[Lightning-caused fire, its affecting factors and prediction: a review].
Zhang, Ji-Li; Bi, Wu; Wang, Xiao-Hong; Wang, Zi-Bo; Li, Di-Fei
2013-09-01
Lightning-caused fire is the most important natural fire source. Its induced forest fire brings enormous losses to human beings and ecological environment. Many countries have paid great attention to the prediction of lightning-caused fire. From the viewpoint of the main factors affecting the formation of lightning-caused fire, this paper emphatically analyzed the effects and action mechanisms of cloud-to-ground lightning, fuel, meteorology, and terrain on the formation and development process of lightning-caused fire, and, on the basis of this, summarized and reviewed the logistic model, K-function, and other mathematical methods widely used in prediction research of lightning-caused fire. The prediction methods and processes of lightning-caused fire in America and Canada were also introduced. The insufficiencies and their possible solutions for the present researches as well as the directions of further studies were proposed, aimed to provide necessary theoretical basis and literature reference for the prediction of lightning-caused fire in China.
Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi
2017-01-01
The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.
[Prediction model of human-caused fire occurrence in the boreal forest of northern China].
Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting
2015-07-01
The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.
Location, timing and extent of wildfire vary by cause of ignition
Syphard, Alexandra D.; Keeley, Jon E.
2015-01-01
The increasing extent of wildfires has prompted investigation into alternative fire management approaches to complement the traditional strategies of fire suppression and fuels manipulation. Wildfire prevention through ignition reduction is an approach with potential for success, but ignitions result from a variety of causes. If some ignition sources result in higher levels of area burned, then ignition prevention programmes could be optimised to target these distributions in space and time. We investigated the most common ignition causes in two southern California sub-regions, where humans are responsible for more than 95% of all fires, and asked whether these causes exhibited distinct spatial or intra-annual temporal patterns, or resulted in different extents of fire in 10-29-year periods, depending on sub-region. Different ignition causes had distinct spatial patterns and those that burned the most area tended to occur in autumn months. Both the number of fires and area burned varied according to cause of ignition, but the cause of the most numerous fires was not always the cause of the greatest area burned. In both sub-regions, power line ignitions were one of the top two causes of area burned: the other major causes were arson in one sub-region and power equipment in the other. Equipment use also caused the largest number of fires in both sub-regions. These results have important implications for understanding why, where and how ignitions are caused, and in turn, how to develop strategies to prioritise and focus fire prevention efforts. Fire extent has increased tremendously in southern California, and because most fires are caused by humans, ignition reduction offers a potentially powerful management strategy, especially if optimised to reflect the distinct spatial and temporal distributions in different ignition causes.
A review of the main driving factors of forest fire ignition over Europe.
Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne
2013-03-01
Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.
A Review of the Main Driving Factors of Forest Fire Ignition Over Europe
NASA Astrophysics Data System (ADS)
Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne
2013-03-01
Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.
Alpert, Hillel R; Christiani, David C; Orav, E John; Dockery, Douglas W; Connolly, Gregory N
2014-04-01
We evaluated the Massachusetts Fire Safe Cigarette Law's (FSCL's) effectiveness in preventing residential fires. We examined unintentional residential fires reported to the Massachusetts Fire Incident Reporting System from 2004 to 2010. We analyzed FSCL effect on the likelihood of cigarette- versus noncigarette-caused fires and effect modification by fire scenario factors by using an interrupted time series regression model. We analyzed the effect of FSCL on monthly fire rates with Poisson regression. Cigarettes caused 1629 unintentional residential fires during the study period. The FSCL was associated with a 28% (95% confidence interval = 12%, 41%) reduction in the odds of cigarette- versus noncigarette-caused fires, although not in analyses restricted to casualty fires, with smaller sample size. The largest reductions were among fires in which human factors were involved; that were first ignited on furniture, bedding, or soft goods; that occurred in living areas; or that occurred in the summer or winter. The FSCL appears to have decreased the likelihood of cigarette-caused residential fires, particularly in scenarios for which the ignition propensity standard was developed. Current standards should be adopted, and the need for strengthening should be considered.
Christiani, David C.; Orav, E. John; Dockery, Douglas W.; Connolly, Gregory N.
2014-01-01
Objectives. We evaluated the Massachusetts Fire Safe Cigarette Law’s (FSCL’s) effectiveness in preventing residential fires. Methods. We examined unintentional residential fires reported to the Massachusetts Fire Incident Reporting System from 2004 to 2010. We analyzed FSCL effect on the likelihood of cigarette- versus noncigarette-caused fires and effect modification by fire scenario factors by using an interrupted time series regression model. We analyzed the effect of FSCL on monthly fire rates with Poisson regression. Results. Cigarettes caused 1629 unintentional residential fires during the study period. The FSCL was associated with a 28% (95% confidence interval = 12%, 41%) reduction in the odds of cigarette- versus noncigarette-caused fires, although not in analyses restricted to casualty fires, with smaller sample size. The largest reductions were among fires in which human factors were involved; that were first ignited on furniture, bedding, or soft goods; that occurred in living areas; or that occurred in the summer or winter. Conclusions. The FSCL appears to have decreased the likelihood of cigarette-caused residential fires, particularly in scenarios for which the ignition propensity standard was developed. Current standards should be adopted, and the need for strengthening should be considered. PMID:24524537
Post-fire tree stress and growth following smoldering duff fires
Morgan Varner; Francis E. Putz; Robert J. Mitchell; J. Kevin Hiers; Joseph J. O’Brien; Doria R. Gordon
2009-01-01
Understanding the proximate causes of post-fire conifer mortality due to smoldering duff fires is essential to the restoration and management of coniferous forests throughout North America. To better understand duff fire-caused mortality, we investigated tree stress and radial growth following experimental fires in a long-unburned forest on deep sands in northern...
Spatial distribution of human-caused forest fires in Galicia (NW Spain)
M. L. Chas-Amil; J. Touza; P. Prestemon
2010-01-01
It is crucial for fire prevention policies to assess the spatial patterns of human-started fires and their relationship with geographical and socioeconomic aspects. This study uses fire reports for the period 1988-2006 in Galicia, Spain, to analyze the spatial distribution of human-induced fire risk attending to causes and underlying motivations associated with fire...
[Analysis of human tissue samples for volatile fire accelerants].
Treibs, Rudolf
2014-01-01
In police investigations of fires, the cause of a fire and the fire debris analysis regarding traces of fire accelerants are important aspects for forensic scientists. Established analytical procedures were recently applied to the remains of fire victims. When examining lung tissue samples, vapors inhaled from volatile ignitable liquids could be identified and differentiated from products of pyrolysis caused by the fire. In addition to the medico-legal results this evidence allowed to draw conclusions as to whether the fire victim was still alive when the fire started.
Fire in Ghana's dry forest: Causes, frequency, effects and management interventions
Sandra Opoku Agyemang; Michael Muller; Victor Rex Barnes
2015-01-01
This paper describes the number of fires, area burned, causes and seasonality of fires over a ten year period from 2002-2012 and investigates different fire management strategies and their effectiveness in the Afram headwaters forest reserve in Ghana. Data were collected from interviews of stakeholders in two communities adjacent to the reserve, and from 2002-2012 fire...
Detecting the Onset of Fire in an Aircraft by Employing Correlation Spectroscopy
NASA Technical Reports Server (NTRS)
Goswami, Kisholoy; Saxena, Indu; Egalon, Claudio; Mendoza, Edgar; Lieberman, Robert; Piltch, Nancy D.
1999-01-01
The cause of aircraft fire and locations of the fires are numerous. Worldwide, numerous in-flight fires have been passenger initiated, the prime location being the lavatory areas. Most in-flight fires in commercial carriers are of electrical origin and cigarettes. A cargo bay fire can be caused by a variety of reasons. The sheer number of different types of cargo makes it difficult to identify the origin, especially when the fire reaches the catastrophic level. The damage can be minimized, and fire can be suppressed effectively if a warning system for the onset of fire is available for onboard monitoring.
NASA Astrophysics Data System (ADS)
Osumi, Ayumu; Ito, Youichi
2012-05-01
A fire site holds important information about the cause of fire outbreak; for instance, a concrete wall can provide a wealth of information and the distribution of fire damage of the wall is particularly valuable. If the distribution of fire damage on concrete walls can be used to trace the flow of fire, it would be possible to identify the fire origin and to clarify the cause of fire outbreak. In this study, we considered a new method based on aerial ultrasonic waves and developed a system that adopts this method for detecting fire damage of concrete walls at fire sites.
Relation of weather forecasts to the prediction of dangerous forest fire conditions
R. H. Weidman
1923-01-01
The purpose of predicting dangerous forest-fire conditions, of course, is to reduce the great cost and damage caused by forest fires. In the region of Montana and northern Idaho alone the average cost to the United States Forest Service of fire protection and suppression is over $1,000,000 a year. Although the causes of forest fires will gradually be reduced by...
Donald A. Haines; William A. Main; Eugene F. McNamara
1978-01-01
Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.
Alcohol skin preparation causes surgical fires
Rocos, B; Donaldson, LJ
2012-01-01
INTRODUCTION Surgical fires are a rare but serious preventable safety risk in modern hospitals. Data from the US show that up to 650 surgical fires occur each year, with up to 5% causing death or serious harm. This study used the National Reporting and Learning Service (NRLS) database at the National Patient Safety Agency to explore whether spirit-based surgical skin preparation fluid contributes to the cause of surgical fires. METHODS The NRLS database was interrogated for all incidents of surgical fires reported between 1 March 2004 and 1 March 2011. Each report was scrutinised manually to discover the cause of the fire. RESULTS Thirteen surgical fires were reported during the study period. Of these, 11 were found to be directly related to spirit-based surgical skin preparation or preparation soaked swabs and drapes. CONCLUSIONS Despite manufacturer's instructions and warnings, surgical fires continue to occur. Guidance published in the UK and US states that spirit-based skin preparation solutions should continue to be used but sets out some precautions. It may be that fire risk should be included in pre-surgical World Health Organization checklists or in the surgical training curriculum. Surgical staff should be aware of the risk that spirit-based skin preparation fluids pose and should take action to minimise the chance of fire occurring. PMID:22391366
Alcohol skin preparation causes surgical fires.
Rocos, B; Donaldson, L J
2012-03-01
Surgical fires are a rare but serious preventable safety risk in modern hospitals. Data from the US show that up to 650 surgical fires occur each year, with up to 5% causing death or serious harm. This study used the National Reporting and Learning Service (NRLS) database at the National Patient Safety Agency to explore whether spirit-based surgical skin preparation fluid contributes to the cause of surgical fires. The NRLS database was interrogated for all incidents of surgical fires reported between 1 March 2004 and 1 March 2011. Each report was scrutinised manually to discover the cause of the fire. Thirteen surgical fires were reported during the study period. Of these, 11 were found to be directly related to spirit-based surgical skin preparation or preparation soaked swabs and drapes. Despite manufacturer's instructions and warnings, surgical fires continue to occur. Guidance published in the UK and US states that spirit-based skin preparation solutions should continue to be used but sets out some precautions. It may be that fire risk should be included in pre-surgical World Health Organization checklists or in the surgical training curriculum. Surgical staff should be aware of the risk that spirit-based skin preparation fluids pose and should take action to minimise the chance of fire occurring.
[Investigation on events of bus on fire in 6 years in the mainland of China].
Wang, X G; Liu, Y; Cen, Y; Wu, P; Zhou, H L; Han, C M
2016-12-20
Objective: To retrospectively analyze the characteristics of events of bus on fire in 6 years in the mainland of China. Methods: Events of bus on fire happened between January 2009 and December 2014 were retrieved through Baidu search engine, Chinese Journals Full - text Database, and PubMed database in the search strategy with " bus" and " fire" or " arson" as keywords combined with the name of provinces, autonomous regions, and municipalities of the mainland of China. The occurrence time, region, cause of fire, casualties of each event were recorded, and the correlative analysis was conducted. Data were processed with Microsoft Excel software. Results: Totally 287 events of bus on fire were retrieved, among which 49 events happened in 2009, 36 events happened in 2010, 35 events happened in 2011, 37 events happened in 2012, and respectively 65 events happened in 2013 and 2014. The events of bus on fire most frequently happened in June and July, respectively 49 and 39 events. Among the distribution of occurrence regions of events of bus on fire, there were 78 events (27.18%) in east China, 52 events (18.12%) in northeast China, 41 events (14.29%) both in north China and south China. Among the causes of events of bus on fire, spontaneous combustion of bus ranked in the first (267 events, accounting for 93.03%), followed by arson (13 events, accounting for 4.53%). Among the 13 events of bus on fire caused by arson, 7 events happened between 16: 00 and 20: 00, and 3 events happened between 8: 00 and 10: 00. Totally 27 events of bus on fire (9.41%) were with casualties, among which 13 events (48.15%) were caused by spontaneous combustion of bus, 10 events (37.04%) were caused by arson, and 4 events (14.81%) were caused by traffic accidents. Arson caused the most severe casualties (at least 88 deaths and 287 injuries), followed by spontaneous combustion of bus (at least 35 deaths and 140 injuries) and traffic accidents (at least 9 deaths and 20 injuries). Conclusions: Events of bus on fire happened more frequently in recent years in the mainland of China, and the frequencies were much higher especially in June and July. Most events were caused by spontaneous combustion of bus, followed by arson. Most of the events of bus on fire caused by arson happened in the morning and evening rush hours of urban traffic, and althouth the occurrence rate was not high, the casualties were most severe.
Wildland arson: a research assessment
Jeffrey P. Prestemon; David T. Butry
2010-01-01
Wildland arson makes up the majority of fire starts in some parts of the United States and is the second leading cause of fires on Eastern United States Federal forests. Individual arson fires can cause damages to resources and communities totaling over a hundred million dollars. Recent research has uncovered the temporal and spatial patterns of arson fires and their...
Choosing and applying fire-retardant-treated plywood and lumber for roof designs
Susan LeVan; Mary Collet
1989-01-01
Fire-retardant-treated (FRT) plywood used as roof sheathing has exhibited strength degradation in some situations. The cause appears to be certain fire retardant chemicals that are activated under environmental conditions of high temperature and moisture content. This report describes how fire retardants are made, how they work, and what causes strength degradation of...
NASA Astrophysics Data System (ADS)
Trouet, V.; Taylor, A. H.; Skinner, C. N.; Stephens, S.
2016-12-01
In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections. In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections.
Temporal scaling behavior of forest and urban fires
NASA Astrophysics Data System (ADS)
Wang, J.; Song, W.; Zheng, H.; Telesca, L.
2009-04-01
It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.
Wildland fire limits subsequent fire occurrence
Sean A. Parks; Carol Miller; Lisa M. Holsinger; Scott Baggett; Benjamin J. Bird
2016-01-01
Several aspects of wildland fire are moderated by site- and landscape-level vegetation changes caused by previous fire, thereby creating a dynamic where one fire exerts a regulatory control on subsequent fire. For example, wildland fire has been shown to regulate the size and severity of subsequent fire. However, wildland fire has the potential to influence...
Evidence of Human Health Impacts from Uncontrolled Coal Fires in Jharia, India
NASA Astrophysics Data System (ADS)
Dhar, U.; Balogun, A. H.; Finkelman, R.; Chakraborty, S.; Olanipekun, O.; Shaikh, W. A.
2017-12-01
Uncontrolled coal fires and burning coal waste piles have been reported from dozens of countries. These fires can be caused by spontaneous combustion, sparks from machinery, lightning strikes, grass or forest fires, or intentionally. Both underground and surface coal fires mobilize potentially toxic elements such as sulfur, arsenic, selenium, fluorine, lead, and mercury as well as dangerous organic compounds such as benzene, toluene, xylene, ethylbenzene and deadly gases such as CO2 and CO. Despite the serious health problems that can be caused by uncontrolled coal fires it is rather surprising that there has been so little research and documentation of their health impacts. Underground coal fires in the Jharia region of India where more than a million people reside, have been burning for 100 years. Numerous villages exist above the underground fires exposing the residents daily to dangerous emissions. Local residents near the fire affected areas do their daily chores without concern about the intensity of nearby fires. During winter children enjoy the heat of the coal fires oblivious to the potentially harmful emissions. To determine if these uncontrolled coal fires have caused health problems we developed a brief questionnaire on general health indices and administered it to residents of the Jharia region. Sixty responses were obtained from residents of two villages, one proximal to the coal fires and one about 5 miles away from the fires. The responses were statistically analyzed using SAS 9.4. It was observed that at a significance level of 5%, villagers who lived more than 5 miles away from the fires had a 98.3% decreased odds of having undesirable health outcomes. This brief survey indicates the risk posed by underground coal fires and how it contributes to the undesirable health impacts. What remains is to determine the specific health issues, what components of the emissions cause the health problems, and what can be done to minimize these problems. Collaboration between geoscientists and public health researchers are essential to assess complex geohealth issues such as those that may be caused by uncontrolled coal fires. This type of multidisciplinary collaboration must be maintained and expanded to include engineers, social scientists, and others to help minimize or avoid these problems.
The impact of a 2 X CO2 climate on lightning-caused fires
NASA Technical Reports Server (NTRS)
Price, Colin; Rind, David
1994-01-01
Future climate change could have significant repercussions for lightning-caused wildfires. Two empirical fire models are presented relating the frequency of lightning fires and the area burned by these fires to the effective precipitation and the frequency of thunderstorm activity. One model deals with the seasonal variations in lightning fires, while the second model deals with the interannual variations of lightning fires. These fire models are then used with the Goddard Institute for Space Studies General Circulation Model to investigate possible changes in fire frequency and area burned in a 2 X CO2 climate. In the United States, the annual mean number of lightning fires increases by 44%, while the area burned increases by 78%. On a global scale, the largest increase in lightning fires can be expected in untouched tropical ecosystems where few natural fires occur today.
Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu
2009-01-01
Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...
A short history of fires and explosions caused by anaesthetic agents.
MacDonald, A G
1994-06-01
The first recorded fire resulting from the use of an anaesthetic agent occurred in 1850, when ether caught fire during a facial operation. Many subsequent fires and explosions have been reported, caused by ether, acetylene, ethylene and cyclopropane, and there has been one reported explosion involving halothane. Although some of the earlier incidents caused more consternation than injury, many of the later ones caused much death and destruction, particularly after the practice of administering oxygen, instead of air, became established. Many incidents have never been reported and many of those which have reached publication do not record essential details. The use of flammable agents has decreased significantly in recent years and although fires and explosions from nonanaesthetic causes, for example gastrointestinal gases, skin sterilizing agents and laser surgery, may continue to occur, those from gaseous and volatile anaesthetic agents may now be of historical interest only. This article reviews some of the more relevant and enlightening reports of the past 150 yr.
Histone acetylation regulates the time of replication origin firing.
Vogelauer, Maria; Rubbi, Liudmilla; Lucas, Isabelle; Brewer, Bonita J; Grunstein, Michael
2002-11-01
The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.
Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests.
Bowman, David M J S; Murphy, Brett P; Neyland, Dominic L J; Williamson, Grant J; Prior, Lynda D
2014-03-01
Obligate seeder trees requiring high-severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long-lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High-severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high-severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest. © 2013 John Wiley & Sons Ltd.
Residential fire related deaths and injuries among children: fireplay, smoke alarms, and prevention.
Istre, G R; McCoy, M; Carlin, D K; McClain, J
2002-06-01
The aim of the study was to describe the epidemiology of residential fire related deaths and injuries among children, and identify risk factors for these injuries through a linked dataset for the city of Dallas, Texas. Data for all residential fires were linked with fire related injury data, using fire department records, ambulance transports, hospital admissions, and medical examiner records, for children 0-19 years of age. Causes of fires, including fireplay (children playing with fire or combustibles), arson and other causes, were determined by fire department investigation. From 1991-98, 76 children were injured in residential fires (39 deaths, 37 non-fatal). The highest rates occurred in the youngest children (<5 years) and in census tracts with lowest income. Fireplay accounted for 42% (32/76) of all injuries, 62% (15/24) of deaths in children 0-4 years, and 94% (13/14) of deaths from apartment and mobile home fires. Most of the fireplay related injuries (27/32, 84%) were from children playing with matches or lighters. Most started in a bedroom. Smoke alarms showed no protective efficacy in preventing deaths or injuries in fires started by fireplay or arson, but there was significant protective efficacy for a functional smoke alarm in fires started from all other causes (p<0.01). Residential fire related injuries among children in Dallas occurred predominantly in the youngest ages (<5 years) and in poor neighborhoods. Most of the deaths, especially those in apartments and mobile homes, resulted from fireplay. Smoke alarms appeared to offer no protection against death or injury in fireplay associated fires, possibly from the nature of the child's behavior in these fires, or from the placement of the smoke alarm. Prevention of childhood residential fire related deaths may require interventions to prevent fireplay in order to be successful.
Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy.
Ramos, L S; Sinn, J P; Lehman, B L; Pfeufer, E E; Peter, K A; McNellis, T W
2015-06-01
Erwinia amylovora bacteria cause fire blight disease, which affects apple and pear production worldwide. The Erw. amylovora pyrC gene encodes a predicted dihydroorotase enzyme involved in pyrimidine biosynthesis. Here, we discovered that the Erw. amylovora pyrC244::Tn5 mutant was a uracil auxotroph. Unexpectedly, the Erw. amylovora pyrC244::Tn5 mutant grew as well as the wild-type in detached immature apple and pear fruits. Fire blight symptoms caused by the pyrC244::Tn5 mutant in immature apple and pear fruits were attenuated compared to those caused by the wild-type. The pyrC244::Tn5 mutant also caused severe fire blight symptoms in apple tree shoots. A plasmid-borne copy of the wild-type pyrC gene restored prototrophy and symptom induction in apple and pear fruit to the pyrC244::Tn5 mutant. These results suggest that Erw. amylovora can obtain sufficient pyrimidine from the host to support bacterial growth and fire blight disease development, although de novo pyrimidine synthesis by Erw. amylovora is required for full symptom development in fruits. Significance and impact of the study: This study provides information about the fire blight host-pathogen interaction. Although the Erwinia amylovora pyrC mutant was strictly auxotrophic for pyrimidine, it grew as well as the wild-type in immature pear and apple fruits and caused severe fire blight disease in apple trees. This suggests that Erw. amylovora can obtain sufficient pyrimidines from host tissue to support growth and fire blight disease development. This situation contrasts with findings in some human bacterial pathogens, which require de novo pyrimidine synthesis for growth in host blood, for example. © 2015 The Society for Applied Microbiology.
Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.
2016-01-01
Fire history within the northern larch forests of Central Siberia was studied (65+degN). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 +/- 49 years (based on firescars) and 106 +/- 36 years (based on firescars and tree natality dates). FRIs were increased with latitude increase and observed to be about 80 years at 64N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (approx.71+degN). Northward FRIs increase correlated with incoming solar radiation (r = -0.95). Post- Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase. Keywords Fire ecology Fire history Fire frequency Siberian wildfires Larch forests Climate change
78 FR 59304 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... ducting with smoke and fire. Incorrectly installed metal clamps, if not corrected, could cause wire bundle... with smoke and fire caused by metal clamps installed on certain hoses. We are issuing this AD to... chaffing, arcing, and burning damage to the control cabin overhead wiring and ducting with smoke and fire...
NASA Astrophysics Data System (ADS)
Parente, Joana; Pereira, Mário; Amraoui, Malik; Tedim, Fantina
2017-04-01
Portugal is the European country with higher number of fires (NF) and burnt area (BA) per unit of land area. The annual number of fires for which the cause of fire is known is not constant and relatively small (typically less than 50% of annual number of records). Nevertheless, the analysis of the fire causes reveals that the vast majority (99%) of the fires in Portugal are of human origin and only a small fraction are of natural origin (1% caused by lightning). The study period will be the recent years of 2012 - 2014, when fire recording procedures are more reliable and the cause of ignition was assessed for more than 50% (19376) of the fires. The fires with approximately seventy different causes of fire defined/recognized by the Portuguese Forest Service (ICNF) were grouped into negligent, intentional and natural fires. For this study the authors proposes the use of the Nomenclature of Territorial Units for Statistics level II, which divides Portugal in 5 basic economic regions, namely Norte, Centro, Área Metropolitana de Lisboa, Alentejo, and Algarve. Most of the fires (54%) occur in the so-called critical period defined between July and September, but high wildfire activity may also occur in few periods of the remaining months (especially in February and March). The intentional fires represent 40% of total NF but accounts for 53% of total BA during the study period. The temporal distribution are described and interpreted in terms of the climate, fire weather, land use land cover (LULC), distance to communication routes (roads and railways) and topographic variables (altitude, slope) using statistical analysis and GIS techniques. Results points to: a) higher number of negligent than intentional fires; b) higher BA on critical period in years 2012 and 2013; c) decrease in time and decrease from critical period to non-critical period of the number of fires, in all regions; and d) the dominant role of fire weather in the observed temporal patterns. We strongly believe that the findings of this study contribute to a better fire prevention, firefighting and crisis management. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire data.
Jonsson, Anders; Bonander, Carl; Nilson, Finn; Huss, Fredrik
2017-09-01
Residential fires represent the largest category of fatal fires in Sweden. The purpose of this study was to describe the epidemiology of fatal residential fires in Sweden and to identify clusters of events. Data was collected from a database that combines information on fatal fires with data from forensic examinations and the Swedish Cause of Death-register. Mortality rates were calculated for different strata using population statistics and rescue service turnout reports. Cluster analysis was performed using multiple correspondence analysis with agglomerative hierarchical clustering. Male sex, old age, smoking, and alcohol were identified as risk factors, and the most common primary injury diagnosis was exposure to toxic gases. Compared to non-fatal fires, fatal residential fires more often originated in the bedroom, were more often caused by smoking, and were more likely to occur at night. Six clusters were identified. The first two clusters were both smoking-related, but were separated into (1) fatalities that often involved elderly people, usually female, whose clothes were ignited (17% of the sample), (2) middle-aged (45-64years old), (often) intoxicated men, where the fire usually originated in furniture (30%). Other clusters that were identified in the analysis were related to (3) fires caused by technical fault, started in electrical installations in single houses (13%), (4) cooking appliances left on (8%), (5) events with unknown cause, room and object of origin (25%), and (6) deliberately set fires (7%). Fatal residential fires were unevenly distributed in the Swedish population. To further reduce the incidence of fire mortality, specialized prevention efforts that focus on the different needs of each cluster are required. Cooperation between various societal functions, e.g. rescue services, elderly care, psychiatric clinics and other social services, with an application of both human and technological interventions, should reduce residential fire mortality in Sweden. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lightning fire research in the Rocky Mountains
J. S. Barrows
1954-01-01
Lightning is the major cause of fires in Rocky Mountain forests. The lightning fire problem is the prime target of a broad research program now known as Project Skyfire. KEYWORDS: lightning, fire research
Changing research needs in wilderness fire
Carol Miller
2008-01-01
Wilderness policies of the four agencies that manage wilderness in the United States recognize the importance of fire as a natural process and federal fire policy supports allowing lightning-caused fires to burn. However, a complex suite of challenges has limited the restoration and maintenance of natural fire regimes in wilderness (Parsons 2000). As a result, fire...
34 CFR 668.49 - Institutional fire safety policies and fire statistics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false Institutional fire safety policies and fire statistics... fire statistics. (a) Additional definitions that apply to this section. Cause of fire: The factor or... statistics described in paragraph (c) of this section. (2) A description of each on-campus student housing...
Evaluation of a post-fire tree mortality model for western US conifers
Sharon M. Hood; Charles W McHugh; Kevin C. Ryan; Elizabeth Reinhardt; Sheri L. Smith
2007-01-01
Accurately predicting fire-caused mortality is essential to developing prescribed fire burn plans and post-fire salvage marking guidelines. The mortality model included in the commonly used USA fire behaviour and effects models, the First Order Fire Effects Model (FOFEM), BehavePlus, and the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS), has not...
[Research progress in post-fire debris flow].
Di, Xue-ying; Tao, Yu-zhu
2013-08-01
The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.
Kathleen L. Kavanaugh; Matthew B. Dickinson; Anthony S. Bova
2010-01-01
Current operational methods for predicting tree mortality from fire injury are regression-based models that only indirectly consider underlying causes and, thus, have limited generality. A better understanding of the physiological consequences of tree heating and injury are needed to develop biophysical process models that can make predictions under changing or novel...
Rella, R; Sturaro, A; Parvoli, G; Ferrara, D; Casellato, U; Vadalà, G
2005-01-01
In Italy, every summer forest fires attract public attention due to the number of victims, the intensity of the fires, the areas devastated, the environmental damage and the loss of property. Excluding some fires by natural causes, other causes are related to the social, economic, and productive profile of the territory. The erroneous expectation is that wooded areas destroyed by fire can then be used for private interests. Often, a fire, started to clear a small area, can completely change the expected result, producing disaster, loss of property, destruction of entire forests and resident fauna, and kill innocent people. In this case report, the reconstruction of an arson scene, the analytical techniques and the results obtained are illustrated in this paper, with the aim of sharing with other research laboratories the current knowledge on forest fire.
NASA Astrophysics Data System (ADS)
Trinh, Le Hung; Zablotskii, V. R.
2017-12-01
The Khanh Hoa coal mine is a surface coal mine in the Thai Nguyen province, which is one of the largest deposits of coal in the Vietnam. Numerous reasons such as improper mining techniques and policy, as well as unauthorized mining caused surface and subsurface coal fire in this area. Coal fire is a dangerous phenomenon which affects the environment seriously by releasing toxic fumes which causes forest fires, and subsidence of infrastructure surface. This article presents study on the application of LANDSAT multi-temporal thermal infrared images, which help to detect coal fire. The results obtained in this study can be used to monitor fire zones so as to give warnings and solutions to prevent coal fire.
Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality
NASA Astrophysics Data System (ADS)
de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.
2016-12-01
The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.
Donald A. Haines; William A. Main; John S. Crosby
1973-01-01
Describes factors that contribute to forest fires on two of the State of Missouri's Protection Districts and the Clark National Forest. Includes an analysis of fire cause, annual distribution, weather, and activity by day of week; also discusses multiple-fire day.
Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.
2016-01-01
Fire history within the northern larch forests of Central Siberia was studied (65 + deg N). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 ± 49 years (based on fire scars) and 106 ± 36 years (based on fire scars and tree natality dates). FRI were increased with latitude increase and observed to be about 80 years at 64 deg N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (approximately 71 deg + N). Northward FRI increase correlated with incoming solar radiation (r = -0.95). Post Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase.
Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals
Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.
2017-01-01
Fire history within the northern larch forests of Central Siberia was studied (65+°N). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRI) were found to be 112 ± 49 years (based on fire scars) and 106 ± 36 years (based on fire scars and tree natality dates). FRI were increased with latitude increase, and observed to be about 80 years at 64°N, about 200 years near the Arctic Circle, and about 300 years nearby the northern range limit of larch stands (~71°+N). Northward FRI increase correlated with incoming solar radiation (r = − 0.95). Post Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase. PMID:28966554
The human dimension of fire regimes on Earth.
Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert
2011-12-01
Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.
The human dimension of fire regimes on Earth
Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; DeFries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert
2011-01-01
Humans and their ancestors are unique in being a fire-making species, but ‘natural’ (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from ‘natural’ background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research. PMID:22279247
The climate space of fire regimes in north-western North America
Whitman, Ellen; Batllori, Enric; Parisien, Marc-André; Miller, Carol; Coop, Jonathan D.; Krawchuk, Meg A.; Chong, Geneva W.; Haire, Sandra L.
2015-01-01
Aim. Studies of fire activity along environmental gradients have been undertaken, but the results of such studies have yet to be integrated with fire-regime analysis. We characterize fire-regime components along climate gradients and a gradient of human influence. Location. We focus on a climatically diverse region of north-western North America extending from northern British Columbia, Canada, to northern Utah and Colorado, USA.Methods. We used a multivariate framework to collapse 12 climatic variables into two major climate gradients and binned them into 73 discrete climate domains. We examined variation in fire-regime components (frequency, size, severity, seasonality and cause) across climate domains. Fire-regime attributes were compiled from existing databases and Landsat imagery for 1897 large fires. Relationships among the fire-regime components, climate gradients and human influence were examined through bivariate regressions. The unique contribution of human influence was also assessed.Results. A primary climate gradient of temperature and summer precipitation and a secondary gradient of continentality and winter precipitation in the study area were identified. Fire occupied a distinct central region of such climate space, within which fire-regime components varied considerably. We identified significant interrelations between fire-regime components of fire size, frequency, burn severity and cause. The influence of humans was apparent in patterns of burn severity and ignition cause.Main conclusions. Wildfire activity is highest where thermal and moisture gradients converge to promote fuel production, flammability and ignitions. Having linked fire-regime components to large-scale climate gradients, we show that fire regimes – like the climate that controls them – are a part of a continuum, expanding on models of varying constraints on fire activity. The observed relationships between fire-regime components, together with the distinct role of climatic and human influences, generate variation in biotic communities. Thus, future changes to climate may lead to ecological changes through altered fire regimes.
The human dimension of fire regimes on Earth
Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Michelle, Mack; Moritz, Max A.; Pyne, Stephen; Roos, Christopher I.; Scott, Andrew C.; Sodhi, Navjot S.; Swetnam, Thomas W.
2011-01-01
Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.
Urban residential fire and flame injuries: a population based study
DiGuiseppi, C; Edwards, P; Godward, C; Roberts, I; Wade, A
2000-01-01
Background—Fires are a leading cause of death, but non-fatal injuries from residential fires have not been well characterised. Methods—To identify residential fire injuries that resulted in an emergency department visit, hospitalisation, or death, computerised databases from emergency departments, hospitals, ambulance and helicopter services, the fire department, and the health department, and paper records from the local coroner and fire stations were screened in a deprived urban area between June 1996 and May 1997. Result—There were 131 fire related injuries, primarily smoke inhalation (76%), an incidence of 36 (95% confidence interval (CI) 30 to 42)/100 000 person years. Forty one patients (32%) were hospitalised (11 (95% CI 8 to 15)/100 000 person years) and three people (2%) died (0.8 (95% CI 0.2 to 2.4)/100 000 person years). Injury rates were highest in those 0–4 (68 (95% CI 39 to 112)/100 000 person years) and ≥85 years (90 (95% CI 29 to 213)/100 000 person years). Rates did not vary by sex. Leading causes of injury were unintentional house fires (63%), assault (8%), clothing and nightwear ignition (6%), and controlled fires (for example, gas burners) (4%). Cooking (31%) and smoker's materials (18%) were leading fire sources. Conclusions—Because of the varied causes of fire and flame injuries, it is likely that diverse interventions, targeted to those at highest risk, that is, the elderly, young children, and the poor, may be required to address this important public health problem. PMID:11144621
Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas
2013-07-15
Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Teach Children Fire Will Burn.
ERIC Educational Resources Information Center
Children's Bureau (DHEW), Washington, DC.
This handbook, addressed to parents and others responsible for the safety of children, presents information on fire hazards, prevention and protection. Emphasizing an early start to fire safety training, it outlines the basic facts of fire safety education, listing the most frequent causes of fire and suggesting the organization of a Family Fire…
14 CFR 91.1415 - CAMP: Mechanical reliability reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... failure, malfunction, or defect in an aircraft concerning— (1) Fires during flight and whether the related fire-warning system functioned properly; (2) Fires during flight not protected by related fire-warning system; (3) False fire-warning during flight; (4) An exhaust system that causes damage during flight to...
14 CFR 91.1415 - CAMP: Mechanical reliability reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... failure, malfunction, or defect in an aircraft concerning— (1) Fires during flight and whether the related fire-warning system functioned properly; (2) Fires during flight not protected by related fire-warning system; (3) False fire-warning during flight; (4) An exhaust system that causes damage during flight to...
Cockpit emergency safety system
NASA Astrophysics Data System (ADS)
Keller, Leo
2000-06-01
A comprehensive safety concept is proposed for aircraft's experiencing an incident to the development of fire and smoke in the cockpit. Fire or excessive heat development caused by malfunctioning electrical appliance may produce toxic smoke, may reduce the clear vision to the instrument panel and may cause health-critical respiration conditions. Immediate reaction of the crew, safe respiration conditions and a clear undisturbed view to critical flight information data can be assumed to be the prerequisites for a safe emergency landing. The personal safety equipment of the aircraft has to be effective in supporting the crew to divert the aircraft to an alternate airport in the shortest possible amount of time. Many other elements in the cause-and-effect context of the emergence of fire, such as fire prevention, fire detection, the fire extinguishing concept, systematic redundancy, the wiring concept, the design of the power supplying system and concise emergency checklist procedures are briefly reviewed, because only a comprehensive and complete approach will avoid fatal accidents of complex aircraft in the future.
Fire and bats in the Southeast and Mid-Atlantic: more questions than answers?
Timothy C. Carter; W. Mark Ford; Michael A. Menzel
2002-01-01
The role and impact of fire in Southeastern ecosystems has changed dramatically from pre-European and early settlement times through present day. Regionally, pre-settlement fires were caused either by Native Americans throughout the year or by lighting-caused wildfires during the growing season. Today, much of the prescribed burning for forest and game management...
Thunderstorm analysis in the northern Rocky Mountains
DeVer Colson
1957-01-01
Lightning-caused fires are a continuing serious threat to forests in the northern Rocky Mountain area. More than 70 percent of all forest fires in this area are caused by lightning. In one 10-day period in July 1940 the all-time record of 1,488 lightning fires started on the national forests in Region l of the U.S. Forest Service.
Geomorphic aspects of post-fire soil erosion - Schultz Fire 2010
Ann Youberg; Karen A. Koestner; Daniel G. Neary; Peter E. Koestner
2011-01-01
The summer of 2010 brought wildfires and near record monsoon rains to northern Arizona, USA, which generated debris flows and floods that caused extensive damage. The human-caused Schultz Fire on the Coconino National Forest northeast of Flagstaff was the largest wildfire in Arizona during 2010, burning 6,100 ha between June 20th and 30th. Ignited by an abandoned...
The 2000 fire season: lightning-caused fires.
Miriam L. Rorig; Sue A. Ferguson
2002-01-01
A large number of lightning-caused fires burned across the western United States during the summer of 2000. In a previous study, the authors determined that a simple index of low-level moisture (85-kPa dewpoint depression) and instability (85â50-kPa temperature difference) from the Spokane, Washington, upper-air soundings was very useful for indicating the likelihood...
Current State of European Railway Fire Safety Research
DOT National Transportation Integrated Search
1985-06-01
This report describes the recent fire safety research and practical fire experience of the major European railways. It includes a summary of the main causes and characteristics of railway vehicle fires, general approaches to the problem, and existing...
Markowitz, Sara
2014-11-01
Fires and burns are among the leading causes of unintentional death in the USA. Most of these deaths occur in residences, and cigarettes are a primary cause. In this paper, I explore the relationship between smoking, cigarette policies, and fires. As smoking rates decline, there are fewer opportunities for fires; however, the magnitude of any reduction is in question. Using a state-level panel, I find that increases in cigarette prices are associated with fewer residential fires and deaths. However, laws regulating indoor smoking are associated with more fires; in particular, restaurant and bar smoking bans are associated with an increase in fires at eating and drinking establishments. This increase is important given the growing popularity of smoking bans in the USA and around the world. As workplaces, schools, and businesses ban smoking and remove ashtrays, smokers who continue to smoke are left without safe options for disposal of cigarettes, leading to more opportunities for fires to start. Copyright © 2013 John Wiley & Sons, Ltd.
Residential fire related deaths and injuries among children: fireplay, smoke alarms, and prevention
Istre, G; McCoy, M; Carlin, D; McClain, J
2002-01-01
Background: The aim of the study was to describe the epidemiology of residential fire related deaths and injuries among children, and identify risk factors for these injuries through a linked dataset for the city of Dallas, Texas. Methods: Data for all residential fires were linked with fire related injury data, using fire department records, ambulance transports, hospital admissions, and medical examiner records, for children 0–19 years of age. Causes of fires, including fireplay (children playing with fire or combustibles), arson and other causes, were determined by fire department investigation. Results: From 1991–98, 76 children were injured in residential fires (39 deaths, 37 non-fatal). The highest rates occurred in the youngest children (<5 years) and in census tracts with lowest income. Fireplay accounted for 42% (32/76) of all injuries, 62% (15/24) of deaths in children 0–4 years, and 94% (13/14) of deaths from apartment and mobile home fires. Most of the fireplay related injuries (27/32, 84%) were from children playing with matches or lighters. Most started in a bedroom. Smoke alarms showed no protective efficacy in preventing deaths or injuries in fires started by fireplay or arson, but there was significant protective efficacy for a functional smoke alarm in fires started from all other causes (p<0.01). Conclusions: Residential fire related injuries among children in Dallas occurred predominantly in the youngest ages (<5 years) and in poor neighborhoods. Most of the deaths, especially those in apartments and mobile homes, resulted from fireplay. Smoke alarms appeared to offer no protection against death or injury in fireplay associated fires, possibly from the nature of the child's behavior in these fires, or from the placement of the smoke alarm. Prevention of childhood residential fire related deaths may require interventions to prevent fireplay in order to be successful. PMID:12120831
Progression and Behavior of the Canoe Fire in Coast Redwood
Hugh Scanlon
2007-01-01
Lightning caused fires occur in coast redwood forests, but large fires have been rare since the 1930s. Coast redwood (Sequoia sempervirens) is considered fire resistant. In 2003, the Canoe Fire, a lightning fire started in an old-growth redwood stand in Humboldt Redwoods State Park, burned 5,554 hectares (13,774 acres) before it was contained. Fuel...
Sharon Hood; Duncan Lutes
2017-01-01
Accurate prediction of fire-caused tree mortality is critical for making sound land management decisions such as developing burning prescriptions and post-fire management guidelines. To improve efforts to predict post-fire tree mortality, we developed 3-year post-fire mortality models for 12 Western conifer species - white fir (Abies concolor [Gord. &...
The causes of fires on northeastern national forests.
William A. Main; Donald A. Haines
1974-01-01
Presents cross-tabulations of classes of people, activities, and causes responsible for forest fires on national forests. The data combinations indicate that greater prevention efforts might be directed toward hunters and fishermen.
Fire effects in northeastern forests: aspen.
Cary Rouse
1986-01-01
Fire has been a natural component of the aspen ecosystem. Any fire in an established aspen stand will cause injury. Aspen is easily top-killed, but the roots remain viable. A fire's heat can stimulate sprout growth from these roots, aiding natural regeneration.
Forest fires and lightning activity during the outstanding 2003 and 2005 fire seasons
NASA Astrophysics Data System (ADS)
Russo, Ana; Ramos, Alexandre; Trigo, Ricardo
2013-04-01
Wildfires in southern Europe cause frequent extensive economical and ecological losses and, even human casualties. Comparatively to other Mediterranean countries, Portugal is the country with more burnt area and fires per unit area in the last decade, mainly during the summer season (Pereira et al., 2011). According to the fire records available, between 1980 and 2009, wildfires have affected over 3 million hectares in Portugal (JRC, 2011), which corresponds to approximately a third of the Portuguese Continental territory. The main factors that influence fire ignition and propagation are: (1) the presence of fuel (i.e. vegetation); (2) climate and weather; (3) socioeconomic conditions that affect land use/land cover patterns, fire-prevention and fire-fighting capacity and (4) topography. Specifically, weather (e.g. wind, temperature, precipitation, humidity, and lightning occurrence) plays an important role in fire behavior, affecting both ignition and spread of wildfires. Some countries have a relatively large fraction of fires caused by lightning, e.g. northwestern USA, Canada, Russia (). In contrast, Portugal has only a small percentage of fire records caused by lightning. Although significant doubts remain for the majority of fires in the catalog since they were cataloged without a likely cause. The recent years of 2003 and 2005 were particularly outstanding for fire activity in Portugal, registering, respectively, total burned areas of 425 726 ha and 338 262 ha. However, while the 2003 was triggered by an exceptional heatwave that struck the entire western Europe, the 2005 fire season registered was coincident with one of the most severe droughts of the 20th century. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2001-2011, with the original data provided by the Autoridade Florestal Nacional (AFN, 2011); 2) lightning discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Instituto de Meteorologia (IM). The main objective of this work is to analyze for possible relations between the PRFD and the Portuguese lightning database for the 2003 and 2005 extreme fire seasons. In particularly we were able to verify the forest fires labeled as "ignited by lightning" by comparing its location to the lightning discharges location database. Furthermore we have also investigated possible fire ignition by lightning discharges that have not yet been labeled in the PRFD by comparing daily data from both datasets.
Smouldering Subsurface Fires in the Earth System
NASA Astrophysics Data System (ADS)
Rein, Guillermo
2010-05-01
Smouldering fires, the slow, low-temperature, flameless form of combustion, are an important phenomena in the Earth system. These fires propagate slowly through organic layers of the forest ground and are responsible for 50% or more of the total biomass consumed during wildfires. Only after the 2002 study of the 1997 extreme haze event in South-East Asia, the scientific community recognised the environmental and economic threats posed by subsurface fires. This was caused by the spread of vast biomass fires in Indonesia, burning below the surface for months during the El Niño climate event. It has been calculated that these fires released between 0.81 and 2.57 Gton of carbon gases (13-40% of global emissions). Large smouldering fires are rare events at the local scale but occur regularly at a global scale. Once ignited, they are particularly difficult to extinguish despite extensive rains or fire-fighting attempts and can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into the soil. Indeed, these are the oldest continuously burning fires on Earth. Earth scientists are interested in smouldering fires because they destroy large amounts of biomass and cause greater damage to the soil ecosystem than flaming fires do. Moreover, these fires cannot be detected with current satellite remote sensing technologies causing inconsistencies between emission inventories and model predictions. Organic soils sustain smouldering fire (hummus, duff, peat and coal) which total carbon pool exceeds that of the world's forests or the atmosphere. This have important implications for climate change. Warmer temperatures at high latitudes are resulting in unprecedented permafrost thaw that is leaving large soil carbon pools exposed to fires. Because the CO2 flux from peat fires has been measured to be about 3000 times larger that the natural degradation flux, permafrost thaw is a risk for greater carbon release by fire and subsequently influence carbon-climate feedbacks. This presentation will revise the current knowledge on smouldering fires in the Earth system regarding ignition, spread patterns and emissions. It will explain the key differences between shallow and deep fires, and flaming fires.
Fire intensity impacts on post-fire temperate coniferous forest net primary productivity
NASA Astrophysics Data System (ADS)
Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.
2018-02-01
Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Fires. 27.95 Section 27.95 Wildlife and... WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.95 Fires. On all national wildlife refuges persons are prohibited from the following: (a) Setting on fire or causing to be set on fire any...
36 CFR 262.1 - Rewards in connection with fire or property prosecutions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fire or property prosecutions. 262.1 Section 262.1 Parks, Forests, and Public Property FOREST SERVICE... connection with fire or property prosecutions. (a) Hereafter, provided Congress shall make the necessary... of willfully or maliciously setting on fire, or causing to be set on fire, any timber, underbrush, or...
36 CFR 262.1 - Rewards in connection with fire or property prosecutions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fire or property prosecutions. 262.1 Section 262.1 Parks, Forests, and Public Property FOREST SERVICE... connection with fire or property prosecutions. (a) Hereafter, provided Congress shall make the necessary... of willfully or maliciously setting on fire, or causing to be set on fire, any timber, underbrush, or...
36 CFR 262.1 - Rewards in connection with fire or property prosecutions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fire or property prosecutions. 262.1 Section 262.1 Parks, Forests, and Public Property FOREST SERVICE... connection with fire or property prosecutions. (a) Hereafter, provided Congress shall make the necessary... of willfully or maliciously setting on fire, or causing to be set on fire, any timber, underbrush, or...
36 CFR 262.1 - Rewards in connection with fire or property prosecutions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fire or property prosecutions. 262.1 Section 262.1 Parks, Forests, and Public Property FOREST SERVICE... connection with fire or property prosecutions. (a) Hereafter, provided Congress shall make the necessary... of willfully or maliciously setting on fire, or causing to be set on fire, any timber, underbrush, or...
Short- and long-term effects of fire on carbon in US dry temperate forest systems
Hurteau, Matthew D.; Brooks, Matthew L.
2011-01-01
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.
Fire hazard considerations for composites in vehicle design
NASA Technical Reports Server (NTRS)
Gordon, Rex B.
1994-01-01
Military ground vehicles fires are a significant cause of system loss, equipment damage, and crew injury in both combat and non-combat situations. During combat, the ability to successfully fight an internal fire, without losing fighting and mobility capabilities, is often the key to crew survival and mission success. In addition to enemy hits in combat, vehicle fires are initiated by electrical system failures, fuel line leaks, munitions mishaps and improper personnel actions. If not controlled, such fires can spread to other areas of the vehicle, causing extensive damage and the potential for personnel injury and death. The inherent fire safety characteristics (i.e. ignitability, compartments of these vehicles play a major roll in determining rather a newly started fire becomes a fizzle or a catastrophe. This paper addresses a systems approach to assuring optimum vehicle fire safety during the design phase of complex vehicle systems utilizing extensive uses of composites, plastic and related materials. It provides practical means for defining the potential fire hazard risks during a conceptual design phase, and criteria for the selection of composite materials based on its fire safety characteristics.
A brief historical review of non-anaesthetic causes of fires and explosions in the operating room.
Macdonald, A G
1994-12-01
Fires and explosions have occurred in the operating theatre for many years. Flammable inhalation anaesthetic agents were responsible for many incidents in the past, but these are no longer available in many countries. Other causes of fires and explosions still exist in the operating theatre and, from time to time, result in serious and occasionally fatal injury. Flammable gastrointestinal gases have been the cause of injury to patients during gastric surgery, laparoscopy and during examination of the large bowel with electrical instrumentation. Gases formed in the bladder during urological procedures have ignited, causing rupture. Alcohol-based skin cleaning agents have resulted in severe burns to the skin. Equipment used for storage and delivery of oxygen to patients has caused fires in a variety of ways. Adhesive skin drapes have resulted recently in two tragic deaths. The increasing use of laser therapy, particularly in ear, nose and throat surgery, and in oral surgery, has brought about a renewed awareness of the risk of fire. The relevant factors which should be borne in mind and the precautions which should be adopted when laser therapy is to be used in the airway are discussed.
NASA Astrophysics Data System (ADS)
Ogungbuyi, M. G.; Eckardt, F. D.; Martinez, P.
2016-12-01
Nigeria, the largest producer of crude oil in Africa occupies sixth position in the world. Despite such huge oil revenue potentials, its pipeline network system is consistently susceptible to leaks causing oil spills. We investigate ground based spill events which are caused by operational error, equipment failure and most importantly by deliberate attacks along the major pipeline transport system. Sometimes, these spills are accompanied with fire explosion caused by accidental discharge, natural or illegal refineries in the creeds, etc. MODIS satellites fires data corresponding to the times and spill events (i.e. ground based data) of the Area of Interest (AOI) show significant correlation. The open source Quantum Geographical Information System (QGIS) was used to validate the dataset and the spatiotemporal analyses of the oil spill fires were expressed. We demonstrate that through QGIS and Google Earth (using the time sliders), we can identify and monitor oil spills when they are attended with fire events along the pipeline transport system accordingly. This is shown through the spatiotemporal images of the fires. Evidence of such fire cases resulting from bunt vegetation as different from industrial and domestic fire is also presented. Detecting oil spill fires in the study location may not require an enormous terabyte of image processing: we can however rely on a near-real-time (NRT) MODIS data that is readily available twice daily to detect oil spill fire as early warning signal for those hotspots areas where cases of oil seepage is significant in Nigeria.
Fire characteristics associated with firefighter injury on large federal wildland fires.
Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne
2013-02-01
Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.
Trends and causes of severity, size, and number of fires in northwestern California, USA
J. D. Miller; Carl Skinner; H. D. Safford; Eric E. Knapp; C. M. Ramirez
2012-01-01
Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire...
Assessing European wild fire vulnerability
NASA Astrophysics Data System (ADS)
Oehler, F.; Oliveira, S.; Barredo, J. I.; Camia, A.; Ayanz, J. San Miguel; Pettenella, D.; Mavsar, R.
2012-04-01
Wild fire vulnerability is a measure of potential socio-economic damage caused by a fire in a specific area. As such it is an important component of long-term fire risk management, helping policy-makers take informed decisions about adequate expenditures for fire prevention and suppression, and to target those regions at highest risk. This paper presents a first approach to assess wild fire vulnerability at the European level. A conservative approach was chosen that assesses the cost of restoring the previous land cover after a potential fire. Based on the CORINE Land Cover, a restoration cost was established for each land cover class at country level, and an average restoration time was assigned according to the recovery capacity of the land cover. The damage caused by fire was then assessed by discounting the cost of restoring the previous land cover over the restoration period. Three different vulnerability scenarios were considered assuming low, medium and high fire severity causing different levels of damage. Over Europe, the potential damage of wild land fires ranges from 10 - 13, 732 Euro*ha-1*yr-1 for low fire severity, 32 - 45,772 Euro*ha-1*yr-1 for medium fire severity and 54 - 77,812 Euro*ha-1*yr-1 for high fire severity. The least vulnerable are natural grasslands, moors and heathland and sclerophyllous vegetation, while the highest cost occurs for restoring broad-leaved forest. Preliminary validation comparing these estimates with official damage assessments for past fires shows reasonable results. The restoration cost approach allows for a straightforward, data extensive assessment of fire vulnerability at European level. A disadvantage is the inherent simplification of the evaluation procedure with the underestimation of non-markets goods and services. Thus, a second approach has been developed, valuing individual wild land goods and services and assessing their annual flow which is lost for a certain period of time in case of a fire event. However, due to limitations in data availability, this approach of environmental accounting is not fully implemented yet. Keywords: fire vulnerability, damage assessment, land cover restoration, long-term fire risk, European scale
Chen, Guangsheng; Hayes, Daniel J.; McGuire, A. David
2017-01-01
Burn area and the frequency of extreme fire events have been increasing during recent decades in North America, and this trend is expected to continue over the 21st century. While many aspects of the North American carbon budget have been intensively studied, the net contribution of fire disturbance to the overall net carbon flux at the continental scale remains uncertain. Based on national scale, spatially explicit and long-term fire data, along with the improved model parameterization in a process-based ecosystem model, we simulated the impact of fire disturbance on both direct carbon emissions and net terrestrial ecosystem carbon balance in North America. Fire-caused direct carbon emissions were 106.55 ± 15.98 Tg C/yr during 1990–2012; however, the net ecosystem carbon balance associated with fire was −26.09 ± 5.22 Tg C/yr, indicating that most of the emitted carbon was resequestered by the terrestrial ecosystem. Direct carbon emissions showed an increase in Alaska and Canada during 1990–2012 as compared to prior periods due to more extreme fire events, resulting in a large carbon source from these two regions. Among biomes, the largest carbon source was found to be from the boreal forest, primarily due to large reductions in soil organic matter during, and with slower recovery after, fire events. The interactions between fire and environmental factors reduced the fire-caused ecosystem carbon source. Fire disturbance only caused a weak carbon source as compared to the best estimate terrestrial carbon sink in North America owing to the long-term legacy effects of historical burn area coupled with fast ecosystem recovery during 1990–2012.
Projectile containing metastable intermolecular composites and spot fire method of use
Asay, Blaine W.; Son, Steven F.; Sanders, V. Eric; Foley, Timothy; Novak, Alan M.; Busse, James R.
2012-07-31
A method for altering the course of a conflagration involving firing a projectile comprising a powder mixture of oxidant powder and nanosized reductant powder at velocity sufficient for a violent reaction between the oxidant powder and the nanosized reductant powder upon impact of the projectile, and causing impact of the projectile at a location chosen to draw a main fire to a spot fire at such location and thereby change the course of the conflagration, whereby the air near the chosen location is heated to a temperature sufficient to cause a spot fire at such location. The invention also includes a projectile useful for such method and said mixture preferably comprises a metastable intermolecular composite.
"Johnny Poppers": a cause of serious ocular injury.
MacAndie, K; Kyle, P
1998-07-01
The causes of blunt ocular trauma are many and diverse. We present two cases of ocular injury caused by an unusual form of weapon called a "Johnny Popper". There follows a theoretical and experimental evaluation of the velocity of the projectiles fired by this device. A Johnny Popper was constructed under expert guidance. The elastic properties of the device were measured and this allowed calculation of a theoretical exit velocity of the projectiles fired. The weapon was subsequently fired under test conditions which permitted the exit velocity of the projectiles fired to be measured directly. The theoretical velocity of the projectiles was calculated as 80 ms-1 and the experimentally measured velocity was 57 ms-1. Johnny Poppers are a previously undescribed and unique form of home made weapon. They are intended for playful mischief, but have the potential to cause serious ocular trauma.
Review of vortices in wildland fire
Jason M. Forthofer; Scott L. Goodrick
2011-01-01
Vortices are almost always present in the wildland fire environment and can sometimes interact with the fire in unpredictable ways, causing extreme fire behavior and safety concerns. In this paper, the current state of knowledge of the interaction of wildland fire and vortices is examined and reviewed. A basic introduction to vorticity is given, and the two common...
Climatic stress increases forest fire severity across the western United States
Phillip J. van Mantgem; Jonathan C.B. Nesmith; MaryBeth Keifer; Eric E. Knapp; Alan Flint; Lorriane Flint
2013-01-01
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after...
Fire scars and tree vigor following prescribed fires in Missouri Ozark upland forests
Aaron P. Stevenson; Rose-Marie Muzika; Richard P. Guyette
2008-01-01
The goal of our project was to examine basal fire scars caused by prescribed fires and tree vigor in upland forests of the Missouri Ozarks. Fire scar data were collected in 100 plots from black oak (Quercus velutina Lam.), scarlet oak (Q. coccinea Muench.), Shumard oak (Q. shumardii Buckl.), post oak (Q...
Home destruction within the Hayman Fire perimeter
Jack Cohen; Rick Stratton
2003-01-01
The Hayman Fire report on home destruction examines the following four questions: 1. How many homes were destroyed out of the total number of homes within the Hayman Fire perimeter? 2. What was the relative wildland fire intensity associated with the destroyed homes? 3. What was the categorical cause of home ignition suggested by the associated wildland fire intensity...
Fire Prevention in California's Riverside County Headstart Project: An Evaluation.
ERIC Educational Resources Information Center
Folkman, William S.; Taylor, Jean
Results of evaluation are reported for a safety program devised by Head Start teachers and California Division of Forestry personnel to teach fire prevention education to Head Start children. Chapters describe the place of fire prevention in Head Start and causes of fire starting behavior in children. The Head Start Fire Prevention Kit is also…
Wildland fire in ecosystems: effects of fire on fauna
Jane Kapler Smith
2000-01-01
VOLUME 1: Fires affect animals mainly through effects on their habitat. Fires often cause short-term increases in wildlife foods that contribute to increases in populations of some animals. These increases are moderated by the animals' ability to thrive in the altered, often simplified, structure of the postfire environment. The extent of fire effects on animal...
Chapter 6: Fire damage of wood structures
B. Kukay; R.H. White; F. Woeste
2012-01-01
Depending on the severity, fire damage can compromise the structural integrity of wood structures such as buildings or residences. Fire damage of wood structures can incorporate several models that address (1) the type, cause, and spread of the fire, (2) the thermal gradients and fire-resistance ratings, and (3) the residual load capacity (Figure 6.1). If there is a...
NASA Astrophysics Data System (ADS)
Hudjimartsu, S. A.; Djatna, T.; Ambarwari, A.; Apriliantono
2017-01-01
The forest fires in Indonesia occurs frequently in the dry season. Almost all the causes of forest fires are caused by the human activity itself. The impact of forest fires is the loss of biodiversity, pollution hazard and harm the economy of surrounding communities. To prevent fires required the method, one of them with spatial temporal clustering. Spatial temporal clustering formed grouping data so that the results of these groupings can be used as initial information on fire prevention. To analyze the fires, used hotspot data as early indicator of fire spot. Hotspot data consists of spatial and temporal dimensions can be processed using the Spatial Temporal Clustering with Kulldorff Scan Statistic (KSS). The result of this research is to the effectiveness of KSS method to cluster spatial hotspot in a case within Riau Province and produces two types of clusters, most cluster and secondary cluster. This cluster can be used as an early fire warning information.
History of wildland fires on Vandenberg Air Force Base, California
NASA Technical Reports Server (NTRS)
Hickson, Diana E.
1988-01-01
The fire history of the past 50 years for Vandenberg AFB, California was determined using aerial photography, field investigation, and historical and current written records. This constitutes a record of the vegetation age classes for the entire base. The location, cause, and fuel type for sixty fires from this time period were determined. The fires were mapped and entered into a geographic infomation system (GIS) for Vandenberg. Fire history maps derived from this GIS were printed at 1:9600 scale and are on deposit at the Vandenberg Environmental Task Force Office. Although some ecologically significant plant communities on Vandenberg are adapted to fire, no natural fire frequency could be determined, since only one fire possibly caused by lightning occurred in the area now within the base since 1937. Observations made during this study suggest that burning may encourage the invasion of exotic species into chaparral, in particular Burton Mesa or sandhill chaparral, an unusual and geographically limited form of chaparral found on the base.
NASA Astrophysics Data System (ADS)
Jalilzadeh Shadlouei, A.; Delavar, M. R.
2013-09-01
There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative criterias contributing to forest fires have been designated as follows: vegetation (NDVI), slope, aspect, temperature, humidity and proximity to roadways. By applying these variables on several tentatively selected areas and formation information tables and producing granular decision tree and extraction of rules, the zoning rules (for the areas in question) were extracted. According to them the zoning of the entire area has been conducted. The zoned areas have been classified into 5 categories: high hazard, medium hazard (high), medium hazard (low), low hazard (high), low hazard (low). According to the map, the zoning of most of the areas fall into the low hazard (high) class while the least number of areas have been classified as low hazard (low). Comparing the forest fires in these regions in 2010 with the MODIS data base for forest fires, it is concluded that areas with high hazards of forest fire have been classified with a 64 percent precision. In other word 64 percent of pixels that are in high hazard classification are classified according to MODIS data base. Using this method we obtain a good range of Perception. Manager will reduce forest fire concern using precautionary proceeding on hazardous area.
Nataly Y. Chubarova; Nickolay G. Prilepsky; Alexei N. Rublev; Allen R. Riebau
2009-01-01
In 2002, a major drought and prolonged high temperatures occurred in central Russia that resulted in unprecedented wildland fires. These fires occurred under extreme fire danger conditions and were impossible for the Russian authorities to extinguish. It is perhaps somewhat unique that the fires were first burning peat bogs and later forests, causing very massive smoke...
C.J. Fettig; R.R. Borys; C.P. and Dabney
2010-01-01
We examined bark beetle responses to fire and fire surrogate treatments 2 and 4 years after the application of prescribed fire in a mixed-conifer forest in northern California. Treatments included an untreated control (C), thinning from below (T), and applications of prescribed fire (B) and T + B replicated three times in 10-ha experimental units. A total of 1,822...
Occupancy Fire Record: Schools.
ERIC Educational Resources Information Center
National Fire Protection Association, Boston, MA.
The considerations of human safety and preservation of facilities are examined in relation to school fires. Various aspects of planning which would decrease the probability of fires and thereby save life and property are reviewed and include--(1) causes, (2) automatic protection devices, (3) evacuation and fire drills, and (4) construction…
Bonander, Carl M; Jonsson, Anders P; Nilson, Finn T
2016-04-01
Annually, 100 people die as a result of residential fires in Sweden and almost a third of the fatal fires are known to be caused by smoking. In an attempt to reduce the occurrence of these events, reduced ignition propensity (RIP) cigarettes have been developed. They are designed to reduce the risk of fire by preventing the cigarette from burning through the full length when left unattended. In November 2011, a ban was introduced, forbidding the production and sale of all non-RIP cigarettes in all member states of the European Union, including Sweden. Monthly data on all recorded residential fires and associated fatalities in Sweden from January 2000 to December 2013 were analyzed using an interrupted time series design. The effect of the intervention [in relative risk (RR)] was quantified using generalised additive models for location, shape and scale. There were no statistically significant intervention effects on residential fires (RR 0.95 [95% CI: 0.89-1.01]), fatal residential fires (RR 0.99 [95% CI: 0.80-1.23]), residential fires where smoking was a known cause (RR 1.10 [95% CI: 0.95-1.28]) or fatal residential fires where smoking was a known cause (RR 0.92 [95% CI: 0.63-1.35]). No evidence of an effect of the ban on all non-RIP cigarettes on the risk of residential fires in Sweden was found. The results may not be generalisable to other countries. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Workers' 9/11 in Pakistan: neglected sparks causing conflagration.
Mirza, Muhammad Zeeshan; Bashir, Sajid
2015-01-01
A deadly factory fire in Karachi, Pakistan caused the death of 289 workers on September 11, 2012. The havoc played by fire could have been avoided if the concerned authorities had better fire safety measures and strategy. This article presents an exploratory study designed to obtain first-hand information about this issue in which data were collected from 135 organizations within various industries of Pakistan. The results of this study are alarming because most of the organizations are not even equipped with basic fire safety equipment and are devoid of fire exit paths. Incompetence and negligence on the part of government agencies and many stakeholders frequently allows fire to play havoc with the lives of workers in Pakistani organizations, confirming the famous saying 'Parva saepe scintilla contempta magnum excitavit incendium' (A spark neglected has often raised a conflagration).
Moritz, Max A; Odion, Dennis C
2005-06-01
Fire can be a dominant process in the ecology of forest vegetation and can also affect forest disease dynamics. Little is known about the relationship between fire and an emerging disease epidemic called Sudden Oak Death, which is caused by a new pathogen, Phytophthora ramorum. This disease has spread across a large, fire-prone portion of California, killing great numbers of oaks and tanoaks and infecting most associated woody plants. Suitable hosts cover a much broader geographic range, raising concern over where the disease may spread. To understand the strength and potential sensitivities of a fire-disease relationship, we examined geographic patterns of confirmed P. ramorum infections in relation to past fire history. We found these infections to be extremely rare within the perimeter of any area burned since 1950. This finding is not caused by spatial bias in sampling for the disease, and is robust to variation in host abundance scenarios and to aggregation of closely spaced sampling locations. We therefore investigated known fire-related factors that could result in significantly lower incidence of the disease in relatively recently burned landscapes. Chemical trends in post-fire environments can influence the success of pathogens like P. ramorum, either by increasing plant nutrient stress or by reducing the occurrence of chemicals antagonistic to Phytophthoras. Succession in the absence of fire leads to greater abundance of host species, which will provide increased habitat for P. ramorum; this will also increase intraspecific competition where these trees are abundant, and other density-dependent effects (e.g. shading) can reduce resource allocation to defenses. Despite these findings about a fire-disease relationship, a much deeper understanding is necessary before fire can be actively used as a tool in slowing the epidemic.
J.M. Varner; J.K. Hiers; R.D. Ottmar; D.R. Gordon; F.E. Putz; D.D. Wade
2007-01-01
In forests historically maintained by frequent fire, reintroducing fire after decades of exclusion often causes widespread overstory mortality. To better understand this phenomenon. we subjected 16 fire-excluded (ca. 40 years since fire) 10-ha longleaf pine (Pinus palustris Mill.) stands to one of four replicated burning treatments based on...
Lightning fires in southwestern forests
Jack S. Barrows
1978-01-01
Lightning is the leading cause of fires in southwestern forests. On all protected private, state and federal lands in Arizona and New Mexico, nearly 80 percent of the forest, brush and range fires are ignited by lightning. The Southwestern region leads all other regions of the United States both in total number of lightning fires and in the area burned by these fires...
Hyperbaric and hypobaric chamber fires: a 73-year analysis.
Sheffield, P J; Desautels, D A
1997-09-01
Fire can be catastrophic in the confined space of a hyperbaric chamber. From 1923 to 1996, 77 human fatalities occurred in 35 hyperbaric chamber fires, three human fatalities in a pressurized Apollo Command Module, and two human fatalities in three hypobaric chamber fires reported in Asia, Europe, and North America. Two fires occurred in diving bells, eight occurred in recompression (or decompression) chambers, and 25 occurred in clinical hyperbaric chambers. No fire fatalities were reported in the clinical hyperbaric chambers of North America. Chamber fires before 1980 were principally caused by electrical ignition. Since 1980, chamber fires have been primarily caused by prohibited sources of ignition that an occupant carried inside the chamber. Each fatal chamber fire has occurred in an enriched oxygen atmosphere (> 28% oxygen) and in the presence of abundant burnable material. Chambers pressurized with air (< 23.5% oxygen) had the only survivors. Information in this report was obtained from the literature and from the Undersea and Hyperbaric Medical Society's Chamber Experience and Mishap Database. This epidemiologic review focuses on information learned from critical analyses of chamber fires and how it can be applied to safe operation of hypobaric and hyperbaric chambers.
Cruz, Alberto; Serrano, Marián; Navarro, Esther; Luna, Belén; Moreno, José M
2005-12-01
Fire Trol 934 is a long-term fire retardant commonly used in fire prevention and extinction. Our objective was to determine the effect of this chemical on seed germination of nine plant species from Mediterranean-type shrublands, where these chemicals are potentially used. Seeds were exposed to five different Fire Trol concentrations, (0 (control) to 10%, on a log scale) and monitored in a germination chamber for nine weeks. Seeds from four Cistus species were subjected to an additional heat treatment that simulated thermal scarification caused by fire. Retardant exposure caused a significant decrease in total germination in all species, and exposure to the highest Fire Trol concentration (10%) resulted in complete inhibition of germination. However, the sensitivity to Fire Trol varied across species and this differential species sensitivity may potentially lead to different impacts in the soil seed banks depending on whether sites are burned or unburned. Exposure to Fire Trol 934 may affect recruitment of shrubland species particularly during dry autumns, due to limited leaching of these chemicals from the soil surface. Consequently, its use should be avoided in sites where particularly sensitive plant species are present. Copyright (c) 2005 Wiley Periodicals, Inc.
Fire and bark beetle interactions
Ken Gibson; Jose F. Negron
2009-01-01
Bark beetle populations are at outbreak conditions in many parts of the western United States and causing extensive tree mortality. Bark beetles interact with other disturbance agents in forest ecosystems, one of the primary being fires. In order to implement appropriate post-fire management of fire-damaged ecosystems, we need a better understanding of...
76 FR 63801 - Fire Prevention Week, 2011
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Vol. 76 Thursday, No. 198 October 13, 2011 Part IV The President Proclamation 8732--Fire... 8732 of October 7, 2011 Fire Prevention Week, 2011 By the President of the United States of America A Proclamation Fires, whether caused by people or nature, can have devastating effects. Hundreds of thousands of...
Managing the Library Fire Risk.
ERIC Educational Resources Information Center
Morris, John
A discussion of fire risks, causes, prevention, and salvage in libraries is presented in text and photographs. A description of some historic library fires demonstrates the value of adequate protection and preparedness programs to minimize loss and damage. The need for fire retardant construction and protection from valdalism and arson are…
Learning Fire Investigation the Clean Way: The Virtual Experience
ERIC Educational Resources Information Center
Davies, Amanda; Dalgarno, Barney
2009-01-01
The effective teaching of fire investigation skills presents logistical challenges because of the difficulty of providing students with access to suitable fire damaged buildings so that they can undertake authentic investigation tasks. At Charles Sturt University (CSU), in the subject JST415, "Fire Investigation Cause and Origin…
Predicting fire scars in Ozark timber species following prescribed burning
Aaron P. Stevenson; Richard P. Guyette; Rose-Marie Muzika
2009-01-01
A potential consequence of using prescribed fire is heat-related injury to timber trees. Scars formed following fire injuries are often associated with extensive decay in hardwoods. The ability to predict scarring caused by prescribed fire is important when multiple management goals are incorporated on a single forest site.
Effects of fire damage on the structural properties of steel bridge elements.
DOT National Transportation Integrated Search
2011-04-30
It is well known that fire can cause severe damage to steel bridges. There are documented cases where fire has directly led to the collapse or significant sagging of a steel bridge. However, when the damage is less severe, the effects of the fire, if...
Forest fire risk zonation mapping using remote sensing technology
NASA Astrophysics Data System (ADS)
Chandra, Sunil; Arora, M. K.
2006-12-01
Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.
Estimating fire-caused mortality and injury in oak-hickory forests.
Robert M. Loomis
1973-01-01
Presents equations and graphs for predicting fire-caused tree mortality and equations for estimating basal wound dimensions for surviving trees. The methods apply to black oak, white oak, and some other species of the oak-hickory forest type.
Garrison Project - Lake Sakakawea Oil and Gas Management Plan, North Dakota
2012-11-01
When the air gun is fired , pulses of acoustic energy are produced causing the shock waves needed for data collection (Peterson, 2004). • Seismic...The proposed casing program shall include the size, weight, grade, and length of casing proposed, type of thread and coupling, and setting depth of...suppression of fires on public lands caused by its employees, contractors or subcontractors. During conditions of extreme fire danger, surface use
An evaluation of image based techniques for wildfire detection and fuel mapping
NASA Astrophysics Data System (ADS)
Gabbert, Dustin W.
Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiative created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire - both geographically and temporally - can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this system could have on pre-fire risk assessments through the development of very high resolution fuel maps.
An Evaluation of Image Based Techniques for Early Wildfire Detection and Fuel Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbert, Dustin W.
Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiativemore » created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire – both geographically and temporally – can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this system could have on pre-fire risk assessments through the development of very high resolution fuel maps.« less
Growing season burns for control of hardwoods in longleaf pine stands
William D. Boyer
1990-01-01
Summer fires in existing longleaf pine stands carry undue risk of pine mortality. One summer fire caused as much mortality among pines in the l- through 4-inch d.b.h. classes as two successive summer fires among hardwoods of the same size. Mortality among mature pines was also excessive. Hardwood top-kill following a spring fire seemed affected more by fire intensity...
Anne E. Black; Peter Landres
2012-01-01
Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA Forest Service and U.S. Department of the Interior 2000). Yet some fire management (such as building fire line, spike camps, or helispots) potentially causes both short- and longterm...
A. González-Cabán
2011-01-01
Wildfires are a significant social problem affecting millions of people worldwide and causing major economic impacts at all levels. In the US, the severe fires of 1910 in Idaho and Montana galvanized a fire policy excluding fire from the ecosystem by the U.S.Department of Agriculture Forest Service (USDAFS). Fire management policy changed in 1935, 1978,1995, and 2001....
Relating fire-caused change in forest structure to remotely sensed estimates of fire severity
Jamie M. Lydersen; Brandon M. Collins; Jay D. Miller; Danny L. Fry; Scott L. Stephens
2016-01-01
Fire severity maps are an important tool for understanding fire effects on a landscape. The relative differenced normalized burn ratio (RdNBR) is a commonly used severity index in California forests, and is typically divided into four categories: unchanged, low, moderate, and high. RdNBR is often calculated twice--from images collected the year of the fire (initial...
Chen, Yingming Amy; Bridgman-Acker, Karen; Edwards, Jim; Lauwers, Albert Edward
2011-05-01
To identify the predictors of residential fire deaths in the Ontario pediatric population using systematically collected data from the Office of the Chief Coroner. Retrospective cohort study. Ontario. Children younger than 16 years of age who died in accidental residential fires in Ontario between January 1, 2001, and December 31, 2006. The study retrospectively reviewed the coroner's case files for 60 subjects who qualified according to the selection criteria. Reviewed documents included the coroner's investigation statements, autopsy reports, toxicology reports, fire marshal's reports, police reports, and Children's Aid Society (CAS) reports. Information on a range of demographic, behavioural, social, and environmental factors was collected. Statistical tests, including relative risk, relative risk confidence intervals, and χ(2) tests were performed to determine the correlation between factors of interest and to establish their significance. Thirty-nine fire events resulting in 60 deaths occurred between 2001 and 2006. Fire play and electrical failures were the top 2 causes of residential fires. More fires occurred during the night (midnight to 9 AM) than during the day (9 AM to midnight). Nighttime fires were most commonly due to electrical failures or unattended candles, whereas daytime fires were primarily caused by unsupervised fire play and stove fires. Smoke alarms were present at 32 of 39 fire events (82%), but overall alarm functionality was only 54%. Children from families with a history of CAS involvement were approximately 32 times more likely to die in fires. Risk factors for pediatric fire death in Ontario include smoke alarm functionality, fire play, fire escape behaviour, and CAS involvement. Efforts to prevent residential fire deaths should target these populations and risk factors, and primary care physicians should consider education around these issues as a primary preventive strategy for families with young children.
An analysis of aircraft accidents involving fires
NASA Technical Reports Server (NTRS)
Lucha, G. V.; Robertson, M. A.; Schooley, F. A.
1975-01-01
All U. S. Air Carrier accidents between 1963 and 1974 were studied to assess the extent of total personnel and aircraft damage which occurred in accidents and in accidents involving fire. Published accident reports and NTSB investigators' factual backup files were the primary sources of data. Although it was frequently not possible to assess the relative extent of fire-caused damage versus impact damage using the available data, the study established upper and lower bounds for deaths and damage due specifically to fire. In 12 years there were 122 accidents which involved airframe fires. Eighty-seven percent of the fires occurred after impact, and fuel leakage from ruptured tanks or severed lines was the most frequently cited cause. A cost analysis was performed for 300 serious accidents, including 92 serious accidents which involved fire. Personal injury costs were outside the scope of the cost analysis, but data on personnel injury judgements as well as settlements received from the CAB are included for reference.
Richard Guyette; Michael Stambaugh; Daniel Dey
2011-01-01
Tree-ring dated fire scars provide long-term records of fire frequency, giving land managers valuable baseline information about the fire regimes that existed prior to Euro-American settlement. However, for the East, fire history data prove difficult to acquire because the generally moister climate of the region causes rapid decay of wood. In an endeavor to fill data...
Wildfire atlas of the northeastern and north central states.
Donald A. Haines; Von J. Johnson; William A. Main
1975-01-01
Describes patterns of forest fire activity across the northeastern and north central United States. Gives average dates of greening ad curing of herbaceous plants, medium size of fires in various fuels, and annual profiles of peak fire activity. It also examines combinations of major fire cause and day-of-week activity.
Richard Guyette; Mavis Dey; Dan Dey
1999-01-01
Missouri's natural communities have been shaped by humans and wildland fires for thousands of years. In many ways, the history of fire in Missouri also is a history of human population, culture and migration. Fires caused by natural ignition, like lightning, are rare. Despite as many as 50 to 70 thunderstorm days per year, Conservation Department studies indicate...
Chapter 1: Fire and nonnative invasive plants-introduction
Jane Kapler Smith; Kristin Zouhar; Steve Sutherland; Matthew L. Brooks
2008-01-01
Fire is a process integral to the functioning of most temperate wildland ecosystems. Lightning-caused and anthropogenic fires have influenced the vegetation of North America profoundly for millennia (Brown and Smith 2000; Pyne 1982b). In some cases, fire has been used to manipulate the species composition and structure of ecosystems to meet management objectives,...
Spatiotemporal variability of wildland fuels in US Northern Rocky Mountain forests
Robert E. Keane
2016-01-01
Fire regimes are ultimately controlled by wildland fuel dynamics over space and time; spatial distributions of fuel influence the size, spread, and intensity of individual fires, while the temporal distribution of fuel deposition influences fire's frequency and controls fire size. These "shifting fuel mosaics" are both a cause and a consequence...
Fire in desert grassland region of the southwestern USA: Where and why
USDA-ARS?s Scientific Manuscript database
Fire is an important driver of ecological processes in semiarid systems and serves a vital role in shrub-grass interactions. In desert grasslands of the Southwestern US, the loss of fire has been implicated as a primary cause of shrub encroachment. Where fires can currently be re-introduced and mana...
The hidden consequences of fire suppression
Carol Miller
2012-01-01
Wilderness managers need a way to quantify and monitor the effects of suppressing lightning-caused wildfires, which can alter natural fire regimes, vegetation, and habitat. Using computerized models of fire spread, weather, and fuels, it is now possible to quantify many of the hidden consequences of fire suppression. Case study watersheds in Yosemite and Sequoia-Kings...
Kollanus, Virpi; Tiittanen, Pekka; Niemi, Jarkko V; Lanki, Timo
2016-11-01
Fine particulate matter (PM 2.5 ) emissions from vegetation fires can be transported over long distances and may cause significant air pollution episodes far from the fires. However, epidemiological evidence on health effects of vegetation-fire originated air pollution is limited, particularly for mortality and cardiovascular outcomes. We examined association between short-term exposure to long-range transported PM 2.5 from vegetation fires and daily mortality due to non-accidental, cardiovascular, and respiratory causes and daily hospital admissions due to cardiovascular and respiratory causes in the Helsinki metropolitan area, Finland. Days significantly affected by smoke from vegetation fires between 2001 and 2010 were identified using air quality measurements at an urban background and a regional background monitoring station, and modelled data on surface concentrations of vegetation-fire smoke. Associations between daily PM 2.5 concentration and health outcomes on i) smoke-affected days and ii) all other days (i.e. non-smoke days) were analysed using Poisson time series regression. All statistical models were adjusted for daily temperature and relative humidity, influenza, pollen, and public holidays. On smoke-affected days, 10µg/m 3 increase in PM 2.5 was associated with a borderline statistically significant increase in cardiovascular mortality among total population at a lag of three days (12.4%, 95% CI -0.2% to 26.5%), and among the elderly (≥65 years) following same-day exposure (13.8%, 95% CI -0.6% to 30.4%) and at a lag of three days (11.8%, 95% CI -2.2% to 27.7%). Smoke day PM 2.5 was not associated with non-accidental mortality or hospital admissions due to cardiovascular causes. However, there was an indication of a positive association with hospital admissions due to respiratory causes among the elderly, and admissions due to chronic obstructive pulmonary disease or asthma among the total population. In contrast, on non-smoke days PM 2.5 was generally not associated with the health outcomes, apart from suggestive small positive effects on non-accidental mortality at a lag of one day among the elderly and hospital admissions due to all respiratory causes following same-day exposure among the total population. Our research provides suggestive evidence for an association of exposure to long-range transported PM 2.5 from vegetation fires with increased cardiovascular mortality, and to a lesser extent with increased hospital admissions due to respiratory causes. Hence, vegetation-fire originated air pollution may have adverse effects on public health over a distance of hundreds to thousands of kilometres from the fires. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Carbon emissions caused by land-use change in tropical forests of Borneo island
NASA Astrophysics Data System (ADS)
Hirata, R.; Ito, A.
2016-12-01
Tropical forests in Borneo island have disappeared by 1.5%/year during the last decade. Land-use changes have been mainly caused by plantation and wild fire in Borneo island. We estimated regional scale carbon balance of Borneo island by using a terrestrial ecosystem model, VISIT. We took into account a land-use change map developed by using MODIS data. The land-use change map includes when wild fire occurred and when artificial trees (e.g. oil palm) were planted. Southern part of Borneo island was strongly affected by wild fire. Especially in 2002, 2006 and 2015, wild fire was spread widely because of ENSO. Carbon emissions in these years were larger than other year. Carbon emission in northern part of Borneo was mainly caused by conversion from forest to oil palm.
Burnt area detection and hotspot analysis of wildfires in Margalla Hills National Park
NASA Astrophysics Data System (ADS)
Khalid, Noora; Ullah, Saleem
2016-07-01
Wildfires have been a growing source for the forest degradation and reduction in carbon sequestration which cause climate change and global warming. Thus, severely affect the ecosystem when not checked. Studies have revealed that land managements that do not use fire reduce the fire incidents by as much as 69 percent. This study focuses on mapping the areas burnt by forest fires owing to both natural and anthropogenic causes and identifying the fire prone areas in biodiversity spot of Islamabad, Margalla Hills National Park. The methodology employed based on using remotely sensed data with the integration of GIS techniques to estimate the area in hectares turned to ashes which ensued from forest fires during summers of 2008, 2010 and 2011 by applying Normalized Burn Ratio. Moreover hotspot analysis has also been used to pin point the locations with frequent fire incidents in the past using Global Positioning System (GPS) acquired coordinates from the fire surveys and official burned area statistics. The results revealed that wildfires destroyed some common regions in three years towards west which comprise of dense woodland comprising mainly Acacia Modesta, Dalbergia sissoo and Pinus longifolia. The calculated burnt area was 516 hectares, 122 hectares and 45 hectares for 2008, 2010 and 2011 respectively. Although a decline in burnt area has been observed owing to responsible management of authorities and development of fire pickets, still measures need to be taken to eradicate the core causes in charge of these fires and to promote reforestation. This study will allow policy makers and regulatory authorities to identify risk prone areas which will assist them in formulating a strategy to suppress fire incidents.
"Johnny Poppers": a cause of serious ocular injury
MacAndie, K.; Kyle, P.
1998-01-01
AIMS/BACKGROUND—The causes of blunt ocular trauma are many and diverse. We present two cases of ocular injury caused by an unusual form of weapon called a "Johnny Popper". There follows a theoretical and experimental evaluation of the velocity of the projectiles fired by this device. METHODS—A Johnny Popper was constructed under expert guidance. The elastic properties of the device were measured and this allowed calculation of a theoretical exit velocity of the projectiles fired. The weapon was subsequently fired under test conditions which permitted the exit velocity of the projectiles fired to be measured directly. RESULTS—The theoretical velocity of the projectiles was calculated as 80 ms-1 and the experimentally measured velocity was 57 ms-1. CONCLUSIONS—Johnny Poppers are a previously undescribed and unique form of home made weapon. They are intended for playful mischief, but have the potential to cause serious ocular trauma. Keywords: ocular trauma; projectiles PMID:9924377
Analysis of weather condition influencing fire regime in Italy
NASA Astrophysics Data System (ADS)
Bacciu, Valentina; Masala, Francesco; Salis, Michele; Sirca, Costantino; Spano, Donatella
2014-05-01
Fires have a crucial role within Mediterranean ecosystems, with both negative and positive impacts on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In addition, several authors are in agreement suggesting that, during the past decades, changes on fire patterns have occurred, especially in terms of fire-prone areas expansion and fire season lengthening. Climate and weather are two of the main controlling agents, directly and indirectly, of fire regime influencing vegetation productivity, causing water stress, igniting fires through lightning, or modulating fire behavior through wind. On the other hand, these relationships could be not warranted in areas where most ignitions are caused by people (Moreno et al. 2009). Specific analyses of the driving forces of fire regime across countries and scales are thus still required in order to better anticipate fire seasons and also to advance our knowledge of future fire regimes. The objective of this work was to improve our knowledge of the relative effects of several weather variables on forest fires in Italy for the period 1985-2008. Meteorological data were obtained through the MARS (Monitoring Agricultural Resources) database, interpolated at 25x25 km scale. Fire data were provided by the JRC (Join Research Center) and the CFVA (Corpo Forestale e di Vigilanza Ambientale, Sardinia). A hierarchical cluster analysis, based on fire and weather data, allowed the identification of six homogeneous areas in terms of fire occurrence and climate (pyro-climatic areas). Two statistical techniques (linear and non-parametric models) were applied in order to assess if inter-annual variability in weather pattern and fire events had a significant trend. Then, through correlation analysis and multi-linear regression modeling, we investigated the influence of weather variables on fire activity across a range of time- and spatial-scales. The analysis revealed a general decrease of both number of fires and burned area, although not everywhere with the same magnitude. Overall, regression models where highly significant (p<0.001), and the explained variance ranged from 36% to 80% for fire number and from 37% to 76% for burned area, depending on pyro-climatic area. Moreover, our results contributed in determining the relative importance of climate variables acting at different timescales as control on intrinsic (i.e. flammability and moisture) and extrinsic (i.e. fuel amount and structure) characteristics of vegetation, thus strongly influencing fire occurrence. The good performance of our models, especially in the most fire affected pyro-climatic areas of Italy, and the better understanding of the main driver of fire variability gained through this work could be of great help for fire management among the different pyro-climatic areas.
NASA Astrophysics Data System (ADS)
Yin, Hang; Jin, Hui; Zhao, Ying; Fan, Yuguang; Qin, Liwu; Chen, Qinghong; Huang, Liya; Jia, Xiang; Liu, Lijie; Dai, Yuhong; Xiao, Ying
2018-03-01
The forest-fire not only brings great loss to natural resources, but also destructs the ecosystem and reduces the soil fertility, causing some natural disasters as soil erosion and debris flow. However, due to the lack of the prognosis for forest fire spreading trend in forest fire fighting, it is difficult to formulate rational and effective fire-fighting scheme. In the event of forest fire, achieving accurate judgment to the fire behavior would greatly improve the fire-fighting efficiency, and reduce heavy losses caused by fire. Researches on forest fire spread simulation can effectively reduce the loss of disasters. The present study focused on the simulation of "29 May 2012" wildfire in windthrow area of Changbai Mountain. Basic data were retrieved from the "29 May 2012" wildfire and field survey. A self-development forest fire behavior simulated program based on Rothermel Model was used in the simulation. Kappa coefficient and Sørensen index were employed to evaluate the simulation accuracy. The results showed that: The perimeter of simulated burned area was 4.66 km, the area was 56.47 hm2 and the overlapped burned area was 33.68 hm2, and the estimated rate of fire spread was 0.259 m/s. Between the simulated fire and actual fire, the Kappa coefficient was 0.7398 and the Sørensen co-efficient was 0.7419. This proved the application of Rothermel model to conduct fire behavior simulation in windthrow meadow was feasible. It can achieve the goal of forecasting for the spread behavior in windthrow area of Changbai Mountain. Thus, our self-development program based on the Rothermel model can provide a effective forecast of fire spread, which will facilitate the fire suppression work.
A grass-fire cycle eliminates an obligate-seeding tree in a tropical savanna.
Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P
2014-11-01
A grass-fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha(-1)). Experimental fires, with fuel loads >10 t·ha(-1), typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota.
A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna
Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P
2014-01-01
A grass–fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha−1). Experimental fires, with fuel loads >10 t·ha−1, typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota. PMID:25505543
Huang, Shengli; Jin, Suming; Dahal, Devendra; Chen, Xuexia; Young, Claudia; Liu, Heping; Liu, Shuguang
2013-01-01
Land surface change caused by fires and succession is confounded by many site-specific factors and requires further study. The objective of this study was to reveal the spatially explicit land surface change by minimizing the confounding factors of weather variability, seasonal offset, topography, land cover, and drainage. In a pilot study of the Yukon River Basin of interior Alaska, we retrieved Normalized Difference Vegetation Index (NDVI), albedo, and land surface temperature (LST) from a postfire Landsat image acquired on August 5th, 2004. With a Landsat reference image acquired on June 26th, 1986, we reconstructed NDVI, albedo, and LST of 1987–2004 fire scars for August 5th, 2004, assuming that these fires had not occurred. The difference between actual postfire and assuming-no-fire scenarios depicted the fires and succession impact. Our results demonstrated the following: (1) NDVI showed an immediate decrease after burning but gradually recovered to prefire levels in the following years, in which burn severity might play an important role during this process; (2) Albedo showed an immediate decrease after burning but then recovered and became higher than prefire levels; and (3) Most fires caused surface warming, but cooler surfaces did exist; time-since-fire affected the prefire and postfire LST difference but no absolute trend could be found. Our approach provided spatially explicit land surface change rather than average condition, enabling a better understanding of fires and succession impact on ecological consequences at the pixel level.
Integrating research on wildland fires and air quality: needs and recommendations
Andrzej Bytnerowicz; Michael J. Arbaugh; Christian Andersen; Allen R. Riebau
2009-01-01
A summary is presented that integrates general information on the causes and effects of wildland fires and emissions with various ecological impacts of forest fires and air pollution in forests and other ecosystems. We also...
NASA Technical Reports Server (NTRS)
1991-01-01
NERAC, Inc., Tolland, CT, aided Paul Monroe Engineering, Orange, CA, in the development of their PC1200 Series Fire Protection Jacket that protects the oil conduit system on an offshore drilling platform from the intense hydrocarbon fires that cause buckling and could cause structural failure of the platform. The flame-proof jacketing, which can withstand temperatures of 2000 degrees Fahrenheit for four hours or more, was developed from a combination of ceramic cloth (similar to the ceramic in Space Shuttle tiles), and laminates used in space suits.
Carolyn H. Sieg; Rodman R. Linn; Francois Pimont; Chad M. Hoffman; Joel D. McMillin; Judith Winterkamp; L. Scott Baggett
2017-01-01
Previous studies have suggested that bark beetles and fires can be interacting disturbances, whereby bark beetle-caused tree mortality can alter the risk and severity of subsequent wildland fires. However, there remains considerable uncertainty around the type and magnitude of the interaction between fires following bark beetle attacks, especially in drier forest types...
USDA-ARS?s Scientific Manuscript database
Context: Fire is an important driver of ecological processes in semiarid systems and serves a vital role in shrub-grass interactions. In desert grasslands of the Southwestern US, the loss of fire has been implicated as a primary cause of shrub encroachment. Where fires can currently be re-introduced...
Human and biophysical factors influencing modern fire disturbance in northern Wisconsin
Brian R. Sturtevant; David T. Cleland
2007-01-01
Humans cause most wildfires in northern Wisconsin, but interactions between human and biophysical variables affecting fire starts and size are not well understood. We applied classification tree analyses to a 16-year fire database from northern Wisconsin to evaluate the relative importance of human v. biophysical variables affecting fire occurrence within (1) all cover...
First Order Fire Effects Model: FOFEM 4.0, user's guide
Elizabeth D. Reinhardt; Robert E. Keane; James K. Brown
1997-01-01
A First Order Fire Effects Model (FOFEM) was developed to predict the direct consequences of prescribed fire and wildfire. FOFEM computes duff and woody fuel consumption, smoke production, and fire-caused tree mortality for most forest and rangeland types in the United States. The model is available as a computer program for PC or Data General computer.
Resource values in analyzing fire management programs for economic efficiency
Irene A. Althaus; Thomas J. Mills
1982-01-01
In analyzing fire management programs for their economic efficiency, it is necessary to assign monetary values to the changes in resource outputs caused by, fire. The derivation of resource values is complicated by imperfect or nonexistent commercial market structures. The valuation concept recommended for fire program analyses is willingness-to-pay because it permits...
Grabowska, Teresa; Skowronek, Rafał; Nowicka, Joanna; Sybirska, Halina
2012-09-01
Hydrogen cyanide (HCN) is one of the most toxic components of fire smoke, but insufficient attention is paid to its potential role as a cause of injury or death in victims (alive or dead) of enclosed-space fires. To analyse the prevalence of toxic HCN exposure in fire victims and factors that may influence its toxicity, particularly the co-presence of carbon monoxide (CO) and ethanol. Blood samples from fire victims and persons rescued from fires were analysed. A positive result for HCN (mean concentration 16.83 mg/l) was detected in blood samples from 169 of 285 fire-related deaths (59%). Ethanol was present in 91 (65%) of 139 samples with coincident presence of HCN and carboxyhaemoglobin (COHb). HCN (mean 4.0 mg/l) was also detected in 20 of 40 (50%) fire survivors. The high prevalence of coincident CO and HCN in enclosed-space, fire-related deaths should alert clinicians to suspect toxic HCN exposure in all persons rescued from fire with signs and symptoms of respiratory distress. Medical procedures in persons rescued from enclosed-space fires, especially in the pre-hospital setting, should be augmented to cover the possibility of toxic HCN exposure, particularly in individuals who do not respond to standard supportive therapy. Likewise, post-mortem investigations should routinely include assays for HCN when determining probable cause of death.
NASA Astrophysics Data System (ADS)
Parente, Joana; Pereira, Mário; Amraoui, Malik; Tedim, Fantina
2017-04-01
The European Mediterranean countries, such as Portugal, Spain, France, Italy and Greece, have the higher incidence of fire. Of these countries, Portugal present the highest average number of fires (NF) and one of the highest burnt area (BA), in spite of its relatively smaller land area. The study period is focused in the recent years of 2012 - 2014, when a total of 59 257 fires were recorded and the fire cause is known for more than 50% of the fire records. All fires with known causes were then classified into intentional (40% of the total number of fires) and negligent (60%), leading to a total of 45% of fires related with human factors and activities. Taking into account these values the authors believe it's necessary to better understand the fire regime of this type of fires for a better fire prevention, firefighting and crisis management. Accordingly, the use of statistical analysis and GIS techniques were used to assess the spatial distribution of the human caused fires in each of the NUTS (Nomenclature of Territorial Units for Statistics level I, which divides Portugal in 5 basic economic regions, namely Norte, Centro, Area Metropolitana de Lisboa, Alentejo, and Algarve. The number of fires distribution increases with latitude, making north of Portugal the region with the highest number of fires. The analysis will also aims to assess the role of the most important human and biophysical drivers of the spatial distribution, namely the population density, land use land cover (LULC), distance to communication routes (roads and railways) and topographic variables (altitude, slope). The results show that: a) population density is highly and positively correlated with the agglomeration of fire ignitions, but doesn't imply highest burned area; b) burnt area increase with the distance to roads and altitude; and, c) 58% of the fires occurred on agriculture areas and 33% of fires occurred in forest and scrubs areas. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire data.
Wu, Zhiwei; He, Hong S; Yang, Jian; Liu, Zhihua; Liang, Yu
2014-09-15
Fire significantly affects species composition, structure, and ecosystem processes in boreal forests. Our study objective was to identify the relative effects of climate, vegetation, topography, and human activity on fire occurrence in Chinese boreal forest landscapes. We used historical fire ignition for 1966-2005 and the statistical method of Kernel Density Estimation to derive fire-occurrence density (number of fires/km(2)). The Random Forest models were used to quantify the relative effects of climate, vegetation, topography, and human activity on fire-occurrence density. Our results showed that fire-occurrence density tended to be spatially clustered. Human-caused fire occurrence was highly clustered at the southern part of the region, where human population density is high (comprising about 75% of the area's population). In the north-central areas where elevations are the highest in the region and less densely populated, lightning-caused fires were clustered. Climate factors (e.g., fine fuel and duff moisture content) were important at both regional and landscape scales. Human activity factors (e.g., distance to nearest settlement and road) were secondary to climate as the primary fire occurrence factors. Predictions of fire regimes often assume a strong linkage between climate and fire but usually with less emphasis placed on the effects of local factors such as human activity. We therefore suggest that accurate forecasting of fire regime should include human influences such as those measured by forest proximity to roads and human settlements. Copyright © 2014 Elsevier B.V. All rights reserved.
Michiue, Tomomi; Ishikawa, Takaki; Oritani, Shigeki; Maeda, Hitoshi
2015-01-01
A fire is an important cause of mass disasters, involving various forensic issues. Before dawn on an early morning, 16 male visitors in their twenties to sixties were killed in a possibly incendiary fire at a 'private video parlor' consisting of small compartments in a building. The main causes of death as determined by forensic autopsy were acute carbon monoxide (CO) intoxication for all of the 15 found-dead victims, and hypoxic-ischemic encephalopathy following acute CO intoxication for a victim who died in hospital. Burns were mild (<20% of body surface) in most victims, except for three victims found between the entrance and the estimated fire-outbreak site; thus, identification was completed without difficulty, supported by DNA analysis. Blood carboxyhemoglobin saturation (COHb) was higher for victims found dead in the inner area. Blood cyanide levels were sublethal, moderately correlated to COHb, but were higher in victims found around the estimated fire-outbreak site. There was no evidence of thinner, alcohol or drug abuse, or an attack of disease as a possible cause of an accidental fire outbreak. These observations contribute to evidence-based reconstruction of the fire disaster, and suggest how deaths could have been prevented by appropriate disaster measures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Anne E. Black; Peter Landres
2011-01-01
Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA and USDOI 2000). Yet some fire management (such as building fire line, spike camps, or heli-spots) potentially causes both short- and long-term impacts to forest health. In the short run,...
Modeling anthropogenic and natural fire ignitions in an inner-alpine valley
NASA Astrophysics Data System (ADS)
Vacchiano, Giorgio; Foderi, Cristiano; Berretti, Roberta; Marchi, Enrico; Motta, Renzo
2018-03-01
Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995-2009) and MaxEnt modeling. We analyzed separately (i) winter forest fires, (ii) winter fires on grasslands and fallow land, and (iii) summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter-early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %); lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90-0.95). Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation) and winter (negative) fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.
Resistance is not futile: The response of hardwoods to fire-caused wounding
Elaine Kennedy Sutherland; Kevin Smith
2000-01-01
Fires wound trees; but not all of them, and not always. Specific fire behavior and differences among tree species and individual trees produce variable patterns of wounding and wound response. Our work focuses on the relationships between fire behavior and tree biology to better understand how hardwood trees resist injury to the lower stem and either survive or succumb...
Proceedings of the large wildland fires conference; May 19-23, 2014; Missoula, MT
Robert E. Keane; Matt Jolly; Russell Parsons; Karin Riley
2015-01-01
Large fires or "megafires" have been a major topic in wildland fire research and management for over a decade. There is great debate regarding the impacts of large fires. Many believe that they (1) are occurring too frequently, (2) are burning abnormally large areas, (3) cause uncharacteristically adverse ecological harm, and (4) must be suppressed at all...
Ring the Alarm! A Memo to the Schools on Fire and Human Beings.
ERIC Educational Resources Information Center
Educational Facilities Labs., Inc., New York, NY.
An analysis is presented of the handling of the human elements in fire safety. Emphasis is given to considerations such as how fires kill children, the school's responsibility for fire safety, causes of human failure, and the necessity for organized emergency programs and drills. Also included is a check list of items concerned with protection…
Fire behavior associated with the 1994 South Canyon fire on Storm King Mountain, Colorado
Bret W. Butler; Roberta A. Bartlette; Larry S. Bradshaw; Jack D. Cohen; Patricia L. Andrews; Ted Putnam; Richard J. Mangan
1998-01-01
In the aftermath of the deaths of 14 firefighters during the South Canyon Fire in July 1994, fire scientists assessed what occurred and suggested guidelines that may help firefighters avert such a tragedy in the future. This report describes the fuel, weather, and topographical factors that caused the transition from a relatively slow-spreading, low-intensity surface...
The fire and oak hypothesis: incorporating the influence of deer browsing and canopy gaps
Rachel J. Collins; Walter P. Carson
2003-01-01
A century of fire suppression has altered tree species composition and is a commonly cited cause for the region-wide decline in oak abundance (the fire and oak hypothesis). Other explanations include alterations in canopy gap regimes and deer browsing that operate in conjunction with fire suppression. We examined the interactions among these processes by manipulating...
Fuels planning: Managing forest structure to reduce fire hazard
David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt
2003-01-01
Prior to the 20th century, low intensity fires burned regularly in most arid to semiarid forest ecosystems, with ignitions caused by lightning and humans (e.g., Baisan and Swetnam 1997, Allen et al. 2002, Hessl et al. 2004). Low intensity fires controlled regeneration of fire sensitive (e.g., grand fir [Abies grandis]) species (Arno and Allison-Bunnell 2002), promoted...
Effects of a prescribed fire on oak woodland stand structure
Danny L. Fry
2002-01-01
Fire damage and tree characteristics of mixed deciduous oak woodlands were recorded after a prescription burn in the summer of 1999 on Mt. Hamilton Range, Santa Clara County, California. Trees were tagged and monitored to determine the effects of fire intensity on damage, recovery and survivorship. Fire-caused mortality was low; 2-year post-burn survey indicates that...
Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands
Jian Yang; Hong S. Healy; Stephen R. Shifley; Eric J. Gustafson
2007-01-01
The spatial pattern of forest fire locations is important in the study of the dynamics of fire disturbance. In this article we used a spatial point process modeling approach to quantitatively study the effects of land cover, topography, roads, municipalities, ownership, and population density on fire occurrence reported between 1970 and 2002 in the Missouri Ozark...
Crown physiology and growth of sapling longleaf pine after fire
Mary Anne Sword Sayer; Eric A. Kuehler
2005-01-01
Fire affects foliage and thus, whole-crown C fixation potential. When repeated throughout a rotation, therefore, fire has a potential impact on stemwood growth and C allocation among the foliage, stem and roots. Depending on frequency and intensity, prescribed fire causes foliage damage that may lead to a long-term reduction in stand growth. Past research, however, is...
Gene C. Bernardi
1970-01-01
The campaign to disseminate fire prevention information has for some years relied heavily on a belief in the efficacy of television. Consequently, numerous public service films on fire prevention have been produced and beamed over commercial television channels in the hopes of achieving a reduction in the number of man-caused forest fires. Television continues to be...
Diversity in Southwesterners' views of Forest Service fire management
P.L. Winter; G.T. Cvetkovich
2007-01-01
The risk of wildland fires is of significant concern in the southwestern United States. Although the Southwest has a long hi story as a fire· prone ecosystem, years of drought and insect infestation have increased fire risk. Paired with these ecological forces is the increased risk caused by the concentration of populations in the wildland urban interface (WUl),...
Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage
NASA Astrophysics Data System (ADS)
Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.
2018-02-01
The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.
A multi-scale conceptual model of fire and disease interactions in North American forests
NASA Astrophysics Data System (ADS)
Varner, J. M.; Kreye, J. K.; Sherriff, R.; Metz, M.
2013-12-01
One aspect of global change with increasing attention is the interactions between irruptive pests and diseases and wildland fire behavior and effects. These pests and diseases affect fire behavior and effects in spatially and temporally complex ways. Models of fire and pathogen interactions have been constructed for individual pests or diseases, but to date, no synthesis of this complexity has been attempted. Here we synthesize North American fire-pathogen interactions into syndromes with similarities in spatial extent and temporal duration. We base our models on fire interactions with three examples: sudden oak death (caused by the pathogen Phytopthora ramorum) and the native tree tanoak (Notholithocarpus densiflorus); mountain pine beetle (Dendroctonus ponderosae) and western Pinus spp.; and hemlock woolly adelgid (Adelges tsugae) on Tsuga spp. We evaluate each across spatial (severity of attack from branch to landscape scale) and temporal scales (from attack to decades after) and link each change to its coincident effects on fuels and potential fire behavior. These syndromes differ in their spatial and temporal severity, differentially affecting windows of increased or decreased community flammability. We evaluate these models with two examples: the recently emergent ambrosia beetle-vectored laurel wilt (caused by the pathogen Raffaelea lauricola) in native members of the Lauraceae and the early 20th century chestnut blight (caused by the pathogen Cryphonectria parasitica) that led to the decline of American chestnut (Castanea dentata). Some changes (e.g., reduced foliar moisture content) have short-term consequences for potential fire behavior while others (functional extirpation) have more complex indirect effects on community flammability. As non-native emergent diseases and pests continue, synthetic models that aid in prediction of fire behavior and effects will enable the research and management community to prioritize mitigation efforts to realized effects.
Scholl, Andrew E; Taylor, Alan H
2010-03-01
Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.
Pediatric fire deaths in Ontario
Chen, Yingming Amy; Bridgman-Acker, Karen; Edwards, Jim; Lauwers, Albert Edward
2011-01-01
Abstract Objective To identify the predictors of residential fire deaths in the Ontario pediatric population using systematically collected data from the Office of the Chief Coroner. Design Retrospective cohort study. Setting Ontario. Participants Children younger than 16 years of age who died in accidental residential fires in Ontario between January 1, 2001, and December 31, 2006. Main outcome measures The study retrospectively reviewed the coroner’s case files for 60 subjects who qualified according to the selection criteria. Reviewed documents included the coroner’s investigation statements, autopsy reports, toxicology reports, fire marshal’s reports, police reports, and Children’s Aid Society (CAS) reports. Information on a range of demographic, behavioural, social, and environmental factors was collected. Statistical tests, including relative risk, relative risk confidence intervals, and χ2 tests were performed to determine the correlation between factors of interest and to establish their significance. Results Thirty-nine fire events resulting in 60 deaths occurred between 2001 and 2006. Fire play and electrical failures were the top 2 causes of residential fires. More fires occurred during the night (midnight to 9 am) than during the day (9 am to midnight). Nighttime fires were most commonly due to electrical failures or unattended candles, whereas daytime fires were primarily caused by unsupervised fire play and stove fires. Smoke alarms were present at 32 of 39 fire events (82%), but overall alarm functionality was only 54%. Children from families with a history of CAS involvement were approximately 32 times more likely to die in fires. Conclusion Risk factors for pediatric fire death in Ontario include smoke alarm functionality, fire play, fire escape behaviour, and CAS involvement. Efforts to prevent residential fire deaths should target these populations and risk factors, and primary care physicians should consider education around these issues as a primary preventive strategy for families with young children. PMID:21571705
Syphard, Alexandra D; Radeloff, Volker C; Hawbaker, Todd J; Stewart, Susan I
2009-06-01
Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial analysis of relationships between people and fire may help identify areas where increases in fire frequency will threaten ecologically valuable areas. ©2009 Society for Conservation Biology.
78 FR 40089 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
.... The FS works cooperatively with State and local fire fighting agencies to support their fire... fires and acres burned on State and private land by cause, such as lightning, campfires, smoking, debris burning, arson, equipment, railroads, children and miscellaneous activities. Information will be shared...
An Opinion on the Nitrate Film Fire, Suitland, Maryland, 7 December 1978.
ERIC Educational Resources Information Center
Utterback, W. H., Jr.
1980-01-01
Examines the storage conditions and the circumstances surrounding the film storage facility fire in Suitland, Maryland, which destroyed over 13 million feet of film. Outlines possible causes for the fire and offers recommendations for prevention of such future disasters. (JMF)
Analysis of the Influence of Construction Insulation Systems on Public Safety in China
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-01-01
With the Government of China’s proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies. PMID:27589774
Analysis of the Influence of Construction Insulation Systems on Public Safety in China.
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-08-30
With the Government of China's proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies.
Impacts of Central American Fires on Ozone Air Quality in Texas
NASA Astrophysics Data System (ADS)
Wang, S. C.; Wang, Y.; Lei, R.; Talbot, R. W.
2016-12-01
Background ozone represents the portion of ozone level in one day that cannot be reduced by local emission controls. One of the important factors causing high background ozone events is wildfires. Satellite observations have documented frequent transport of wildfire smoke from Mexico and Central America to the southern US, particularly Texas, causing haze and exceedance of fine particle matters. However, the impact of those fires on background ozone in Texas is poorly understood. In this study, the effects of the Central America fire emissions in spring (Apr-May) from 2000 to 2013 on high background ozone events in Texas are investigated and quantified. We first examine through back trajectory analysis if any high background ozone days in cities of Texas such as Houston can be traced back to fire events in Central America. The GEOS-Chem global chemical transport model and its nested-grid version over North America are used to simulate the periods of the selected cases studies of Central American fires. Long-large transport of gaseous emissions (NOx, VOCs, and CO) from Central American fires are simulated and background ozone concentrations variations in Texas region due to those fire events are also quantified through the difference in model results with and without fire emissions in Central America. Finally, this study connects those fires and high background ozone events, and also quantifies the contribution of fire emissions from Central America on Texas ozone air quality.
Simulation of air quality impacts from prescribed fires on an urban area.
Hu, Yongtao; Odman, M Talat; Chang, Michael E; Jackson, William; Lee, Sangil; Edgerton, Eric S; Baumann, Karsten; Russell, Armistead G
2008-05-15
On February 28, 2007, a severe smoke event caused by prescribed forest fires occurred in Atlanta, GA. Later smoke events in the southeastern metropolitan areas of the United States caused by the Georgia-Florida wild forest fires further magnified the significance of forest fire emissions and the benefits of being able to accurately predict such occurrences. By using preburning information, we utilize an operational forecasting system to simulate the potential air quality impacts from two large February 28th fires. Our "forecast" predicts that the scheduled prescribed fires would have resulted in over 1 million Atlanta residents being potentially exposed to fine particle matter (PM2.5) levels of 35 microg m(-3) or higher from 4 p.m. to midnight. The simulated peak 1 h PM2.5 concentration is about 121 microg m(-3). Our study suggests that the current air quality forecasting technology can be a useful tool for helping the management of fire activities to protect public health. With postburning information, our "hindcast" predictions improved significantly on timing and location and slightly on peak values. "Hindcast" simulations also indicated that additional isoprenoid emissions from pine species temporarily triggered by the fire could induce rapid ozone and secondary organic aerosol formation during late winter. Results from this study suggest that fire induced biogenic volatile organic compounds emissions missing from current fire emissions estimate should be included in the future.
Occupational burns from oxygen resuscitator fires: the hazard of aluminum regulators.
Hodous, Thomas K; Washenitz, Frank; Newton, Barry
2002-07-01
There have been over 30 incidents of oxygen resuscitator fires over the last 6 years, causing severe burns to a number of fire fighters, emergency medical service personnel, health care workers, and patients. The National Institute for Occupational Safety and Health (NIOSH) was requested to investigate three such incidents. NIOSH conducted site investigations of the incidents, and the requesters also sent the involved oxygen resuscitators to a forensic engineering company for a causal analysis. The investigated fires were associated with aluminum regulators, all from one manufacturer, on compressed pure oxygen cylinders. The investigations indicated that the cause of the fires was an initial small ignition in the high-pressure area of the aluminum regulator, which then consumed itself in a massive burnout. Aluminum regulators used with high-pressure oxygen systems are subject to rare, but potentially catastrophic combustion in normal use. Replacement of such regulators with those made of more fire-resistant materials or designs, as well as education and improved safety practices are needed to reduce this hazard.
Human-started wildfires expand the fire niche across the United States.
Balch, Jennifer K; Bradley, Bethany A; Abatzoglou, John T; Nagy, R Chelsea; Fusco, Emily J; Mahood, Adam L
2017-03-14
The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal "fire niche" in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km 2 , the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km 2 , primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards.
Human-started wildfires expand the fire niche across the United States
Balch, Jennifer K.; Bradley, Bethany A.; Nagy, R. Chelsea; Fusco, Emily J.; Mahood, Adam L.
2017-01-01
The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal “fire niche” in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km2, the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km2, primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards. PMID:28242690
... cause an average of almost 18,500 reported fires • per year. ! Sopnear-kqluearsrtaecrcoofuenmt feorgr eronucgyhrloyom fireworks injuries. NATIONAL FIRE PROTECTION ASSOCIATION The leading information and knowledge resource ...
NASA Astrophysics Data System (ADS)
Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N.
2013-02-01
Humans are responsible for most forest fires in Europe, but anthropogenic factors behind these events are still poorly understood. We tried to identify the driving factors of human-caused fire occurrence in Spain by applying two different statistical approaches. Firstly, assuming stationary processes for the whole country, we created models based on multiple linear regression and binary logistic regression to find factors associated with fire density and fire presence, respectively. Secondly, we used geographically weighted regression (GWR) to better understand and explore the local and regional variations of those factors behind human-caused fire occurrence. The number of human-caused fires occurring within a 25-yr period (1983-2007) was computed for each of the 7638 Spanish mainland municipalities, creating a binary variable (fire/no fire) to develop logistic models, and a continuous variable (fire density) to build standard linear regression models. A total of 383 657 fires were registered in the study dataset. The binary logistic model, which estimates the probability of having/not having a fire, successfully classified 76.4% of the total observations, while the ordinary least squares (OLS) regression model explained 53% of the variation of the fire density patterns (adjusted R2 = 0.53). Both approaches confirmed, in addition to forest and climatic variables, the importance of variables related with agrarian activities, land abandonment, rural population exodus and developmental processes as underlying factors of fire occurrence. For the GWR approach, the explanatory power of the GW linear model for fire density using an adaptive bandwidth increased from 53% to 67%, while for the GW logistic model the correctly classified observations improved only slightly, from 76.4% to 78.4%, but significantly according to the corrected Akaike Information Criterion (AICc), from 3451.19 to 3321.19. The results from GWR indicated a significant spatial variation in the local parameter estimates for all the variables and an important reduction of the autocorrelation in the residuals of the GW linear model. Despite the fitting improvement of local models, GW regression, more than an alternative to "global" or traditional regression modelling, seems to be a valuable complement to explore the non-stationary relationships between the response variable and the explanatory variables. The synergy of global and local modelling provides insights into fire management and policy and helps further our understanding of the fire problem over large areas while at the same time recognizing its local character.
Climatic stress increases forest fire severity across the western United States
van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorraine
2013-01-01
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).
Forwardly-placed firearm fire control assembly
Frickey, Steven J.
2001-12-22
A firearm fire control assembly for disposition in a forwardly placed support-hand operative relationship within a firearm having a combination of a firing pin and a firearm hammer adapted to engage and fire a cartridge, a sear assembly to alternately engage and disengage the combination of the firearm hammer and firing pin, and a trigger assembly including a movable trigger mechanism that is operable to engage the sear assembly to cause the firearm hammer firing pin combination to fire the firearm, a fire control assembly including a fire control depression member and a fire control rod operably connected to the depression member, and being positioned in a forward disposition disposed within a forestock of the firearm, and the depression member adapted to be operably engaged and depressed by the user's conventional forwardly placed support hand to maneuver the fire control rod to provide firing control of the firing of the firearm.
A Y-like social chromosome causes alternative colony organization in fire ants
USDA-ARS?s Scientific Manuscript database
Intraspecific variability in social organization is common, yet the underlying causes are rarely known1-3. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organisation is under the control of a single Mendelian genomic element marked by two variants of an odorant b...
An approach to the real time risk evaluation system of boreal forest fire
NASA Astrophysics Data System (ADS)
Nakau, K.; Fukuda, M.; Kimura, K.; Hayasaka, H.; Tani, H.; Kushida, K.
2005-12-01
Huge boreal forest fire may cause massive impacts not only on global warming gas emission but also local communities. Thus, it is important to control forest fire. We collected data about boreal forest fire as satellite imagery and fire observation simultaneously in Alaska and east Siberia in summer fire seasons for these three years. Fire observation data was collected from aircraft flying between Japan and Europe. Fire detection results were compared with observed data to evaluate the accuracy and earliness of automatic detection. NOAA and MODIS satellite images covering Alaska and East Siberia are collected. We are also developing fire expansion simulation model to forecast the possible fire expansion area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed. To identify the risk of boreal forest fire and public concern about forest fire, we collected local news paper in Fairbanks, AK and discuss the statistics of articles related to forest fire on the newspaper.
Integrating research on wildland fires and air quality: needs and recommendations
A summary is presented that integrates general information on the causes and effects of wildland fires and emissions with various ecological impacts of forest fires and air pollution in forests and other ecosystems. We also synthesize information on the regional effects of wildl...
DOT National Transportation Integrated Search
2012-06-28
The Federal Motor Carrier Safety Administrations (FMCSA) mission is to reduce crashes, injuries, and fatalities on our nations roads involving motor vehicles, and to further its work the agency set out to identify ways to reduce motorcoach fire...
Chad M. Hoffman; Penelope Morgan; William Mell; Russell Parsons; Eva Strand; Steve Cook
2013-01-01
Recent bark beetle outbreaks have had a significant impact on forests throughout western North America and have generated concerns about interactions and feedbacks between beetle attacks and fire. However, research has been hindered by a lack of experimental studies and the use of fire behavior models incapable of accounting for the heterogeneous fuel complexes. We...
Signe B. Leirfallom; Robert E. Keane
2011-01-01
In 2003, lightning-caused fires burned through relict ponderosa pine (Pinus ponderosa) stands in the Bob Marshall Wilderness, Montana, after decades of fire exclusion. Since many trees in these stands had Native American bark-peeling scars, concern arose about the adverse fire effects on this cultural and ecological resource. In 2004, Keane and others (2006) began a...
Fuel and fire behavior in high-elevation five-needle pines affected by mountain pine beetle
Michael J. Jenkins
2011-01-01
Bark beetle-caused tree mortality in conifer forests affects the quantity and quality of forest fuels and has long been assumed to increase fire hazard and potential fire behavior. In reality, bark beetles and their effects on fuel accumulation and subsequent fire hazard have only recently been described. We have extensively sampled fuels in three conifer forest types...
NASA Astrophysics Data System (ADS)
Hoskins, Aaron B.
Forest fires cause a significant amount of damage and destruction each year. Optimally dispatching resources reduces the amount of damage a forest fire can cause. Models predict the fire spread to provide the data required to optimally dispatch resources. However, the models are only as accurate as the data used to build them. Satellites are one valuable tool in the collection of data for the forest fire models. Satellites provide data on the types of vegetation, the wind speed and direction, the soil moisture content, etc. The current operating paradigm is to passively collect data when possible. However, images from directly overhead provide better resolution and are easier to process. Maneuvering a constellation of satellites to fly directly over the forest fire provides higher quality data than is achieved with the current operating paradigm. Before launch, the location of the forest fire is unknown. Therefore, it is impossible to optimize the initial orbits for the satellites. Instead, the expected cost of maneuvering to observe the forest fire determines the optimal initial orbits. A two-stage stochastic programming approach is well suited for this class of problem where initial decisions are made with an uncertain future and then subsequent decisions are made once a scenario is realized. A repeat ground track orbit provides a non-maneuvering, natural solution providing a daily flyover of the forest fire. However, additional maneuvers provide a second daily flyover of the forest fire. The additional maneuvering comes at a significant cost in terms of additional fuel, but provides more data collection opportunities. After data are collected, ground stations receive the data for processing. Optimally selecting the ground station locations reduce the number of built ground stations and reduces the data fusion issues. However, the location of the forest fire alters the optimal ground station sites. A two-stage stochastic programming approach optimizes the selection of ground stations to maximize the expected amount of data downloaded from a satellite. The approaches of selecting initial orbits and ground station locations including uncertainty will provide a robust system to reduce the amount of damage caused by forest fires.
Boreal ditched forest and peatland are more vulnerable to forest fire than unditched areas
NASA Astrophysics Data System (ADS)
Köhler, Stephan J.; Granath, Gustav; Landahl, Anna; Fölster, Jens
2016-04-01
During summer of 2014 the largest wildfire in Swedish modern history occurred. The fire was ignited in a forest close to the Swedish town Sala and incinerated a total of 14 000 ha. The frequency of wildfires is expected to increase, due to effects of climate change such as increased temperature and decreased precipitation during the summer months. Wildfires can have a considerable impact on aquatic ecosystems and previous studies of wildfires have shown elevated concentrations of nutrients, cat- and anions. The area of the fire mainly consists of forestland, peatland and lakes and has been affected by acidification and intensive forestry. To assess the fire severity and the effects on the water chemistry, the fire severity were analyzed and classified using aerial phtographs and high resolution LIDAR data. The analysis indicated that increased fire intensity caused increased fire severity and that drained forested areas were more vulnerable to fire than undrained peatland. Measurements of water chemistry were conducted at nine streams and ten lakes inside the affected area. At two sites sensors for multiple parameters were deployed. During the initial three months of the post-fire period large peaks of ammonia-N and sulphate were observed in the streams and in a majority of the lakes while DOC was suppressed. In one stream Gärsjöbäcken the median concentrations of ammonia-N were 79 times higher after the fire. Due to nitrification the elevated concentrations of ammonia-N-nitrogen caused elevated concentrations of nitrate-nitrogen. The initial peak of sulphate caused a drop in ANC but after the peak had past ANC increased due to elevated concentrations of base cations. Correlation analysis of fire severity and water chemistry indicated that the maximum concentrations of ammonia-N increased with severely burned canopies in drained forested peatlands and in scorched open peatland. In a future climate with increased dry spells extensive ditching operations in forested peatlands might be counterproductive as it promotes fire vulnerability even in cold boreal regions.
Fire-related deaths among Aboriginal people in British Columbia, 1991-2001.
Gilbert, Mark; Dawar, Meenakshi; Armour, Rosemary
2006-01-01
Fire-related mortality rates are known to be higher in Aboriginal people in BC. The purpose of this study was to describe the epidemiology and context of fire-related deaths in this population. All death registrations attributable to fires in the province were identified by the B.C. Vital Statistics Agency (1991-2001). Age-specific death rates (ASDR) and age-standardized mortality rates (ASMR) were calculated for Status Indians and other residents. Data from Coroner's reports from the B.C. Coroners' Service (1997-2001) were used to describe the context of Aboriginal fire-related deaths. The overall fire-related ASMR for Status Indians and other residents were 0.66 deaths and 0.07 deaths/10,000 population respectively. Annual ASMR for both populations were constant over the study period. ASDR were higher in every age category for Status Indians; children and seniors had higher rates in both populations. Twenty-seven Aboriginal fatalities (20 fires) were identified for the contextual analysis. Key findings were: 48% of the total sample had elevated blood alcohol levels; 30% of the fires were caused by lit cigarettes (majority of decedents were intoxicated); 15% of the fires were caused by electric heating sources; at least 34% of fires occurred in homes with absent or non-functional smoke alarms. Fire-related mortality among Aboriginal people in BC is a preventable public health concern. In this population, fire safety and prevention programs should consider improving the prevalence of functioning smoke alarms, promoting the safe use of heat sources, and decreasing smoking behaviours and the use of alcohol.
NASA Technical Reports Server (NTRS)
Tapphorn, Ralph M.; Kays, Randy; Porter, Alan
1989-01-01
Fire-detector systems based on distributed infrared fiber-sensors have been investigated for potential applications in the aerospace industry. Responsivities to blackbody and flame radiations were measured with various design configurations of an infrared fiber-optic sensor. Signal processing techniques were also investigated, and the results show significant differences in the fire-sensor performance depending on the design configuration. Measurement uncertainties were used to determine the background-limited ranges for the various fire-sensor concepts, and the probability of producing false alarms caused by fluctuations in the background signals were determined using extreme probability theory. The results of the research show that infrared fiber-optic fire sensors are feasible for application on manned spacecraft; however, additional development work will be required to eliminate false alarms caused by high temperature objects such as incandescent lamps.
InSAR detects increase in surface subsidence caused by an Arctic tundra fire
Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun
2014-01-01
Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.
NASA Astrophysics Data System (ADS)
Hinojosa, M. B.; Parra, A.; Laudicina, V. A.; Moreno, J. M.
2014-10-01
Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment was carried out in which four levels of rainfall pattern were implemented by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (long-term average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). After one growing season, the plots were burned with high fire intensity, except a set of unburned plots that served as control. Soils were collected seasonally during one year and variables related to soil nutrient availability and microbial community structure and functionality were studied. Burned soils increased nutrient availability (P, N, K) with respect to unburned ones, but drought reduced such an increase in P, while it further increased N and K. Such changes in available soil nutrients were short-lived. Drought caused a further decrease of enzyme activities, carbon mineralization rate and microbial biomass. Fire decreased the relative abundance of fungi and actinomycetes. However, fire and drought caused a further reduction in fungi, with bacteria becoming relatively more abundant. Arguably, increasing drought and fires due to climate change will likely shift soil recovery after fire.
Fire impact and assessment of post-fire actions of a typical Mediterranean forest from SW Spain
NASA Astrophysics Data System (ADS)
Jiménez-González, Marco A.; María De la Rosa, José; Jiménez-Morillo, Nicasio T.; Zavala, Lorena M.; Knicker, Heike
2015-04-01
Wildfires may cause significant changes in soil physical and chemical properties. In addition, soil organic matter (SOM) content and chemical properties are usually affected by fire. Fire impacts may negatively affect soil health and quality, and induce or enhance runoff generation and, thereby, soil erosion risk and cause damages to the habitat of species. This fact is especially dramatic in Mediterranean ecosystems, where forest fires are a frequent phenomenon and restoration strategies are a key issue. The goals of this study are to determine: i) the immediate effects of fire on soil properties, including changes occurred in the quantity and quality of SOM and ii) the effect of post-fire actions on soil properties. In August 2012, a wildfire affected a forest area of approx. 90 ha in Montellano (Seville, SW Spain; longitude 37.00 °, latitude -5.56 °). This area is dominated by pines (Pinus pinaster and Pinus halepensis), and eucalypts (Eucaliptus globulus) with a Mediterranean climate. Dominant soil types are Rendzic Leptosols and Calcaric Haplic Regosols. It is a poorly limestone-developed soil (usually swallower than 25 cm). Four soil subsamples were collected 1 month and 25 months after fire within an area of approximately 200 m2. Subsamples were mixed together, homogenized, air-dried, crushed and sieved (2 mm). One control sample was collected in an adjacent area. The litter layer was removed by hand and studied separately. Branches, stems, bushes and plant residues on the fire-affected area were removed 16 months after the fire using heavy machinery as part of the post-fire management. The present research focuses on the study of the elemental composition (C, H and N) and physical properties (pH, water holding capacity, electrical conductivity) of bulk soil samples, and on the spectroscopic analysis (FT-IR, 13C NMR) and analytical pyrolysis data obtained from bulk the oils and from the humic acid fraction. immediate effects of fire, including the charring of vegetation and litter, as the input of charred residues may contribute to increase the total amount of soil organic matter. The post-fire removal of vegetation probably contributed to an additional loss of soil material due to an increase of the erosion risk. In addition, preliminary results point out that the burnt soil is not being recovered to the pre-fire conditions at a molecular level neither in the elemental composition. Results of this study will constitute a valuable tool for stake holders and decision makers to avoid additional alterations caused by post fire management of fire affected forests.
Are Crown Fires Necessary For Table Mountain Pine?
Thomas A. Waldrop; Patrick H. Brose; Nicole Turrill Welch; Helen H. Mohr; Ellen A. Gray; Frank H. Tainter; Lisa E. Ellis
2003-01-01
Ridgetop pine communities of the southern Appalachian Mountains have historically been maintained by lightning- and human-caused fires. Because of fire supression for several decades, these stands are entering later seral stages. Such stands typically have an overstory of Table Mountain Pine (Pinus pungens) that is being replaced by shade tolerant...
Current research on restoring ridgetop pine communities with stand replacement fire
Thomas A. Waldrop; Nicole Turrill Welch; Patrick H. Brose; [and others
2000-01-01
Ridgetop pine communities of the Southern Appalachian Mountains historically have been maintained by lightning- and human-caused fires. With fire suppression for several decades, characteristic stands are entering later seral stages. They typically have an overstory of Table Mountain (Pinus pungens)and/or pitch pine (P. rigida), a...
Improving the Vertical Distribution of Fire Emissions in CMAQ
The area burned by wildland fires (prescribed and wild) across the contiguous United States (U.S.) has expanded by nearly 50% and now averages 2 million hectares per year. Such fires are estimated to cause 8000 deaths per year and are monetized as having a ~$450 billion impact t...
Coexisting with fire: Ecosystems, people, and collaboration
Merrill R. Kaufmann; Ayn Shlisky; Jeffrey J. Brooks; Brian Kent
2009-01-01
We are in a "fire crisis." Many regions of the world are experiencing larger, more frequent, and more severe fires that threaten people's lives, livelihoods, and properties, and the health of ecosystems. Regardless of the causes of this crisis - a common threat that crosses cultural and geographical boundaries - societies need informed and...
Fire dynamics during the 20th century simulated by the Community Land Model
NASA Astrophysics Data System (ADS)
Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Thornton, P. E.; Hoffman, F. M.; Levis, S.; Lawrence, P. J.; Feddema, J. J.; Oleson, K. W.; Lawrence, D. M.
2010-01-01
Fire is an integral Earth System process that interacts with climate in multiple ways. Here we assessed the parametrization of fires in the Community Land Model (CLM-CN) and improved the ability of the model to reproduce contemporary global patterns of burned areas and fire emissions. In addition to wildfires we extended CLM-CN to account for fires related to deforestation. We compared contemporary fire carbon emissions predicted by the model to satellite based estimates in terms of magnitude, spatial extent as well as interannual and seasonal variability. Longterm trends during the 20th century were compared with historical estimates. Overall we found the best agreement between simulation and observations for the fire parametrization based on the work by Arora and Boer (2005). We obtain substantial improvement when we explicitly considered human caused ignition and fire suppression as a function of population density. Simulated fire carbon emissions ranged between 2.0 and 2.4 Pg C/year for the period 1997-2004. Regionally the simulations had a low bias over Africa and a high bias over South America when compared to satellite based products. The net terrestrial carbon source due to land use change for the 1990s was 1.2 Pg C/year with 11% stemming from deforestation fires. During 2000-2004 this flux decreased to 0.85 Pg C/year with a similar relative contribution from deforestation fires. Between 1900 and 1960 we simulated a slight downward trend in global fire emissions, which is explained by reduced fuels as a consequence of wood harvesting and partly by increasing fire suppression. The model predicted an upward trend in the last three decades of the 20th century caused by climate variations and large burning events associated with ENSO induced drought conditions.
Fire dynamics during the 20th century simulated by the Community Land Model
NASA Astrophysics Data System (ADS)
Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Thornton, P. E.; Hoffman, F. M.; Levis, S.; Lawrence, P. J.; Feddema, J. J.; Oleson, K. W.; Lawrence, D. M.
2010-06-01
Fire is an integral Earth System process that interacts with climate in multiple ways. Here we assessed the parametrization of fires in the Community Land Model (CLM-CN) and improved the ability of the model to reproduce contemporary global patterns of burned areas and fire emissions. In addition to wildfires we extended CLM-CN to account for fires related to deforestation. We compared contemporary fire carbon emissions predicted by the model to satellite-based estimates in terms of magnitude and spatial extent as well as interannual and seasonal variability. Long-term trends during the 20th century were compared with historical estimates. Overall we found the best agreement between simulation and observations for the fire parametrization based on the work by Arora and Boer (2005). We obtained substantial improvement when we explicitly considered human caused ignition and fire suppression as a function of population density. Simulated fire carbon emissions ranged between 2.0 and 2.4 Pg C/year for the period 1997-2004. Regionally the simulations had a low bias over Africa and a high bias over South America when compared to satellite-based products. The net terrestrial carbon source due to land use change for the 1990s was 1.2 Pg C/year with 11% stemming from deforestation fires. During 2000-2004 this flux decreased to 0.85 Pg C/year with a similar relative contribution from deforestation fires. Between 1900 and 1960 we predicted a slight downward trend in global fire emissions caused by reduced fuels as a consequence of wood harvesting and also by increases in fire suppression. The model predicted an upward trend during the last three decades of the 20th century as a result of climate variations and large burning events associated with ENSO-induced drought conditions.
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure
Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.
Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.
Moreno, Jose M.; Torres, Ivan; Luna, Belen; Oechel, Walter C.; Keeley, Jon E.
2013-01-01
QuestionDo variations in fire intensity within a stand determine changes in fire intensity and plant demographics in a subsequent fire?LocationSan Diego (CA, USA); chaparral dominated by Adenostoma fasciculatum (resprouter) and Ceanothus greggii (seeder).MethodsIn 2003, a wildfire burned a young (16-yr-old) stand containing a set of experimental plots burned in 1987 with various levels of fire intensity. In 2004, all the 1987 plots were sampled for Adenostoma survival and the recruitment of both species. Similar measures were carried out in the adjacent old (75-yr) stand. Fire intensity in 2003 was estimated by a surrogate fire severity measure [minimum diameter of burned branches (branch diameter)].ResultsIn the young stand, branch diameter in 2003 was similar to the control plots in 1987, but lower than in the old stand. Fire intensity in 1987 did not significantly affect branch diameter in 2003. Survival of Adenostoma in the young stand was very low, much lower than after the 1987 burn and that in the old stand. Fire intensity in 1987 did not affect Adenostoma survival. Recruitment in Adenostoma increased, and in Ceanothus decreased, with increased fire intensity in 1987.ConclusionsWe demonstrate that there is a carry-over effect of fire intensity across a whole fire cycle on plant recruitment of the two dominant species. The 2003 fire partially reversed the relative effects on recruitment caused by elevated fire intensity in 1987. Arguably, this effect was driven by the contrasted relationships of the two species to fire intensity. Adenostoma survival in the young stand was much lower in 2003 than in 1987, despite similar branch diameter, and was also lower than in the old stand, despite higher branch diameter in this case. The causes of such mortality are unknown.
Type B investigation of electrical fault in 351 Substation, December 4, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debban, H.L.; Shearer, C.A.; Boger, R.M.
1995-02-01
On December 4, 1994, at 2132:10 hours, an electrical failure of a cable-tapping splice resulted in a fire in the 300 Area of the DOE Hanford Site. The fire occurred in the yard of Substation 351 in electrical Vault R122V, where the cable-tapping splice was located. The fire incinerated all cables passing to and through the vault causing them to fail. The failure of the cables resulted in a power outage to twenty customers in the 300 Area. The vault was electrically isolated, and power was restored to the electrical distribution system at 2311 hours. This report contains the accidentmore » scenario, accident analysis, direct cause and root and contributing causes.« less
Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others
Penman, Trent D.; Price, Owen F.
2016-01-01
Many houses are at risk of being destroyed by wildfires. While previous studies have improved our understanding of how, when and why houses are destroyed by wildfires, little attention has been given to how these fires started. We compiled a dataset of wildfires that destroyed houses in New South Wales and Victoria and, by comparing against wildfires where no houses were destroyed, investigated the relationship between the distribution of ignition causes for wildfires that did and did not destroy houses. Powerlines, lightning and deliberate ignitions are the main causes of wildfires that destroyed houses. Powerlines were 6 times more common in the wildfires that destroyed houses data than in the wildfires where no houses were destroyed data and lightning was 2 times more common. For deliberate- and powerline-caused wildfires, temperature, wind speed, and forest fire danger index were all significantly higher and relative humidity significantly lower (P < 0.05) on the day of ignition for wildfires that destroyed houses compared with wildfires where no houses were destroyed. For all powerline-caused wildfires the first house destroyed always occurred on the day of ignition. In contrast, the first house destroyed was after the day of ignition for 78% of lightning-caused wildfires. Lightning-caused wildfires that destroyed houses were significantly larger (P < 0.001) in area than human-caused wildfires that destroyed houses. Our results suggest that targeting fire prevention strategies around ignition causes, such as improving powerline safety and targeted arson reduction programmes, and reducing fire spread may decrease the number of wildfires that destroy houses. PMID:27598325
Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others.
Collins, Kathryn M; Penman, Trent D; Price, Owen F
2016-01-01
Many houses are at risk of being destroyed by wildfires. While previous studies have improved our understanding of how, when and why houses are destroyed by wildfires, little attention has been given to how these fires started. We compiled a dataset of wildfires that destroyed houses in New South Wales and Victoria and, by comparing against wildfires where no houses were destroyed, investigated the relationship between the distribution of ignition causes for wildfires that did and did not destroy houses. Powerlines, lightning and deliberate ignitions are the main causes of wildfires that destroyed houses. Powerlines were 6 times more common in the wildfires that destroyed houses data than in the wildfires where no houses were destroyed data and lightning was 2 times more common. For deliberate- and powerline-caused wildfires, temperature, wind speed, and forest fire danger index were all significantly higher and relative humidity significantly lower (P < 0.05) on the day of ignition for wildfires that destroyed houses compared with wildfires where no houses were destroyed. For all powerline-caused wildfires the first house destroyed always occurred on the day of ignition. In contrast, the first house destroyed was after the day of ignition for 78% of lightning-caused wildfires. Lightning-caused wildfires that destroyed houses were significantly larger (P < 0.001) in area than human-caused wildfires that destroyed houses. Our results suggest that targeting fire prevention strategies around ignition causes, such as improving powerline safety and targeted arson reduction programmes, and reducing fire spread may decrease the number of wildfires that destroy houses.
Do repeated wildfires change homebuyers' demand for homes in high-risk areas?
Julie M. Mueller; John D. Loomis; Armando González-Cabán
2009-01-01
Unlike most hedonic studies that analyze the effects of a one-time event, this paper analyzes the effects of forest fires that are several years apart in a small geographical area. We find that repeated forest fires cause house prices to decrease for houses located near the fires. We test and reject the hypothesis that the house price reduction from the first fire is...
Do one percent of the forest fires cause ninety-nine percent of the damage? Forest Science
David Strauss; Larry Bednar; Romain Mees
1989-01-01
A relatively small number of forest fires are responsible for a very high proportion of the total damage. The proportion due to the fraction p of largest fires, when plotted against p, is a measure of variability of fire sizes that is especially sensitive to the important extreme events. We find the theoretical form of the plot for several commonly used distributions...
Using prescribed fire to reduce the risk of large wildfires: A break-even analysis
James M. Saveland
1987-01-01
Nearly all wildfires are extinguished when they are still small. The 3-5% that get out of control cause 95% of all wildfire-related costs and damages (Dodge 1972, Wilson 1985). There are two ways to deal with these problem fires. One practice is to limit fire by suppressing fires as soon as possible after they are detected. Increasing the capability of suppression...
Revised fire safety system cuts emergency response time.
Keir, D C
1979-03-01
As Margaret R. Pardee Memorial Hospital, Hendersonville, NC. expanded, fire safety plans had to be reevaluated. With each new addition, fire safety responsibilities for hospital personnel multiplied and overlapped. Confusion resulted, and a revised, simplified, and coordinated fire safety system was devised. Seventeen false alarms within one year, caused by a faulty sprinkler system, gave hospital personnel ample opportunity to test the system and iron out unexpected problems.
Rainfall and geomorphic aspects of post-fire soil erosion - Schultz Fire 2010
Ann Youberg; Karen A. Koestner; Daniel G. Neary; Peter E. Koestner
2011-01-01
The human-caused Schultz Fire near Flagstaff, Arizona burned 6,100 ha (15,075 acres) on the Coconino National Forest between June 20th and 30th, 2010. Ignited by an abandoned campfire, high winds drove the fire over approximately 60% of the total area burned during the first 12 hours (U.S. Forest Service, 2010). The majority of the area burned at moderate (27%) or high...
The medicolegal and forensic aspects of fires.
Eckert, W G
1981-12-01
Fires, their consequences and their investigations, continue to provide forensic scientists, especially those involved in medicolegal investigation (the medical examiner or forensic pathologist), with constant work and variations in problems. The recent history of mass disasters involving high-rise buildings, transport accidents, and arson-related accidents in nightclubs and prisons has emphasized the necessity for corrective and preventive means to ensure safety to the occupants of any of these areas. Problems presented by fires include the determination of the cause of the fire, the identification of the victims, and the cause and manner of their deaths. The motivation of the fire setter and the settlement by the insurance company or legal means are also aspects to be considered. The imperceptible effects of the fires include many other aspects, among which loss of loved ones and family providers and loss of industrial revenue and job potential are all felt. The most frightening development of all, however, is the insidious surfacing of arson as a possible factor in many major fires. The most recent tragedies involving the Stouffer Inn fire and the Hilton International Hotel fire were both related to arsonous acts. The scope of this article is to review the subject as it affects the forensic medical practitioner directly or indirectly so that his or her investigation may be brought to completion in conjunction with other authorities involved in the case.
Kelly, Erin N; Schindler, David W; St Louis, Vincent L; Donald, David B; Vladicka, Katherine E
2006-12-19
Recent findings indicate that fishes from lakes in partially burned catchments contain greater mercury (Hg) concentrations than fishes from reference catchments. Increased methyl Hg (MeHg) concentrations in fishes can result in serious health problems for consumers. Here we show that a forest fire caused a 5-fold increase in whole-body Hg accumulation by rainbow trout (Oncorhynchus mykiss) and smaller Hg increases in muscle of several fish species in a mountain lake. The enhanced Hg accumulation was caused primarily by increased nutrient concentrations in the lake, which enhanced productivity and restructured the food web through increased piscivory and consumption of Mysis. This restructuring resulted in increases to the trophic positions and Hg concentrations of fishes. Forest fire also caused a large short-term release of total Hg (THg) and MeHg to streams and the lake. This release initiated a small pulse of MeHg in invertebrates that contributed to enhanced Hg accumulation by fishes. Climate change and prescribed burning to compensate for past fire suppression are predicted to increase future forest fire occurrence in North America, and increased Hg accumulation by fishes may be an unexpected consequence.
Kelly, Erin N.; Schindler, David W.; St. Louis, Vincent L.; Donald, David B.; Vladicka, Katherine E.
2006-01-01
Recent findings indicate that fishes from lakes in partially burned catchments contain greater mercury (Hg) concentrations than fishes from reference catchments. Increased methyl Hg (MeHg) concentrations in fishes can result in serious health problems for consumers. Here we show that a forest fire caused a 5-fold increase in whole-body Hg accumulation by rainbow trout (Oncorhynchus mykiss) and smaller Hg increases in muscle of several fish species in a mountain lake. The enhanced Hg accumulation was caused primarily by increased nutrient concentrations in the lake, which enhanced productivity and restructured the food web through increased piscivory and consumption of Mysis. This restructuring resulted in increases to the trophic positions and Hg concentrations of fishes. Forest fire also caused a large short-term release of total Hg (THg) and MeHg to streams and the lake. This release initiated a small pulse of MeHg in invertebrates that contributed to enhanced Hg accumulation by fishes. Climate change and prescribed burning to compensate for past fire suppression are predicted to increase future forest fire occurrence in North America, and increased Hg accumulation by fishes may be an unexpected consequence. PMID:17158215
Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H
2010-10-01
Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.
Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.
2016-01-01
Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18 years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.
Smędra-Kaźmirska, Anna; Barzdo, Maciej; Kędzierski, Maciej; Antoszczyk, Łukasz; Szram, Stefan; Berent, Jarosław
2013-09-01
Pursuant to the Polish Weapons and Ammunitions Law (Legal Gazette No 53/1999 item 549 with subsequent amendments), air guns with kinetic energy of the fired projectiles below 17 J are not regarded as weapons. The aim of the study was to assess the potential effect of shots caused by projectiles of various mass and structure fired from air guns with kinetic energy below 17 J on human soft tissues. As a model of soft tissue, we used 20% gelatin blocks. After shooting, we measured the depth of gelatin block penetration by pellets fired from various distances and compared these results with autopsy findings. The results demonstrated that examined pneumatic guns may cause serious injuries, including damage to the pleura, pericardium, liver, spleen, kidneys, femoral artery, and thoracic and abdominal aorta. Experiment shown that gelatin blocks do not reflect fully the properties of the human body. © 2013 American Academy of Forensic Sciences.
Airway fires during surgery: Management and prevention.
Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar
2016-01-01
Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires.
Pigments which reflect infrared radiation from fire
Berdahl, Paul H.
1998-01-01
Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.
Fast and safe gas detection from underground coal fire by drone fly over.
Dunnington, Lucila; Nakagawa, Masami
2017-10-01
Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.
Climatic stress increases forest fire severity across the western United States.
van Mantgem, Phillip J; Nesmith, Jonathan C B; Keifer, MaryBeth; Knapp, Eric E; Flint, Alan; Flint, Lorriane
2013-09-01
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire). Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Characteristics of forest fuels, fire and emissions
Charles K. McMahon
1983-01-01
Introduction Forest fires can be divided into two broad classes--wildfires and prescribed fires. Wildfires, whether caused by nature (lightning, etc.) or by the accidental or malicious acts of man, are not planned by forest managers and do not occur under controlled conditions. They can be relatively tame, covering only a few hectares and burning...
Statistical analysis of large wildfires
Thomas P. Holmes; Robert J. Jr. Huggett; Anthony L. Westerling
2008-01-01
Large, infrequent wildfires cause dramatic ecological and economic impacts. Consequently, they deserve special attention and analysis. The economic significance of large fires is indicated by the fact that approximately 94 percent of fire suppression costs on U.S. Forest Service land during the period 1980-2002 resulted from a mere 1.4 percent of the fires (Strategic...
Barriers to wildland fire use: A preliminary problem analysis
Dustin L. Doane; Jay O' Laughlin; Penelope Morgan; Carol Miller
2006-01-01
American society has a general cultural bias toward controlling nature (Glover 2000) and, in particular, a strong bias for suppressing wildfire, even in wilderness (Saveland et al. 1988). Nevertheless, the Federal Wildland Fire Management Policy directs managers to "allow lightning-caused fires to play, as nearly as possible, their natural ecological role in...
USDA-ARS?s Scientific Manuscript database
Since its first report almost 200 years ago, fire blight, caused by the gram negative bacterium Erwinia amylovora, has threatened apple and pear production globally. Identifying novel genes and their functional alleles is a prerequisite to developing apple cultivars with enhanced fire blight resist...
Compartmentalization of pathogens in fire-injured trees
Kevin T. Smith
2013-01-01
Wildland fire is an episodic process that greatly influences the composition, structure, and developmental sequence of forests. Most news reports of wildland fire involves blazes fueled by slash, standing dead stems, and snags that reach into tree crowns and burn deeply into the forest floor, causing extensive tree mortality and the eventual replacement of the standing...
Using rainwater harvesting techniques for firefighting in forest plantations
P. Garcia-Chevesich; R. Valdes-Pineda; D. Neary; R. Pizarro
2015-01-01
Fire is a natural component of forest ecosystems in parts of North America, South America, Europe, Australia, Africa and the Mediterranean region. These fires are usually uncontrolled wildfires in areas of ignitable vegetation but can also be prescribed fires set for vegetation management purposes. Wildfires are commonly characterised based on cause of ignition,...
Fire-injured ponderosa pine provide a pulsed resource for bark beetles
Ryan S. Davis; Sharon Hood; Barbara J. Bentz
2012-01-01
Bark beetles can cause substantial mortality of trees that would otherwise survive fire injuries. Resin response of fire-injured northern Rocky Mountain ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and specific injuries that contribute to increased bark beetle attack susceptibility and brood production are unknown. We monitored ponderosa pine...
NASA Astrophysics Data System (ADS)
Hegedüs, Ramón; Åkesson, Susanne; Horváth, Gábor
2007-05-01
The effects of forest fire smoke on sky polarization and animal orientation are practically unknown. Using full-sky imaging polarimetry, we therefore measured the celestial polarization pattern under a smoky sky in Fairbanks, Alaska, during the forest fire season in August 2005. It is quantitatively documented here that the celestial polarization, a sky attribute that is necessary for orientation of many polarization-sensitive animal species, above Fairbanks on 17 August 2005 was in several aspects anomalous due to the forest fire smoke: (i) The pattern of the degree of linear polarization p of the reddish smoky sky differed considerably from that of the corresponding clear blue sky. (ii) Due to the smoke, p of skylight was drastically reduced (pmax≤14%, paverage≤8%). (iii) Depending on wavelength and time, the Arago, Babinet, and Brewster neutral points of sky polarization had anomalous positions. We suggest that the disorientation of certain insects observed by Canadian researchers under smoky skies during the forest fire season in August 2003 in British Columbia was the consequence of the anomalous sky polarization caused by the forest fire smoke.
[Injury patterns and roentgen findings in gunshot wounds with rare flint ammunition].
Pollak, S; Lindermann, A
1990-01-01
Smoothbore shotgun barrels can fire cartridges with common pellet loads as well as shotgun slugs and rubber bullets. Other than conventional shot, the cylindrical Brenneke-type rifled shotgun slugs sometimes cause perforating wounds. The shotgun ammunition for use in self-defence can have a single projectile or several rubber pellets. Where the propellant is black powder, short range shots will probably leave searing marks and intensive soot deposits. Fired at close range, rubber bullets can penetrate through the skin into the body, fired at greater distance they cause contusions. A case of homicide (repeated firing with a 12-ga. pump gun) is used to present and discuss the injury patterns and X-ray findings after impact of Brenneke-type slugs and rubber bullets as well as of "classical" shot pellets.
M.B. Dickinson; J.C. Norris; A.S. Bova; R.L. Kremens; V. Young; M.J. Lacki
2010-01-01
Faunal injury and mortality in wildland fires is a concern for wildlife and fire management although little work has been done on the mechanisms by which exposures cause their effects. In this paper, we use an integral plume model, field measurements, and models of carbon monoxide and heat effects to explore risk to tree-roosting bats during prescribed fires in mixed-...
1988-12-07
grenades, air attacks, tank fire, snipers, and partisans. Many of these causes, such as air attacks and tank fire, were relatively infrequent occurrences...Tank Fire 5 9 Small Arms Fire 7 13 Grenade 3 5 Air Attack 18 32 Tank Fire 2 4 Partisans 5 9 Sniper 3 5 In World War I personal danger for officers had...accounts of individual demises reflect this increased lethality, and better describe the significant dangers to these senior commanders. 18 AIR ATTACK
Hirsch, C S; Bost, R O; Gerber, S R; Cowan, M E; Adelson, L; Sunshine, I
1977-09-01
Eight people died in a traffic accident involving a tractor-trailer and ten autos. The accident caused a series of flash fires from ruptured gas tanks. Complete autopsies established that six of the victims died exclusively from thermal trauma; none showed an elevated blood carboxyhemoglobin concentration. Flash fire victims are exceptions to the axiom that elevation of blood carboxyhemoglobin is a sine qua non for concluding that a decedent recovered from the scene of a conflagration was alive in the fire.
Methodology used in Cuba for estimating economic losses caused by forest fires
Marcos Pedro Ramos Rodríguez; Raúl González Rodríguez
2013-01-01
Assessment of economic losses caused by forest fires is a highly complex but important activity. It is complicated first by the large number of effects, in different periods, brought about in the social, economic and environmental fields. Secondly, the difficulty of assigning a market value to resources such as biodiversity or endangered species should be mentioned. It...
Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo
2011-01-01
We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...
Lieu, Christopher A.; Venkiteswaran, Kala; Gilmour, Timothy P.; Rao, Anand N.; Petticoffer, Andrew C.; Gilbert, Erin V.; Deogaonkar, Milind; Manyam, Bala V.; Subramanian, Thyagarajan
2012-01-01
Chronic treatment with levodopa (LD) in Parkinson's disease (PD) can cause drug induced dyskinesias. Mucuna pruriens endocarp powder (MPEP) contains several compounds including natural LD and has been reported to not cause drug-induced dyskinesias. We evaluated the effects of Mucuna pruriens to determine if its underlying mechanistic actions are exclusively due to LD. We first compared MPEP with and without carbidopa (CD), and LD+CD in hemiparkinsonian (HP) monkeys. Each treatment ameliorated parkinsonism. We then compared the neuronal firing properties of the substantia nigra reticulata (SNR) and subthalamic nucleus (STN) in HP monkeys with MPEP+CD and LD+CD to evaluate basal ganglia circuitry alterations. Both treatments decreased SNR firing rate compared to HP state. However, LD+CD treatments significantly increased SNR bursting firing patterns that were not seen with MPEP+CD treatments. No significant changes were seen in STN firing properties. We then evaluated the effects of a water extract of MPEP. Oral MPWE ameliorated parkinsonism without causing drug-induced dyskinesias. The distinctive neurophysiological findings in the basal ganglia and the ability to ameliorate parkinsonism without causing dyskinesias strongly suggest that Mucuna pruriens acts through a novel mechanism that is different from that of LD. PMID:22997535
Lieu, Christopher A; Venkiteswaran, Kala; Gilmour, Timothy P; Rao, Anand N; Petticoffer, Andrew C; Gilbert, Erin V; Deogaonkar, Milind; Manyam, Bala V; Subramanian, Thyagarajan
2012-01-01
Chronic treatment with levodopa (LD) in Parkinson's disease (PD) can cause drug induced dyskinesias. Mucuna pruriens endocarp powder (MPEP) contains several compounds including natural LD and has been reported to not cause drug-induced dyskinesias. We evaluated the effects of Mucuna pruriens to determine if its underlying mechanistic actions are exclusively due to LD. We first compared MPEP with and without carbidopa (CD), and LD+CD in hemiparkinsonian (HP) monkeys. Each treatment ameliorated parkinsonism. We then compared the neuronal firing properties of the substantia nigra reticulata (SNR) and subthalamic nucleus (STN) in HP monkeys with MPEP+CD and LD+CD to evaluate basal ganglia circuitry alterations. Both treatments decreased SNR firing rate compared to HP state. However, LD+CD treatments significantly increased SNR bursting firing patterns that were not seen with MPEP+CD treatments. No significant changes were seen in STN firing properties. We then evaluated the effects of a water extract of MPEP. Oral MPWE ameliorated parkinsonism without causing drug-induced dyskinesias. The distinctive neurophysiological findings in the basal ganglia and the ability to ameliorate parkinsonism without causing dyskinesias strongly suggest that Mucuna pruriens acts through a novel mechanism that is different from that of LD.
Characterization of fire regime in Sardinia (Italy)
NASA Astrophysics Data System (ADS)
Bacciu, V. M.; Salis, M.; Mastinu, S.; Masala, F.; Sirca, C.; Spano, D.
2012-12-01
In the last decades, a number of Authors highlighted the crucial role of forest fires within Mediterranean ecosystems, with impacts both negative and positive on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In Sardinia (Italy), the second largest island of the Mediterranean Basin, forest fires are perceived as one of the main environmental and social problems, and data are showing that the situation is worsening especially within the rural-urban peripheries and the increasing number of very large forest fires. The need for information concerning forest fire regime has been pointed out by several Authors (e.g. Rollins et al., 2002), who also emphasized the importance of understanding the factors (such as weather/climate, socio-economic, and land use) that determine spatial and temporal fire patterns. These would be used not only as a baseline to predict the climate change effect on forest fires, but also as a fire management and mitigation strategy. The main aim of this paper is, thus, to analyze the temporal and spatial patterns of fire occurrence in Sardinia (Italy) during the last three decades (1980-2010). For the analyzed period, fire statistics were provided by the Sardinian Forest Service (CFVA - Corpo Forestale e di Vigilanza Ambientale), while weather data for eight weather stations were obtained from the web site www.tutiempo.it. For each station, daily series of precipitation, mean, maximum and minimum temperature, relative humidity and wind speed were available. The present study firstly analyzed fire statistics (burned area and number of fires) according to the main fire regime characteristics (seasonality, fire return interval, fire incidence, fire size distribution). Then, fire and weather daily values were averaged to obtain monthly, seasonal and annual values, and a set of parametric and not parametric statistical tests were used to analyze the fire-weather relationships. Results showed a high inter- and intra-annual variability, also considering the different type of affected vegetation. As for other Mediterranean areas, a smaller number of large fires caused a high proportion of burned area. Land cover greatly influenced fire occurrence and fire size distribution across the landscape. Furthermore, fire activity (number of fires and area burned) showed significant correlations with weather variables, especially summer precipitation and wind, which seemed to drive the fire seasons and the fire propagation, respectively.
Airway fires during surgery: Management and prevention
Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar
2016-01-01
Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires. PMID:27006554
History of Fire and Fire Impacts at Tonto National Monument, Arizona
Phillips, Barbara G.
1997-01-01
A study of the history of fire and fire impacts on desert plants of Tonto National Monument was made in 1990-1991 by the author. Four major fires and several minor ones have occurred on the monument since 1942, all lightning caused. Twenty photo stations set up after the 1964 Schultz Fire were found and replicate photos made at the rebar-marked sites. Photographic documentation of the impacts of several fires made comparison of vegetation changes over time possible. Five monitoring plots were established in March and April 1990, representing a variety of vegetation associations in burned and unburned areas. An inventory of plants of the monument was completed in 1964 by Burgess (1965) prior to the first major fire. Comparisons of change across the 26-year span were made during this study. The effects of fire?in some areas multiple fires?were determined and reported on.
Fire behavior and risk analysis in spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Sacksteder, Kurt R.
1988-01-01
Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.
Alcohol based surgical prep solution and the risk of fire in the operating room: a case report
Batra, Sumit; Gupta, Rajiv
2008-01-01
A few cases of fire in the operating room are reported in the literature. The factors that may initiate these fires are many and include alcohol based surgical prep solutions, electrosurgical equipment, flammable drapes etc. We are reporting a case of fire in the operating room while operating on a patient with burst fracture C6 vertebra with quadriplegia. The cause of the fire was due to incomplete drying of the covering drapes with an alcohol based surgical prep solution. This paper discusses potential preventive measures to minimize the incidence of fire in the operating room. PMID:18439304
Prevalence of behaviors related to cigarette‐caused fires: a survey of Ontario smokers
O'Connor, R J; Bauer, J E; Giovino, G A; Hammond, D; Hyland, A; Fong, G T; Cummings, K M
2007-01-01
Objective To identify the prevalence and correlates of behaviors related to the risk of cigarette‐caused fires. Design and setting Random‐digit‐dialed telephone survey in Ontario, Canada, July–September, 2005. Subjects 596 current cigarette smokers. Outcome measures Prevalence of fire‐risk events and behaviors such as burning clothing or objects in the home, leaving lit cigarettes unattended, dozing while smoking, and smoking in bed and correlates of these behaviors. Respondents were also asked if they ever worry about cigarette‐caused fires. Results One in four smokers admitted to leaving lit cigarettes unattended in the last 30 days, while 15% admitted to smoking while in bed. Leaving lit cigarettes unattended was independent of demographic, socioeconomic or nicotine dependence indicators, but was related to worry about burning other persons with a cigarette (OR 1.72, 95% CI 1.04 to 2.85) and smoking inside the home (OR 2.98, 95% CI 1.66 to 5.35). Persons who were not white (OR 3.97, 95% CI 1.80 to 8.80), aged 18–24 years (OR 3.75, 95% CI 1.41 to 9.96), who had high nicotine dependence (OR 9.13, 95% CI 2.22 to 37.52) and worried about burning objects in their home (OR 2.43, 95% CI 1.31 to 4.52) were more likely to smoke in bed. 10 (1.7%) smokers reported having ever had a fire in their home started by a cigarette. Conclusions Smokers engage in behaviors such as smoking in bed and leaving lit cigarettes unattended that may place them at an increased risk of cigarette‐caused fires. As governments move to regulate cigarette ignition propensity, it is important to establish surveillance for behaviors related to fire risk. PMID:17686933
NASA Astrophysics Data System (ADS)
Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.
2009-04-01
Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.
Pigments which reflect infrared radiation from fire
Berdahl, P.H.
1998-09-22
Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.
Environmental disturbance increases social connectivity in a passerine bird.
Lantz, Samantha M; Karubian, Jordan
2017-01-01
Individual level response to natural and anthropogenic disturbance represents an increasingly important, but as yet little understood, component of animal behavior. Disturbance events often alter habitat, which in turn can modify behaviors of individuals in affected areas, including changes in habitat use and associated changes in social structure. To better understand these relationships, we investigated aspects of habitat selection and social connectivity of a small passerine bird, the red-backed fairywren (Malurus melanocephalus), before vs. after naturally occurring fire disturbance in Northern Territory, Australia. We utilized a social network framework to evaluate changes in social dynamics pre- vs. post-fire. Our study covered the non-breeding season in two consecutive years in which fires occurred, and individuals whose habitat was affected and those that were not affected by fire. Individuals in habitat affected by fires had stronger social ties (i.e. higher weighted degree) after fires, while those that were in areas that were not affected by fire actually had lower weighted degree. We suggest that this change in social connections may be linked to habitat. Before fires, fairywrens used habitat that had similar grass cover to available habitat plots randomly generated within our study site. Fire caused a reduction in grass cover, and fairywrens responded by selecting habitat with higher grass cover relative to random plots. This study demonstrates how changes in habitat and/or resource availability caused by disturbance can lead to substantive changes in the social environment that individuals experience.
Quantifying the Causes and Propogation of the 2015 Washington Wildfires
NASA Astrophysics Data System (ADS)
Engel, R.; Marlier, M. E.; Lettenmaier, D. P.
2017-12-01
In the summer of 2015, Washington state experienced wildfires that burned over 450,000 ha, more than five times the average and more than three times the next-most severe fire season in the 30-year record. We examine the confluence of factors that led to the extreme fire season, and evaluate whether 2015 can be used as a predictor of possible future conditions that will be affected by climate warming. In previous work, we have found that 2015 was an extremely warm summer (nearly 1 degree C warmer than the previous year in the 30-year record) but was not particularly anomalous in terms of many other climatic indicators, including reconstructed soil moisture, the Palmer Drought Severity Index (PDSI), and the Canadian Fire Weather Index. However, according to the Dead Fuel Moisture (DFM), a drying index used by the US Forest Service, 2015 was an extreme year of record. The DFM relies on temperature, precipitation, and relative humidity to establish a daily equilibrium moisture content of dead material. We examine both Washington's 2015 fire season and the 30-year fire record with respect to climatology and other potential drivers of fire (e.g. forest health, ignition). Additionally, we explore the role of land cover with respect to fire propagation through the season. While too many potential causes of extreme fires exist to establish a concrete long-term relationship at such a fine scale, we find that the 2015 fire anomaly was at least partially climatically driven.
Environmental disturbance increases social connectivity in a passerine bird
Lantz, Samantha M.; Karubian, Jordan
2017-01-01
Individual level response to natural and anthropogenic disturbance represents an increasingly important, but as yet little understood, component of animal behavior. Disturbance events often alter habitat, which in turn can modify behaviors of individuals in affected areas, including changes in habitat use and associated changes in social structure. To better understand these relationships, we investigated aspects of habitat selection and social connectivity of a small passerine bird, the red-backed fairywren (Malurus melanocephalus), before vs. after naturally occurring fire disturbance in Northern Territory, Australia. We utilized a social network framework to evaluate changes in social dynamics pre- vs. post-fire. Our study covered the non-breeding season in two consecutive years in which fires occurred, and individuals whose habitat was affected and those that were not affected by fire. Individuals in habitat affected by fires had stronger social ties (i.e. higher weighted degree) after fires, while those that were in areas that were not affected by fire actually had lower weighted degree. We suggest that this change in social connections may be linked to habitat. Before fires, fairywrens used habitat that had similar grass cover to available habitat plots randomly generated within our study site. Fire caused a reduction in grass cover, and fairywrens responded by selecting habitat with higher grass cover relative to random plots. This study demonstrates how changes in habitat and/or resource availability caused by disturbance can lead to substantive changes in the social environment that individuals experience. PMID:28854197
Gomes, J F P; Radovanovic, M
2008-05-01
Fires of large dimension destroy forests, harvests and housing objects. Apart from that combustion products and burned surfaces become large ecological problems. Very often fires emerge simultaneously on different locations of a region so a question could be asked if they always have been a consequence of negligence, pyromania, high temperatures or maybe there has been some other cause. This paper is an attempt of establishing the possible connection between forest fires that numerous satellites registered and activities happening on the Sun immediately before fires ignite. Fires emerged on relatively large areas from Portugal and Spain on August 2005, as well as on other regions of Europe. The cases that have been analyzed show that, in every concrete situation, an emission of strong electromagnetic and thermal corpuscular energy from highly energetic regions that were in geo-effective position had preceded the fires. Such emissions have, usually, very high energy and high speeds of particles and come from coronary holes that also have been either in the very structure or in the immediate closeness of the geo-effective position. It should also be noted that the solar wind directed towards the Earth becomes weaker with deeper penetration towards the topographic surface. However, the results presented in this paper suggest that, there is a strong causality relationship between solar activity and the ignition of these forest fires taking place in South-western Europe.
NASA Astrophysics Data System (ADS)
Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.
2006-09-01
Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.
David W. Peterson; Erich Dodson
2016-01-01
Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however, whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation...
Macroanatomy and compartmentalization of recent fire scars in three North American conifers
Kevin T. Smith; Estelle Arbellay; Donald A. Falk; Elaine Kennedy Sutherland
2016-01-01
Fire scars are initiated by cambial necrosis caused by localized lethal heating of the tree stem. Scars develop as part of the linked survival processes of compartmentalization and wound closure. The position of scars within dated tree ring series is the basis for dendrochronological reconstruction of fire history. Macroanatomical features were described for western...
A five-year record of lightning storms and forest fires
H. T. Gisborne
1931-01-01
According to the records compiled by the supervisors of the national forests in the northern Rocky Mountain region, lightning has been responsible for a greater number of fires, more burned area, more damage, and more expense of suppression in this territory than all other causes of forest fires combined. Smokers, campers, brush burners, incendiarists, lumbering...
Foundation for Individual Rights in Education Annual Report, 2011
ERIC Educational Resources Information Center
Foundation for Individual Rights in Education (NJ1), 2012
2012-01-01
This paper presents the annual report of the Foundation for Individual Rights in Education (FIRE) for 2011. This past year represented a new level of achievement for FIRE and its cause on campus. Not only did FIRE secure more victories than ever, but it also succeeded in bringing liberty to thousands more students by welcoming Arizona State…
USDA-ARS?s Scientific Manuscript database
Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large effect QTL for fire blight resistance has been pre...
Civic Ecology Education and Resilient Societies: A Survey of Forest Fires in Greece
ERIC Educational Resources Information Center
Papaspiliou, Konstantina; Skanavis, Constantina; Giannoulis, Christos
2014-01-01
Forest fires, as all natural disasters, have the potential to seriously affect both the environment and the social structure of a local community. Unlike some of the natural disasters, such as hurricanes, tornados and tsunamis which are unpredictable, the phenomenon of forest fires could be easily predicted and controlled, since the causes are…
Manitoba Health's emerging work on wildland fire smoke
Jeffrey Joaquin; Darlene Oshanski
2015-01-01
Smoke caused by wildland fire events is an important public health issue, involving major risks to the health of people and the environment. Smoke from wildland fires can travel hundreds of kilometers, affecting air quality far from the flames. Through a partnership with Health Canada, Manitoba Health's Office of Disaster Management (ODM) has undertaken a number...
The state of development of fire management decision support systems in America and Europe
Robert Mavsar; Armando González-Cabán; Elsa Varela
2013-01-01
Forest fires affect millions of people worldwide, and cause major ecosystem and economic impacts at different scales. The management policies implemented to minimize the negative impacts of forest fires require substantial investment of financial, human and organizational resources, which must be justifiable and efficient. Decision support systems based on economic...
Wildfire, research, and a climate station
Ward McCaughey
2008-01-01
In August, the human-caused Tin Cup Fire took off a few miles to the north of where the Fire Sciences Laboratory crew was busy collecting fuels data on the Trapper Bunkhouse study site west of Darby. The fire demonstrated how quickly wildfire can escape initial attack in untreated stands, especially under extremely dry conditions, and how treated areas helped moderate...
Climate and very large wildland fires in the contiguous western USA
E. Natasha Stavros; John Abatzoglou; Narasimhan K. Larkin; Donald McKenzie; E. Ashley Steel
2014-01-01
Very large wildfires can cause significant economic and environmental damage, including destruction of homes, adverse air quality, firefighting costs and even loss of life. We examine how climate is associated with very large wildland fires (VLWFs >=50 000 acres, or ~20234 ha) in the western contiguous USA. We used composite records of climate and fire to...
Progress of Heart Rot Following Fire in Bottomland Red Oaks
E. Richard Toole; George M. Furnival
1957-01-01
The most important cause of cull in southern hardwood forests is heart rot that develops from wounds made by fire. This study derived means by which the forester working with bottomland red oaks can determine the amount of decay behind old fire scars and estimate the rot that can be expected from new wounds.
History, Uses, and Effects of Fire in the Appalachians
David H. van Lear; Thomas A. Waldrop
1989-01-01
History of Fire in the Southern Appalachians Ecological and meteorological evidence suggests that lightning-caused fires were a major environmental force shaping the vegetation of the Southeastern United States for millions of years before Indians arrived in America. Lightning served as a mutagenic agent and as a factor in natural selection which forced species to...
ERIC Educational Resources Information Center
Griessman, B. Eugene; Bertrand, Alvin L.
Two rural Louisiana communities were selected to evaluate the effectiveness of certain types of communication in preventing man-caused forest fires. The communities were selected on the basis of differences in fire occurrence rates and other factors related to conservation. Questionnaires and personal interviews were utilized to determine views of…
Virginia L. McDaniel; James M. Guldin; Nancy E. Koerth; Jason E. Milks; Rebecca J. Finzer; Ben F. Rowland
2016-01-01
Increasingly, fire managers are using natural ignitions in conjunction with prescribed burns to restore and maintain fire-adapted ecosystems. Increased fuel loading from fire suppression and increasing drought indices associated with climate change, however, may cause natural ignitions to burn with greater intensity and severity. Managers must weigh risk factors versus...
Wildfire risk estimation in the Mediterranean area
A.A. Ager; H.K. Preisler; B. Arca; D Spano; M. Salis
2014-01-01
We analyzed wildland fire occurrence and size data from Sardinia, Italy, and Corsica, France, to examine spatiotemporal patterns of fire occurrence in relation to weather, land use, anthropogenic features, and time of year. Fires on these islands are largely human caused and can be attributed to negligence, agro-pastoral land use, and arson. Of particular interest was...
Spatially explicit forecasts of large wildland fire probability and suppression costs for California
Haiganoush Preisler; Anthony L. Westerling; Krista M. Gebert; Francisco Munoz-Arriola; Thomas P. Holmes
2011-01-01
In the last decade, increases in fire activity and suppression expenditures have caused budgetary problems for federal land management agencies. Spatial forecasts of upcoming fire activity and costs have the potential to help reduce expenditures, and increase the efficiency of suppression efforts, by enabling them to focus resources where they have the greatest effect...
Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs
Susan J. Prichard; Camille S. Stevens-Rumann; Paul F. Hessburg
2017-01-01
Across the globe, rising temperatures and altered precipitation patterns have caused persistent regional droughts, lengthened fire seasons, and increased the number of weather-driven extreme fire events. Because wildfires currently impact an increasing proportion of the total area burned, land managers need to better understand reburns â in which previously burned...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... gas-fired combined-cycle power station in Warren County, Virginia, extending over the next 9 years... construction of a new natural gas-fired combined-cycle power station in Warren County, Virginia. A conservation... cause take of the Madison Cave isopod. Dominion Virginia Power proposes to construct a natural gas-fired...
Prescribed burning with spot fires in the Georgia Coastal Plain
R. W. Johansen
1984-01-01
The use of prescribed fire in the management of pine forests is common throughout much of the South, but one recurring problem that worries the forest landowner is not having enough suitable burning weather to satisfactorily complete all scheduled fires. Being able to burn areas considerably faster, without causing undue damage, could be a solution.
Engineering an Undergarment for Flash/Flame Protection
2011-11-01
the event of a flash fire situation because the fabric could melt and stick to the Soldier’s skin causing more severe burn injury. Additionally, an...harm’s way which include fire fighters and police in their daily work. 1.1 Problem Statement The threat of burn injuries to Soldiers in combat due...to blasts, flash fires and secondary fires has resulted in the development of the Flame Resistant Army Combat Uniform, FR ACU. The FR ACUs provide
Effects of fire and CO2 on biogeography and primary production in glacial and modern climates.
Martin Calvo, Maria; Prentice, Iain Colin
2015-11-01
Dynamic global vegetation models (DGVMs) can disentangle causes and effects in the control of vegetation and fire. We used a DGVM to analyse climate, CO2 and fire influences on biome distribution and net primary production (NPP) in last glacial maximum (LGM) and pre-industrial (PI) times. The Land surface Processes and eXchanges (LPX) DGVM was run in a factorial design with fire 'off' or 'on', CO2 at LGM (185 ppm) or PI (280 ppm) concentrations, and LGM (modelled) or recent climates. Results were analysed by Stein-Alpert decomposition to separate primary effects from synergies. Fire removal causes forests to expand and global NPP to increase slightly. Low CO2 greatly reduces forest area (dramatically in a PI climate; realistically under an LGM climate) and global NPP. NPP under an LGM climate was reduced by a quarter as a result of low CO2 . The reduction in global NPP was smaller at low temperatures, but greater in the presence of fire. Global NPP is controlled by climate and CO2 directly through photosynthesis, but also through biome distribution, which is strongly influenced by fire. Future vegetation simulations will need to consider the coupled responses of vegetation and fire to CO2 and climate. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Impact of anthropogenic climate change on wildfire across western US forests.
Abatzoglou, John T; Williams, A Park
2016-10-18
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.
Impact of anthropogenic climate change on wildfire across western US forests
NASA Astrophysics Data System (ADS)
Abatzoglou, John T.; Park Williams, A.
2016-10-01
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ˜55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.
Meadow Fire in Yosemite National Park, California
2017-12-08
The Meadow Fire in Yosemite National Park is a remote, hold-over lightning caused fire which began on September 4 and is located five miles east of Yosemite Valley, CA. The fuel burning is timber and brush. There is active fire behavior with long range spotting. The National Park Service reports that a fire, that may be a spot fire, from the Meadow lightning-caused fire, was discovered at approximately 12:30 PM, Sunday September 7. The fire is approximately 2,582 acres. It is burning within the Little Yosemite Valley on both sides of the Merced River. All trails in the area are closed. Approximately 100 hikers and backpackers were evacuated from the fire area in Little Yosemite Valley. Half-Dome, a popular tourist destination, has been closed. The fire is burning in Yosemite Wilderness. Eighty-five hikers and climbers were also evacuated from the summit of Half Dome by helicopters from the California Highway Patrol, US Department of Agriculture Forest Service, Sequoia Kings Canyon National Park, and CAL Fire. This natural-color satellite image was collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite on Sept. 07, 2014. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner with information from the National Park Service and the National Interagency Coordination Center. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Assessment of Post Forest Fire Landslides in Uttarakhand Himalaya, India
NASA Astrophysics Data System (ADS)
Sharma, N.; Singh, R. B.
2017-12-01
According to Forest Survey of India-State Forest Report (2015), the total geographical area of Uttarakhand is 53, 483 covers km2 out of which 24,402 km2 area covers under total forest covers. As noticed during last week of April, 2016 forest of Uttarakhand mountains was gutted down due to major incidences of fire. This incident caused huge damage to different species of flora-fauna, human being, livestock, property and destruction of mountain ecosystem. As per media reports, six people were lost their lives and recorded several charred carcasses of livestock's due to this incident. The forest fire was affected the eleven out of total thirteen districts which roughly covers the 0.2% (approx.) of total vegetation covers.The direct impact of losses are easy to be estimated but indirect impacts of this forest fire are yet to be occurred. The threat of post Forest fire induced landslides during rainfall is themain concern. Since, after forest fire top soil and rocks are loose due to loss of vegetation as binding and protecting agent against rainfall. Therefore, the pore water pressure and weathering will be very high during rainy season which can cause many landslides in regions affected by forest fire. The demarcation of areas worse affected by forest fire is necessary for issuing alerts to habitations and important infrastructures. These alerts will be based upon region specific probable rainfall forecasting through Indian Meteorological Department (IMD). The main objective is to develop a tool for detecting early forest fire and to create awareness amongst mountain community, researchers and concerned government agencies to take an appropriate measures to minimize the incidences of Forest fire and impact of post forest fire landslides in future through implementation of sustainable mountain strategy.
Surgical fires: a patient safety perspective.
2006-02-01
A surgical fire is a fire that occurs on or in a surgical patient. Such fires are rare--they occur in only an extremely small percentage of surgical cases. Nevertheless, the actual number of incidents that occur each year may surprise many healthcare professionals. ECRI estimates that 50 to 100 or more surgical fires occur each year in the United States alone. And such fires can have devastating consequences, not only for the patient, but also for the surgical staff and for the healthcare facility. Fortunately, through awareness of the hazards-and with emphasis placed on following safe practices-virtually all surgical fires can be prevented. Thus, it's important that surgical fire safety be incorporated into formal patient safety initiatives. In this article, we describe a few surgical fire patient safety initiatives that have been instituted in recent years. In addition, we describe in detail the causes of surgical fires and the preventive measures that are available for healthcare personnel to follow. In addition, we review how staff should respond in the event of a surgical fire.
Loope, Walter L.; Anderton, John B.
1998-01-01
To recover direct evidence of surface fires before European settlement, we sectioned fire-scarred logging-era stumps and trees in 39 small, physically isolated sand patches along the Great Lakes coast of northern Michigan and northern Wisconsin. While much information was lost to postharvest fire and stump deterioration, 147 fire-free intervals revealed in cross-sections from 29 coastal sand patches document numerous close interval surface fires before 1910; only one post-1910 fire was documented. Cross-sections from the 10 sections with records spanning >150 yr suggest local fire occurrence rates before 1910 ca. 10 times the present rate of lightning-caused fire. Since fire spread between or into coastal sand patches is rare, and seasonal use of the patches by Native people before 1910 is well documented, both historically and ethnographically, ignition by humans probably accounts for more than half of the pre-1910 fires recorded in cross-sections.
Fire dynamics during the 20th century simulated by the Community Land Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloster, Silvia; Mahowald, Natalie; Randerson, Jim
2011-01-01
Fire is an integral Earth System process that interacts with climate in multiple ways. Here we assessed the parametrization of fires in the Community Land Model (CLM-CN) and improved the ability of the model to reproduce contemporary global patterns of burned areas and fire emissions. In addition to wildfires we extended CLM-CN to account for fires related to deforestation. We compared contemporary fire carbon emissions predicted by the model to satellite-based estimates in terms of magnitude and spatial extent as well as interannual and seasonal variability. Long-term trends during the 20th century were compared with historical estimates. Overall we foundmore » the best agreement between simulation and observations for the fire parametrization based on the work by Arora and Boer (2005). We obtained substantial improvement when we explicitly considered human caused ignition and fire suppression as a function of population density. Simulated fire carbon emissions ranged between 2.0 and 2.4 Pg C/year for the period 1997 2004. Regionally the simulations had a low bias over Africa and a high bias over South America when compared to satellite-based products. The net terrestrial carbon source due to land use change for the 1990s was 1.2 Pg C/year with 11% stemming from deforestation fires. During 2000 2004 this flux decreased to 0.85 Pg C/year with a similar relative contribution from deforestation fires. Between 1900 and 1960 we predicted a slight downward trend in global fire emissions caused by reduced fuels as a consequence of wood harvesting and also by increases in fire suppression. The model predicted an upward trend during the last three decades of the 20th century as a result of climate variations and large burning events associated with ENSO-induced drought conditions.« less
Brubaker, Linda B; Higuera, Philip E; Rupp, T Scott; Olson, Mark A; Anderson, Patricia M; Hu, Feng Sheng
2009-07-01
Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecologica model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a mid-Holocene fire-regime shift in boreal forests of the south-central Brooks Range, Alaska, U.S.A. Fire-return intervals (FRIs, number of years between fires) are estimated over the past 7000 calibrated 14C years (7-0 kyr BP [before present]) from short-term variations in charcoal accumulation rates (CHARs) at three lakes, and an index of area burned is inferred from long-term CHARs at these sites. ALFRESCO simulations of FRIs and annual area burned are based on prescribed vegetation and climate for 7-5 kyr BP and 5-0 kyr BP, inferred from pollen and stomata records and qualitative paleoclimate proxies. Two sets of experiments examine potential causes of increased burning between 7-5 and 5-0 kyr BP. (1) Static-vegetation scenarios: white spruce dominates with static mean temperature and total precipitation of the growing season for 7-0 kyr BP or with decreased temperature and/or increased precipitation for 5-0 kyr BP. (2) Changed-vegetation scenarios: black spruce dominates 5-0 kyr BP, with static temperature and precipitation or decreased temperature and/or increased precipitation. Median FRIs decreased between 7-5 and 5-0 kyr BP in empirical data and changed-vegetation scenarios but remained relatively constant in static-vegetation scenarios. Median empirical and simulated FRIs are not statistically different for 7-5 kyr BP and for two changed-vegetation scenarios (temperature decrease, precipitation increase) for 5-0 kyr BP. In these scenarios, cooler temperatures or increased precipitation dampened the effect of increased landscape flammability resulting from the increase in black spruce. CHAR records and all changed-vegetation scenarios indicate long-term increases in area burned between 7-5 and 5-0 kyr BP. The similarity of CHAR and ALFRESCO results demonstrates the compatibility of these independent data sets for investigating ecological mechanisms causing past fire-regime changes. The finding that vegetation flammability was a major driver of Holocene fire regimes is consistent with other investigations that suggest that landscape fuel characteristics will mediate the direct effects of future climate change on boreal fire regimes.
Nonfatal residential fire-related injuries treated in emergency departments--United States, 2001.
2003-09-26
During 2000, the most recent year for which national mortality data are available, 3,907 persons died in the United States from fire-related injuries; residential fires accounted for 2,955 (76%) of these deaths. The National Fire Protection Association (NFPA) reported that approximately 396,500 residential fires occurred in 2001. Injuries from residential fires are preventable by improving awareness of the common causes of fires and by using simple interventions (e.g., properly maintained smoke alarms and fire escape plans). Surveillance of fire-related injuries can aid prevention by increasing the understanding of these injuries and by identifying at-risk populations to target for interventions and education. To characterize nonfatal residential fire-related injuries treated in U.S. hospital emergency departments (EDs) during 2001, CDC analyzed data from the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP). This report summarizes the results of that analysis, which indicate that, in 2001, an estimated 25,717 nonfatal residential fire-related injuries were treated in U.S. hospital EDs. Fire prevention and safety interventions and education should target at-risk populations for fire-related injuries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueyagueler, T.; Karaman, H.
1995-12-31
In this paper fires due to spontaneous combustion in Middle Anatolian Lignite mine (OAL) which is the first fully mechanized underground lignite mine in Turkey, are studied. Since the installation of mechanization, due to spontaneous heating, four panel fires namely, AO1, AO2, AO3 and AO4 have broken out. During these fires, the concentrations of carbon monoxide, methane and the velocity of air are measured continuously by the Micro Minos Environmental monitoring system. For each fire, the environment where fire has started is examined and the possible causes of the fire are investigated. Also the precautions taken to extinguish the firemore » at different stages are described and the importance of the early detection of mine fire are discussed together with the limitations of the monitoring system the practical difficulties observed during the fire.« less
Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules
Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin
2015-01-01
Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time (tig), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO2) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires. PMID:28793434
Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.
Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin
2015-07-09
Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1973-01-01
The identification of fire hazards at the San Pablo Reservoir Test Site in California using ERTS-1 data is discussed. It is stated that the two primary fire hazards in the area are caused by wild oat plants and eucalyptus trees. The types of imagery used in conducting the study are reported. Aerial photographs of specific areas are included to show the extent of the fire hazards.
Effects of fire intensity on vital rates of an endemic herb of the Florida keys, USA
Liu, H.; Menges, E.S.; Snyder, J.R.; Koptur, S.; Ross, M.S.
2005-01-01
Fire intensity is one of the important components of a fire regime. However, relatively few studies have linked fire intensity with post-fire population vital rates. In this study, we explored the effects of fire intensity on population vital rates of Chamaecrista keyensis Pennell (Fabaceae) up to two years post-fire. C. keyensis is an endemic understory plant of pine rockland, a fire-dependent ecosystem of the Lower Florida Keys. We measured one fire intensity indicator, fire temperature reached by steel plates on the ground, during three prescribed fires at different sites. We followed marked individuals up to two years post-fire to derive annual survival, annual growth rate, percentage of fruiting plants, mean number of fruits per reproductive plant, and number of seedlings per census plot (1 m2) of C. keyensis. We found fire intensity had significant effects on reproduction in the first year post-fire only. More specifically, mean number of fruits and percentage of fruiting plants increased as fire intensity increased. Results from this study suggest that extremely low fire intensity caused by very short fire return intervals (e.g., less than three years) may not provide sufficient stimulation to reproduction to achieve the best post-fire recovery for C. keyensis.
Biological research on fire in the West
,
2005-01-01
Wildland fires are a natural feature of many ecosystems, including grasslands, forests, and shrublands. How-ever, years of fire exclusion have led to accumulations of dead fuels and increases in the density of fire-intolerant species. In most western states, recent fires burning in these altered ecosystems have caused significant damage and huge economic losses to homes, busi-nesses, and communities. They also have dis-turbed forests and rangelands as well as their associated watersheds, plants, and animals. Every western state is concerned about dam-age from such catastrophic fires, and there is strong interest from all sectors in prevent-ing and reducing the resulting damage in the future. There is also interest in the use of fire as a management tool for reducing hazards and restoring damaged ecosystems and for returning fire to its natural role in wilderness ecosystems.
Fire in the Brazilian Amazon: A Spatially Explicit Model for Policy Impact Analysis
NASA Technical Reports Server (NTRS)
Arima, Eugenio Y.; Simmons, Cynthia S.; Walker, Robert T.; Cochrane, Mark A.
2007-01-01
This article implements a spatially explicit model to estimate the probability of forest and agricultural fires in the Brazilian Amazon. We innovate by using variables that reflect farmgate prices of beef and soy, and also provide a conceptual model of managed and unmanaged fires in order to simulate the impact of road paving, cattle exports, and conservation area designation on the occurrence of fire. Our analysis shows that fire is positively correlated with the price of beef and soy, and that the creation of new conservation units may offset the negative environmental impacts caused by the increasing number of fire events associated with early stages of frontier development.
Shrub removal in reforested post-fire areas increases native plant species richness
Gabrielle N. Bohlman; Malcolm North; Hugh D. Safford
2016-01-01
Large, high severity fires are becoming more prevalent in Sierra Nevada mixed-conifer forests, largely due to heavy fuel loading and forest densification caused by past and current management practices. In post-fire areas distant from seed trees, conifers are often planted to re-establish a forest and to prevent a potential type-conversion to shrub fields. Typical...
Randy B. Foltz; Peter Robichaud
2013-01-01
Wildland fires often cause extreme changes in the landscape that drastically influence surface runoff and soil erosion, which can impact forest resources, aquatic habitats, water supplies, public safety, and forest access infrastructure such as forest roads. Little information is available on the effectiveness of various post-fire road treatments, thus this study was...
Neelam Poudyal; Cassandra Johnson Gaither; Scott Goodrick; J.M. Bowker; Jianbang Gan
2012-01-01
Wildland fire in the South commands considerable attention, given the expanding wildland urban interface (WUI) across the region. Much of this growth is propelled by higher income retirees and others desiring natural amenity residential settings. However, population growth in the WUI increases the likelihood of wildfire fire ignition caused by people, as humans account...
Determining fire history from old white pine stumps in an oak-pine forest
Richard P. Guyette; Daniel C. Dey; Chris McDonell
1995-01-01
Fire scars on stumps of white pine (Pinus strobus L.) in a red oak (Quercus rubra L.) white pine forest near Bracebridge, Ontario, were dated using dendrochronological methods. A chronological record of fires that caused basal scarring is preserved in the remnant white pine stumps, which were estimated to be up to 135 years old...
Laboratory investigation of fire protection coatings for creosote-treated timber railroad bridges
Carol A. Clausen; Robert H. White; James P. Wacker; Stan T. Lebow; Mark A. Dietenberger; Samuel L. Zelinka; Nicole M. Stark
2014-01-01
As the incidence of timber railroad bridge fires increases, so has the need to develop protective measures to reduce the risk from accidental ignitions primarily caused by hot metal objects. Of the six barrier treatments evaluated in the laboratory for their ability to protect timbers from fires sourced with ignition from hot metal objects only one intumescent coating...
Fighting forest fires in Brazil
José Carlos Mendes de Morais
2013-01-01
Fire has been used in Brazil for many years, but the increased use of this tool, combined with natural events and the presence of large forest and agricultural areas, has led to a significant jump in the number of forest fires, most of them caused by accident. To optimize existing resources and to cope with growing demand, action levels were adopted according to the...
Gerald J. Gottfried; Larry S. Allen; Peter L. Warren; Bill McDonald; Ronald J. Bemis; Carleton B. Edminster
2009-01-01
Fires caused by lightning or Native Americans were the major ecological factor in the borderlands region of Arizona, New Mexico, and Mexico prior to European settlement. Historical overgrazing and aggressive fire suppression have led to the encroachment of woody vegetation and accumulations of woody fuels in these grasslands. Ranchers associated with the Malpai...
Fuel loadings in southwestern ecosystems of the United States
Stephen S. Sackett; Sally M Haase
1996-01-01
Natural forest fuel loadings cause extreme fire behavior during dry, windy weather experienced during most fire seasons in the Southwest. Fire severity is also exacerbated from burning heavy fuels, including heavy humus layers on the forest floor. Ponderosa pine and mixed conifer stands possess more than 21.7 and 44.1 tons per acre of total forest floor fuel,...
A model of gas mixing into single-entrance tree cavities during wildland fires
A.S. Bova; G. Bohrer; Matthew Dickinson
2011-01-01
The level of protection to fauna provided by tree cavities during wildland fires is not well understood. Here we present a model for estimating the transport of combustion gases into cylindrical, single-entrance cavities during exposures caused by different wildland fire scenarios. In these shelters, the entrance occurs near the top of the cavity. This empirical model...
A Survey of Rural Population Density and Forest Fire Occurrence in the South, 1956-1970
A.T. Altobellis
1983-01-01
Rural residents comprise a high risk potential population regarding person-caused wildfire incidence in the South. However, rural population density (RPD=numker of people per square mile) was found to be indeterminately associated with fire occurrence rate (FOR=number of fires per million acres protected) in protected lands in 13 Southern states. Thus, changes in...
Daniel C. Dey; Alejandro A. Royo; Patrick H. Brose; Todd F. Hutchinson; Martin A. Spetich; Scott H. Stoleson
2010-01-01
Oak (Quercus L.) is an abundant and widely distributed genus in eastern North America. A history of periodic fire, grazing, canopy disturbance and timber harvesting has favored oak's dominance. But, changes in this regime toward much less fire or complete fire suppression, and selective cutting are causing the successional replacement of oak....
Management adaptation to fires in the wildland-urban risk areas in Spain
Gema Herrero-Corral
2013-01-01
Forest fires not only cause damage to ecosystems but also result in major socio-economic losses and in the worst cases loss of human life. Specifically, the incidence of fires in the overlapping areas between building structures and forest vegetation (wildland-urban interface, WUI) generates highly-complex emergencies due to the presence of people and goods....
Contribution of forest fires to concentrations of particulate matter in Singapore
NASA Astrophysics Data System (ADS)
Spracklen, D. V.; Reddington, C.; Yoshioka, M.; Arnold, S.; Balasubramanian, R.
2013-12-01
Singapore is regularly exposed to substantial levels of transboundary air pollution arising from uncontrolled forest and peat fires from specific regions within Southeast Asia. This air pollution has detrimental impacts on the lives of Singapore residents and on sensitive ecosystems. In June 2013, forest fires resulted in concentrations of particulate matter greatly exceeding levels recommended for human health, causing substantial public concern. We apply two different methods to quantify the impact of forest fires on the concentrations of particulate matter with diameter less than 2.5 micrometres (PM2.5) in Singapore. Firstly, we use a global aerosol model (GLOMAP) in combination with fire emissions from GFED3 to simulate PM2.5 concentrations over the period 1998-2009. We evaluate simulated PM2.5 concentrations against long-term observations from Singapore. To identify the contributions of fires from different source regions to PM2.5 concentrations we run multiple simulations with and without fire emissions from specific regions across Southeast Asia. Secondly, we apply an atmospheric back trajectory model in combination with the GFED3 fire emissions to calculate exposure of air masses arriving in Singapore to fire emissions. Both methods use meteorology from the European Centre for Medium Range Weather Forecasts and are consistent with the large-scale atmospheric flow from the assimilated observations. We find that both methods give consistent results, with forest fires increasing PM2.5 concentrations in Singapore predominately during April to October. Forest and peat fires in Sumatra and Kalimantan cause the greatest degradation of air quality in Singapore. The contribution of fires to PM2.5 concentrations in Singapore exhibits strong interannual variability. During years with a strong contribution from fires, our simulations show that the prevention of fires in southern Sumatra would reduce regional PM2.5 concentrations around Singapore by more than a factor of two, potentially allowing Singapore to meet World Health Organisation guidelines for annual mean concentrations of PM2.5. Acting to reduce forest and peat fires in southern Sumatra, in particular provinces of Lampung, South Sumatra and Jambi, and southern Kalimantan would likely have the greatest environmental benefits to Singapore and surrounding regions.
Vorticity and turbulence observations during a wildland fire on sloped terrain
NASA Astrophysics Data System (ADS)
Contezac, J.; Clements, C. B.; Hall, D.; Seto, D.; Davis, B.
2013-12-01
Fire-atmosphere interactions represent an atmospheric boundary-layer regime typically associated with complex circulations that interact with the fire front. In mountainous terrain, these interactions are compounded by terrain-driven circulations that often lead to extreme fire behavior. To better understand the role of complex terrain on fire behavior, a set of field experiments was conducted in June 2012 in the Coast Range of central California. The experiments were conducted on steep valley sidewalls to allow fires to spread upslope. Instrumentation used to measure fire-atmosphere interactions included three micrometeorological towers arranged along the slope and equipped with sonic anemometers, heat flux radiometers, and fine-wire thermocouples. In addition, a scanning Doppler lidar was used to measured winds within and above the valley, and airborne video imagery was collected to monitor fire behavior characteristics. The experimental site was located on the leeside of a ridge where terrain-induced flow and opposing mesoscale winds aloft interacted to create a zone of high wind shear. During the burn, the interaction between the fire and atmosphere caused the generation of several fire whirls that develop as a result of several environmental conditions including shear-generated vorticity and fire front geometry. Airborne video imagery indicated that upon ignition, the plume tilted in the opposite direction from the fire movement suggesting that higher horizontal momentum from aloft was brought to the surface, resulting in much slower fire spread rates due to opposing winds. However, after the fire front had passed the lowest tower located at the base of the slope, a shift in wind speed and direction caused a fire whirl to develop near an L-shaped kink in the fire front. Preliminary results indicate that at this time, winds at the bottom of the slope began to rotate with horizontal vorticity values of -0.2 s^-1. Increased heat flux values at this time indicated that winds were continuing to transport heat towards the slope. As the winds shifted with the fire whirl, heat flux values returned to ambient indicating the passage of the fire plume. A 0.15 hPa decrease in pressure was also observed at the first tower during this period. Further analyses to be presented include vorticity estimates from the Doppler lidar and turbulence kinetic energy measurements from the in situ towers.
Fire feedbacks facilitate invasion of pine savannas by Brazilian pepper (Schinus terebinthifolius).
Stevens, Jens T; Beckage, Brian
2009-10-01
* Fire disturbance can mediate the invasion of ecological communities by nonnative species. Nonnative plants that modify existing fire regimes may initiate a positive feedback that can facilitate their continued invasion. Fire-sensitive plants may successfully invade pyrogenic landscapes if they can inhibit fire in the landscape. * Here, we investigated whether the invasive shrub Brazilian pepper (Schinus terebinthifolius) can initiate a fire-suppression feedback in a fire-dependent pine savanna ecosystem in the southeastern USA. * We found that prescribed burns caused significant (30-45%) mortality of Brazilian pepper at low densities and that savannas with more frequent fires contained less Brazilian pepper. However, high densities of Brazilian pepper reduced fire temperature by up to 200 degrees C, and experienced as much as 80% lower mortality. * A cellular automaton model was used to demonstrate that frequent fire may control low-density populations, but that Brazilian pepper may reach a sufficient density during fire-free periods to initiate a positive feedback that reduces the frequency of fire and converts the savanna to an invasive-dominated forest.
Manner of Death Determination in Fire Fatalities: 5-Year Autopsy Data of Istanbul City.
Esen Melez, İpek; Arslan, Murat Nihat; Melez, Deniz Oguzhan; Gürler, Ahmet Selçuk; Büyük, Yalçin
2017-03-01
Death resulting from burns is an important social problem and a frequent accident. However, because approximately 10% of cases are estimated to result from a fire that was deliberately started, all fire-related deaths should be treated as suspicious, and the cause of a fire should be investigated. For the bodies recovered from the scene of a fire, the manner of death could also be suicide or homicide. The objective of this study was to contribute to the clarification of controversial data present in the literature on the manner of death determination of fire-related deaths, through evaluation of autopsy findings of bodies recovered from fires. We reviewed 20,135 autopsies performed in a 5-year period, in Istanbul, as the whole autopsy data of the city and found 133 fire-related deaths. The death scene investigation reports and other judicial documents, autopsy findings, and toxicological analysis results were evaluated to determine the parameters of age, sex, level of the burn, vital signs [red flare; soot in the lower respiratory tract, esophagus, and/or stomach; and screening of carboxyhemoglobin (COHb) levels in the blood], toxicological substances, presence of accelerants, cause of death, and manner of death. The manner of death was determined to be an accident in 98 (73.7%) and homicide in 12 (9%) cases, whereas there was no suicide. In addition, it could not be determined in 23 (17.2%) cases. In accidental deaths, the most frequent cause of death was COHb poisoning with statistically significant blood COHb levels greater than 10%. Further, the presence of soot in the lower respiratory tract, esophagus, and/or stomach and the existence of at least 1 or 2 vital signs together were found to be valid deterministic criteria with statistical significance in terms of identifying the manner of death.
Iglesias, Virginia; Yospin, Gabriel I; Whitlock, Cathy
2014-01-01
Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity.
Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies
NASA Technical Reports Server (NTRS)
Chen, Yang; Randerson, James T.; Morton, Douglas C.; DeFries, Ruth S.; Collatz, G. James; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam E.
2011-01-01
Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. We investigated the relationship between year-to-year changes in fire activity in South America and sea surface temperatures. We found that the Oceanic Ni o Index was correlated with interannual fire activity in the eastern Amazon, whereas the Atlantic Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model to forecast regional fire season severity with lead times of 3 to 5 months. Our approach may contribute to the development of an early warning system for anticipating the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for climate and air quality.
Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling
Iglesias, Virginia; Yospin, Gabriel I.; Whitlock, Cathy
2015-01-01
Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity. PMID:25657652
Climate effects on fire regimes and tree recruitment in Black Hills ponderosa pine forests.
Brown, Peter M
2006-10-01
Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Niñas, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Niño, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.
Postfire responses of the woody flora of Central Chile: Insights from a germination experiment
Paula, Susana; Cavieres, Lohengrin A.; Pausas, Juli G.
2017-01-01
Fire is a selective agent shaping plant traits and community assembly in fire-prone ecosystems. However, in ecosystems with no fire history, it can be a cause of land degradation when it is suddenly introduced by humans, as plant species may not be able to respond to such novel disturbance. Unlike other Mediterranean-type ecosystems (MTE) of the world, natural fires have not been frequent during the Quaternary in the matorral of Central Chile, and thus, plant adaptive responses are expected to be uncommon. We evaluated the effect of heat shock on seed survival and germination of 21 native woody plants of the Chilean matorral and compiled information on smoke-stimulation and resprouting, to evaluate the importance of fire-adaptive responses in the context of the other MTE. We found that in the Chilean woody flora negative seed responses to fire cues were more frequent than positive responses. Although resprouting is a relatively widespread trait, fire-stimulated germination is not as common in the Chilean matorral as in other MTE. The seeds of seven endemic species were strongly damaged by fire cues and this should be considered in post-fire restoration planning. However, our results also showed that many species were resistant to elevated doses of heat shock and in some, germination was even stimulated. Thus, future research should focus on the evolutionary causes of these responses. These findings could help to develop strategies for fire management in the Chilean matorral. In addition, they will improve our understanding of the evolutionary forces that shaped this plant community and to better frame this region among the other MTE worldwide. PMID:28704449
Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang
2015-01-01
The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.
Postfire responses of the woody flora of Central Chile: Insights from a germination experiment.
Gómez-González, Susana; Paula, Susana; Cavieres, Lohengrin A; Pausas, Juli G
2017-01-01
Fire is a selective agent shaping plant traits and community assembly in fire-prone ecosystems. However, in ecosystems with no fire history, it can be a cause of land degradation when it is suddenly introduced by humans, as plant species may not be able to respond to such novel disturbance. Unlike other Mediterranean-type ecosystems (MTE) of the world, natural fires have not been frequent during the Quaternary in the matorral of Central Chile, and thus, plant adaptive responses are expected to be uncommon. We evaluated the effect of heat shock on seed survival and germination of 21 native woody plants of the Chilean matorral and compiled information on smoke-stimulation and resprouting, to evaluate the importance of fire-adaptive responses in the context of the other MTE. We found that in the Chilean woody flora negative seed responses to fire cues were more frequent than positive responses. Although resprouting is a relatively widespread trait, fire-stimulated germination is not as common in the Chilean matorral as in other MTE. The seeds of seven endemic species were strongly damaged by fire cues and this should be considered in post-fire restoration planning. However, our results also showed that many species were resistant to elevated doses of heat shock and in some, germination was even stimulated. Thus, future research should focus on the evolutionary causes of these responses. These findings could help to develop strategies for fire management in the Chilean matorral. In addition, they will improve our understanding of the evolutionary forces that shaped this plant community and to better frame this region among the other MTE worldwide.
Aboriginal hunting buffers climate-driven fire-size variability in Australia's spinifex grasslands.
Bliege Bird, Rebecca; Codding, Brian F; Kauhanen, Peter G; Bird, Douglas W
2012-06-26
Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet-dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes.
One thousand years of fires: Integrating proxy and model data
Kehrwald, Natalie; Aleman, Julie C.; Coughlan, Michael; Courtney Mustaphi, Colin J.; Githumbi, Esther N.; Magi, Brian I.; Marlon, Jennifer R.; Power, Mitchell J.
2016-01-01
The expected increase in fire activity in the upcoming decades has led to a surge in research trying to understand their causes, the factors that may have influenced similar times of fire activity in the past, and the implications of such fire activity in the future. Multiple types of complementary data provide information on the impacts of current fires and the extent of past fires. The wide array of data encompasses different spatial and temporal resolutions (Figure 1) and includes fire proxy information such as charcoal and tree ring fire scars, observational records, satellite products, modern emissions data, fire models within global land cover and vegetation models, and sociodemographic data for modeling past human land use and ignition frequency. Any single data type is more powerful when combined with another source of information. Merging model and proxy data enables analyses of how fire activity modifies vegetation distribution, air and water quality, and proximity to cities; these analyses in turn support land management decisions relating to conservation and development.
Lester, Rosemary A.; Johns, Richard K.
2014-01-01
During voluntary contraction, firing rates of individual motor units (MUs) increase modestly over a narrow force range beyond which little additional increase in firing rate is seen. Such saturation of MU discharge may be a consequence of extrinsic factors that limit net synaptic excitation acting on motor neurons (MNs) or may be due to intrinsic properties of the MNs. Two sets of experiments involving recording of human biceps brachii MUs were carried out to evaluate saturation. In the first set, the extent of saturation was quantified for 136 low-threshold MUs during isometric ramp contractions. Firing rate-force data were best fit by a saturating function for 90% of MUs recorded with a maximum rate of 14.8 ± 2.0 impulses/s. In the second set of experiments, to distinguish extrinsic from intrinsic factors underlying saturation, we artificially augmented descending excitatory drive to biceps MNs by activation of muscle spindle afferents through tendon vibration. We examined the change in firing rate caused by tendon vibration in 96 MUs that were voluntarily activated at rates below and at saturation. Vibration had little effect on the discharge of MUs that were firing at saturation frequencies but strongly increased firing rates of the same units when active at lower frequencies. These results indicate that saturation is likely caused by intrinsic mechanisms that prevent further increases in firing rate in the presence of increasing synaptic excitation. Possible intrinsic cellular mechanisms that limit firing rates of motor units during voluntary effort are discussed. PMID:25475356
Holz, Andrés; Wood, Sam W; Veblen, Thomas T; Bowman, David M J S
2015-01-01
Athrotaxis cupressoides is a slow-growing and long-lived conifer that occurs in the subalpine temperate forests of Tasmania, a continental island to the south of Australia. In 1960-1961, human-ignited wildfires occurred during an extremely dry summer that killed many A. cupressoides stands on the high plateau in the center of Tasmania. That fire year, coupled with subsequent regeneration failure, caused a loss of ca. 10% of the geographic extent of this endemic Tasmanian forest type. To provide historical context for these large-scale fire events, we (i) collected dendroecological, floristic, and structural data, (ii) documented the postfire survival and regeneration of A. cupressoides and co-occurring understory species, and (iii) assessed postfire understory plant community composition and flammability. We found that fire frequency did not vary following the arrival of European settlers, and that A. cupressoides populations were able to persist under a regime of low-to-mid severity fires prior to the 1960 fires. Our data indicate that the 1960 fires were (i) of greater severity than previous fires, (ii) herbivory by native marsupials may limit seedling survival in both burned and unburned A. cupressoides stands, and (iii) the loss of A. cupressoides populations is largely irreversible given the relatively high fuel loads of postfire vegetation communities that are dominated by resprouting shrubs. We suggest that the feedback between regeneration failure and increased flammability will be further exacerbated by a warmer and drier climate causing A. cupressoides to contract to the most fire-proof landscape settings. © 2014 John Wiley & Sons Ltd.
Sensitivity of ALOS/PALSAR imagery to forest degradation by fire in northern Amazon
NASA Astrophysics Data System (ADS)
Martins, Flora da Silva Ramos Vieira; dos Santos, João Roberto; Galvão, Lênio Soares; Xaud, Haron Abrahim Magalhães
2016-07-01
We evaluated the sensitivity of the full polarimetric Phased Array type L-band Synthetic Aperture Radar (PALSAR), onboard the Advanced Land Observing Satellite (ALOS), to forest degradation caused by fires in northern Amazon, Brazil. We searched for changes in PALSAR signal and tri-dimensional polarimetric responses for different classes of fire disturbance defined by fire frequency and severity. Since the aboveground biomass (AGB) is affected by fire, multiple regression models to estimate AGB were obtained for the whole set of coherent and incoherent attributes (general model) and for each set separately (specific models). The results showed that the polarimetric L-band PALSAR attributes were sensitive to variations in canopy structure and AGB caused by forest fire. However, except for the unburned and thrice burned classes, no single PALSAR attribute was able to discriminate between the intermediate classes of forest degradation by fire. Both the coherent and incoherent polarimetric attributes were important to explain AGB variations in tropical forests affected by fire. The HV backscattering coefficient, anisotropy, double-bounce component, orientation angle, volume index and HH-VV phase difference were PALSAR attributes selected from multiple regression analysis to estimate AGB. The general regression model, combining phase and power radar metrics, presented better results than specific models using coherent or incoherent attributes. The polarimetric responses indicated the dominance of VV-oriented backscattering in primary forest and lightly burned forests. The HH-oriented backscattering predominated in heavily and frequently burned forests. The results suggested a greater contribution of horizontally arranged constituents such as fallen trunks or branches in areas severely affected by fire.
Forest fires caused by lightning activity in Portugal
NASA Astrophysics Data System (ADS)
Russo, Ana; Ramos, Alexandre M.; Benali, Akli; Trigo, Ricardo M.
2017-04-01
Wildfires in southern Europe have been causing in the last decades extensive economic and ecological losses and, even human casualties (e.g. Pereira et al., 2011). According to statistics provided by the EC-JRC European Forest Fires Information System (EFFIS) for Europe, the years of 2003 and 2007 represent the most dramatic fire seasons since the beginning of the millennium, followed by the years 2005 and 2012. These extreme years registered total annual burned areas for Europe of over 600.000 ha, reaching 800.000 ha in 2003. Over Iberia and France, the exceptional fire seasons registered in 2003 and 2005 were coincident respectively with one of the most severe heatwaves (Bastos et al., 2014) and droughts of the 20th century (Gouveia et al., 2009). On the other hand, the year 2007 was very peculiar as the area of the Peloponnese was struck by a severe winter drought followed by a subsequent wet spring, being also stricken by three heat heaves during summer and played a major role increasing the susceptibility of the region to wildfires (Gouveia et al., 2016). Some countries have a relatively large fraction of fires caused by natural factors such as lightning, e.g. northwestern USA, Canada, Russia. In contrast, Mediterranean countries such as Portugal has only a small percentage of fire records caused by lightning. Although significant uncertainties remain for the triggering mechanism for the majority of fires registered in the catalog, since they were cataloged without a likely cause. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2002-2009, with the original data provided by the National forestry Authority; 2) lightning discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Portuguese Institute for Sea and Atmosphere (IPMA). The main objective of this work was to evaluate and quantify the relations between the wildfires' occurrence and the lightning activity. In particularly we were able to verify if wildfires which were identified as "ignited by lightning" by comparing its location to the lightning discharges location database. Furthermore we have also investigated possible fire ignition by lightning discharges that have not yet been labeled in the PRFD by comparing daily data from both datasets. - Bastos A., Gouveia C.M., Trigo R.M., Running S.W., 2014. Biogeosciences, 11, 3421-3435. - Pereira M.G., B.D. Malamud R.M. Trigo, P.I. Alves, 2011. Nat. Hazards Earth Syst. Sci., 11, 3343-3358. - Gouveia C., Trigo R.M., DaCamara C.C., 2009. Nat. Hazards Earth Syst. Sci., 9, 185-195 - Gouveia C.M., Bistinas I., Liberato M.L.R., Bastos A., Koutsiasd N., Trigo R., 2016. Agricultural and Forest Meteorology, 218-219, 135-145. Acknowledgements Research performed was supported by FAPESP/FCT Project Brazilian Fire-Land-Atmosphere System (BrFLAS) (1389/2014 and 2015/01389-4). Ana Russo thanks FCT for granted support (SFRH/BPD/99757/2014). A. M. Ramos was also supported by a FCT postdoctoral grant (FCT/DFRH/ SFRH/BPD/84328/2012).
Motorcoach and school bus fire safety analysis.
DOT National Transportation Integrated Search
2016-11-01
This report documents a motorcoach and school bus fire safety analysis performed by the John A. Volpe National Transportation Systems Center (Volpe) for the Federal Motor Carrier Safety Administration. This report aims to: 1) identify the causes, fre...
Motorcoach Fire Safety Analysis.
DOT National Transportation Integrated Search
2009-07-01
This purpose of this study was to collect and analyze information from Government, industry, and media sources on the causes, frequency, and severity of motorcoach fires in the U.S., and to identify potential risk reduction measures. The Volpe Center...
Motorcoach and school bus fire safety analysis : technology brief.
DOT National Transportation Integrated Search
2016-11-01
In 2009, the Federal Motor Carrier Safety Administration (FMCSA) published findings from a study entitled Motorcoach Fire Safety Analysis. The objective of this study was to gather and analyze information regarding the causes, frequency, and se...
40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EPA's satisfaction that emissions from prescribed fires caused a specific air pollution concentration... from prescribed fires that EPA determines meets the definition in § 50.1(j), and provided that the...
40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EPA's satisfaction that emissions from prescribed fires caused a specific air pollution concentration... from prescribed fires that EPA determines meets the definition in § 50.1(j), and provided that the...
40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EPA's satisfaction that emissions from prescribed fires caused a specific air pollution concentration... from prescribed fires that EPA determines meets the definition in § 50.1(j), and provided that the...
Growing Wildfire Near Big Sur, California Imaged by NASA Terra Spacecraft
2016-08-09
The Soberanes fire, in Central California near Big Sur, had grown to more than 67,000 acres when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft captured this image on Aug. 6, 2016. More than 4,800 personnel are battling the blaze, which is now 50 percent contained. The fire has destroyed 57 homes and 11 outbuildings and caused one fatality. Evacuation orders are still in effect for a number of nearby communities. The fire was caused by an illegal unattended campfire. Vegetation is depicted in red colors; burned areas are dark grey; clouds are white; smoke and ash are light grey. Yellow indicates active fires, detected on ASTER's thermal infrared channels. The image covers an area of 19 by 26 miles (30 by 42 kilometers), and is located at 36.4 degrees north, 121.8 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20725
ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS
NASA Astrophysics Data System (ADS)
Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.
2009-12-01
Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.
Impact of anthropogenic climate change on wildfire across western US forests
Williams, A. Park
2016-01-01
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000–2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984–2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting. PMID:27791053
Firing patterns transition and desynchronization induced by time delay in neural networks
NASA Astrophysics Data System (ADS)
Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun
2018-06-01
We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.
2012-01-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue Services are on the scene to support a controlled burn in the vicinity of the Industrial Area at NASA's Kennedy Space Center in Florida. The burn, managed by the U.S. Fish and Wildlife Service, targeted 2,174 acres near Kennedy's administrative complex. Shifting winds caused the fire to flare up in places to dramatic effect. Limited visibility caused by the smoke required NASA Security to close some roadways. The burn, which began during the 8 o'clock hour this morning, is expected to be extinguished this evening. Controlled burns are commonplace on the center to reduce the likelihood of an unplanned brush fire during Central Florida's dry season. Photo Credit: NASA/Jim Grossmann
Simulation and Experiment of Air Quality Effects of Prescribed Fires in the Southeast
Yongqiang Liu; Gary Achtemeier; Scott Goodrick
2005-01-01
Wildfires can cause degradation of air quality by releasing large amounts of particulate matter (PM) and precursors of ozone (Sandberg et al., 1999; Riebau and Fox, 2001). EPA has issued the Interim Air Quality Policy on Wildland and Prescribed Fire to protect public health and welfare by mitigating the impacts of air pollutant emissions from wildland fires on air...
Christopher J. Fettig; Robert R. Borys; Stephen R. McKelvey; Christopher P. Dabney
2008-01-01
Mechanical thinning and the application of prescribed fire are commonly used tools in the restoration of fire-adapted forest ecosystems. However, few studies have explored their effects on subsequent amounts of bark beetle caused tree mortality in interior ponderosa pine, Pinus ponderosa Dougl. ex P. & C. Laws. var. ponderosa. In...
Causes and behavior of a tornadic fire-whirlwind
Arthur R. Pirsko; Leo M. Sergius; Carl W. Hickerson
1965-01-01
A destructive whirlwind of tornadic force was formed in a 600-acre brush fire burning on the lee side of a ridge near Santa Barbara on March 7, 1964. The fire whirlwind, formed in a post-frontal unstable air mass, cut a mile long path, injured 4 people, destroyed 2 houses, a barn, and 4 automobiles, and wrecked a 100-tree avocado orchard.[higher-...
Rodman Linn; Kerry Anderson; Judith Winterkamp; Alyssa Broos; Michael Wotton; Jean-Luc Dupuy; Francois Pimont; Carleton Edminster
2012-01-01
Field experiments are one way to develop or validate wildland fire-behavior models. It is important to consider the implications of assumptions relating to the locality of measurements with respect to the fire, the temporal frequency of the measured data, and the changes to local winds that might be caused by the experimental configuration. Twenty FIRETEC simulations...
Fire effects on the mobilization and uptake of nitrogen by cheatgrass (Bromus tectorum L.)
Brittany G. Johnson; Dale W. Johnson; Jeanne C. Chambers; Robert R. Blank
2011-01-01
Cheatgrass (Bromus tectorum L.), an invasive annual grass, is displacing native species and causing increased fire frequency in the Great Basin of the southwestern United States. Growth and nitrogen uptake patterns by cheatgrass were examined in a greenhouse study using soils from sites with the same soil type but different fire histories: 1) an area that burned in...
Climate and wildfires in the North American boreal forest.
Macias Fauria, Marc; Johnson, E A
2008-07-12
The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire-climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire-climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire-climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.
Exogenous lipoid pneumonia – a case report of a fire-eater
Pielaszkiewicz-Wydra, Magdalena; Homola-Piekarska, Bożena; Szcześniak, Ewa; Ciołek-Zdun, Monika; Fall, Andrzej
2012-01-01
Summary Background: Exogenous lipoid pneumonia is an uncommon condition caused by inhalation or aspiration of a fatty substance. It usually presents as chronic respiratory illness mimicking interstitial lung diseases. Acute exogenous lipoid pneumonia is uncommon and typically is caused by an episode of aspiration of a large quantity of a petroleum-based product. Radiological findings vary and may imitate many other diseases. Case Report: We present a rare case of acute exogenous lipoid pneumonia in a fire-eater who aspirated liquid paraffin during his flame-blowing show (fire-eater’s lung). He was admitted to the hospital with productive cough, fever, hemoptysis, chest pain and dyspnea. Diagnosis was made on the basis of history of exposure to fatty substance, characteristic findings in CT examination and presence of lipid-laden macrophages in bronchoalveolar lavage fluid. Conclusions: Acute exogenous lipoid pneumonia is a very rare disease that typically occurs in fire-eaters and is called a fire-eater’s lung. The diagnosis is made on the basis of typical history and radiological, as well as histopathological findings. PMID:23269939
The impact of state fire safe cigarette policies on fire fatalities, injuries, and incidents.
Folz, David H; Shults, Chris
Cigarettes are a leading cause of civilian deaths in home fires. Over the last decade, state fire service leaders and allied interest groups succeeded in persuading state lawmakers to require manufacturers to sell only low-ignition strength or "fire safe" cigarettes as a strategy to reduce these fatalities and the injuries and losses that stem from them. This article examines whether the states' fire safe cigarette laws actually helped to save lives, prevent injuries, and reduce the incidence of home fires ignited by cigarettes left unattended by smokers. Controlling for the effects of key demographic, social, economic, and housing variables, this study finds that the states' fire-safe cigarette policies had significant impacts on reducing the rate of smoking-related civilian fire deaths and the incidence of fires started by tobacco products. The findings also suggest that the states' fire safe cigarette policies may have helped to reduce the rate of smoking-related fire injuries. The study shows that collective actions by leaders in the fire service across the states can result in meaningful policy change that protects lives and advances public safety even when a political consensus for action is absent at the national level.
Millimeter waves thermally alter the firing rate of the Lymnaea pacemaker neuron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, S.I.; Kochetkova, N.V.; Ziskin, M.C.
1997-05-01
The effects of millimeter waves (mm-waves, 75 GHz) and temperature elevation on the firing rate of the BP-4 pacemaker neuron of the pond snail Lymnaea stagnalis were studied by using microelectrode techniques. The open end of a rectangular waveguide covered with a thin Teflon film served as a radiator. Specific absorption rates (SARs), measured in physiological solution at the radiator outlet, ranged from 600 to 4,200 W/kg, causing temperature rises from 0.3 to 2.2 C, respectively. Irradiation at an SAR of 4,200 W/kg caused a biphasic change in the firing rate, i.e., a transient decrease in the firing rate followedmore » by a gradual increase to a new level that was 68 {+-} 21% above control. The biphasic changes in the firing rate were reproduced by heating under the condition that the magnitude (2 C) and the rate of temperature rise were equal to those produced by the irradiation. The addition of 0.05 mM of ouabain caused the disappearance of transient responses of the neuron to the irradiation. It was shown that the rate of temperature rise played an important role in the development of a transient neuronal response. The threshold stimulus for a transient response of the BP-4 neutron found in warming experiments was a temperature rise of 0.0025 C/s.« less
Jensen, Mallory A.; Morishige, Ashley E.; Chakraborty, Sagnik; ...
2018-02-02
Light- and elevated temperature-induced degradation (LeTID) is a detrimental effect observed under operating conditions in p-type multicrystalline silicon (mc-Si) solar cells. In this paper, we employ synchrotron-based techniques to study the dissolution of precipitates due to different firing processes at grain boundaries in LeTID-affected mc-Si. The synchrotron measurements show clear dissolution of collocated metal precipitates during firing. We compare our observations with degradation behavior in the same wafers. The experimental results are complemented with process simulations to provide insight into the change in bulk point defect concentration due to firing. Several studies have proposed that LeTID is caused by metal-richmore » precipitate dissolution during contact firing, and we find that the solubility and diffusivity are promising screening metrics to identify metals that are compatible with this hypothesis. While slower and less soluble elements (e.g., Fe and Cr) are not compatible according to our simulations, the point defect concentrations of faster and more soluble elements (e.g., Cu and Ni) increase after a high-temperature firing process, primarily due to emitter segregation rather than precipitate dissolution. Finally, these results are a useful complement to lifetime spectroscopy techniques, and can be used to evaluate additional candidates in the search for the root cause of LeTID.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Mallory A.; Morishige, Ashley E.; Chakraborty, Sagnik
Light- and elevated temperature-induced degradation (LeTID) is a detrimental effect observed under operating conditions in p-type multicrystalline silicon (mc-Si) solar cells. In this paper, we employ synchrotron-based techniques to study the dissolution of precipitates due to different firing processes at grain boundaries in LeTID-affected mc-Si. The synchrotron measurements show clear dissolution of collocated metal precipitates during firing. We compare our observations with degradation behavior in the same wafers. The experimental results are complemented with process simulations to provide insight into the change in bulk point defect concentration due to firing. Several studies have proposed that LeTID is caused by metal-richmore » precipitate dissolution during contact firing, and we find that the solubility and diffusivity are promising screening metrics to identify metals that are compatible with this hypothesis. While slower and less soluble elements (e.g., Fe and Cr) are not compatible according to our simulations, the point defect concentrations of faster and more soluble elements (e.g., Cu and Ni) increase after a high-temperature firing process, primarily due to emitter segregation rather than precipitate dissolution. Finally, these results are a useful complement to lifetime spectroscopy techniques, and can be used to evaluate additional candidates in the search for the root cause of LeTID.« less
NASA Astrophysics Data System (ADS)
Meddens, A. J.; Hicke, J. A.; Edburg, S. L.; Lawrence, D. M.
2013-12-01
Wildfires and bark beetle outbreaks cause major forest disturbances in the western US, affecting ecosystem productivity and thereby impacting forest carbon cycling and future climate. Despite the large spatial extent of tree mortality, quantifying carbon flux dynamics following fires and bark beetles over larger areas is challenging because of forest heterogeneity, varying disturbance severities, and field observation limitations. The objective of our study is to estimate these dynamics across the western US using the Community Land Model (version CLM4.5-BGC). CLM4.5-BGC is a land ecosystem model that mechanistically represents the exchanges of energy, water, carbon, and nitrogen with the atmosphere. The most recent iteration of the model has been expanded to include vertically resolved soil biogeochemistry and includes improved nitrogen cycle representations including nitrification and denitrification and biological fixation as well as improved canopy processes including photosynthesis. Prior to conducting simulations, we modified CLM4.5-BGC to include the effects of bark beetle-caused tree mortality on carbon and nitrogen stocks and fluxes. Once modified, we conducted paired simulations (with and without) fire- and bark beetle-caused tree mortality by using regional data sets of observed mortality as inputs. Bark beetle-caused tree mortality was prescribed from a data set derived from US Forest Service aerial surveys from 1997 to 2010. Annual tree mortality area was produced from observed tree mortality caused by bark beetles and was adjusted for underestimation. Fires were prescribed using the Monitoring Trends in Burn Severity (MTBS) database from 1984 to 2010. Annual tree mortality area was produced from forest cover maps and inclusion of moderate- and high-severity burned areas. Simulations show that maximum yearly reduction of net ecosystem productivity (NEP) caused by bark beetles is approximately 20 Tg C for the western US. Fires cause similar reductions in NEP, although the temporal pattern is different. The reductions in NEP from these major disturbances are similar to the variation in NEP caused by climatic conditions. When less favorable climatic conditions and these disturbances are co-occurring, forests switch from a carbon sink to a carbon source across the western US. This work increases understanding of the role of natural disturbances in the forest carbon budget of the western US.
NASA Astrophysics Data System (ADS)
Shumack, Samuel; Hesse, Paul; Turner, Liam
2017-12-01
This study aims to determine the common response of coastal sand dunes in Western Australia (WA) to fire on decadal time-scales, in terms of ecological-geomorphic-climatic interactions to test the hypothesis that fire plays a role in coastal dune destabilisation. Fires are commonly suggested to have contributed to widespread dune reactivation in Australia and globally, a hypothesis that is relatively untested. We used data from the Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager missions to monitor changes in surface coverage on coastal sand dunes in south-west WA after fires. We analysed 31 fire scars from 1988 to 2016 in two Landsat scenes on the west and south coast of WA. Recovery ratios derived from the Normalised Difference Vegetation Index (NDVI) were used to monitor patterns in post-fire biomass and surface cover. Recovery ratios are correlated with indices of burn severity, and meteorological data to investigate relationships. We also used Maximum Likelihood Classification to monitor changes in bare sand area. Results suggest that recovery followed a strongly consistent pattern, and is characterised by rapid vegetation cover re-establishment within six to twelve months. Prior to this, some aeolian activity may have occurred but without substantial surface changes. Initial germination and/or resprouting were followed by steady growth up to seven years, where NDVI typically neared pre-fire values. Some variation in early recovery occurred between the west and south coast, possibly owing to relative proportions of reseeding and resprouting plants. A log regression explained 75% of the recovery pattern (79% on the south coast). Precipitation had some ability to explain recovery up to nine months post-fire (r2 = 0.29 to 0.54). No relationships were observed between estimates of burn severity and recovery. After nine months, the biggest cause of spatial variation in recovery was the pre-fire community composition and related seedbank or resprouting density. Image classification did not identify any new blowout features except where fires were not the primary cause. Results suggest that fires are not presently contributing to the destabilisation of coastal dunes in south-west WA.
TETRAMETHRIN AND DDT INHIBIT SPONTANEOUS FIRING IN CORTICAL NEURONAL NETWORKS
The insecticidal and neurotoxic effects of pyrethroids result from prolonged sodium channel inactivation, which causes alterations in neuronal firing and communication. Previously, we determined the relative potencies of 11 type I and type II pyrethroid insecticides using microel...
Vitor Afonso Hoeflich; Alexandre França Tetto; Antonio Carlos Batista
2013-01-01
It is widely acknowledged that the fires have caused severe impact in the world, and their frequency and intensity tend to increase as a result of ongoing climate changes which have occurred over the past decades. It should be also noted that the urban-rural interface has attracted the attention of governments by the concentration of the number of fire...
Jose F. Negron; Joel McMillin; Carolyn H. Sieg; James F. Fowler; Kurt K. Allen; Linda L. Wadleigh; John A. Anhold; Ken E. Gibson
2016-01-01
Recently, wildfires and prescribed burning have become more frequent in conifer forests of western North America. Most studies examining the impacts of insects on trees with post-fire injury have focused on contributions to tree mortality. Few studies have examined fire-caused injuries to estimate the probability of attack by insects. Scant data quantifying...
Steve Sutherland
2004-01-01
National Fire Protection Association (NFPA) data indicate that wildfires destroyed approximately 9,000 homes between 1985 and 1994 in the United States. The loss of homes to wildfire has had a significant impact on Federal fire policy. This fact sheet discusses the causes of home ignitions in the wildland-urban interface, home ignition zones, how to reduce home...
Sharon M. Hood; Robert E. Keane; Helen Y. Smith; Joel Egan; Lisa Holsinger
2018-01-01
Understanding the impacts of mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) on fire behavior is important from both an ecological and land management viewpoint. However, numerous uncertainties exist in the linkages of MPB-caused treemortality to changes in canopy and surface fuels (e.g., fuel loading, arrangement, and availability) and the...
Impact of Fire Ventilation on General Ventilation in the Building
NASA Astrophysics Data System (ADS)
Zender-Świercz, Ewa; Telejko, Marek
2017-10-01
The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.
Improved Methods for Fire Risk Assessment in Low-Income and Informal Settlements.
Twigg, John; Christie, Nicola; Haworth, James; Osuteye, Emmanuel; Skarlatidou, Artemis
2017-02-01
Fires cause over 300,000 deaths annually worldwide and leave millions more with permanent injuries: some 95% of these deaths are in low- and middle-income countries. Burn injury risk is strongly associated with low-income and informal (or slum) settlements, which are growing rapidly in an urbanising world. Fire policy and mitigation strategies in poorer countries are constrained by inadequate data on incidence, impacts, and causes, which is mainly due to a lack of capacity and resources for data collection, analysis, and modelling. As a first step towards overcoming such challenges, this project reviewed the literature on the subject to assess the potential of a range of methods and tools for identifying, assessing, and addressing fire risk in low-income and informal settlements; the process was supported by an expert workshop at University College London in May 2016. We suggest that community-based risk and vulnerability assessment methods, which are widely used in disaster risk reduction, could be adapted to urban fire risk assessment, and could be enhanced by advances in crowdsourcing and citizen science for geospatial data creation and collection. To assist urban planners, emergency managers, and community organisations who are working in resource-constrained settings to identify and assess relevant fire risk factors, we also suggest an improved analytical framework based on the Haddon Matrix.
NASA Astrophysics Data System (ADS)
Gutman, G.; Csiszar, I.
2012-04-01
The global, long-term effects of fires are not well understood and we are learning more every year about its global impacts and potential feedbacks to climate change. The frequency, intensity, severity, and emissions of fires may be changing as a result of climate warming as has been manifested by the observations in northern Eurasia. The climate-fire interaction may produce important societal and environmental impacts in the long run. NASA and NOAA have been developing long-term fire datasets and improving systems to monitor active fires, study fire severity, fire growth, emissions into the atmosphere, and fire effects on carbon stocks. Almost every year there are regions in the world that experience particularly severe fires. For example, less than two years ago the European part of Russia was the focus of attention due to the anomalous heat and dry wave with record high temperatures that caused wildfires rage for weeks and that led to thousands of deaths. The fires also have spread to agricultural land and damaged crops, causing sharp increases of global wheat commodity prices. Remote sensing observations are widely used to monitor fire occurrence, fire spread; smoke dispersion, and atmospheric pollutant levels. In the context of climate warming and acute interest to large-scale emissions from various land-cover disturbances studying spatial-temporal dynamics of forest fire activity is critical. NASA supports several activities related to fires and the Earth system. These include GOFC-GOLD Fire Project Office at University of Maryland and the Rapid Response System for global fire monitoring. NASA has funded many research projects on biomass burning, which cover various geographic regions of the world and analyze impacts of fires on atmospheric carbon in support of REDD initiative, as well as on atmospheric pollution with smoke. Monitoring active fires, studying their severity and burned areas, and estimating fire-induced atmospheric emissions has been the subject of several research projects in the NASA LCLUC program over the globe, and, in particular, in Northern Eurasia. As an operational agency, NOAA puts global fire monitoring as a priority and supports related GCOS, CEOS and GOFC-GOLD objectives. NOAA developed an operational quasi-global fire monitoring system using geostationary satellites that provides coverage over parts of Northern Eurasia. Fire products from the VIIRS (Visible Infrared Imager Radiometer Suite) sensor on the NPP (NPOESS Preparatory Project) satellite, launched in October 2011, and on subsequent JPSS satellites will ensure high quality global fire monitoring and will extent the AVHRR- and MODIS-based fire data record over Northern Eurasia. This overview presents an update of NASA's and NOAA's fire monitoring capability and scientific achievements on fire-climate interactions. We will illustrate how combination of coarse spatial resolution polar orbiting satellite observations are combined with moderate spatial resolution observations to better monitor the location of fires and burned areas. While coarse resolution data have been more or less easily available, the utility of moderate resolution Landsat data has increased tremendously during the past couple of years once the data became freely available. Data fusion from polar orbiting and geostationary satellites will be discussed.
Rispoli, Fabio; Iannuzzi, Michele; De Robertis, Edoardo; Piazza, Ornella; Servillo, Giuseppe; Tufano, Rosalba
2014-06-01
At 5:30 pm on December 17, 2010, shortly after a power failure, smoke filled the Intensive Care Unit (ICU) of Federico II University Hospital in Naples, Italy, triggering the hospital emergency alarm system. Immediately, staff began emergency procedures and alerted rescue teams. All patients were transferred without harm. The smoke caused pharyngeal and conjunctival irritation in some staff members. After a brief investigation, firefighters discovered the cause of the fire was a failure of the Uninterruptible Power Supply (UPS).
Use of pulse co-oximetry as a screening and monitoring tool in mass carbon monoxide poisoning.
Bledsoe, Bryan E; Nowicki, Kevin; Creel, James H; Carrison, Dale; Severance, Harry W
2010-01-01
Carbon monoxide (CO) poisoning remains a common cause of poisoning in the United States. We describe a case where responding fire department personnel encountered a sick employee with a headache at an automotive brake manufacturing plant. Using both atmospheric CO monitoring and pulse CO-oximetry technology, fire department personnel were able to diagnose the cause of the patient's illness and later identify the source of CO in the plant.
Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands
Bliege Bird, Rebecca; Codding, Brian F.; Kauhanen, Peter G.
2012-01-01
Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet–dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes. PMID:22689979
Identifying vulnerable populations to death and injuries from residential fires.
Gilbert, Stanley W; Butry, David T
2017-08-03
This study proposes and evaluates the theory that people who are susceptible to injury in residential fires are not susceptible to death in residential fires and vice versa. It is proposed that the population vulnerable to death in residential fires can be proxied by 'frailty', which is measured as age-gender adjusted fatality rates due to natural causes. This study uses an ecological approach and controls for exposure to estimate the vulnerability of different population groups to death and injury in residential fires. It allows fatalities and injuries to be estimated by different models. Frailty explains fire-related death in adults while not explaining injuries, which is consistent with the idea that deaths and injuries affect disjoint populations. Deaths and injuries in fire are drawn from different populations. People who are susceptible to dying in fires are unlikely to be injured in fires, and the people who are susceptible to injury are unlikely to die in fires. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Long term effects of fire on the carbon balance in boreal forests
NASA Astrophysics Data System (ADS)
Berninger, Frank; Köster, Kaja; Pumpanen, Jukka
2013-04-01
Fire is the primary process which organizes the physical and biological attributes of the boreal biome and influences energy flows and biogeochemical cycles, particularly the carbon and nitrogen cycle. We established a forest fire chronosequence in the northern boreal forest in Lapland (Värriö Strict Nature Reserve), Finland (67°46' N, 29°35' E) that spans 160 years. Soil organic matter and its turnover were measured in and ex situ, as well as biomass of trees. The fungal biomass was assessed using soil ergosterol contents. The results indicate that fires slow down the turnover of soil organic matter for a period of at least 50 years. The turnover rate in recently burnt sites was only half of the turnover of the old forest site. Decreases in the turnover where still substantial 50 years after fire. The slow recovery of fungal biomass after fires seems to be the cause of the decrease since sites with a higher concentration of fungal biomass in the soils had shorter soil organic matter turnover rates. Increases in stand foliar biomass were less important for the turnover of soil organic matter. We tried to explore the potential importance of our finding using a simple data driven simulation model that estimates soil carbon dynamic from litter input and the measured soil carbon turnover times. The results indicate the initial post-fire slowdown of soil carbon turnover is an important component of the boreal carbon cycle. Using our fire intervals the simulated soil carbon stocks with a lower post-fire soil organic matter turnover were up to 15 % larger than simulations assuming a constant carbon turnover rate. Our sensitivity analysis indicates that the effects will be larger in areas with frequent fires. We do not know which environmental factors cause the delay in the turnover time and the effects of fires on post fire soil organic matter turnover could be considerably smaller or larger. Altogether our results fit well to published results from laboratory studies and show that post-fire depression of microbial activities are important on the ecosystem and landscape level. Since fire frequencies in boreal forests will increase in many areas as the result of climate change, it will be important to better understand the effects of fire on the soil carbon turnover and to incorporate it into carbon cycle models.
Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M
2012-07-01
Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.
NASA Astrophysics Data System (ADS)
Kutschker, Thomas; Glade, Thomas
2016-04-01
Heavy rainfall in central Europe is one of the assumed effects of climate change, which occurs with large seasonal and regional differences in its magnitude. The extent of loss depends on natural parameters (e.g. topography and vegetation) as well as on socio-economic factors like urbanized and industrialized areas and population density. Dangerous cascade effects appear, if critical infrastructure like the electrical power supply is affected. In some cases mudflows and flash floods cause inundated or undercut roads and cause a high demand for fast and effective assistance of the authorities. The civil protection in Germany is based on a federal system with a bottom-up command-structure and responsibility to the local community. Commonly this responsibility is taken by the fire brigades and civil protection units of the community or district. After heavy rainfall in an urban area, numerous incidents and emergency calls appearing at a time are overstressing the human and technical resources of the fire brigades within the local authority frequently. In this study, a method of comprehensive evaluation of meteorological data and the operation data from local fire brigades shall be developed for the Rhine-Main-Area in order to identify particular affected spots of heavy rain and bundle resources of the fire brigades. It is to be found out if the study area contains regions with a particularly high exposure to heavy rain and high application numbers of the fire department and whether there is a relationship of rainfall and frequency of use. To evaluate particular local effects on the fire brigades capability, a brief analysis of the meteorological data provided by the German Meteorological Service (DWD) as well as the evaluation of the incident data of the affected fire brigades, is used to frame a realistic approach. In particular fire brigade operation data can be used accordingly to describe the intensity of the aftermath when heavy precipitation strikes a certain area. It shows that most of the damage is caused by spilled sewage drains flooding basements and streets. Besides less fire brigade operations are observed in rural areas with constant amount of rainfall. The occurrence of heavy rain events is spatially limited, hot-spot areas with higher probability can be detected. Based on this finding, a resource management strategy for the fire brigade can be developed. Keywords: emergency planning strategy, critical infrastructure, heavy rainfall, fire-brigade resource management
Catastrophic Fires in Russian Forests
NASA Astrophysics Data System (ADS)
Sukhinin, A. I.; McRae, D. J.; Stocks, B. J.; Conard, S. G.; Hao, W.; Soja, A. J.; Cahoon, D.
2010-12-01
We evaluated the contribution of catastrophic fires to the total burned area and the amount of tree mortality in Russia since the 1970’s. Such fires occurred in the central regions of European Russia (1972, 1976, 1989, 2002, 2010), Khabarovsk krai (1976, 1988, 1998), Amur region (1997-2002), Republics of Yakutia and Tuva (2002), Magadan and Kamchatka oblast (1984, 2001, 2010), and Irkutsk, Chita, Amur regions, Buryat, Agin national districts (2003, 2007-08). We define a catastrophic fire as a single high-severity fire that covers more than 10,000 ha and results in total consumption of the litter and humus layers and in high tree mortality, or the simultaneous occurrence of several high-severity fires in a given region with a total area exceeding 10,000 km2. Fires on this scale can cause substantial economic, social and environmental effects, with regional to global impacts. We hypothesize that there is a positive feedback between anticyclone growth and energy release from wildfires burning over large areas. Usually the first blocking anticyclone appears in June in Russia, bringing with it dry weather that increases fire hazard. The anticyclonic pattern has maximum activity in the end of July and disappears around the middle of August. When high fire activity occurs, the anticyclone may strengthen and develop a blocking character that prevents cyclonic patterns from moving into anticyclone-dominated areas, where the fire danger index may be more than six times the average maximum. The likelihood of uncontrolled fire situations developing increases greatly when the fire number and burned area exceed critical values as a function of conditions that favor high intensity fires. In such situations fire suppression by regional forest protection services becomes impossible and federal resources are required. If the appearance of a blocking anticyclone is forecast, active fire prevention and suppression of small fires (most of which appear to be human caused) is critical. Based on NOAA and TOMS daily data, we estimated fire emissions (including CO2, CO, CH4 and other smoke aerosols) of over 70 Tg Carbon for Yakutian fires in 2002 and more than 120 Tg C for all Russian fires in 2010. We note the potential for increasing amounts of methane emissions when fires occur in permafrost zones and peat bogs. Post-fire changes in permafrost and vegetation cover are discussed in the connection changes in solar radiance balance. During the fire season of 2006 in the Eastern-Siberian, Transbaikal, and Far East regions we identified more than 15,000 fires with a total area of 120,000 km2. From 2002-2010 the annual number of fires in this area ranged from 10,000 to 16,500, and annual burned areas ranged from a low of 30 000 km2 in 2004 to a high of 145,000 km2 in 2003.
Series of Wildfires in Northern California Continue Blazing
2015-08-06
California has been hit hard the past few weeks with storms. Storms bring lightning and lightning strikes cause wildfires. Currently there are at least five fire complexes in the area including River, Fork, South, Route and Mad River. The Mad River complex is a series of seven lightning fires that started on July 30th, 2015 after a lightning storm moved through Northern California. After initial firefighters responded, 25 fires were reported and most of the fires were contained. Some additional fires might be detected from the original lightning storms in the upcoming days and will be attacked once they are found. Damage assessment is ongoing and crews will determine the extent of structures and equipment damaged or destroyed. The River Complex is managing a total of 5 fires due to fires merging together on the Shasta-Trinity and the Six Rivers National Forests. Winds from the west are expected to lift the inversion today resulting in active fire behavior. The Fork Complex consists of over 40 fires, all of which were ignited by lightning between July 29 and 31, 2015. These fires are still being identified, assessed, and prioritized. Updated acreage and information about specific fires will be published as it is known. Fire activity moderated throughout last night (8/4) with the smoke inversion layer remaining in place today. Hopefully this will create favorable conditions for fire crews to take direct fire attack on the fires edge, construct dozer line and scout for best firefighting locations on all fires in the complex. The South Complex consists of approximately nine known fires, five of which are currently over 100 acres. The fires are active and defense of structures and point protection are in progress. The weather is trapping smoke in the valley causing very poor air quality. As the smoke lifts the fire activity increases. Firefighters will continue to provide point protection on structures and to look for opportunities to build direct and indirect containment lines. The Route Complex currently stands at 12,164 acres from seven separate fires and is at 2% containment. The overall acreage has been reduced because the South Fire on the nearby South Complex is merging with the Johnson Fire in the Route Complex resulting in decreased and revised fire perimeter acreage. This natural-color satellite image collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite shows smoke rising and drifting northwest from the various fire complexes. It was captured on August 04, 2015. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The 1977 tundra fire in the Kokolik River area of Alaska
NASA Technical Reports Server (NTRS)
1981-01-01
Presumably caused by lightning, a large fire occurred due east of Point Lay several kilometers southwest of the Kokolik River, the farthest north a fire was ever fought by Bureau of Land Management personnel in Alaska. The progress and area extent of the fire were determined by analysis of LANDSAT MSS band 5 and 7 imagery. Low altitude observations from helicopter showed the fire burned a range of vegetation and relief types which included low polygonized and upland tussock tundras. The burned area appeared wetter on the surface than the unburned area, due to a lack of moisture absorbing organic matter and the possible release of moisture from the deeper thawed zone. Suggestions for future investigations of the effects of fire on tundra and permafrost terrains are discussed.
NASA Astrophysics Data System (ADS)
Park, S. H.; Park, W.; Jung, H. S.
2018-04-01
Forest fires are a major natural disaster that destroys a forest area and a natural environment. In order to minimize the damage caused by the forest fire, it is necessary to know the location and the time of day and continuous monitoring is required until fire is fully put out. We have tried to improve the forest fire detection algorithm by using a method to reduce the variability of surrounding pixels. We focused that forest areas of East Asia, part of the Himawari-8 AHI coverage, are mostly located in mountainous areas. The proposed method was applied to the forest fire detection in Samcheok city, Korea on May 6 to 10, 2017.
Accomplishments of the American-Polish program for elimination of low emissions in Krakow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, T.A.; Pierce, B.
1998-12-31
Since 1990 the US Department of Energy (DOE) has been involved in a program aimed at reducing air pollution caused by small, coal-fired sources in Poland. The activity is focused on the city of Cracow, Poland with the intention that results will be applicable and extendable to the entire region. The effort under this program has been focused into 5 main areas of interest as follows: (1) energy conservation and extension of central station district heating; (2) replacement of coal- and coke-fired boilers with natural gas-fired boilers; (3) replacement of coal-fired home stoves with electric heating appliances; (4) reduction ofmore » emissions from stoker-fired boiler houses; and (5) reduction of emissions from coal-fired home heating stoves.« less
Taylor, Alan H; Trouet, Valerie; Skinner, Carl N; Stephens, Scott
2016-11-29
Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire-climate relationships in the Sierra Nevada. We developed a 415-y record (1600-2015 CE) of fire activity by merging a tree-ring-based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation-following mission establishment (ca. 1775 CE)-reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire-climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire-climate models for addressing the increasing fire risk in California.
Power packs: A passive approach to extinguishing fire in combat vehicles
NASA Astrophysics Data System (ADS)
Finnerty, Anthony E.; Polyanski, Stanley
1991-01-01
Thin (12.7 and 6.4 mm) panels of fire extinguishing powder in a honeycomb matrix were tested for their ability to extinguish fires in the FAASV ammunition resupply vehicle. These powder packs were applied to the exterior of hydraulic fluid reservoirs and fuel cells for protection from hydrocarbon fires caused by shaped charge jets penetrating the fluid containers. It was found that a surround of 12.7-mm-thick panels was required to achieve a sub 250-ms fire-out time with no second-degree burns expected to personnel with hot hydraulic fluid reservoirs. Power packs as thin as 6.4 mm provided the same protection in the case of hot diesel fuel.
Corrosion of Aluminum Alloys in the Presence of Fire-Retardant Aircraft Interior Materials
DOT National Transportation Integrated Search
1995-10-01
This research project was to evaluate the potential for fire-retardant materials used in aircraft interiors to cause corrosion of aluminum structural alloys. Service Difficulty Reports (SDR's) were reviewed for several aircraft types, and the most fr...
Predicting Fire Season Severity in South America Using Sea Surface Temperature Anomalies
NASA Technical Reports Server (NTRS)
Chen, Yang; Randerson, James T.; Morton, Douglas C.; Jin, Yufang; DeFries, Ruth S.; Collatz, George J.; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam
2011-01-01
Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. Here we investigated the relationship between year-to-year changes in satellite-derived estimates of fire activity in South America and sea surface temperature (SST) anomalies. We found that the Oceanic Ni o Index (ONI) was correlated with interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation (AMO) index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model that predicted regional annual fire season severity (FSS) with 3-5 month lead times. Our approach provides the foundation for an early warning system for forecasting the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for mitigation of greenhouse gas and air pollutant emissions.
Mistry, Jayalaxshmi; Schmidt, Isabel Belloni; Eloy, Ludivine; Bilbao, Bibiana
2018-05-11
Wildfires continue to cause damage to property, livelihoods and environments around the world. Acknowledging that dealing with wildfires has to go beyond fire-fighting, governments in countries with fire-prone ecosystems have begun to recognize the multiple perspectives of landscape burning and the need to engage with local communities and their practices. In this perspective, we outline the experiences of Brazil and Venezuela, two countries where fire management has been highly contested, but where there have been recent advances in fire management approaches. Success of these new initiatives have been measured by the reduction in wildfire extent through prescribed burning, and the opening of a dialogue on fire management between government agencies and local communities. Yet, it is clear that further developments in community participation need to take place in order to avoid the appropriation of local knowledge systems by institutions, and to better reflect more equitable fire governance.
Fraver, Shawn; Jain, Theresa; Bradford, John B; D'Amato, Anthony W; Kastendick, Doug; Palik, Brian; Shinneman, Doug; Stanovick, John
2011-09-01
Although primarily used to mitigate economic losses following disturbance, salvage logging has also been justified on the basis of reducing fire risk and fire severity; however, its ability to achieve these secondary objectives remains unclear. The patchiness resulting from a sequence of recent disturbances-blowdown, salvage logging, and wildfire-provided an excellent opportunity to assess the impacts of blowdown and salvage logging on wildfire severity. We used two fire-severity assessments (tree-crown and forest-floor characteristics) to compare post-wildfire conditions among three treatment combinations (Blowdown-Salvage-Fire, Blowdown-Fire, and Fire only). Our results suggest that salvage logging reduced the intensity (heat released) of the subsequent fire. However, its effect on severity (impact to the system) differed between the tree crowns and forest floor: tree-crown indices suggest that salvage logging decreased fire severity (albeit with modest statistical support), while forest-floor indices suggest that salvage logging increased fire severity. We attribute the latter finding to the greater exposure of mineral soil caused by logging operations; once exposed, soils are more likely to register the damaging effects of fire, even if fire intensity is not extreme. These results highlight the important distinction between fire intensity and severity when formulating post-disturbance management prescriptions.
Fraver, S.; Jain, T.; Bradford, J.B.; D'Amato, A.W.; Kastendick, D.; Palik, B.; Shinneman, D.; Stanovick, J.
2011-01-01
Although primarily used to mitigate economic losses following disturbance, salvage logging has also been justified on the basis of reducing fire risk and fire severity; however, its ability to achieve these secondary objectives remains unclear. The patchiness resulting from a sequence of recent disturbances-blowdown, salvage logging, and ildfire- provided an excellent opportunity to assess the impacts of blowdown and salvage logging on wildfire severity. We used two fire-severity assessments (tree-crown and forest-floor characteristics) to compare post-wildfire conditions among three treatment combinations (Blowdown-Salvage-Fire, Blowdown-Fire, and Fire only). Our results suggest that salvage logging reduced the intensity (heat released) of the subsequent fire. However, its effect on severity (impact to the system) differed between the tree crowns and forest floor: tree-crown indices suggest that salvage logging decreased fire severity (albeit with modest statistical support), while forest-floor indices suggest that salvage logging increased fire severity. We attribute the latter finding to the greater exposure of mineral soil caused by logging operations; once exposed, soils are more likely to register the damaging effects of fire, even if fire intensity is not extreme. These results highlight the important distinction between fire intensity and severity when formulating post-disturbance management prescriptions. ?? 2011 by the Ecological Society of America.
Impact of Siberian forest fires on the atmosphere over the Korean Peninsula during summer 2014
NASA Astrophysics Data System (ADS)
Jung, Jinsang; Lyu, Youngsook; Lee, Minhee; Hwang, Taekyung; Lee, Sangil; Oh, Sanghyub
2016-06-01
Extensive forest fires occurred during late July 2014 across the forested region of Siberia, Russia. Smoke plumes emitted from Siberian forest fires underwent long-range transport over Mongolia and northeast China to the Korean Peninsula, which is located ˜ 3000 km south of the Siberian forest. A notably high aerosol optical depth of ˜ 4 was observed at a wavelength of 500 nm near the source of the Siberian forest fires. Smoke plumes reached 3-5 km in height near the source and fell below 2 km over the Korean Peninsula. Elevated concentrations of levoglucosan were observed (119.7 ± 6.0 ng m-3), which were ˜ 4.5 times higher than those observed during non-event periods in July 2014. During the middle of July 2014, a haze episode occurred that was primarily caused by the long-range transport of emission plumes originating from urban and industrial complexes in East China. Sharp increases in SO42- concentrations (23.1 ± 2.1 µg m-3) were observed during this episode. The haze caused by the long-range transport of Siberian forest fire emissions was clearly identified by relatively high organic carbon (OC) / elemental carbon (EC) ratios (7.18 ± 0.2) and OC / SO42- ratios (1.31 ± 0.07) compared with those of the Chinese haze episode (OC / EC ratio: 2.4 ± 0.4; OC / SO42- ratio: 0.21 ± 0.05). Remote measurement techniques and chemical analyses of the haze plumes clearly show that the haze episode that occurred during late July 2014 was caused mainly by the long-range transport of smoke plumes emitted from Siberian forest fires.
Car crash fatalities associated with fire in Sweden.
Viklund, Åsa; Björnstig, Johanna; Larsson, Magnus; Björnstig, Ulf
2013-01-01
To study the epidemiology and causes of death in fatal car crashes on Swedish roads in which the victim's vehicle caught fire. The data set is from the Swedish Transport Administrations in-depth studies of fatal crashes 1998-2008. Autopsies from all cases provided data on injuries, toxicological analyses, and cause of death. In total, 181 people died in 133 burning cars, accounting for 5 percent of all deaths in passenger cars, sport utility vehicles, vans, and minibuses during 1998 to 2008. The cause of death for a third of the victims was fire related, as burns and/or smoke inhalation injuries, with no fatal trauma injuries. Twenty-five of these 55 deaths were persons 19 years or younger and included 15 of 18 rear seat deaths. Over half of the 181 deaths were in vehicles that had collided with another vehicle and, of these cases, half were killed in collisions with heavy vehicles. The percentage of drivers with illegal blood alcohol concentrations (27%) and suicides (5.5%) were not higher than in other fatal crashes on Swedish roads. The ignition point of the fire was indicated in only half of the cases and, of those, half started in the engine compartment and one fourth started around the fuel tank or lines. Car fires are a deadly postcrash problem. Reducing this risk would be primarily a responsibility for the automotive industry. A multifactor approach could be considered as follows: risk-reducing design, insulation, reduced flammability in motor compartment fluids and plastics, and automatic fire extinguishing equipment. Inspiration could be found in how, for example, the auto racing and aviation industries handle this problem.
van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.
2011-01-01
The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.
NASA Technical Reports Server (NTRS)
Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.
2018-01-01
The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.
Improving fire season definition by optimized temporal modelling of daily human-caused ignitions.
Costafreda-Aumedes, S; Vega-Garcia, C; Comas, C
2018-07-01
Wildfire suppression management is usually based on fast control of all ignitions, especially in highly populated countries with pervasive values-at-risk. To minimize values-at-risk loss by improving response time of suppression resources it is necessary to anticipate ignitions, which are mainly caused by people. Previous studies have found that human-ignition patterns change spatially and temporally depending on socio-economic activities, hence, the deployment of suppression resources along the year should consider these patterns. However, full suppression capacity is operational only within legally established fire seasons, driven by past events and budgets, which limits response capacity and increases damages out of them. The aim of this study was to assess the temporal definition of fire seasons from the perspective of human-ignition patterns for the case study of Spain, where people cause over 95% of fires. Humans engage in activities that use fire as a tool in certain periods within a year, and in locations linked to specific spatial factors. Geographic variables (population, infrastructures, physiography and land uses) were used as explanatory variables for human-ignition patterns. The changing influence of these geographic variables on occurrence along the year was analysed with day-by-day logistic regression models. Daily models were built for all the municipal units in the two climatic regions in Spain (Atlantic and Mediterranean Spain) from 2002 to 2014, and similar models were grouped within continuous periods, designated as ignition-based seasons. We found three ignition-based seasons in the Mediterranean region and five in the Atlantic zones, not coincidental with calendar seasons, but with a high degree of agreement with current legally designated operational fire seasons. Our results suggest that an additional late-winter-early-spring fire season in the Mediterranean area and the extension of this same season in the Atlantic zone should be re-considered for operational purposes in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Drosos, Vasileios C.; Giannoulas, Vasileios J.; Daoutis, Christodoulos
2014-08-01
Climatic changes cause temperature rise and thus increase the risk of forest fires. In Greece the forests with the greatest risk to fire are usually those located near residential and tourist areas where there are major pressures on land use changes, while there are no currently guaranteed cadastral maps and defined title deeds because of the lack of National and Forest Cadastre. In these areas the deliberate causes of forest fires are at a percentage more than 50%. This study focuses on the forest opening up model concerning both the prevention and suppression of forest fires. The most urgent interventions that can be done after the fire destructions is also studied in relation to soil protection constructions, in order to minimize the erosion and the torrential conditions. Digital orthophotos were used in order to produce and analyze spatial data using Geographical Information Systems (GIS). Initially, Digital Elevation Models were generated, based on photogrammetry and forest areas as well as the forest road network were mapped. Road density, road distance, skidding distance and the opening up percentage were accurately measured for a forest complex. Finally, conclusions and suggestions have been drawn about the environmental compatibility of forest protection and wood harvesting works. In particular the contribution of modern technologies such as digital photogrammetry, remote sensing and Geographical Information Systems is very important, allowing reliable, effective and fast process of spatial analysis contributing to a successful planning of opening up works and fire protection.
Sanford, R L; Saldarriaga, J; Clark, K E; Uhl, C; Herrera, R
1985-01-04
Charcoal is common in the soils of mature rain forests within 75 kilometers of San Carlos de Rio Negro in the north central Amazon Basin. Carbon-14 dates of soil charcoal from this region indicate that numerous fires have occurred since the mid-Holocene epoch. Charcoal is most common in tierra firme forest Oxisols and Ultisols and less common in caatinga and igapo forest soils. Climatic changes or human activities, or both, have caused rain-forest fires.
Randall K. Kolka; Brian R. Sturtevant; Jessica R. Miesel; Aditya Singh; Peter T. Wolter; Shawn Fraver; Thomas M. DeSutter; Phil A. Townsend
2017-01-01
Forest fires cause large emissions of C (carbon), N (nitrogen) and Hg (mercury) to the atmosphere and thus have important implications for global warming (e.g. via CO2 and N2O emissions), anthropogenic fertilisation of natural ecosystems (e.g. via N deposition), and bioaccumulation of harmful metals in aquatic and...
Morgan L. Wiechmann; Matthew D. Hurteau; Malcolm P. North; George W. Koch; Lucie Jerabkova
2015-01-01
Forests sequester carbon from the atmosphere, helping mitigate climate change. In fire-prone forests, burn events result in direct and indirect emissions of carbon. High fire-induced tree mortality can cause a transition from a carbon sink to source, but thinning and prescribed burning can reduce fire severity and carbon loss when wildfire occurs. However, treatment...
NASA Astrophysics Data System (ADS)
Subekti, P.; Hambali, E.; Suryani, A.; Suryadarma, P.
2017-05-01
This study aims to analyze the potential aplication of of palm oil-based foaming agent as peat fires fighter in Indonesia. From literature review, it has been known that the foaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It is necessary to develop the production and application of foaming agent in Indonesia because peat fires occur almost every year that caused smoke haze. Potential raw material for the production of environmental friendly foaming agent as foam extinguishing for peat fires in Indonesia aong other is palm oil due to abundant availability, sustainable, and foam product easily degraded in the environment of the burnt areas. Production of foaming agent as fire-fighting in Indonesia is one alternative to reduce the time to control the fire and smog disaster impact. Application of palm oil as a raw material for fire-fighting is contribute to increase the value added and the development of palm oil downstream industry.
Using fire dynamics simulator to reconstruct a hydroelectric power plant fire accident.
Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min
2011-11-01
The location of the hydroelectric power plant poses a high risk to occupants seeking to escape in a fire accident. Calculating the heat release rate of transformer oil as 11.5 MW/m(2), the fire at the Taiwan Dajia-River hydroelectric power plant was reconstructed using the fire dynamics simulator (FDS). The variations at the escape route of the fire hazard factors temperature, radiant heat, carbon monoxide, and oxygen were collected during the simulation to verify the causes of the serious casualties resulting from the fire. The simulated safe escape time when taking temperature changes into account is about 236 sec, 155 sec for radiant heat changes, 260 sec for carbon monoxide changes, and 235-248 sec for oxygen changes. These escape times are far less than the actual escape time of 302 sec. The simulation thus demonstrated the urgent need to improve escape options for people escaping a hydroelectric power plant fire. © 2011 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Penning de Vries, M. J.; Wagner, T.; Fromm, M. D.
2010-12-01
For almost a month in July and August 2010, an exceptionally high number of fires occurred across western Russia. Varying fire characteristics and intensity due to differences in fuel composition and meteorological conditions caused smoke plumes to vary in color, altitude and optical density. Peat bog fires around Moscow tended to produce low-lying, whitish smoke layers, whereas some severe forest fires were found to have caused so-called pyro-Cbs: thick, mostly dark smoke plumes on top of large convective clouds that reached as high as the stratosphere. In situations where an aerosol layer overlays a cloud, many remote sensing aerosol retrievals break down due to the brightness of the “surface”. The UV Aerosol Indices (UVAI) do not suffer from this drawback, and in fact are more sensitive to absorbing aerosols if the underlying surface is bright, therefore making them very suitable for our type of investigation. However, aerosol plumes are very complex and the UVAI are only semi-quantitative measures that are determined by aerosol extinction and absorption, but also by the altitude of the aerosol plume. We therefore chose to combine our UVAI measurements from the instruments SCIAMACHY, OMI, and GOME-2 with observations by other satellite instruments, such as MODIS, MISR, MERIS, and CALIOP. We also compared the measurements to radiative transfer model calculations of many different aerosol scenarios to draw conclusions about what specific aerosol characteristics cause the variation in pyro-Cb appearances.
Keeley, Jon E; Zedler, Paul H
2009-01-01
We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10,000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (> or = 50,000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating.
Keeley, J.E.; Zedler, P.H.
2009-01-01
We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (???50 000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating. ?? 2009 by the Ecological Society of America.
1989-06-01
resulted in an increase of the intermediate seal purge pressure, revised redlines, and a design change from a lift-off seal to a labyrinth seal design. This...engine 0003 caused fa&i!ure of the primary lox seal and an uncontained engine fire. The redline cut was set by a HPOTP overspeed. This failure...occurred as a result of undetected internal HEX damage caused during arc welding which resulted in an engine fire. HEX coil leakage resulted in an
Biomass burning aerosols and the low-visibility events in Southeast Asia
Lee, Hsiang-He; Bar-Or, Rotem Z.; Wang, Chien
2017-01-23
Fires including peatland burning in Southeast Asia have become a major concern to the general public as well as governments in the region. This is because aerosols emitted from such fires can cause persistent haze events under certain weather conditions in downwind locations, degrading visibility and causing human health issues. In order to improve our understanding of the spatiotemporal coverage and influence of biomass burning aerosols in Southeast Asia, we have used surface visibility and particulate matter concentration observations, supplemented by decade-long (2003 to 2014) simulations using the Weather Research and Forecasting (WRF) model with a fire aerosol module, driven bymore » high-resolution biomass burning emission inventories. We find that in the past decade, fire aerosols are responsible for nearly all events with very low visibility (< 7 km). Fire aerosols alone are also responsible for a substantial fraction of low-visibility events (visibility < 10 km) in the major metropolitan areas of Southeast Asia: up to 39 % in Bangkok, 36 % in Kuala Lumpur, and 34 % in Singapore. Biomass burning in mainland Southeast Asia accounts for the largest contribution to total fire-produced PM 2.5 in Bangkok (99 %), while biomass burning in Sumatra is a major contributor to fire-produced PM 2.5 in Kuala Lumpur (50 %) and Singapore (41 %). To examine the general situation across the region, we have further defined and derived a new integrated metric for 50 cities of the Association of Southeast Asian Nations (ASEAN): the haze exposure day (HED), which measures the annual exposure days of these cities to low visibility (< 10 km) caused by particulate matter pollution. It is shown that HEDs have increased steadily in the past decade across cities with both high and low populations. Fire events alone are found to be responsible for up to about half of the total HEDs. Our results suggest that in order to improve the overall air quality in Southeast Asia, mitigation policies targeting both biomass burning and fossil fuel burning sources need to be implemented.« less
Fire increases carbon fluxes from inland waters of the Yukon-Kuskokwim delta, Alaska.
NASA Astrophysics Data System (ADS)
Mann, P. J.; Bristol, E. M.; Dabrowski, J. S.; Jimmie, J. A.; Melton, S.; Navarro-Perez, E.; Peter, D. L.; Sae-lim, N.; Holmes, R. M.; Natali, S.; Schade, J. D.
2017-12-01
Climate change across high-latitude regions is expected to alter the hydrology and biogeochemistry of arctic environments, significantly impacting ecosystem C cycling and landscape scale C budgets. Fire represents one manifestation of arctic climate change with the number, extent and intensity of fires projected to increase over upcoming decades. The Yukon-Kuskokwim River Delta (YKD), Alaska, experienced unprecedented tundra fires in 2015 when more than 250 km2 underwent burn. In this study, we examined the effects of the 2015 YKD fire upon aquatic and terrestrial C fluxes, and investigated potential mechanisms causing changes to C-cycling. Field work was conducted during summer months (July-Sept) over two years, complimented with aerobic and anaerobic laboratory incubations. Burning of the terrestrial organic layer caused dramatic changes to soil moisture, the proportion of organic versus mineral soils near the land surface, and average active layer depth. Fire caused increased C fluxes (particularly CH4) from re-wet soils relative to unburnt soils, suggesting an interaction exists between fire history and soil moisture. Higher C fluxes from saturated ponds and fens across the landscape provided additional support for this theory. Pore-water chemistry in burnt catchments contained higher inorganic nutrient concentrations, specifically nitrogen, potentially driven by changing soil sorption processes and/ or infiltration rates. Organic matter delivery to inland waters within burns contained DOC of lower apparent molecular weight and aromaticity relative to unburnt waters (inferred from optical measures), and waters typically had higher temperatures, pH and dissolved mineral content. Lake and low-lying pond CO2 and CH4 emissions were consistently higher in burn catchment regions, with three to four-fold higher C emission rates. Our study indicates that fire may promote aquatic and terrestrial pathways for C loss and that these enhanced emissions may persist for years following disturbance. A greater understanding of the divergent responses of soils and inland waters after burn and how these drive changes to CO2 and CH4 production are necessary to predict the impact of climate change on landscape C chemistry and fluxes in the future.
Hoang, David Manh; Reid, Dixie; Lentz, Christopher William
2013-01-01
Every summer, there is an increase in the number of burn injuries caused by accidents around campfires. Because of the prevalence of drought, high winds, and uncontrolled wild fires, a statewide ban on recreational fires was instituted in New Mexico from June to July 2011. We hypothesized that this legislation would have a significant impact on burn admissions caused by campfire-related injuries. A retrospective review of summer admissions to a state burn center was conducted to assess the effect of this ban on recreational fire injuries, and these data were compared with that of the previous summer when no ban was in effect. All burn admissions to a state burn center were reviewed from Memorial Day to Labor Day in 2010 and 2011. Data collected included cause, % TBSA, age, days of hospitalization, intensive care unit days, and total surface area grafted. Nonparametric statistical analysis was performed with Fisher exact test for dichotomous data and Mann-Whitney test for continuous data with significance at P < .05. There were 164 burn center admissions between Memorial Day and Labor Day in 2010 (n = 82) and 2011 (n = 82). Compared with all summer burn center admissions, patients injured by campfires were younger (18 vs 37 years; P = .002) with smaller total surface area burns (3.2 vs 6.2%; P = .41) and had shorter lengths of stay (10-11 vs 6-7 days; P = .62). There was more than a 3-fold decrease in burn admissions due to recreational fires during the study period (n = 14 [17%] in 2010 and 4 [5%] in 2011; P = .02). This resulted in a decrease in the number of patient-days from 91 in 2010 to 25 in 2011. Half of the camp fire admissions required skin grafts to definitively close the wounds (6/14 in 2010 and 2/4 in 2011). Recreational fire bans targeted at controlling wildfires during conditions favoring rapid spread were associated with a 3- to 4-fold decrease in campfire-related burn admissions. Compared with a summer when no fire ban was in effect, the number of patient-days decreased from 91 to 25.
Biomass burning aerosols and the low-visibility events in Southeast Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hsiang-He; Bar-Or, Rotem Z.; Wang, Chien
Fires including peatland burning in Southeast Asia have become a major concern to the general public as well as governments in the region. This is because aerosols emitted from such fires can cause persistent haze events under certain weather conditions in downwind locations, degrading visibility and causing human health issues. In order to improve our understanding of the spatiotemporal coverage and influence of biomass burning aerosols in Southeast Asia, we have used surface visibility and particulate matter concentration observations, supplemented by decade-long (2003 to 2014) simulations using the Weather Research and Forecasting (WRF) model with a fire aerosol module, driven bymore » high-resolution biomass burning emission inventories. We find that in the past decade, fire aerosols are responsible for nearly all events with very low visibility (< 7 km). Fire aerosols alone are also responsible for a substantial fraction of low-visibility events (visibility < 10 km) in the major metropolitan areas of Southeast Asia: up to 39 % in Bangkok, 36 % in Kuala Lumpur, and 34 % in Singapore. Biomass burning in mainland Southeast Asia accounts for the largest contribution to total fire-produced PM 2.5 in Bangkok (99 %), while biomass burning in Sumatra is a major contributor to fire-produced PM 2.5 in Kuala Lumpur (50 %) and Singapore (41 %). To examine the general situation across the region, we have further defined and derived a new integrated metric for 50 cities of the Association of Southeast Asian Nations (ASEAN): the haze exposure day (HED), which measures the annual exposure days of these cities to low visibility (< 10 km) caused by particulate matter pollution. It is shown that HEDs have increased steadily in the past decade across cities with both high and low populations. Fire events alone are found to be responsible for up to about half of the total HEDs. Our results suggest that in order to improve the overall air quality in Southeast Asia, mitigation policies targeting both biomass burning and fossil fuel burning sources need to be implemented.« less
Fire blight: applied genomic insights of the pathogen and host
USDA-ARS?s Scientific Manuscript database
The enterobacterial phytopathogen, Erwinia amylovora, causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that ty...
Rootstock-regulated gene expression patterns associated with fire blight resistance in apple
USDA-ARS?s Scientific Manuscript database
Background: Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks. Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia amylovora, which causes fire blight, the most serious bacterial disease of apple....
Atmospheric Science Data Center
2014-05-15
... Ana winds began blowing through the Los Angeles and San Diego areas on Sunday October 21, 2007. Wind speeds ranging from 30 to 50 mph ... resulted in a number of fires in the Los Angeles and San Diego areas, causing the evacuation of more than 250,000 people. These two ...
The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2017-12-01
The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.
Classifying Wildfire Causes in the USDA Forest Service: Problems and Alternatives
Linda R. Donoghue
1982-01-01
Discusses problems associated with fire-cause data on USDA Forest Service wildfire reports, traces the historical development of wildfire-cause categories, and presents the pros and cons of retaining current wildfire-cause reporting systems or adopting new systems.
NASA Technical Reports Server (NTRS)
Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.
2017-01-01
The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change.
Fire and deforestation dynamics in Amazonia (1973-2014).
van Marle, Margreet J E; Field, Robert D; van der Werf, Guido R; Estrada de Wagt, Ivan A; Houghton, Richard A; Rizzo, Luciana V; Artaxo, Paulo; Tsigaridis, Kostas
2017-01-01
Consistent long-term estimates of fire emissions are important to understand the changing role of fire in the global carbon cycle and to assess the relative importance of humans and climate in shaping fire regimes. However, there is limited information on fire emissions from before the satellite era. We show that in the Amazon region, including the Arc of Deforestation and Bolivia, visibility observations derived from weather stations could explain 61% of the variability in satellite-based estimates of bottom-up fire emissions since 1997 and 42% of the variability in satellite-based estimates of total column carbon monoxide concentrations since 2001. This enabled us to reconstruct the fire history of this region since 1973 when visibility information became available. Our estimates indicate that until 1987 relatively few fires occurred in this region and that fire emissions increased rapidly over the 1990s. We found that this pattern agreed reasonably well with forest loss data sets, indicating that although natural fires may occur here, deforestation and degradation were the main cause of fires. Compared to fire emissions estimates based on Food and Agricultural Organization's Global Forest and Resources Assessment data, our estimates were substantially lower up to the 1990s, after which they were more in line. These visibility-based fire emissions data set can help constrain dynamic global vegetation models and atmospheric models with a better representation of the complex fire regime in this region.
Hodous, T; Pizatella, T; Braddee, R; Castillo, D
2004-01-01
Objective: To review the causes of all fire fighter line-of-duty-deaths from 1998 through 2001, and present recommendations for preventing fatalities within the specific subgroup of structure related events. Methods: Fire fighter fatality data from the United States Fire Administration were reviewed and classified into three main categories of injury. Investigations conducted through the National Institute for Occupational Safety and Health (NIOSH) Fire Fighter Fatality Investigation and Prevention Program provided the basis for the recommendations presented in this paper. Results: During the time period from 1998–2001, there were 410 line-of-duty deaths among fire fighters in the United States, excluding the 343 fire fighters who died at the World Trade Center on 11 September 2001. The 410 fatalities included 191 medical (non-traumatic) deaths (47%), 75 motor vehicle related fatalities (18%), and 144 other traumatic fatalities (35%). The latter group included 68 fatalities that were associated with structures which commonly involved structural collapse, rapid fire progression, and trapped fire fighters. Conclusions: Structural fires pose particular hazards to fire fighters. Additional efforts must be directed to more effectively use what we have learned through the NIOSH investigations and recommendations from published experts in the safety community, consensus standards, and national fire safety organizations to reduce fire fighter fatalities during structural fire fighting. PMID:15314049
Effects of drought and fire on bird communities of the Kofa National Wildlife Refuge, Arizona
McCreedy, Chris; van Riper, Charles; Esque, Todd C.; Darrah, Abigail J.
2016-01-08
In chapter 2, we examine the effects of the King Valley fire on breeding and migrant birds within the Kofa NWR. This fire was caused by incendiary weapons testing within Yuma Proving Ground, south of the Kofa NWRboundary (Esque and others, 2013). We found large differences in spring migrant and breeding species abundance and richness between bird count stations within the 2005 King Valley fire zone and bird count stations immediately outside the fire perimeter. Habitat loss to fire, and the subsequent slow regeneration of a Sonoran Desert flora that is not well adapted to fire disturbance, is a recognized threat to bird populations (McCreedy and others, 2009; Latta, 1999), and of all Sonoran Desert wildlife, birds may be the most impacted by loss of perennial Sonoran Desert vegetation to fire (Esque and Schwalbe, 2002). We conclude that decreases in both breeding and migrant use of washes within burned areas will likely persist into the long term (>25 years) due to slow return rates of xeroriparian woodlands lost in the fire.
Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.
2018-01-01
Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
Risk for large-scale fires in boreal forests of Finland under changing climate
NASA Astrophysics Data System (ADS)
Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.
2015-08-01
The target of this work was to assess the impact of projected climate change on the number of large forest fires (over 10 ha fires) and burned area in Finland. For this purpose, we utilized a strong relationship between fire occurrence and the Canadian fire weather index (FWI) during 1996-2014. We used daily data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. Our results also reveal substantial inter-model variability in the rate of the projected increase in forest-fire danger. We moreover showed that the majority of large fires occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is more important cause of fires.
Self-extinguishing behavior of kerosene spray fire in a completely enclosed compartment
NASA Astrophysics Data System (ADS)
Wang, Changjian; Guo, Jin; Yan, Weigang; Lu, Shouxiang
2013-10-01
The self-extinguishing behavior of kerosene spray fire was investigated in a completely enclosed compartment with the size of 3 m × 3 m × 3.4 m. The spray was generated by locating one BETE nozzle at the center of the bottom wall. A series of spray fire videos were obtained by changing BETE nozzle type and injecting pressure. The results show that spray fire undergoes four stages: the growth stage, the quasi-steady stage, the stretch stage and the self-extinguishing stage. Consumption of large quantities of oxygen causes spray fire to first be stretched and then quench. In this process, fire base migrates away from spray region and leads to the emergence of ghosting fire. Ghosting fire promotes the instability of spray fire and large fluctuation of its height, which provides help to its self-extinguishing. With increasing the injecting pressure or the nozzle diameter, the self-extinguishing time decreases. It is found that the self-extinguishing time is approximately in inverse relation with injecting flow rate. Additionally, we also observed the occurrence of two-phase deflagration just after ignition, and it accelerates the spray fire growth and induces a larger fire height than the following quasi-steady spray fire. The deflagration turns stronger with increasing the injecting pressure.
Johnson, Lane B; Kipfmueller, Kurt F
2016-06-01
We reconstructed fire occurrence near a fur-trade era canoe travel corridor (used ca. 1780-1802) in the Quetico-Superior region west of Lake Superior to explore the possibility of human influence on pre-fire suppression rates of fire occurrence. Our research objectives were to (1) examine the spatial and temporal patterns of fire in the study area, (2) test fires' strength of association with regional drought, and (3) assess whether reconstructed fire frequencies could be explained by observed rates of lightning fire ignition over the modern period of record. We developed a 420-year fire history for the eastern portion of Lac La Croix in the Boundary Waters Canoe Area Wilderness (BWCAW). Seventy-one fire-scarred samples were collected from remnant Pinus resinosa Ait. (red pine) stumps and logs from thirteen distinct island and three mainland forest stands. Collectively these samples contained records of 255 individual fire scars representing 79 fire events from 1636 to 1933 (study area mean fire intervals [MFI] 3.8 yr). Reconstructed fires were spatially and temporally asynchronous and not strongly associated with regional drought (P > 0.05). When compared to the conservative, tree-ring reconstructed estimate of historical fire occurrence and modern lightning-caused fires (1929-2012), a noticeable change in the distribution and frequency of fires within the study area was evident with only two lightning-ignited island fires since 1934 in the study area. Our results suggest a high likelihood that indigenous land use contributed to surface fire ignitions within our study area and highlights the importance of examining the potential effects of past indigenous land use when determining modern approaches to fire and wilderness management in fire-adapted ecosystems.
Operating room fires: a closed claims analysis.
Mehta, Sonya P; Bhananker, Sanjay M; Posner, Karen L; Domino, Karen B
2013-05-01
To assess patterns of injury and liability associated with operating room (OR) fires, closed malpractice claims in the American Society of Anesthesiologists Closed Claims Database since 1985 were reviewed. All claims related to fires in the OR were compared with nonfire-related surgical anesthesia claims. An analysis of fire-related claims was performed to identify causative factors. There were 103 OR fire claims (1.9% of 5,297 surgical claims). Electrocautery was the ignition source in 90% of fire claims. OR fire claims more frequently involved older outpatients compared with other surgical anesthesia claims (P < 0.01). Payments to patients were more often made in fire claims (P < 0.01), but payment amounts were lower (median $120,166) compared to nonfire surgical claims (median $250,000, P < 0.01). Electrocautery-induced fires (n = 93) increased over time (P < 0.01) to 4.4% claims between 2000 and 2009. Most (85%) electrocautery fires occurred during head, neck, or upper chest procedures (high-fire-risk procedures). Oxygen served as the oxidizer in 95% of electrocautery-induced OR fires (84% with open delivery system). Most electrocautery-induced fires (n = 75, 81%) occurred during monitored anesthesia care. Oxygen was administered via an open delivery system in all high-risk procedures during monitored anesthesia care. In contrast, alcohol-containing prep solutions and volatile compounds were present in only 15% of OR fires during monitored anesthesia care. Electrocautery-induced fires during monitored anesthesia care were the most common cause of OR fires claims. Recognition of the fire triad (oxidizer, fuel, and ignition source), particularly the critical role of supplemental oxygen by an open delivery system during use of the electrocautery, is crucial to prevent OR fires. Continuing education and communication among OR personnel along with fire prevention protocols in high-fire-risk procedures may reduce the occurrence of OR fires.
Morrongiello, Barbara A; Schwebel, David C; Bell, Melissa; Stewart, Julia; Davis, Aaron L
2012-07-01
Fire is a leading cause of unintentional injury and, although young children are at particularly increased risk, there are very few evidence-based resources available to teach them fire safety knowledge and behaviors. Using a pre-post randomized design, the current study evaluated the effectiveness of a computer game (The Great Escape) for teaching fire safety information to young children (3.5-6 years). Using behavioral enactment procedures, children's knowledge and behaviors related to fire safety were compared to a control group of children before and after receiving the intervention. The results indicated significant improvements in knowledge and fire safety behaviors in the intervention group but not the control. Using computer games can be an effective way to promote young children's understanding of safety and how to react in different hazardous situations.
DOT National Transportation Integrated Search
1994-04-01
During aircraft interior fires, carbon monoxide (CO) and hydrogen cyanide (HCN) are produced in sufficient amounts to cause incapacitation and death. Time-to-incapacitation (ti) is a practical parameter for estimating escape time in fire environments...
Jeffrey P. Prestemon; David T. Butry
2008-01-01
Wildland arson has received scant attention in the resource economics literature, yet is the cause of many large and damaging wildland fires. Research into wildfire management and policy in the United States has been principally concerned with wildfire suppression, fuels treatments, fire science (behavior), and economic efficiency questions. This is unfortunate,...
Mortality amongst Paris fire-fighters.
Deschamps, S; Momas, I; Festy, B
1995-12-01
This paper is the first mortality cohort study undertaken in France to examine the association between fire-fighting and cause of death. The cohort investigated in this study consisted of 830 male members of the Brigade des sapeurs-pompiers de Paris (BSPP). These professional had served for a minimum of 5 years on 1 January 1977. They were monitored for a 14 year period, finishing 1 January 1991. When compared to the average French male, the Paris fire-fighters were found to have a far lower overall mortality (SMR = 0.52 [0.35-0.75]). None of the cause specific SMRs were significantly different from unity. However a greater number of deaths than expected was observed for genito-urinary cancer (SMR = 3.29), digestive cancer (SMR = 1.14), respiratory cancer (SMR = 1.12) and 'cerebrovascular disease' (SMR = 1.16). The low overall SMR observed was consistent with the healthy worker effect. As for cause specific SMRs, they will be confirmed or invalidated by a further analysis as the follow-up of this cohort is being carried on.
Review of fire test methods and incident data for portable electric cables in underground coal mines
NASA Astrophysics Data System (ADS)
Braun, E.
1981-06-01
Electrically powered underground coal mining machinery is connected to a load center or distribution box by electric cables. The connecting cables used on mobile machines are required to meet fire performance requirements defined in the Code of Federal Regulations. This report reviews Mine Safety and Health Administration's (MSHA) current test method and compares it to British practices. Incident data for fires caused by trailing cable failures and splice failures were also reviewed. It was found that the MSHA test method is more severe than the British but that neither evaluated grouped cable fire performance. The incident data indicated that the grouped configuration of cables on a reel accounted for a majority of the fires since 1970.
Burns in mobile home fires--descriptive study at a regional burn center.
Mullins, Robert F; Alarm, Badrul; Huq Mian, Mohammad Anwarul; Samples, Jancie M; Friedman, Bruce C; Shaver, Joseph R; Brandigi, Claus; Hassan, Zaheed
2009-01-01
Death from fires and burns are the sixth most common cause of unintentional injury death in the United States. More than (3/4) of burn deaths occurring in the United States are in the home. Mobile home fires carry twice the death rate as other dwellings. The aim of the study was to describe the characteristics of deaths and injuries in mobile home fire admitted in a regional Burn Center and to identify possible risk factors. A cross-sectional retrospective study was carried out among all burn patients admitted to a regional Burn Center between January 2002 and December 2004 (3469 patients). The study included patients who suffered a burn injury from a mobile home fire. The demographic characteristics of the patients, location of mobile home, associated inhalation injury, source of fire, comorbidity of the victims, employment status, insurance status, family history of burns, and outcomes of the treatment were incorporated in a data collection record. There were 65 burn patients in mobile home fires admitted to the Burn Center during the studied period. The average age of the patients was 39 years (ranging from 2 to 81 years, SD=16.06), 77% were male, 67% were white, and 79% were the residents in the suburban areas of Georgia, South Carolina, North Carolina, and Florida. The average TBSA of burns was about 21% (ranging from 1 to 63%, SD=17.66), 63% of the patients had associated inhalation, three inhalation injury only, and 69% patients required ventilator support. The average length of stay per TBSA percentage of burn was 1.01 days (P=0.00), controlling for age, preexisting medical comorbidities, and inhalation injury. About 88% of the patients had preexisting medical comorbid conditions, 74% were smokers, 64% reported as alcoholic, and 72% had at least some form of health insurance coverage. In 40% of the cases, the cause of the fire was unknown, 31% were caused by accidental explosions, such as electric, gasoline, or kerosene appliances, and 29% were due to other causes. About 40% of burns took place between December and February. Among the studied cohorts, 32% were unemployed, 15% were disabled, and 14% did not have any information about their employment status. One in every four patients had a family history of a burn. Eight (12%) died in the hospital during treatment. There was a higher prevalence of inhalation injury and higher case fatality among the burn patients in mobile home fires compared with the statistics of the Burn Center. Observation showed a higher number of smokers and alcoholics among the burn patients. The main sources of fire were from home appliances. Fewer people had health insurance coverage than the national standard and more people suffered from some sort of chronic illness compared with the national morbidity data.
Flood and Fire Monitoring and Forecasting Within the Chornobyl Exclusion Zone
NASA Astrophysics Data System (ADS)
Los, Victor
2001-03-01
Taking into consideration that radioactivity from the contaminating elements of the Chernobyl Exclusion Zone (CEZ) amounts to a huge number, one of the most urgent tasks, at present, is the resolution of problems related to secondary radioactive contamination caused by floods and fires. These factors may lead to critical consequences. For instance, if radioactive contaminants migrate into the water system, namely into the Dnipro River, a threat arises to more than 20 million inhabitants of Ukraine. Additionally, fires in the CEZ potentially could cause contaminants to be dispersed into the air and to migrate in the atmosphere for long distances. The elements of information support system for administrative decision-making to respond to the appearances and consequences of forest fires and floods in contaminated areas of the CEZ have been developed. The system proposes: using Earth Remote Sensing (R/S) data for timely detection of forest fires; integration by Geographic Information System (GIS) of mathematical models for radionuclide migration by air in order to forecast radiological consequences of forest fires; forecasting and assessing flood consequences by means of spatial analysis of GIS and R/S; and development of a system for dissemination of information. This project was performed within the framework of USAID Cooperative Agreement #121-A-00-98-00615-00, dedicated to the establishment of the Ukrainian Land and Resource Management Center.
The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes.
Bond, William; Zaloumis, Nicholas P
2016-06-05
Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to 'reforest' Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes
Zaloumis, Nicholas P.
2016-01-01
Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to ‘reforest’ Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216527
Improved Methods for Fire Risk Assessment in Low-Income and Informal Settlements
Twigg, John; Christie, Nicola; Haworth, James; Osuteye, Emmanuel; Skarlatidou, Artemis
2017-01-01
Fires cause over 300,000 deaths annually worldwide and leave millions more with permanent injuries: some 95% of these deaths are in low- and middle-income countries. Burn injury risk is strongly associated with low-income and informal (or slum) settlements, which are growing rapidly in an urbanising world. Fire policy and mitigation strategies in poorer countries are constrained by inadequate data on incidence, impacts, and causes, which is mainly due to a lack of capacity and resources for data collection, analysis, and modelling. As a first step towards overcoming such challenges, this project reviewed the literature on the subject to assess the potential of a range of methods and tools for identifying, assessing, and addressing fire risk in low-income and informal settlements; the process was supported by an expert workshop at University College London in May 2016. We suggest that community-based risk and vulnerability assessment methods, which are widely used in disaster risk reduction, could be adapted to urban fire risk assessment, and could be enhanced by advances in crowdsourcing and citizen science for geospatial data creation and collection. To assist urban planners, emergency managers, and community organisations who are working in resource-constrained settings to identify and assess relevant fire risk factors, we also suggest an improved analytical framework based on the Haddon Matrix. PMID:28157149
Smoke Blankets New South Wales, Australia
NASA Technical Reports Server (NTRS)
2002-01-01
Australia's largest city of Sydney was clouded with smoke when more than 70 wildfires raged across the state of New South Wales. These images were captured on the morning of December 30, 2001, by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra spacecraft. The left-hand image is from the instrument's 26-degree forward-viewing camera, and the right-hand image is from the 60-degree forward-viewing camera. The vast extent of smoke from numerous fires is visible, particularly in the more oblique view. Sydney is located just above image center.Dubbed the 'black Christmas' fires, the blazes destroyed more than 150 homes and blackened over 5000 square kilometers (about 1.24 million acres) of farmland and wilderness between December 23, 2001 and January 3, 2002. Many of the fires are believed to have been caused by arsonists, with only one fire linked to natural causes. The fires were aggravated by gusty winds and hot dry weather conditions. Approximately 20,000 people have worked to contain the blazes. No people have lost their lives or been seriously injured. Nevertheless, the fires are considered to be the most prolonged and destructive of any in Australia since the Ash Wednesday conflagration of 1983 that claimed 72 lives.The images represent an area 322 kilometers x 374 kilometers and were captured during Terra orbit 10829.Abrupt Increases in Amazonian Tree Mortality Due to Drought-Fire Interactions
NASA Technical Reports Server (NTRS)
Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silverio, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nobrega, Caroline C.;
2014-01-01
Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, longterm experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW x m(exp -1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with less than 1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.
Abrupt increases in Amazonian tree mortality due to drought-fire interactions.
Brando, Paulo Monteiro; Balch, Jennifer K; Nepstad, Daniel C; Morton, Douglas C; Putz, Francis E; Coe, Michael T; Silvério, Divino; Macedo, Marcia N; Davidson, Eric A; Nóbrega, Caroline C; Alencar, Ane; Soares-Filho, Britaldo S
2014-04-29
Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW ⋅ m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.
Abrupt increases in Amazonian tree mortality due to drought–fire interactions
Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.
2014-01-01
Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change. PMID:24733937
NASA Astrophysics Data System (ADS)
Koe, Lawrence C. C.; Arellano, Avelino F.; McGregor, John L.
The 1997 Indonesia forest fires was an environmental disaster of exceptional proportions. Such a disaster caused massive transboundary air pollution and indiscriminate destruction of biodiversity in the world. The immediate consequence of the fires was the production of large amounts of haze in the region, causing visibility and health problems within Southeast Asia. Furthermore, fires of these magnitudes are potential contributors to global warming and climate change due to the emission of large amounts of greenhouse gases and other pyrogenic products.The long-range transport of fire-related haze in the region is investigated using trajectories from the CSIRO Division of Atmospheric Research Limited Area Model (DARLAM). Emission scenarios were constructed for hotspot areas in Sumatra and Kalimantan for the months of September and October 1997 to determine the period and fire locations most critical to Singapore. This study also examines some transport issues raised from field observations. Results show that fires in the coastal areas of southeast Sumatra and southwest Kalimantan can be potential contributors to transboundary air pollution in Singapore. Singapore was directly affected by haze from these areas whereas Kuala Lumpur was heavily affected by the haze coming from Sumatra. In most cases, Singapore was more affected by fires from Kalimantan than was Kuala Lumpur. This was mainly a result of the shifting of monsoons. The transition of monsoons resulted in weaker low-level winds and shifted convergence zones near to the southeast of Peninsular Malaysia. In addition to severe drought and massive fire activity in 1997, the timing of the monsoon transition has a strong influence on haze transport in the region.
Understanding of urban hazards, fire, and tsunamis
Hays, Walter W.; ,
1997-01-01
Understanding of the causes and solutions of an urban area's (e.g., Los Angeles, San Diego, San Francisco, Oakland, Seattle, Portland, Anchorage, Salt Lake City, Memphis, St. Louis, Charleston, Boston, San Juan) vulnerability to earthquakes, fire, and tsunamis has increased significantly during the past 50 years, and during the current International Decade for Natural Disaster Reduction (IDNDR). Vulnerability is caused by flaws in planning, siting, design, construction, and use. It is fundamentally dependent upon the hazard, built, and policy environments of the urban area. Reduction of vulnerability is directly related to the decision-making process that calls for the adoption and enforcement of risk management programs (e.g., mitigation, preparedness, emergency response, and recovery measures) that are designed to make the urban area resilient to earthquakes, fires, and, as appropriate, tsunamis.
NASA Astrophysics Data System (ADS)
Wurihan; Zhang, H.; Zhang, Z.; Guo, X.; Zhao, J.; Duwala; Shan, Y.; Hongying
2018-04-01
Fire disturbance plays an important role in maintaining ecological balance, biodiversity and self-renewal. In this paper, the spatio-temporal pattern of fire disturbances in eastern Mongolia are studied by using the ArcGIS spatial analysis method, using the MCD45A1 data of MODIS fire products with long time series. It provides scientific basis and reference for the regional ecological environment security construction and international ecological security. Research indicates: (1) The fire disturbance in eastern Mongolia has obvious high and low peak interleaving phenomenon in the year, and the seasonal change is obvious. (2) The distribution pattern of fire disturbance in eastern Mongolia is aggregated, which indicates that the fire disturbance is not random and it is caused by certain influence. (3) Fire disturbance is mainly distributed in the eastern province of Mongolia, the border between China and Mongolia and the northern forest area of Sukhbaatar province. (4) The fire disturbance in the eastern part of the study area is strong and the southwest is weaker. The spreading regularity of fire disturbances in eastern Mongolia is closer to the natural level of ecosystem.
Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.
Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H
2014-01-01
Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.
Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest
Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.
2014-01-01
Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas of high severity for post-fire invasive control may be the most efficient means for reducing the chances of post-fire invasive plant outbreaks when conducting prescribed fires in this region.
Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range
Sherriff, Rosemary L.; Platt, Rutherford V.; Veblen, Thomas T.; Schoennagel, Tania L.; Gartner, Meredith H.
2014-01-01
Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions. PMID:25251103
Three-dimensional tracking for efficient fire fighting in complex situations
NASA Astrophysics Data System (ADS)
Akhloufi, Moulay; Rossi, Lucile
2009-05-01
Each year, hundred millions hectares of forests burn causing human and economic losses. For efficient fire fighting, the personnel in the ground need tools permitting the prediction of fire front propagation. In this work, we present a new technique for automatically tracking fire spread in three-dimensional space. The proposed approach uses a stereo system to extract a 3D shape from fire images. A new segmentation technique is proposed and permits the extraction of fire regions in complex unstructured scenes. It works in the visible spectrum and combines information extracted from YUV and RGB color spaces. Unlike other techniques, our algorithm does not require previous knowledge about the scene. The resulting fire regions are classified into different homogenous zones using clustering techniques. Contours are then extracted and a feature detection algorithm is used to detect interest points like local maxima and corners. Extracted points from stereo images are then used to compute the 3D shape of the fire front. The resulting data permits to build the fire volume. The final model is used to compute important spatial and temporal fire characteristics like: spread dynamics, local orientation, heading direction, etc. Tests conducted on the ground show the efficiency of the proposed scheme. This scheme is being integrated with a fire spread mathematical model in order to predict and anticipate the fire behaviour during fire fighting. Also of interest to fire-fighters, is the proposed automatic segmentation technique that can be used in early detection of fire in complex scenes.
NASA Astrophysics Data System (ADS)
Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.
2017-12-01
Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.
Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong
2017-02-23
Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R² values of 0.686, 0.716, 0.633, respectively ( p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention.
Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong
2017-01-01
Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R2 values of 0.686, 0.716, 0.633, respectively (p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention. PMID:28241476
PREFER: a European service providing forest fire management support products
NASA Astrophysics Data System (ADS)
Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George
2015-06-01
PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.
Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA
Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F.
2009-01-01
Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focussed on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread, could be the first indication of more frequent fire. We examined the relationship between snowpack and the ignition and size of fires that occurred in Yosemite National Park, California (area 3027 km2), between 1984 and 2005. During this period, 1870 fires burned 77 718 ha. Decreased spring snowpack exponentially increased the number of lightning-ignited fires. Snowpack mediated lightning-ignited fires by decreasing the proportion of lightning strikes that caused lightning-ignited fires and through fewer lightning strikes in years with deep snowpack. We also quantified fire severity for the 103 fires >40 ha with satellite fire-severity indices using 23 years of Landsat Thematic Mapper data. The proportion of the landscape that burned at higher severities and the complexity of higher-severity burn patches increased with the log10 of annual area burned. Using one snowpack forecast, we project that the number of lightning-ignited fires will increase 19.1% by 2020 to 2049 and the annual area burned at high severity will increase 21.9%. Climate-induced decreases in snowpack and the concomitant increase in fire severity suggest that existing assumptions may be understated-fires may become more frequent and more severe. ?? IAWF 2009.
Kollanus, Virpi; Prank, Marje; Gens, Alexandra; Soares, Joana; Vira, Julius; Kukkonen, Jaakko; Sofiev, Mikhail; Salonen, Raimo O; Lanki, Timo
2017-01-01
Vegetation fires can release substantial quantities of fine particles (PM2.5), which are harmful to health. The fire smoke may be transported over long distances and can cause adverse health effects over wide areas. We aimed to assess annual mortality attributable to short-term exposures to vegetation fire-originated PM2.5 in different regions of Europe. PM2.5 emissions from vegetation fires in Europe in 2005 and 2008 were evaluated based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data on fire radiative power. Atmospheric transport of the emissions was modeled using the System for Integrated modeLling of Atmospheric coMposition (SILAM) chemical transport model. Mortality impacts were estimated for 27 European countries based on a) modeled daily PM2.5 concentrations and b) population data, both presented in a 50 × 50 km2 spatial grid; c) an exposure-response function for short-term PM2.5 exposure and daily nonaccidental mortality; and d) country-level data for background mortality risk. In the 27 countries overall, an estimated 1,483 and 1,080 premature deaths were attributable to the vegetation fire-originated PM2.5 in 2005 and 2008, respectively. Estimated impacts were highest in southern and eastern Europe. However, all countries were affected by fire-originated PM2.5, and even the lower concentrations in western and northern Europe contributed substantially (~ 30%) to the overall estimate of attributable mortality. Our assessment suggests that air pollution caused by PM2.5 released from vegetation fires is a notable risk factor for public health in Europe. Moreover, the risk can be expected to increase in the future as climate change proceeds. This factor should be taken into consideration when evaluating the overall health and socioeconomic impacts of these fires. Citation: Kollanus V, Prank M, Gens A, Soares J, Vira J, Kukkonen J, Sofiev M, Salonen RO, Lanki T. 2017. Mortality due to vegetation fire-originated PM2.5 exposure in Europe-assessment for the years 2005 and 2008. Environ Health Perspect 125:30-37; http://dx.doi.org/10.1289/EHP194.
Febrile Infection-Related Epilepsy Syndrome (FIRES): An Overview of Treatment and Recent Patents.
Hon, Kam Lun E Lun; Leung, Alexander K C; Torres, Alcy R
2018-05-08
New-onset refractory status epilepticus (NORSE) refers to a clinical presentation in a patient without active epilepsy or other existing relevant neurological disorder, with new onset of refractory status epilepticus in the absence of a clear acute or active structural, metabolic, or toxic cause. Febrile infection-related epilepsy syndrome (FIRES) is a subset of NORSE that requires a febrile infection between 24 hours and 2 weeks prior to the onset of refractory status epilepticus, with or without fever at the onset of status epilepticus, and with no restriction to the age of the patient. The literature on FIRES is scarce. This article reviews the pathophysiology, clinical features, and various treatment modalities in the treatment of FIRES. A Medline/Pubmed search was conducted using Clinical Queries with the key terms "febrile infection-related epilepsy syndrome", "FIRES", "new-onset refractory status epilepticus" and "NORSE". The search strategy included meta-analyses, randomized controlled trials, clinical trials, reviews and pertinent references. Patents were searched using the key term "FIRES", "NORSE" and "febrile epilepsy syndrome" from www.google.com/patents, www.uspto.gov, and www.freepatentsonline.com. FIRES almost invariably begins with a mild nonspecific febrile illness in an otherwise healthy individual. Twenty four hours to two weeks later, seizures begin and quickly become very frequent and worsen, becoming status epilepticus. Seizures can be simple motor, complex partial or secondary generalized. The exact etiology is no known. It is possible that the syndrome is caused by an inflammatory or autoimmune mechanism. Seizures in FIRES are notoriously very difficult to treat. Treatment modalities include, among others, various antiepileptic drugs, ketogenic diet, intravenous corticosteroids, intravenous immunoglobulin, and burst-suppression coma. Outcome is poor; most children are left with significant cognitive disability and refractory epilepsy. Recent patents for the management of FIRES are discussed. FIRES is a rare epilepsy syndrome of unclear etiology in which children, usually of school age, suddenly develop very frequent seizures after a mild febrile illness. Seizures in FIRES are typically recalcitrant and difficult to treat. The prognosis is poor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
EMISSIONS OF SULFUR TRIOXIDE FROM COAL-FIRED POWER PLANTS
Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough not to cause opacity violations and acid deposition. Generally, a small fraction of sulfur in coal is converted to SO3 in coal-fired co...
Kenneth S. Blonski
1995-01-01
One of the traditional roles that prescribed fire has played in the fire management arena is reduction of hazardous fuel buildups under controlled, well-defined environmental conditions. However, our ability to use this tool effectively is blocked by many barriers. The preceding panel discussion about the causes of limited success in implementing prescribed burning...
2009-07-01
Breaks in the internal wires of reusable electrosurgical active electrode cables can increase the risk of injuries and surgical fires. Careful visual and manual inspection during reprocessing and immediately before use, coupled with periodic replacement, can help limit the risk.
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2014 CFR
2014-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2010 CFR
2010-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2013 CFR
2013-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2011 CFR
2011-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2012 CFR
2012-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
Fire Monitoring: Effects of Scorch in Louisiana's Pine Forests
James D. Haywood; Mary Anne Sword; Finis L. Harris
2004-01-01
Frequent growing-season burning is essential for restoring longleaf pine (Pinus palustris Mill.) plant communities to open parklike landscapes. However, fire can be a destructive force, reducing productivity and causing mortality among overstory longleaf pine trees. On two central Louisiana sites, severe crown scorch reduced longleaf pine diameter...
Nicole Turrill Welch; Thomas A. Waldrop
2001-01-01
Table mountain pine (Pinus pungens Lamb.) communities of the Southern Appalachian Mountains have been maintained historically by lightning- and human-caused fires. Characteristic stands have a table mountain pine overstory, a chestnut oak (Quercus prinus L.), scarlet oak (Q. coccinea Muenchh.), and blackgum (
Decay of Fire-Caused snags in Ocala Sand Pine
Kenneth W. Outcalt
2003-01-01
Sand pine (Pinus clausa) scrub is adapted to, and regenerated by, periodic stand-replacement wildfire, which consumes the understory and kills the overstory. The heat of the fire opens the serotinous cones of Ocala sand pine (P. clausa var. clausa), releasing quantities of seed that reestablish the overstory,...
Restoration of southwestern ponderosa pine ecosystems with fire
Stephen S. Sackett; Sally M. Haase; Michael G. Harrington
1994-01-01
Heavy grazing and timbering during settlement by Europeans, and a policy of fire exclusion shortly after caused extensive structural and compositional changes to the southwestern ponderosa pine ecosystem. These changes have resulted in forest health problems, such as increased insect and disease epidemics, reduced wildlife habitat, and a serious wildfire hazard....
Sudden Oak Death mortality and fire: lessons from the basin complex
Chris Lee; Yana Valachovic; Susan Frankel; Katie Palmieri
2010-01-01
Land managers, fire suppression professionals, and research scientists have speculated about the relationship between increased Phytophthora ramorum-caused hardwood mortality and wildfire incidence, severity, and behavior in coastal California. Little quantitative data has emerged to measure the nature of any such relationship. The Basin Complex...
NASA Astrophysics Data System (ADS)
Oddi, Facundo; Ghermandi, Luciana; Lasaponara, Rosa
2014-05-01
Fire recurrently affects many of the terrestrial ecosystems causing major implications on the structure and dynamics of vegetation. In fire prone, it is particularly important to know the fire regime for which precise fire records are needed. Dendroecology offers the possibility of obtaining fire occurrence data from woody species and has been widely used in forest ecosystems for fire research. Grasslands are regions with no trees but shrubs could be used to acquire dendroecological information in order to reconstructing fire history at landscape scale. We studied the dendroecological potential of shrub F. imbricata to reconstruct fire history at landscape scale in a fire prone grassland of northwestern Patagonia. To do this, we combined spatio-temporal information of recorded fires within the study area with the age structure of F. imbricata shrublands derived by dendroecology. Sampling sites were located over 2500 ha in San Ramón ranch, 30 km east from Bariloche, Río Negro province, Argentina (latitude -41° 04'; longitude -70° 51'). Shrubland age structure correctly described how fires occurred in the past. Pulses of individuals' recruitment were associated with fire in time and space. A bi-variate analysis showed that F. imbricata recruits individuals during the two years after fire and spatial distribution of pulses coincided with the fire map. In sites without fire data, the age structure allowed the identification of two additional fires. Our results show that shrub F. imbricata can be employed with other data sources such as remote sensing and operational databases to improve knowledge on fire regime in northwestern Patagonia grasslands. In conclusion, we raise the possibility of utilizing shrubs as a dendroecological data source to study fire history in grasslands where tree cover is absent.
Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.
2003-01-01
Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.
Urban fire risk control: House design, upgrading and replanning
Mbuya, Elinorata Celestine
2018-01-01
Urbanisation leads to house densification, a phenomenon experienced in both planned and unplanned settlements in cities in developing countries. Such densification limits fire brigade access into settlements, thereby aggravating fire disaster risks. In this article, we assess the fire exposure and risks in residences in informal areas of Mchikichini ward, in Dar es Salaam City, Tanzania. We rely on interviews of residents and government officials to obtain background on the occurrence and causes of fire accidents, policy provisions and regulations, and experiences with fire outbreaks and coping strategies, as well as on observations and measurements of house transformations, spatial quality and indoor real life. Our findings suggest that fire risks arise from both inappropriate structural characteristics and unsound behavioural practices. This includes unsafe electric practices by residents, poor capacity of residents to fight fires once started, limited access to structures by firefighting equipment because of flouting of planning regulations and inadequate awareness of local government leaders of the magnitude of fire risks. Potential changes to reduce fire risks in the settlement include the installation of firefighting systems, restriction of cooking to designated spaces, use of safer cooking energy sources and lighting means, improvements of vehicle access routes to neighbourhoods, capacity building at the grass root level and the establishment of community-based fire risk management.
Gavin, Daniel G.; Starzomski, Brian M.
2016-01-01
While wildland fire is globally most common at the savannah-grassland ecotone, there is little evidence of fire in coastal temperate rainforests. We reconstructed fire activity with a ca 700-year fire history derived from fire scars and stand establishment from 30 sites in a very wet (up to 4000 mm annual precipitation) temperate rainforest in coastal British Columbia, Canada. Drought and warmer temperatures in the year prior were positively associated with fire events though there was little coherence of climate indices on the years of fires. At the decadal scale, fires were more likely to occur after positive El Niño-Southern Oscillation and Pacific Decadal Oscillation phases and exhibited 30-year periods of synchrony with the negative phase of the Arctic Oscillation. Fire frequency was significantly inversely correlated with the distance from former Indigenous habitation sites and fires ceased following cultural disorganization caused by disease and other European impacts in the late nineteenth century. Indigenous people were likely to have been the primary ignition source in this and many coastal temperate rainforest settings. These data are directly relevant to contemporary forest management and discredit the myth of coastal temperate rainforests as pristine landscapes. PMID:27853581
Control of the multimillennial wildfire size in boreal North America by spring climatic conditions
Ali, Adam A.; Blarquez, Olivier; Girardin, Martin P.; Hély, Christelle; Tinquaut, Fabien; El Guellab, Ahmed; Valsecchi, Verushka; Terrier, Aurélie; Bremond, Laurent; Genries, Aurélie; Gauthier, Sylvie; Bergeron, Yves
2012-01-01
Wildfire activity in North American boreal forests increased during the last decades of the 20th century, partly owing to ongoing human-caused climatic changes. How these changes affect regional fire regimes (annual area burned, seasonality, and number, size, and severity of fires) remains uncertain as data available to explore fire–climate–vegetation interactions have limited temporal depth. Here we present a Holocene reconstruction of fire regime, combining lacustrine charcoal analyses with past drought and fire-season length simulations to elucidate the mechanisms linking long-term fire regime and climatic changes. We decomposed fire regime into fire frequency (FF) and biomass burned (BB) and recombined these into a new index to assess fire size (FS) fluctuations. Results indicated that an earlier termination of the fire season, due to decreasing summer radiative insolation and increasing precipitation over the last 7.0 ky, induced a sharp decrease in FF and BB ca. 3.0 kyBP toward the present. In contrast, a progressive increase of FS was recorded, which is most likely related to a gradual increase in temperatures during the spring fire season. Continuing climatic warming could lead to a change in the fire regime toward larger spring wildfires in eastern boreal North America. PMID:23213207
Xiao, Yundan; Zhang, Xiongqing; Ji, Ping
2015-01-01
Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence.
Ji, Ping
2015-01-01
Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence. PMID:25790309
Effects of fire on major forest ecosystem processes: an overview.
Chen, Zhong
2006-09-01
Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.
CASA Forest Cover Change Data Sets
NASA Technical Reports Server (NTRS)
Potter, Christopher S.
2012-01-01
Deforestation and forest fires are global land cover changes that can be caused by both natural and human factors. Although monitoring forest fires in near-real time is critical for operational wildfire management, mapping historical wildfires in a spatially explicit fashion is also important for a number of reasons, including climate change studies (e.g., examining the relationship between rising temperatures and frequency of fires), fuel load management (e.g., deciding when and where to conduct controlled burns), and carbon cycle studies (e.g., quantifying how much CO2 is emitted by fires and for emissions reduction efforts under the United Nations programs for Reducing Emissions from Deforestation and Degradation -- REDD).
Esperanza Fire near Palm Springs, California
2006-11-08
The Esperanza fire started on October 26 in the dry brush near Palm Springs, CA. By the time it was contained 6 days later, the fire had consumed 40,200 acres, and destroyed 34 homes and 20 outbuildings. Racing through grass, brush, and timber, the blaze had forced hundreds to evacuate, and it killed five firefighters who were working to protect homes. Fire officials are reporting the cause of the blaze as arson. In this ASTER image composite of visible and infrared bands, burned areas are shown in shades of red, vegetation is green, brown vegetation is brown and asphalt and concrete are blue-gray. http://photojournal.jpl.nasa.gov/catalog/PIA01900
Induction of antimicrobial 3-deoxyflavonoids in pome fruit trees controls fire blight.
Halbwirth, Heidrun; Fischer, Thilo C; Roemmelt, Susanne; Spinelli, Francesco; Schlangen, Karin; Peterek, Silke; Sabatini, Emidio; Messina, Christian; Speakman, John-Bryan; Andreotti, Carlo; Rademacher, Wilhelm; Bazzi, Carlo; Costa, Guglielmo; Treutter, Dieter; Forkmann, Gert; Stich, Karl
2003-01-01
Fire blight, a devastating bacterial disease in pome fruits, causes severe economic losses worldwide. Hitherto, an effective control could only be achieved by using antibiotics, but this implies potential risks for human health, livestock and environment. A new approach allows transient inhibition of a step in the flavonoid pathway, thereby inducing the formation of a novel antimicrobial 3-deoxyflavonoid controlling fire blight in apple and pear leaves. This compound is closely related to natural phytoalexins in sorghum. The approach does not only provide a safe method to control fire blight: Resistance against different pathogens is also induced in other crop plants.
1976-07-01
1965 Summary, Pg. 11 21. 6/14/65, DC-8, , Santiago , Chile Left main landing gear brakes were locked on touchdown causing tire blowouts and a small fire... concentration of nine percent will prevent an explosion such as hat which occurred under similar ex- ternal fire test conditions in an tudnerted fuel tank. These...the inert concentration in the tanks was lost, providing more time for safe evacuation. Liquid nitrogen fuel tank inerting technology is presently
Historical Simulation and the American Civil War.
1991-06-07
book, Little Wars. Wells’ game used a toy gun firing wooden bullets to inflict casualties. His tactics involved positioning of guns , proper use of cover...Confederates initiated the game -turn by concen- trating the fire of 14 guns against Kleiser’s 6 gun battery causing one casting casualty. At the...brought in flanking fire on Wynkoop’s and Tibbit’s cavalry brigades. Imboden claimed, "The effect was magical . The first discharge of the gun threw his
Extreme toxicity from combustion products of a fire-retarded polyurethane foam.
Petajan, J H; Voorhees, K J; Packham, S C; Baldwin, R C; Einhorn, I N; Grunnet, M L; Dinger, B G; Birky, M M
1975-02-28
The products from nonflaming combustion of wood and a trimethylol-propane-based rigid-urethane foam that was not fire-retarded produced elevated carboxyhemoglobin levels but no abnormal neurological effects. However, when this type of foam contained a reactive phosphate fire retardant, the combustion products caused grand mal seizures and death in rats. The toxic combustion product responsible for the seizures has been identified as 4-ethyl-1-phospha-2,6,7-trioxabicyclo(2.2.2.)octane-1-oxide.
NASA Technical Reports Server (NTRS)
Kaszubowski, M.; Raney, J. P.
1986-01-01
A study was conducted to determine the dynamic effects of firing the orbiter primary reaction control jets during assembly of protoflight space station structure. Maximum longeron compressive load was calculated as a function of jet pulse time length, number of jet pulses, and total torque imposed by the reaction control jets. The study shows that it is possible to fire selected jets to achieve a pitch maneuver without causing failure of the attached structure.
Major Wildfire Near Santa Barbara seen by NASA Spacecraft
2016-06-22
The Sherpa fire in Santa Barbara County, CA has burned over 12 square miles since it started on June 15. Smoke from the fire reached Los Angeles on the weekend. The fire caused closures of US Highway 101, one of the main routes between southern and northern California. The image was acquired June 19, 2016, covers an area of 25 by 30 kilometers, and is located at 34.4 degrees north, 119.8 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20734
Beyond Critical Exponents in Neuronal Avalanches
NASA Astrophysics Data System (ADS)
Friedman, Nir; Butler, Tom; Deville, Robert; Beggs, John; Dahmen, Karin
2011-03-01
Neurons form a complex network in the brain, where they interact with one another by firing electrical signals. Neurons firing can trigger other neurons to fire, potentially causing avalanches of activity in the network. In many cases these avalanches have been found to be scale independent, similar to critical phenomena in diverse systems such as magnets and earthquakes. We discuss models for neuronal activity that allow for the extraction of testable, statistical predictions. We compare these models to experimental results, and go beyond critical exponents.
Risk of large-scale fires in boreal forests of Finland under changing climate
NASA Astrophysics Data System (ADS)
Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.
2016-01-01
The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.
Taylor, Alan H.; Trouet, Valerie; Skinner, Carl N.; Stephens, Scott
2016-01-01
Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire activity by merging a tree-ring–based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire–climate relationships were strongest after Native American depopulation—following mission establishment (ca. 1775 CE)—reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire–climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire–climate models for addressing the increasing fire risk in California. PMID:27849589
Large-Scale Controls and Characteristics of Fire Activity in Central Chile, 2001-2015
NASA Astrophysics Data System (ADS)
McWethy, D. B.; Pauchard, A.; García, R.; Holz, A.; González, M.; Veblen, T. T.; Stahl, J.
2016-12-01
In recent decades, fire activity has increased in many ecosystems worldwide, even where fuel conditions and natural ignitions historically limited fire activity, and this increase begs questions of whether climate change, land-use change, and/or altered vegetation are responsible. Increased frequency of large fires in these settings has been attributed to drier-than-average summers and longer fire seasons as well as fuel accumulation related to ENSO events, raising concerns about the trajectory of post-fire vegetation dynamics and future fire regimes. In temperate and Mediterranean forests of central Chile, recent large fires associated with altered ecosystems, climate variability and land-use change highlight the risk and hazard of increasing fire activity yet the causes and consequences are poorly understood. To better understand characteristics of recent fire activity, key drivers of fire occurrence and the spatial probability of wildfire we examined the relationship between fire activity derived from MODIS satellite imagery and biophysical, land-cover and land-use variables. The probability of fire occurrence and annual area burned was best predicted by seasonal precipitation, annual temperature and land cover type. The likelihood of fire occurrence was greatest in Matorral shrublands, agricultural lands (including pasture lands) and Pinus and Eucalyptus plantations, highlighting the importance of vegetation type and fuel flammability as a critical control on fire activity. Our results suggest that land-use change responsible for the widespread presence of highly flammable vegetation and projections for continued warming and drying will likely combine to promote the occurrence of large fires in central Chile in the future.
Aircraft Engine Sump Fire Mitigation
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1973-01-01
An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinnikov, B.; NRC Kurchatov Inst.
According to Scientific and Technical Cooperation between the USA and Russia in the field of nuclear engineering the Idaho National Laboratory has transferred to the possession of the National Research Center ' Kurchatov Inst. ' the SAPHIRE software without any fee. With the help of the software Kurchatov Inst. developed a Pilot Living PSA- Model of Leningrad NPP Unit 1. Computations of core damage frequencies were carried out for additional Initiating Events. In the submitted paper such additional Initiating Events are fires in various compartments of the NPP. During the computations of each fire, structure of the PSA - Modelmore » was not changed, but Fault Trees for the appropriate systems, which are removed from service during the fire, were changed. It follows from the computations, that for ten fires Core Damaged Frequencies (CDF) are not changed. Other six fires will cause additional core damage. On the basis of the calculated results it is possible to determine a degree of importance of these fires and to establish sequence of performance of fire-prevention measures in various places of the NPP. (authors)« less
Fiber optic distributed temperature sensing for fire source localization
NASA Astrophysics Data System (ADS)
Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong
2017-08-01
A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.
Animation of Sequoia Forest Fire
NASA Technical Reports Server (NTRS)
2002-01-01
Continued hot, dry weather in the American west contributed to the spread of numerous fires over the weekend of July 29-30, 2000. This is the most active fire season in the United States since 1988, when large portions of Yellowstone National Park burned. One of the largest fires currently burning has consumed more than 63,000 acres in Sequoia National Forest. This NOAA Geostationary Operational Environmental Satellite (GOES) image shows the fire on the afternoon of July 30, 2000. Note the clouds above the smoke plume. These often form during large fires because updrafts lift warm air near the ground high into the atmosphere, cooling the air and causing the water vapor it contains to condense into droplets. The soot particles in the smoke also act as condensation nuclei for the droplets. View the animation of GOES data to see the smoke forming clouds. Image and Animation by Robert Simmon and Marit-Jentoft Nilsen, NASA GSFC, based on data from NOAA.
Born of fire - restoring sagebrush steppe
Pyke, David A.
2002-01-01
Fire is a natural feature of sagebrush grasslands in the Great Basin. The invasion of exotic annual grasses, such as Bromus tectorum (cheatgrass), has changed the environment in these ecosystems. Invasive annual grasses provide a dense and continuous source of fuel that extends the season for fires and increases the frequency of fires in the region. Frequent fires eventually eliminate the native sagebrush. These annual grasses also change soil nutrients, especially carbon and nitrogen, such that invasive annual grasses are favored over the native plants. The Forest and Rangeland Ecosystem Science Center of the U.S. Geological Survey (USGS) is studying how to reduce the problems caused by these invasive annual grasses and restore native sagebrush grasslands. The areas of research include understanding disturbance regimes, especially fire, discerning the role of nutrients in restoring native plants, determining the potential to restore forbs important for wildlife, and ascertaining the past and present use of native and nonnative plants in revegetation projects.
Fire and deforestation dynamics in Amazonia (1973–2014)
Field, Robert D.; van der Werf, Guido R.; Estrada de Wagt, Ivan A.; Houghton, Richard A.; Rizzo, Luciana V.; Artaxo, Paulo; Tsigaridis, Kostas
2017-01-01
Abstract Consistent long‐term estimates of fire emissions are important to understand the changing role of fire in the global carbon cycle and to assess the relative importance of humans and climate in shaping fire regimes. However, there is limited information on fire emissions from before the satellite era. We show that in the Amazon region, including the Arc of Deforestation and Bolivia, visibility observations derived from weather stations could explain 61% of the variability in satellite‐based estimates of bottom‐up fire emissions since 1997 and 42% of the variability in satellite‐based estimates of total column carbon monoxide concentrations since 2001. This enabled us to reconstruct the fire history of this region since 1973 when visibility information became available. Our estimates indicate that until 1987 relatively few fires occurred in this region and that fire emissions increased rapidly over the 1990s. We found that this pattern agreed reasonably well with forest loss data sets, indicating that although natural fires may occur here, deforestation and degradation were the main cause of fires. Compared to fire emissions estimates based on Food and Agricultural Organization's Global Forest and Resources Assessment data, our estimates were substantially lower up to the 1990s, after which they were more in line. These visibility‐based fire emissions data set can help constrain dynamic global vegetation models and atmospheric models with a better representation of the complex fire regime in this region. PMID:28286373
NASA Astrophysics Data System (ADS)
Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.
2012-12-01
In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.
Hedrich, Ulrike B S; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz; Mantegazza, Massimo; Lerche, Holger
2014-11-05
Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. Copyright © 2014 the authors 0270-6474/14/3414874-16$15.00/0.
Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire.
Taylor, Kimberley T; Maxwell, Bruce D; McWethy, David B; Pauchard, Aníbal; Nuñez, Martín A; Whitlock, Cathy
2017-03-01
Invasive plant species that have the potential to alter fire regimes have significant impacts on native ecosystems. Concern that pine invasions in the Southern Hemisphere will increase fire activity and severity and subsequently promote further pine invasion prompted us to examine the potential for feedbacks between Pinus contorta invasions and fire in Patagonia and New Zealand. We determined how fuel loads and fire effects were altered by P. contorta invasion. We also examined post-fire plant communities across invasion gradients at a subset of sites to assess how invasion alters the post-fire vegetation trajectory. We found that fuel loads and soil heating during simulated fire increase with increasing P. contorta invasion age or density at all sites. However, P. contorta density did not always increase post-fire. In the largest fire, P. contorta density only increased significantly post-fire where the pre-fire P. contorta density was above an invasion threshold. Below this threshold, P. contorta did not dominate after fire and plant communities responded to fire in a similar manner as uninvaded communities. The positive feedback observed at high densities is caused by the accumulation of fuel that in turn results in greater soil heating during fires and high P. contorta density post-fire. Therefore, a positive feedback may form between P. contorta invasions and fire, but only above an invasion density threshold. These results suggest that management of pine invasions before they reach the invasion density threshold is important for reducing fire risk and preventing a transition to an alternate ecosystem state dominated by pines and novel understory plant communities. © 2016 by the Ecological Society of America.
Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution
NASA Astrophysics Data System (ADS)
Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.
2018-01-01
In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.
Eby, Stephanie L; Anderson, T Michael; Mayemba, Emilian P; Ritchie, Mark E
2014-09-01
Given the role of fire in shaping ecosystems, especially grasslands and savannas, it is important to understand its broader impact on these systems. Post-fire stimulation of plant nutrients is thought to benefit grazing mammals and explain their preference for burned areas. However, fire also reduces vegetation height and increases visibility, thereby potentially reducing predation risk. Consequently, fire may be more beneficial to smaller herbivores, with higher nutritional needs and greater risks of predation. We tested the impacts of burning on different sized herbivores' habitat preference in Serengeti National Park, as mediated by burning's effects on vegetation height, live : dead biomass ratio and leaf nutrients. Burning caused a less than 4 month increase in leaf nitrogen (N), and leaf non-N nutrients [copper (Cu), potassium (K), and magnesium (Mg)] and a decrease in vegetation height and live : dead biomass. During this period, total herbivore counts were higher on burned areas. Generally, smaller herbivores preferred burned areas more strongly than larger herbivores. Unfortunately, it was not possible to determine the vegetation characteristics that explained burned area preference for each of the herbivore species observed. However, total herbivore abundance and impala (Aepyceros melampus) preference for burned areas was due to the increases in non-N nutrients caused by burning. These findings suggest that burned area attractiveness to herbivores is mainly driven by changes to forage quality and not potential decreases in predation risk caused by reductions in vegetation height. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Tobacco and the law: the state of the art.
Howard, G
1996-01-01
Litigation has become a major weapon in the conflict between those who seek to control tobacco and the tobacco industry. Apart from the cases arising from the high proportion of fires caused by cigarettes (including, in the UK, the disastrous fire at the Bradford football stadium and the fire at Kings Cross railway station, both of which were caused by discarded cigarette butts), in the last few years there have been and are continuing major lawsuits against the tobacco manufacturers both in the USA and in the UK. In Australia, a Court has ruled that the tobacco industry's claims that passive smoke had not been proven to cause a variety of diseases were false and misleading. A Quebec judge ruled as unconstitutional a Canadian law which had banned tobacco advertising. A product liability suit was filed against cigarette manufacturers by airline flight attendants whose health, they alleged, was impaired by exposure to passive smoke. To date, attempts to win damages from the manufacturers for injuries caused by smoking have failed, but several group actions are pending in the courts in England and the USA. The cases to date demonstrate the range and importance of tobacco control issues now being considered by the Courts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.V.K. Singh; V.K. Singh
2004-10-15
Spontaneous combustion in coal mines plays a vital role in occurrences of fire. Fire in coal, particularly in opencast mines, not only causes irreparable loss of national wealth but damages the surface structure and pollutes the environment. The problem of spontaneous combustion/fire in opencast coal benches is acute. Presently over 75% of the total production of coal in Indian mines is being carried out by opencast mining. Accordingly a mechanised spraying device has been developed for spraying the fire protective coating material for preventing spontaneous combustion in coal benches of opencast mines jointly by Central Mining Research Institute, Dhanbad andmore » M/s Signum Fire Protection (India) Pvt. Ltd., Nagpur under Science & Technology (S&T) project funded by Ministry of Coal, Govt. of India. The objective of this paper is to describe in detail about the mechanised spraying device and its application for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion/fire.« less
Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States
Busing, Richard T.; Solomon, Allen M.
2006-01-01
This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.
One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.
Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok
2015-03-25
In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability.
Forecasting wildland fire behavior using high-resolution large-eddy simulations
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.
2016-12-01
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.
Predicting fire impact from plant traits?
NASA Astrophysics Data System (ADS)
Stoof, Cathelijne; Ottink, Roos; Zylstra, Philip; Cornelissen, Hans; Fernandes, Paulo
2017-04-01
Fire can considerably increase the landscape's vulnerability to flooding and erosion, which is in part caused by fire-induced soil heating, vegetation removal and resulting hydrological changes. While the magnitude of these fire effects and ecosystem responses is frequently studied, there is still little attention for the fundamental mechanisms that drive these changes. One example is on the effect of plants: while it is known that plants can alter the fire environment, there is a major knowledge gap regarding the fundamental mechanisms by which vegetation mediates fire impact on soil and hydrology. Essential to identifying these mechanisms is consideration of the effects of vegetation on flammability and fire behaviour, which are studied both in ecology and traditional fire science. Here we discuss the challenges of integrating these very distinct fields and the potential benefits of this integration for improved understanding of fire effects on soil and hydrology. We furthermore present results of a study in which we assessed the spatial drivers controlling the proportion of live and dead fuel in a natural park in northern Portugal, and evaluated the impacts on the spatial variability of fire behaviour and potential soil heating using BehavePlus modeling. Better understanding of the role of (spatial variability in) plant traits on fire impact can facilitate the development of risk maps to ultimately help predict and mitigate fire risk and impact across landscapes.
Fire and Deforestation Dynamics in South America over the Past 50 Years
NASA Astrophysics Data System (ADS)
van Marle, M.; Field, R. D.; van der Werf, G.
2015-12-01
Fires play an important role in the Earth system and are one of the major sources of greenhouse gases and aerosols. Satellites have been key to understand their spatial and temporal variability in space and time, but the most frequently used satellite datasets start only in 1995. There are still large uncertainties about the frequency and intensity of fires in the pre-satellite time period, especially in regions with active deforestation, which may have changed dramatically in intensity in the past decades influencing fire dynamics. We used two datasets to extend the record of fires and deforestation in the Amazon region back in time: 1) annual forest loss rates starting in 1990 derived from Vegetation Optical Depth (VOD), which is a satellite-based vegetation product that can be used as proxy for forest loss, and 2) horizontal visibility as proxy for fire emissions, reported by weather stations and airports in the Amazon, which started around 1940, and having widespread coverage since 1973. We show that these datasets overlap with fire emission estimates from the Global Fire Emissions Database (GFED) enabling us to estimate fire emissions over the last 50 years. We will discuss how fires have varied over time in this region with globally significant emissions, how droughts have influenced fire activity and deforestation rates, and what the impact is of land-use change caused by fire on emissions in the Amazon region.
Forecasting wildland fire behavior using high-resolution large-eddy simulations
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.
2017-12-01
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.
NASA Astrophysics Data System (ADS)
Corcoran, Jonathan; Higgs, Gary; Rohde, David; Chhetri, Prem
2011-06-01
Fires in urban areas can cause significant economic, physical and psychological damage. Despite this, there has been a comparative lack of research into the spatial and temporal analysis of fire incidence in urban contexts. In this paper, we redress this gap through an exploration of the association of fire incidence to weather, calendar events and socio-economic characteristics in South-East Queensland, Australia using innovative technique termed the quad plot. Analysing trends in five fire incident types, including malicious false alarms (hoax calls), residential buildings, secondary (outdoor), vehicle and suspicious fires, results suggest that risk associated with all is greatly increased during school holidays and during long weekends. For all fire types the lowest risk of incidence was found to occur between one and six a.m. It was also found that there was a higher fire incidence in socially disadvantaged neighbourhoods and there was some evidence to suggest that there may be a compounding impact of high temperatures in such areas. We suggest that these findings may be used to guide the operations of fire services through spatial and temporal targeting to better utilise finite resources, help mitigate risk and reduce casualties.
Accidental fires in clinical laboratories.
Hoeltge, G A; Miller, A; Klein, B R; Hamlin, W B
1993-12-01
The National Fire Protection Association, Quincy, Mass, estimates that 169 fires have occurred annually in health care, medical, and chemical laboratories. On the average, there are 13 civilian injuries and $1.5 million per year in direct property damage. Most fires in which the cause or ignition source can be identified originate in malfunctioning electrical equipment (41.6%) or in the facility's electrical distribution system (14.7%). The prevalence of fire safety deficiencies was measured in the College of American Pathologists Laboratory Accreditation Program. Of the 1732 inspected laboratories, 5.5% lacked records of electrical receptacle polarity and ground checks in the preceding year. Of these inspected laboratories, 4.7% had no or incomplete documentation of electrical safety checks on laboratory instruments. There was no evidence of quarterly fire exit drills in 9% of the laboratories. Deficiencies were also found in precautionary labeling (6.8%), in periodic review of safe work practices (4.2%), in the use of safety cans (3.7%), and in venting of flammable liquid storage areas (2.8%). Fire preparedness would be improved if all clinical laboratories had smoke detectors and automatic fire-extinguishing systems. In-service training courses in fire safety should be targeted to the needs of specific service areas.
Analysis of fire deaths in Poland and influence of smoke toxicity.
Giebułtowicz, Joanna; Rużycka, Monika; Wroczyński, Piotr; Purser, David A; Stec, Anna A
2017-08-01
Dwelling fires have changed over the years because building contents and the materials used in then have changed. They all contribute to an ever-growing diversity of chemical species found in fires, many of them highly toxic. These arise largely from the changing nature of materials in interior finishes and furniture, with an increasing content of synthetic materials containing higher levels of nitrogen, halogen and phosphorus additives. While there is still a belief that carbon monoxide is the major lethal toxic agent in fires, the hydrogen cyanide and acid gases released from these additives are now well-recognised as major contributory causes of incapacitation, morbidity and mortality in domestic fires. Data for the total number of 263 fire death cases in the Mazowieckie region (mainly Warsaw area) of Poland between 2003-2011 for dwellings fires were obtained from pathologists, forensic toxicologists, fire fighters and analysed. Factors contributing to the death such as the findings of the full post mortem examination (age, sex, health status, burns), the toxicological analysis (carbon monoxide, alcohol etc.), and a thorough investigation of the scene (fire conditions, fuel, etc.) were taken into account and are summarised. Copyright © 2017 Elsevier B.V. All rights reserved.
Trends and drivers of fire activity vary across California aridland ecosystems
Syphard, Alexandra D.; Keeley, Jon E.; Abatzoglou, John T.
2017-01-01
Fire activity has increased in western US aridland ecosystems due to increased human-caused ignitions and the expansion of flammable exotic grasses. Because many desert plants are not adapted to fire, increased fire activity may have long-lasting ecological impacts on native vegetation and the wildlife that depend on it. Given the heterogeneity across aridland ecosystems, it is important to understand how trends and drivers of fire vary, so management can be customized accordingly. We examined historical trends and quantified the relative importance of and interactions among multiple drivers of fire patterns across five aridland ecoregions in southeastern California from 1970 to 2010. Fire frequency increased across all ecoregions for the first couple decades, and declined or plateaued since the 1990s; but area burned continued to increase in some regions. The relative importance of anthropogenic and biophysical drivers varied across ecoregions, with both direct and indirect influences on fire. Anthropogenic variables were equally important as biophysical variables, but some contributed indirectly, presumably via their influence on annual grass distribution and abundance. Grass burned disproportionately more than other cover types, suggesting that addressing exotics may be the key to fire management and conservation in much of the area.
Hazard mitigation in coal mines
NASA Astrophysics Data System (ADS)
Rashmi, R. V.; Devalal, Shilpa; Jacob, Anjali; Vidhyapathi, C. M.
2017-11-01
Today’s world witnesses increased number of mine accidents caused due to explosion and fire. When the methane gas concentration goes high, it causes fire leading to explosion. In this paper, an IoT based system is proposed to ensure safety to the mine workers in underground collieries. The proposed system consists of DHT-11 sensor to monitor the temperature and humidity of coal mines. When the gas sensor detects high methane gas level, blower is activated so that the atmospheric air can be pumped in from outside to dilute the gas concentration. The smoke sensor is also used to detect the fire. In case of any abnormality in any of these parameters the buzzer sounds. All these parameters are uploaded to the cloud directly so that the people at the control station can be well informed of the underground mines.
Molecular genetics of Erwinia amylovora involved in the development of fire blight.
Oh, Chang-Sik; Beer, Steven V
2005-12-15
The bacterial plant pathogen, Erwinia amylovora, causes the devastating disease known as fire blight in some Rosaceous plants like apple, pear, quince, raspberry and several ornamentals. Knowledge of the factors affecting the development of fire blight has mushroomed in the last quarter century. On the molecular level, genes encoding a Hrp type III secretion system, genes encoding enzymes involved in synthesis of extracellular polysaccharides and genes facilitating the growth of E. amylovora in its host plants have been characterized. The Hrp pathogenicity island, delimited by genes suggesting horizontal gene transfer, is composed of four distinct regions, the hrp/hrc region, the HEE (Hrp effectors and elicitors) region, the HAE (Hrp-associated enzymes) region, and the IT (Island transfer) region. The Hrp pathogenicity island encodes a Hrp type III secretion system (TTSS), which delivers several proteins from bacteria to plant apoplasts or cytoplasm. E. amylovora produces two exopolysaccharides, amylovoran and levan, which cause the characteristic fire blight wilting symptom in host plants. In addition, other genes, and their encoded proteins, have been characterized as virulence factors of E. amylovora that encode enzymes facilitating sorbitol metabolism, proteolytic activity and iron harvesting. This review summarizes our understanding of the genes and gene products of E. amylovora that are involved in the development of the fire blight disease.
The nature of water: excerpts from Pythagoras, Xenophanes, Heraclitus and Parmenides.
Bisaccia, Carmela; De Santo, Rosa Maria; Bilancio, Giancarlo; Anastasio, Pietro; Perna, Alessandra; De Santo, Luca Salvatore
2009-01-01
Water was a prominent substance with Pythagoras, Xenophanes, Heraclitus and Parmenides, who flourished in the years 530-490 bc. The basic Pythagorean elements were earth and fire, and between them there were 2 intermediate entities (water and air), which were instrumental and indispensable components of specific solids. All things are a blend of different elements. For Xenophanes, "All things that come into being and grow are earth and water," "We all originated from earth and water" and "And in certain caves water drips down."For Heraclitus water is an ambivalent substance: "One cannot bathe in the same river on two occasions." "The sea is the safest and the most polluted water, for fish it is healthy and gives life, for men it is unhealthy and causes death." "Fire experiences the death of earth, air experiences that of fire, water experiences the death of air and the earth that of water." Parmenides was a man who sought the truth through reasoning and was, according to Hegel, the founder of Western philosophy. He built a dualist theory of the cosmos based on heat and cold, fire and earth - the former as a cause, the latter as substrate. The former unified, the latter separated. According to Aristotle, Parmenides considered air and water as mixtures of earth and fire.
Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia.
Crippa, P; Castruccio, S; Archer-Nicholls, S; Lebron, G B; Kuwata, M; Thota, A; Sumin, S; Butt, E; Wiedinmyer, C; Spracklen, D V
2016-11-16
Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.
Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia
Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G. B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D. V.
2016-01-01
Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153–17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality. PMID:27848989
Barnes, Brendon; Mathee, Angela; Moiloa, Kebitsamang
2005-01-01
Indoor air pollution, caused by the indoor burning of biomass fuels, has been associated with an increased risk of child acute respiratory infections in developing countries. The amount of time that children spend in proximity to fires is a crucial determinant of the health impact of indoor air pollution. Researchers are reliant on social scientific methods to assess exposure based on child location patterns in relation to indoor fires. The inappropriate use of methods could lead to misclassification of exposure. The aim of this paper is to compare two methods (observations and questionnaire interview) with video analysis (which is thought to offer a more accurate assessment of exposure) in rural South African villages. Compared to video analysis, results show that observations may underestimate the amount of time that children spend very close (within 1.5 m) to fires. This is possibly due to reactivity caused by the presence of an observer. The questionnaire interview offers a more accurate assessment of the amounts of time that children spend within 1.5 m of fires at the expense of a detailed behavioural analysis. By drawing on the strengths and weaknesses of each, this paper discusses the appropriateness of methods to different research contexts.
NASA Astrophysics Data System (ADS)
Nieradzik, L. P.; Haverd, V. E.; Briggs, P.; Meyer, C. P.; Canadell, J.
2015-12-01
Fires play a major role in the carbon-cycle and the development of global vegetation, especially on the continent of Australia, where vegetation is prone to frequent fire occurences and where regional composition and stand-age distribution is regulated by fire. Furthermore, the probable changes of fire behaviour under a changing climate are still poorly understood and require further investigation.In this presentation we introduce the fire-model BLAZE (BLAZe induced land-atmosphere flux Estimator), designed for a novel approach to simulate fire-frequencies, fire-intensities, fire related fluxes and the responses in vegetation. Fire frequencies are prescribed using SIMFIRE (Knorr et al., 2014) or GFED3 (e.g. Giglio et al., 2013). Fire-Line-Intensity (FLI) is computed from meteorological information and fuel loads which are state variables within the C-cycle component of CABLE (Community Atmosphere-Biosphere-Land Exchange model). This FLI is used as an input to the tree-demography model POP(Population-Order-Physiology; Haverd et al., 2014). Within POP the fire-mortality depends on FLI and tree height distribution. Intensity-dependent combustion factors (CF) are then generated for and applied to live and litter carbon pools as well as the transfers from live pools to litter caused by fire. Thus, both fire and stand characteristics are taken into account which has a legacy effect on future events. Gross C-CO2 emissions from Australian wild fires are larger than Australian territorial fossil fuel emissions. However, the net effect of fire on the Australian terrestrial carbon budget is unknown. We address this by applying the newly-developed fire module, integrated within the CABLE land surface model, and optimised for the Australian region, to a reassessment of the Australian Terrestrial Carbon Budget.
36 CFR 223.137 - Causes for debarment.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., fire prevention, and the disposal of slash; (2) Protection of soil, water, wildlife, range, cultural, and timber resources and protection of improvements when such failure causes significant environmental, resource, or improvements damage; (3) Removal of designated timber when such failure causes substantial...
Survival analysis and classification methods for forest fire size
2018-01-01
Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances. PMID:29320497
Survival analysis and classification methods for forest fire size.
Tremblay, Pier-Olivier; Duchesne, Thierry; Cumming, Steven G
2018-01-01
Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at "being held" (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at "being held" exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.
Large forest fires in Canada, 1959-1997
NASA Astrophysics Data System (ADS)
Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.
2002-01-01
A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ˜97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ˜2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.
Large forest fires in Canada, 1959-1997
NASA Astrophysics Data System (ADS)
Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.
2003-01-01
A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ~97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ~2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.
USDA-ARS?s Scientific Manuscript database
Controlling invasive species is a growing concern; however, pesticides can be detrimental for non-target organisms. The red imported fire ant (Solenopsis invicta Buren; Hymenoptera: Formicidae) has aggressively invaded approximately 138 million ha in the USA and causes over $6 billion in damage and ...
Rangeland mismanagement in South Africa: Failure to apply ecological knowledge
Andrew T. Hudak
1999-01-01
Chronic, heavy livestock grazing and concomitant fire suppression have caused the gradual replacement of palatable grass species by less palatable trees and woody shrubs in a rangeland degradation process termed bush encroachment in South Africa. Grazing policymakers and cattle farmers alike have not appreciated the ecological role fire and native browsers play in...