hemolytic than BP100, and all peptides were more stable against protease degradation. Plant extracts inhibited the activity of BP100 as well as that of the d-isomers. Ten derivatives incorporating one d-amino acid each were tested in an infectivity inhibition assay with the three plant-pathogenic bacteria by using detached pear and pepper leaves and pear fruits. All 10 peptides studied were active against E. amylovora, 6 displayed activity against P. syringae pv. syringae, and 2 displayed activity against X. axonopodis pv. vesicatoria. Peptides BP143 (KKLFKKILKYL-NH2) and BP145 (KKLFKKILKYL-NH2), containing one d-amino acid at positions 4 and 2 (underlined), respectively, were evaluated in whole-plant assays for the control of bacterial blight of pepper and pear and fire blight of pear. Peptide BP143 was as effective as streptomycin in the three pathosystems, was more effective than BP100 against bacterial blight of pepper and pear, and equally effective against fire blight of pear. PMID:21335383
USDA-ARS?s Scientific Manuscript database
Fusarium Head Blight is a disease of cereal crops that causes severe yield losses and mycotoxin contamination of grain. The main causal pathogen, Fusarium graminearum, produces the trichothecene toxins deoxynivalenol or nivalenol as virulence factors. Nivalenol-producing isolates are most prevalent ...
USDA-ARS?s Scientific Manuscript database
Cultivated peanut, the second most economically important legume crop throughout the United States and the third most important oilseed in the world, is consistently threatened by various diseases and pests. Sclerotinia blight, (causal agents Sclerotinia sclerotiorum (S. sclerotiorum) and Sclerotin...
USDA-ARS?s Scientific Manuscript database
Two advanced backcross populations were developed between a popular southern US tropical japonica rice (Oryza sativa L.) cultivar Bengal and two different of Oryza nivara (IRGC100898; IRGC104705) accessions to identify quantitative trait loci (QTLs) related to sheath blight (SB) disease resistance. ...
Profitability of integrated management of fusarium head blight in North Carolina winter wheat
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) is one of the most difficult small-grain diseases to manage, due to the partial effectiveness of management techniques and the narrow window of time within which to apply fungicides profitably. The most effective management approach is to integrate cultivar resistance wit...
American chestnut (Castanea dentata) was once a dominant overstory tree in the eastern United States but was decimated by chestnut blight (Cryphonectria parasitica). Blight resistant chestnut is being developed as part of a concerted restoration effort to bring this heritage tree...
Ranking cultivated blueberry for Mummy Berry Blight and Fruit Infection Incidence
USDA-ARS?s Scientific Manuscript database
Mummy berry is an important disease of cultivated blueberry. The disease has two distinct phases; a blighting phase initiated by ascospores and a fruit infection stage initiated by conidia. In this study we investigated the resistance of more than 100 blueberry cultivar to both phases of the disease...
Can Host Plant Resistance Protect the Quality of Wheat from Fusarium Head Blight?
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) infection reduces the amount of millable grain from an infected field, reduces mill yields, and generally degrades end-use quality. In 2009, the Logan County, KY, wheat trial had extended conditions for infection with FHB resulting in extensive and uniform infection withi...
Tock, Andrew J.; Fourie, Deidré; Walley, Peter G.; Holub, Eric B.; Soler, Alvaro; Cichy, Karen A.; Pastor-Corrales, Marcial A.; Song, Qijian; Porch, Timothy G.; Hart, John P.; Vasconcellos, Renato C. C.; Vicente, Joana G.; Barker, Guy C.; Miklas, Phillip N.
2017-01-01
Pseudomonas syringae pv. phaseolicola (Psph) Race 6 is a globally prevalent and broadly virulent bacterial pathogen with devastating impact causing halo blight of common bean (Phaseolus vulgaris L.). Common bean lines PI 150414 and CAL 143 are known sources of resistance against this pathogen. We constructed high-resolution linkage maps for three recombinant inbred populations to map resistance to Psph Race 6 derived from the two common bean lines. This was complemented with a genome-wide association study (GWAS) of Race 6 resistance in an Andean Diversity Panel of common bean. Race 6 resistance from PI 150414 maps to a single major-effect quantitative trait locus (QTL; HB4.2) on chromosome Pv04 and confers broad-spectrum resistance to eight other races of the pathogen. Resistance segregating in a Rojo × CAL 143 population maps to five chromosome arms and includes HB4.2. GWAS detected one QTL (HB5.1) on chromosome Pv05 for resistance to Race 6 with significant influence on seed yield. The same HB5.1 QTL, found in both Canadian Wonder × PI 150414 and Rojo × CAL 143 populations, was effective against Race 6 but lacks broad resistance. This study provides evidence for marker-assisted breeding for more durable halo blight control in common bean by combining alleles of race-nonspecific resistance (HB4.2 from PI 150414) and race-specific resistance (HB5.1 from cv. Rojo). PMID:28736566
Elevated [CO2] compromises both Type I and Type II wheat resistance to Fusarium head blight
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) is one of the world’s most devastating wheat diseases, and results in significant yield loss and contamination of grain with harmful mycotoxins called trichothecenes. Despite emerging risks of increased mycotoxin contamination in food and feed associated with climate chang...
NMR metabolomics analysis of the effect of elevated CO2 on wheat resistance to Fusarium head blight
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB), primarily induced by the filamentous ascomycete Fusarium graminearum (Fg), is one of the most damaging diseases in wheat and other small grain cereals worldwide. Current methods for disease control include utilization of less susceptible cultivars and treatment with fungi...
USDA-ARS?s Scientific Manuscript database
Current models to forecast Fusarium head blight (FHB) and deoxynivalenol (DON) levels in wheat are based on weather near anthesis, and breeding for resistance to Fusarium often relies on irrigation before and shortly after anthesis to encourage disease development. The effects of post-anthesis envi...
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) or scab, caused by Fusarium graminearum Schwabe, can cause significant economic losses in small grain production. There is a need to develop effective management strategies for FHB. Five field experiments were conducted from 2007 to 2009 to determine the effects of integ...
Are we getting better at using wild potato species in light of new tools?
USDA-ARS?s Scientific Manuscript database
Potato, mankind’s third most consumed food crop, originated as an interspecific hybrid in the Andean highlands. Potato stocks across Europe and North America were devastated by late blight epidemics in the mid-19th century and most varieties were destroyed. Fortunately, late blight resistance was fo...
Cooperative test plots produce some promising Chinese and hybrid chestnut trees
Jesse D. Diller; Russell B. Clapper; Richard A. Jaynes
1964-01-01
In attempts to find a chestnut tree that is resistant to the blight fungus Endothia parasitica, Asiatic chestnuts have been imported and grown in this country, and tree breeders have worked to produce hybrid trees that might be suitable substitutes for the blight-susceptible American chestnut, Castanea dentate, in timber and nut...
USDA-ARS?s Scientific Manuscript database
Bacterial panicle blight (BPB), caused by a bacterial pathogen, mainly Burkholderia glumae, has posed a higher level of threat to rice production worldwide in recent years. Here we report the response of over 300 entries evaluated by artificially inoculating with a bacterial suspension under field c...
Integration of fungicide application and cultivar resistance to manage fusarium head blight in wheat
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB), also known as scab, is a destructive disease of wheat and other small grain cereals. Losses are compounded by the associated mycotoxin deoxynivalenol (DON) which contaminates grain. This chapter provides a brief review of FHB of wheat in North America including occurren...
Thomas M. Saielli; Paul G. Schaberg; Gary J. Hawley; Joshua M. Halman; Kendra M. Gurney
2012-01-01
American chestnut (Castanea dentata (Marsh.) Borkh.) was functionally removed as a forest tree by chestnut blight (caused by the fungal pathogen Cryphonectria parasitica (Murr.) Barr). Hybrid-backcross breeding between blight-resistant Chinese chestnut (Castanea mollissima Blume) and American chestnut is used to...
Mikiciński, Artur; Sobiczewski, Piotr; Puławska, Joanna; Malusa, Eligio
2016-08-01
In a previous study (Mikiciński et al. in Eur J Plant Pathol, doi: 10.1007/s10658-015-0837-y , 2015), we described the characterization of novel strain 49M of Pseudomonas graminis, isolated from the phyllosphere of apple trees in Poland showing a good protective activity against fire blight on different organs of host plants. We now report investigations to clarify the basis for this activity. Strain 49M was found to produce siderophores on a medium containing complex CAS-Fe(3+) and HDTMA, but was not able to produce N-acyl homoserine lactones (AHLs). Moreover, it formed a biofilm on polystyrene and polyvinyl chloride (PVC) surfaces. Strain 49M gave a positive reaction in PCR with primers complementary to gacA, the regulatory gene influencing the production of several secondary metabolites including antibiotics. The genes prnD (encoding pyrrolnitrin), pltC, pltB (pyoluteorin), phlD (2,4-diacetyl-phloroglucinol) and phzC as well as phzD (and their homologs phzF and phzA encoding phenazine), described for antagonistic fluorescent pseudomonads, however, were not detected. Research into the biotic relationship between strain 49M and Erwinia amylovora strain Ea659 on five microbiological media showed that this strain clearly inhibited the growth of the pathogen on King's B and nutrient agar with glycerol media, to a very small extent on nutrient agar with sucrose, and not at all on Luria-Bertani agar. On medium 925, strain 49M even stimulated E. amylovora growth. The addition of ferric chloride to King's B resulted in the loss of its inhibitory ability. Testing the survival of 49M in vitro showed its resistance to drought, greater than that of E. amylovora.
Chuck Rhoades; David Loftis; Jeffrey Lewis; Stacy Clark
2009-01-01
After more than 50 years of research and selective breeding, blight-resistant American chestnut (Castanea dentata) trees will soon be available for planting into the species' pre-blight range. Increased understanding of the regeneration requirements of pure American chestnut (C. dentata [Marsh.] Borkh.) will increase the...
USDA-ARS?s Scientific Manuscript database
Fusarium graminearum is a very destructive fungal pathogen that leads to Fusarium head blight (FHB) in wheat, a disease that costs growers millions of dollars annually both in crop losses and control measures. Current countermeasures include the deployment of wheat varieties with some resistance to ...
Stacy L. Clark; Henry Mcnab; David Loftis; Stanley Zarnoch
2012-01-01
The ability to restore American chestnut (Castanea dentata) through the planting of blight-resistant (Cryphonectria parasitica) trees is currently being tested. Forest-based research on the speciesâ silvicultural requirements and chestnut blight development are lacking. Pure American chestnut seedlings were planted in a two-age...
USDA-ARS?s Scientific Manuscript database
Bacterial stem blight of alfalfa occurs sporadically in the central and western U.S. Yield losses of up to 50% of the first harvest can occur with some cultivars. Developing resistant cultivars is hampered by lack of information on the pathogen and a standard test for evaluating plant germplasm. Bac...
Stacy L. Clark; Scott E. Schlarbaum; A.M. Saxton; Fred V. Hebard
2011-01-01
The American chestnut (Castanea dentata Marsh. Borkh.) was decimated by an exotic fungus (chestnut blight [Cryphonectria parasitica Murr. Bar]) in the early part of the 20th century. The American Chestnut Foundation (TACF) uses a back-cross breeding program to produce a tree that is predicted to be American chestnut in character...
USDA-ARS?s Scientific Manuscript database
Mummy berry is an important disease of cultivated blueberry. The disease has two distinct phases; a blighting phase initiated by ascospores and a fruit infection stage initiated by conidia. In this study we investigated blueberry cultivar resistance to both phases of the disease and, utilizing ‘stan...
USDA-ARS?s Scientific Manuscript database
Resistance in oats (Avena sativa L.) to infection by Fusarium graminearum was assessed in field trials in 2011-12 including 424 spring oat lines from North America and Scandinavia. Traits measured were Fusarium Head Blight (FHB), deoxynivalenol (DON) content, days to flowering (DTF) and days to matu...
USDA-ARS?s Scientific Manuscript database
Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L.) in the central and western U.S. and has been reported in Australia and Europe. The disease is not always recognized because symptoms are often associated with frost damage. Two culti...
G. Geoff Wang; William L. Bauerle; Bryan T. Mudder
2006-01-01
American chestnut [Castanea dentate(Marshall) Borkh.] was a widely distributed tree species in the Eastern U.S., comprising an estimated 25 percent of native eastern hardwood forests. Chestnut blight eradicated American chestnut from the forest canopy by the 1950s, and now it only persists as understory sprouts. However, blight-resistant hybrids with...
Li, Xiaolin; Liu, Wen; Li, Bing; Liu, Guoyin; Wei, Yunxie; He, Chaozu; Shi, Haitao
2018-03-01
Gibberellin (GA) is an essential plant hormone in plant growth and development as well as various stress responses. DELLA proteins are important repressors of GA signal pathway. GA and DELLA have been extensively investigated in several model plants. However, the in vivo roles of GA and DELLA in cassava, one of the most important crops and energy crops in the tropical area, are unknown. In this study, systematic genome-wide analysis identified 4 MeDELLAs in cassava, as evidenced by the evolutionary tree, gene structures and motifs analyses. Gene expression analysis found that 4 MeDELLAs were commonly regulated by flg22 and Xanthomonas axonopodis pv manihotis (Xam). Through overexpression in Nicotiana benthamiana, we found that 4 MeDELLAs conferred improved disease resistance against cassava bacterial blight. Through virus-induced gene silencing (VIGS) in cassava, we found that MeDELLA-silenced plants exhibited decreased disease resistance, with less callose deposition and lower transcript levels of defense-related genes. This is the first study identifying MeDELLAs as positive regulators of disease resistance against cassava bacterial blight. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
2010-01-01
Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi) pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria. PMID:20047678
Cabrefiga, Jordi; Montesinos, Emilio
2017-02-17
Fire blight is an important disease affecting rosaceous plants. The causal agent is the bacteria Erwinia amylovora which is poorly controlled with the use of conventional bactericides and biopesticides. Antimicrobial peptides (AMPs) have been proposed as a new compounds suitable for plant disease control. BP100, a synthetic linear undecapeptide (KKLFKKILKYL-NH 2 ), has been reported to be effective against E. amylovora infections. Moreover, BP100 showed bacteriolytic activity, moderate susceptibility to protease degradation and low toxicity. However, the peptide concentration required for an effective control of infections in planta is too high due to some inactivation by tissue components. This is a limitation beause of the high cost of synthesis of this compound. We expected that the combination of BP100 with lysozyme may produce a synergistic effect, enhancing its activity and reducing the effective concentration needed for fire blight control. The combination of a synhetic multifunctional undecapeptide (BP100) with lysozyme produces a synergistic effect. We showed a significant increase of the antimicrobial activity against E. amylovora that was associated to the increase of cell membrane damage and to the reduction of cell metabolism. Combination of BP100 with lysozyme reduced the time required to achieve cell death and the minimal inhibitory concentration (MIC), and increased the activity of BP100 in the presence of leaf extracts even when the peptide was applied at low doses. The results obtained in vitro were confirmed in leaf infection bioassays. The combination of BP100 with lysozyme showed synergism on the bactericidal activity against E. amylovora and provide the basis for developing better formulations of antibacterial peptides for plant protection.
Hutabarat, Olly Sanny; Flachowsky, Henryk; Regos, Ionela; Miosic, Silvija; Kaufmann, Christine; Faramarzi, Shadab; Alam, Mohammed Zobayer; Gosch, Christian; Peil, Andreas; Richter, Klaus; Hanke, Magda-Viola; Treutter, Dieter; Stich, Karl; Halbwirth, Heidi
2016-05-01
Overexpression of chalcone-3-hydroxylase provokes increased accumulation of 3-hydroxyphloridzin in Malus . Decreased flavonoid concentrations but unchanged flavonoid class composition were observed. The increased 3-hydroxyphlorizin contents correlate well with reduced susceptibility to fire blight and scab. The involvement of dihydrochalcones in the apple defence mechanism against pathogens is discussed but unknown biosynthetic steps in their formation hamper studies on their physiological relevance. The formation of 3-hydroxyphloretin is one of the gaps in the pathway. Polyphenol oxidases and cytochrome P450 dependent enzymes could be involved. Hydroxylation of phloretin in position 3 has high similarity to the B-ring hydroxylation of flavonoids catalysed by the well-known flavonoid 3'-hydroxylase (F3'H). Using recombinant F3'H and chalcone 3-hydroxylase (CH3H) from Cosmos sulphureus we show that F3'H and CH3H accept phloretin to some extent but higher conversion rates are obtained with CH3H. To test whether CH3H catalyzes the hydroxylation of dihydrochalcones in planta and if this could be of physiological relevance, we created transgenic apple trees harbouring CH3H from C. sulphureus. The three transgenic lines obtained showed lower polyphenol concentrations but no shift between the main polyphenol classes dihydrochalcones, flavonols, hydroxycinnamic acids and flavan 3-ols. Increase of 3-hydroxyphloridzin within the dihydrochalcones and of epicatechin/catechin within soluble flavan 3-ols were observed. Decreased activity of dihydroflavonol 4-reductase and chalcone synthase/chalcone isomerase could partially explain the lower polyphenol concentrations. In comparison to the parent line, the transgenic CH3H-lines showed a lower disease susceptibility to fire blight and apple scab that correlated with the increased 3-hydroxyphlorizin contents.
Cabrefiga, J.; Francés, J.; Montesinos, E.; Bonaterra, A.
2011-01-01
The efficacy of Pseudomonas fluorescens EPS62e in the biocontrol of Erwinia amylovora was improved by a procedure of physiological adaptation to increase colonization and survival in the phytosphere of rosaceous plants. The procedure consisted of osmoadaptation (OA) and nutritional enhancement (NE). OA was based on saline stress and osmolyte amendment of the growth medium during inoculum preparation. NE consisted of addition of glycine and Tween 80 to the formulation. NE and OA increased the growth rate and carrying capacity of EPS62e under high-relative-humidity (RH) conditions and improved survival at low RH on flowers under controlled environmental conditions. NE did not promote growth or affect infection capacity of E. amylovora. The effect of both methods was tested in the field by following the population of EPS62e using quantitative PCR (Q-PCR) (total population) and CFU counting (culturable population) methods. Following field application, EPS62e colonized blossoms, but it was stressed, as indicated by a sharp decrease in culturable compared to total population levels. However, once established in flowers and at the end of bloom, almost all the total population was culturable. The physiological adaptation treatments increased population levels of EPS62e over those of nonadapted cells during the late stage of the flowering period. Control of fire blight infections in flowers and immature fruits was tested by field application of EPS62e and subsequent inoculation with E. amylovora under controlled-environment conditions. The efficacy of fire blight control increased significantly with the combination of nutritional enhancement and osmoadaptation, in comparison with the absence of physiological adaptation. PMID:21441337
Chizzali, Cornelia; Gaid, Mariam M.; Belkheir, Asma K.; Hänsch, Robert; Richter, Klaus; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola; Liu, Benye; Beerhues, Ludger
2012-01-01
Fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple (Malus × domestica). The phytoalexins of apple are biphenyls and dibenzofurans, whose carbon skeleton is formed by biphenyl synthase (BIS), a type III polyketide synthase. In the recently published genome sequence of apple ‘Golden Delicious’, nine BIS genes and four BIS gene fragments were detected. The nine genes fall into four subfamilies, referred to as MdBIS1 to MdBIS4. In a phylogenetic tree, the BIS amino acid sequences from apple and Sorbus aucuparia formed an individual cluster within the clade of the functionally diverse type III polyketide synthases. cDNAs encoding MdBIS1 to MdBIS4 were cloned from fire-blight-infected shoots of apple ‘Holsteiner Cox,’ heterologously expressed in Escherichia coli, and functionally analyzed. Benzoyl-coenzyme A and salicoyl-coenzyme A were the preferred starter substrates. In response to inoculation with E. amylovora, the BIS3 gene was expressed in stems of cv Holsteiner Cox, with highest transcript levels in the transition zone between necrotic and healthy tissues. The transition zone was the accumulation site of biphenyl and dibenzofuran phytoalexins. Leaves contained transcripts for BIS2 but failed to form immunodetectable amounts of BIS protein. In cell cultures of apple ‘Cox Orange,’ expression of the BIS1 to BIS3 genes was observed after the addition of an autoclaved E. amylovora suspension. Using immunofluorescence localization under a confocal laser-scanning microscope, the BIS3 protein in the transition zone of stems was detected in the parenchyma of the bark. Dot-shaped immunofluorescence was confined to the junctions between neighboring cortical parenchyma cells. PMID:22158676
Karmakar, Subhasis; Molla, Kutubuddin Ali; Chanda, Palas K; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi
2016-01-01
Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O-544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.
Mapping QTLs for Fusarium Head Blight Resistance in an Interspecific Wheat Population
Giancaspro, Angelica; Giove, Stefania L.; Zito, Daniela; Blanco, A.; Gadaleta, Agata
2016-01-01
Fusarium head blight (scab) is one of the most widespread and damaging diseases of wheat, causing grain yield and quality losses and production of harmful mycotoxins. Development of resistant varieties is hampered by lack of effective resistance sources in the tetraploid wheat primary gene pool. Here we dissected the genetic basis of resistance in a new durum wheat (Triticum turgidum ssp. durum) Recombinant inbred lines (RILs) population obtained by crossing an hexaploid resistant line and a durum susceptible cultivar. A total of 135 RILs were used for constituting a genetic linkage map and mapping loci for head blight incidence, severity, and disease-related plant morphological traits (plant height, spike compactness, and awn length). The new genetic map accounted for 4,366 single nucleotide polymorphism markers assembled in 52 linkage groups covering a total length of 4,227.37 cM. Major quantitative trait loci (QTL) for scab incidence and severity were mapped on chromosomes 2AS, 3AL, and 2AS, 2BS, 4BL, respectively. Plant height loci were identified on 3A, 3B, and 4B, while major QTL for ear compactness were found on 4A, 5A, 5B, 6A, and 7A. In this work, resistance to Fusarium was transferred from hexaploid to durum wheat, and correlations between the disease and morphological traits were assessed. PMID:27746787
Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo
2016-06-20
TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops. Copyright © 2016 Elsevier B.V. All rights reserved.
Thomas J. Molnar; John Capik; Clayton W. Leadbetter; Ning Zhang; Guohong Cai; Bradley I. Hillman
2012-01-01
Eastern filbert blight (EFB) is a devastating fungal disease of European hazelnut, Corylus avellana L., and is considered to be the primary reason hazelnuts have not been developed as a commercial crop in the eastern United States. The pathogen, Anisogramma anomala, is native to a wide area east of the Rocky Mountains, where it...
USDA-ARS?s Scientific Manuscript database
Pythium seedling blight, which is caused by a number of oomycete Pythium species, is a disease that affects soybeans (Glycine max (L.) Merrill) grown in the United States and Canada. Pythium ultimum var. ultimum, one of the most common species, is favored by cool, wet conditions that are most likely...
Jenise M. Bauman; Carolyn H. Keiffer; Shiv Hiremath
2012-01-01
American chestnut was eliminated as a canopy tree from the Appalachian region of North America with the introduction of chestnut blight in the early 1900s. Breeding programs initiated in the 1980s have produced seedling lines that display the pure American morphology with potential resistance to chestnut blight. More work is required to assess their field performance...
Chandra, Swarnendu; Chakraborty, Nilanjan; Panda, Koustubh; Acharya, Krishnendu
2017-06-01
Blister blight disease, caused by an obligate biotrophic fungal pathogen, Exobasidium vexans Massee is posing a serious threat for tea cultivation in Asia. As the use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption, serious attempts are being made to control such pathogens by boosting the intrinsic natural defense responses against invading pathogens in tea plants. In this study, the nature and durability of resistance offered by chitosan and the possible mechanism of chitosan-induced defense induction in Camellia sinensis (L.) O. Kuntze plants against blister blight disease were investigated. Foliar application of 0.01% chitosan solution at 15 days interval not only reduced the blister blight incidence for two seasons, but also maintained the induced expressions of different defense related enzymes and total phenol content compared to the control. Defense responses induced by chitosan were found to be down regulated under nitric oxide (NO) deficient conditions in vivo, indicating that the observed chitosan-induced resistance is probably activated via NO signaling. Such role of NO in host defense response was further established by application of the NO donor, sodium nitroprusside (SNP), which produced similar defense responses accomplished through chitosan treatment. Taken together, our results suggest that increased production of NO in chitosan-treated tea plants may play a critical role in triggering the innate defense responses effective against plant pathogens, including that causing the blister blight disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhuang, Jun; Coates, Christopher J; Mao, Qianzhuo; Wu, Zujian; Xie, Lianhui
2016-06-01
The viral-induced banana bunchy top disease and the fungal-induced banana blight are two major causes of concern for industrial scale production of bananas. Banana blight is particularly troublesome, affecting ∼80% of crops worldwide. Strict guidelines and protocols are in place in order to ameliorate the effects of this devastating disease, yet little success has been achieved. From the data presented here, we have found that Banana bunchy top virus (BBTV)-infected bananas are more resistant to Fusarium oxysporum f. sp. cubense (Foc). BBTV appears to be antagonistic towards Foc, thus improving the survivability of plants against blight. The BBTV suppressor of RNA silencing, namely protein B4, displays fungicidal properties in vitro. Furthermore, transgenic tomatoes expressing green fluorescent protein (GFP)-tagged protein B4 demonstrate enhanced resistance to F. oxysporum f. sp. lycopersici (Fol). Differential gene expression analysis indicates that increased numbers of photogenesis-related gene transcripts are present in dark-green leaves of B4-GFP-modified tomato plants relative to those found in WT plants. Conversely, the transcript abundance of immunity-related genes is substantially lower in transgenic tomatoes compared with WT plants, suggesting that plant defences may be influenced by protein B4. This viral-fungal interaction provides new insights into microbial community dynamics within a single host and has potential commercial value for the breeding of transgenic resistance to Fusarium-related blight/wilt. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Yogendra, Kalenahalli N; Dhokane, Dhananjay; Kushalappa, Ajjamada C; Sarmiento, Felipe; Rodriguez, Ernesto; Mosquera, Teresa
2017-03-01
The resistance to late blight is either qualitative or quantitative in nature. Quantitative resistance is durable, but challenging due to polygenic inheritance. In the present study, the diploid potato genotypes resistant and susceptible to late blight, were profiled for metabolites. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to pathogen infection revealed increased accumulation of morphinone, codeine-6-glucuronide and morphine-3-glucuronides. These BIAs are antimicrobial compounds and possibly involved in cell wall reinforcement, especially through cross-linking cell wall pectins. Quantitative reverse transcription-PCR studies revealed higher expressions of TyDC, NCS, COR-2 and StWRKY8 transcription factor genes, in resistant genotypes than in susceptible genotype, following pathogen inoculation. A luciferase transient expression assay confirmed the binding of the StWRKY8 TF to promoters of downstream genes, elucidating a direct regulatory role on BIAs biosynthetic genes. Sequence analysis of StWRKY8 in potato genotypes revealed polymorphism in the WRKY DNA binding domain in the susceptible genotype, which is important for the regulatory function of this gene. A complementation assay of StWRKY8 in Arabidopsis wrky33 mutant background was associated with decreased fungal biomass. In conclusion, StWRKY8 regulates the biosynthesis of BIAs that are both antimicrobial and reinforce cell walls to contain the pathogen to initial infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Han, Jigang; Lakshman, Dilip K; Galvez, Leny C; Mitra, Sharmila; Baenziger, Peter Stephen; Mitra, Amitava
2012-03-09
The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.
Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946
USDA-ARS?s Scientific Manuscript database
Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...
Genome-wide identification of genes regulated by the Rcs Phosphorelay system in Erwinia amylovora
USDA-ARS?s Scientific Manuscript database
The exopolysaccharide amylovoran is one of the major pathgenicity factors in Erwinia amylovora, the causal agent of fire blight of apples and pears. We have previously demonstrated that the RcsBCD phosphorelay system is essential for virulence by controlling amylovoran biosynthesis. We have also fou...
Effects of simulated prescribed fire on American chestnut and northern red oak regeneration
Ethan P. Belair; Mike R. Saunders; Stacy L. Clark
2014-01-01
American chestnut (Castanea dentata [Marsh.] Borkh.) was a dominant species in the forests of eastern North America prior to the importation of chestnut blight (Cryphonectria parasitica [Murr.] Barr) in the early 1900s and ink disease (Phytophthora cinnamomi Rands) in the 1800s (Anagnostakis 2012). Historical...
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2012-02-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1% on average today to over 60% in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g. insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2011-08-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1 % on average today to over 60 % in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g., insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
Smyda, P; Jakuczun, H; Dębski, K; Sliwka, J; Thieme, R; Nachtigall, M; Wasilewicz-Flis, I; Zimnoch-Guzowska, E
2013-08-01
Phytophthora infestans resistant somatic hybrids of S. × michoacanum (+) S. tuberosum and autofused 4 x S. × michoacanum were obtained. Our material is promising to introgress resistance from S. × michoacanum into cultivated potato background. Solanum × michoacanum (Bitter.) Rydb. (mch) is a wild diploid (2n = 2x = 24) potato species derived from spontaneous cross of S. bulbocastanum and S. pinnatisectum. This hybrid is a 1 EBN (endosperm balance number) species and can cross effectively only with other 1 EBN species. Plants of mch are resistant to Phytophthora infestans (Mont) de Bary. To introgress late blight resistance genes from mch into S. tuberosum (tbr), genepool somatic hybridization between mch and susceptible diploid potato clones (2n = 2x = 24) or potato cultivar Rywal (2n = 4x = 48) was performed. In total 18,775 calli were obtained from postfusion products from which 1,482 formed shoots. The Simple Sequence Repeat (SSR), Cleaved Amplified Polymorphic Sequences (CAPS) and Random Amplified Polymorphic DNA (RAPD) analyses confirmed hybrid nature of 228 plants and 116 autofused 4x mch. After evaluation of morphological features, flowering, pollen stainability, tuberization and ploidy level, 118 somatic hybrids and 116 autofused 4x mch were tested for late blight resistance using the detached leaf assay. After two seasons of testing three somatic hybrids and 109 4x mch were resistant. Resistant forms have adequate pollen stainability for use in crossing programme and are a promising material useful for introgression resistance from mch into the cultivated potato background.
Ning, Xi; Sun, Yao; Wang, Changchun; Zhang, Weilin; Sun, Meihao; Hu, Haitao; Liu, Jianzhong; Yang, Ling
2018-01-01
Glutaredoxins (GRXs) belong to the antioxidants involved in the cellular stress responses. In spite of the identification 48 GRX genes in rice genomes, the biological functions of most of them remain unknown. Especially, the biological roles of members of GRX family in disease resistance are still lacking. Our proteomic analysis found that OsGRX20 increased by 2.7-fold after infection by bacterial blight. In this study, we isolated and characterized the full-length nucleotide sequences of the rice OsGRX20 gene, which encodes a GRX family protein with CPFC active site of CPYC-type class. OsGRX20 protein was localized in nucleus and cytosol, and its transcripts were expressed predominantly in leaves. Several stress- and hormone-related motifs putatively acting as regulatory elements were found in the OsGRX20 promoter. Real-time quantitative PCR analysis indicated that OsGRX20 was expressed at a significantly higher level in leaves of a resistant or tolerant rice genotype, Yongjing 50A, than in a sensitive genotype, Xiushui 11, exposed to bacterial blight, methyl viologen, heat, and cold. Its expression could be induced by salt, PEG-6000, 2,4-D, salicylic acid, jasmonic acid, and abscisic acid treatments in Yongjing 50A. Overexpression of OsGRX20 in rice Xiushui 11 significantly enhanced its resistance to bacterial blight attack, and tolerance to methyl viologen and salt stresses. In contrast, interference of OsGRX20 in Yongjing 50A led to increased susceptibility to bacterial blight, methyl viologen and salt stresses. OsGRX20 restrained accumulation of superoxide radicals in aerial tissue during methyl viologen treatment. Consistently, alterations in OsGRX20 expression affect the ascorbate/dehydroascorbate ratio and the abundance of transcripts encoding four reactive oxygen species scavenging enzymes after methyl viologen-induced stress. Our results demonstrate that OsGRX20 functioned as a positive regulator in rice tolerance to multiple stresses, which may be of significant use in the genetic improvement of rice resistance.
Song, Yuan Yuan; Cao, Man; Xie, Li Jun; Liang, Xiao Ting; Zeng, Ren Sen; Su, Yi Juan; Huang, Jing Hua; Wang, Rui Long; Luo, Shi Ming
2011-11-01
Arbuscular mycorrhizas are the most important symbioses in terrestrial ecosystems and they enhance the plant defense against numerous soil-borne pathogenic fungi and nematodes. Two corn (Zea mays) varieties, Gaoyou-115 that is susceptible to sheath blight disease caused by Rhizoctonia solani and Yuenong-9 that is resistant, were used for mycorrhizal inoculation in this study. Pre-inoculation of susceptible Gaoyou-115 with arbuscular mycorrhizal fungus (AMF) Glomus mosseae significantly reduced the disease incidence and disease severity of sheath blight of corn. HPLC analysis showed that AMF inoculation led to significant increase in 2,4-dihydroxy-7-methoxy-2 H-1,4-benzoxazin-3(4 H)-one (DIMBOA) accumulation in the roots of both corn varieties and in leaves of resistant Yuenong-9. R. solani inoculation alone did not result in accumulation of DIMBOA in both roots and leaves of the two corn varieties. Our previous study showed that DIMBOA strongly inhibited mycelial growth of R. solani in vitro. Real-time PCR analysis showed that mycorrhizal inoculation itself did not affect the transcripts of most genes tested. However, pre-inoculation with G. mosseae induced strong responses of three defense-related genes PR2a, PAL, and AOS, as well as BX9, one of the key genes in DIMBOA biosynthesis pathway, in the leaves of corn plants of both Yuenong-9 and Gaoyou-115 after the pathogen attack. Induction of defense responses in pre-inoculated plants was much higher and quicker than that in non-inoculated plants upon R. solani infection. These results indicate that induction of accumulation of DIMBOA, an important phytoalexin in corn, and systemic defense responses by AMF, plays a vital role in enhanced disease resistance of mycorrhizal plants of corn against sheath blight. This study also suggests that priming is an important mechanism in mycorrhiza-induced resistance.
Hamdoun, Safae; Gao, Min; Gill, Manroop; Kwon, Ashley; Norelli, John L; Lu, Hua
2018-05-01
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages
Esplin, Ian N. D.; Berg, Jordan A.; Sharma, Ruchira; Allen, Robert C.; Arens, Daniel K.; Ashcroft, Cody R.; Bairett, Shannon R.; Beatty, Nolan J.; Bickmore, Madeline; Bloomfield, Travis J.; Brady, T. Scott; Bybee, Rachel N.; Carter, John L.; Choi, Minsey C.; Duncan, Steven; Fajardo, Christopher P.; Foy, Brayden B.; Fuhriman, David A.; Gibby, Paul D.; Grossarth, Savannah E.; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A.; Hurst, Emily; Hyde, Jonathan R.; Ingersoll, Kayleigh; Jacobson, Caitlin M.; James, Brady D.; Jarvis, Todd M.; Jaen-Anieves, Daniella; Jensen, Garrett L.; Knabe, Bradley K.; Kruger, Jared L.; Merrill, Bryan D.; Pape, Jenny A.; Payne Anderson, Ashley M.; Payne, David E.; Peck, Malia D.; Pollock, Samuel V.; Putnam, Micah J.; Ransom, Ethan K.; Ririe, Devin B.; Robinson, David M.; Rogers, Spencer L.; Russell, Kerri A.; Schoenhals, Jonathan E.; Shurtleff, Christopher A.; Simister, Austin R.; Smith, Hunter G.; Stephenson, Michael B.; Staley, Lyndsay A.; Stettler, Jason M.; Stratton, Mallorie L.; Tateoka, Olivia B.; Tatlow, P. J.; Taylor, Alexander S.; Thompson, Suzanne E.; Townsend, Michelle H.; Thurgood, Trever L.; Usher, Brittian K.; Whitley, Kiara V.; Ward, Andrew T.; Ward, Megan E. H.; Webb, Charles J.; Wienclaw, Trevor M.; Williamson, Taryn L.; Wells, Michael J.; Wright, Cole K.; Breakwell, Donald P.; Hope, Sandra
2017-01-01
ABSTRACT Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. PMID:29146842
USDA-ARS?s Scientific Manuscript database
Pantoea agglomerans E325, the active ingredient in a commercial product for fire blight control, was previously shown in vitro to produce a unique alkaline- and phosphate-sensitive antibiotic specific to Erwinia amylovora. Antibiosis was evaluated as a mode of antagonism on blossom stigmas using two...
Analysis of apple (Malus) responses to bacterial pathogens using an oligo microarray
USDA-ARS?s Scientific Manuscript database
Fire blight is a devastating disease of apple (Malus x domestica) caused by the bacterial pathogen Erwinia amylovora (Ea). When infiltrated into host leaves, Ea induces reactions similar to a hypersensitive response (HR). Type III (T3SS) associated effectors, especially DspA/E, are suspected to ha...
Biotechnology and apple breeding in Japan
Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko
2016-01-01
Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding. PMID:27069388
Biotechnology and apple breeding in Japan.
Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko
2016-01-01
Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.
2012-01-01
Background The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. Results A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Conclusions Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum. PMID:22405032
He, Bin; Tao, Xiang; Gu, Yinghong; Wei, Changhe; Cheng, Xiaojie; Xiao, Suqin; Cheng, Zaiquan; Zhang, Yizheng
2015-01-01
Oryza meyeriana (O. meyeriana), with a GG genome type (2n = 24), accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93–11) genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26) differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease resistance in O. meyeriana. PMID:26640944
Thieme, Ramona; Rakosy-Tican, Elena; Nachtigall, Marion; Schubert, Jörg; Hammann, Thilo; Antonova, Olga; Gavrilenko, Tatjana; Heimbach, Udo; Thieme, Thomas
2010-10-01
Interspecific somatic hybrids between commercial cultivars of potato Solanum tuberosum L. Agave and Delikat and the wild diploid species Solanum cardiophyllum Lindl. (cph) were produced by protoplast electrofusion. The hybrid nature of the regenerated plants was confirmed by flow cytometry, simple sequence repeat (SSR), amplified fragment length polymorphism (AFLP), microsatellite-anchored fragment length polymorphism (MFLP) markers and morphological analysis. Somatic hybrids were assessed for their resistance to Colorado potato beetle (CPB) using a laboratory bioassay, to Potato virus Y (PVY) by mechanical inoculation and field trials, and foliage blight in a greenhouse and by field trials. Twenty-four and 26 somatic hybrids of cph + cv. Agave or cph + cv. Delikat, respectively, showed no symptoms of infection with PVY, of which 3 and 12, respectively, were also resistant to foliage blight. One hybrid of cph + Agave performed best in CPB and PVY resistance tests. Of the somatic hybrids that were evaluated for their morphology and tuber yield in the field for 3 years, four did not differ significantly in tuber yield from the parental and standard cultivars. Progeny of hybrids was obtained by pollinating them with pollen from a cultivar, selfing or cross-pollination. The results confirm that protoplast electrofusion can be used to transfer the CPB, PVY and late blight resistance of cph into somatic hybrids. These resistant somatic hybrids can be used in pre-breeding studies, molecular characterization and for increasing the genetic diversity available for potato breeding by marker-assisted combinatorial introgression into the potato gene pool.
Li, Xiaolin; Fan, Shuhong; Hu, Wei; Liu, Guoyin; Wei, Yunxie; He, Chaozu; Shi, Haitao
2017-01-01
Basic domain-leucine zipper (bZIP) transcription factor, one type of conserved gene family, plays an important role in plant development and stress responses. Although 77 MebZIPs have been genome-wide identified in cassava, their in vivo roles remain unknown. In this study, we analyzed the expression pattern and the function of two MebZIPs ( MebZIP3 and MebZIP5 ) in response to pathogen infection. Gene expression analysis indicated that MebZIP3 and MebZIP5 were commonly regulated by flg22, Xanthomonas axonopodis pv. manihotis ( Xam ), salicylic acid (SA), and hydrogen peroxide (H 2 O 2 ). Subcellular localization analysis showed that MebZIP3 and MebZIP5 are specifically located in cell nucleus. Through overexpression in tobacco, we found that MebZIP3 and MebZIP5 conferred improved disease resistance against cassava bacterial blight, with more callose depositions. On the contrary, MebZIP3- and MebZIP5 -silenced plants by virus-induced gene silencing (VIGS) showed disease sensitive phenotype, lower transcript levels of defense-related genes and less callose depositions. Taken together, this study highlights the positive role of MebZIP3 and MebZIP5 in disease resistance against cassava bacterial blight for further utilization in genetic improvement of cassava disease resistance.
Ramos, Laura S.; Lehman, Brian L.; Peter, Kari A.
2014-01-01
Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state. PMID:25172854
Ramos, Laura S; Lehman, Brian L; Peter, Kari A; McNellis, Timothy W
2014-11-01
Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Paternoster, Thomas; Vrhovsek, Urska; Pertot, Ilaria; Duffy, Brion; Gessler, Cesare; Mattivi, Fulvio
2009-11-11
Erwinia amylovora causes fire blight, a serious disease of apple and pear. The bacterial pathogen colonizes the flower stigma and hypanthium, where it multiplies and then invades through natural openings (nectarthodes). E. amylovora requires nicotinic acid as growth factor, and competition for nicotinic acid is being explored as a novel biocontrol strategy. The ability of E. amylovora to substitute nicotinic acid with analogues or derivates as growth factors has not been investigated yet. Furthermore, the presence and/or variable concentration of nicotinic acid and its analogues/derivates in the hypanthium could be associated with the different susceptibilities to fire blight of hosts and nonhosts and with the differential sensitivity to the disease among apple and pear varieties. Currently, no methods to specifically quantify nicotinic acid and nicotinic acid analogues/derivates in the hypanthium of apple and pear blossoms are available. This study demonstrates that E. amylovora can grow using nicotinamide and 6-hydroxynicotinic acid as alternative growth factors to nicotinic acid, but not using 2-hydroxynicotinic acid. A novel HPLC/ES-MS method was developed for the detection and quantification of nicotinic acid and its analogues/derivates directly in the hypanthium of apple and pear blossoms. Analyses established the presence of nicotinic acid and nicotinamide, whereas no detectable amounts of 6-hydroxynicotinic acid and 2-hydroxynicotinic acid were observed. Mean nicotinic acid content in the pear hypanthium was found to be approximately 2 orders of magnitude higher than in the apple hypanthium, which may contribute to the differential susceptibility of these two host species to fire blight. Contents of nicotinamide were in contrast similar. Nicotinic acid can therefore be considered a relevant factor in the pathogen establishment in pear blossoms, whereas nicotinamide could cover a primary role in apple blossoms.
Influence of temperature regimes on resistance gene-mediated response to rice bacterial blight
USDA-ARS?s Scientific Manuscript database
Increasing temperatures could reduce yield growth rate of rice by 10% in several rice production areas. Similarly, higher temperatures are predicted to accelerate the breakdown of plant disease resistance through higher disease pressure or altered resistance (R) gene effectiveness in many host-path...
A maize caffeoyl-CoA O-methyltransferase gene confers quantitative resistance to multiple pathogens
USDA-ARS?s Scientific Manuscript database
Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement though molecular mechanisms underlying their functions remain largely unknown. A QTL, qMdr9.02, associated with resistance to three important foliar maize diseases, southern leaf blight (SLB), gray leaf spot (GLS)...
Response to oxalic acid as a resistance assay for Sclerotinia minor in peanut
USDA-ARS?s Scientific Manuscript database
Response to oxalic acid was evaluated as a potential assay for screening peanut breeding lines for resistance to Sclerotinia blight caused by Sclerotinia minor. Detached stems of seven Spanish- and six runner-type peanut cultivars and advanced breeding lines, varying in resistance to Sclerotinia bl...
SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice.
Lee, In Hye; Jung, Yu-Jin; Cho, Yong Gu; Nou, Ill Sup; Huq, Md Amdadul; Nogoy, Franz Marielle; Kang, Kwon-Kyoo
2017-01-01
Human LL-37 is a multifunctional antimicrobial peptide of cathelicidin family. It has been shown in recent studies that it can serve as a host's defense against influenza A virus. We now demonstrate in this study how signal peptide LL-37 (SP-LL-37) can be used in rice resistance against bacterial leaf blight and blast. We synthesized LL-37 peptide and subcloned in a recombinant pPZP vector with pGD1 as promoter. SP-LL-37 was introduced into rice plants by Agrobacterium mediated transformation. Stable expression of SP-LL-37 in transgenic rice plants was confirmed by RT-PCR and ELISA analyses. Subcellular localization of SP-LL-37-GFP fusion protein showed evidently in intercellular space. Our data on testing for resistance to bacterial leaf blight and blast revealed that the transgenic lines are highly resistant compared to its wildtype. Our results suggest that LL-37 can be further explored to improve wide-spectrum resistance to biotic stress in rice.
Taniguchi, Shiduku; Hosokawa-Shinonaga, Yumi; Tamaoki, Daisuke; Yamada, Shoko; Akimitsu, Kazuya; Gomi, Kenji
2014-02-01
Jasmonic acid (JA) is involved in the regulation of host immunity in plants. Recently, we demonstrated that JA signalling has an important role in resistance to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Here, we report that many volatile compounds accumulate in response to exogenous application of JA, including the monoterpene linalool. Expression of linalool synthase was up-regulated by JA. Vapour treatment with linalool induced resistance to Xoo, and transgenic rice plants overexpressing linalool synthase were more resistance to Xoo, presumably due to the up-regulation of defence-related genes in the absence of any treatment. JA-induced accumulation of linalool was regulated by OsJAZ8, a rice jasmonate ZIM-domain protein involving the JA signalling pathway at the transcriptional level, suggesting that linalool plays an important role in JA-induced resistance to Xoo in rice. © 2013 John Wiley & Sons Ltd.
Steed, A; Chandler, E; Thomsett, M; Gosman, N; Faure, S; Nicholson, P
2005-08-01
Using a set of 21 substitution lines of Triticum macha in a 'Hobbit Sib' background, it was previously demonstrated that chromosome 4A of T. macha carries significant resistance to Fusarium head blight. In the present study, the T. macha 4A resistance was further characterized in a 'Hobbit Sib' (T. macha 4A) single-recombinant chromosome doubled haploid (DH) population. Lines were phenotyped for disease resistance, yield components and deoxynivalenol (DON) mycotoxin content over two consecutive seasons. Both resistance to spread and resistance to initial infection were examined, and it was established that the resistance residing on T. macha 4A is predominantly of type I (resistance to initial infection). It was demonstrated that this type I resistance significantly lowered levels of DON accumulation in the grain and improved yield components under high disease pressure. Genotyping the DH lines using microsatellite genetic markers enabled the location of the gene(s) for resistance to be assigned to a region of the short arm of chromosome 4A, distal to microsatellite marker Xgwm601 and co-segregating with microsatellite marker Xgwm165 in this population.
Perlikowski, Dawid; Wiśniewska, Halina; Kaczmarek, Joanna; Góral, Tomasz; Ochodzki, Piotr; Kwiatek, Michał; Majka, Maciej; Augustyniak, Adam; Kosmala, Arkadiusz
2016-01-01
Highlight: The level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to Fusarium head blight. Triticale was used here as a model to recognize new components of molecular mechanism of resistance to Fusarium head blight (FHB) in cereals. Fusarium-damaged kernels (FDK) of two lines distinct in levels of resistance to FHB were applied into a proteome profiling using two-dimensional gel electrophoresis (2-DE) to create protein maps and mass spectrometry (MS) to identify the proteins differentially accumulated between the analyzed lines. This proteomic research was supported by a measurement of alpha- and beta-amylase activities, mycotoxin content, and fungal biomass in the analyzed kernels. The 2-DE analysis indicated a total of 23 spots with clear differences in a protein content between the more resistant and more susceptible triticale lines after infection with Fusarium culmorum. A majority of the proteins were involved in a cell carbohydrate metabolism, stressing the importance of this protein group in a plant response to Fusarium infection. The increased accumulation levels of different isoforms of plant beta-amylase were observed for a more susceptible triticale line after inoculation but these were not supported by a total level of beta-amylase activity, showing the highest value in the control conditions. The more resistant line was characterized by a higher abundance of alpha-amylase inhibitor CM2 subunit and simultaneously a lower activity of alpha-amylase after inoculation. We suggest that the level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to FHB. PMID:27582751
Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages.
Esplin, Ian N D; Berg, Jordan A; Sharma, Ruchira; Allen, Robert C; Arens, Daniel K; Ashcroft, Cody R; Bairett, Shannon R; Beatty, Nolan J; Bickmore, Madeline; Bloomfield, Travis J; Brady, T Scott; Bybee, Rachel N; Carter, John L; Choi, Minsey C; Duncan, Steven; Fajardo, Christopher P; Foy, Brayden B; Fuhriman, David A; Gibby, Paul D; Grossarth, Savannah E; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A; Hurst, Emily; Hyde, Jonathan R; Ingersoll, Kayleigh; Jacobson, Caitlin M; James, Brady D; Jarvis, Todd M; Jaen-Anieves, Daniella; Jensen, Garrett L; Knabe, Bradley K; Kruger, Jared L; Merrill, Bryan D; Pape, Jenny A; Payne Anderson, Ashley M; Payne, David E; Peck, Malia D; Pollock, Samuel V; Putnam, Micah J; Ransom, Ethan K; Ririe, Devin B; Robinson, David M; Rogers, Spencer L; Russell, Kerri A; Schoenhals, Jonathan E; Shurtleff, Christopher A; Simister, Austin R; Smith, Hunter G; Stephenson, Michael B; Staley, Lyndsay A; Stettler, Jason M; Stratton, Mallorie L; Tateoka, Olivia B; Tatlow, P J; Taylor, Alexander S; Thompson, Suzanne E; Townsend, Michelle H; Thurgood, Trever L; Usher, Brittian K; Whitley, Kiara V; Ward, Andrew T; Ward, Megan E H; Webb, Charles J; Wienclaw, Trevor M; Williamson, Taryn L; Wells, Michael J; Wright, Cole K; Breakwell, Donald P; Hope, Sandra; Grose, Julianne H
2017-11-16
Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. Copyright © 2017 Esplin et al.
American Chestnut, Rhododendron, and the Future Of Appalachian Cove Forests
David H. van Lear; D.B. Vandermast; C.T. Rivers; T.T. Baker; C.W. Hedman; B.D. Clinton; T.A. Waldrop
2002-01-01
Abstract - By the mid 1930s, the southern Appalachians had been heavily cutover and the dominant hardwood, American chestnut (Castanea dentata), had succumbed to the chestnut blight (Cryphonectria parasitica). Forests that had been burned on a frequent basis for millennia were now protected and fire was excluded in large degree. We estimated the pre-...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2011-1016; FRL-9331-5] Kasugamycin; Receipt of... treat up to 10,000 acres of apples to control fire blight. The applicant proposes the use of a new...-OPP-2011-1016, by one of the following methods: Federal eRulemaking Portal: http://www.regulations.gov...
USDA-ARS?s Scientific Manuscript database
The histidine-reversible antibiotic pantocin A is produced by Pantoea vagans strain C9-1 and Pantoea agglomerans strains Eh252, EH318 and P10c and contributes significantly to efficacy of biological control of fire blight of pear and apple flowers caused by Erwinia amylovora. Antibiosis by pantocin ...
Balint-Kurti, P J; Krakowsky, M D; Jines, M P; Robertson, L A; Molnár, T L; Goodman, M M; Holl, J B
2006-10-01
ABSTRACT A recombinant inbred line population derived from a cross between the maize lines NC300 (resistant) and B104 (susceptible) was evaluated for resistance to southern leaf blight (SLB) disease caused by Cochliobolus heterostrophus race O and for days to anthesis in four environments (Clayton, NC, and Tifton, GA, in both 2004 and 2005). Entry mean and average genetic correlations between disease ratings in different environments were high (0.78 to 0.89 and 0.9, respectively) and the overall entry mean heritability for SLB resistance was 0.89. When weighted mean disease ratings were fitted to a model using multiple interval mapping, seven potential quantitative trait loci (QTL) were identified, the two strongest being on chromosomes 3 (bin 3.04) and 9 (bin 9.03-9.04). These QTL explained a combined 80% of the phenotypic variation for SLB resistance. Some time-point-specific SLB resistance QTL were also identified. There was no significant correlation between disease resistance and days to anthesis. Six putative QTL for time to anthesis were identified, none of which coincided with any SLB resistance QTL.
Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus
Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen
2015-01-01
Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza-primed disease resistance. PMID:26442091
Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus.
Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen
2015-01-01
Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza-primed disease resistance.
Massa, Alicia N; Manrique-Carpintero, Norma C; Coombs, Joseph J; Zarka, Daniel G; Boone, Anne E; Kirk, William W; Hackett, Christine A; Bryan, Glenn J; Douches, David S
2015-09-14
The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in "Jacqueline Lee." The best SNP marker mapped ~0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ~0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. Copyright © 2015 Massa et al.
Massa, Alicia N.; Manrique-Carpintero, Norma C.; Coombs, Joseph J.; Zarka, Daniel G.; Boone, Anne E.; Kirk, William W.; Hackett, Christine A.; Bryan, Glenn J.; Douches, David S.
2015-01-01
The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597
Biometric Analyses of the Inheritance of Resistance to Didymella rabiei in Chickpea.
Lichtenzveig, J; Shtienberg, D; Zhang, H B; Bonfil, D J; Abbo, S
2002-04-01
ABSTRACT Historically, the response of chickpea (Cicer arietinum L.) to Didymella rabiei (causal agent of Ascochyta blight) has been mainly related to as complete resistance and it was commonly assayed with qualitative (nonparametric) scales. Two reciprocal populations, derived from intra-specific crosses between a moderately resistant late flowering Israeli cultivar and a highly susceptible early flowering Indian accession, were tested at F(3) and F(4) generations in 1998 and 1999, respectively. A quantitative (parametric) assessment (percent disease severity) was used to evaluate the chickpea field response to Ascochyta blight. The transformed relative area under the disease progress curve (tRAUDPC) was calculated for each experimental unit for further analyses. Heritability estimates of the tRAUDPC were relatively high (0.67 to 0.85) in both generations for both reciprocal populations. The frequency distributions of tRAUDPC of the populations were continuous and significantly departed from normality (Shapiro-Wilk W test; P of W < 0.0001), being all platykurtic and skewed toward either the resistant or the susceptible parental lines. The presence of major genes was examined by testing the relationship between the F(3) and F(4) family means and the within-family variances (Fain's test). Analyses of these relationships suggested that segregation of a single (or few) quantitative trait locus with major effect and possibly other minor loci was the predominant mode of inheritance. The correlation estimates between the resistance and days to flower (r = -0.19 to -0.44) were negative and significantly (P = 0.054 to 0.001) different from zero, which represents a breeding constraint in the development of early flowering cultivars with Ascochyta blight resistance.
Fusarium head blight resistance in durum wheat – progress and challenge
USDA-ARS?s Scientific Manuscript database
Several sources of FHB resistance have been identified in tetraploid wheat, including durum (Triticum turgidum ssp. durum, genome AABB), emmer (T. turgidum ssp. dicoccum, genome AABB), wild emmer (T. turgidum ssp. dicoccoides, genome AABB), Persian wheat (T. turgidum ssp. carthlicum, genome AABB...
Santos, J S; Amaral Júnior, A T; Vivas, M; Mafra, G S; Pena, G F; Silva, F H L; Guimarães, A G
2017-09-27
The present study was conducted to investigate the genetic control and to estimate the general and specific combining abilities of popcorn for agronomic attributes and attributes related to resistance to northern leaf blight (NLB). The 56 hybrids (F 1 and reciprocals), together with the eight parent lines and six controls, were evaluated in two harvests, in a randomized-block design with four replications. Dominance components were more expressive than the additive components for grain yield and expression of resistance, and hybridization was the most suitable option for obtaining resistant and productive genotypes. For grain yield, popping expansion, and resistance to NLB, there was no significance for reciprocal effects, which indicates that the direction in which the cross is performed does not interfere with the hybrid's performance. Then, the superior hybrids recommended for more profitable growth were P8 x L61, L61 x L76, and L61 x L77.
USDA-ARS?s Scientific Manuscript database
Fire blight is a devastating disease of rosaceous plants caused by the Gram-negative bacterium E. amylovora. This pathogen delivers virulence proteins into host cells utilizing the Type-Three Secretion System (T3SS). Expression of the T3SS and associated substrates are activated by the alternative s...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... Application for Emergency Exemption for Use on Apples in Michigan, Solicitation of Public Comment AGENCY... treat up to 10,000 acres of apples to control fire blight. The applicant proposes the use of a new... Agriculture has requested the Administrator to issue a specific exemption for the use of kasugamycin on apples...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... apples to control fire blight. The applicant proposes the use of a new chemical which has not been... Agriculture has requested the Administrator to issue a specific exemption for the use of kasugamycin on apples... applicant states that up to 50% of the yield of susceptible apple varieties could be lost in 2010. The...
Fire behavioral changes as a result of sudden oak death in coastal California forests
Y. Vlachovic; C. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo
2013-01-01
Field observations and anecdotal evidence suggest that sudden oak death (SOD), a disease caused by the pathogen Phytophthora ramorum, may alter fuel loading in affected forests. Though it is reasonable to assume that a disease resulting in leaf blight, dead branches, and tree mortality would increase forest fuels, little work has been done to...
Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra
2015-01-01
This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473
Gao, Liangliang; Tu, Zheng Jin; Millett, Benjamin P; Bradeen, James M
2013-05-23
The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. Although interaction transcriptome dynamics between potato foliage and various pathogens have been reported, no transcriptome study has focused specifically upon how potato tubers respond to pathogen infection. When inoculated with P. infestans, tubers of nontransformed 'Russet Burbank' (WT) potato develop late blight disease while those of transgenic 'Russet Burbank' line SP2211 (+RB), which expresses the potato late blight resistance gene RB (Rpi-blb1), do not. We compared transcriptome responses to P. infestans inoculation in tubers of these two lines. We demonstrated the practicality of RNA-seq to study tetraploid potato and present the first RNA-seq study of potato tuber diseases. A total of 483 million paired end Illumina RNA-seq reads were generated, representing the transcription of around 30,000 potato genes. Differentially expressed genes, gene groups and ontology bins that exhibited differences between the WT and +RB lines were identified. P. infestans transcripts, including those of known effectors, were also identified. Faster and stronger activation of defense related genes, gene groups and ontology bins correlate with successful tuber resistance against P. infestans. Our results suggest that the hypersensitive response is likely a general form of resistance against the hemibiotrophic P. infestans-even in potato tubers, organs that develop below ground.
2013-01-01
Background The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. Although interaction transcriptome dynamics between potato foliage and various pathogens have been reported, no transcriptome study has focused specifically upon how potato tubers respond to pathogen infection. When inoculated with P. infestans, tubers of nontransformed ‘Russet Burbank’ (WT) potato develop late blight disease while those of transgenic ‘Russet Burbank’ line SP2211 (+RB), which expresses the potato late blight resistance gene RB (Rpi-blb1), do not. We compared transcriptome responses to P. infestans inoculation in tubers of these two lines. Results We demonstrated the practicality of RNA-seq to study tetraploid potato and present the first RNA-seq study of potato tuber diseases. A total of 483 million paired end Illumina RNA-seq reads were generated, representing the transcription of around 30,000 potato genes. Differentially expressed genes, gene groups and ontology bins that exhibited differences between the WT and +RB lines were identified. P. infestans transcripts, including those of known effectors, were also identified. Conclusion Faster and stronger activation of defense related genes, gene groups and ontology bins correlate with successful tuber resistance against P. infestans. Our results suggest that the hypersensitive response is likely a general form of resistance against the hemibiotrophic P. infestans—even in potato tubers, organs that develop below ground. PMID:23702331
Cohen, Stephen P; Liu, Hongxia; Argueso, Cristiana T; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie; Leach, Jan E
2017-01-01
Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic acid is an important node for cross-talk between plant transcriptional response pathways to high temperature stress and pathogen attack. Genes in this pathway represent an important focus for future study to determine how plants evolved to deal with simultaneous abiotic and biotic stresses.
Argueso, Cristiana T.; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie
2017-01-01
Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic acid is an important node for cross-talk between plant transcriptional response pathways to high temperature stress and pathogen attack. Genes in this pathway represent an important focus for future study to determine how plants evolved to deal with simultaneous abiotic and biotic stresses. PMID:29107972
Abdollahi, Hamid; Ghahremani, Zahra; Erfaninia, Kobra; Mehrabi, Rahim
2015-05-01
Erwinia amylovora is a necrogenic bacterium, causing the fire blight disease on many rosaceous plants. Triggering oxidative burst by E. amylovora is a key response by which host plants try to restrain pathogen spread. Electron transport chain (ETC) of chloroplasts is known as an inducible source of reactive oxygen species generation in various stresses. This research was performed to assess the role of this ETC in E. amylovora-host interaction using several inhibitors of this chain in susceptible and resistant apple and pear genotypes. All ETC inhibitors delayed appearance of disease necrosis, but the effects of methyl viologen, glutaraldehyde, and DCMU were more significant. In the absence of inhibitors, resistant genotypes showed an earlier and severe H2O2 generation and early suppression of redox dependent, psbA gene. The effects of inhibitors were corresponding to the redox potential of ETC inhibitory sites. In addition, delayed necrosis appearance was associated with the decreased disease severity and delayed H2O2 generation. These results provide evidences for the involvement of this ETC in host oxidative burst and suggest that chloroplast ETC has significant role in E. amylovora-host interaction.
Status and future of breeding disease-resistant American chestnut
J. Westbrook; F.V. Hebard; S.F. Fitzsimmons; J. Donahue
2017-01-01
The American Chestnut Foundation (TACF) has worked since 1983 to introduce genetic resistance to the chestnut blight fungus (Cryphonectria parasitica) into an American chestnut (Castanea dentata) population. As part of a broader goal for species restoration, TACF seeks to instill within that population sufficient diversity so as to enable the...
USDA-ARS?s Scientific Manuscript database
Development of resistance to fungicides is a major concern in managing potato late blight disease caused by Phytophthora infestans. The problem is P. infestans is capable of sexual recombination contributing to increased strain variability and high adaptability that hastens the development of resis...
USDA-ARS?s Scientific Manuscript database
Payette Russet is a full season, russet-skinned potato cultivar notable for its cold-sweetening resistance and associated low acrylamide formation, making it a cultivar suitable for processing into French fries and other potato products. Low concentrations of asparagine and glucose in tubers of Pay...
Genetic architecture of fusarium head blight resistance in four winter triticale populations.
Kalih, R; Maurer, H P; Miedaner, T
2015-03-01
Fusarium head blight (FHB) is a devastating disease that causes significant reductions in yield and quality in wheat, rye, and triticale. In triticale, knowledge of the genetic architecture of FHB resistance is missing but essential due to modern breeding requirements. In our study, four doubled-haploid triticale populations (N=120 to 200) were evaluated for resistance to FHB caused by artificial inoculation with Fusarium culmorum in four environments. DArT markers were used to genotype triticale populations. Seventeen quantitative trait loci (QTL) for FHB resistance were detected across all populations; six of them were derived from rye genome and located on chromosomes 4R, 5R, and 7R, which are here reported for the first time. The total cross-validated ratio of the explained phenotypic variance for all detected QTL in each population was 41 to 68%. In all, 17 QTL for plant height and 18 QTL for heading stage were also detected across all populations; 3 and 5 of them, respectively, were overlapping with QTL for FHB. In conclusion, FHB resistance in triticale is caused by a multitude of QTL, and pyramiding them contributes to higher resistance.
Vontimitta, Vijay; Olukolu, Bode A; Penning, Bryan W; Johal, Gurmukh; Balint-Kurti, P J
2015-11-01
In this paper, we determine the genetic architecture controlling leaf flecking in maize and investigate its relationship to disease resistance and the defense response. Flecking is defined as a mild, often environmentally dependent lesion phenotype observed on the leaves of several commonly used maize inbred lines. Anecdotal evidence suggests a link between flecking and enhanced broad-spectrum disease resistance. Neither the genetic basis underlying flecking nor its possible relationship to disease resistance has been systematically evaluated. The commonly used maize inbred Mo17 has a mild flecking phenotype. The IBM-advanced intercross mapping population, derived from a cross between Mo17 and another commonly used inbred B73, has been used for mapping a number of traits in maize including several related to disease resistance. In this study, flecking was assessed in the IBM population over 6 environments. Several quantitative trait loci for flecking were identified, with the strongest one located on chromosome 6. Low but moderately significant correlations were observed between stronger flecking and higher disease resistance with respect to two diseases, southern leaf blight and northern leaf blight and between stronger flecking and a stronger defense response.
Translations on Eastern Europe, Scientific Affairs, Number 596
1978-08-09
powdery mildew types vi- able in the presence of these types of blight emerged and spread on the Kavkaz and Aurora wheat (No 2, 4, 9, 26, and 52). In our...for approximately 10 percent of the wheat acre- age. This type was practically fully resistant to powdery mildew until 1976 but in 1977 was already...2; 3 4; 3 2; 3; 4 1; 2; 3 2; 3 1; 3 4 3 4 3; 4 3; 4 3; 2 Powdery - mildew and blight infestation of approved autumn wheat types and
USDA-ARS?s Scientific Manuscript database
Pantoea agglomerans strain E325, the active ingredient in a commercial product for fire blight, previously was shown to produce a unique pH-sensitive inhibitor in vitro that is specific to E. amylovora. To evaluate antibiosis as a mode of antagonism of E325, Tn5 mutagenesis was used to generate...
Wei, Yunxie; Chang, Yanli; Zeng, Hongqiu; Liu, Guoyin; He, Chaozu; Shi, Haitao
2018-01-01
With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gao, Yue; Zhang, Chong; Han, Xiao; Wang, Zi Yuan; Ma, Lai; Yuan, De Peng; Wu, Jing Ni; Zhu, Xiao Feng; Liu, Jing Miao; Li, Dao Pin; Hu, Yi Bing; Xuan, Yuan Hu
2018-04-16
Pathogen-host interaction is a complicated process; pathogens mainly infect host plants to acquire nutrients, especially sugars. Rhizoctonia solani, the causative agent of sheath blight disease, is a major pathogen of rice. However, it is not known, as to how this pathogen obtains sugar from rice plants. In this study, we found that the rice sugar transporter, OsSWEET11 is involved in the pathogenesis of sheath blight disease. qRT-PCR and β-d-glucuronidase expression analyses showed that R. solani infection significantly enhanced OsSWEET11 expression in leaves among the clade III SWEET members. The analyses of transgenic plants revealed that Ossweet11 mutants were less susceptible, whereas plants overexpressing OsSWEET11 were more susceptible to sheath blight compared to wild-type controls, but the yield of OsSWEET11 mutants and overexpressors was reduced. SWEETs become active upon oligomerization. Split-ubiquitin yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that mutated-OsSWEET11 interacted with normal OsSWEET11. In addition, expressing conserved residue mutated-AtSWEET1 inhibits normal AtSWEET1 activity. To analyze whether inhibition of OsSWEET11 function in mesophyll cells is related to defense against this disease, mutated- OsSWEET11 was expressed under the control of Rubisco promoter, which is specific for green tissues. The resistance of transgenic plants to sheath blight disease, but not other disease was improved, while yield production was not evidently affected. Overall, these results suggest that R. solani might acquire sugar from rice leaves by activating OsSWEET11 expression. The plants can be protected from infection by manipulating the expression of OsSWEET11 without affecting the crop yield. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.
A novel genome mutation in wheat increases Fusarium Head Blight resistance
USDA-ARS?s Scientific Manuscript database
We sought to validate an FHB resistance QTL reported to be on chromosome 2A in the soft red winter wheat cultivar Freedom by introducing it into the highly susceptible rapid maturing dwarf wheat Apogee. Marker-assisted backcrossing with an SSR marker reported to be associated with this QTL was under...
USDA-ARS?s Scientific Manuscript database
Plant scientists make inferences and predictions from phylogenetic trees to solve scientific problems. Crop losses due to disease damage is an important problem that many plant breeders would like to solve, so the ability to predict traits like disease resistance from phylogenetic trees derived from...
Yield effecgs of two southern leaf blight resistance loci in maize hybrids
USDA-ARS?s Scientific Manuscript database
Plants need to balance resources between yield and defense. This phenomenon has rarely been investigated in the context of naturally-occurring quantitative resistance alleles in an agricultural production environment. B73-3B and B73-6A are two near-isogenic lines (NILs) in the background of the mai...
Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad
2016-07-01
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.
USDA-ARS?s Scientific Manuscript database
The Gram-negative bacterium Erwinia amylovora (Burrill) Winslow. et al., causal agent of fire blight disease in pome fruit trees, encodes a type three secretion system (T3SS) that functions to translocate effector proteins into plant cells that collectively function to suppress host defenses and ena...
Influence of native plasmids to fitness of Pantoea vagans strain C9-1
USDA-ARS?s Scientific Manuscript database
Pantoea vagans strain C9-1 is a biological control agent for fire blight caused by Erwinia amylovora. We cured C9-1 of two of its three plasmids: pPag2, pPag3, and both pPag2 and pPag3, tested phenotypes of the derivatives, and evaluated blossom colonization in the field. pPag2 (166 kb) encodes for ...
USDA-ARS?s Scientific Manuscript database
Pantoea vagans strain C9-1 is an effective biological control agent for fire blight of pear and apple. C9-1 carries three circular plasmids: pPag1 (168 kb), pPag2 (166 kb), and pPag3 (530 kb). Of these, pPag3, a member of the large Pantoea plasmid family, was proposed to contribute to epiphytic fitn...
Bühlmann, Andreas; Pothier, Joël F; Rezzonico, Fabio; Smits, Theo H M; Andreou, Michael; Boonham, Neil; Duffy, Brion; Frey, Jürg E
2013-03-01
Several molecular methods have been developed for the detection of Erwinia amylovora, the causal agent of fire blight in pear and apple, but none are truly applicable for on-site use in the field. We developed a fast, reliable and field applicable detection method using a novel target on the E. amylovora chromosome that we identified by applying a comparative genomic pipeline. The target coding sequences (CDSs) are both uniquely specific for and all-inclusive of E. amylovora genotypes. This avoids potential false negatives that can occur with most commonly used methods based on amplification of plasmid gene targets, which can vary among strains. Loop-mediated isothermal AMPlification (LAMP) with OptiGene Genie II chemistry and instrumentation proved to be an exceptionally rapid (under 15 min) and robust method for detecting E. amylovora in orchards, as well as simple to use in the plant diagnostic laboratory. Comparative validation results using plant samples from inoculated greenhouse trials and from natural field infections (of regional and temporal diverse origin) showed that our LAMP had an equivalent or greater performance regarding sensitivity, specificity, speed and simplicity than real-time PCR (TaqMan), other LAMP assays, immunoassays and plating, demonstrating its utility for routine testing. Copyright © 2012 Elsevier B.V. All rights reserved.
Dugé De Bernonville, Thomas; Gaucher, Matthieu; Flors, Victor; Gaillard, Sylvain; Paulin, Jean-Pierre; Dat, James F; Brisset, Marie-Noëlle
2012-06-01
Fire blight is a bacterial disease of Maloideae caused by Erwinia amylovora (Ea). This necrogenic enterobacterium uses a type III secretion system (T3SS) to inject type III effectors into the plant cells to cause disease on its susceptible hosts, including economically important crops like apple and pear. The expressions of marker genes of the salicylic acid (SA) and jasmonic acid (JA) defense regulation pathways were monitored by RT-qPCR in leaves of two apple genotypes, one susceptible and one resistant, challenged with a wild type strain, a T3SS-deficient strain or water. The transcriptional data taken together with hormone level measurements indicated that the SA pathway was similarly induced in both apple genotypes during infection by Ea. On the contrary, the data clearly showed a strong T3SS-dependent down-regulation of the JA pathway in leaves of the susceptible genotype but not in those of the resistant one. Accordingly, methyl-jasmonate treated susceptible plants displayed an increased resistance to Ea. Bacterial mutant analysis indicated that JA manipulation by Ea mainly relies on the type III effector DspA/E. Taken together, our data suggest that the T3SS-dependent down-regulation of the JA pathway is a critical step in the infection process of Malus spp. by Ea. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Current Status of Early Blight Resistance in Tomato: An Update
Adhikari, Pragya; Oh, Yeonyee; Panthee, Dilip R.
2017-01-01
Early blight (EB) is one of the dreadful diseases of tomato caused by several species of Alternaria including Alternaria linariae (which includes A. solani and A. tomatophila), as well as A. alternata. In some instances, annual economic yield losses due to EB have been estimated at 79%. Alternaria are known only to reproduce asexually, but a highly-virulent isolate has the potential to overcome existing resistance genes. Currently, cultural practices and fungicide applications are employed for the management of EB due to the lack of strong resistant cultivars. Resistance sources have been identified in wild species of tomato; some breeding lines and cultivars with moderate resistance have been developed through conventional breeding methods. Polygenic inheritance of EB resistance, insufficient resistance in cultivated species and the association of EB resistance with undesirable horticultural traits have thwarted the effective breeding of EB resistance in tomato. Several quantitative trait loci (QTL) conferring EB resistance have been detected in the populations derived from different wild species including Solanum habrochaites, Solanum arcanum and S. pimpinellifolium, but none of them could be used in EB resistance breeding due to low individual QTL effects. Pyramiding of those QTLs would provide strong resistance. More research is needed to identify additional sources of useful resistance, to incorporate resistant QTLs into breeding lines through marker-assisted selection (MAS) and to develop resistant cultivars with desirable horticultural traits including high yielding potential and early maturity. This paper will review the current understanding of causal agents of EB of tomato, resistance genetics and breeding, problems associated with breeding and future prospects. PMID:28934121
Pathak, Rajesh K.; Baunthiyal, Mamta; Shukla, Rohit; Pandey, Dinesh; Taj, Gohar; Kumar, Anil
2017-01-01
Alternaria brassicae and Alternaria brassicicola are two major phytopathogenic fungi which cause Alternaria blight, a recalcitrant disease on Brassica crops throughout the world, which is highly destructive and responsible for significant yield losses. Since no resistant source is available against Alternaria blight, therefore, efforts have been made in the present study to identify defense inducer molecules which can induce jasmonic acid (JA) mediated defense against the disease. It is believed that JA triggered defense response will prevent necrotrophic mode of colonization of Alternaria brassicae fungus. The JA receptor, COI1 is one of the potential targets for triggering JA mediated immunity through interaction with JA signal. In the present study, few mimicking compounds more efficient than naturally occurring JA in terms of interaction with COI1 were identified through virtual screening and molecular dynamics simulation studies. A high quality structural model of COI1 was developed using the protein sequence of Brassica rapa. This was followed by virtual screening of 767 analogs of JA from ZINC database for interaction with COI1. Two analogs viz. ZINC27640214 and ZINC43772052 showed more binding affinity with COI1 as compared to naturally occurring JA. Molecular dynamics simulation of COI1 and COI1-JA complex, as well as best screened interacting structural analogs of JA with COI1 was done for 50 ns to validate the stability of system. It was found that ZINC27640214 possesses efficient, stable, and good cell permeability properties. Based on the obtained results and its physicochemical properties, it is capable of mimicking JA signaling and may be used as defense inducers for triggering JA mediated resistance against Alternaria blight, only after further validation through field trials. PMID:28487711
2004-10-01
the bacterial exopolysaccharide has been initiated. The enterobacterium Erwinia amylovora , the fire blight pathogen of rosaceous plants and pome...A&M University Erwinia amylovora bacteriophage ERA 103 plaques surrounded by halos. Task 15: Development of Integrated Microfluidic-based Sensors for...fruit, produces copious amounts of extra cellular polysaccharide (amylovoran), which acts as a host specific toxin during pathogenesis. The E. amylovora
Ji, Fang; Wu, Jirong; Zhao, Hongyan; Xu, Jianhong; Shi, Jianrong
2015-03-05
A total of 122 wheat varieties obtained from the Nordic Genetic Resource Center were infected artificially with an aggressive Fusariumasiaticum strain in a field experiment. We calculated the severity of Fusarium head blight (FHB) and determined the deoxynivalenol (DON) content of wheat grain, straw and glumes. We found DON contamination levels to be highest in the glumes, intermediate in the straw, and lowest in the grain in most samples. The DON contamination levels did not increase consistently with increased FHB incidence. The DON levels in the wheat varieties with high FHB resistance were not necessarily low, and those in the wheat varieties with high FHB sensitivity were not necessarily high. We selected 50 wheat genotypes with reduced DON content for future research. This study will be helpful in breeding new wheat varieties with low levels of DON accumulation.
Sharma, Pallavi; Gangola, Manu P; Huang, Chen; Kutcher, H Randy; Ganeshan, Seedhabadee; Chibbar, Ravindra N
2018-01-01
An in vitro spike culture method was optimized to evaluate Fusarium head blight (FHB) resistance in wheat (Triticum aestivum) and used to screen a population of ethyl methane sulfonate treated spike culture-derived variants (SCDV). Of the 134 SCDV evaluated, the disease severity score of 47 of the variants was ≤30%. Single nucleotide polymorphisms (SNP) in the UDP-glucosyltransferase (UGT) genes, TaUGT-2B, TaUGT-3B, and TaUGT-EST, differed between AC Nanda (an FHB-susceptible wheat variety) and Sumai-3 (an FHB-resistant wheat cultivar). SNP at 450 and 1,558 bp from the translation initiation site in TaUGT-2B and TaUGT-3B, respectively were negatively correlated with FHB severity in the SCDV population, whereas the SNP in TaUGT-EST was not associated with FHB severity. Fusarium graminearum strain M7-07-1 induced early expression of TaUGT-2B and TaUGT-3B in FHB-resistant SCDV lines, which were associated with deoxynivalenol accumulation and reduced FHB disease progression. At 8 days after inoculation, deoxynivalenol concentration varied from 767 ppm in FHB-resistant variants to 2,576 ppm in FHB-susceptible variants. The FHB-resistant SCDV identified can be used as new sources of FHB resistance in wheat improvement programs.
Sucher, Justine; Boni, Rainer; Yang, Ping; Rogowsky, Peter; Büchner, Heike; Kastner, Christine; Kumlehn, Jochen; Krattinger, Simon G; Keller, Beat
2017-04-01
Maize (corn) is one of the most widely grown cereal crops globally. Fungal diseases of maize cause significant economic damage by reducing maize yields and by increasing input costs for disease management. The most sustainable control of maize diseases is through the release and planting of maize cultivars with durable disease resistance. The wheat gene Lr34 provides durable and partial field resistance against multiple fungal diseases of wheat, including three wheat rust pathogens and wheat powdery mildew. Because of its unique qualities, Lr34 became a cornerstone in many wheat disease resistance programmes. The Lr34 resistance is encoded by a rare variant of an ATP-binding cassette (ABC) transporter that evolved after wheat domestication. An Lr34-like disease resistance phenotype has not been reported in other cereal species, including maize. Here, we transformed the Lr34 resistance gene into the maize hybrid Hi-II. Lr34-expressing maize plants showed increased resistance against the biotrophic fungal disease common rust and the hemi-biotrophic disease northern corn leaf blight. Furthermore, the Lr34-expressing maize plants developed a late leaf tip necrosis phenotype, without negative impact on plant growth. With this and previous reports, it could be shown that Lr34 is effective against various biotrophic and hemi-biotrophic diseases that collectively parasitize all major cereal crop species. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Absence of lysogeny in wild populations of Erwinia amylovora and Pantoea agglomerans
Roach, Dwayne R; Sjaarda, David R; Sjaarda, Calvin P; Ayala, Carlos Juarez; Howcroft, Brittany; Castle, Alan J; Svircev, Antonet M
2015-01-01
Lytic bacteriophages are in development as biological control agents for the prevention of fire blight disease caused by Erwinia amylovora. Temperate phages should be excluded as biologicals since lysogeny produces the dual risks of host resistance to phage attack and the transduction of virulence determinants between bacteria. The extent of lysogeny was estimated in wild populations of E. amylovora and Pantoea agglomerans with real–time polymerase chain reaction primers developed to detect E. amylovora phages belonging to the Myoviridae and Podoviridae families. Pantoea agglomerans, an orchard epiphyte, is easily infected by Erwinia spp. phages, and it serves as a carrier in the development of the phage-mediated biological control agent. Screening of 161 E. amylovora isolates from 16 distinct geographical areas in North America, Europe, North Africa and New Zealand and 82 P. agglomerans isolates from southern Ontario, Canada showed that none possessed prophage. Unstable phage resistant clones or lysogens were produced under laboratory conditions. Additionally, a stable lysogen was recovered from infection of bacterial isolate Ea110R with Podoviridae phage ΦEa35-20. These laboratory observations suggested that while lysogeny is possible in E. amylovora, it is rare or absent in natural populations, and there is a minimal risk associated with lysogenic conversion and transduction by Erwinia spp. phages. PMID:25678125
USDA-ARS?s Scientific Manuscript database
Early blight of potato, caused by Alternaria solani, is a ubiquitous disease in many countries around the world. We have previously found that variation in resistance phenotypes exist between two different Iranian cultivars of potato. Cultivar ‘Diamond’ is more resistant to multiple isolates of A. s...
USDA-ARS?s Scientific Manuscript database
Late blight, caused by Phytophthora infestans, is a devastating disease on potato worldwide and new lineages of the pathogen continue to develop in the U.S. Breeding for resistance is important for economic and environmental purposes. The Solanaceae Coordinated Agricultural Project (SolCAP) focuses ...
USDA-ARS?s Scientific Manuscript database
Brassica leafy greens are one of the most economically important vegetable commodities grown in the southeastern United States, and more than 28,000 metric tons of these crops are harvested in the U.S. annually. Collards and kale (Brassica oleracea L.), mustard greens (Brassica juncea L.) and turni...
Genetic and genomic resources for mapping resistance to Phytophthora cinnamomi in chestnut
T. Zhebentyayeva; A. Chandra; A.G. Abbott; M.E. Staton; B.A. Olukolu; F.V. Hebard; L.L. Georgi; S.N. Jeffers; P.H. Sisco; J.B. James; C. Dana Nelson
2013-01-01
Root rot (caused by Phytophthora cinnamomi) and chestnut blight (caused by Cryphonectria parasitica) are the two most destructive diseases affecting American chestnut, Castanea dentata. Therefore, breeding for resistance to both pathogens simultaneously is essential before the American chestnut can be restored to its full native range. Using combined genetic and...
USDA-ARS?s Scientific Manuscript database
All genomes encode taxonomically restricted ‘orphan’ genes, most of which are of unknown function. We report the functional characterization of the orphan gene TaFROG as a component of the wheat resistance to the globally important Fusarium head blight (FHB) disease. TaFROG is taxonomically restrict...
Differentially Expressed Proteins Associated with Fusarium Head Blight Resistance in Wheat
Zhang, Xianghui; Fu, Jianming; Hiromasa, Yasuaki; Pan, Hongyu; Bai, Guihua
2013-01-01
Background Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contrasting in alleles of Fhb1, a major FHB resistance gene in wheat, to identify proteins underlining FHB resistance of Fhb1. Methods The two-dimensional protein profiles were compared between the Fusarium-inoculated spikes of the two NILs collected 72 h after inoculation. The protein profiles of mock- and Fusarium-inoculated Fhb1+NIL were also compared to identify pathogen-responsive proteins. Results Eight proteins were either induced or upregulated in inoculated Fhb1+NIL when compared with mock-inoculated Fhb1+NIL; nine proteins were either induced or upregulated in the Fusarium-inoculated Fhb1+NIL when compared with Fusarium-inoculated Fhb1−NIL. Proteins that were differentially expressed in the Fhb1+NIL, not in the Fhb1−NIL, after Fusarium inoculation included wheat proteins for defending fungal penetration, photosynthesis, energy metabolism, and detoxification. Conclusions Coordinated expression of the identified proteins resulted in FHB resistance in Fhb1+NIL. The results provide insight into the pathway of Fhb1-mediated FHB resistance. PMID:24376514
The in planta proteome of wild type strains of the fire blight pathogen, Erwinia amylovora.
Holtappels, M; Vrancken, K; Noben, J P; Remans, T; Schoofs, H; Deckers, T; Valcke, R
2016-04-29
Erwinia amylovora is a Gram-negative plant pathogen that causes fire blight. This disease affects most members of the Rosaceae family including apple and pear. Here, an infection model is introduced to study proteomic changes in a highly virulent E. amylovora strain upon interaction with its host as compared to a lower virulent strain. For this purpose separate shoots of apple rootstocks were wound-infected and when infection became systemic, bacterial cells were isolated and processed for analysis in a proteomics platform combining 2-D fluorescence difference gel electrophoresis and mass spectrometry. Comparing the proteome of the isolates, significant abundance changes were observed in proteins involved in sorbitol metabolism, amylovoran production as well as in protection against plant defense mechanisms. Furthermore several proteins associated with virulence were more abundant in the higher virulent strain. Changes at the proteome level showed good accordance at the transcript level, as was verified by RT-qPCR. In conclusion, this infection model may be a valuable tool to unravel the complexity of plant-pathogen interactions and to gain insight in the molecular mechanisms associated with virulence of E. amylovora, paving the way for the development of plant-protective interventions against this detrimental disease. During this research a first time investigation was performed on the proteome of E. amylovora, grown inside a susceptible host plant. This bacterium is the causal agent of fire blight, which can affect most members of the Rosaceae family including apple and pear. To do so, an artificial infection model on shoots of apple rootstocks was optimized and employed. When infection was systemic, bacterial cells were extracted from the plant tissue followed by extraction of the proteins from the bacteria. Further processing of the proteins was done by using a 2-D fluorescence difference gel electrophoresis analysis followed by mass spectrometry. By the use of two strains differing in their virulent ability, we were able to draw conclusions concerning virulence and behavior of different strains inside the host. This research provides a model to investigate plant-pathogen interactions and more importantly, we identified possible new targets for the development of novel control methods against this devastating disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Baliyan, Nikita; Malik, Rekha; Rani, Reema; Mehta, Kirti; Vashisth, Urvashi; Dhillon, Santosh; Boora, Khazan Singh
2018-01-01
Bacterial leaf blight (BB), caused by the bacterium Xanthomonas oryzae pv. Oryzae (Xoo), is the major constraint amongst rice diseases in India. CSR-30 is a very popular high-yielding, salt-tolerant Basmati variety widely grown in Haryana, India, but highly susceptible to BB. In the present study, we have successfully introgressed three BB resistance genes (Xa21, xa13 and xa5) from BB-resistant donor variety IRBB-60 into the BB-susceptible Basmati variety CSR-30 through marker-assisted selection (MAS) exercised with stringent phenotypic selection without compromising the Basmati traits. Background analysis using 131 polymorphic SSR markers revealed that recurrent parent genome (RPG) recovery ranged up to 97.1% among 15 BC 3 F 1 three-gene-pyramided genotypes. Based on agronomic evaluation, BB reaction, aroma, percentage recovery of RPG, and grain quality evaluation, four genotypes, viz., IC-R28, IC-R68, IC-R32, and IC-R42, were found promising and advanced to BC 3 F 2 generation. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Müller, Ina; Lurz, Rudi; Kube, Michael; Quedenau, Claudia; Jelkmann, Wilhelm; Geider, Klaus
2011-01-01
Summary For possible control of fire blight affecting apple and pear trees, we characterized Erwinia amylovora phages from North America and Germany. The genome size determined by electron microscopy (EM) was confirmed by sequence data and major coat proteins were identified from gel bands by mass spectroscopy. By their morphology from EM data, φEa1h and φEa100 were assigned to the Podoviridae and φEa104 and φEa116 to the Myoviridae. Host ranges were essentially confined to E. amylovora, strains of the species Erwinia pyrifoliae, E. billingiae and even Pantoea stewartii were partially sensitive. The phages φEa1h and φEa100 were dependent on the amylovoran capsule of E. amylovora, φEa104 and φEa116 were not. The Myoviridae efficiently lysed their hosts and protected apple flowers significantly better than the Podoviridae against E. amylovora and should be preferred in biocontrol experiments. We have also isolated and partially characterized E. amylovora phages from apple orchards in Germany. They belong to the Podoviridae or Myoviridae with a host range similar to the phages isolated in North America. In EM measurements, the genome sizes of the Podoviridae were smaller than the genomes of the Myoviridae from North America and from Germany, which differed from each other in corresponding nucleotide sequences. PMID:21791029
Santander, Ricardo D; Monte-Serrano, Mercedes; Rodríguez-Herva, José J; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo; Biosca, Elena G
2014-12-01
Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Valcke, R
2013-05-01
Plants are host to a large amount of pathogenic bacteria. Fire blight, caused by the bacterium Erwinia amylovora, is an important disease in Rosaceae. Pathogenicity of E. amylovora is greatly influenced by the production of exopolysaccharides, such as amylovoran, and the use of the type III secretion system, which enables bacteria to penetrate host tissue and cause disease. When infection takes place, plants have to rely on the ability of each cell to recognize the pathogen and the signals emanating from the infection site in order to generate several defence mechanisms. These mechanisms consist of physical barriers and the production of antimicrobial components, both in a preformed and an inducible manner. Inducible defence responses are activated upon the recognition of elicitor molecules by plant cell receptors, either derived from invading micro-organisms or from pathogen-induced degradation of plant tissue. This recognition event triggers a signal transduction cascade, leading to a range of defence responses [reactive oxygen species (ROS), plant hormones, secondary metabolites, …] and redeployment of cellular energy in a fast, efficient and multiresponsive manner, which prevents further pathogen ingress. This review highlights the research that has been performed during recent years regarding this specific plant-pathogen interaction between Erwinia amylovora and Rosaceae, with a special emphasis on the pathogenicity and the infection strategy of E. amylovora and the possible defence mechanisms of the plant against this disease.
Singh, H Ranjit; Deka, Manab; Das, Sudripta
2015-07-01
Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.
Kumari, Madhuree; Pandey, Shipra; Bhattacharya, Arpita; Mishra, Aradhana; Nautiyal, C S
2017-12-01
Tomato suffers a huge loss every year because of early blight disease. This study focuses on efficient inhibition of Alternaria solani, the causative agent of early blight disease in tomato in vitro and in vivo. Foliar spray of 5 μg/mL of biosynthesized silver nanoparticles in A. solani infected plants resulted in significant increase of 32.58% in fresh weight and 23.52% in total chlorophyll content of tomato as compared to A. solani infected plants. A decrease of 48.57, 30, 39.59 and 28.57% was observed in fungal spore count, lipid peroxidation, proline content and superoxide dismutase respectively in infected tomato plants after treatment with synthesized silver nanoparticles as compared to A. solani infected plants. No significant variation in terms of soil pH, cultured population, carbon source utilization pattern and soil enzymes including dehydrogenase, urease, protenase and β-glucosidase was observed after foliar spray of nanoparticles. It was revealed that direct killing of pathogens, increased photosynthetic efficiencies, increased plant resistance and decrease in stress parameters and stress enzymes are the mechanisms employed by plants and nanoparticles simultaneously to combat the biotic stress. Biosynthesized silver nanoparticles bear the potential to revolutionize plant disease management, though the molecular aspects of increased resistance must be looked upon. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Rice lesion mimic mutants (LMM) exhibit necrotic lesions resembling programmed cell death (PCD). PCD is one of the significant hallmarks of disease resistance genes mediated defense responses. LMM can be used to study the mechanisms of plant disease resistance. In the present study, a total of 133 ...
Weigl, Kathleen; Wenzel, Stephanie; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola
2015-02-01
Rapid cycle breeding in apple is a new approach for the rapid introgression of agronomically relevant traits (e.g. disease resistances) from wild apple species into domestic apple cultivars (Malus × domestica Borkh.). This technique drastically shortens the long-lasting juvenile phase of apple. The utilization of early-flowering apple lines overexpressing the BpMADS4 gene of the European silver birch (Betula pendula Roth.) in hybridization resulted in one breeding cycle per year. Aiming for the selection of non-transgenic null segregants at the end of the breeding process, the flower-inducing transgene and the gene of interest (e.g. resistance gene) that will be introgressed by hybridization need to be located on different chromosomes. To improve the flexibility of the existing approach in apple, this study was focused on the development and characterization of eleven additional BpMADS4 overexpressing lines of four different apple cultivars. In nine lines, the flowering gene was mapped to different linkage groups. The differences in introgressed T-DNA sequences and plant genome deletions post-transformation highlighted the unique molecular character of each line. However, transgenic lines demonstrated no significant differences in flower organ development and pollen functionality compared with non-transgenic plants. Hybridization studies using pollen from the fire blight-resistant wild species accession Malus fusca MAL0045 and the apple scab-resistant cultivar 'Regia' indicated that BpMADS4 introgression had no significant effect on the breeding value of each transgenic line. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Buerstmayr, Maria; Lemmens, Marc; Steiner, Barbara; Buerstmayr, Hermann
2011-07-01
While many reports on genetic analysis of Fusarium head blight (FHB) resistance in bread wheat have been published during the past decade, only limited information is available on FHB resistance derived from wheat relatives. In this contribution, we report on the genetic analysis of FHB resistance derived from Triticum macha (Georgian spelt wheat). As the origin of T. macha is in the Caucasian region, it is supposed that its FHB resistance differs from other well-investigated resistance sources. To introduce valuable alleles from the landrace T. macha into a modern genetic background, we adopted an advanced backcross QTL mapping scheme. A backcross-derived recombinant-inbred line population of 321 BC(2)F(3) lines was developed from a cross of T. macha with the Austrian winter wheat cultivar Furore. The population was evaluated for Fusarium resistance in seven field experiments during four seasons using artificial inoculations. A total of 300 lines of the population were genetically fingerprinted using SSR and AFLP markers. The resulting linkage map covered 33 linkage groups with 560 markers. Five novel FHB-resistance QTL, all descending from T. macha, were found on four chromosomes (2A, 2B, 5A, 5B). Several QTL for morphological and developmental traits were mapped in the same population, which partly overlapped with FHB-resistance QTL. Only the 2BL FHB-resistance QTL co-located with a plant height QTL. The largest-effect FHB-resistance QTL in this population mapped at the spelt-type locus on chromosome 5A and was associated with the wild-type allele q, but it is unclear whether q has a pleiotropic effect on FHB resistance or is closely linked to a nearby resistance QTL.
Crop-Specific Grafting Methods, Rootstocks and Scheduling-Tomato
USDA-ARS?s Scientific Manuscript database
Grafting has gained popularity as a method to manage plant diseases previously controlled by soil fumigation with methyl bromide. Some of the most significant soilborne pest problems for which resistant rootstocks may be beneficial include root-knot nematodes, Verticillium wilt, and southern blight....
Registration of 'VENUS' peanut
USDA-ARS?s Scientific Manuscript database
VENUS is a large-seeded high-oleic Virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot resistance when compared to the cultivar Jupiter. VENUS is the first high-oleic Virginia peanut developed for optimal performance in the South...
Allelic Analysis of Sheath Blight Resistance with Association Mapping in Rice
Jia, Limeng; Yan, Wengui; Zhu, Chengsong; Agrama, Hesham A.; Jackson, Aaron; Yeater, Kathleen; Li, Xiaobai; Huang, Bihu; Hu, Biaolin; McClung, Anna; Wu, Dianxing
2012-01-01
Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with 155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries, entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles presented in an entry was highly and significantly correlated with the decrease of ShB rating (r = −0.535) or the increase of ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant alleles from various loci in a cultivar for enhanced ShB resistance in rice. PMID:22427867
Wu, Jing; Zhu, Jifeng; Wang, Lanfen; Wang, Shumin
2017-01-01
Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the largest and most important disease resistance genes in plants. The genome sequence of the common bean ( Phaseolus vulgaris L.) provides valuable data for determining the genomic organization of NBS-LRR genes. However, data on the NBS-LRR genes in the common bean are limited. In total, 178 NBS-LRR-type genes and 145 partial genes (with or without a NBS) located on 11 common bean chromosomes were identified from genome sequences database. Furthermore, 30 NBS-LRR genes were classified into Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) types, and 148 NBS-LRR genes were classified into coiled-coil (CC)-NBS-LRR (CNL) types. Moreover, the phylogenetic tree supported the division of these PvNBS genes into two obvious groups, TNL types and CNL types. We also built expression profiles of NBS genes in response to anthracnose and common bacterial blight using qRT-PCR. Finally, we detected nine disease resistance loci for anthracnose (ANT) and seven for common bacterial blight (CBB) using the developed NBS-SSR markers. Among these loci, NSSR24, NSSR73, and NSSR265 may be located at new regions for ANT resistance, while NSSR65 and NSSR260 may be located at new regions for CBB resistance. Furthermore, we validated NSSR24, NSSR65, NSSR73, NSSR260, and NSSR265 using a new natural population. Our results provide useful information regarding the function of the NBS-LRR proteins and will accelerate the functional genomics and evolutionary studies of NBS-LRR genes in food legumes. NBS-SSR markers represent a wide-reaching resource for molecular breeding in the common bean and other food legumes. Collectively, our results should be of broad interest to bean scientists and breeders.
Wu, Jing; Zhu, Jifeng; Wang, Lanfen; Wang, Shumin
2017-01-01
Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the largest and most important disease resistance genes in plants. The genome sequence of the common bean (Phaseolus vulgaris L.) provides valuable data for determining the genomic organization of NBS-LRR genes. However, data on the NBS-LRR genes in the common bean are limited. In total, 178 NBS-LRR-type genes and 145 partial genes (with or without a NBS) located on 11 common bean chromosomes were identified from genome sequences database. Furthermore, 30 NBS-LRR genes were classified into Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) types, and 148 NBS-LRR genes were classified into coiled-coil (CC)-NBS-LRR (CNL) types. Moreover, the phylogenetic tree supported the division of these PvNBS genes into two obvious groups, TNL types and CNL types. We also built expression profiles of NBS genes in response to anthracnose and common bacterial blight using qRT-PCR. Finally, we detected nine disease resistance loci for anthracnose (ANT) and seven for common bacterial blight (CBB) using the developed NBS-SSR markers. Among these loci, NSSR24, NSSR73, and NSSR265 may be located at new regions for ANT resistance, while NSSR65 and NSSR260 may be located at new regions for CBB resistance. Furthermore, we validated NSSR24, NSSR65, NSSR73, NSSR260, and NSSR265 using a new natural population. Our results provide useful information regarding the function of the NBS-LRR proteins and will accelerate the functional genomics and evolutionary studies of NBS-LRR genes in food legumes. NBS-SSR markers represent a wide-reaching resource for molecular breeding in the common bean and other food legumes. Collectively, our results should be of broad interest to bean scientists and breeders. PMID:28848595
Nemchinov, Lev G; Shao, Jonathan; Lee, Maya N; Postnikova, Olga A; Samac, Deborah A
2017-01-01
Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.
Shao, Jonathan; Lee, Maya N.; Postnikova, Olga A.; Samac, Deborah A.
2017-01-01
Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties. PMID:29244864
Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 43
1978-08-15
resistance to the pathogen of bacterial angular blight is related to their resistance to powdery mildew (A. P. Khar’kova, N. M. Rudenko), powdery ...waste ■ Raw material for hvdrolvsates . Hydrolysate components, % flax & hemp fiber rice straw sun- flower stalks grape vines wheat straw...hydrolysates of rice and wheat straw, sunflower, stalks, grapevine cuttings, spent tanbark, flax and hemp fiber. Chromatographie analysis defined the
Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao
2017-06-01
Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane, show self-interaction, and induce ER Ca 2+ depletion in leaf cells of N. benthamiana. The results indicate that Xa10-Ni and Xa23-Ni in Nipponbare encode functional executor R proteins, which induce cell death in both monocotyledonous and dicotyledonous plants and have the potential of being engineered to provide broad-spectrum disease resistance to plant-pathogenic Xanthomonas spp.
Defense reactions of bean genotypes to bacterial pathogens in controlled conditions
NASA Astrophysics Data System (ADS)
Uysal, B.; Bastas, K. K.
2018-03-01
This study was focused on the role of antioxidant enzymes and total protein in imparting resistance against common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap) and halo blight caused by Pseudomonas syringae pv. phaseolicola (Psp) in bean. Activities of Ascorbate peroxidase (APX), Catalase (CAT) and total protein were studied in resistant and susceptible bean genotypes. Five-day-old seedlings were inoculated with a bacterial suspension (108 CFU ml-1) and harvested at different time intervals (0, 12, 24 and 36 up to 72 h) under controlled growing conditions and assayed for antioxidant enzymes and total protein. Temporal increase of CAT, APX enzymes activities showed maximum activity at 12 h after both pathogens inoculation (hpi) in resistant cultivar, whereas in susceptible it increased at 72 h after both pathogens inoculation for CAT and 12, 24 h for APX enzymes. Maximum total protein activities were observed at 12 h and 24 h respectively after Xap, Psp inoculation (hpi) in resistant and maximum activities were observed at 24 h and 72 h respectively after Xap, Psp inoculation (hpi) in susceptible. Increase of antioxidant enzyme and total protein activities might be an important component in the defense strategy of resistance and susceptible bean genotypes against the bacterial infection. These findings suggest that disease protection is proportional to the amount of enhanced CAT, APX enzyme and total protein activity.
Salicylic acid regulates basal resistance to Fusarium head blight in wheat.
Makandar, Ragiba; Nalam, Vamsi J; Lee, Hyeonju; Trick, Harold N; Dong, Yanhong; Shah, Jyoti
2012-03-01
Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.
Chapter 11: Disease resistance in chickpea
USDA-ARS?s Scientific Manuscript database
Chickpea is a grain legume with valuable nutritional characteristics; it is a basic aliment in Asian countries such as India and Pakistan as well as a traditional ingredient in Mediterranean diet. Biotic stresses such as ascochyta blight and fusarium wilt together with other diseases such as botryti...
Registration of 'Rollag' spring wheat
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) (caused primarily by Fusarium graminearum Schwabe) is a disease that annually threatens wheat (Triticum aestivum L.) grown in the northern plains of the United States. Resistance to this disease is a high priority trait in the University of Minnesota’s spring wheat breedi...
Shabanamol, S; Sreekumar, J; Jisha, M S
2017-10-01
The present study tried to explore the possible in vitro biocontrol mechanisms of Lysinibacillus sphaericus , a diazotrophic endophyte from rice against the rice sheath blight pathogen Rhizoctonia solani. The in vivo biocontrol potential of the isolate and the induction of systemic resistance under greenhouse conditions have also been experimented employing different treatments with positive control carbendazim, the chemical fungicide. The endophytic isolate showed 100% growth inhibition of the fungal pathogen via volatile organic compound production and was positive for the production of siderophores, biosurfactants, HCN, and ammonia. Under greenhouse conditions, foliar and soil application of L. sphaericus significantly decreased the percentage of disease incidence. All bacterized treatments are superior to chemical fungicide treatment. Application of L. sphaericus in single and combination treatments induces systemic resistance as evident from the significant accumulation of defense enzymes such as peroxides, polyphenol oxides and phenylalanine ammonia in addition to the increase of phenolic compounds. The results biologically prospect endophytic diazotroph L. sphaericus as a potent plant growth promoter with excellent biocontrol efficiency.
Góral, Tomasz; Kwiatek, Michał; Majka, Maciej; Kosmala, Arkadiusz
2014-01-01
Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB. PMID:25340555
Perlikowski, Dawid; Wiśniewska, Halina; Góral, Tomasz; Kwiatek, Michał; Majka, Maciej; Kosmala, Arkadiusz
2014-01-01
Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB.
Habig, Jeffrey W; Rowland, Aaron; Pence, Matthew G; Zhong, Cathy X
2018-06-01
Resistance genes (R-genes) from wild potato species confer protection against disease and can be introduced into cultivated potato varieties using breeding or biotechnology. The R-gene, Rpi-vnt1, which encodes the VNT1 protein, protects against late blight, caused by Phytophthora infestans. Heterologous expression and purification of active VNT1 in quantities sufficient for regulatory biosafety studies was problematic, making it impractical to generate hazard characterization data. As a case study for R-proteins, a weight-of-evidence, tiered approach was used to evaluate the safety of VNT1. The hazard potential of VNT1 was identified from relevant safety information including history of safe use, bioinformatics, mode of action, expression levels, and dietary intake. From the assessment it was concluded that Tier II hazard characterization was not needed. R-proteins homologous to VNT1 and identified in edible crops, have a history of safe consumption. VNT1 does not share sequence identity with known allergens. Expression levels of R-proteins are generally low, and VNT1 was not detected in potato varieties expressing the Rpi-vnt1 gene. With minimal hazard and negligible exposure, the risks associated with consumption of R-proteins in late blight protected potatoes are exceedingly low. R-proteins introduced into potatoes to confer late blight protection are safe for consumption. Copyright © 2018 Elsevier Inc. All rights reserved.
Ellur, Ranjith K; Khanna, Apurva; S, Gopala Krishnan; Bhowmick, Prolay K; Vinod, K K; Nagarajan, M; Mondal, Kalyan K; Singh, Nagendra K; Singh, Kuldeep; Prabhu, Kumble Vinod; Singh, Ashok K
2016-07-11
Basmati rice is preferred internationally because of its appealing taste, mouth feel and aroma. Pusa Basmati 1121 (PB1121) is a widely grown variety known for its excellent grain and cooking quality in the international and domestic market. It contributes approximately USD 3 billion to India's forex earning annually by being the most traded variety. However, PB1121 is highly susceptible to bacterial blight (BB) disease. A novel BB resistance gene Xa38 was incorporated in PB1121 from donor parent PR114-Xa38 using a modified marker-assisted backcross breeding (MABB) scheme. Phenotypic selection prior to background selection was instrumental in identifying the novel recombinants with maximum recovery of recurrent parent phenome. The strategy was effective in delimiting the linkage drag to <0.5 mb upstream and <1.9 mb downstream of Xa38 with recurrent parent genome recovery upto 96.9% in the developed NILs. The NILs of PB1121 carrying Xa38 were compared with PB1121 NILs carrying xa13 + Xa21 (developed earlier in our lab) for their resistance to BB. Both NILs showed resistance against the Xoo races 1, 2, 3 and 6. Additionally, Xa38 also resisted Xoo race 5 to which xa13 + Xa21 was susceptible. The PB1121 NILs carrying Xa38 gene will provide effective control of BB in the Basmati growing region.
Ellur, Ranjith K.; Khanna, Apurva; S, Gopala Krishnan.; Bhowmick, Prolay K.; Vinod, K. K.; Nagarajan, M.; Mondal, Kalyan K.; Singh, Nagendra K.; Singh, Kuldeep; Prabhu, Kumble Vinod; Singh, Ashok K.
2016-01-01
Basmati rice is preferred internationally because of its appealing taste, mouth feel and aroma. Pusa Basmati 1121 (PB1121) is a widely grown variety known for its excellent grain and cooking quality in the international and domestic market. It contributes approximately USD 3 billion to India’s forex earning annually by being the most traded variety. However, PB1121 is highly susceptible to bacterial blight (BB) disease. A novel BB resistance gene Xa38 was incorporated in PB1121 from donor parent PR114-Xa38 using a modified marker-assisted backcross breeding (MABB) scheme. Phenotypic selection prior to background selection was instrumental in identifying the novel recombinants with maximum recovery of recurrent parent phenome. The strategy was effective in delimiting the linkage drag to <0.5 mb upstream and <1.9 mb downstream of Xa38 with recurrent parent genome recovery upto 96.9% in the developed NILs. The NILs of PB1121 carrying Xa38 were compared with PB1121 NILs carrying xa13 + Xa21 (developed earlier in our lab) for their resistance to BB. Both NILs showed resistance against the Xoo races 1, 2, 3 and 6. Additionally, Xa38 also resisted Xoo race 5 to which xa13 + Xa21 was susceptible. The PB1121 NILs carrying Xa38 gene will provide effective control of BB in the Basmati growing region. PMID:27403778
Early response of wheat antioxidant system with special reference to Fusarium head blight stress.
Spanic, Valentina; Viljevac Vuletic, Marija; Abicic, Ivan; Marcek, Tihana
2017-06-01
Fusarium head blight (FHB) is a destructive fungal disease of wheat (Triticum aestivum L.) that causes significant grain yield losses and end-use quality reduction associated with contamination by the mycotoxin deoxynivalenol (DON). Three winter wheat varieties ('Vulkan', 'Kraljica' and 'Golubica') were screened for FHB resistance using artificial inoculation technique under field conditions. The aim of this study was to examine a relationship between FHB resistance and the effectiveness of enzyme antioxidant system of wheat varieties under different sampling times (3, 15, 24, 48, 96, 120 and 336 hai). In the time-course experiments FHB-resistant variety 'Vulkan' showed rapid induction of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) activity in the early stages after infection (3 hai) and it seems that in 'Vulkan' FHB-resistance is associated with antioxidative enzymes activity. Moderately FHB resistant variety 'Kraljica' showed the higher guaiacol peroxidase (POD) activity and higher H 2 O 2 content after 24 hai, increased malondialdehyde (MDA) content at the beginning of infection (3, 15 hai) while induction of catalase (CAT), APX and PPO was delayed. FHB-susceptible variety 'Golubica' involved antioxidant enzymes in defense response much later. Based on our results the activity of antioxidant enzymes (APX and PPO) was more pronounced in 'Vulkan' than in FHB-medium resistant variety 'Kraljica' and FHB-susceptible 'Golubica'. The differences in antioxidant response of wheat varieties under Fusarium infestation could be the result of genetic properties. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Liu, Huiping; Dai, Yi; Chi, Dawn; Huang, Shuai; Li, Haifeng; Duan, Yamei; Cao, Wenguang; Gao, Yong; Fedak, George; Chen, Jianmin
2017-01-01
Wheatgrass, Thinopyrum elongatum (2n = 2x = 14, EE), is an important wild relative of wheat with many excellent traits, including resistance to Fusarium head blight (FHB), that can be used for durum wheat improvement. Through hybridization of the durum cultivar "Langdon" with the amphiploid 8801 (AABBEE), a disomic alien addition line (2n = 30) with a pair of Th. elongatum 7E chromosomes was obtained and confirmed using chromosome-specific molecular markers of Th. elongatum and genomic in situ hybridization (GISH). This line is meiotically and reproductively stable, generally forming 15 bivalents at meiosis including 14 pairs from Langdon and 1 from Th. elongatum with 2 chiasmata each as revealed by GISH analysis. At the adult growth stages under field conditions, this addition line shows high resistance to FHB, with less than 16% infection on visual observation in 2 years (2014 and 2015). This addition line is shorter in height and has narrower leaves and shorter spikes as compared to its parent Langdon. So the linkage group 7E might be a further source of wheat improvement by targeted introgression approaches. © 2018 S. Karger AG, Basel.
Achievements and challenges in legume breeding for pest and disease resistance
USDA-ARS?s Scientific Manuscript database
Yield stability of legume crops is constrained by a number of pest and diseases. Major diseases are rusts, powdery and downy mildews, ascochyta blight, botrytis gray molds, anthracnoses, damping-off, root rots, collar rot, vascular wilts and white mold. Parasitic weeds, viruses, bacteria, nematodes ...
The importance of site quality to backcross chestnut establishment success
C.C. Pinchot; A.A. Royo; M.P. Peters; S.E. Schlarbaum; S.L. Anagnostakis
2017-01-01
Short-term studies show that American chestnut (Castanea dentata) grows faster on mesic compared to xeric sites. Long-term impacts of site quality and corresponding moisture and nutrient availability on backcross chestnut establishment success and resistance to the chestnut blight fungus, Cryphonectria parasitica, however, have...
Solanum jamesii - new traits and hybrids
USDA-ARS?s Scientific Manuscript database
One of the two wild potato relatives native to the USA is Solanum jamesii (jam). The genebank has collected and studied over 120 samples since 1958. This species has been shown to have extreme late blight resistance, and its tubers have extremely long dormancy, high antioxidants, and compounds tha...
USDA-ARS?s Scientific Manuscript database
OLe is a high oleic Spanish-type peanut that has excellent yield and enhanced Sclerotinia blight and pod rot resistance when compared to other high oleic Spanish cultivars. The purpose for releasing OLe is to provide peanut producers with a true Spanish peanut that is high oleic and has enhanced yi...
Jiang, Chunmiao; Shen, Qingxi J.; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan
2017-01-01
Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting these genes might be also important for plant growth and organ development. In this study, we analyzed the WRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight. PMID:29190793
Jiang, Chunmiao; Shen, Qingxi J; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan
2017-01-01
Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting these genes might be also important for plant growth and organ development. In this study, we analyzed the WRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight.
Llop, Pablo; Cabrefiga, Jordi; Smits, Theo H. M.; Dreo, Tanja; Barbé, Silvia; Pulawska, Joanna; Bultreys, Alain; Blom, Jochen; Duffy, Brion; Montesinos, Emilio; López, María M.
2011-01-01
Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5–92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora. PMID:22174857
Classification and Identification of Bacteria by Mass Spectrometry and Computational Analysis
Sauer, Sascha; Freiwald, Anja; Maier, Thomas; Kube, Michael; Reinhardt, Richard; Kostrzewa, Markus; Geider, Klaus
2008-01-01
Background In general, the definite determination of bacterial species is a tedious process and requires extensive manual labour. Novel technologies for bacterial detection and analysis can therefore help microbiologists in minimising their efforts in developing a number of microbiological applications. Methodology We present a robust, standardized procedure for automated bacterial analysis that is based on the detection of patterns of protein masses by MALDI mass spectrometry. We particularly applied the approach for classifying and identifying strains in species of the genus Erwinia. Many species of this genus are associated with disastrous plant diseases such as fire blight. Using our experimental procedure, we created a general bacterial mass spectra database that currently contains 2800 entries of bacteria of different genera. This database will be steadily expanded. To support users with a feasible analytical method, we developed and tested comprehensive software tools that are demonstrated herein. Furthermore, to gain additional analytical accuracy and reliability in the analysis we used genotyping of single nucleotide polymorphisms by mass spectrometry to unambiguously determine closely related strains that are difficult to distinguish by only relying on protein mass pattern detection. Conclusions With the method for bacterial analysis, we could identify fire blight pathogens from a variety of biological sources. The method can be used for a number of additional bacterial genera. Moreover, the mass spectrometry approach presented allows the integration of data from different biological levels such as the genome and the proteome. PMID:18665227
Rezzonico, Fabio; Smits, Theo H. M.; Duffy, Brion
2011-01-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system confers acquired heritable immunity against mobile nucleic acid elements in prokaryotes, limiting phage infection and horizontal gene transfer of plasmids. In CRISPR arrays, characteristic repeats are interspersed with similarly sized nonrepetitive spacers derived from transmissible genetic elements and acquired when the cell is challenged with foreign DNA. New spacers are added sequentially and the number and type of CRISPR units can differ among strains, providing a record of phage/plasmid exposure within a species and giving a valuable typing tool. The aim of this work was to investigate CRISPR diversity in the highly homogeneous species Erwinia amylovora, the causal agent of fire blight. A total of 18 CRISPR genotypes were defined within a collection of 37 cosmopolitan strains. Strains from Spiraeoideae plants clustered in three major groups: groups II and III were composed exclusively of bacteria originating from the United States, whereas group I generally contained strains of more recent dissemination obtained in Europe, New Zealand, and the Middle East. Strains from Rosoideae and Indian hawthorn (Rhaphiolepis indica) clustered separately and displayed a higher intrinsic diversity than that of isolates from Spiraeoideae plants. Reciprocal exclusion was generally observed between plasmid content and cognate spacer sequences, supporting the role of the CRISPR/Cas system in protecting against foreign DNA elements. However, in several group III strains, retention of plasmid pEU30 is inconsistent with a functional CRISPR/Cas system. PMID:21460108
Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan
2013-01-01
Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens. PMID:23770912
Müller, Ina; Lurz, Rudi; Kube, Michael; Quedenau, Claudia; Jelkmann, Wilhelm; Geider, Klaus
2011-11-01
For possible control of fire blight affecting apple and pear trees, we characterized Erwinia amylovora phages from North America and Germany. The genome size determined by electron microscopy (EM) was confirmed by sequence data and major coat proteins were identified from gel bands by mass spectroscopy. By their morphology from EM data, φEa1h and φEa100 were assigned to the Podoviridae and φEa104 and φEa116 to the Myoviridae. Host ranges were essentially confined to E. amylovora, strains of the species Erwinia pyrifoliae, E. billingiae and even Pantoea stewartii were partially sensitive. The phages φEa1h and φEa100 were dependent on the amylovoran capsule of E. amylovora, φEa104 and φEa116 were not. The Myoviridae efficiently lysed their hosts and protected apple flowers significantly better than the Podoviridae against E. amylovora and should be preferred in biocontrol experiments. We have also isolated and partially characterized E. amylovora phages from apple orchards in Germany. They belong to the Podoviridae or Myoviridae with a host range similar to the phages isolated in North America. In EM measurements, the genome sizes of the Podoviridae were smaller than the genomes of the Myoviridae from North America and from Germany, which differed from each other in corresponding nucleotide sequences. © 2011 The Authors. Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Llop, Pablo; Cabrefiga, Jordi; Smits, Theo H M; Dreo, Tanja; Barbé, Silvia; Pulawska, Joanna; Bultreys, Alain; Blom, Jochen; Duffy, Brion; Montesinos, Emilio; López, María M
2011-01-01
Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5-92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora.
Rezzonico, Fabio; Smits, Theo H M; Duffy, Brion
2011-06-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system confers acquired heritable immunity against mobile nucleic acid elements in prokaryotes, limiting phage infection and horizontal gene transfer of plasmids. In CRISPR arrays, characteristic repeats are interspersed with similarly sized nonrepetitive spacers derived from transmissible genetic elements and acquired when the cell is challenged with foreign DNA. New spacers are added sequentially and the number and type of CRISPR units can differ among strains, providing a record of phage/plasmid exposure within a species and giving a valuable typing tool. The aim of this work was to investigate CRISPR diversity in the highly homogeneous species Erwinia amylovora, the causal agent of fire blight. A total of 18 CRISPR genotypes were defined within a collection of 37 cosmopolitan strains. Strains from Spiraeoideae plants clustered in three major groups: groups II and III were composed exclusively of bacteria originating from the United States, whereas group I generally contained strains of more recent dissemination obtained in Europe, New Zealand, and the Middle East. Strains from Rosoideae and Indian hawthorn (Rhaphiolepis indica) clustered separately and displayed a higher intrinsic diversity than that of isolates from Spiraeoideae plants. Reciprocal exclusion was generally observed between plasmid content and cognate spacer sequences, supporting the role of the CRISPR/Cas system in protecting against foreign DNA elements. However, in several group III strains, retention of plasmid pEU30 is inconsistent with a functional CRISPR/Cas system.
Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong
2013-09-01
Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.
Absence of lysogeny in wild populations of Erwinia amylovora and Pantoea agglomerans.
Roach, Dwayne R; Sjaarda, David R; Sjaarda, Calvin P; Ayala, Carlos Juarez; Howcroft, Brittany; Castle, Alan J; Svircev, Antonet M
2015-05-01
Lytic bacteriophages are in development as biological control agents for the prevention of fire blight disease caused by Erwinia amylovora. Temperate phages should be excluded as biologicals since lysogeny produces the dual risks of host resistance to phage attack and the transduction of virulence determinants between bacteria. The extent of lysogeny was estimated in wild populations of E. amylovora and Pantoea agglomerans with real-time polymerase chain reaction primers developed to detect E. amylovora phages belonging to the Myoviridae and Podoviridae families. Pantoea agglomerans, an orchard epiphyte, is easily infected by Erwinia spp. phages, and it serves as a carrier in the development of the phage-mediated biological control agent. Screening of 161 E. amylovora isolates from 16 distinct geographical areas in North America, Europe, North Africa and New Zealand and 82 P. agglomerans isolates from southern Ontario, Canada showed that none possessed prophage. Unstable phage resistant clones or lysogens were produced under laboratory conditions. Additionally, a stable lysogen was recovered from infection of bacterial isolate Ea110R with Podoviridae phage ΦEa35-20. These laboratory observations suggested that while lysogeny is possible in E. amylovora, it is rare or absent in natural populations, and there is a minimal risk associated with lysogenic conversion and transduction by Erwinia spp. phages. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins.
Malnoy, Mickael; Viola, Roberto; Jung, Min-Hee; Koo, Ok-Jae; Kim, Seokjoong; Kim, Jin-Soo; Velasco, Riccardo; Nagamangala Kanchiswamy, Chidananda
2016-01-01
The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7 , a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2 , and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants.
Buerstmayr, Maria; Buerstmayr, Hermann
2015-08-01
Fusarium resistance in Arina is highly quantitative and governed by multiple small effect QTL. Anther retention has a high correlation with FHB susceptibility and appears a practicable indirect selection target for enhancing FHB resistance. The Swiss winter wheat cultivar Arina possesses a high resistance level constituted by a number of small to medium effect QTL reported from three independent mapping populations. Yet these overlap only for one resistance QTL on the long arm of chromosome 1B. The present study characterized Fusarium head blight (FHB) resistance in a population of 171 recombinant inbred lines from a cross between Arina (resistant) and Capo (moderately resistant). The population was evaluated for FHB resistance under field conditions for 3 years. Additionally, we phenotyped anther retention, plant height and flowering date to analyze their association with resistance. Lines with a low proportion of retained anthers after flowering and tall plants were significantly less diseased, while flowering date had no association with FHB severity. QTL analysis identified eight small to medium effect QTL for FHB severity, of which QTL on 1BS, 3B, 4AL and 6BL likely correspond to resistance alleles already detected in previously studied Arina populations. QTL for anther retention mapped to 4AL, 6BL and 5AS. Notably, QTL on 4AL and 6BL overlapped with QTL for FHB severity. A single small effect QTL for plant height was detected on 5AS and no QTL was identified for flowering date. Genotypes having three or four resistance alleles in combination showed a good resistance level, indicating pyramiding resistance QTL as a powerful approach for breeding resistant cultivars. Selection for rapid and complete anther extrusion appears promising as an indirect selection criterion for enhancing FHB resistance.
Kumar, Arun; Yogendra, Kalenahalli N.; Karre, Shailesh; Kushalappa, Ajjamada C.; Dion, Yves; Choo, Thin M.
2016-01-01
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating diseases of wheat and barley. Resistance to FHB is highly complex and quantitative in nature, and is most often classified as resistance to spikelet infection and resistance to spread of pathogen through the rachis. In the present study, a resistant (CI9831) and a susceptible (H106-371) two-row barley genotypes, with contrasting levels of spikelet resistance to FHB, pathogen or mock-inoculated, were profiled for metabolites based on liquid chromatography and high resolution mass spectrometry. The key resistance-related (RR) metabolites belonging to fatty acids, phenylpropanoids, flavonoids and terpenoid biosynthetic pathways were identified. The free fatty acids (FFAs) linoleic and palmitic acids were among the highest fold change RR induced (RRI) metabolites. These FFAs are deposited as cutin monomers and oligomers to reinforce the cuticle, which acts as a barrier to pathogen entry. Quantitative real-time PCR studies revealed higher expressions of KAS2, CYP86A2, CYP89A2, LACS2 and WAX INDUCER1 (HvWIN1) transcription factor in the pathogen-inoculated resistant genotype than in the susceptible genotype. Knockdown of HvWIN1 by virus-induced genes silencing (VIGS) in resistant genotype upon pathogen inoculation increased the disease severity and fungal biomass, and decreased the abundance of FFAs like linoleic and palmitic acids. Notably, the expression of CYP86A2, CYP89A2 and LAC2 genes was also suppressed, proving the link of HvWIN1 in regulating these genes in cuticle biosynthesis as a defense response. PMID:27194736
Testing resistance to chestnut blight of hybrid chestnuts
Cécile Robin; Xavier Capdevielle; Gille Saint-Jean; Teresa Barreneche
2012-01-01
Castanea sativa Mill. is an ecologically and economically important species in Europe, not only as a forest tree, but also as a fruit tree. It is dramatically threatened by ink disease caused by Phytophthora spp., introduced during the nineteenth century. To limit its impact, C. mollissima and C....
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat and barley that results in huge economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, such as deoxynivalenol (DON), that increase fungal virulence and decreas...
USDA-ARS?s Scientific Manuscript database
The role of Fusarium graminearum trichothecene-chemotypes in disease outcomes was evaluated in a series of wheat lines with different levels of resistance to Fusarium Head Blight (FHB). Four inocula, each consisting of a composite of four strains with either 15-acetyldeoxynivalenol (ADON) chemotypes...
USDA-ARS?s Scientific Manuscript database
In the current study, we evaluated the impact of the observed North American evolutionary shift in the Fusarium graminearum complex on disease spread, kernel damage, and trichothecene accumulation in resistant and susceptible wheat genotypes. Four inocula were prepared using composites of F. gramin...
Early results from a pilot test of planting small American chesnut seedlings under a forest canopy
W. Henry McNab; Steven Patch; A. Amelia Nutter
2003-01-01
Successful development of American chestnut (Castanea dentata) hybrids that are resistant to chestnut blight (Cryphonectria parasitica) will require information about methods for effective and economical reintroduction of this species in forests of the southern Appalachian Mountains (Boucher 2000) American chestnut regenerates...
Development of molecular markers for breeding for disease resistant crops
USDA-ARS?s Scientific Manuscript database
Rice blast disease caused by the filamentous ascomycetes fungus Magnaporthe oryzae and sheath blight disease caused by the soil borne fungus Rhizocotonia solani are the two major rice diseases that threaten stable rice production in the USA and worldwide. These two diseases have been managed with a ...
The implications of American chestnut reintroduction on landscape dynamics and carbon storage
Eric J. Gustafson; Arjan de Bruijn; Nathanael Lichti; Douglass F. Jacobs; Brian R. Sturtevant; Jane Foster; Brian R. Miranda; Harmony J. Dalgleish
2017-01-01
In the eastern United States, American chestnut (Castanea dentata) was historically a major component of forest communities, but was functionally extirpated in the early 20th century by an introduced pathogen, chestnut blight (Cryphonectria parasitica). Because chestnut is fast-growing, long-lived, and resistant to decay,...
Paul G. Schaberg; Thomas M. Saielli; Gary J. Hawley; Joshua M. Halman; Kendra M. Gurney
2013-01-01
Hybridization of American chestnut (Castanea dentata) with Chinese chestnut (C. mollissima), followed by backcrossing to American chestnut, is conducted to increase the resistance of resulting stock to chestnut blight, caused by the fungal pathogen Cryphonectria parasitica (Murr.) Barr. Backcross breeding is...
Screening larch in vitro for resistance to Mycosphaerella laricina
M.E. Ostry; Paula M. Pijut; D.D. Skilling
1991-01-01
Needle blight of larch caused by Mycosphaerella laricina seriously limits the productivity of susceptible trees in the north central and northeastern United States. Adventitious shoots, derived from cotyledon tissue culture, of selected European larch (Larix decidua) and a hybrid larch were inoculated in vitro with three isolates...
Rigling, Daniel; Prospero, Simone
2018-01-01
Chestnut blight, caused by Cryphonectria parasitica, is a devastating disease infecting American and European chestnut trees. The pathogen is native to East Asia and was spread to other continents via infected chestnut plants. This review summarizes the current state of research on this pathogen with a special emphasis on its interaction with a hyperparasitic mycovirus that acts as a biological control agent of chestnut blight. Cryphonectria parasitica (Murr.) Barr. is a Sordariomycete (ascomycete) fungus in the family Cryphonectriaceae (Order Diaporthales). Closely related species that can also be found on chestnut include Cryphonectria radicalis, Cryphonectria naterciae and Cryphonectria japonica. Major hosts are species in the genus Castanea (Family Fagaceae), particularly the American chestnut (C. dentata), the European chestnut (C. sativa), the Chinese chestnut (C. mollissima) and the Japanese chestnut (C. crenata). Minor incidental hosts include oaks (Quercus spp.), maples (Acer spp.), European hornbeam (Carpinus betulus) and American chinkapin (Castanea pumila). Cryphonectria parasitica causes perennial necrotic lesions (so-called cankers) on the bark of stems and branches of susceptible host trees, eventually leading to wilting of the plant part distal to the infection. Chestnut blight cankers are characterized by the presence of mycelial fans and fruiting bodies of the pathogen. Below the canker the tree may react by producing epicormic shoots. Non-lethal, superficial or callusing cankers on susceptible host trees are usually associated with mycovirus-induced hypovirulence. After the introduction of C. parasitica into a new area, eradication efforts by cutting and burning the infected plants/trees have mostly failed. In Europe, the mycovirus Cryphonectria hypovirus 1 (CHV-1) acts as a successful biological control agent of chestnut blight by causing so-called hypovirulence. CHV-1 infects C. parasitica and reduces its parasitic growth and sporulation capacity. Individual cankers can be therapeutically treated with hypovirus-infected C. parasitica strains. The hypovirus may subsequently spread to untreated cankers and become established in the C. parasitica population. Hypovirulence is present in many chestnut-growing regions of Europe, either resulting naturally or after biological control treatments. In North America, disease management of chestnut blight is mainly focused on breeding with the goal to backcross the Chinese chestnut's blight resistance into the American chestnut genome. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Hutin, Mathilde; Césari, Stella; Chalvon, Véronique; Michel, Corinne; Tran, Tuan Tu; Boch, Jens; Koebnik, Ralf; Szurek, Boris; Kroj, Thomas
2016-10-01
Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Dhariwal, Raman; Fedak, George; Dion, Yves; Pozniak, Curtis; Laroche, André; Eudes, François; Randhawa, Harpinder Singh
2018-01-01
Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale. PMID:29304028
Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes.
Borruso, Luigimaria; Salomone-Stagni, Marco; Polsinelli, Ivan; Schmitt, Armin Otto; Benini, Stefano
2017-12-01
The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.
Study to develop improved fire resistant aircraft passenger seat materials
NASA Technical Reports Server (NTRS)
Duskin, F. E.; Schutter, K. J.; Sieth, H. H.; Trabold, E. L.
1980-01-01
The Phase 3 study of the NASA 'Improved Fire Resistant Aircraft Seat Materials' involved fire tests of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a 'Design Guideline' for Fire Resistant Passenger Seats was written outlining general seat design considerations. Finally, a three-abreast 'Tourist Class' passenger seat assembly fabricated from the most advanced fire-resistant materials was delivered.
Biological control of fusarium seedling blight disease of wheat and barley.
Khan, Mojibur R; Fischer, Sven; Egan, Damian; Doohan, Fiona M
2006-04-01
ABSTRACT Fusarium fungi, including F. culmorum, cause seedling blight, foot rot, and head blight diseases of cereals, resulting in yield loss. In a screen for potential disease control organisms and agents, Pseudomonas fluorescens strains MKB 100 and MKB 249, P. frederiksbergensis strain 202, Pseudomonas sp. strain MKB 158, and chitosan all significantly reduced the extent of both wheat coleoptile growth retardation and wheat and barley seedling blight caused by F. culmorum (by 53 to 91%). Trichodiene synthase is a Fusarium enzyme necessary for trichothecene mycotoxin biosynthesis; expression of the gene encoding this enzyme in wheat was 33% lower in stem base tissue coinoculated with Pseudomonas sp. strain MKB 158 and F. culmorum than in wheat treated with bacterial culture medium and F. culmorum. When wheat and barley were grown in soil amended with either chitosan, P. fluorescens strain MKB 249, Pseudomonas sp. strain MKB 158, or culture filtrates of these bacteria, the level of disease symptoms on F. culmorum-inoculated stem base tissue (at 12 days post- F. culmorum inoculation) was >/=31% less than the level on F. culmorum-inoculated plants grown in culture medium-amended soil. It seems likely that at least part of the biocontrol activity of these bacteria and chitosan may be due to the induction of systemic disease resistance in host plants. Also, in coinoculation studies, Pseudomonas sp. strain MKB 158 induced the expression of a wheat class III plant peroxidase gene (a pathogenesis-related gene).
Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota
2016-10-18
Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.
Zhang, Jinfeng; Chen, Lei; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Cheng, Yuanzhi; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping
2017-01-01
Rice sheath blight, caused by Rhizoctonia solani , is one of the most devastating diseases for stable rice production in most rice-growing regions of the world. Currently, studies of the molecular mechanism of rice sheath blight resistance are scarce. Here, we used an RNA-seq approach to analyze the gene expression changes induced by the AG1 IA strain of R. solani in rice at 12, 24, 36, 48, and 72 h. By comparing the transcriptomes of TeQing (a moderately resistant cultivar) and Lemont (a susceptible cultivar) leaves, variable transcriptional responses under control and infection conditions were revealed. From these data, 4,802 differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses suggested that most DEGs and related metabolic pathways in both rice genotypes were common and spanned most biological activities after AG1 IA inoculation. The main difference between the resistant and susceptible plants was a difference in the timing of the response to AG1 IA infection. Photosynthesis, photorespiration, and jasmonic acid and phenylpropanoid metabolism play important roles in disease resistance, and the relative response of disease resistance-related pathways in TeQing leaves was more rapid than that of Lemont leaves at 12 h. Here, the transcription data include the most comprehensive list of genes and pathway candidates induced by AG1 IA that is available for rice and will serve as a resource for future studies into the molecular mechanisms of the responses of rice to AG1 IA.
Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L-F sequence data
Ping Lang; Fenny Dane; Thomas L. Kubisiak
2005-01-01
Species in the genus Castanea are widely distributed in the deciduous forests of the Northern Hemisphere from Asia to Europe and North America. They show floristic similarity but differences in chestnut blight resistance especially among eastern Asian and eastern North American species. Phylogenetic analyses were conducted in this study using...
Blight-resistant American chestnut trees: selection of progeny from a breeding program
Shiv Hiremath; Kirsten Lehtoma; Fred Hebard
2007-01-01
Introduction of the fungus Cryphonectria parasitica into North America in early 1900s resulted in the demise of the American chestnut, which was once the most dominant forest tree in the eastern United States. While the American chestnut (Castanea dentate) is susceptible, its counterpart from Asia, the Chinese chestnut, is...
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON) accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite cons...
Thomas M. Saielli; Paul G. Schaberg; Gary J. Hawley; Joshua M. Halman; Kendra M. Gurney
2014-01-01
The backcross breeding of American chestnut (Castanea dentata [Marsh.] Borkh.) with Chinese chestnut (Castanea mollissima Blume) may provide an effective method to increase resistance against chestnut blight and help restore American chestnut throughout its historic range. However, the comparative adaptation (e.g., cold hardiness...
Shawn A. Mehlenbacher
2012-01-01
The Oregon State University (OSU) hazelnut breeding program, initiated in 1969, continues to develop new cultivars for the hazelnut industry that combine suitability to the blanched kernel market with resistance to eastern filbert blight (EFB) caused by Anisogramma anomala. Oregon's hazelnut growers support the program through the Oregon...
USDA-ARS?s Scientific Manuscript database
Oryza meridionalis is the wild Oryza species endemic to Australia. There are eight AA genome Oryza species, one of which is cultivated rice, O. sativa and O. meridionalis is the most diverged of the eight species. An O. eridionalis (IRGC105608) accession was identified as being moderately resistant...
USDA-ARS?s Scientific Manuscript database
Deoxynivalenol (DON) levels in harvested grain samples are used to evaluate the Fusarium head blight (FHB) resistance of wheat cultivars and breeding lines. Fourier transform near-infrared (FT-NIR) calibrations were developed to estimate the DON and moisture content (MC) of bulk wheat grain samples ...
Stacy L. Clark; Scott E. Schlarbaum; Arnold M. Saxton; Fred V. Hebard
2012-01-01
The American chestnut [Castanea dentata (Marsh.) Borkh.] was decimated by an exotic fungus [Cryphonectria parasitica (Murr.) Barr] in the early 1900s. Breeding efforts with American and Chinese chestnuts (C. mollissima Blume) produced putatively blight-resistant progeny (BC3F3) in 2007. We compared two nut size...
Reintroduction of American Chestnut in the National Forest System
Stacy L. Clark; Scott E. Schlarbaum; Cornelia C. Pinchot; Sandra L. Anagnostakis; Michael R. Saunders; Melissa Thomas-Van Gundy; Paul Schaberg; James McKenna; Jane F. Bard; Paul C. Berrang; David M. Casey; Chris E. Casey; Barbara Crane; Brian D. Jackson; Jeff D. Kochenderfer; Russ MacFarlane; Robert Makowske; Mark D. Miller; Jason A. Rodrigue; Jim Stelick; Christopher D. Thornton; Tyler S. Williamson
2014-01-01
American chestnut restoration depends on a multitude of biological, administrative, and technological factors. Germplasm traditionally bred for resistance to the chestnut blight disease caused by the exotic pathogen Cryphonectria parasitica has been deployed on national forests in the Eastern and Southern Regions of the National Forest System (NFS) since 2009. Trees...
NuMex-02- A High oleic Valencia peanut with partial resistance to Sclerotinia blight
USDA-ARS?s Scientific Manuscript database
NuMex-02 is a high oleic Valencia peanut (Arachis hypogaea L., subsp. fastigiata var. fastigiata) cultivar developed by the New Mexico Agricultural Experiment Station, Clovis, New Mexico. NuMex-02 originated from a cross made between NM Valencia A and OLin. Pedigree selection was practiced based on...
Correspondence of Charles Darwin on James Torbitt's project to breed blight-resistance potatoes.
DeArce, M
2008-01-01
The most prolific of Darwin's correspondents from Ireland was James Torbitt, an enterprising grocer and wine merchant of 58 North Street, Belfast. Between February 1876 and March 1882, 141 letters were exchanged on the feasibility and ways of supporting one of Torbitt's commercial projects, the large-scale production and distribution of true potato seeds (Solan um tuberosum) to produce plants resistant to the late blight fungus Phytophthora infestans, the cause of repeated potato crop failures and thus the Irish famines in the nineteenth century. Ninety-three of these letters were exchanged between Torbitt and Darwin, and 48 between Darwin and third parties, seeking or offering help and advice on the project. Torbitt's project required selecting the small proportion of plants in an infested field that survived the infection, and using those as parents to produce seeds. This was a direct application of Darwin's principle of selection. Darwin cautiously lobbied high-ranking civil servants in London to obtain government funding for the project, and also provided his own personal financial support to Torbit.
Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2
NASA Technical Reports Server (NTRS)
Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.
1976-01-01
Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.
Evidence from the domestication of apple for the maintenance of autumn colours by coevolution
Archetti, Marco
2009-01-01
The adaptive value of autumn colours is still a puzzle for evolutionary biology. It has been suggested that autumn colours are a warning signal to insects that use the trees as a host. I show that aphids (Dysaphis plantaginea) avoid apple trees (Malus pumila) with red leaves in autumn and that their fitness in spring is lower on these trees, which suggests that red leaves are an honest signal of the quality of the tree as a host. Autumn colours are common in wild populations but not among cultivated apple varieties, which are no longer under natural selection against insects. I show that autumn colours remain only in the varieties that are very susceptible to the effects of a common insect-borne disease, fire blight, and therefore are more in need of avoiding insects. Moreover, varieties with red leaves have smaller fruits, which shows that they have been under less effective artificial selection. This suggests a possible trade off between fruit size, leaf colour and resistance to parasites. These results are consistent with the hypothesis that autumn colours are a warning signal to insects, but not with other hypotheses. PMID:19369261
Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar
2016-01-01
To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops. PMID:27465480
NASA Astrophysics Data System (ADS)
Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar
2016-07-01
To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops.
Xie, Weilong; Yu, Kangfu; Pauls, K Peter; Navabi, Alireza
2012-04-01
The effectiveness of image analysis (IA) compared with an ordinal visual scale, for quantitative measurement of disease severity, its application in quantitative genetic studies, and its effect on the estimates of genetic parameters were investigated. Studies were performed using eight backcross-derived families of common bean (Phaseolus vulgaris) (n = 172) segregating for the molecular marker SU91, known to be associated with a quantitative trait locus (QTL) for resistance to common bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans. Even though both IA and visual assessments were highly repeatable, IA was more sensitive in detecting quantitative differences between bean genotypes. The CBB phenotypic difference between the two SU91 genotypic groups was consistently more than fivefold for IA assessments but generally only two- to threefold for visual assessments. Results suggest that the visual assessment results in overestimation of the effect of QTL in genetic studies. This may have been caused by lack of additivity and uneven intervals of the visual scale. Although visual assessment of disease severity is a useful tool for general selection in breeding programs, assessments using IA may be more suitable for phenotypic evaluations in quantitative genetic studies involving CBB resistance as well as other foliar diseases.
Development of Fire Resistant/Heat Resistant Sewing Thread
2016-03-01
Final 3. DATES COVERED (From - To) October 2014 – June 2015 4. TITLE AND SUBTITLE DEVELOPMENT OF FIRE RESISTANT /HEAT RESISTANT SEWING THREAD 5a...core to sheath ratio of 70:30 will offer a high performance, low cost sewing thread with required fire resistant /heat resistant properties. 15...Properties ............................................................................... 18 1 DEVELOPMENT OF FIRE RESISTANT /HEAT
Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu
2014-01-01
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease. © 2013 BSPP AND JOHN WILEY & SONS LTD.
Behaviour of Reinforced Concrete Columns of Various Cross-Sections Subjected to Fire
NASA Astrophysics Data System (ADS)
Balaji, Aneesha; Muhamed Luquman, K.; Nagarajan, Praveen; Madhavan Pillai, T. M.
2016-09-01
Fire resistance is one of the crucial design regulations which are now mandatory in most of the design codes. Therefore, a thorough knowledge of behaviour of structures exposed to fire is required in this aspect. Columns are the most vulnerable structural member to fire as it can be exposed to fire from all sides. However, the data available for fire resistant design for columns are limited. Hence the present work is focused on the effect of cross-sectional shape of column in fire resistance design. The various cross-sections considered are Square, Ell (L), Tee (T), and Plus (`+') shape. Also the effect of size and shape and distribution of steel reinforcement on fire resistance of columns is studied. As the procedure for determining fire resistance is not mentioned in Indian Standard code IS 456 (2000), the simplified method (500 °C isotherm method) recommended in EN 1992-1-2:2004 (E) (Eurocode 2) is adopted. The temperature profiles for various cross-sections are developed using finite element method and these profiles are used to predict fire resistance capability of compression members. The fire resistance based on both numerical and code based methods are evaluated and compared for various types of cross-section.
Impact of silvicultural treatment on chestnut seedling growth and survival
C.C. Pinchot; S.E. Schlarbaum; S.L. Clark; C.J. Schweitzer; A.M. Saxton; F. V. Hebard
2014-01-01
Putatively blight-resistant advanced backcross chestnut seedlings will soon be available for outplanting on a regional scale. Few studies have examined the importance of silvicultural treatment or seedling quality to chestnut reintroduction in the U.S. This paper examines results from a silvicultural study of high-quality chestnut seedlings on the Cumberland Plateau of...
USDA-ARS?s Scientific Manuscript database
Aphid-transmitted Bean Common Mosaic Necrosis Virus (BCMNV) and Bean Common Mosaic Virus (BCMV) are potyvirus that cause production losses in common and tepary beans. Developing resistance to viruses, specifically BCMV, BCMNV and BGYMV, will be critical for expanding tepary bean production. This stu...
Jenise M. Bauman; Carolyn H. Keiffer; Shiv Hiremath
2011-01-01
The objective of this study was to evaluate the influence of five different species of ectomycorrhizal (ECM) fungi on root colonization of native fungi on putatively blight resistant chestnut hybrids (Castanea dentata x C. mollissima) in a reclaimed mine site in central Ohio. The five species were Hebeloma crustuliniforme, Laccaria bicolor,...
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) and marker-assisted selection (MAS) rely on marker-trait associations and are both routinely used for breeding purposes. Although similar, these two approaches differ in their applications and how markers are used to estimate breeding values. In this study, GS and MAS were com...
Stacy Clark; S.E. Schlarbaum; F,V Saxton
2014-01-01
Production of American chestnut (Castanea dentata) resistant to the chestnut blight fungus (Cryphonectria parasitica) is being conducted currently through traditional breeding and genetic transformation. Sufficient material for field testing is currently available from The American Chestnut Foundationâs backcross breeding program. We planted approximately 4500 chestnut...
Molecules that inhibit growth of Fusarium graminearum, a pathogen causing disease in wheat and corn
USDA-ARS?s Scientific Manuscript database
Fusarium graminearum can cause head blight in wheat and stalk or ear rot in corn, which results in crop losses. Discovery of novel antifungal resistance proteins are crucial to mitigating crop losses. We found, via in vitro studies, a small cationic peptide was capable of inhibiting the growth of th...
Jiang, Y; Zhao, Y; Rodemann, B; Plieske, J; Kollers, S; Korzun, V; Ebmeyer, E; Argillier, O; Hinze, M; Ling, J; Röder, M S; Ganal, M W; Mette, M F; Reif, J C
2015-03-01
Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker-trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.
Dai, Yi; Duan, Yamei; Liu, Huiping; Chi, Dawn; Cao, Wenguang; Xue, Allen; Gao, Yong; Fedak, George; Chen, Jianmin
2017-01-01
Fusarium head blight (FHB), leaf rust, and stem rust are the most destructive fungal diseases in current world wheat production. The diploid wheatgrass, Thinopyrum elongatum (Host) Dewey (2 n = 2 x = 14, EE) is an excellent source of disease resistance genes. Two new Triticum-Secale-Thinopyrum trigeneric hybrids were derived from a cross between a hexaploid triticale (X Triticosecale Wittmack, 2 n = 6 x = 42, AABBRR) and a hexaploid Triticum trititrigia (2 n = 6 x = 42, AABBEE), were produced and analyzed using genomic in situ hybridization and molecular markers. The results indicated that line RE21 contained 14 A-chromosomes, 14 B-chromosomes, three pairs of R-chromosomes (4R, 6R, and 7R), and four pairs of E-chromosomes (1E, 2E, 3E, and 5E) for a total chromosome number of 2 n = 42. Line RE62 contained 14 A-chromosomes, 14 B-chromosomes, six pairs of R-chromosomes, and one pair of translocation chromosomes between chromosome 5R and 5E, for a total chromosome number of 2 n = 42. At the seedling and adult growth stages under greenhouse conditions, line RE21 showed high levels of resistance to FHB, leaf rust, and stem rust race Ug99, and line RE62 was highly resistant to leaf rust and stem rust race Ug99. These two lines (RE21 and RE62) display superior disease resistance characteristics and have the potential to be utilized as valuable germplasm sources for future wheat improvement.
EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora.
Moreau, Manon; Degrave, Alexandre; Vedel, Régine; Bitton, Frédérique; Patrit, Oriane; Renou, Jean-Pierre; Barny, Marie-Anne; Fagard, Mathilde
2012-03-01
Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.
29 CFR 1926.155 - Definitions applicable to this subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...
29 CFR 1926.155 - Definitions applicable to this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...
29 CFR 1926.155 - Definitions applicable to this subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...
29 CFR 1926.155 - Definitions applicable to this subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...
29 CFR 1926.155 - Definitions applicable to this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
..., suppliers, or distributors of fire-resistant fibers, yarns, fabrics, or military uniforms) submitted.... The law does not restrict DoD's selection and use of fabrics containing fire-resistant rayon fiber... from selecting fabrics that include fire- resistant rayon fibers. Response: These responses have...
Kanchiswamy, Chidananda Nagamangala; Mohanta, Tapan Kumar; Capuzzo, Andrea; Occhipinti, Andrea; Verrillo, Francesca; Maffei, Massimo E; Malnoy, Mickael
2013-11-05
Plant calcium (Ca2+) signals are involved in a wide array of intracellular signalling pathways following pathogen invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate signalling following Ca2+ influx after pathogen infection. However, to date this prediction has remained elusive. We conducted a genome-wide identification of the Malus x domestica CPK (MdCPK) gene family and identified 30 CPK genes. Comparative phylogenetic analysis of Malus CPKs with CPKs of Arabidopsis thaliana (AtCPKs), Oryza sativa (OsCPKs), Populous trichocarpa (PtCPKs) and Zea mays (ZmCPKs) revealed four different groups. From the phylogenetic tree, we found that MdCPKs are closely related to AtCPKs and PtCPKs rather than OsCPKs and ZmCPKs, indicating their dicot-specific origin. Furthermore, comparative quantitative real time PCR and intracellular cytosolic calcium ([Ca2+]cyt) analysis were carried out on fire blight resistant and susceptible M. x domestica apple cultivars following infection with a pathogen (Erwinia amylovora) and/or mechanical damage. Calcium analysis showed an increased [Ca2+]cyt over time in resistant cultivars as compared to susceptible cultivars. Gene expression studies showed that 11 out of the 30 MdCPKs were differentially expressed following pathogen infection. We studied the genome-wide analysis of MdCPK gene family in Malus x domestica and analyzed their differential gene expression along with cytosolic calcium variation upon pathogen infection. There was a striking difference in MdCPKs gene expressions and [Ca2+]cyt variations between resistant and susceptible M. x domestica cultivars in response to E. amylovora and mechanical wounding. Our genomic and bioinformatic analysis provided an important insight about the role of MdCPKs in modulating defence responses in susceptible and resistant apple cultivars. It also provided further information on early signalling and downstream signalling cascades in response to pathogenic and mechanical stress.
Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota
2016-01-01
Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547
Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J
2012-09-01
Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Jiang, Chang-Jie; Shimono, Masaki; Maeda, Satoru; Inoue, Haruhiko; Mori, Masaki; Hasegawa, Morifumi; Sugano, Shoji; Takatsuji, Hiroshi
2009-07-01
Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants.
Forest-fire model with natural fire resistance.
Yoder, Mark R; Turcotte, Donald L; Rundle, John B
2011-04-01
Observations suggest that contemporary wildfire suppression practices in the United States have contributed to conditions that facilitate large, destructive fires. We introduce a forest-fire model with natural fire resistance that supports this theory. Fire resistance is defined with respect to the size and shape of clusters; the model yields power-law frequency-size distributions of model fires that are consistent with field observations in the United States, Canada, and Australia.
Müller, I; Kube, M; Reinhardt, R; Jelkmann, W; Geider, K
2011-02-01
Fire blight, a plant disease of economic importance caused by Erwinia amylovora, may be controlled by the application of bacteriophages. Here, we provide the complete genome sequences and the annotation of three E. amylovora-specific phages isolated in North America and genomic information about a bacteriophage induced by mitomycin C treatment of an Erwinia tasmaniensis strain that is antagonistic for E. amylovora. The American phages resemble two already-described viral genomes, whereas the E. tasmaniensis phage displays a singular genomic sequence in BLAST searches.
Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long
2013-08-01
Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.
Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Lan, Xiujin; Mao, Long
2013-01-01
Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat. PMID:23918959
Suh, Jung-Pil; Jeung, Ji-Ung; Noh, Tae-Hwan; Cho, Young-Chan; Park, So-Hyun; Park, Hyun-Su; Shin, Mun-Sik; Kim, Chung-Kon; Jena, Kshirod K
2013-02-08
The development of resistant cultivars has been the most effective and economical strategy to control bacterial leaf blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance in resistance rice breeding. In this study, three resistance genes (Xa4 + xa5 + Xa21) were transferred from an indica donor (IRBB57), using a marker-assisted backcrossing (MAB) breeding strategy, into a BB-susceptible elite japonica rice cultivar, Mangeumbyeo, which is high yielding with good grain quality. Our analysis led to the development of three elite advanced backcross breeding lines (ABL) with three resistance genes by foreground and phenotypic selection in a japonica genetic background without linkage drag. The background genome recovery of the ABL expressed more than 92.1% using genome-wide SSR marker analysis. The pathogenicity assays of three resistance-gene-derived ABL were conducted under glasshouse conditions with the 18 isolates of Xoo prevalent in Korea. The ABL exhibited very small lesion lengths, indicating a hypersensitive reaction to all 18 isolates of Xoo, with agronomic and grain quality traits similar to those of the recurrent parent. Pyramiding the resistance genes Xa4, xa5 and Xa21 provided a higher resistance to Xoo than the introduction of the individual resistance genes. Additionally, the combination of two dominant and one recessive BB resistance gene did not express any negative effect on agronomic traits in the ABL. The strategy of simultaneous foreground and phenotypic selection to introduce multiple R genes is very useful to reduce the cost and the time required for the isolation of desirable recombinants with target resistance genes in rice. The resistance-gene-derived ABL have practical breeding value without a yield penalty by providing broad-spectrum resistance against most of the existing isolates of BB in South Korea and will have a high impact on the yield stability and sustainability of rice productivity.
Chao, Yu; Chen, Yutong; Cao, Yaqian; Chen, Huamin; Wang, Jichun; Bi, Yong-Mei; Tian, Fang; Yang, Fenghuan; Rothstein, Steven J; Zhou, Xueping; He, Chenyang
2018-03-15
Limiting nitrogen (N) supply contributes to improved resistance to bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) in susceptible rice (Oryza sativa). To understand the regulatory roles of microRNAs in this phenomenon, sixty-three differentially-expressed overlapping miRNAs in response to Xoo infection and N-limitation stress in rice were identified through deep RNA-sequence and stem loop qRT-PCR. Among these, miR169o was further assessed as a typical overlapping miRNA through the overexpression of the miR169o primary gene. Osa-miR169o-OX plants were taller, and had more biomass accumulation with significantly increased nitrate and total amino acid contents in roots than wild type (WT). Transcript level assays showed that under different N supply conditions miR169o opposite regulated NRT2 which is reduced under normal N supply condition but remarkably induced under N limiting stress. On the other hand, osa-miR169o-OX plants also displayed increased disease lesion lengths and reduced transcriptional levels of defense gene (PR1b, PR10a, PR10b and PAL) compared with WT after inoculation with Xoo. In addition, miR169o impeded Xoo-mediated NRT transcription. Therefore, the overlapping miR169o contributes to increase N use efficiency and negatively regulates the resistance to bacterial blight in rice. Consistently, transient expression of NF-YAs in rice protoplast promoted the transcripts of PR genes and NRT2 genes, while reduced the transcripts of NRT1 genes. Our results provide novel and additional insights into the coordinated regulatory mechanisms of crosstalk between Xoo infection and N-deficiency responses in rice.
Sha, A H; Lin, X H; Huang, J B; Zhang, D P
2005-07-01
DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. The rice cultivar Wase Aikoku 3 becomes resistant to the blight pathogen Xanthomonas oryzae pv. oryzae at the adult stage. Using methylation-sensitive amplified polymorphism (MSAP) analysis, we compared the patterns of cytosine methylation in seedlings and adult plants of the rice cultivar Wase Aikoku 3 that had been inoculated with the pathogen Xanthomonas oryzae pv. oryzae, subjected to mock inoculation or left untreated. In all, 2000 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using 60 pairs of selective primers. A total of 380 sites were found to be methylated. Of these, 45 showed differential cytosine methylation among the seedlings and adult plants subjected to different treatments, and overall levels of methylation were higher in adult plants than in seedlings. All polymorphic fragments were sequenced, and six showed homology to genes that code for products of known function. Northern analysis of three fragments indicated that their expression varied with methylation pattern, with hypermethylation being correlated with repression of transcription, as expected. The results suggest that significant differences in cytosine methylation exist between seedlings and adult plants, and that hypermethylation or hypomethylation of specific genes may be involved in the development of adult plant resistance (APR) in rice plants.
A multi-scale conceptual model of fire and disease interactions in North American forests
NASA Astrophysics Data System (ADS)
Varner, J. M.; Kreye, J. K.; Sherriff, R.; Metz, M.
2013-12-01
One aspect of global change with increasing attention is the interactions between irruptive pests and diseases and wildland fire behavior and effects. These pests and diseases affect fire behavior and effects in spatially and temporally complex ways. Models of fire and pathogen interactions have been constructed for individual pests or diseases, but to date, no synthesis of this complexity has been attempted. Here we synthesize North American fire-pathogen interactions into syndromes with similarities in spatial extent and temporal duration. We base our models on fire interactions with three examples: sudden oak death (caused by the pathogen Phytopthora ramorum) and the native tree tanoak (Notholithocarpus densiflorus); mountain pine beetle (Dendroctonus ponderosae) and western Pinus spp.; and hemlock woolly adelgid (Adelges tsugae) on Tsuga spp. We evaluate each across spatial (severity of attack from branch to landscape scale) and temporal scales (from attack to decades after) and link each change to its coincident effects on fuels and potential fire behavior. These syndromes differ in their spatial and temporal severity, differentially affecting windows of increased or decreased community flammability. We evaluate these models with two examples: the recently emergent ambrosia beetle-vectored laurel wilt (caused by the pathogen Raffaelea lauricola) in native members of the Lauraceae and the early 20th century chestnut blight (caused by the pathogen Cryphonectria parasitica) that led to the decline of American chestnut (Castanea dentata). Some changes (e.g., reduced foliar moisture content) have short-term consequences for potential fire behavior while others (functional extirpation) have more complex indirect effects on community flammability. As non-native emergent diseases and pests continue, synthetic models that aid in prediction of fire behavior and effects will enable the research and management community to prioritize mitigation efforts to realized effects.
Evaluation of chestnut test plantings in the Eastern United States
Frederick H. Berry
1980-01-01
Between 1947 and 1955, 15 plots were established in the Eastern United States to evaluate chestnut hybrids under forest conditions. During the 1978 field season these test plots were reassessed and all living chestnut trees critically examined. Ten percent of the 250 surviving hybrid chestnuts were blight resistant, and had the timber form and rapid growth of the...
Restoration of chestnuts as a timber crop in Connecticut
S.L. Anagnostakis; C.C. Pinchot
2014-01-01
American chestnut trees were an important source of timber in Connecticut until chestnut blight disease reduced them to understory shrubs. Breeding begun in 1930 has now produced trees with enough resistance to initiate field trials in the forest. Biological control by hypovirulence viruses is being used in the plots in an effort to keep native trees alive. If native...
USDA-ARS?s Scientific Manuscript database
A leafy-green mustard (Brassica juncea L.) cultivar designated ‘Carolina Broadleaf’ has been released by the Agricultural Research Service of the U.S. Dept. of Agriculture in 2015. This released cultivar is a narrow-based population of leafy-green mustard derived from a U.S. plant introduction (PI)...
Niklaus J. Grunwald; E. Anne Davis; Robert G. Linderman
2006-01-01
Phytophthora ramorum is a recently introduced plant pathogen causing a range of diseases including sudden oak death, Ramorum shoot dieback and Ramorum blight (Rizzo and others 2002, 2004; Werres and others 2001). P. ramorum also attacks several nursery crops including viburnum and rhododendron (Werres and others 2001). Since its...
Cornelia Pinchot; Stacy Clark; Scott Schlarbaum; Arnold Saxton; Shi-Jean Sung; Frederick. Hebard
2015-01-01
Blight-resistant American chestnut (Castanea dentata) may soon be commercially available, but few studies have tested methods to produce high quality seedlings that will be competitive after planting. This study evaluated the performance of one American, one Chinese (C. mollissima), one second-generation backcross (BC3...
USDA-ARS?s Scientific Manuscript database
Mountain Gem Russet is a medium to late maturing variety with both high early and full season yields of oblong-long, medium-russeted tubers having higher protein content than those of standard potato varieties. Mountain Gem Russet has greater resistance to tuber late blight, tuber malformations and ...
Brown-spot resistance in natural stands of longleaf pine seedlings
William D. Boyer
1972-01-01
An average of 10 percent of longleaf pine (Pinus palustris Mill.) seedlings in several natural populations remained nearly free of brown-spot needle blight (Scirrhia acicola (Dearn.) Siggers) year after year, despite high injection levels in the population as a whole. In one study, these individuals averaged 8 feet taller at age 24 than surviving trees that were less...
USDA-ARS?s Scientific Manuscript database
The high oleic Spanish peanut (Arachis hypogaea L. subsp. fastigiata var. vulgaris) germplasm line ARSOK-S1 was developed cooperatively between the USDA Agricultural Research Service, Texas AgriLife Research, and Oklahoma State University, and was released in 2013. ARSOK-S1 (tested early as TX99678...
Development of a Midscale Test for Flame Resistant Protection
2016-08-01
Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin, which provides both radiant and convective heat...TEST METHODS FIRE RESISTANT MATERIALS TORCHES SIMULATION TEST EQUIPMENT FLAME RESISTANT CLOTHING PERFORMANCE(ENGINEERING... fabric during a fire , and even after the fire has been extinguished. The best known full scale transmitted heat flux test is the "ASTM F1930
HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells.
Bocsanczy, Ana M; Nissinen, Riitta M; Oh, Chang-Sik; Beer, Steven V
2008-07-01
The type III secretion system (T3SS) is required by plant pathogenic bacteria for the translocation of certain bacterial proteins to the cytoplasm of plant cells or secretion of some proteins to the apoplast. The T3SS of Erwinia amylovora, which causes fire blight of pear, apple and other rosaceous plants, secretes DspA/E, which is an indispensable pathogenicity factor. Several other proteins, including HrpN, a critical virulence factor, are also secreted by the T3SS. Using a CyaA reporter system, we demonstrated that DspA/E is translocated into the cells of Nicotiana tabacum'Xanthi'. To determine if other T3-secreted proteins are needed for translocation of DspA/E, we examined its translocation in several mutants of E. amylovora strain Ea321. DspA/E was translocated by both hrpW and hrpK mutants, although with some delay, indicating that these two proteins are dispensable in the translocation of DspA/E. Remarkably, translocation of DspA/E was essentially abolished in both hrpN and hrpJ mutants; however, secretion of DspA/E into medium was not affected in any of the mentioned mutants. In contrast to the more virulent strain Ea273, secretion of HrpN was abolished in a hrpJ mutant of strain Ea321. In addition, HrpN was weakly translocated into plant cytoplasm. These results suggest that HrpN plays a significant role in the translocation of DspA/E, and HrpJ affects the translocation of DspA/E by affecting secretion or stability of HrpN. Taken together, these results explain the critical importance of HrpN and HrpJ to the development of fire blight.
Barbé, Silvia; Bertolini, Edson; Roselló, Montserrat; Llop, Pablo
2014-01-01
Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 103 cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 102 cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora. PMID:24509928
Barbé, Silvia; Bertolini, Edson; Roselló, Montserrat; Llop, Pablo; López, María M
2014-04-01
Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 10(3) cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 10(2) cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora.
Sarowar, Sujon; Zhao, Youfu; Soria-Guerra, Ruth Elena; Ali, Shahjahan; Zheng, Danman; Wang, Dongping; Korban, Schuyler S.
2011-01-01
To identify genes involved in the response to the fire blight pathogen Erwinia amylovora in apple (Malus×domestica), expression profiles were investigated using an apple oligo (70-mer) array representing 40, 000 genes. Blossoms of a fire blight-susceptible apple cultivar Gala were collected from trees growing in the orchard, placed on a tray in the laboratory, and spray-inoculated with a suspension of E. amylovora at a concentration of 108 cfu ml−1. Uninoculated detached flowers served as controls at each time point. Expression profiles were captured at three different time points post-inoculation at 2, 8, and 24 h, together with those at 0 h (uninoculated). A total of about 3500 genes were found to be significantly modulated in response to at least one of the three time points. Among those, a total of 770, 855, and 1002 genes were up-regulated, by 2-fold, at 2, 8, and 24 h following inoculation, respectively; while, 748, 1024, and 1455 genes were down-regulated, by 2-fold, at 2, 8, and 24 h following inoculation, respectively. Over the three time points post-inoculation, 365 genes were commonly up-regulated and 374 genes were commonly down-regulated. Both sets of genes were classified based on their functional categories. The majority of up-regulated genes were involved in metabolism, signal transduction, signalling, transport, and stress response. A number of transcripts encoding proteins/enzymes known to be up-regulated under particular biotic and abiotic stress were also up-regulated following E. amylovora treatment. Those up- or down-regulated genes encode transcription factors, signaling components, defense-related, transporter, and metabolism, all of which have been associated with disease responses in Arabidopsis and rice, suggesting similar response pathways are involved in apple blossoms. PMID:21725032
Eldakak, Moustafa; Das, Aayudh; Zhuang, Yongbin; Rohila, Jai S; Glover, Karl; Yen, Yang
2018-06-22
Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1 , is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we elucidated a prospective FHB resistance mechanism by investigating the proteomic signatures of Qfhb1 in a pair of contrasting wheat near-isogenic lines (NIL) after 24 h of inoculation of wheat florets by Fusarium graminearum . Statistical comparisons of the abundances of protein spots on the 2D-DIGE gels of contrasting NILs (fhb1+ NIL = Qfhb1 present; fhb1- NIL = Qfhb1 absent) enabled us to select 80 high-ranking differentially accumulated protein (DAP) spots. An additional evaluation confirmed that the DAP spots were specific to the spikelet from fhb1- NIL (50 spots), and fhb1+ NIL (seven spots). The proteomic data also suggest that the absence of Qfhb1 makes the fhb1- NIL vulnerable to Fusarium attack by constitutively impairing several mechanisms including sucrose homeostasis by enhancing starch synthesis from sucrose. In the absence of Qfhb1 , Fusarium inoculations severely damaged photosynthetic machinery; altered the metabolism of carbohydrates, nitrogen and phenylpropanoids; disrupted the balance of proton gradients across relevant membranes; disturbed the homeostasis of many important signaling molecules induced the mobility of cellular repair; and reduced translational activities. These changes in the fhb1- NIL led to strong defense responses centered on the hypersensitive response (HSR), resulting in infected cells suicide and the consequent initiation of FHB development. Therefore, the results of this study suggest that Qfhb1 largely functions to either alleviate HSR or to manipulate the host cells to not respond to Fusarium infection.
Condon, Lea A.; Pyke, David A.
2018-01-01
Shrubs, bunchgrasses and biological soil crusts (biocrusts) are believed to contribute to site resistance to plant invasions in the presence of cattle grazing. Although fire is a concomitant disturbance with grazing, little is known regarding their combined impacts on invasion resistance. We are the first to date to test the idea that biotic communities mediate the effects of disturbance on site resistance. We assessed cover of Bromus tectorum, shrubs, native bunchgrasses, lichens and mosses in 99 burned and unburned plots located on similar soils where fires occurred between 12 and 23 years before sampling. Structural equation modeling was used to test hypothesized relationships between environmental and disturbance characteristics, the biotic community and resistance to B. tectorum cover. Characteristics of fire and grazing did not directly relate to cover of B. tectorum. Relationships were mediated through shrub, bunchgrass and biocrust communities. Increased site resistance following fire was associated with higher bunchgrass cover and recovery of bunchgrasses and mosses with time since fire. Evidence of grazing was more pronounced on burned sites and was positively correlated with the cover of B. tectorum, indicating an interaction between fire and grazing that decreases site resistance. Lichen cover showed a weak, negative relationship with cover of B. tectorum. Fire reduced near-term site resistance to B. tectorum on actively grazed rangelands. Independent of fire, grazing impacts resulted in reduced site resistance to B. tectorum, suggesting that grazing management that enhances plant and biocrust communities will also enhance site resistance.
Balaraju, Kotnala; Kim, Chang-Jin; Park, Dong-Jin; Nam, Ki-Woong; Zhang, Kecheng; Sang, Mee Kyung; Park, Kyungseok
2016-09-28
This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p < 0.05) reduction in disease severity (%) when compared with untreated control plants. The disease severity of Phytophthora blight was recorded as 8% and 50% for foliar spray and soil drench, respectively, at 1.0 ppm of paromomycin, compared with untreated control, where disease severity was 83% and 100% by foliar spray and soil drench, respectively. A greater reduction of soft rot lesion areas per leaf disk was observed in treated plants using paromomycin (1.0 μg/ml) by infiltration or soil drench in comparison with untreated control plants. Paromomycin treatment did not negatively affect the growth of chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin.
Results of the 1971 Corn Blight Watch experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.; Allen, R. D.; Bauer, M. E.; Clifton, J. W.; Frickson, J. D.; Landgrebe, D. A.
1972-01-01
Advanced remote sensing techniques are used to: (1)Detect development and spread of corn leaf blight during the growing season; (2) assess the extent and severity of blight infection; (3) assess the impact of blight on corn production; and (4) estimate the applicability of these techniques to similar situations occurring in the future.
24 CFR 570.483 - Criteria for national objectives.
Code of Federal Regulations, 2013 CFR
2013-04-01
... prevention or elimination of slums or blight. Activities meeting one or more of the following criteria, in... elimination of slums or blight: (1) Activities to address slums or blight on an area basis. An activity will be considered to address prevention or elimination of slums or blight in an area if the state can...
24 CFR 570.483 - Criteria for national objectives.
Code of Federal Regulations, 2011 CFR
2011-04-01
... prevention or elimination of slums or blight. Activities meeting one or more of the following criteria, in... elimination of slums or blight: (1) Activities to address slums or blight on an area basis. An activity will be considered to address prevention or elimination of slums or blight in an area if the state can...
24 CFR 570.483 - Criteria for national objectives.
Code of Federal Regulations, 2012 CFR
2012-04-01
... prevention or elimination of slums or blight. Activities meeting one or more of the following criteria, in... elimination of slums or blight: (1) Activities to address slums or blight on an area basis. An activity will be considered to address prevention or elimination of slums or blight in an area if the state can...
24 CFR 570.483 - Criteria for national objectives.
Code of Federal Regulations, 2014 CFR
2014-04-01
... prevention or elimination of slums or blight. Activities meeting one or more of the following criteria, in... elimination of slums or blight: (1) Activities to address slums or blight on an area basis. An activity will be considered to address prevention or elimination of slums or blight in an area if the state can...
Fire resistance of structural composite lumber products
Robert H. White
2006-01-01
Use of structural composite lumber products is increasing. In applications requiring a fire resistance rating, calculation procedures are used to obtain the fire resistance rating of exposed structural wood products. A critical factor in the calculation procedures is char rate for ASTM E 119 fire exposure. In this study, we tested 14 structural composite lumber...
USDA-ARS?s Scientific Manuscript database
Bean golden yellow mosaic virus (BGYMV) is an important disease of common bean (Phaseolus vulgaris L.) in Central America and the Caribbean. Bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV) pose a threat to common bean production throughout the world. The development an...
Shiv Hiremath; Kirsten Lehtoma; Jenise M. Bauman
2013-01-01
We have been planting blight resistant American chestnut seedlings on reclaimed coal mined areas in Southeastern Ohio, which was once within the natural range of the American chestnut. Towards the goal of restoring the American chestnut, we are testing suitable sites that can aid survival, growth and establishment of planted seedlings pre-inoculated with...
Staton, Margaret; Zhebentyayeva, Tetyana; Olukolu, Bode; Fang, Guang Chen; Nelson, Dana; Carlson, John E; Abbott, Albert G
2015-10-05
Chinese chestnut (Castanea mollissima) has emerged as a model species for the Fagaceae family with extensive genomic resources including a physical map, a dense genetic map and quantitative trait loci (QTLs) for chestnut blight resistance. These resources enable comparative genomics analyses relative to model plants. We assessed the degree of conservation between the chestnut genome and other well annotated and assembled plant genomic sequences, focusing on the QTL regions of most interest to the chestnut breeding community. The integrated physical and genetic map of Chinese chestnut has been improved to now include 858 shared sequence-based markers. The utility of the integrated map has also been improved through the addition of 42,970 BAC (bacterial artificial chromosome) end sequences spanning over 26 million bases of the estimated 800 Mb chestnut genome. Synteny between chestnut and ten model plant species was conducted on a macro-syntenic scale using sequences from both individual probes and BAC end sequences across the chestnut physical map. Blocks of synteny with chestnut were found in all ten reference species, with the percent of the chestnut physical map that could be aligned ranging from 10 to 39 %. The integrated genetic and physical map was utilized to identify BACs that spanned the three previously identified QTL regions conferring blight resistance. The clones were pooled and sequenced, yielding 396 sequence scaffolds covering 13.9 Mbp. Comparative genomic analysis on a microsytenic scale, using the QTL-associated genomic sequence, identified synteny from chestnut to other plant genomes ranging from 5.4 to 12.9 % of the genome sequences aligning. On both the macro- and micro-synteny levels, the peach, grape and poplar genomes were found to be the most structurally conserved with chestnut. Interestingly, these results did not strictly follow the expectation that decreased phylogenetic distance would correspond to increased levels of genome preservation, but rather suggest the additional influence of life-history traits on preservation of synteny. The regions of synteny that were detected provide an important tool for defining and cataloging genes in the QTL regions for advancing chestnut blight resistance research.
Molecular breeding for the development of multiple disease resistance in Basmati rice.
Singh, Atul; Singh, Vikas K; Singh, S P; Pandian, R T P; Ellur, Ranjith K; Singh, Devinder; Bhowmick, Prolay K; Gopala Krishnan, S; Nagarajan, M; Vinod, K K; Singh, U D; Prabhu, K V; Sharma, T R; Mohapatra, T; Singh, A K
2012-01-01
Basmati rice grown in the Indian subcontinent is highly valued for its unique culinary qualities. Production is, however, often constrained by diseases such as bacterial blight (BB), blast and sheath blight (ShB). The present study developed Basmati rice with inbuilt resistance to BB, blast and ShB using molecular marker-assisted selection. The rice cultivar 'Improved Pusa Basmati 1' (carrying the BB resistance genes xa13 and Xa21) was used as the recurrent parent and cultivar 'Tetep' (carrying the blast resistance gene Pi54 and ShB resistance quality trait loci (QTL), qSBR11-1) was the donor. Marker-assisted foreground selection was employed to identify plants possessing resistance alleles in the segregating generations along with stringent phenotypic selection for faster recovery of the recurrent parent genome (RPG) and phenome (RPP). Background analysis with molecular markers was used to estimate the recovery of RPG in improved lines. Foreground selection coupled with stringent phenotypic selection identified plants homozygous for xa13, Xa21 and Pi54, which were advanced to BC(2)F(5) through pedigree selection. Marker-assisted selection for qSBR11-1 in BC(2)F(5) using flanking markers identified seven homozygous families. Background analysis revealed that RPG recovery was up to 89.5%. Screening with highly virulent isolates of BB, blast and ShB showed that the improved lines were resistant to all three diseases and were on a par with 'Improved Pusa Basmati 1' for yield, duration and Basmati grain quality. This is the first report of marker-assisted transfer of genes conferring resistance to three different diseases in rice wherein genes xa13 and Xa21 for BB resistance, Pi54 for blast resistance, and a major QTL qSBR11-1 have been combined through marker-assisted backcross breeding. In addition to offering the potential for release as cultivars, the pyramided lines will serve as useful donors of gene(s) for BB, blast and ShB in future Basmati rice breeding programmes.
Cheema, Kuljit K; Grewal, Navjit K; Vikal, Yogesh; Sharma, Rajiv; Lore, Jagjeet S; Das, Aparna; Bhatia, Dharminder; Mahajan, Ritu; Gupta, Vikas; Bharaj, Tajinder S; Singh, Kuldeep
2008-10-01
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv oryzae (Xoo) is one of the major constraints to productivity in South-East Asia. The strategy of using major genes, singly or in combination, continues to be the most effective approach for BB management. Currently, more than two dozen genes have been designated but not all the known genes are effective against all the prevalent pathotypes. The challenge, therefore, is to continue to expand the gene pool of effective and potentially durable resistance genes. Wild species constitute an important reservoir of the resistance genes including BB. An accession of Oryza nivara (IRGC 81825) was found to be resistant to all the seven Xoo pathotypes prevalent in northern states of India. Inheritance and mapping of resistance in O. nivara was studied by using F2, BC2F2, BC3F1 and BC3F2 progenies of the cross involving Oryza sativa cv PR114 and the O. nivara acc. 81825 using the most virulent Xoo pathotype. Genetic analysis of the segregating progenies revealed that the BB resistance in O. nivara was conditioned by a single dominant gene. Bulked segregant analysis (BSA) of F2 population using 191 polymorphic SSR markers identified a approximately 35 centiMorgans (cM) chromosomal region on 4L, bracketed by RM317 and RM562, to be associated with BB resistance. Screening of BC3F1 and BC2F2 progenies and their genotyping with more than 30 polymorphic SSR markers in the region, covering Bacterial artificial chromosome (BAC) clone OSJNBb0085C12, led to mapping of the resistance gene between the STS markers based on annotated genes LOC_Os04g53060 and LOC_Os04g53120, which is approximately 38.4 kb. Since none of the known Xa genes, which are mapped on chromosome 4L, are effective against the Xoo pathotypes tested, the BB resistance gene identified and transferred from O. nivara is novel and is tentatively designated as Xa30(t). Homozygous resistant BC3F3 progenies with smallest introgression region have been identified.
Fire resistance of wood members with directly applied protection
Robert H. White
2009-01-01
Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National...
Fontanilla, M; Montes, M; De Prado, R
2005-01-01
The active ingredient in Messenger, is Harpin(Ea), a naturally occurring protein derived from Erwinia amylovora, a causal agent of fire blight. When Messenger is applied to a plant, the protein Harpin(Ea) binds foliar receptors to it. The receptors recognize the presence of Harpin(Ea), sending a signal that a pathogen is present, actually "tricking" the plant into thinking that it is under attack. This binding process triggers a cascade of responses affecting a global change of gene expressions, stimulating several distinct biochemical pathways within the plant responsible for growth and disease and insect resistance. The objective of this work is to characterize the development of an induced resistance against Phytophthora infestans. No effective treatment is currently available against this pathogenic agent, which causes the loss of complete harvests of different crops. Tomato plants with and without Messenger applications were inoculated with Phytophthora infestans in the same way. In addition, some plants with and without Messenger applications were not inoculated. Inoculated plants were symptomatologically checked for local and systemic symptoms. Evaluations of the number of tomatoes produced, with or without damage, and their growth, were also carried out. Based on the data obtained from the assays, significant changes were observed in the parameters measured due to Messenger treatment. The severe damage of this disease was reduced in the plants which received Messenger applications. These results open up new pathways in the control of diseases like Phytophthora infestans, in which effective means to combat them still do not exist, or these means are harmful to the environment.
Hyperspectral recognition of processing tomato early blight based on GA and SVM
NASA Astrophysics Data System (ADS)
Yin, Xiaojun; Zhao, SiFeng
2013-03-01
Processing tomato early blight seriously affect the yield and quality of its.Determine the leaves spectrum of different disease severity level of processing tomato early blight.We take the sensitive bands of processing tomato early blight as support vector machine input vector.Through the genetic algorithm(GA) to optimize the parameters of SVM, We could recognize different disease severity level of processing tomato early blight.The result show:the sensitive bands of different disease severity levels of processing tomato early blight is 628-643nm and 689-692nm.The sensitive bands are as the GA and SVM input vector.We get the best penalty parameters is 0.129 and kernel function parameters is 3.479.We make classification training and testing by polynomial nuclear,radial basis function nuclear,Sigmoid nuclear.The best classification model is the radial basis function nuclear of SVM. Training accuracy is 84.615%,Testing accuracy is 80.681%.It is combined GA and SVM to achieve multi-classification of processing tomato early blight.It is provided the technical support of prediction processing tomato early blight occurrence, development and diffusion rule in large areas.
Conference on Fire Resistant Materials: A compilation of presentations and papers
NASA Technical Reports Server (NTRS)
Kourtides, D. A. (Editor); Johnson, G. A. (Editor)
1979-01-01
The proceedings of the NASA IRE Resistant Materials Engineering (FIREMEN) Program held at Boeing Commercial Airplane Company, Seattle, Washington, on March 1-2, 1979 are reported. The conference was to discuss the results of research by the National Aeronautics and Space Administration in the field of aircraft fire safety and fire-resistant materials. The program topics include the following: (1) large-scale testing; (2) fire toxicology; (3) polymeric materials; and (4) fire modeling.
Conference on Fire Resistant Materials (FIREMEN): A compilation of presentations and papers
NASA Technical Reports Server (NTRS)
Kourtides, D. A. (Editor)
1978-01-01
The proceedings of the NASA Fire Resistant Materials Engineering (FIREMEN) Program held at Ames Research Center on April, 13, 14, 1978 are reported. The purpose of the conference was to discuss the results of NASA in the field of aircraft fire safety and fire resistant materials. The program components include the following: (1) large-scale testing; (2) fire toxicology; (3) polymeric materials; and (4) bibliography related and/or generated from the program.
Yoo, Youngchul; Park, Jong-Chan; Cho, Man-Ho; Yang, Jungil; Kim, Chi-Yeol; Jung, Ki-Hong; Jeon, Jong-Seong; An, Gynheung; Lee, Sang-Won
2018-01-01
Many scientific findings have been reported on the beneficial function of reactive oxygen species (ROS) in various cellular processes, showing that they are not just toxic byproducts. The double-edged role of ROS shows the importance of the regulation of ROS level. We report a gene, rrsRLK (required for ROS-scavenging receptor-like kinase), that encodes a cytoplasmic RLK belonging to the non-RD kinase family. The gene was identified by screening rice RLK mutant lines infected with Xanthomonas oryzae pv. oryzae ( Xoo ), an agent of bacterial leaf blight of rice. The mutant (Δ rrsRLK ) lacking the Os01g02290 gene was strongly resistant to many Xoo strains, but not to the fungal pathogen Magnaporthe grisea . Δ rrsRLK showed significantly higher expression of OsPR1a , OsPR1b , OsLOX , RBBTI4 , and jasmonic acid-related genes than wild type. We showed that rrsRLK protein interacts with OsVOZ1 (vascular one zinc-finger 1) and OsPEX11 (peroxisomal biogenesis factor 11). In the further experiments, abnormal biogenesis of peroxisomes, hydrogen peroxide (H 2 O 2 ) accumulation, and reduction of activity of ROS-scavenging enzymes were investigated in Δ rrsRLK . These results suggest that the enhanced resistance in Δ rrsRLK is due to H 2 O 2 accumulation caused by irregular ROS-scavenging mechanism, and rrsRLK is most likely a key regulator required for ROS homeostasis in rice.
[Field resistance of Phytophthora melonis to metalaxyl in South China].
Wu, Yongguan; Lu, Shaofeng; Huang, Siliang; Fu, Gang; Chen, Liang; Xie, Dasen; Li, Qiqin; Cen, Zhenlu
2011-08-01
Phytophthora melonis is the casual agent of wax gourd and cucumber Phytophthora blight which becomes a constraint for sustainable production of the related crops. Metalaxyl is one of the principal fungicides for controlling the disease now. The objectives of the present study were: (1) to investigate the baseline sensitivity and field resistance of P. melonis to metalaxyl in South China; (2) to test the occurrence of metalaxyl-resistant mutants from metalaxyl-sensitive wild type strains exposed to the fungicide; and (3) to monitor the development of metalaxyl resistance in P. melonis population. Over 400 samples of wax gourd and cucumber Phytophthora blight were collected from Guangxi Zhuang Autonomous Region and Guangdong province during 2007-2010, and 193 strains of P. melonis were isolated and purified. The sensitivity of the isolated strains to metalaxyl was tested using mycelial growth rate method in vitro and floating-leaf-disk method in vivo, respectively. The metalaxyl-sensitive strains were induced on PDA plates containing 10 microg/mL metalaxyl. The sensitive, moderately resistant and resistant strains were recorded as 29.0% , 18.1% and 52.8%, respectively, among 193 tested strains. The frequency and level of resistance of P. melonis from Guangdong were higher than that from Guangxi. The strains from cucumber was generally more resistant to metalaxyl than those from wax gourd. The metalaxyl-resistant strains were frequently detected as predominant populations in most of the sampling sites and the highest resistance index (4226.9) was confirmed. Metalaxyl-resistant (M1r) mutants could be isolated from approximately 60% of the sensitive wild-type strains. The resistance level of the M mutants was 189-407 times higher than that of their sensitive parental strains. The EC50 values of 9 sensitive strains from a sampling site without a record of phenylamide fungicide application ranged from 0.0429 to 0.5461 microg/mL. Their mean EC50 value (0.3200 +/- 0.1617 microg/mL) was considered as the baseline sensitivity of P. melonis to metalaxyl in South China. Metalaxyl-resistant strains universally occur in South China, especially in the vegetable-growing areas with a longer history of metalaxyl application. The establishment of the baseline sensitivity of P. melonis to metalaxyl will provide a science-based guide for evaluating and further monitoring resistance of the pathogen to the fungicide.
... ovum: What causes it? What causes a blighted ovum? What symptoms can I expect? Answers from Yvonne Butler Tobah, M.D. A blighted ovum, also called an anembryonic pregnancy or anembryonic gestation, ...
Fire Resistant, Moisture Barrier Membrane
NASA Technical Reports Server (NTRS)
St.Clair, Terry L. (Inventor)
2000-01-01
A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.
Fire Resistant, Moisture Barrier Membrane
NASA Technical Reports Server (NTRS)
St.Clair, Terry L. (Inventor)
1998-01-01
A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.
Ghosh, Prithwi; Sen, Senjuti; Chakraborty, Joydeep; Das, Sampa
2016-03-01
Rice sheath blight, caused by Rhizoctonia solani is one of the most devastating diseases of rice. It is associated with significant reduction in rice productivity worldwide. A mutant variant of mannose binding Allium sativum leaf agglutinin (mASAL) was previously reported to exhibit strong antifungal activity against R. solani. In this study, the mASAL gene has been evaluated for its in planta antifungal activity in rice plants. mASAL was cloned into pCAMBIA1301 binary vector under the control of CaMV35S promoter. It was expressed in an elite indica rice cv. IR64 by employing Agrobacterium tumefaciens-mediated transformation. Molecular analyses of transgenic plants confirmed the presence and stable integration of mASAL gene. Immunohistofluorescence analysis of various tissue sections of plant parts clearly indicated the constitutive expression of mASAL. The segregation pattern of mASAL transgene was observed in T1 progenies in a 3:1 Mendelian ratio. The expression of mASAL was confirmed in T0 and T1 plants through western blot analysis followed by ELISA. In planta bioassay of transgenic lines against R. solani exhibited an average of 55 % reduction in sheath blight percentage disease index (PDI). The present study opens up the possibility of engineering rice plants with the antifungal gene mASAL, conferring resistance to sheath blight.
Ulrich, Detlef; Bruchmüller, Tobias; Krüger, Hans; Marthe, Frank
2011-10-12
Sixteen different genotypes of parsley, including two cultivars, six populations, and eight inbred lines, were investigated regarding their sensory characteristics in relation to the volatile patterns and resistance to Septoria petroselini . The sensory quality was determined by a combination of profile analysis and preference test, whereas the volatile patterns were analyzed by headspace-SPME-GC of leaf homogenates with subsequent nontargeted data processing to prevent a possible overlooking of volatile compounds. The more resistant genotypes are characterized by several negative sensory characteristics such as bitter, grassy, herbaceous, pungent, chemical, and harsh. In contrast, the contents of some volatile compounds correlate highly and significantly either with resistance (e.g., hexanal and α-copaene) or with susceptibility (e.g., p-menthenol). Some of these compounds with very strong correlation to resistance are still unidentified and are presumed to act as resistance markers.
Full-scale aircraft cabin flammability tests of improved fire-resistant materials
NASA Technical Reports Server (NTRS)
Stuckey, R. N.; Surpkis, D. E.; Price, L. J.
1974-01-01
Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.
Ping Lang; Fenny Dane; Thomas L. Kubisiak; Hongwen Huang
2007-01-01
The genus Castanea (Fagaceae) is widely distributed in the deciduous forests of the Northern Hemisphere. The striking similarity between the Xoras of eastern Asia and those of eastern North America and the divergence in chestnut blight resistance among species has been of interest to botanists for a century. To infer the biogeographical history of...
USDA-ARS?s Scientific Manuscript database
Two different alleles of an ethylene receptor gene (CaETR-1) of chickpea (Cicer aritinum) were isolated and characterized through synteny analysis with genome sequences of Medicago truncatula. The full length of CaETR-1 in cultivar FLIP84-92C (CaETR-1a) is 4,428 bp including the polyadenylation sig...
Pajerowska-Mukhtar, Karolina M.; Mukhtar, M. Shahid; Guex, Nicolas; Halim, Vincentius A.; Rosahl, Sabine; Somssich, Imre E.
2008-01-01
Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants. Electronic supplementary material The online version of this article (doi:10.1007/s00425-008-0737-x) contains supplementary material, which is available to authorized users. PMID:18431595
Ellur, Ranjith K; Khanna, Apurva; Yadav, Ashutosh; Pathania, Sandeep; Rajashekara, H; Singh, Vikas K; Gopala Krishnan, S; Bhowmick, Prolay K; Nagarajan, M; Vinod, K K; Prakash, G; Mondal, Kalyan K; Singh, Nagendra K; Vinod Prabhu, K; Singh, Ashok K
2016-01-01
Marker assisted backcross breeding was employed to incorporate the blast resistance genes, Pi2 and Pi54 and bacterial blight (BB) resistance genes xa13 and Xa21 into the genetic background of Pusa Basmati 1121 (PB1121) and Pusa Basmati 6. Foreground selection for target gene(s) was followed by arduous phenotypic and background selection which fast-tracked the recovery of recurrent parent genome (RPG) to an extent of 95.8% in one of the near-isogenic lines (NILs) namely, Pusa 1728-23-33-31-56, which also showed high degree of resemblance to recurrent parent, PB6 in phenotype. The phenotypic selection prior to background selection provided an additional opportunity for identifying the novel recombinants viz., Pusa 1884-9-12-14 and Pusa 1884-3-9-175, superior to parental lines in terms of early maturity, higher yield and improved quality parameters. There was no significant difference between the RPG recovery estimated based on SSR or SNP markers, however, the panel of SNPs markers was considered as the better choice for background selection as it provided better genome coverage and included SNPs in the genic regions. Multi-location evaluation of NILs depicted their stable and high mean performance in comparison to the respective recurrent parents. The Pi2+Pi54 carrying NILs were effective in combating a pan-India panel of Magnaporthe oryzae isolates with high level of field resistance in northern, eastern and southern parts of India. Alongside, the PB1121-NILs and PB6-NILs carrying BB resistance genes xa13+Xa21 were resistant against Xanthomonas oryzae pv. oryzae races of north-western, southern and eastern parts of the country. Three of NILs developed in this study, have been promoted to final stage of testing during the Kharif 2015 in the Indian National Basmati Trial. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yi, Xin; Cheng, Jingye; Jiang, Zhengning; Hu, Wenjing; Bie, Tongde; Gao, Derong; Li, Dongsheng; Wu, Ronglin; Li, Yuling; Chen, Shulin; Cheng, Xiaoming; Liu, Jian; Zhang, Yong; Cheng, Shunhe
2018-01-01
Fusarium head blight (FHB) is a destructive wheat disease present throughout the world, and host resistance is an effective and economical strategy used to control FHB. Lack of adequate resistance resource is still a main bottleneck for FHB genetics and wheat breeding research. The synthetic-derived bread wheat line C615, which does not carry the Fhb1 gene, is a promising source of FHB resistance for breeding. A population of 198 recombinant inbred lines (RILs) produced by crossing C615 with the susceptible cultivar Yangmai 13 was evaluated for FHB response using point and spray inoculations. As the disease phenotype is frequently complicated by other agronomic traits, we used both traditional and multivariate conditional QTL mapping approaches to investigate the genetic relationships (at the individual QTL level) between FHB resistance and plant height (PH), spike compactness (SC), and days to flowering (FD). A linkage map was constructed from 3,901 polymorphic SNP markers, which covered 2,549.2 cM. Traditional and conditional QTL mapping analyses found 13 and 22 QTL for FHB, respectively; 10 were identified by both methods. Among these 10, three QTL from C615 were detected in multiple years; these QTL were located on chromosomes 2AL, 2DS, and 2DL. Conditional QTL mapping analysis indicated that, at the QTL level, SC strongly influenced FHB in point inoculation; whereas PH and SC contributed more to FHB than did FD in spray inoculation. The three stable QTL (QFhbs-jaas.2AL, QFhbp-jaas.2DS, and QFhbp-jaas.2DL) for FHB were partly affected by or were independent of the three agronomic traits. The QTL detected in this study improve our understanding of the genetic relationships between FHB response and related traits at the QTL level and provide useful information for marker-assisted selection for the improvement of FHB resistance in breeding. PMID:29780395
Yi, Xin; Cheng, Jingye; Jiang, Zhengning; Hu, Wenjing; Bie, Tongde; Gao, Derong; Li, Dongsheng; Wu, Ronglin; Li, Yuling; Chen, Shulin; Cheng, Xiaoming; Liu, Jian; Zhang, Yong; Cheng, Shunhe
2018-01-01
Fusarium head blight (FHB) is a destructive wheat disease present throughout the world, and host resistance is an effective and economical strategy used to control FHB. Lack of adequate resistance resource is still a main bottleneck for FHB genetics and wheat breeding research. The synthetic-derived bread wheat line C615, which does not carry the Fhb1 gene, is a promising source of FHB resistance for breeding. A population of 198 recombinant inbred lines (RILs) produced by crossing C615 with the susceptible cultivar Yangmai 13 was evaluated for FHB response using point and spray inoculations. As the disease phenotype is frequently complicated by other agronomic traits, we used both traditional and multivariate conditional QTL mapping approaches to investigate the genetic relationships (at the individual QTL level) between FHB resistance and plant height (PH), spike compactness (SC), and days to flowering (FD). A linkage map was constructed from 3,901 polymorphic SNP markers, which covered 2,549.2 cM. Traditional and conditional QTL mapping analyses found 13 and 22 QTL for FHB, respectively; 10 were identified by both methods. Among these 10, three QTL from C615 were detected in multiple years; these QTL were located on chromosomes 2AL, 2DS, and 2DL. Conditional QTL mapping analysis indicated that, at the QTL level, SC strongly influenced FHB in point inoculation; whereas PH and SC contributed more to FHB than did FD in spray inoculation. The three stable QTL ( QFhbs-jaas.2AL, QFhbp-jaas.2DS , and QFhbp-jaas.2DL ) for FHB were partly affected by or were independent of the three agronomic traits. The QTL detected in this study improve our understanding of the genetic relationships between FHB response and related traits at the QTL level and provide useful information for marker-assisted selection for the improvement of FHB resistance in breeding.
Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan
2012-08-01
The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.
NASA Astrophysics Data System (ADS)
Franceschini, M. H. D.; Bartholomeus, H.; van Apeldoorn, D.; Suomalainen, J.; Kooistra, L.
2017-08-01
Productivity of cropping systems can be constrained simultaneously by different limiting factors and approaches allowing to indicate and identify plants under stress in field conditions can be valuable for farmers and breeders. In organic production systems, sensing solutions are not frequently studied, despite their potential for crop traits retrieval and stress assessment. In this study, spectral data in the optical domain acquired using a pushbroom spectrometer on board of a unmanned aerial vehicle is used to evaluate the potential of this information for assessment of late blight (Phytophthora infestans) incidence on potato (Solanum tuberosum) under organic cultivation. Vegetation indices formulations with two and three spectral bands were tested for the complete range of the spectral information acquired (i.e., from 450 to 900 nm, with 10 nm of spectral resolution). This evaluation concerned the discrimination between plots cultivated with only one resistant potato variety in contrast with plots with a variety mixture, with resistant and susceptible cultivars. Results indicated that indices based on three spectral bands performed better and optimal wavelengths (i.e., near 490, 530 and 670 nm) are not only related to chlorophyll content but also to other leaf pigments like carotenoids.
Fire resistivity and toxicity studies of candidate aircraft passenger seat materials
NASA Technical Reports Server (NTRS)
Fewell, L. L.; Trabold, E. L.; Spieth, H.
1978-01-01
Fire resistivity studies were conducted on a wide range of candidate nonmetallic materials being considered for the construction of improved fire resistant aircraft passenger seats. These materials were evaluated on the basis of FAA airworthiness burn and smoke generation tests, colorfastness, limiting oxygen index, and animal toxicity tests. Physical, mechanical, and aesthetic properties were also assessed. Candidate seat materials that have significantly improved thermal response to various thermal loads corresponding to reasonable fire threats as they relate to in-flight fire situations, are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Wang, Yifeng
A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.
Lehman, Susan M; Kim, Won-Sik; Castle, Alan J; Svircev, Antonet M
2008-06-01
Erwinia amylovora and E. pyrifoliae are the causative agents of fire blight and Asian pear blight, respectively. The pathogens are closely related, with overlapping host ranges. Data are unavailable on the current distribution of E. pyrifoliae and on the interaction between the two species when they are present together on the same host. In this study, a duplex real-time polymerase chain reaction (PCR) protocol was developed to monitor the population dynamics of E. amylovora and E. pyrifoliae on the surface of Bartlett pear blossoms. Bacterial cells washed from blossoms were used directly as the PCR template without DNA extraction. Primers and a probe based on the E. amylovora levansucrase gene detected all E. amylovora strains. All E. pyrifoliae strains, including the Japanese Erwinia strains previously described as E. amylovora, were detected with a primer and probe combination based on the E. pyrifoliae hrpW gene. Disease development and severity were not significantly different in blossoms inoculated with individual Erwinia species or with a mixture of the two species. However, E. amylovora grew to greater population sizes than did E. pyrifoliae in both single species inoculations and in mixtures, suggesting that E. amylovora has a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae.
Gyetvai, Gabor; Sønderkær, Mads; Göbel, Ulrike; Basekow, Rico; Ballvora, Agim; Imhoff, Maren; Kersten, Birgit; Nielsen, Kåre-Lehman; Gebhardt, Christiane
2012-01-01
Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene (incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato transcript sequence. Two third of the tags were expressed at low frequency (<10 tag counts/million). 20.470 unitags matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between compatible and incompatible interactions over the infection time course and between compatible and incompatible genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of which are discussed with respect to possible function. PMID:22328937
30 CFR 77.1913 - Fire-resistant wood.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood products...
30 CFR 77.1913 - Fire-resistant wood.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood products...
30 CFR 77.1913 - Fire-resistant wood.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood products...
46 CFR 72.05-55 - Furniture and furnishings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shall be of approved fire resistant fabrics. (4) All rugs and carpets shall be of wool or other material... subpart, rooms containing “fire resistant furnishings” will be considered to be those in which: (1) All... fire resistant furnishings. In addition, all upholstery and padding of chairs, sofas, etc., in these...
30 CFR 77.1913 - Fire-resistant wood.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood products...
30 CFR 77.1913 - Fire-resistant wood.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fire-resistant wood. 77.1913 Section 77.1913 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Shaft Sinking § 77.1913 Fire-resistant wood. Except for crossties, timbers, and other wood products...
Yoodee, Sunisa; Kobayashi, Yohko; Songnuan, Wisuwat; Boonchird, Chuenchit; Thitamadee, Siripong; Kobayashi, Issei; Narangajavana, Jarunya
2018-01-01
Cassava bacterial blight (CBB) disease caused by Xanthomonas axonopodis pv. manihotis (Xam) is a severe disease in cassava worldwide. In addition to causing significant cassava yield loss, CBB disease has not been extensively studied, especially in terms of CBB resistance genes. The present research demonstrated the molecular mechanisms underlining the defense response during Xam infection in two cassava cultivars exhibiting different degrees of disease resistance, Huay Bong60 (HB60) and Hanatee (HN). Based on gene expression analysis, ten of twelve putative defense-related genes including, leucine-rich repeat receptor-like kinases (LRR-RLKs), resistance (R), WRKY and pathogenesis-related (PR) genes, were differentially expressed between these two cassava cultivars during Xam infection. The up-regulation of defense-related genes observed in HB60 may be the mechanism required for the reduction of disease severity in the resistant cultivar. Interestingly, priming with salicylic acid (SA) or methyl jasmonate (MeJA) for 24 h before Xam inoculation could enhance the defense response in both cassava cultivars. The disease severity was decreased 10% in the resistant cultivar (HB60) and was remarkably reduced 21% in the susceptible cultivar (HN) by SA/MeJA priming. Priming with Xam inoculation modulated cassava4.1_013417, cassava4.1_030866 and cassava4.1_020555 (highest similarity to MeWRKY59, MePR1 and AtPDF2.2, respectively) expression and led to enhanced resistance of the susceptible cultivar in the second infection. The putative cis-regulatory elements were predicted in an upstream region of these three defense-related genes. The different gene expression levels in these genes between the two cultivars were due to the differences in cis-regulatory elements in their promoter regions. Taken together, our study strongly suggested that the induction of defense-related genes correlated with defense resistance against Xam infection, and exogenous application of SA or MeJA could elevate the defense response in both cultivars of cassava. This finding should pave the way for management to reduce yield loss from disease and genetic improvement in cassava. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Yang, Huaan; Tao, Ye; Zheng, Zequn; Shao, Di; Li, Zhenzhong; Sweetingham, Mark W; Buirchell, Bevan J; Li, Chengdao
2013-02-01
Selection for phomopsis stem blight disease (PSB) resistance is one of the key objectives in lupin (Lupinus angustifolius L.) breeding programs. A cross was made between cultivar Tanjil (resistant to PSB) and Unicrop (susceptible). The progeny was advanced into F(8) recombinant inbred lines (RILs). The RIL population was phenotyped for PSB disease resistance. Twenty plants from the RIL population representing disease resistance and susceptibility was subjected to next-generation sequencing (NGS)-based restriction site-associated DNA sequencing on the NGS platform Solexa HiSeq2000, which generated 7,241 single nucleotide polymorphisms (SNPs). Thirty-three SNP markers showed the correlation between the marker genotypes and the PSB disease phenotype on the 20 representative plants, which were considered as candidate markers linked to a putative R gene for PSB resistance. Seven candidate markers were converted into sequence-specific PCR markers, which were designated as PhtjM1, PhtjM2, PhtjM3, PhtjM4, PhtjM5, PhtjM6 and PhtjM7. Linkage analysis of the disease phenotyping data and marker genotyping data on a F(8) population containing 187 RILs confirmed that all the seven converted markers were associated with the putative R gene within the genetic distance of 2.1 CentiMorgan (cM). One of the PCR markers, PhtjM3, co-segregated with the R gene. The seven established PCR markers were tested in the 26 historical and current commercial cultivars released in Australia. The numbers of "false positives" (showing the resistance marker allele band but lack of the putative R gene) for each of the seven PCR markers ranged from nil to eight. Markers PhtjM4 and PhtjM7 are recommended in marker-assisted selection for PSB resistance in the Australian national lupin breeding program due to its wide applicability on breeding germplasm and close linkage to the putative R gene. The results demonstrated that application of NGS technology is a rapid and cost-effective approach in development of markers for molecular plant breeding.
2013-01-01
Background Plant calcium (Ca2+) signals are involved in a wide array of intracellular signalling pathways following pathogen invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate signalling following Ca2+ influx after pathogen infection. However, to date this prediction has remained elusive. Results We conducted a genome-wide identification of the Malus x domestica CPK (MdCPK) gene family and identified 30 CPK genes. Comparative phylogenetic analysis of Malus CPKs with CPKs of Arabidopsis thaliana (AtCPKs), Oryza sativa (OsCPKs), Populous trichocarpa (PtCPKs) and Zea mays (ZmCPKs) revealed four different groups. From the phylogenetic tree, we found that MdCPKs are closely related to AtCPKs and PtCPKs rather than OsCPKs and ZmCPKs, indicating their dicot-specific origin. Furthermore, comparative quantitative real time PCR and intracellular cytosolic calcium ([Ca2+]cyt) analysis were carried out on fire blight resistant and susceptible M. x domestica apple cultivars following infection with a pathogen (Erwinia amylovora) and/or mechanical damage. Calcium analysis showed an increased [Ca2+]cyt over time in resistant cultivars as compared to susceptible cultivars. Gene expression studies showed that 11 out of the 30 MdCPKs were differentially expressed following pathogen infection. Conclusions We studied the genome-wide analysis of MdCPK gene family in Malus x domestica and analyzed their differential gene expression along with cytosolic calcium variation upon pathogen infection. There was a striking difference in MdCPKs gene expressions and [Ca2+]cyt variations between resistant and susceptible M. x domestica cultivars in response to E. amylovora and mechanical wounding. Our genomic and bioinformatic analysis provided an important insight about the role of MdCPKs in modulating defence responses in susceptible and resistant apple cultivars. It also provided further information on early signalling and downstream signalling cascades in response to pathogenic and mechanical stress. PMID:24192013
Resistance to invasion and resilience to fire in desert shrublands of North America
Brooks, Matthew L.; Chambers, Jeanne C.
2011-01-01
Settlement by Anglo-Americans in the desert shrublands of North America resulted in the introduction and subsequent invasion of multiple nonnative grass species. These invasions have altered presettlement fire regimes, resulted in conversion of native perennial shrublands to nonnative annual grasslands, and placed many native desert species at risk. Effective management of these ecosystems requires an understanding of their ecological resistance to invasion and resilience to fire. Resistance and resilience differ among the cold and hot desert shrublands of the Great Basin, Mojave, Sonoran, and Chihuahuan deserts in North America. These differences are largely determined by spatial and temporal patterns of productivity but also are affected by ecological memory, severity and frequency of disturbance, and feedbacks among invasive species and disturbance regimes. Strategies for preventing or managing invasive plant/fire regimes cycles in desert shrublands include: 1) conducting periodic resource assessments to evaluate the probability of establishment of an altered fire regime; 2) developing an understanding of ecological thresholds associate within invasion resistance and fire resilience that characterize transitions from desirable to undesirable fire regimes; and 3) prioritizing management activities based on resistance of areas to invasion and resilience to fire.
2012-01-01
Background Fusarium head blight (FHB) caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum) worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant) and Lynx (susceptible). The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat). Results Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3. Conclusions Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant genetic backgrounds, according to reports on other wheat cultivars and barley. This was further supported in our qPCR experiments on seven genes originating from this mechanism which revealed similar activities in the resistant cultivars Dream and Sumai 3. Finally, the combination of early-stage and steady-state induction was associated with resistance, while transcript induction generally occurred later and temporarily in the susceptible cultivars. The respective mechanisms are attractive for advanced studies aiming at new resistance and toxin management strategies. PMID:22857656
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178.358 Section 178.358 Transportation Other Regulations Relating...) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178.358 Section 178.358 Transportation Other Regulations Relating... Class 7 (Radioactive) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam...
Corn blight watch experiment results
NASA Technical Reports Server (NTRS)
Johannsen, C. J.; Bauer, M. E.
1972-01-01
Results pertaining to the detection and assessment of the severity and extent of southern corn leaf blight in the Corn Belt area are discussed. Ground observations, interpretation of color infrared photography, and machine analysis of multispectral scanner data were used to identify the blight.
Validation and Verification (V and V) Testing on Midscale Flame Resistant (FR) Test Method
2016-12-16
Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Validation and...complement (not replace) the capabilities of the ASTM F1930 Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire ...Engineering Center (NSRDEC) to complement the ASTM F1930 Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire
Effect of Spacecraft Environmental Variables on the Flammability of Fire Resistant Fabrics
NASA Astrophysics Data System (ADS)
Osorio, A. F.; Fernandez-Pello, C.; Takahashi, S.; Rodriguez, J.; Urban, D. L.; Ruff, G.
2012-01-01
Fire resistant fabrics are used for firefighter, racecar drivers as well as astronaut suits. However, their fire resistant characteristics depend on the environment conditions and require study. Particularly important is the response of these fabrics to elevated oxygen concentration environments and radiant heat from a source such as an adjacent fire. In this work, experiments using two fire resistant fabrics were conducted to study the effect of oxygen concentration, external radiant flux and oxidizer flow velocity in concurrent flame spread. Results show that for a given fabric the minimum oxygen concentration for flame spread depends strongly on the magnitude of the external radiant flux. At increased oxygen concentrations the external radiant flux required for flame spread decreases. Oxidizer flow velocity influences the external radiant flux only when the convective heat flux from the flame has similar values to the external radiant flux. The results of this work provide further understanding of the flammability characteristics of fire resistant fabrics in environments similar to those of future spacecrafts.
Foam composite structures. [for fire retardant airframe materials
NASA Technical Reports Server (NTRS)
Delano, C. B.; Milligan, R. J.
1976-01-01
The need to include fire resistant foams into state of the art aircraft interior paneling to increase passenger safety in aircraft fires was studied. Present efforts were directed toward mechanical and fire testing of panels with foam inclusions. Skinned foam filled honeycomb and PBI structural foams were the two constructions investigated with attention being directed toward weight/performance/cost trade-off. All of the new panels demonstrated improved performance in fire and some were lighter weight but not as strong as the presently used paneling. Continued efforts should result in improved paneling for passenger safety. In particular the simple partial filling (fire side) of state-of-the-art honeycomb with fire resistant foams with little sacrifice in weight would result in panels with increased fire resistance. More important may be the retarded rate of toxic gas evolution in the fire due to the protection of the honeycomb by the foam.
Fire-Resistant Materials: Research Overview
DOT National Transportation Integrated Search
1996-12-01
This report provides an overview of the research being conducted by the Federal Aviation Administration (FAA) to develop fire safe cabin materials for commercial aircraft. The objective of the Fire-Resistant Materials program is to eliminate burning ...
Gordon, Cameron S.; Rajagopalan, Nandhakishore; Risseeuw, Eddy P.; Surpin, Marci; Ball, Fraser J.; Barber, Carla J.; Buhrow, Leann M.; Clark, Shawn M.; Page, Jonathan E.; Todd, Chris D.; Abrams, Suzanne R.; Loewen, Michele C.
2016-01-01
Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA’s modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops. PMID:27755583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garvey, Graeme S.; McCormick, Susan P.; Rayment, Ivan
2008-06-30
Fusarium head blight (FHB) is a plant disease with serious economic and health impacts. It is caused by fungal species belonging to the genus Fusarium and the mycotoxins they produce. Although it has proved difficult to combat this disease, one strategy that has been examined is the introduction of an indigenous fungal protective gene into cereals such as wheat barley and rice. Thus far the gene of choice has been tri101 whose gene product catalyzes the transfer of an acetyl group from acetyl coenzyme A to the C3 hydroxyl moiety of several trichothecene mycotoxins. In vitro this has been shownmore » to reduce the toxicity of the toxins by {approx}100-fold but has demonstrated limited resistance to FHB in transgenic cereal. To understand the molecular basis for the differences between in vitro and in vivo resistance the three-dimensional structures and kinetic properties of two TRI101 orthologs isolated from Fusarium sporotrichioides and Fusarium graminearum have been determined. The kinetic results reveal important differences in activity of these enzymes toward B-type trichothecenes such as deoxynivalenol. These differences in activity can be explained in part by the three-dimensional structures for the ternary complexes for both of these enzymes with coenzyme A and trichothecene mycotoxins. The structural and kinetic results together emphasize that the choice of an enzymatic resistance gene in transgenic crop protection strategies must take into account the kinetic profile of the selected protein.« less
Gordon, Cameron S; Rajagopalan, Nandhakishore; Risseeuw, Eddy P; Surpin, Marci; Ball, Fraser J; Barber, Carla J; Buhrow, Leann M; Clark, Shawn M; Page, Jonathan E; Todd, Chris D; Abrams, Suzanne R; Loewen, Michele C
2016-01-01
Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA's modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops.
Fire resistant polyamide based on 1-(diorganooxyphosphonyl)methyl-2,4- and -2,6diamino benzene
NASA Technical Reports Server (NTRS)
Mikroyannidis, J. A. (Inventor); Kourtides, D. A. (Inventor)
1986-01-01
1-(Diorganooxyphosphonyl)methyl2,4- and-2,6diamino benzenes are reacted with polyacylhalides and optionally comonomers to produce polyamides which have desirable heat and fire resistance properties. These polymers are used to form fibers and fabrics where fire resistance properties are important, e.g., aircraft equipment and structures.
Fire resistance of exposed wood members
Robert H. White
2004-01-01
Fire resistance data on exposed wood beams and columns are plentiful, but few studies have been done on exposed wood members in tension and in decks. To provide data to verify the application of a new calculation procedure, a limited series of fire resistance tests were conducted on wood members loaded in tension and on exposed wood decks.
Highly Flexible Superhydrophobic and Fire-Resistant Layered Inorganic Paper.
Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin
2016-12-21
Traditional paper made from plant cellulose fibers is easily destroyed by either liquid or fire. In addition, the paper making industry consumes a large amount of natural trees and thus causes serious environmental problems including excessive deforestation and pollution. In consideration of the intrinsic flammability of organics and minimizing the effects on the environment and creatures, biocompatible ultralong hydroxyapatite nanowires are an ideal building material for inorganic fire-resistant paper. Herein, a new kind of free-standing, highly flexible, superhydrophobic, and fire-resistant layered inorganic paper has been successfully prepared using ultralong hydroxyapatite nanowires as building blocks after the surface modification with sodium oleate. During the vacuum filtration, ultralong hydroxyapatite nanowires assemble into self-roughened setalike microfibers, avoiding the tedious fabrication process to construct the hierarchical structure; the self-roughened microfibers further form the inorganic paper with a nacrelike layered structure. We have demonstrated that the layered structure can significantly improve the resistance to mechanical destruction of the as-prepared superhydrophobic paper. The as-prepared superhydrophobic and fire-resistant inorganic paper shows excellent nonflammability, liquid repellency to various commercial drinks, high thermal stability, and self-cleaning property. Moreover, we have explored the potential applications of the superhydrophobic and fire-resistant inorganic paper as a highly effective adsorbent for oil/water separation, fire-shielding protector, and writing paper.
Analytical modeling of fire growth on fire-resistive wood-based materials with changing conditions
Mark A. Dietenberger
2006-01-01
Our analytical model of fire growth for the ASTM E 84 tunnel, which simultaneously predicts heat release rate, flame-over area, and pyrolysis area as functions of time for constant conditions, was documented in the 2001 BCC Symposium for different treated wood materials. The model was extended to predict ignition and fire growth on exterior fire-resistive structures...
USDA-ARS?s Scientific Manuscript database
The oomycetes, also known as “water molds”, are a group of several hundred organisms that include some of the most devastating plant pathogens. The diseases they cause include seedling blights, damping-off, root rots, foliar blights and downy mildews. Some notable diseases are the late blight of po...
Wang, Jun; Zeng, Xuan; Tian, Dongsheng; Yang, Xiaobei; Wang, Lanlan; Yin, Zhongchao
2018-03-30
Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99 A (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants. © 2018 TEMASEK LIFE SCIENCES LABORATORY. MOLECULAR PLANT PATHOLOGY © 2018 JOHN WILEY & SONS LTD.
Flash-Fire Propensity and Heat-Release Rate Studies of Improved Fire Resistant Materials
NASA Technical Reports Server (NTRS)
Fewell, L. L.
1978-01-01
Twenty-six improved fire resistant materials were tested for flash-fire propensity and heat release rate properties. The tests were conducted to obtain a descriptive index based on the production of ignitable gases during the thermal degradation process and on the response of the materials under a specific heat load.
Geng, Mingming; Jia, Ruilian; Sui, Zongming; Huang, Jianguo
2016-07-04
Biopesticides are safe and environment friendly. We evaluated the biocontrol effect of Pythium oligandrum broth (POB) and its toxicity to animals and plant growth. Animal, antagonist, pot, and field experiments with mice, Mycosphaerella melonis, and cucumber seedlings were carried out to study animal toxicity, control of gummy stem blight, plant growth, fruit yield and quality with POB produced from self-isolated P. oligandrum CQ2010. Mouse showed normal weight, appearances, performances and no pathogenic changes in organs and tissues with a large amount of POB supplied by lavage. The inhibition rate of POB against M. melonis was 51.95%, similar to thiophanate methy (800 times dilution) but much higher than chlorothalonil (200 times dilution). Malondialdehyde concentration was reduced whereas activities of peroxidase and superoxide dismutase were stimulated in seedling leaves irrespective of POB supplied before and after pathogenic inoculation. POB also decreased the pathogenic incidence and disease index with relative control efficacy from 54.8% to 64.1%. Thus, POB could alleviate cell membrane damage caused by pathogenic microbes, stimulate physiological reactions related to disease defense, and increase disease-resistant abilities of plants. Moreover, POB increased chlorophyll content, root activity, and uptake of nitrogen, phosphorus and potassium, resulting in growth acceleration, fruit yield increment, and quality improvement. POB is safe to animals and could control gummy stem blight of cucumber seedlings, promote plant growth, increase fruit yield, and improve the qualities.
Siamer, Sabrina; Guillas, Isabelle; Shimobayashi, Mitsugu; Kunz, Caroline; Hall, Michael N; Barny, Marie-Anne
2014-06-27
Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
pA506, a Conjugative Plasmid of the Plant Epiphyte Pseudomonas fluorescens A506
Stockwell, Virginia O.; Davis, Edward W.; Carey, Alyssa; Shaffer, Brenda T.; Mavrodi, Dmitri V.; Hassan, Karl A.; Hockett, Kevin; Thomashow, Linda S.; Paulsen, Ian T.
2013-01-01
Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces. PMID:23811504
Zeng, Quan; Sundin, George W
2014-05-31
Erwinia amylovora is a phytopathogenic bacterium and causal agent of fire blight disease in apples and pears. Although many virulence factors have been characterized, the coordination of expression of these virulence factors in E. amylovora is still not clear. Regulatory small RNAs (sRNAs) are important post-transcriptional regulatory components in bacteria. A large number of sRNAs require the RNA chaperone Hfq for both stability and functional activation. In E. amylovora, Hfq was identified as a major regulator of virulence and various virulence traits. However, information is still lacking about Hfq-dependent sRNAs on a genome scale, including the virulence regulatory functions of these sRNAs in E. amylovora. Using both an RNA-seq analysis and a Rho-independent terminator search, 40 candidate Hfq-dependent sRNAs were identified in E. amylovora. The expression and sizes of 12 sRNAs and the sequence boundaries of seven sRNAs were confirmed by Northern blot and 5' RACE assay respectively. Sequence conservation analysis identified sRNAs conserved only in the Erwinia genus as well as E. amylovora species-specific sRNAs. In addition, a dynamic re-patterning of expression of Hfq-dependent sRNAs was observed at 6 and 12 hours after induction in Hrp-inducing minimal medium. Furthermore, sRNAs that control virulence traits were characterized, among which ArcZ positively controls the type III secretion system (T3SS), amylovoran exopolysaccahride production, biofilm formation, and motility, and negatively modulates attachment while RmaA (Hrs6) and OmrAB both negatively regulate amylovoran production and positively regulate motility. This study has significantly enhanced our understanding of the Hfq-dependent sRNAs in E. amylovora at the genome level. The identification of multiple virulence-regulating sRNAs also suggests that post-transcriptional regulation by sRNAs may play a role in the deployment of virulence factors needed during varying stages of pathogenesis during host invasion by E. amylovora.
Pester, Doris; Milčevičová, Renáta; Schaffer, Johann; Wilhelm, Eva; Blümel, Sylvia
2012-01-01
Background Pathogen entry through host blossoms is the predominant infection pathway of the Gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. Methodology/Principal Findings Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24–48 h post inoculation (hpi). This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4) in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7). Conclusion/Significance The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight control on a molecular level. PMID:22412891
Jill Pokorny
1998-01-01
Sphaeropsis shoot blight, formerly called Diplodia shoot blight, is worldwide in distribution and can infect many conifer hosts. Although many pine species are reported hosts, this disease causes severe damage only to trees that are predisposed by unfavorable environmental conditions. Non-native, exotic pine species growing outside their natural range are especially...
Thomas H. Nicholls; Kathryn Robbins
1984-01-01
Sirococcus shoot blight, caused by the fungus Sirococcus strobilinus Preuss, affects conifers in the Northern United States and southern Canada. The fungus infects the new shoots; diseased seedlings and saplings are especially affected. In the United States, sirococcus shoot blight has become increasingly widespread since the early 1970's. When favorable...
Hassani, Maryam; Salami, Seyed Alireza; Nasiri, Jaber; Abdollahi, Hamid; Ghahremani, Zahra
2016-02-01
Attempts were made to identify eight pathogenesis related (PR) genes (i.e., PR-1a, PR3-ch1, PR3-Ch2, PR3-Ch3, PR3-Ch4, PR3-Ch5, PR-5 and PR-8) from 27 genotypes of apple, quince and pear, which are induced in response to inoculation with the pathogen Erwinia amylovora, the causal agent of fire blight. Totally, 32 PR genes of different families were obtained, excepting PR3-Ch2 (amplified only in apple) and PR3-Ch4 (amplified only in apple and pear), the others were successfully amplified in all the genotypes of apple, quince and pear. Evolutionary, the genes of each family exhibited significant homology with each other, as the corresponded phylogenetic neighbor-joining-based dendrograms were taken into consideration. Meanwhile, according to the expression assay, it was deduced that the pathogen activity can significantly affect the expression levels of some selected PR genes of PR3-Ch2, PR3-Ch4, PR3-Ch5 and particularly Cat I in both resistant (MM-111) and semi-susceptible (MM-106) apple rootstocks. Lastly, it was concluded that the pathogen E. amylovora is able to stimulate ROS response, particularly using generation of hydrogen peroxide (H2O2) in both aforementioned apple rootstock.
Improved fire-resistant coatings
NASA Technical Reports Server (NTRS)
Hutt, J. B.; Stuart, J. W.
1971-01-01
Water-base coatings containing potassium silicate show improvement in areas of quick air-drying, crack, craze, and abrasion resistance, adherence, and leach resistance. Coatings are useful as thermal-barrier layers in furnaces, and as general purpose fire resistant surfaces where vapor impermeability is not a requirement.
Boxwood blight: an ongoing threat to ornamental and native boxwood
USDA-ARS?s Scientific Manuscript database
Boxwood blight is an emerging disease of ornamental and native boxwood plants in the family Buxaceae. First documented in the 1990s at a single location in England, the disease is now reported throughout Europe, Asia, New Zealand, and North America. To address the growing concern over boxwood blight...
The corn blight problem: 1970 and 1971
NASA Technical Reports Server (NTRS)
Bauer, M. E.
1972-01-01
Southern corn leaf blight is caused by the fungus, Helminthosporium maydis. Race T of H maydis adapted itself to the Texas male sterile cytoplasm corn. The problems caused by this variety of the blight in 1970 and 1971 are discussed, as well as the symptoms and development of the disease.
Phytophthora infestans in the USA
USDA-ARS?s Scientific Manuscript database
This book chapter is specific to late blight in the United States and will include a review and discussion of the history of late blight on potato and tomato crops, changes in grower attitudes towards late blight, present status of the disease in the US, methods for identification, management, and c...
Wiik, Lars; Hannukkala, Asko; Andreasson, Erik; Chen, Deliang; Ou, Tinghai; Liljeroth, Erland; Lankinen, Åsa
2017-01-01
Background Late blight (caused by Phytophthora infestans) is a devastating potato disease that has been found to occur earlier in the season over the last decades in Fennoscandia. Up until now the reasons for this change have not been investigated. Possible explanations for this change are climate alterations, changes in potato production or changes in pathogen biology, such as increased fitness or changes in gene flow within P. infestans populations. The first incidence of late blight is of high economic importance since fungicidal applications should be typically applied two weeks before the first signs of late blight and are repeated on average once a week. Methods We use field observations of first incidence of late blight in experimental potato fields from five sites in Sweden and Finland covering a total of 30 years and investigate whether the earlier incidence of late blight can be related to the climate. Results We linked the field data to meteorological data and found that the previous assumption, used in common late blight models, that the disease only develops at relative humidity levels above 90% had to be rejected. Rather than the typically assumed threshold relationship between late blight disease development and relative humidity we found a linear relationship. Our model furthermore showed two distinct responses of late blight to climate. At the beginning of the observation time (in Sweden until the early 90s and in Finland until the 2000s) the link between climate and first incidence was very weak. However, for the remainder of the time period the link was highly significant, indicating a change in the biological properties of the pathogen which could for example be a change in the dominating reproduction mode or a physiological change in the response of the pathogen to climate. Conclusions The study shows that models used in decision support systems need to be checked and re-parametrized regularly to be able to capture changes in pathogen biology. While this study was performed with data from Fennoscandia this new pathogen biology and late blight might spread to (or already be present at) other parts of the world as well. The strong link between climate and first incidence together with the presented model offers a tool to assess late blight incidence in future climates. PMID:28558041
Lehsten, Veiko; Wiik, Lars; Hannukkala, Asko; Andreasson, Erik; Chen, Deliang; Ou, Tinghai; Liljeroth, Erland; Lankinen, Åsa; Grenville-Briggs, Laura
2017-01-01
Late blight (caused by Phytophthora infestans) is a devastating potato disease that has been found to occur earlier in the season over the last decades in Fennoscandia. Up until now the reasons for this change have not been investigated. Possible explanations for this change are climate alterations, changes in potato production or changes in pathogen biology, such as increased fitness or changes in gene flow within P. infestans populations. The first incidence of late blight is of high economic importance since fungicidal applications should be typically applied two weeks before the first signs of late blight and are repeated on average once a week. We use field observations of first incidence of late blight in experimental potato fields from five sites in Sweden and Finland covering a total of 30 years and investigate whether the earlier incidence of late blight can be related to the climate. We linked the field data to meteorological data and found that the previous assumption, used in common late blight models, that the disease only develops at relative humidity levels above 90% had to be rejected. Rather than the typically assumed threshold relationship between late blight disease development and relative humidity we found a linear relationship. Our model furthermore showed two distinct responses of late blight to climate. At the beginning of the observation time (in Sweden until the early 90s and in Finland until the 2000s) the link between climate and first incidence was very weak. However, for the remainder of the time period the link was highly significant, indicating a change in the biological properties of the pathogen which could for example be a change in the dominating reproduction mode or a physiological change in the response of the pathogen to climate. The study shows that models used in decision support systems need to be checked and re-parametrized regularly to be able to capture changes in pathogen biology. While this study was performed with data from Fennoscandia this new pathogen biology and late blight might spread to (or already be present at) other parts of the world as well. The strong link between climate and first incidence together with the presented model offers a tool to assess late blight incidence in future climates.
46 CFR 199.175 - Survival craft and rescue boat equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... breakage-resistant material. (9) Fire extinguisher. The fire extinguisher must be approved under approval series 162.028. The fire extinguisher must be type B-C, size II, or larger. Two type B-C, size I fire... portions of the hull. (4) Bucket. The bucket must be made of corrosion-resistant material and should either...
Jiang, Guo-Liang; Shi, Jianrong; Ward, Richard W
2007-12-01
Fusarium head blight (FHB or scab) caused by Fusarium species is a destructive disease in wheat and barley worldwide. The objectives of our study were to identify quantitative trait loci (QTLs) for resistance to FHB spread (Type II resistance) and to quantify the magnitude of their effects in a novel highly resistant wheat germplasm, CJ 9306. A set of 152 F(7) recombinant inbred lines (RILs) derived from a cross Veery/CJ 9306 and two parents were evaluated for FHB resistance by single-floret inoculation in three greenhouse experiments in 2002 and 2004. Percentage (PSS) and number (NSS) of scabby spikelets at 25 days post-inoculation were analyzed. In total 682 simple sequence repeat (SSR) markers were screened for polymorphism between the two parents, and a genetic linkage map was constructed with 208 polymorphic markers. Ten QTLs associated with FHB resistance were detected, five from CJ 9306 and five from Veery. The major QTL on 3BS (QFhs.ndsu-3BS) was validated in CJ 9306, exhibiting greatest additive effects and explained 30.7% of phenotypic variation for PSS on the overall average of three experiments. Another major QTL on 2DL (QFhs.nau-2DL) from CJ 9306 explained 9.9-28.4% of phenotypic variation, with a significant QTL x environment interaction. QFhs.nau-1AS and QFhs.nau-7BS showed lower additive effects and explained lower variance (4.5-9.5%). A QTL on 5AS, decreasing PSS by 10.3% on average, was validated by simple marker analysis and joint trait/experiment IM/CIM analysis despite insignificance for single-experiment IM and CIM analyses. Likewise, QFhs.nau-2BL and QFhs.nau-1BC from Veery could reduce PSS by 13.2 and 11.4%, respectively. The effects of other three minor QTLs from Veery were significant for one experiment and combined analysis. Comparisons of two- and three-locus combinations suggested that the effects of FHB resistance QTLs/genes could be accumulated, and the resistance could be feasibly enhanced by selection of favorable alleles for multiple loci. Four two-locus combinations and two three-locus combinations were suggested as the preferential choices in practical marker-assisted selection program.
The effect of fire retardants on the fire response characteristics of cellulosic materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Brauer, D. P.
1978-01-01
The resistance to ignition of fire retardant-treated wood, cotton, and cellulose insulation was studied. The proprietary composition used to treat wood was found to increase resistance to ignition and to reduce smoke toxicity. Cotton treated with boric acid (added by padding on or by vapor phase process) was found to have increased resistance to ignition and decreased smoke toxicity. Boric acid increased the resistance of cellulose insulation to ignition but also slightly increased the smoke toxicity.
Zhang, Yunzeng; Barthe, Gary; Grosser, Jude W; Wang, Nian
2016-07-08
Citrus blight is a citrus tree overall decline disease and causes serious losses in the citrus industry worldwide. Although it was described more than one hundred years ago, its causal agent remains unknown and its pathophysiology is not well determined, which hampers our understanding of the disease and design of suitable disease management. In this study, we sequenced and assembled the draft genome for Swingle citrumelo, one important citrus rootstock. The draft genome is approximately 280 Mb, which covers 74 % of the estimated Swingle citrumelo genome and the average coverage is around 15X. The draft genome of Swingle citrumelo enabled us to conduct transcriptome analysis of roots of blight and healthy Swingle citrumelo using RNA-seq. The RNA-seq was reliable as evidenced by the high consistence of RNA-seq analysis and quantitative reverse transcription PCR results (R(2) = 0.966). Comparison of the gene expression profiles between blight and healthy root samples revealed the molecular mechanism underneath the characteristic blight phenotypes including decline, starch accumulation, and drought stress. The JA and ET biosynthesis and signaling pathways showed decreased transcript abundance, whereas SA-mediated defense-related genes showed increased transcript abundance in blight trees, suggesting unclassified biotrophic pathogen was involved in this disease. Overall, the Swingle citrumelo draft genome generated in this study will advance our understanding of plant biology and contribute to the citrus breeding. Transcriptome analysis of blight and healthy trees deepened our understanding of the pathophysiology of citrus blight.
Electrical Resistivity Tomography for coal fire mapping over Jharia coal field, India
NASA Astrophysics Data System (ADS)
Pal, S. K.; Kumar, S.; Bharti, A. K.; Pathak, V. K.; Kumar, R.
2016-12-01
Over the decades, coal fires are serious global concern posing grievous hazards to the valuable energy resources, local environments and human life. The coal seam and coal mine fires may be initiated due to improper mining activities, exothermic reactions, lighting, forest fire and other anthropic activities, which burn the coal and may continue underground for decades. The burning of concealed coal seams is a complex process involving numerous ill-defined parameters. Generally, the coal exhibits resistivity of 100 to 500Ωm at normal temperature conditions. During the pyrolysis process, at temperatures greater than 6500C coal became a good conductor with a resistivity of approximately 1 Ωm. The present study deals with the mapping of coal fire over Jharia coal field, India using Electrical Resistivity Tomography (ERT). A state-of-the-art 61-channel 64 electrode FlashRES-Universal ERT data acquisition system has been used for data acquisition in the field. The ERT data have been collected using Gradient array and processed in FlashRES Universal survey data checking program for removing noisy data. Then, filtered output data have been inverted using a 2.5D resistivity inversion program. Low resistivity anomalies over 80m-125m and 320m-390m along the profile are inferred to be active coal fire in seam- XVI at a depth of 25m -35m(Figure 1). High resistivity anomaly over 445m - 510m at a depth of 25m -35m has been delineated, due to void associated with complete combustion of seam- XVI coal, followed by char and ash formation resulting from the coal seam fire. Results prove the efficacy of the ERT study comprising Gradient array for coal fire mapping over, Jharia coal field, India.
USDA-ARS?s Scientific Manuscript database
Boxwood blight disease, caused by the fungi Calonectria henricotiae and C. pseudonaviculata, is an emergent threat to natural and managed landscapes worldwide. Boxwood blight emerged for the first time in the U.K. during the 1990s, then spread rapidly throughout Europe. By 2011, the fungus that cau...
Long-term impact of shoot blight disease on red pine saplings
Linda M. Haugen; Michael E. Ostry
2013-01-01
Damage from Sirococcus and Diplodia shoot blights of red pine is widespread and periodically severe in the Lake States. An outbreak of shoot blight occurred in red pine sapling plantations across northern Wisconsin, northern Minnesota, and the Upper Peninsula of Michigan in 1993. We established monitoring plots in red pine sapling...
USDA-ARS?s Scientific Manuscript database
: Botryosphaeria stem blight is a destructive disease of blueberries that has not been well managed with fungicides. Field observations showed that stem blight is more severe on vigorously growing plants than on slower growing plants. Detached stem assays were used to compare the effect of fertil...
USDA-ARS?s Scientific Manuscript database
Botryosphaeria stem blight is a destructive disease of blueberries. Field observations indicate stem blight is more severe on vigorous plants than on slower growing plants. Two studies compared the effect of two types of fertilizers applied at four rates and nine fungicides on lesion development fo...