FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis
Patricia L. Andrews; Larry S. Bradshaw
1997-01-01
A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...
Allgöwer, Britta; Carlson, J.D.; Van Wagtendonk, Jan W.; Chuvieco, Emilio
2003-01-01
While ‘Fire Danger’ per se cannot be measured, the physical properties of the biotic and abiotic world that relate to fire occurrence and fire behavior can. Today, increasingly sophisticated Remote Sensing methods are being developed to more accurately detect fuel properties such as species composition (fuel types), vegetation structure or plant water content - to name a few. Based on meteorological input data and physical, semi-physical or empirical model calculations, Wildland Fire Danger Rating Systems provide ‘indirect values’ - numerical indices - at different temporal scales (e.g., daily, weekly, monthly) denoting the physical conditions that may lead to fire ignition and support fire propagation. The results can be expressed as fire danger levels, ranging from ‘low’ to ‘very high’, and are commonly used in operational wildland fire management (e.g., the Canadian Fire Weather Index [FWI] System, the Russian Nesterov Index, or the U.S. National Fire Danger Rating System [NFDRS]). Today, fire danger levels are often turned into broad scale maps with the help of Geographical Information Systems (GIS) showing the areas with the different fire danger levels, and are distributed via the World Wide Web.In this chapter we will outline some key issues dealing with Remote Sensing and GIS techniques that are covered in the following chapters, and elaborate how the Fire Danger Rating concepts could be integrated into a framework that enables comprehensive and sustainable wildland fire risk assessment. To do so, we will first raise some general thoughts about wildland fires and suggest how to approach this extremely complex phenomenon. Second, we will outline a possible fire risk analysis framework and third we will give a short overview on existing Fire Danger Rating Systems and the principles behind them.
Zachary A. Holden; W. Matt Jolly
2011-01-01
Fire danger rating systems commonly ignore fine scale, topographically-induced weather variations. These variations will likely create heterogeneous, landscape-scale fire danger conditions that have never been examined in detail. We modeled the evolution of fuel moistures and the Energy Release Component (ERC) from the US National Fire Danger Rating System across the...
Fire-danger rating and observed wildfire behavior in the Northeastern United States.
Donald A. Haines; William A. Main; Albert J. Simard
1986-01-01
Compares the 1978 National Fire-Danger Rating System and its 20 fuel models, along with other danger rating systems, with observed fire behavior and rates the strengths and weaknesses of models and systems.
How to generate and interpret fire characteristics charts for the U.S. fire danger rating system
Faith Ann Heinsch; Patricia L. Andrews; Deb Tirmenstein
2017-01-01
The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating System (NFDRS) indexes and components as well as primary surface or crown fire behavior characteristics. Computer software has been developed to produce fire characteristics charts for both fire danger and fire behavior in a format suitable for inclusion in reports and...
NCEP-ECPC monthly to seasonal US fire danger forecasts
J. Roads; P. Tripp; H. Juang; J. Wang; F. Fujioka; S. Chen
2010-01-01
Five National Fire Danger Rating System indices (including the Ignition Component, Energy Release Component, Burning Index, Spread Component, and the KeetchâByram Drought Index) and the Fosberg Fire Weather Index are used to characterise US fire danger. These fire danger indices and input meteorological variables, including temperature, relative humidity, precipitation...
Fire Danger Rating: The next 20 Years
John E. Deeming
1987-01-01
For the next 10 years, few changes will be made to the fire-danger rating system. During that time, the focus will be on the automation of weather observing systems and the streamlining of the computation and display of ratings. The time horizon for projecting fire danger will be pushed to 30 days by the late 1990's. A close alignment of the fire-danger rating...
The National Fire Danger Rating System: Derivation of Spread Index for Eastern and Southern States
Ralph M. Nelson
1964-01-01
Presents standards for locating, operating, and maintaining forest fire danger stations in Eastern and Southern States. Includes tables and forms for deriving the Spread Index of the new National Fire-Danger Rating System.
The potential predictability of fire danger provided by ECMWF forecast
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca
2017-04-01
The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.
Fire danger rating in the United States of America: An evolution since 1916
Colin C. Hardy; Charles E. Hardy
2007-01-01
Fire scientists in the United States began exploring the relationships of fire-danger and hazard with weather, fuel moisture, and ignition probabilities as early as 1916. Many of the relationships identified then persist today in the form of our National Fire-Danger-Rating System. This paper traces the evolution of fire-danger rating in the United States, including...
Fire danger rating network density
Rudy M. King; R. William Furman
1976-01-01
Conventional statistical techniques are used to answer the question, "What is the necessary station density for a fire danger network?" The Burning Index of the National Fire-Danger Rating System is used as an indicator of fire danger. Results are presented as station spacing in tabular form for each of six regions in the western United States.
Seasonal fire danger forecasts for the USA
J. Roads; F. Fujioka; S. Chen; R. Burgan
2005-01-01
The Scripps Experimental Climate Prediction Center has been making experimental, near-real-time, weekly to seasonal fire danger forecasts for the past 5 years. US fire danger forecasts and validations are based on standard indices from the National Fire Danger Rating System (DFDRS), which include the ignition component (IC), energy release component (ER), burning...
Web-GIS platform for forest fire danger prediction in Ukraine: prospects of RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, N. V.; Zharikova, M. V.
2016-10-01
There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).
Pocket calculator for local fire-danger ratings
Richard J. Barney; William C. Fischer
1967-01-01
In 1964, Stockstad and Barney published tables that provided conversion factors for calculating local fire danger in the Intermountain area according to fuel types, locations, steepness of terrain, aspects, and times of day. These tables were based on the National Fire-Danger Rating System published earlier that year. This system was adopted for operational use in...
Fire danger and fire behavior modeling systems in Australia, Europe, and North America
Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton
2009-01-01
Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...
Conversion tables for use with the National Fire-Danger Rating System in the Intermountain area
Dwight S. Stockstad; Richard J. Barney
1964-01-01
Two tables prepared for use with the National Fire-Danger Rating System replace 10 tables previously used with the Model-8 Fire-Danger Rating System. They provide for the conversion of Spread Index values at various altitudes, aspects, and times of day. A rate of spread table facilitates converting Spread Index values to chains per hour of perimeter increase for...
Estimation of fire danger in Hawai'i using limited weather data and simulation
D.R. Weise; S.L. Stephens; F.M. Fujioka; T.J. Moody; J. Benoit
2010-01-01
The presence of fire in Hawai'i has increased with introduction of nonnative grasses. Fire danger estimation using the National Fire Danger Rating System (NFDRS) typically requires 5 to 10 yr of data to determine percentile weather values and fire activity. The U.S. Army Pōhakuloa Training Area in Hawaiâi is located in the interface zone between windward...
The national fire-danger rating system: basic equations
Jack D. Cohen; John E. Deeming
1985-01-01
Updating the National Fire-Danger Rating System (NFDRS) was completed in 1977, and operational use of it was begun the next year. The System provides a guide to wildfire control and suppression by its indexes that measure the relative potential of initiating fires. Such fires do not behave erraticallyâthey spread without spotting through continuous ground fuels....
A fire danger rating system for Hawaii
Robert E. Burgan; Francis M. Fujioka; George H. Hirata
1974-01-01
Extremes in rainfall on the Hawaiian Islands make it difficult to judge forest fire danger conditions. The use of an automatic data collection and computer processing system helps to monitor the problem.
Relation between the National Fire Danger spread component and fire activity in the Lake States.
Donald A. Haines; William A. Main; Von J. Johnson
1970-01-01
Relationships between the 1964 version of the spread component of the National Fire Danger Rating System and fire activity were established for Michigan, Minnesota, and Wisconsin. The measures of fire activity included the probability of a fire-day as well as a C, D, or E fire-day, number of fires per fire-day, and acres burned per fire. These measures were examined by...
FireFamily Plus user's guide, Version 2.0
Larry Bradshaw; Erin McCormick
2000-01-01
FireFamily Plus is the new software for summarizing and analyzing daily weather observations and computing fire danger indexes based on the National Fire Danger Rating System (NFDRS). While the software and packaging are new, many of the reports are not. FireFamily Plus addressed the year 2000 issues that confronted a litany of DOS programs that operated against fire...
Evaluating wildland fire danger and prioritizing vegetation and fuels treatments
Paul F. Hessburg; Keith M. Reynolds; Robert E. Keane; Kevin M. James; R. Brion Salter
2008-01-01
We present a decision-support application that evaluates danger of severe wildland fire and prioritizes subwatersheds for vegetation and fuels treatment. We demonstrate the use of the system with an example from the Rocky Mountain region in Utah; a planning area of 4.8 million ha encompassing 575 subwatersheds. In a logic model, we evaluate fire danger as a function of...
National fire-danger rating system fine-fuel moisture content tablesan Alaskan adaptation.
Richard J. Barney
1969-01-01
Fine-fuel moisture content tables, using dry bulb and dewpoint temperatures as entry data, have been developed for use with the National Fire-Danger Rating System in Alaska. Comparisons have been made which illustrate differences resulting from danger-rating calculations based on these new fine-fuel moisture content tables for the cured, transition, and green...
A study of forest fire danger district division in Lushan Mountain based on RS and GIS
NASA Astrophysics Data System (ADS)
Xiao, Jinxiang; Huang, Shu-E.; Zhong, Anjian; Zhu, Biqin; Ye, Qing; Sun, Lijun
2009-09-01
The study selected 9 factors, average maximum temperature, average temperature, average precipitation, average the longest days of continuous drought and average wind speed during fire prevention period, vegetation type, altitude, slope and aspect as the index of forest fire danger district division, which has taken the features of Lushan Mountain's forest fire history into consideration, then assigned subjective weights to each factor according to their sensitivity to fire or their fire-inducing capability. By remote sensing and GIS, vegetation information layer were gotten from Landsat TM image and DEM with a scale of 1:50000 was abstracted from the digital scanned relief map. Topography info. (elevation, slope, aspect) layers could be gotten after that. A climate resource databank that contained the data from the stations of Lushan Mountain and other nearby 7 stations was built up and extrapolated through the way of grid extrapolation in order to make the distribution map of climate resource. Finally synthetical district division maps were made by weighing and integrating all the single factor special layers,and the study area were divided into three forest fire danger district, include special fire danger district, I-fire danger district and II-fire danger district. It could be used as a basis for developing a forest fire prevention system, preparing the annual investment plan, allocating reasonably the investment of fire prevention, developing the program of forest fire prevention and handle, setting up forest fire brigade, leaders' decisions on forest fire prevention work.
The 1978 National Fire-Danger Rating System: technical documentation
Larry S. Bradshaw; John E. Deeming; Robert E. Burgan; Jack D. Cohen
1984-01-01
The National Fire-Danger Rating System (NFDRS), implemented in 1972, has been revised and reissued as the 1978 NFDRS. This report describes the full developmental history of the NFDRS, including purpose, technical foundation, and structure. Includes an extensive bibliography and appendixes.
Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices
Haiganoush K. Preisler; Shyh-Chin Chen; Francis Fujioka; John W. Benoit; Anthony L. Westerling
2008-01-01
The National Fire Danger Rating System indices deduced from a regional simulation weather model were used to estimate probabilities and numbers of large fire events on monthly and 1-degree grid scales. The weather model simulations and forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the Scripps Institution of Oceanography...
Patrick H. Freeborn; Mark A. Cochrane; W. Matt Jolly
2015-01-01
Daily National Fire Danger Rating System (NFDRS) indices are typically associated with the number and final size of newly discovered fires, or averaged over time and associated with the likelihood and total burned area of large fires. Herein we used a decade (2003-12) of NFDRS indices and US Forest Service (USFS) fire reports to examine daily relationships between fire...
Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat
NASA Astrophysics Data System (ADS)
Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.
2018-02-01
We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme
class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.
1988 Revisions to the 1978 National Fire-Danger Rating System
Robert E. Burgan
1988-01-01
The 1978 National Fire-Danger Rating System does not work well in the humid environment of the Eastern United States. System modifications to correct problems and their operational impact on System users are described. A new set of 20 fuel models is defined and compared graphically with the 1978 fuel models. Technical documentation of System changes is provided.
NASA Astrophysics Data System (ADS)
Lanorte, Antonio; Desantis, Fortunato; Aromando, Angelo; Lasaponara, Rosa
2013-04-01
This paper presents the results we obtained in the context of the FIRE-SAT project during the 2012 operative application of the satellite based tools for fire monitoring. FIRE_SAT project has been funded by the Civil Protection of the Basilicata Region in order to set up a low cost methodology for fire danger monitoring and fire effect estimation based on satellite Earth Observation techniques. To this aim, NASA Moderate Resolution Imaging Spectroradiometer (MODIS), ASTER, Landsat TM data were used. Novel data processing techniques have been developed by researchers of the ARGON Laboratory of the CNR-IMAA for the operative monitoring of fire. In this paper we only focus on the danger estimation model which has been fruitfully used since 2008 to 2012 as an reliable operative tool to support and optimize fire fighting strategies from the alert to the management of resources including fire attacks. The daily updating of fire danger is carried out using satellite MODIS images selected for their spectral capability and availability free of charge from NASA web site. This makes these data sets very suitable for an effective systematic (daily) and sustainable low-cost monitoring of large areas. The preoperative use of the integrated model, pointed out that the system properly monitor spatial and temporal variations of fire susceptibility and provide useful information of both fire severity and post fire regeneration capability.
A micro-UAS to start prescribed fires
Beachly, Evan; Higgins, James; Laney, Christian; Elbaum, Sebastian; Detweiler, Carrick; Allen, Craig R.; Twidwell, Dirac
2017-01-01
Prescribed fires have many benefits, but existing ignition methods are dangerous, costly, or inefficient. This paper presents the design and evaluation of a micro-UAS that can start a prescribed fire from the air, while being operated from a safe distance and without the costs associated with aerial ignition from a manned aircraft. We evaluate the performance of the system in extensive controlled tests indoors. We verify the capabilities of the system to perform interior ignitions, a normally dangerous task, through the ignition of two prescribed fires alongside wildland firefighters.
Fire Behavior System for the Full Range of Fire Management Needs
Richard C. Rothermel; Patricia L. Andrews
1987-01-01
An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...
NFDRSPC: The National Fire-Danger Rating System on a Personal Computer
Bryan G. Donaldson; James T. Paul
1990-01-01
This user's guide is an introductory manual for using the 1988 version (Burgan 1988) of the National Fire-Danger Rating System on an IBM PC or compatible computer. NFDRSPC is a window-oriented, interactive computer program that processes observed and forecast weather with fuels data to produce NFDRS indices. Other program features include user-designed display...
Solar radiation and forest fuel moisture
George M. Byram; George M. Jemison
1943-01-01
A major contribution to progress in forest fire prevention and control during the past 10 years has been the development and widespread application of methods of rating forest fire danger. Fire danger rating systems are now in use in all the forest regions of the United States. They have been described by Gisborne, Brown and Davis, Curry et al., Matthews, Jemison, and...
Modeling Future Fire danger over North America in a Changing Climate
NASA Astrophysics Data System (ADS)
Jain, P.; Paimazumder, D.; Done, J.; Flannigan, M.
2016-12-01
Fire danger ratings are used to determine wildfire potential due to weather and climate factors. The Fire Weather Index (FWI), part of the Canadian Forest Fire Danger Rating System (CFFDRS), incorporates temperature, relative humidity, windspeed and precipitation to give a daily fire danger rating that is used by wildfire management agencies in an operational context. Studies using GCM output have shown that future wildfire danger will increase in a warming climate. However, these studies are somewhat limited by the coarse spatial resolution (typically 100-400km) and temporal resolution (typically 6-hourly to monthly) of the model output. Future wildfire potential over North America based on FWI is calculated using output from the Weather, Research and Forecasting (WRF) model, which is used to downscale future climate scenarios from the bias-corrected Community Climate System Model (CCSM) under RCP8.5 scenarios at a spatial resolution of 36km. We consider five eleven year time slices: 1990-2000, 2020-2030, 2030-2040, 2050-2060 and 2080-2090. The dynamically downscaled simulation improves determination of future extreme weather by improving both spatial and temporal resolution over most GCM models. To characterize extreme fire weather we calculate annual numbers of spread days (days for which FWI > 19) and annual 99th percentile of FWI. Additionally, an extreme value analysis based on the peaks-over-threshold method allows us to calculate the return values for extreme FWI values.
Evaluation of MM5 model resolution when applied to prediction of national fire danger rating indexes
Jeanne L. Hoadley; Miriam L. Rorig; Larry Bradshaw; Sue A. Ferguson; Kenneth J. Westrick; Scott L. Goodrick; Paul Werth
2006-01-01
Weather predictions from the MM5 mesoscale model were used to compute gridded predictions of National Fire Danger Rating System (NFDRS) indexes. The model output was applied to a case study of the 2000 fire season in Northern Idaho and Western Montana to simulate an extreme event. To determine the preferred resolution for automating NFD RS predictions, model...
Evaluating wildland fire danger and prioritizing vegetation and fuels treatments
Paul F. Hessburg; Keith M. Reynolds; Robert E. Keane; Kevin M. James; R. Brion Salter
2010-01-01
We present a prototype decision support system for evaluating wild-land fire danger and prioritizing subwatersheds for vegetation and fuels treatment. We demonstrate the use of the system with an example from the Rocky Mountain region in the State of Utah, which represents a planning area of about 4.8 million ha and encompasses 575 complete subwatersheds. In a logic...
Robert M. Loomis; William A. Main
1980-01-01
Relations between certain slash and forest floor moisture contents and the applicable estimated time lag fuel moistures of the National Fire Danger Rating System were investigated for 1-year-old jack pine fuel types in northeastern Minnesota and central Lower Michigan. Only approximate estimates of actual fuel moisture are possible fore the relations determined, thus...
Knowledge-Based Systems Approach to Wilderness Fire Management.
NASA Astrophysics Data System (ADS)
Saveland, James M.
The 1988 and 1989 forest fire seasons in the Intermountain West highlight the shortcomings of current fire policy. To fully implement an optimization policy that minimizes the costs and net value change of resources affected by fire, long-range fire severity information is essential, yet lacking. This information is necessary for total mobility of suppression forces, implementing contain and confine suppression strategies, effectively dealing with multiple fire situations, scheduling summer prescribed burning, and wilderness fire management. A knowledge-based system, Delphi, was developed to help provide long-range information. Delphi provides: (1) a narrative of advice on where a fire might spread, if allowed to burn, (2) a summary of recent weather and fire danger information, and (3) a Bayesian analysis of long-range fire danger potential. Uncertainty is inherent in long-range information. Decision theory and judgment research can be used to help understand the heuristics experts use to make decisions under uncertainty, heuristics responsible both for expert performance and bias. Judgment heuristics and resulting bias are examined from a fire management perspective. Signal detection theory and receiver operating curve (ROC) analysis can be used to develop a long-range forecast to improve decisions. ROC analysis mimics some of the heuristics and compensates for some of the bias. Most importantly, ROC analysis displays a continuum of bias from which an optimum operating point can be selected. ROC analysis is especially appropriate for long-range forecasting since (1) the occurrence of possible future events is stated in terms of probability, (2) skill prediction is displayed, (3) inherent trade-offs are displayed, and (4) fire danger is explicitly defined. Statements on the probability of the energy release component of the National Fire Danger Rating System exceeding a critical value later in the fire season can be made early July in the Intermountain West. Delphi was evaluated formally and informally. Continual evaluation and feedback to update knowledge-based systems results in a repository for current knowledge, and a means to devise policy that will augment existing knowledge. Thus, knowledge-based systems can help implement adaptive resource management.
Yang, Guang; Shu, Li-Fu; Di, Xue-Ying
2012-12-01
Based on the A2a and B2a climatic scenarios for both the baseline period (1961-1990) and the future scenario periods (2010-2039, 2040-2069, and 2070-2099) from the Hadley Centre's General Circulation, and by using Delta method, WGEN downscaling methods, and Canadian Forest Fire Danger Rating System, this paper classified the forest fire dangers in Great Xing' an Mountains region of Heilongjiang Province, Northeast China, predicted the changes of the forest fire danger rating in the period 2010-2099 relative to baseline period (1961-1990), and analyzed the uncertainty of the long-term prediction of forest fire danger rating. It was predicted that under the background of climate warming, the mean annual days of extremely high, very high, and medium forest dangers in study region in the 21st century all showed an increasing trend, while the mean annual days of high and low forest dangers were in adverse. Relative to the baseline period of 1961-1990, the mean annual days of extremely high and very high forest dangers in the 2040-2069 and 2070-2099 under the scenarios of SRES A2a and B2a would be increased by 43 and 36, and 62 and 61, respectively.
NASA Astrophysics Data System (ADS)
Petroliagkis, Thomas I.; Camia, Andrea; Liberta, Giorgio; Durrant, Tracy; Pappenberger, Florian; San-Miguel-Ayanz, Jesus
2014-05-01
The European Forest Fire Information System (EFFIS) has been established by the Joint Research Centre (JRC) and the Directorate General for Environment (DG ENV) of the European Commission (EC) to support the services in charge of the protection of forests against fires in the EU and neighbour countries, and also to provide the EC services and the European Parliament with information on forest fires in Europe. Within its applications, EFFIS provides current and forecast meteorological fire danger maps up to 6 days. Weather plays a key role in affecting wildfire occurrence and behaviour. Meteorological parameters can be used to derive meteorological fire weather indices that provide estimations of fire danger level at a given time over a specified area of interest. In this work, we investigate the suitability of critical thresholds of fire danger to provide an early warning for megafires (fires > 500 ha) over Europe. Past trends of fire danger are analysed computing daily fire danger from weather data taken from re-analysis fields for a period of 31 years (1980 to 2010). Re-analysis global data sets coming from the construction of high-quality climate records, which combine past observations collected from many different observing and measuring platforms, are capable of describing how Fire Danger Indices have evolved over time at a global scale. The latest and most updated ERA-Interim dataset of the European Centre for Medium-Range Weather Forecast (ECMWF) was used to extract meteorological variables needed to compute daily values of the Canadian Fire Weather Index (CFWI) over Europe, with a horizontal resolution of about 75x75 km. Daily time series of CFWI were constructed and analysed over a total of 1,071 European NUTS3 centroids, resulting in a set of percentiles and critical thresholds. Such percentiles could be used as thresholds to help fire services establish a measure of the significance of CFWI outputs as they relate to levels of fire potential, fuel conditions and fire danger. Median percentile values of fire days accumulated over the 31-year period were compared to median values of all days from that period. As expected, the CWFI time series exhibit different values on fire days than on all days. In addition, a percentile analysis was performed in order to determine the behaviour of index values corresponding to fire events falling into the megafire category. This analysis resulted in a set of critical thresholds based on percentiles. By utilising such thresholds, an initial framework of an early warning system has being established. By lowering the value of any of these thresholds, the number of hits could be increased until all extremes were captured (resulting in zero misses). However, in doing so, the number of false alarms tends to increase significantly. Consequently, an optimal trade-off between hits and false alarms has to be established when setting different (critical) CFWI thresholds.
NASA Astrophysics Data System (ADS)
DaCamara, Carlos; Trigo, Ricardo; Nunes, Sílvia; Pinto, Miguel; Oliveira, Tiago; Almeida, Rui
2017-04-01
In Portugal, like in Mediterranean Europe, fire activity is a natural phenomenon linking climate, humans and vegetation and is therefore conditioned by natural and anthropogenic factors. Natural factors include topography, vegetation cover and prevailing weather conditions whereas anthropogenic factors encompass land management practices and fire prevention policies. Land management practices, in particular the inadequate use of fire, is a crucial anthropogenic factor that accounts for about 90% of fire ignitions. Fire prevention policies require adequate and timely information about wildfire potential assessment, which is usually based on fire danger rating systems that provide indices to be used on an operational and tactical basis in decision support systems. We present a new website designed to provide the user community with relevant real-time information on fire activity and meteorological fire danger that will allow adopting the adequate measures to mitigate fire damage. The fire danger product consists of forecasts of fire danger over Portugal based on a statistical procedure that combines information about fire history derived from the Fire Radiative Power product disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF) with daily meteorological forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The aim of the website is fourfold; 1) to concentrate all information available (databases and maps) relevant to fire management in a unique platform so that access by end users becomes easier, faster and friendlier; 2) to supervise the access of users to the different products available; 3) to control and assist the access to the platform and obtain feedbacks from users for further improvements; 4) to outreach the operational community and foster the use of better information that increase efficiency in risk management. The website is sponsored by The Navigator Company, a leading force in the global pulp and paper market. Since the operational start of the website, the number of registered users has been steadily increasing up to a total of 300 users from a wide community that encompasses forest managers, firemen and civil protection officers, personnel from municipalities, academic researchers and private owners.
Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery.
Saglam, Bülent; Bilgili, Ertugrul; Dincdurmaz, Bahar; Kadiogulari, Ali Ihsan; Kücük, Ömer
2008-06-20
Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.
Fuel models and fire potential from satellite and surface observations
Burgan, R.E.; Klaver, R.W.; Klarer, J.M.
1998-01-01
A national 1-km resolution fire danger fuel model map was derived through use of previously mapped land cover classes and ecoregions, and extensive ground sample data, then refined through review by fire managers familiar with various portions of the U.S. The fuel model map will be used in the next generation fire danger rating system for the U.S., but it also made possible immediate development of a satellite and ground based fire potential index map. The inputs and algorithm of the fire potential index are presented, along with a case study of the correlation between the fire potential index and fire occurrence in California and Nevada. Application of the fire potential index in the Mediterranean ecosystems of Spain, Chile, and Mexico will be tested.
Forecasting distribution of numbers of large fires
Eidenshink, Jeffery C.; Preisler, Haiganoush K.; Howard, Stephen; Burgan, Robert E.
2014-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the Monitoring Trends in Burn Severity project, and satellite and surface observations of fuel conditions in the form of the Fire Potential Index, to estimate two aspects of fire danger: 1) the probability that a 1 acre ignition will result in a 100+ acre fire, and 2) the probabilities of having at least 1, 2, 3, or 4 large fires within a Predictive Services Area in the forthcoming week. These statistical processes are the main thrust of the paper and are used to produce two daily national forecasts that are available from the U.S. Geological Survey, Earth Resources Observation and Science Center and via the Wildland Fire Assessment System. A validation study of our forecasts for the 2013 fire season demonstrated good agreement between observed and forecasted values.
An evaluation of image based techniques for wildfire detection and fuel mapping
NASA Astrophysics Data System (ADS)
Gabbert, Dustin W.
Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiative created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire - both geographically and temporally - can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this system could have on pre-fire risk assessments through the development of very high resolution fuel maps.
An Evaluation of Image Based Techniques for Early Wildfire Detection and Fuel Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbert, Dustin W.
Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiativemore » created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire – both geographically and temporally – can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this system could have on pre-fire risk assessments through the development of very high resolution fuel maps.« less
Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.
2016-08-01
Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.
Estimating fire behavior with FIRECAST: user's manual
Jack D. Cohen
1986-01-01
FIRECAST is a computer program that estimates fire behavior in terms of six fire parameters. Required inputs vary depending on the outputs desired by the fire manager. Fuel model options available to users are these: Northern Forest Fire Laboratory (NFFL), National Fire Danger Rating System (NFDRS), and southern California brushland (SCAL). The program has been...
29 CFR 1915.509 - Definitions applicable to this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... harmful. Hose systems—fire protection systems consisting of a water supply, approved fire hose, and a... fire protection system consisting of piping and hose connections used to supply water to approved hose... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an...
Forecasting distribution of numbers of large fires
Haiganoush K. Preisler; Jeff Eidenshink; Stephen Howard; Robert E. Burgan
2015-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the...
NASA Astrophysics Data System (ADS)
Burton, C.; Betts, R. A.; Jones, C. D.; Williams, K.
2018-04-01
The commitment to limit warming to 1.5 °C as set out in the Paris Agreement is widely regarded as ambitious and challenging. It has been proposed that reaching this target may require a number of actions, which could include some form of carbon removal or Solar Radiation Management in addition to strong emission reductions. Here we assess one theoretical solution using Solar Radiation Management to limit global mean warming to 1.5 °C above preindustrial temperatures and use the McArthur fire danger index to evaluate the change in fire danger. The results show that globally fire danger is reduced in most areas when temperatures are limited to 1.5 °C compared to 2.0 °C. The number of days where fire danger is "high" or above is reduced by up to 30 days/year on average, although there are regional variations. In certain regions, fire danger is increased, experiencing 31 more days above "high" fire danger.
46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...
46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...
46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...
49 CFR 176.69 - General stowage requirements for hazardous materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... equipped with a fixed fire extinguishing and fire detection system, the freight containers or barges need... by paragraph (a) of this section if fire fighting equipment capable of reaching and piercing the..., their removal from a potentially dangerous situation, and the removal of packages in case of fire. (b...
Forest fire danger in western Oregon and Washington during 1953.
Owen P. Cramer
1953-01-01
Following two successive fire seasons of record breaking severity, the 1953 season set new records for low fire danger in western Oregon and Washington. The low danger is reflected in the fire recordthe U. S. Forest Service and forestry offices of both States all report the lowest acreage burned since fire records have been kept. A cool, wet spring, above...
Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley
2010-01-01
Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...
Charts for interpreting wildland fire behavior characteristics
Patricia L. Andrews; Richard C. Rothermel
1982-01-01
The fire characteristics chart is proposed as a graphical method ofpresenting two primary characteristics of fire behavior â spread rate and intensity. Its primary use is communicating and interpreting either site-specific predictions of fire behavior or National Fire-Danger Rating System (NFDRS) indexes and components. Rate of spread, heat per unit area, flame length...
Aids to determining fuel models for estimating fire behavior
Hal E. Anderson
1982-01-01
Presents photographs of wildland vegetation appropriate for the 13 fuel models used in mathematical models of fire behavior. Fuel model descriptions include fire behavior associated with each fuel and its physical characteristics. A similarity chart cross-references the 13 fire behavior fuel models to the 20 fuel models used in the National Fire Danger Rating System....
Forest Fire Danger Rating (FFDR) Prediction over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Song, B.; Won, M.; Jang, K.; Yoon, S.; Lim, J.
2016-12-01
Approximately five hundred forest fires occur and inflict the losses of both life and property each year in Korea during the forest fire seasons in the spring and autumn. Thus, an accurate prediction of forest fire is essential for effective forest fire prevention. The meteorology is one of important factors to predict and understand the fire occurrence as well as its behaviors and spread. In this study, we present the Forest Fire Danger Rating Systems (FFDRS) on the Korean Peninsula based on the Daily Weather Index (DWI) which represents the meteorological characteristics related to forest fire. The thematic maps including temperature, humidity, and wind speed produced from Korea Meteorology Administration (KMA) were applied to the forest fire occurrence probability model by logistic regression to analyze the DWI over the Korean Peninsula. The regional data assimilation and prediction system (RDAPS) and the improved digital forecast model were used to verify the sensitivity of DWI. The result of verification test revealed that the improved digital forecast model dataset showed better agreements with the real-time weather data. The forest fire danger rating index (FFDRI) calculated by the improved digital forecast model dataset showed a good agreement with the real-time weather dataset at the 233 administrative districts (R2=0.854). In addition, FFDRI were compared with observation-based FFDRI at 76 national weather stations. The mean difference was 0.5 at the site-level. The results produced in this study indicate that the improved digital forecast model dataset can be useful to predict the FFDRI in the Korean Peninsula successfully.
William A. Main; Donna M. Paananen; Robert E. Burgan
1990-01-01
This revised user`s guide will help fire managers interpret the output from FIREFAMILY, a computer program that uses historic weather data for fire planning. With the changes in the National Fire-Danger Rating System, all Forest Service units will need to rerun their historical weather data and use this publication to revise their fire plan. The guide describes...
A method for ensemble wildland fire simulation
Mark A. Finney; Isaac C. Grenfell; Charles W. McHugh; Robert C. Seli; Diane Trethewey; Richard D. Stratton; Stuart Brittain
2011-01-01
An ensemble simulation system that accounts for uncertainty in long-range weather conditions and two-dimensional wildland fire spread is described. Fuel moisture is expressed based on the energy release component, a US fire danger rating index, and its variation throughout the fire season is modeled using time series analysis of historical weather data. This analysis...
Using weather forecasts for predicting forest-fire danger
H. T. Gisborne
1925-01-01
Three kinds of weather control the fluctuations of forest-fire danger-wet weather, dry weather, and windy weather. Two other conditions also contribute to the fluctuation of fire danger. These are the occurrence of lightning and the activities of man. But neither of these fire-starting agencies is fully effective unless the weather has dried out the forest materials so...
An operational system of fire danger rating over Mediterranean Europe
NASA Astrophysics Data System (ADS)
Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.
2017-04-01
A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing information about fire meteorological danger for Portugal for a wide range of users.
NASA Astrophysics Data System (ADS)
Farahmand, A.; Reager, J. T., II; Behrangi, A.; Stavros, E. N.; Randerson, J. T.
2017-12-01
Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and contributing significantly to both carbon emissions and changes in surface albedo. The socioeconomic impacts of wildfire activities are also significant with wildfire activity results in billions of dollars of losses every year. Fire size, area burned and frequency are increasing, thus the likelihood of fire danger, defined by United States National Interagency Fire Center (NFIC) as the demand of fire management resources as a function of how flammable fuels (a function of ignitability, consumability and availability) are from normal, is an important step toward reducing costs associated with wildfires. Numerous studies have aimed to predict the likelihood of fire danger, but few studies use remote sensing data to map fire danger at scales commensurate with regional management decisions (e.g., deployment of resources nationally throughout fire season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared Sounder (AIRS) vapor pressure deficit, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index products and landcover products, along with US Forest Service historical fire activity data to generate probabilistic monthly fire potential maps in the United States. These maps can be useful in not only government operational allocation of fire management resources, but also improving understanding of the Earth System and how it is changing in order to refine predictions of fire extremes.
Risk of large-scale fires in boreal forests of Finland under changing climate
NASA Astrophysics Data System (ADS)
Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.
2016-01-01
The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.
NASA Astrophysics Data System (ADS)
Lanorte, R.; Lasaponara, R.; De Santis, F.; Aromando, A.; Nole, G.
2012-04-01
Daily estimates of fire danger using multitemporal satellite MODIS data: the experience of FIRE-SAT in the Basilicata Region (Italy) A. Lanorte, F. De Santis , A. Aromando, G. Nolè, R. Lasaponara, CNR-IMAA, Potenza, Italy In the recent years the Basilicata Region (Southern Italy) has been characterized by an increasing incidence of fire disturbance which also tends to affect protected (Regional and national parks) and natural vegetated areas. FIRE_SAT project has been funded by the Civil Protection of the Basilicata Region in order to set up a low cost methodology for fire danger/risk monitoring based on satellite Earth Observation techniques. To this aim, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data were used. The spectral capability and daily availability makes MODIS products especially suitable for estimating the variations of fuel characteristics. This work presents new significant results obtained in the context of FIRE-SAT project. In order to obtain a dynamical indicator of fire susceptibility based on multitemporal MODIS satellite data, up-datable in short-time periods (daily), we used the spatial/temporal variations of following parameters: (1) Relative Greenness Index (2) Live and dead fuel moisture content (3) Temperature In particular, the dead fuel moisture content is a key factor in fire ignition. Dead fuel moisture dynamics are significantly faster than those observed for live fuel. Dead fine vegetation exhibits moisture and density values dependent on rapid atmospheric changes and strictly linked to local meteorological conditions. For this reason, commonly, the estimation of dead fuel moisture content is based on meteorological variables. In this study we propose to use MODIS data to estimate meteorological data (specifically Relative Humidity) at an adequate spatial and temporal resolution. The assessment of dead fuel moisture content plays a decisive role in determining a fire dynamic danger index in combination with other factors. This greatly improves the reliability of fire danger maps obtained on the basis of a integrated approach of the dynamic factors mentioned above and the static factors (fuel physical properties, morphological parameters and social-historical factors). The validation of the fire danger indices was carried out by the use of statistics of occurred forest fires. The validation results show satisfactory agreement with the fire danger map taking into account that . fire events are indirect indicator of fire danger; indeed, many factor influence fire ignition and spread such as human pressure, fire-fighting conditions, wind, etc.. Therefore, in this study we have defined and used several fire statistic data useful for the validation of the fire danger maps in order to create the basic elements for the design of a validation protocol.
Seasonal predictions for wildland fire severity
Shyh-Chin Chen; Haiganoush Preisler; Francis Fujioka; John W. Benoit; John O. Roads
2009-01-01
The National Fire Danger Rating System (NFDRS) indices deduced from the monthly to seasonal predictions of a meteorological climate model at 50-km grid space from January 1998 through December 2003 were used in conjunction with a probability model to predict the expected number of fire occurrences and large fires over the U.S. West. The short-term climate forecasts are...
ERIC Educational Resources Information Center
Walker, Bonnie
Three booklets provide fire safety information for staff of residential facilities serving people with developmental disabilities. Booklets focus on: (1) preventing fire death and injury, (2) conducting a fire drill in a group home, and (3) the role of fire safety experts. The first booklet stresses the elimination of the following dangers:…
Fire characteristics charts for fire behavior and U.S. fire danger rating
Faith Ann Heinsch; Pat Andrews
2010-01-01
The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating indices or primary surface or crown fire behavior characteristics. A desktop computer application has been developed to produce fire characteristics charts in a format suitable for inclusion in reports and presentations. Many options include change of scales, colors,...
Fire Protection for Libraries.
ERIC Educational Resources Information Center
Fortson-James, Judith
1981-01-01
This overview of preventive measures that can be taken to help minimize damage to library materials from fire discusses the advantages, disadvantages, dangers, and comparative costs of several types of sprinkler systems, including high-expansion foam, total-flooding, dry- and wet-pipe systems, and on-off sprinkler heads. Five references are…
Mid-term fire danger index based on satellite imagery and ancillary geographic data
NASA Astrophysics Data System (ADS)
Stefanidou, A.; Dragozi, E.; Tompoulidou, M.; Stepanidou, L.; Grigoriadis, D.; Katagis, T.; Stavrakoudis, D.; Gitas, I.
2017-09-01
Fire danger forecast constitutes one of the most important components of integrated fire management since it provides crucial information for efficient pre-fire planning, alertness and timely response to a possible fire event. The aim of this work is to develop an index that has the capability of predicting accurately fire danger on a mid-term basis. The methodology that is currently under development is based on an innovative approach that employs dry fuel spatial connectivity as well as biophysical and topological variables for the reliable prediction of fire danger. More specifically, the estimation of the dry fuel connectivity is based on a previously proposed automated procedure implemented in R software that uses Moderate Resolution Imaging Spectrometer (MODIS) time series data. Dry fuel connectivity estimates are then combined with other ancillary data such as fuel type and proximity to roads in order to result in the generation of the proposed mid-term fire danger index. The innovation of the proposed index—which will be evaluated by comparison to historical fire data—lies in the fact that its calculation is almost solely affected by the availability of satellite data. Finally, it should be noted that the index is developed within the framework of the National Observatory of Forest Fires (NOFFi) project.
Long-term temporal changes in the occurrence of a high forest fire danger in Finland
NASA Astrophysics Data System (ADS)
Mäkelä, H. M.; Laapas, M.; Venäläinen, A.
2012-08-01
Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD) model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June-August), the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908-2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.
Wallace L. Fons: fire research pioneer
David R. Weise; Ted R. Fons
2014-01-01
During his 30-year career with the U.S. Forest Service, Wally Fons laid the foundation for much of the understanding we have today of forest fire's many properties by applying his mechanical engineering background. He left a legacy of research that formed the basis for the fire behavior and danger systems still used in the United States. In addition to fire...
Simulating spatial and temporally related fire weather
Isaac C. Grenfell; Mark Finney; Matt Jolly
2010-01-01
Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...
Medical evaluation of fire fighters: How fit are they for duty?
Davis, P O; Biersner, R J; Barnard, R J; Schamadan, J
1982-08-01
Aside from the obvious dangers to life and limb associated with the job, fire fighting subjects the body to environmental and physical stressors that can adversely affect various systems. In fact, the effects of these stressors on the cardiovascular system have made coronary heart disease a greater killer among fire fighters than among other occupational groups. The approach to medical evaluation of fire fighters presented here is based on an appreciation of these stressors.
Evaluating fire danger in Brazilian biomes: present and future patterns
NASA Astrophysics Data System (ADS)
Silva, Patrícia; Bastos, Ana; DaCamara, Carlos; Libonati, Renata
2017-04-01
Climate change is expected to have a significant impact on fire occurrence and activity, particularly in Brazil, a region known to be fire-prone [1]. The Brazilian savanna, commonly referred to as cerrado, is a fire-adapted biome covering more than 20% of the country's total area. It presents the highest numbers of fire events, making it particularly susceptible to changes in climate. It is thus essential to understand the present fire regimes in Brazilian biomes, in order to better evaluate future patterns. The CPTEC/INPE, the Brazilian Center for Weather Forecasting and Climate Research at the Brazilian National Institute of Space Research developed a fire danger index based on the occurrence of hundreds of thousands of fire events in the main Brazilian biomes [2]: the Meteorological Fire Danger Index (MFDI). This index indicates the predisposition of vegetation to be burned on a given day, for given climate conditions preceding that day. It relies on daily values of air temperature, relative humidity, accumulated precipitation and vegetation cover. In this study we aim to access the capability of the MFDI to accurately replicate present fire conditions for different biomes, with a special focus on cerrado. To this end, we assess the link between the MFDI as calculated by three different reanalysis (ERA-Interim, NCEP/DOE Reanalysis 2 and MERRA-2) and the observed burned area. We further calculate the validated MFDI using a regional climate model, the RCA4 as forced by EC-Earth from CORDEX, to understand the ability of the model to characterize present fire danger. Finally, the need to calibrate the model to better characterize future fire danger was also evaluated. This work was developed within the framework of the Brazilian Fire-Land-Atmosphere System (BrFLAS) Project financed by the Portuguese and Brazilian science foundations, FCT and FAPESP (project references FAPESP/1389/2014 and 2014/20042-2). [1] KRAWCHUK, M.A.; MORITZ, M.A.; PARISIEN, M.A.; VAN DORN, J.; HAYHOE, K. Global Pyrogeography: the Current and Future Distribution of Wildfire. PLOS ONE, v. 4, n. 4, e5102, 2009. [2] SETZER, A.W.; SISMANOGLU, R.A. Risco de Fogo: Metodologia do Cálculo - Descrição sucinta da Versão 9. Instituto Nacional de Pesquisas Espaciais (INPE), 2012. Available at:
Fire danger assessment using ECMWF weather prediction system
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca; Pappemberger, Florian; Wetterhall, Fredrik
2015-04-01
Weather plays a major role in the birth, growth and death of a wildfire wherever there is availability of combustible vegetation and suitable terrain topography. Prolonged dry periods creates favourable conditions for ignitions, wind can then increase the fire spread, while higher relative humidity, and precipitation (rain or snow) may decrease or extinguish it altogether. The European Forest Fire Information System (EFFIS), started in 2011 under the lead of the European Joint Research Centre (JRC) to monitor and forecast fire danger and fire behaviour in Europe. In 2012 a collaboration with the European Centre for Medium range Weather Forecast (ECMWF) was established to explore the potential of using state of the art weather forecast systems as driving forcing for the calculations of fire risk indices. From this collaboration in 2013 the EC-fire system was born. It implements the three most commonly used fire danger rating systems (NFDRS, FWI and MARK-5) and it is both initialised and forced by gridded atmospheric fields provided either by ECMWF re-analysis or ECMWF ensemble prediction systems. For consistency invariant fields (i.e fuel maps, vegetation cover, topogarphy) and real-time weather information are all provided on the same grid. Similarly global climatological vegetation stage conditions for each day of the year are provided by remote satellite observations. These climatological static maps substitute the traditional man judgement in an effort to create an automated procedure that can work in places where local observations are not available. The system has been in operation for the last year providing an ensemble of daily forecasts for fire indices with lead-times up to 10 days over Europe and Globally. An important part of the system is provided by its (re)-analysis dataset obtained by using the (re)-analysis forcings as drivers to calculate the fire risk indices. This is a crucial part of the whole chain since these fields are used to establish the initial conditions from which the forecast is subsequently run. The reanalysis dataset goes back to year 1980 (the starting year of ERA-Interim integrations) and is updated in quasi real time. In addition of providing the staring point for the operational forecasts it is a very useful dataset for the scope of calibration and verification of the system. Assuming reanalysis fields are good proxies for observations then, by comparison with fire events which really occurred, this dataset can be used to assess the potential predictability of fire risk indices. In this work we will introduce the EC-fire system. Then the reanalysis dataset will be used to identify regions of high fire risk predictability and where the system might be in need of further refinement.
Progress towards a lightning ignition model for the Northern Rockies
Paul Sopko; Don Latham
2010-01-01
We are in the process of constructing a lightning ignition model specific to the Northern Rockies using fire occurrence, lightning strike, ecoregion, and historical weather, NFDRS (National Fire Danger Rating System), lightning efficiency and lightning "possibility" data. Daily grids for each of these categories were reconstructed for the 2003 fire season (...
Fire Risk and Residential Development: A GIS Analysis
Jennifer L. Rechel; James B. Davis; Ted K. Bradshaw
1992-01-01
Population growth is rapid in rural areas in California. This growth into the wildland-urban interface makes fire protection and suppression more difficult. Fire managers have opportunities to reduce fire danger by improving housing development patterns; however, the overall density and placement of houses is usually set by criteria other than fire danger. By...
NASA Astrophysics Data System (ADS)
Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.
2016-05-01
Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.
Predicting duff and woody fuel consumed by prescribed fire in the Northern Rocky Mountains
James K. Brown; Michael A. Marsden; Kevin C. Ryan; Elizabeth D. Reinhardt
1985-01-01
Relationships for predicting duff reduction, mineral soil exposure, and consumption of downed woody fuel were determined to assist in planning prescribed fires. Independent variables included lower and entire duff moisture contents, loadings of downed woody fuels, duff depth, National Fire-Danger Rating System 1,000-hour moisture content, and Canadian Duff Moisture...
An assessment of climate and fire danger rating in the Northern Rockies during the 1910 fire season
Charles W. McHugh; Mark A. Finney; Larry S. Bradshaw
2010-01-01
The 1910 fires of western Montana and northern Idaho have received much publicity in the popular media but little scientific attention regarding the factors that contribute to fire behavior and fire danger. Here we present information surrounding the weather, and reconstructed measures of Palmer Drought Severity Index (PDSI), Keetch-Byram Drought Index (KBDI), Energy...
Karin L. Riley; John T. Abatzoglou; Isaac C. Grenfell; Anna E. Klene; Faith Ann Heinsch
2013-01-01
The relationship between large fire occurrence and drought has important implications for fire prediction under current and future climates. This studyâs primary objective was to evaluate correlations between drought and fire-danger- rating indices representing short- and long-term drought, to determine which had the strongest relationships with large fire occurrence...
Weathering effects on fuel moisture sticks: corrections and recommendations.
Donald A. Haines; John S. Frost
1978-01-01
Describes response to weathering of 100-gram (1/2-inch) fuel moisture sticks over 6-month fire season in the Northeast. Presents a chart for correcting weathered-stick values and gives replacement recommendations for those sticks used in the National Fire Danger Rating System.
Long-Lead Prediction of the 2015 Fire and Haze Episode in Indonesia
NASA Astrophysics Data System (ADS)
Shawki, Dilshad; Field, Robert D.; Tippett, Michael K.; Saharjo, Bambang Hero; Albar, Israr; Atmoko, Dwi; Voulgarakis, Apostolos
2017-10-01
We conducted a case study of National Centers for Environmental Prediction Climate Forecast System version 2 seasonal model forecast performance over Indonesia in predicting the dry conditions in 2015 that led to severe fire, in comparison to the non-El Niño dry season conditions of 2016. Forecasts of the Drought Code (DC) component of Indonesia's Fire Danger Rating System were examined across the entire equatorial Asia region and for the primary burning regions within it. Our results show that early warning lead times of high observed DC in September and October 2015 varied considerably for different regions. High DC over Southern Kalimantan and Southern New Guinea were predicted with 180 day lead times, whereas Southern Sumatra had lead times of up to only 60 days, which we attribute to the absence in the forecasts of an eastward decrease in Indian Ocean sea surface temperatures. This case study provides the starting point for longer-term evaluation of seasonal fire danger rating forecasts over Indonesia.
Relation of weather forecasts to the prediction of dangerous forest fire conditions
R. H. Weidman
1923-01-01
The purpose of predicting dangerous forest-fire conditions, of course, is to reduce the great cost and damage caused by forest fires. In the region of Montana and northern Idaho alone the average cost to the United States Forest Service of fire protection and suppression is over $1,000,000 a year. Although the causes of forest fires will gradually be reduced by...
Climate change and fire danger rating in the Northern Rockies
Faith Ann Heinsch; Charles W. McHugh
2010-01-01
Studies have indicated that changes in wildland fire activity are, at least in part, a product of climate change. Fire danger indices, driven by climatology, should reflect these changes. Energy Release Component (ERC) is considered to be an effective indicator of drought conditions and seasonal drying of forest fuels and is often used in fire management planning....
Seasonal Forecasting of Fires across Southern Borneo, 1997-2010
NASA Astrophysics Data System (ADS)
Spessa, Allan; Field, Robert; Kaiser, Johannes; Langner, Andreas; Moore, Jonathan; Pappenberger, Florian; Siegert, Florian; Weber, Ulrich
2014-05-01
Wildfire is a fundamental Earth System process, affecting almost all biogeochemical cycles, and all vegetated biomes. Fires are naturally rare in humid tropical forests, and tropical trees are generally killed by even low-intensity fires. However, fire activity in the tropics has increased markedly over the past 15-20 years, especially in Indonesia, Amazonia, and more recently, central Africa also. Since fire is the prime tool for clearing land in the tropics, it not surprising that the increase in fire activity is strongly associated with increased levels of deforestation, which is driven mainly by world-wide demand for timber and agricultural commodities. The consequences of deforestation fires for biodiversity conservation and emissions of greenhouse gases and aerosols are enormous. For example, carbon emissions from tropical biomass burning are around 20% of annual average global fossil fuel emissions. The destructive fires in Indonesia during the exceptionally strong El Niño-induced drought in late 1997 and early 1998 rank as some of the largest peak emissions events in recorded history. Past studies estimate about 1Gt of carbon was released to the atmosphere from the Indonesian fires in 1997 (which were mostly concentrated in carbon-rich forested peatlands). This amount is equivalent to about 14% of the average global annual fossil fuel emissions released during the 1990s. While not as large as the 1997-98 events, significant emissions from biomass burning have also been recorded in other (less severe) El Niño years across Indonesia, in particular, 2002, 2004, 2006 and 2009-2010. Recent climate modelling studies indicate that the frequency of El Niño events may increase under future climate change, affecting many tropical countries, including Indonesia. An increased drought frequency plus a projected increase in population and land use pressures in Indonesia, imply there will be even more fires and emissions in future across the region. However, while several studies using historical data have established negative relationships between fires and antecedent rainfall, and/or positive relationships between fires and deforestation in regions affected by El Nino, comparatively little work has attempted to predict fires and emissions in such regions. Ensemble seasonal climate forecasts issued with several months lead-time have been applied to support risk assessment systems in many fields, notably agricultural production and natural disaster management of flooding, heat waves, drought and fire. The USA, for example, has a long-standing seasonal fire danger prediction system. Fire danger monitoring systems have been operating in Indonesia for over a decade, but, as of yet, no fire danger prediction systems exist. Given the effort required to mobilise suppression and prevention measures in Indonesia, one could argue that high fire danger periods must be anticipated months in advance for mitigation and response measures to be effective. To address this need, the goal of our work was to examine the utility of seasonal rainfall forecasts in predicting severe fires in Indonesia more than one month in advance, using southern Borneo (comprising the bulk of Kalimantan) as a case study. Here we present the results of comparing seasonal forecasts of monthly rainfall from ECMWF's System 4 against i) observed rainfall (GPCP), and ii) burnt area and deforestation (MODIS, AVHRR and Landsat) across southern Borneo for the period 1997-2010. Our results demonstrate the utility of using ECMWF's seasonal climate forecasts for predicting fire activity in the region. Potential applications include improved fire mitigation and responsiveness, and improved risk assessments of biodiversity and carbon losses through fire. These are important considerations for forest protection programmes (e.g. REDD+), forest carbon markets and forest (re)insurance enterprises.
Assessing the value of increased model resolution in forecasting fire danger
Jeanne Hoadley; Miriam Rorig; Ken Westrick; Larry Bradshaw; Sue Ferguson; Scott Goodrick; Paul Werth
2003-01-01
The fire season of 2000 was used as a case study to assess the value of increasing mesoscale model resolution for fire weather and fire danger forecasting. With a domain centered on Western Montana and Northern Idaho, MM5 simulations were run at 36, 12, and 4-km resolutions for a 30 day period at the height of the fire season. Verification analyses for meteorological...
Climate-induced variations in global wildfire danger from 1979 to 2013
W. Matt Jolly; Mark A. Cochrane; Patrick H. Freeborn; Zachary A. Holden; Timothy J. Brown; Grant J. Williamson; David M. J. S. Bowman
2015-01-01
Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have...
Combustion Processes in the Aerospace Environment
NASA Technical Reports Server (NTRS)
Huggett, Clayton
1969-01-01
The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.
A robust scientific workflow for assessing fire danger levels using open-source software
NASA Astrophysics Data System (ADS)
Vitolo, Claudia; Di Giuseppe, Francesca; Smith, Paul
2017-04-01
Modelling forest fires is theoretically and computationally challenging because it involves the use of a wide variety of information, in large volumes and affected by high uncertainties. In-situ observations of wildfire, for instance, are highly sparse and need to be complemented by remotely sensed data measuring biomass burning to achieve homogeneous coverage at global scale. Fire models use weather reanalysis products to measure energy release and rate of spread but can only assess the potential predictability of fire danger as the actual ignition is due to human behaviour and, therefore, very unpredictable. Lastly, fire forecasting systems rely on weather forecasts to extend the advance warning but are currently calibrated using fire danger thresholds that are defined at global scale and do not take into account the spatial variability of fuel availability. As a consequence, uncertainties sharply increase cascading from the observational to the modelling stage and they might be further inflated by non-reproducible analyses. Although uncertainties in observations will only decrease with technological advances over the next decades, the other uncertainties (i.e. generated during modelling and post-processing) can already be addressed by developing transparent and reproducible analysis workflows, even more if implemented within open-source initiatives. This is because reproducible workflows aim to streamline the processing task as they present ready-made solutions to handle and manipulate complex and heterogeneous datasets. Also, opening the code to the scrutiny of other experts increases the chances to implement more robust solutions and avoids duplication of efforts. In this work we present our contribution to the forest fire modelling community: an open-source tool called "caliver" for the calibration and verification of forest fire model results. This tool is developed in the R programming language and publicly available under an open license. We will present the caliver R package, illustrate the main functionalities and show the results of our preliminary experiments calculating fire danger thresholds for various regions on Earth. We will compare these with the existing global thresholds and, lastly, demonstrate how these newly-calculated regional thresholds can lead to improved calibration of fire forecast models in an operational setting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...
Canadian and Siberian Boreal Fire Activity during ARCTAS Spring and Summer Phases
NASA Astrophysics Data System (ADS)
Stocks, B. J.; Fromm, M. D.; Soja, A. J.; Servranckx, R.; Lindsey, D.; Hyer, E.
2009-12-01
The summer phase of ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) was designed specifically around forest fire activity in the Canadian boreal forest, and located in areas of northern Canada where summer forest fires are ubiquitous. Lightning fires are most often allowed to burn naturally in these regions, and a number of large free-burning fires in northern Saskatchewan in late June/early July 2008 provided excellent targets during the summer phase of ARCTAS. Smoke generated by a large number of early spring fires in Kazakhstan and southern Siberia unexpectedly made a significant contribution to arctic haze during the Alaska-based spring phase of ARCTAS, Numerous smoke plumes were sampled during the spring phase of ARCTAS, creating interest in the origin and characteristics of the fires in the source regions of East Asia. This presentation is designed to connect aircraft and satellite smoke chemistry/transport measurements with ground-based measurements of fire activity during the spring and summer phases of ARCTAS. The Canadian Forest Fire Danger Rating System (CFFDRS) is used to determine forest fire danger conditions in regions of fire activity, and these measurements are in turn used to project fire behavior characteristics. Fuel consumption, spread rates, and frontal fire intensity are calculated using the CFFDRS. Energy release rates at ground level are related to convection/smoke column development and smoke injection heights.
Computer Calculation of Fire Danger
William A. Main
1969-01-01
This paper describes a computer program that calculates National Fire Danger Rating Indexes. fuel moisture, buildup index, and drying factor are also available. The program is written in FORTRAN and is usable on even the smallest compiler.
1988-12-07
grenades, air attacks, tank fire, snipers, and partisans. Many of these causes, such as air attacks and tank fire, were relatively infrequent occurrences...Tank Fire 5 9 Small Arms Fire 7 13 Grenade 3 5 Air Attack 18 32 Tank Fire 2 4 Partisans 5 9 Sniper 3 5 In World War I personal danger for officers had...accounts of individual demises reflect this increased lethality, and better describe the significant dangers to these senior commanders. 18 AIR ATTACK
Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs.
Vitolo, Claudia; Di Giuseppe, Francesca; D'Andrea, Mirko
2018-01-01
The name caliver stands for CALIbration and VERification of forest fire gridded model outputs. This is a package developed for the R programming language and available under an APACHE-2 license from a public repository. In this paper we describe the functionalities of the package and give examples using publicly available datasets. Fire danger model outputs are taken from the modeling components of the European Forest Fire Information System (EFFIS) and observed burned areas from the Global Fire Emission Database (GFED). Complete documentation, including a vignette, is also available within the package.
Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs
Di Giuseppe, Francesca; D’Andrea, Mirko
2018-01-01
The name caliver stands for CALIbration and VERification of forest fire gridded model outputs. This is a package developed for the R programming language and available under an APACHE-2 license from a public repository. In this paper we describe the functionalities of the package and give examples using publicly available datasets. Fire danger model outputs are taken from the modeling components of the European Forest Fire Information System (EFFIS) and observed burned areas from the Global Fire Emission Database (GFED). Complete documentation, including a vignette, is also available within the package. PMID:29293536
Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions.
De Angelis, Antonella; Ricotta, Carlo; Conedera, Marco; Pezzatti, Gianni Boris
2015-01-01
Fire regimes are strongly related to weather conditions that directly and indirectly influence fire ignition and propagation. Identifying the most important meteorological fire drivers is thus fundamental for daily fire risk forecasting. In this context, several fire weather indices have been developed focussing mainly on fire-related local weather conditions and fuel characteristics. The specificity of the conditions for which fire danger indices are developed makes its direct transfer and applicability problematic in different areas or with other fuel types. In this paper we used the low-to-intermediate fire-prone region of Canton Ticino as a case study to develop a new daily fire danger index by implementing a niche modelling approach (Maxent). In order to identify the most suitable weather conditions for fires, different combinations of input variables were tested (meteorological variables, existing fire danger indices or a combination of both). Our findings demonstrate that such combinations of input variables increase the predictive power of the resulting index and surprisingly even using meteorological variables only allows similar or better performances than using the complex Canadian Fire Weather Index (FWI). Furthermore, the niche modelling approach based on Maxent resulted in slightly improved model performance and in a reduced number of selected variables with respect to the classical logistic approach. Factors influencing final model robustness were the number of fire events considered and the specificity of the meteorological conditions leading to fire ignition.
Modelling the Meteorological Forest Fire Niche in Heterogeneous Pyrologic Conditions
De Angelis, Antonella; Ricotta, Carlo; Conedera, Marco; Pezzatti, Gianni Boris
2015-01-01
Fire regimes are strongly related to weather conditions that directly and indirectly influence fire ignition and propagation. Identifying the most important meteorological fire drivers is thus fundamental for daily fire risk forecasting. In this context, several fire weather indices have been developed focussing mainly on fire-related local weather conditions and fuel characteristics. The specificity of the conditions for which fire danger indices are developed makes its direct transfer and applicability problematic in different areas or with other fuel types. In this paper we used the low-to-intermediate fire-prone region of Canton Ticino as a case study to develop a new daily fire danger index by implementing a niche modelling approach (Maxent). In order to identify the most suitable weather conditions for fires, different combinations of input variables were tested (meteorological variables, existing fire danger indices or a combination of both). Our findings demonstrate that such combinations of input variables increase the predictive power of the resulting index and surprisingly even using meteorological variables only allows similar or better performances than using the complex Canadian Fire Weather Index (FWI). Furthermore, the niche modelling approach based on Maxent resulted in slightly improved model performance and in a reduced number of selected variables with respect to the classical logistic approach. Factors influencing final model robustness were the number of fire events considered and the specificity of the meteorological conditions leading to fire ignition. PMID:25679957
Fuel loads and fuel type mapping
Chuvieco, Emilio; Riaño, David; Van Wagtendonk, Jan W.; Morsdof, Felix; Chuvieco, Emilio
2003-01-01
Correct description of fuel properties is critical to improve fire danger assessment and fire behaviour modeling, since they guide both fire ignition and fire propagation. This chapter deals with properties of fuel that can be considered static in short periods of time: biomass loads, plant geometry, compactness, etc. Mapping these properties require a detail knowledge of vegetation vertical and horizontal structure. Several systems to classify the great diversity of vegetation characteristics in few fuel types are described, as well as methods for mapping them with special emphasis on those based on remote sensing images.
Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.
Kauf, Zorica; Fangmeier, Andreas; Rosavec, Roman; Španjol, Željko
2015-03-01
One of the suggested management options for reducing fire danger is the selection of less flammable plant species. Nevertheless, vegetation flammability is both complex and dynamic, making identification of such species challenging. While large efforts have been made to connect plant traits to fire behavior, seasonal changes and within species variability of traits are often neglected. Currently, even the most sophisticated fire danger systems presume that intrinsic characteristics of leaf litter stay unchanged, and plant species flammability lists are often transferred from one area to another. In order to assess if these practices can be improved, we performed a study examining the relationship between morphological characteristics and flammability parameters of leaf litter, thereby taking into account seasonal and local variability. Litter from six Mediterranean tree species was sampled throughout the fire season from three different locations along a climate gradient. Samples were subjected to flammability testing involving an epiradiator operated at 400 °C surface temperature with 3 g sample weight. Specific leaf area, fuel moisture content, average area, and average mass of a single particle had significant influences on flammability parameters. Effects of sampling time and location were significant as well. Due to the standardized testing conditions, these effects could be attributed to changes in intrinsic characteristics of the material. As the aforementioned effects were inconsistent and species specific, these results may potentially limit the generalization of species flammability rankings. Further research is necessary in order to evaluate the importance of our findings for fire danger modeling.
Remote sensing information for fire management and fire effects assessment
NASA Astrophysics Data System (ADS)
Chuvieco, Emilio; Kasischke, Eric S.
2007-03-01
Over the past decade, much research has been carried out on the utilization of advanced geospatial technologies (remote sensing and geographic information systems) in the fire science and fire management disciplines. Recent advances in these technologies were the focus of a workshop sponsored by the EARSEL special interest group (SIG) on forest fires (FF-SIG) and the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) fire implementation team. Here we summarize the framework and the key findings of papers submitted from this meeting and presented in this special section. These papers focus on the latest advances for near real-time monitoring of active fires, prediction of fire hazards and danger, monitoring of fuel moisture, mapping of fuel types, and postfire assessment of the impacts from fires.
Ray, David; Nepstad, Dan; Brando, Paulo
2010-08-01
*The use of fire as a land management tool in the moist tropics often has the unintended consequence of degrading adjacent forest, particularly during severe droughts. Reliable models of fire danger are needed to help mitigate these impacts. *Here, we studied the moisture dynamics of fine understory fuels in the east-central Brazilian Amazon during the 2003 dry season. Drying stations established under varying amounts of canopy cover (leaf area index (LAI) = 0 - 5.3) were subjected to a range of water inputs (5-15 mm) and models were developed to forecast litter moisture content (LMC). Predictions were then compared with independent field data. *A multiple linear regression relating litter moisture content to forest structure (LAI), ambient vapor pressure deficit (VPD(M)) and an index of elapsed time since a precipitation event (d(-1)) was identified as the best-fit model (adjusted R(2) = 0.89). Relative to the independent observations, model predictions were relatively unbiased when the LMC was
Evaluating Fire Risk in the Northeastern United States in the Past, Present, and Future
NASA Astrophysics Data System (ADS)
Miller, D.; Bradley, R. S.
2017-12-01
One poorly understood consequence of climate change is its effects on extreme events such as wildfires. Robust associations between wildfire frequency and climatic variability have been shown to exist, indicating that future climate change may continue to have a significant effect on wildfire activity. The Northeastern United States (NEUS) has seen some of the most infamous and largest historic fires in North America, such as the Miramichi Fire of 1825 and the fires of 1947. Although return intervals for large fires in the NEUS are long (hundreds of years), wildfires have played a critical role in ecosystem development and forest structure in the region. Understanding and predicting fire occurrence and vulnerability in the NEUS, especially in a changing climate, is economically and culturally important yet remains difficult due to human impacts (i.e. fire suppression activities and human disturbance). Thus, an alternative method for investigating fire risk in the NEUS is needed. Here, we present a compilation of meteorological data collected from Automated Surface Observing Systems (ASOS) from the NEUS throughout the 20th century through present day. We use these data to compute fifteen common "fire danger indices" employed in the USA and Canada to investigate changes in the region's fire risk over time, as well as the skill of each of these indices at predicting wildfire activity relative to the historical record of fires in the NEUS. We use dynamically-downscaled regional climate model output for the 21st century to project future wildfire activity based on the fire danger indices capable of capturing historical fire activity in the NEUS. These projections will aid in predicting how fire risk in the NEUS will evolve with anticipated climate change.
NASA Astrophysics Data System (ADS)
Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly
2010-05-01
Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.
The principles of measuring forest fire danger
H. T. Gisborne
1936-01-01
Research in fire danger measurement was commenced in 1922 at the Northern Rocky Mountain Forest and Range Experiment Station of the U. S. Forest Service, with headquarters at Missoula, Mont. Since then investigations have been made concerning ( 1) what to measure, (2) how to measure, and ( 3) field use of these measurements. In all cases the laboratory or restricted...
Virtual targeting in three-dimensional space with sound and light interference
NASA Astrophysics Data System (ADS)
Chua, Florence B.; DeMarco, Robert M.; Bergen, Michael T.; Short, Kenneth R.; Servatius, Richard J.
2006-05-01
Law enforcement and the military are critically concerned with the targeting and firing accuracy of opponents. Stimuli which impede opponent targeting and firing accuracy can be incorporated into defense systems. An automated virtual firing range was developed to assess human targeting accuracy under conditions of sound and light interference, while avoiding dangers associated with live fire. This system has the ability to quantify sound and light interference effects on targeting and firing accuracy in three dimensions. This was achieved by development of a hardware and software system that presents the subject with a sound or light target, preceded by a sound or light interference. SonyXplod. TM 4-way speakers present sound interference and sound targeting. The Martin ® MiniMAC TM Profile operates as a source of light interference, while a red laser light serves as a target. A tracking system was created to monitor toy gun movement and firing in three-dimensional space. Data are collected via the Ascension ® Flock of Birds TM tracking system and a custom National Instrument ® LabVIEW TM 7.0 program to monitor gun movement and firing. A test protocol examined system parameters. Results confirm that the system enables tracking of virtual shots from a fired simulation gun to determine shot accuracy and location in three dimensions.
Fire training in a virtual-reality environment
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Jurgen; Bucken, Arno
2005-03-01
Although fire is very common in our daily environment - as a source of energy at home or as a tool in industry - most people cannot estimate the danger of a conflagration. Therefore it is important to train people in combating fire. Beneath training with propane simulators or real fires and real extinguishers, fire training can be performed in virtual reality, which means a pollution-free and fast way of training. In this paper we describe how to enhance a virtual-reality environment with a real-time fire simulation and visualisation in order to establish a realistic emergency-training system. The presented approach supports extinguishing of the virtual fire including recordable performance data as needed in teletraining environments. We will show how to get realistic impressions of fire using advanced particle-simulation and how to use the advantages of particles to trigger states in a modified cellular automata used for the simulation of fire-behaviour. Using particle systems that interact with cellular automata it is possible to simulate a developing, spreading fire and its reaction on different extinguishing agents like water, CO2 or oxygen. The methods proposed in this paper have been implemented and successfully tested on Cosimir, a commercial robot-and VR-simulation-system.
Monthly fire behavior patterns
Mark J. Schroeder; Craig C. Chandler
1966-01-01
From tabulated frequency distributions of fire danger indexes for a nationwide network of 89 stations, the probabilities of four types of fire behavior ranging from 'fire out' to 'critical' were calculated for each month and are shown in map form.
44 CFR 204.3 - Definitions used throughout this part.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Worksheet. Fire complex. Two or more individual fires located in the same general area, which are assigned.... The ranking official responsible for overseeing the management of fire operations, planning, logistics... existing fire prevention or suppression resources from an area of lower fire danger to one of higher fire...
44 CFR 204.3 - Definitions used throughout this part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Worksheet. Fire complex. Two or more individual fires located in the same general area, which are assigned.... The ranking official responsible for overseeing the management of fire operations, planning, logistics... existing fire prevention or suppression resources from an area of lower fire danger to one of higher fire...
44 CFR 204.3 - Definitions used throughout this part.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Worksheet. Fire complex. Two or more individual fires located in the same general area, which are assigned.... The ranking official responsible for overseeing the management of fire operations, planning, logistics... existing fire prevention or suppression resources from an area of lower fire danger to one of higher fire...
[Forest fire risk assessment for China under different climate scenarios.
Tian, Xiao Rui; Dai, Xuan; Wang, Ming Yu; Zhao, Feng Jun; Shu, Li Fu
2016-03-01
Forest fire risk depends on the hazard factors, affected body, and hazard prevention and reduction ability. The integrated risk assessment is the foundation for developing scientific fire mana-gement policies and carrying out the forest fire prevention measures. A forest fire risk assessment model and index system were established based on the classic natural disaster risk model and available data, and the model was used to assess the forest fire risks in past and future. The future climate scenario data included outputs from five global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M) for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5, respectively. Each component index of Fire Weather Index (FWI) system was calculated daily for each grid in 1987-2050 for the historical observations and future climate scenarios according to the maximum temperature, minimum relative humidity, wind speed and daily precipitation. The results showed that areas with high and very high fire danger ratings in 1987-2010 accounted for 21.2% and 6.2%, respectively, which were distributed in Greater Xing'an Mountains and the Changbai Mountain area, most parts of Yunnan, and many fragment areas in southern China. The areas with high and very high burn possibilities were mainly distributed in the northeast and southwest region, accounting for 13.1% and 4.0%, respectively. Compared with the observation period, the areas with high and very high fire danger ratings in 2021-2050 would increase by 0.6%, 5.5%, 2.3%, and 3.5% under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 respectively, and North China would show significant increase. The regions with high-risk forest fires would also increase due to climate change, with the most significant increase under RCP 8.5 scenario (+1.6%).
33 CFR 334.350 - Chesapeake Bay off Fort Monroe, Va.; firing range danger zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... suspended as long as any vessel is within the danger zone. (3) Passage of vessels through the area will not be prohibited at any time, nor will commercial fishermen be prohibited from working fish nets within... periods. (4) No firing will be done during hours of darkness or low visibility. (5) The Commander, Fort...
The technique of duff hygrometer calibration
T. Kachin; H. T. Gisborne
1937-01-01
The moisture content of the top layer of coniferous needles and twigs covering the forest floor is one of the factors of forest fire danger which must he determined accurately if fire danger in such timber types is to he measured. As this moisture content cannot he estimated accurately and as a difference of a few per cent of moisture, especially in the lower range,...
Domains of Risk in the Developmental Continuity of Fire Setting
ERIC Educational Resources Information Center
McCarty, Carolyn A.; McMahon, Robert J.
2005-01-01
Juvenile fire setting is a serious, dangerous, and costly behavior. The majority of research examining youth fire setting has been cross-sectional. We sought to examine early risk attributes that could differentiate fire setters from non-fire setters, in addition to examining their association with the developmental continuity of fire-setting…
Differences in fire danger with altitude, aspect, and time of day
G. L. Hayes
1942-01-01
The measurement of fire danger has progressed remarkably since the early days of measuring humidity alone, or humidity and wind, or humidity, wind, and rain at a few valley bottom stations scattered widely apart over a forest of a million acres or more. Measuring the moisture content of the fuels directly is now known to be more accurate than measuring humidity and...
Linking Fuel Inventories With Atmospheric Data for Assessment of Fire Danger
Christopher W. Woodall; Joseph Charney; Greg Liknes; Brian Potter
2006-01-01
Combining forest fuel maps and real-time atmospheric data may enable creation of more dynamic and comprehensive fire danger assessments. The goal of this study was to combine fuel maps, based on data from the Forest Inventory and Analysis (FIA) program of the U.S. Department of Agriculture Forest Service, with real-time atmospheric data to create a more dynamic index...
The effect of model resolution in predicting meteorological parameters used in fire danger rating.
Jeanne L. Hoadley; Ken Westrick; Sue A. Ferguson; Scott L. Goodrick; Larry Bradshaw; Paul Werth
2004-01-01
Previous studies of model performance at varying resolutions have focused on winter storms or isolated convective events. Little attention has been given to the static high pressure situations that may lead to severe wildfire outbreaks. This study focuses on such an event so as to evaluate the value of increased model resolution for prediction of fire danger. The...
The effect of model resolution in predicting meteorological parameters used in fire danger rating
Jeanne L. Hoadley; Ken Westrick; Sue a. Ferguson; Scott L. Goodrick; Larry Bradshaw; Paul Wreth
2004-01-01
Previous studies of model perfonnance at varying resolutions have focused on winter stonns or isolated convective events. Little attention has been given to the static high pressure situations that may lead to severe wildfire outbreaks. This study focuses on such an event so as to evaluate the value of increased model resolution for prediction of fire danger. The...
What's the fire danger now? Linking fuel inventories with atmospheric data
Christopher W. Woodall; Joseph J. Charney; Greg C. Liknes; Brian E. Potter
2005-01-01
The combination of forest fuel maps with real-time atmospheric data may enable the creation of more dynamic and comprehensive assessments of fire danger. The goal of this study was to combine fuel maps, based on data from the Forest Inventory and Analysis (FIA) program of the USDA Forest Service, with real-time atmospheric data for the creation of a more dynamic index...
ERIC Educational Resources Information Center
PTA Today, 1992
1992-01-01
The National Fire Protection Association offers a quiz on fire safety designed to help people learn about the major fire dangers and change the way they respond to them. Recommends that families sit down and take the quiz together, focusing on the correct answers provided. (SM)
Automated system for smoke dispersion prediction due to wild fires in Alaska
NASA Astrophysics Data System (ADS)
Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.
2007-12-01
Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger Rating System (NFDRS) fuel maps Calculate smoke emission components using a first order fire emission model Model the smoke plume rise yielding a vertically distribution that accounts for one-dimensional (vertical) concentrations of smoke constituents in the atmosphere above the fire Run WRF/Chem at high resolution for the forecast Use standard graphical tools to provide accessible smoke dispersion The system run twice each day at ARSC. The results will be freely available from a dedicated wildfire smoke web portal at ARSC.
Changes in fire weather distributions: effects on predicted fire behavior
Lucy A. Salazar; Larry S. Bradshaw
1984-01-01
Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...
Ecohydrology: When will the jungle burn?
NASA Astrophysics Data System (ADS)
Bowman, David
2017-06-01
Fire weather indices are unsuited to forecast fire in tropical rainforests. Now research shows the area burnt across Borneo is related to drought-depleted water tables, presenting the opportunity to predict fire danger in these environments.
Robert E. Keane; Stacy A. Drury; Eva C. Karau; Paul F. Hessburg; Keith M. Reynolds
2010-01-01
This paper presents modeling methods for mapping fire hazard and fire risk using a research model called FIREHARM (FIRE Hazard and Risk Model) that computes common measures of fire behavior, fire danger, and fire effects to spatially portray fire hazard over space. FIREHARM can compute a measure of risk associated with the distribution of these measures over time using...
NASA Astrophysics Data System (ADS)
Soja, A. J.; Stocks, B. J.; Carr, R.; Pierce, R. B.; Natarajan, M.; Fromm, M.
2009-05-01
Current climate change scenarios predict increases in biomass burning in terms of increases in fire frequency, area burned, fire season length and fire season severity, particularly in boreal regions. Climate and weather control fire danger, which strongly influences the severity of fire events, and these in turn, feed back to the climate system through direct and indirect emissions, modifying cloud condensation nuclei and altering albedo (affecting the energy balance) through vegetative land cover change and deposition. Additionally, fire emissions adversely influence air quality and human health downwind of burning. The boreal zone is significant because this region stores the largest reservoir of terrestrial carbon, globally, and will experience climate change impacts earliest. Boreal biomass burning is an integral component to several of the primary goals of the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARCPAC (Aerosol, Radiation, and Cloud Processes affecting Arctic Climate) 2008 field campaigns, which include its implication for atmospheric composition and climate, aerosol radiative forcing, and chemical processes with a focus on ozone and aerosols. Both the spring and summer phases of ARCTAS and ARCPAC offered substantial opportunities for sampling fresh and aged biomass burning emissions. However, the extent to which spring biomass burning influenced arctic haze was unexpected, which could inform our knowledge of the formation of arctic haze and the early deposition of black carbon on the icy arctic surface. There is already evidence of increased extreme fire seasons that correlate with warming across the circumboreal zone. In this presentation, we discuss seasonal and annual fire activity and anomalies that relate to the ARCTAS and ARCPAC spring (April 1 - 20) and summer (June 18 - July 13) periods across Siberia and North America, with particular emphasis on fire danger and fire behavior as they relate to smoke emissions. Fire severity and subsequent emission levels are directly related to fire danger conditions, which reflect and incorporate both antecedent and current weather. In this century, it is predicted that fire regime increases will be the catalyst for ecosystem change, which will force ecosystems to move more rapidly towards a new equilibrium with climate. However, the reasons for ecosystem change are often accompanied by social and political drivers of land cover change, which complicate the relationship between fire and weather. For instance, since the collapse of the former Soviet Union, financial support for fire fighting is minimal, communal agricultural lands have been abandoned and a number of species are no longer protected (e.g. Saiga in Kalmykia), and each of these factors strongly influences vegetation cover and fire regimes, leading to a complicated interaction of processes that control fire and its affect on the larger environment.
Climate-induced variations in global wildfire danger from 1979 to 2013
Jolly, W. Matt; Cochrane, Mark A.; Freeborn, Patrick H.; Holden, Zachary A.; Brown, Timothy J.; Williamson, Grant J.; Bowman, David M. J. S.
2015-01-01
Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km2 (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate. PMID:26172867
Assessing predictive services' 7-day fire potential outlook
Karin Riley; Crystal Stonesifer; Dave Calkin; Haiganoush Preisler
2015-01-01
The Predictive Services program was created under the National Wildfire Coordinating Group in 2001 to address the need for long- and short-term decision support information for fire managers and operations personnel. The primary mission of Predictive Services is to integrate fire weather, fire danger, and resource availability to enable strategic fire suppression...
33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... to latitude 37°45′00″, longitude 76°09′48″; thence to latitude 37°45′00″, longitude 76°08′51″; and...
33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... to latitude 37°45′00″, longitude 76°09′48″; thence to latitude 37°45′00″, longitude 76°08′51″; and...
33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... to latitude 37°45′00″, longitude 76°09′48″; thence to latitude 37°45′00″, longitude 76°08′51″; and...
33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... to latitude 37°45′00″, longitude 76°09′48″; thence to latitude 37°45′00″, longitude 76°08′51″; and...
33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... to latitude 37°45′00″, longitude 76°09′48″; thence to latitude 37°45′00″, longitude 76°08′51″; and...
NASA Astrophysics Data System (ADS)
de Torres Curth, Monica; Biscayart, Carolina; Ghermandi, Luciana; Pfister, Gabriela
2012-04-01
In many regions of the world, fires are primarily of anthropogenic origin. In northwestern Patagonia, the number of fires is not correlated with meteorological variables, but is concentrated in urban areas. This study was conducted in the wildland-urban interface (WUI) area of San Carlos de Bariloche (Patagonia, Argentina), within the Nahuel Huapi National Park. WUI fires are particularly problematic because, besides people and goods, they represent a danger to protected areas. We studied the relationship between fire records and socioeconomic indicators within the WUI of San Carlos de Bariloche. We conducted a Multiple Correspondence Factorial Analysis and an Ascendant Hierarchical Classification of the city neighborhoods. The results show that the neighborhoods in Bariloche can be divided into three classes: High Socioeconomic Fire Risk neighborhoods, including neighborhoods with the highest fire rates, where people have low instruction level, high levels of unsatisfied basic needs and high unemployment levels; Low Socioeconomic Fire Risk neighborhoods, that groups neighborhoods which present the opposite characterization, and Moderate Socioeconomic Fire Risk neighborhoods, which are more heterogeneous. Once neighborhoods were classified, a Socioeconomic Fire Risk map was generated, supplementing the existing WUI Fire Danger map. Our results emphasize the relevance of socioeconomic variables to fire policies.
Keeping Haines Real - Or Really Changing Haines?
Brian E. Potter; Dan Borsum; Don Haines
2002-01-01
Most incident command teams can handle low- to moderate-intensity fires with few unanticipated problems. However, high-intensity situations, especially the plume-dominated fires that often develop when winds are low and erratic behavior is unexpected, can create dangerous situations even for well-trained, experienced fire crews (Rothermel 1991). Plume-dominated fires...
Fire Safe Together. Kindergarten. Fire Safety for Texans: Fire and Burn Prevention Curriculum Guide.
ERIC Educational Resources Information Center
Texas State Commission on Fire Protection, Austin.
This booklet comprises the kindergarten component of a series of curriculum guides on fire and burn prevention. Designed to meet the age-specific needs of kindergarten students, its objectives include developing basic awareness of fire and burn dangers, developing simple actions to reduce injury, and encouraging parent involvement. Texas essential…
Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire
NASA Astrophysics Data System (ADS)
Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.
2017-12-01
Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.
NASA Astrophysics Data System (ADS)
Nevrlý, V.; Bitala, P.; Danihelka, P.; Dobeš, P.; Dlabka, J.; Hejzlar, T.; Baudišová, B.; Míček, D.; Zelinger, Z.
2012-04-01
Natural events, such as wildfires, lightning or earthquakes represent a frequent trigger of industrial fires involving dangerous substances. Dispersion of smoke plume from such fires and the effects of toxic combustion products are one of the reference scenarios expected in the framework of major accident prevention. Nowadays, tools for impact assessment of these events are rather missing. Detailed knowledge of burning material composition, atmospheric conditions, and other factors are required in order to describe quantitatively the source term of toxic fire products and to evaluate the parameters of smoke plume. Nevertheless, an assessment of toxic emissions from large scale fires involves a high degree of uncertainty, because of the complex character of physical and chemical processes in the harsh environment of uncontrolled flame. Among the others, soot particle formation can be mentioned as still being one of the unresolved problems in combustion chemistry, as well as decomposition pathways of chemical substances. Therefore, simplified approach for estimating the emission factors from outdoor fires of dangerous chemicals, utilizable for major accident prevention and preparedness, was developed and the case study illustrating the application of the proposed method was performed. ALOFT-FT software tool based on large eddy simulation of buoyant fire plumes was employed for predicting the local toxic contamination in the down-wind vicinity of the fire. The database of model input parameters can be effectively modified enabling the simulation of the smoke plume from pool fires or jet fires of arbitrary flammable (or combustible) gas, liquid or solid. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic via the project LD11012 (in the frame of the COST CM0901 Action) and the Ministry of Environment of the Czech Republic (project no. SPII 1a10 45/70).
Assessment of Fire Occurrence and Future Fire Potential in Arctic Alaska
NASA Astrophysics Data System (ADS)
French, N. H. F.; Jenkins, L. K.; Loboda, T. V.; Bourgeau-Chavez, L. L.; Whitley, M. A.
2014-12-01
An analysis of the occurrence of fire in Alaskan tundra was completed using the relatively complete historical record of fire for the region from 1950 to 2013. Spatial fire data for Alaskan tundra regions were obtained from the Alaska Large Fire Database for the region defined from vegetation and ecoregion maps. A detailed presentation of fire records available for assessing the fire regime of the tundra regions of Alaska as well as results evaluating fire size, seasonality, and general geographic and temporal trends is included. Assessment of future fire potential was determined for three future climate scenarios at four locations across the Alaskan tundra using the Canadian Forest Fire Weather Index (FWI). Canadian Earth System Model (CanESM2) weather variables were used for historical (1850-2005) and future (2006-2100) time periods. The database includes 908 fire points and 463 fire polygons within the 482,931 km2 of Alaskan tundra. Based on the polygon database 25,656 km2 (6,340,000 acres) has burned across the six tundra ecoregions since 1950. Approximately 87% of tundra fires start in June and July across all ecoregions. Combining information from the polygon and points data records, the estimated average fire size for fire in the Alaskan Arctic region is 28.1 km2 (7,070 acres), which is much smaller than in the adjacent boreal forest region, averaging 203 km2 for high fire years. The largest fire in the database is the Imuruk Basin Fire which burned 1,680 km2 in 1954 in the Seward Peninsula region (Table 1). Assessment of future fire potential shows that, in comparison with the historical fire record, fire occurrence in Alaskan tundra is expected to increase under all three climate scenarios. Occurrences of high fire weather danger (>10 FWI) are projected to increase in frequency and magnitude in all regions modeled. The changes in fire weather conditions are expected to vary from one region to another in seasonal occurrence as well as severity and frequency of high fire weather danger. While the Alaska Large Fire Database represents the best data available for the Alaskan Arctic, and is superior to many other regions around the world, particularly Arctic regions, these fire records need to be used with some caution due to the mixed origin and minimal validation of the data; this is reviewed in the presentation.
NASA Astrophysics Data System (ADS)
Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.
2009-04-01
Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.
NASA Astrophysics Data System (ADS)
Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo
2014-05-01
Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify threshold values of indices useful to determine the end of the potential fire season due to fuel status. A weather generator linked to climate change scenarios derived from 17 available General Circulation Models (GCMs) was used to produce synthetic weather series, representing present and future climates, for four selected sites located in North Sardinia, Italy. Finally, impacts of future climate change on fire season length at local scale were simulated. Results confirmed that the projected climate scenarios over the Mediterranean area will determine an overall increase of the fire season length.
Measurements of forest fire danger
Leo Shames
1938-01-01
Although the annual destruction of life and property attributable to forest fires is enormous, scientific methods of forest fire control in the United States are of comparatively recent origin. In one important phase of control, that of determining how large a network of observers is necessary for the purpose of discovering forest fires in their infancy, accurate means...
W. Matt Jolly; Patrick H. Freeborn
2017-01-01
Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour. These indices could better...
Forest Fire Research--Hindsight and Foresight
C. E. Van Wagner
1987-01-01
The evolution of Forest fire research in Canada first is examined through the works of Wright and Beall, at the Petawawa National Forestry Institute in Ontario, then some lessons are drawn from the past that ought to bear on the future. Some opinions are delivered on the future course of research in fire danger rating, prescribed fire and the impacts of fire on the...
1954 forest fire weather in western Oregon and Washington.
Owen P. Cramer
1954-01-01
For the second successive fire season forest fire weather in western Oregon and Washington was far below normal severity. The low danger is reflected in record low numbers of fires reported by forestry offices of both States and by the U. S. Forest Service for their respective protection areas. Although spring and fall fire weather was near normal, a rain-producing...
Fire-danger rating in the future.
James E. Hefner
1967-01-01
The forest resources of this country must be protected from wildfire. Protection does not eliminate fire but does reduce loss from fire. In recent years, more acres have been burned on the unprotected 3 percent of forest land than on the 97 percent under organized fire protection. Protection from fire has saved more than 100 million acres per year. This figure is based...
Safety in the Chemical Laboratory: Advanced Firemanship: How to Teach Your Audience a Lesson.
ERIC Educational Resources Information Center
Pitt, Martin J.
1984-01-01
Provides tips to assist in preparing a training program designed to show that: (1) fire is dangerous; (2) ordinary individuals can neither understand fire nor extinguish it; and (3) a fire safety officer can do both. (JN)
Wildfire Danger Potential in California
NASA Astrophysics Data System (ADS)
Kafatos, M.; Myoung, B.; Kim, S. H.; Fujioka, F. M.; Kim, J.
2015-12-01
Wildfires are an important concern in California (CA) which is characterized by the semi-arid to arid climate and vegetation types. Highly variable winter precipitation and extended hot and dry warm season in the region challenge an effective strategic fire management. Climatologically, the fire season which is based on live fuel moisture (LFM) of generally below 80% in Los Angeles County spans 4 months from mid-July to mid-November, but it has lasted over 7 months in the past several years. This behavior is primarily due to the ongoing drought in CA during the last decade, which is responsible for frequent outbreaks of severe wildfires in the region. Despite their importance, scientific advances for the recent changes in wildfire risk and effective assessments of wildfire risk are lacking. In the present study, we show impacts of large-scale atmospheric circulations on an early start and then extended length of fire seasons. For example, the strong relationships of North Atlantic Oscillation (NAO) with springtime temperature and precipitation in the SWUS that was recently revealed by our team members have led to an examination of the possible impact of NAO on wildfire danger in the spring. Our results show that the abnormally warm and dry spring conditions associated with positive NAO phases can cause an early start of a fire season and high fire risks throughout the summer and fall. For an effective fire danger assessment, we have tested the capability of satellite vegetation indices (VIs) in replicating in situ LFM of Southern CA chaparral ecosystems by 1) comparing seasonal/interannual characteristics of in-situ LFM with VIs and 2) developing an empirical model function of LFM. Unlike previous studies attempting a point-to-point comparison, we attempt to examine the LFM relationship with VIs averaged over different areal coverage with chamise-dominant grids (i.e., 0.5 km to 25 km radius circles). Lastly, we discuss implications of the results for fire danger assessment and prediction.
NASA Technical Reports Server (NTRS)
2002-01-01
Drought conditions have plagued the Appalachian Mountains in October and November, and low relative humidity combined with dry leaves on the ground has created extreme fire danger in many eastern states. This true-color MODIS image made from data collected on November 13, 2001, shows smoke from numerous fires (indicated in red), predominantly in southern West Virginia (image center), Kentucky (to the southwest), and Tennessee (south). The fires, at least some of which are likely the result of arson, have burned thousands of acres throughout the region. Unfortunately for those people fighting the fires, the fire danger is likely to remain high, with no significant rain expected in the near term. South of Lake Erie, the southernmost of the Great Lakes, numerous aircraft contrails crisscross Ohio. Water vapor emitted with engine exhaust condenses in the cold, dry air at high altitudes, leaving behind a trail of condensation--a contrail. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
Patrick H. Freeborn; W. Matt Jolly; Mark A. Cochrane
2016-01-01
One component of climateâfire interactions is the relationship between weather conditions concurrent with burning (i.e., fire danger) and the magnitude of fire activity. Here daily environmental conditions are associated with daily observations of fire activity within ecoregions across the continental United States (CONUS) by aligning the latter 12 years of a 36 year...
Nataly Y. Chubarova; Nickolay G. Prilepsky; Alexei N. Rublev; Allen R. Riebau
2009-01-01
In 2002, a major drought and prolonged high temperatures occurred in central Russia that resulted in unprecedented wildland fires. These fires occurred under extreme fire danger conditions and were impossible for the Russian authorities to extinguish. It is perhaps somewhat unique that the fires were first burning peat bogs and later forests, causing very massive smoke...
Fire Frequent as a Measure of Fire Prevention Accomplishments
A.W. Lindenmuth; J.J. Keetch
1953-01-01
At the end of every year fire organizations regularly tally up the number of fires that burned in their territory and then try to decide whether the record is good or bad. Thirteen northeastern states reported 8,948 fires in 1951 on days of known fire danger, for example. Now the question is: would it have been reasonable to expect a larger or smaller number than 8,...
Introducing GFWED: The Global Fire Weather Database
NASA Technical Reports Server (NTRS)
Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.;
2015-01-01
The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.
Use of expert knowledge to develop fuel maps for wildland fire management [chapter 11
Robert E. Keane; Matt Reeves
2012-01-01
Fuel maps are becoming an essential tool in fire management because they describe, in a spatial context, the one factor that fire managers can control over many scales  surface and canopy fuel characteristics. Coarse-resolution fuel maps are useful in global, national, and regional fire danger assessments because they help fire managers effectively plan, allocate, and...
An aid to streamlining fire-weather station networks
R. William Furman
1975-01-01
For reasons of economy it may be necessary to close one or several fire-weather stations in a protection area. Since it is logical to close those stations that will have the least impact on the ability of the fire manager to assess overall fire danger, it is desirable to know if there is duplication in monitoring fire climate, and to what degree. A method is proposed...
Near-term probabilistic forecast of significant wildfire events for the Western United States
Haiganoush K. Preisler; Karin L. Riley; Crystal S. Stonesifer; Dave E. Calkin; Matt Jolly
2016-01-01
Fire danger and potential for large fires in the United States (US) is currently indicated via several forecasted qualitative indices. However, landscape-level quantitative forecasts of the probability of a large fire are currently lacking. In this study, we present a framework for forecasting large fire occurrence - an extreme value event - and evaluating...
Regional variation in fire weather controls the reported occurrence of Scottish wildfires
Legg, Colin J.
2016-01-01
Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2. PMID:27833814
Regional variation in fire weather controls the reported occurrence of Scottish wildfires.
Davies, G Matt; Legg, Colin J
2016-01-01
Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.
Future projections of fire danger in Brazilian biomes in the 21st century
NASA Astrophysics Data System (ADS)
Libonati, Renata; Silva, Patrícia; DaCamara, Carlos; Bastos, Ana
2016-04-01
In the global context, Brazil is one of the regions more severely affected by fire occurrences, with important consequences in the global CO2 balance, the state of the Amazon forest and the ecological diversity of the region. Brazil is also one of the few regions experiencing a raise in annual mean temperature above 2.5o during the 20th century, which may further increase between 2o and 7o until 2100 and, likely, be accompanied by a decrease in precipitation [1]. As the fire occurrence and severity largely depends on these two variables, it is worth assessing the evolution of fire danger for the coming decades. In order to obtain a detailed characterization of the future fire patterns in the different biomes of Brazil, we use outputs from a regional-downscaling of the EC-Earth climate model at 0.44 degrees spatial resolution for two future scenarios, an intermediate (RCP4.5) and a more severe (RCP8.5) one. We use a fire danger index specifically developed for the Brazilian climate and biome characteristics, the IFR from INPE. This index relies on values of maximum temperature, accumulated precipitation over different periods, minimum relative humidity and vegetation cover to estimate the likelihood of fire occurrence. We find a systematic increase of the days with critical fire risk, which is more pronounced in RCP8.5 and mostly affects months when fire activity takes place. Temperature increase is the most determinant factor for the increase in fire danger in the dry regions of savannah and shrubland, a result to be expected as fuel is already very dry. [1] Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Advanced Fire Information System - A real time fire information system for Africa
NASA Astrophysics Data System (ADS)
Frost, P. E.; Roy, D. P.
2012-12-01
The Council for Scientific and Industrial Research (CSIR) lead by the Meraka Institute and supported by the South African National Space Agency (SANSA) developed the Advanced Fire Information System (AFIS) to provide near real time fire information to a variety of operational and science fire users including disaster managers, fire fighters, farmers and forest managers located across Southern and Eastern Africa. The AFIS combines satellite data with ground based observations and statistics and distributes the information via mobile phone technology. The system was launched in 2004, and Eskom (South Africa' and Africa's largest power utility) quickly became the biggest user and today more than 300 Eskom line managers and support staff receive cell phone and email fire alert messages whenever a wildfire is within 2km of any of the 28 000km of Eskom electricity transmission lines. The AFIS uses Earth observation satellites from NASA and Europe to detect possible actively burning fires and their fire radiative power (FRP). The polar orbiting MODIS Terra and Aqua satellites provide data at around 10am, 15pm, 22am and 3am daily, while the European Geostationary MSG satellite provides 15 minute updates at lower spatial resolution. The AFIS processing system ingests the raw satellite data and within minutes of the satellite overpass generates fire location and FRP based fire intensity information. The AFIS and new functionality are presented including an incident report and permiting system that can be used to differentiate between prescribed burns and uncontrolled wild fires, and the provision of other information including 5-day fire danger forecasts, vegetation curing information and historical burned area maps. A new AFIS mobile application for IOS and Android devices as well as a fire reporting tool are showcased that enable both the dissemination and alerting of fire information and enable user upload of geo tagged photographs and on the fly creation of fire reports for user defined areas of interest.
33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Island, Calif.; naval danger zone off West Cove. 334.960 Section 334.960 Navigation and Navigable Waters... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The... operations officer, Naval Ordnance Test Station, Pasadena Annex, Pasadena, California, will announce firing...
NASA Astrophysics Data System (ADS)
Nunes, Sílvia A.; DaCamara, Carlos C.; Turkman, Kamil F.; Ermida, Sofia L.; Calado, Teresa J.
2017-04-01
Like in other regions of Mediterranean Europe, climate and weather are major drivers of fire activity in Portugal. The aim of the present study is to assess the role played by meteorological factors on inter-annual variability of burned area over a region of Portugal characterized by large fire activity. Monthly cumulated values of burned area in August are obtained from the fire database of ICNF, the Portuguese authority for forests. The role of meteorological factors is characterized by means of Daily Severity Rating, DSR, an index of meteorological fire danger, which is derived from meteorological fields as obtained from ECMWF Interim Reanalysis. The study area is characterized by the predominance of forest, with high percentages of maritime pine and eucalyptus, two species with high flammability in summer. The time series of recorded burned area in August during 1980-2011 is highly correlated (correlation coefficient of 0.93) with the one for whole Portugal. First, a normal distribution model is fitted to the 32-year sample of decimal logarithms of monthly burned area. The model is improved by introducing two covariates:(1) the top-down meteorological factor (DSRtd) which consists of daily cumulated values of DSR since April 1 to July 31 and may be viewed as the cumulated stress on vegetation due to meteorological conditions during the pre-fire season; (2) the bottom-up factor (DSRbu) which consists of the square root of the mean of the squared daily deviations (restricted to days with positive departures of DSR from the corresponding long term mean) and may be viewed as the contribution of days characterized by extreme weather conditions favoring the onset and spreading of wildfires. Three different statistical models are then developed: the "climate anomaly" model, using DSRtd as covariate, the "weather anomaly", using DSRbu as covariate, and the "combined" model using both variables as covariates. These models are used to define background fire danger, fire weather danger and combined fire danger, respectively quantifying the contribution of DSRtd, DSRbu and both covariates to increasing or decreasing the probability of having extremely high/low values of burned area in August. Using the information obtained by the "combined" model it is possible to calculate the minimum/ maximum value of DSRbu for a given year to be modelled as severe/weak. The probability is then made using a normal distribution of the data series of DSRbu, if the probability is below 20% than the year will be considered as not belonging to that classification. This classification is able to correctly identify 34 out of the 36 years studied. This results can be of extreme use to forest managers and firefighters when deciding which the best fire preventing measures are and where to allocate the resources.
Fire danger index efficiency as a function of fuel moisture and fire behavior.
Torres, Fillipe Tamiozzo Pereira; Romeiro, Joyce Machado Nunes; Santos, Ana Carolina de Albuquerque; de Oliveira Neto, Ricardo Rodrigues; Lima, Gumercindo Souza; Zanuncio, José Cola
2018-08-01
Assessment of the performance of forest fire hazard indices is important for prevention and management strategies, such as planning prescribed burnings, public notifications and firefighting resource allocation. The objective of this study was to evaluate the performance of fire hazard indices considering fire behavior variables and susceptibility expressed by the moisture of combustible material. Controlled burns were carried out at different times and information related to meteorological conditions, characteristics of combustible material and fire behavior variables were recorded. All variables analyzed (fire behavior and fuel moisture content) can be explained by the prediction indices. The Brazilian EVAP/P showed the best performance, both at predicting moisture content of the fuel material and fire behavior variables, and the Canadian system showed the best performance to predicting the rate of spread. The coherence of the correlations between the indices and the variables analyzed makes the methodology, which can be applied anywhere, important for decision-making in regions with no records or with only unreliable forest fire data. Copyright © 2018 Elsevier B.V. All rights reserved.
29 CFR 1926.900 - General provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... explosives. (b) Smoking, firearms, matches, open flame lamps, and other fires, flame or heat producing... magazine. (e) No explosives or blasting agents shall be abandoned. (f) No fire shall be fought where the fire is in imminent danger of contact with explosives. All employees shall be removed to a safe area...
29 CFR 1926.900 - General provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... explosives. (b) Smoking, firearms, matches, open flame lamps, and other fires, flame or heat producing... magazine. (e) No explosives or blasting agents shall be abandoned. (f) No fire shall be fought where the fire is in imminent danger of contact with explosives. All employees shall be removed to a safe area...
29 CFR 1926.900 - General provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... explosives. (b) Smoking, firearms, matches, open flame lamps, and other fires, flame or heat producing... magazine. (e) No explosives or blasting agents shall be abandoned. (f) No fire shall be fought where the fire is in imminent danger of contact with explosives. All employees shall be removed to a safe area...
Forest fire weather and computed fire occurrence in western Oregon and western Washington in 1960.
Owen P. Cramer
1960-01-01
Fire season severity in 1960 was about average in western Washington but was very high in western Oregon. Severity of the entire season in both States was slightly greater than in 1959. Although spring was less severe, both summer and fall were slightly more severe than comparable parts of the previous fire season. Spring fire danger in western Washington was as low as...
Real time forest fire warning and forest fire risk zoning: a Vietnamese case study
NASA Astrophysics Data System (ADS)
Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.
2016-12-01
Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher potential risk, the more chance of fire happen. By adding spatial factors to continuous daily updated remote sensing based meteo-data, results are valuable for both mapping forest fire risk zones in short and long-term and real time fire warning in Vietnam. Key words: Near-real-time, forest fire warning, fuzzy regression model, remote sensing.
Rachel White; Paul Hessburg; Sim Larkin; Morgan Varner
2017-01-01
Smoke from fire can sharply reduce air quality by releasing particulate matter, one of the most dangerous types of air pollution for human health. A third of U.S. households have someone sensitive to smoke. Minimizing the amount and impact of smoke is a high priority for land managers and regulators. One tool for achieving that goal is prescribed fire. Prescribed fire...
Forest fire weather and computed fire occurrence in western Oregon and western Washington.
Owen P. Cramer
1959-01-01
Severity of the 1959 fire season varied from well below normal in western Washington to a record-setting high in southwestern Oregon. The season was characterized by well-distributed, short rainy periods separated by comparatively short dry spells that frequently included days of high fire danger. July was the only month with markedly above-normal temperatures, and...
Development of a Global Fire Weather Database
NASA Technical Reports Server (NTRS)
Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.;
2015-01-01
The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2/3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective- Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.
Landscape fire in East Siberia: medical, ecological and economic aspects
NASA Astrophysics Data System (ADS)
Efimova, N. V.; Rukavishnikov, V. S.; Zabuga, G. A.; Elfimova, T. A.
2018-01-01
More than 40 % of the forests in Siberia region are known to have a fire danger of high classes and high burning degrees. This paper describes air pollutants emission (PM10, nitrogen oxides, sulfur dioxide and others) in East Siberian region during a 10-year period in the forests fires focus. A total of 500 to 2000 fires occurred in Irkutsk oblast during the last ten years. At an average annual forest fires cover an area of 1 109 hectares on the model territory (Bratsk city). The plane pollutant emission source with a high productivity is formed on the significant forest fire area occurred in a relatively short-term time periods. The increase in hazard ratios was registered for the ingredients of emission-specific industrial enterprises and capable of accumulating in vegetation: carbon disulphide 1.9 times, fluorine-containing substances 1.8 times during the fire. The economic loss of energy resources resulting from reduced production of firewood was estimated at 56.6 million in Irkutsk oblast. The potential risk of negative effects for the respiratory system and cardiovascular system stipulated for the acute inhalation exposure was found to increase on the days, of the fires, as evidenced by the growth of the daily mortality and morbidity rates among the population.
Fine fuel moisture measured and estimated in dead Andropogon virginicus in Hawaii
Francis M. Fujioka
1976-01-01
Fuel moisture estimates generated by the National Fire-Danger Rating System procedure were compared with actual fuel moisture measurements determined from laboratory analysis. Meteorological data required for the NFDRS procedure were collected at two heights to assess the effect of temperature and humidity lapse rates. Standard measurements gave the best results, but...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE..., Marianas Islands; small arms firing range. (a) The danger zone. The waters within an area delineated by a....2″ 13°24′51.2″ 144°36′31.9″ 13°25′28.7″ 144°37′59.1″ 13°25′43.2″ 144°38′09.5″ (b) The regulations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE..., Marianas Islands; small arms firing range. (a) The danger zone. The waters within an area delineated by a....2″ 13°24′51.2″ 144°36′31.9″ 13°25′28.7″ 144°37′59.1″ 13°25′43.2″ 144°38′09.5″ (b) The regulations...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE..., Marianas Islands; small arms firing range. (a) The danger zone. The waters within an area delineated by a....2″ 13°24′51.2″ 144°36′31.9″ 13°25′28.7″ 144°37′59.1″ 13°25′43.2″ 144°38′09.5″ (b) The regulations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE..., Marianas Islands; small arms firing range. (a) The danger zone. The waters within an area delineated by a....2″ 13°24′51.2″ 144°36′31.9″ 13°25′28.7″ 144°37′59.1″ 13°25′43.2″ 144°38′09.5″ (b) The regulations...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE..., Marianas Islands; small arms firing range. (a) The danger zone. The waters within an area delineated by a....2″ 13°24′51.2″ 144°36′31.9″ 13°25′28.7″ 144°37′59.1″ 13°25′43.2″ 144°38′09.5″ (b) The regulations...
An assessment of three measures of long-term moisture deficiency before critical fire periods.
Donald A. Haines; Von J. Johnson; William A. Main
1976-01-01
Values of the Palmer Drought Index, the Keetch-Byram Drought Index, and a Buildup Index are calculated for 26 critical fires situations in the north-central and north-eastern states. The paper examines the response characteristics of these indexes, representative of different moisture regimes, relative to fire danger.
Meteorological conditions affecting the Freeman Lake (Idaho) fire
George M. Jemison
1932-01-01
Measurements of meteorological conditions prevailing during the rapid spread of forest fires are greatly needed so that when their recurrence seems probable, fire-weather forecasters may issue warnings of the danger. Such determinations also can be used by forest protective agencies which operate meteorological stations to guide their own action in the distribution of...
75 FR 69032 - Naval Surface Warfare Center, Potomac River, Dahlgren, VA; Danger Zone
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
... hazardous operations such as firing large and small caliber guns and projectiles, aerial bombing, use of... protect the public from hazardous operations such as firing large and small caliber guns and projectiles... zone to include firing of large or small caliber guns and projectiles, aerial bombing, use of directed...
Measuring forest-fire danger in northern Idaho
H. T. Gisborne
1928-01-01
In most of the forest regions of the United States the fire problem is the greatest forest problem. Wasteful methods of logging and lumbering may result in the loss of a large proportion of the remaining forest growth, but the land will usually produce a new crop of timber without undue delay, unless fire occurs.
Adriana Keeting; John Handmer
2013-01-01
South-eastern Australia is one of the most fire prone environments on earth. Devastating fires in February 2009 appear to have been off the charts climatically and economically, they led to a new category of fire danger aptly called 'catastrophic'. Almost all wildfire losses have been associated with these extreme conditions and climate change will see an...
Assessing fire risk in Portugal during the summer fire season
NASA Astrophysics Data System (ADS)
Dacamara, C. C.; Pereira, M. G.; Trigo, R. M.
2009-04-01
Since 1998, Instituto de Meteorologia, the Portuguese Weather Service has relied on the Canadian Fire Weather Index (FWI) System (van Wagner, 1987) to produce daily forecasts of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behavior. The first three components, i.e. the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC) respectively rate the average moisture content of surface litter, decomposing litter, and organic (humus) layers of the soil. Wind effects are then added to FFMC leading to the Initial Spread Index (ISI) that rates fire spread. The remaining two fuel moisture codes (DMC and DC) are in turn combined to produce the Buildup Index (BUI) that is a rating of the total amount of fuel available for combustion. BUI is finally combined with ISI to produce the Fire Weather Index (FWI) that represents the rate of fire intensity. Classes of fire danger and levels of preparedness are commonly defined on an empirical way for a given region by calibrating the FWI System against wildfire activity as defined by the recorded number of events and by the observed burned area over a given period of time (Bovio and Camia, 1998). It is also a well established fact that distributions of burned areas are heavily skewed to the right and tend to follow distributions of the exponential-type (Cumming, 2001). Based on the described context, a new procedure is presented for calibrating the FWI System during the summer fire season in Portugal. Two datasets were used covering a 28-year period (1980-2007); i) the official Portuguese wildfire database which contains detailed information on fire events occurred in the 18 districts of Continental Portugal and ii) daily values of the six components of the FWI System as derived from reanalyses (Uppala et al., 2005) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Calibration of the FWI System is then performed in two steps; 1) a truncated Weibull distribution is fitted to the sample of burned areas and 2) the quality of the fitted statistical model is improved by incorporating components of the FWI System as covariates. Obtained model allows estimating on a daily basis the probability of occurrence of fires larger than a given threshold as well as producing maps of fire risk. Results as obtained from a prototype currently being developed will be presented and discussed. In particular, it will be shown that results provide additional evidence of the known fact that the extent of burned area in Portugal is controlled by two main atmospheric factors (Pereira et al. 2005): i) a long-term control related to the regime of temperature and precipitation in spring and ii) a short-term control exerted by the occurrence of very intense dry spells in days of extreme synoptic situations. Bovio, G., and A. Camia. 1998. An analysis of large forest fire danger conditions in Europe. In Proc. 3rd Int. Conf. on Forest Fire Research & 14th Conf. on Fire and Forest Meteorology, Viegas, D.X. (Ed.), Luso, 16-20 Nov., ADAI, 975-994. Cumming, S.G., 2001. Parametric models of the fire size distribution. Can J. For. Res., 31, 1297-1303. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C. and Leite, S.M., 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agr. and For. Meteorol., 129 (1-2), 11-25. Uppala, S.M. et al., 2005: The ERA-40 re-analysis. Quart. J. R. Meteorol. Soc., 131, 2961-3012. Van Wagner, C.E., 1987. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Forest Technical Report 35, Ottawa, 37 pp.
Biomass Combustions and Burning Emissions Inferred from GOES Fire Radiative Power
NASA Astrophysics Data System (ADS)
Zhang, X.; Kondragunta, S.; Schmidt, C.
2007-12-01
Biomass burning significantly affects air quality and climate changes. Current estimates of burning emissions are rather imprecise and vary markedly with different methodologies. This paper investigates biomass burning consumption and emissions using GOES (Geostationary Operational Environmental Satellites) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product. In doing this, we establish a set of representatives in diurnal patterns of half-hourly GOES Fire Radiative Power (FRP) for various ecosystems. The representative patterns are used to fill the missed and poor observations of half hourly FRP in GOES fire data for individual fire pixels. The simulated FRP is directly applied to the calculation of the biomass combusted during fire activities. The FRP-based biomass combustion is evaluated using the estimates using a traditional model which integrates burned area, fuel loading, and combustion factor. In the traditional model calculation, we derive burned areas from GOES WF_ABBA fire size. Fuel loading includes three different types (1) MODIS Vegetation Property-based Fuel System (MVPFS), (2) National Dangerous Rating Systems (NFDRS), and (3) the Fuel Characteristic Classification System (FCCS). By comparing the biomass combustions across the Contiguous United States (CONUS) from 2003-2005, we conclude that FRP is an effective tool to estimate the biomass burning emissions. Finally, we examine the temporal and spatial patterns in biomass combustions and emissions (PM2.5, CO, NH3) across the CONUS.
A synoptic climatology for forest fires in the NE US and future implications for GCM simulations
Yan Qing; Ronald Sabo; Yiqiang Wu; J.Y. Zhu
1994-01-01
We studied surface-pressure patterns corresponding to reduced precipitation, high evaporation potential, and enhanced forest-fire danger for West Virginia, which experienced extensive forest-fire damage in November 1987. From five years of daily weather maps we identified eight weather patterns that describe distinctive flow situations throughout the year. Map patterns...
Statistical model for forecasting monthly large wildfire events in western United States
Haiganoush K. Preisler; Anthony L. Westerling
2006-01-01
The ability to forecast the number and location of large wildfire events (with specified confidence bounds) is important to fire managers attempting to allocate and distribute suppression efforts during severe fire seasons. This paper describes the development of a statistical model for assessing the forecasting skills of fire-danger predictors and producing 1-month-...
Duff reduction by prescribed underburning in Douglas-fir.
David V. Sandberg
1980-01-01
Predictive equations for duff reduction and mineral soil exposure by prescribed fire are presented. An explanation is suggested for the dependence of duff combustion on surface fuel combustion. Surface fire duration and fuel moisture estimates of the National Fire-Danger Rating 1,000-hour timelag are the best predictors for reduction in moist duff. Duff layers with...
Integrating models to predict regional haze from wildland fire.
D. McKenzie; S.M. O' Neill; N. Larkin; R.A. Norheim
2006-01-01
Visibility impairment from regional haze is a significant problem throughout the continental United States. A substantial portion of regional haze is produced by smoke from prescribed and wildland fires. Here we describe the integration of four simulation models, an array of GIS raster layers, and a set of algorithms for fire-danger calculations into a modeling...
Test of wind predictions for peak fire-danger stations in Oregon and Washington.
Owen P. Cramer
1957-01-01
Relative accuracy of several wind-speed forecasting methods was tested during the forest fire seasons of 1950 and 1951. For the study, three fire-weather forecast centers of the U. S. Weather Bureau prepared individual station forecasts for 11 peak stations within the national. forests of Oregon and Washington. These spot forecasts were considered...
Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto
2005-04-01
Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and Indonesia have two new sources of information to initiate fire prevention and suppression activities.
DOT National Transportation Integrated Search
1997-06-05
When an accident involving the transportation of potentially dangerous materials occurs, local emergency response officials need accurate information about the material as quickly as possible. Using software donated to the Indianapolis Fire Departmen...
Introducing the Global Fire WEather Database (GFWED)
NASA Astrophysics Data System (ADS)
Field, R. D.
2015-12-01
The Canadian Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations beginning in 1980 called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded datasets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC=1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously-identified in MERRA's precipitation and reinforce the need to consider alternative sources of precipitation data. GFWED is being used by researchers around the world for analyzing historical relationships between fire weather and fire activity at large scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models. These applications will be discussed. More information on GFWED can be found at http://data.giss.nasa.gov/impacts/gfwed/
NASA Astrophysics Data System (ADS)
Freitas, S. R.; Menezes, I. C.; Stockler, R.; Mello, R.; Ribeiro, N. A.; Corte-Real, J. A. M.; Surový, P.
2014-12-01
Models of fuel with the identification of vegetation patterns of Montado ecosystem in Portugal was incorporated in the mesoscale Brazilian Atmospheric Modeling System (BRAMS) and coupled with a spread woodland fire model. The BRAMS-FIRE is a new system developed by the "Centro de Previsão de Tempo e Estudos Climáticos" (CPTEC/INPE, Brazil) and the "Instituto de Ciências Agrárias e Ambientais Mediterrâneas" (ICAAM, Portugal). The fire model used in this effort was originally, developed by Mandel et al. (2013) and further incorporated in the Weather Research and Forecast model (WRF). Two grids of high spatial resolution were configured with surface input data and fuel models integrated for simulations using both models BRAMS-FIRE and WRF-SFIRE. One grid was placed in the plain land near Beja and the other one in the hills of Ossa to evaluate different types of fire propagation and calibrate BRAMS-FIRE. The objective is simulating the effects of atmospheric circulation in local scale, namely the movements of the heat front and energy release associated to it, obtained by this two models in an episode of woodland fire which took place in Alentejo area in the last decade, for application to planning and evaluations of agro woodland fire risks. We aim to model the behavior of forest fires through a set of equations whose solutions provide quantitative values of one or more variables related to the propagation of fire, described by semi-empirical expressions that are complemented by experimental data allow to obtain the main variables related advancing the perimeter of the fire, as the propagation speed, the intensity of the fire front and fuel consumption and its interaction with atmospheric dynamic system. References Mandel, J., J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, and M. Vejmelka, 2013. New features in WRF-SFIRE and the wildfire forecasting and danger system in Israel. Natural Hazards and Earth System Sciences, submitted, Numerical Wildfires, Cargèse, France, May 13-18, 2013.
33 CFR 334.850 - Lake Erie, west end, north of Erie Ordnance Depot, Lacarne, Ohio.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and automatic weapons impact area. (c) Authorized dates and hours of firing: (1) Danger Area I. 6 a.m... the waters of Lake Erie within: (1) Danger Area I. The sector of a circle with a radius of 6,500 yards... latitude 41°34′20″ N., longitude 82°57′10″ W. (2) Danger Area II (Includes Area I). The area bounded as...
33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico, south of St. George Island, Fla.; test firing range. 334.650 Section 334.650 Navigation and Navigable Waters CORPS OF....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan...
33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico, south of St. George Island, Fla.; test firing range. 334.650 Section 334.650 Navigation and Navigable Waters CORPS OF....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan...
33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico, south of St. George Island, Fla.; test firing range. 334.650 Section 334.650 Navigation and Navigable Waters CORPS OF....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan...
Owen P. Cramer
1958-01-01
Any agency engaged in forest-fire control needs accurate weather forecasts and systematic procedures for making the best use of predicted and reported weather information. This study explores the practicability of using several tabular and graphical aids for converting area forecasts and local observations of relative humidity and wind speed into predicted values for...
AEGIS: a wildfire prevention and management information system
NASA Astrophysics Data System (ADS)
Kalabokidis, K.; Ager, A.; Finney, M.; Athanasis, N.; Palaiologou, P.; Vasilakos, C.
2015-10-01
A Web-GIS wildfire prevention and management platform (AEGIS) was developed as an integrated and easy-to-use decision support tool (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing access to information that is essential for wildfire management. Databases were created with spatial and non-spatial data to support key system functionalities. Updated land use/land cover maps were produced by combining field inventory data with high resolution multispectral satellite images (RapidEye) to be used as inputs in fire propagation modeling with the Minimum Travel Time algorithm. End users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations; i.e. single-fire propagations, conditional burn probabilities and at the landscape-level, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANN) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps produced an integrated output map for fire danger prediction. The system also incorporates weather measurements from remote automatic weather stations and weather forecast maps. The structure of the algorithms relies on parallel processing techniques (i.e. High Performance Computing and Cloud Computing) that ensure computational power and speed. All AEGIS functionalities are accessible to authorized end users through a web-based graphical user interface. An innovative mobile application, AEGIS App, acts as a complementary tool to the web-based version of the system.
Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands
NASA Astrophysics Data System (ADS)
Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.
2012-04-01
Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using BEHAVE fire behavior prediction system (Andrews, 1989) and experimental fuel data. Fire behavior was simulated by setting different weather scenarios representing the most frequent summer meteorological conditions. The simulation outputs (fireline intensity, rate of spread, flame length) were then analyzed for clustering the different fuel types in relation to their potential fire behavior. The results of this analysis can be used to produce fire behavior fuel maps that are important tools in evaluating fire hazard and risk for land management planning, locating and rating fuel treatments, and aiding in environmental assessments and fire danger programs modeling. This work is supported by FUME Project FP7-ENV-2009-1, Grant Agreement Number 243888 and Proterina-C Project, EU Italia-Francia Marittimo 2007-2013 Programme.
NASA Astrophysics Data System (ADS)
Westberg, David; Soja, Amber; Stackhouse, Paul, Jr.
2010-05-01
Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Boreal systems contain the largest pool of terrestrial carbon, and Russia holds 2/3 of the global boreal forests. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under climate change scenarios. Meteorological parameters influence fire danger and fire is a catalyst for ecosystem change. Therefore to predict fire weather and ecosystem change, we must understand the factors that influence fire regimes and at what scale these are viable. Our data consists of NASA Langley Research Center (LaRC)-derived fire weather indices (FWI) and National Climatic Data Center (NCDC) surface station-derived FWI on a domain from 50°N-80°N latitude and 70°E-170°W longitude and the fire season from April through October for the years of 1999, 2002, and 2004. Both of these are calculated using the Canadian Forest Service (CFS) FWI, which is based on local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. The large-scale (1°) LaRC product uses NASA Goddard Earth Observing System version 4 (GEOS-4) reanalysis and NASA Global Precipitation Climatology Project (GEOS-4/GPCP) data to calculate FWI. CFS Natural Resources Canada uses Geographic Information Systems (GIS) to interpolate NCDC station data and calculate FWI. We compare the LaRC GEOS- 4/GPCP FWI and CFS NCDC FWI based on their fraction of 1° grid boxes that contain satellite-derived fire counts and area burned to the domain total number of 1° grid boxes with a common FWI category (very low to extreme). These are separated by International Geosphere-Biosphere Programme (IGBP) 1°x1° resolution vegetation types to determine and compare fire regimes in each FWI/ecosystem class and to estimate the fraction of each of the 18 IGBP ecosystems burned, which are dependent on the FWI. On days with fire counts, the domain total of 1°x1° grid boxes with and without daily fire counts and area burned are totaled. The fraction of 1° grid boxes with fire counts and area burned to the total number of 1° grid boxes having common FWI category and vegetation type are accumulated, and a daily mean for the burning season is calculated. The mean fire counts and mean area burned plots appear to be well related. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to assess fire weather danger and fire regimes, so these data can be confidently used to predict future fire regimes using large-scale fire weather data. Specifically, we related large-scale fire weather, area burned, and the amount of fire-induced ecosystem change. Both the LaRC and CFS FWI showed gradual linear increase in fraction of grid boxes with fire counts and area burned with increasing FWI category, with an exponential increase in the higher FWI categories in some cases, for the majority of the vegetation types. Our analysis shows a direct correlation between increased fire activity and increased FWI, independent of time or the severity of the fire season. During normal and extreme fire seasons, we noticed the fraction of fire counts and area burned per 1° grid box increased with increasing FWI rating. Given this analysis, we are confident large-scale weather and climate data, in this case from the GEOS-4 reanalysis and the GPCP data sets, can be used to accurately assess future fire potential. This increases confidence in the ability of large-scale IPCC weather and climate scenarios to predict future fire regimes in boreal regions.
NASA Astrophysics Data System (ADS)
Karali, Anna; Giannakopoulos, Christos; Frias, Maria Dolores; Hatzaki, Maria; Roussos, Anargyros; Casanueva, Ana
2013-04-01
Forest fires have always been present in the Mediterranean ecosystems, thus they constitute a major ecological and socio-economic issue. The last few decades though, the number of forest fires has significantly increased, as well as their severity and impact on the environment. Local fire danger projections are often required when dealing with wild fire research. In the present study the application of statistical downscaling and spatial interpolation methods was performed to the Canadian Fire Weather Index (FWI), in order to assess forest fire risk in Greece. The FWI is used worldwide (including the Mediterranean basin) to estimate the fire danger in a generalized fuel type, based solely on weather observations. The meteorological inputs to the FWI System are noon values of dry-bulb temperature, air relative humidity, 10m wind speed and precipitation during the previous 24 hours. The statistical downscaling methods are based on a statistical model that takes into account empirical relationships between large scale variables (used as predictors) and local scale variables. In the framework of the current study the statistical downscaling portal developed by the Santander Meteorology Group (https://www.meteo.unican.es/downscaling) in the framework of the EU project CLIMRUN (www.climrun.eu) was used to downscale non standard parameters related to forest fire risk. In this study, two different approaches were adopted. Firstly, the analogue downscaling technique was directly performed to the FWI index values and secondly the same downscaling technique was performed indirectly through the meteorological inputs of the index. In both cases, the statistical downscaling portal was used considering the ERA-Interim reanalysis as predictands due to the lack of observations at noon. Additionally, a three-dimensional (3D) interpolation method of position and elevation, based on Thin Plate Splines (TPS) was used, to interpolate the ERA-Interim data used to calculate the index. Results from this method were compared with the statistical downscaling results obtained from the portal. Finally, FWI was computed using weather observations obtained from the Hellenic National Meteorological Service, mainly in the south continental part of Greece and a comparison with the previous results was performed.
Yang, Guang; Shu, Li-Fu; Di, Xue-Ying
2012-11-01
By using Delta and WGEN downscaling methods and Canadian Forest Fire Weather Index, this paper analyzed the variation characteristics of summer fire in Great Xing' an Mountains forest region of Heilongjiang Province in 1966-2010, estimated the change trends of the summer fire danger in 2010-2099, compared the differences of the forest fire in summer, spring, and autumn, and proposed the prevention and control strategies of the summer fire based on the fire environment. Under the background of climate warming, the summer forest fire in the region in 2000-2010 showed a high incidence trend. In foreseeable future, the summer forest fire across the region in 2010-2099, as compared to that in the baseline period 1961-1990, would be increased by 34%, and the increment would be obviously greater than that of spring and autumn fire. Relative to that in 1961-1990, the summer fire in 2010-2099 under both SRES A2a and SRES B2a scenarios would have an increasing trend, and, with the lapse of time, the trend would be more evident, and the area with high summer fire would become wider and wider. Under the scenario of SRES A2a, the summer fire by the end of the 21st century would be doubled, as compared to that in 1961-1990, and the area with high summer fire would be across the region. In the characteristics of fire source, attributes of forest fuel, and fire weather conditions, the summer forest fire was different from the spring and autumn forest fire, and thus, the management of fire source and forest fuel load as well as the forest fire forecast (mid-long term forecast in particular) in the region should be strengthened to control the summer forest fire.
Torres, Iván; Parra, Antonio; Moreno, José M; Durka, Walter
2018-01-01
In Mediterranean ecosystems, climate change is projected to increase fire danger and summer drought, thus reducing post-fire recruitment of obligate seeder species, and possibly affecting the population genetic structure. We performed a genome-wide genetic marker study, using AFLP markers, on individuals from one Central Spain population of the obligate post-fire seeder Cistus ladanifer L. that established after experimental fire and survived during four subsequent years under simulated drought implemented with a rainout shelter system. We explored the effects of the treatments on marker diversity, spatial genetic structure and presence of outlier loci suggestive of selection. We found no effect of fire or drought on any of the genetic diversity metrics. Analysis of Molecular Variance showed very low genetic differentiation among treatments. Neither fire nor drought altered the small-scale spatial genetic structure of the population. Only one locus was significantly associated with the fire treatment, but inconsistently across outlier detection methods. Neither fire nor drought are likely to affect the genetic makeup of emerging C. ladanifer, despite reduced recruitment caused by drought. The lack of genetic change suggests that reduced recruitment is a random, non-selective process with no genome-wide consequences on this keystone, drought- and fire tolerant Mediterranean species.
Report of the Army Scientific Advisory Panel Ad Hoc Group on Fire Suppression
1975-07-01
initially should be provided a nucleus of a seven- person technical staff composed of one 0-6 combat arme officer as Director, two senior behavioral ...If the suppressee perceives the fire as being reactive to his own behavior then the personal danger factor will be reinforced,1 Fire...that is not periodic hut also not reactive to his behavior may be like periodic fire in its personal threat except more difficult to
Automatic fire-extinguishing system for inhabited pressurized compartments of manned spacecraft
NASA Astrophysics Data System (ADS)
Bolodian, Ivan; Melikhov, Anatoliy; Tanklevskiy, Leonid
2017-06-01
There is an innovational fire-extinguishing technology implemented via equipage of inhabited pressurized modules of the space station "Mir" and compartments of the Russian segment of International space station by automatic fire extinguishing systems in an orbital flight. Fire-safety in inhabited pressurized compartments of spacecraft (further - InPC SC) became one of the most dangerous factors during an orbital flight after a number of fire-hazardous situations occurred in different countries during preparation and execution of spaceflights [1,2]. High fire-risk in InPC of manned SC is determined by the following specific peculiarities of a arrangement and usage conditions of these items: - atmosphere of inhabited compartments is considerably enriched with oxygen - up to 25-40%; - there are many structural non-metal materials (here and after - materials) in order to lower the weight of InPC SC, most part of these materials is combustible under a given concentration of oxygen (here and after - Cox) in the atmosphere of InPC SC; - ventilation flow (here and after - Vvf) under normal operation of ventilation means in InPC SC considerably increases a possibility of fast fire-spread in InPC. - inhabited pressurized compartments of SC are filled with electrical equipment, which elements during failures even in low-current circuits became fire sources in oxygen-rich atmosphere; - indoor spaces of inhabited pressurized compartments of SC, as a rule, have complicated figuration with isolated for usage of local fire extinguishing zones with elements of electrical devices.
Santa Ana Forecasting and Classification
NASA Astrophysics Data System (ADS)
Rolinski, T.; Eichhorn, D.; D'Agostino, B. J.; Vanderburg, S.; Means, J. D.
2011-12-01
Southern California experiences wildfires every year, but under certain circumstances these fires grow into extremely large and destructive fires, such as the Cedar Fire of 2003 and the Witch Fire of 2007. The Cedar Fire burned over 1100 km2 , destroyed more than 2200 homes and killed 15 people; the Witch fire burned more than 800 km2, destroyed more than 1000 homes and killed 2 people. Fires can quickly become too large and dangerous to fight if they are accompanied by a very strong "Santa Ana" condition, which is a foehn-like wind that may bring strong winds and very low humidities. However there is an entire range of specific weather conditions that fall into the broad category of Santa Anas, from cold and blustery to hot with very little wind. All types are characterized by clear skies and low humidity. Since the potential for destructive fire is dependent on the characteristics of Santa Anas, as well as the level of fuel moisture, there exists a need for further classification, such as is done with tropical cyclones and after-the-fact with tornadoes. We use surface data and fuel moisture combined with reanalysis to diagnose those conditions that result in Santa Anas with the greatest potential for destructive fires. We use this data to produce a new classification system for Santa Anas. This classification system should be useful for informing the relevant agencies for mitigation and response planning. In the future this same classification may be made available to the general public.
The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System
NASA Astrophysics Data System (ADS)
Sun, E. J.; Nieto, A.; Zhang, X. K.
2017-01-01
Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.
H.K. Preisler; R.E. Burgan; J.C. Eidenshink; J.M. Klaver; R.W. Klaver
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i)...
Fonte, A; Alimenti, F; Zito, D; Neri, B; De Rossi, D; Lanatà, A; Tognetti, A
2007-01-01
The remote sensing and the detection of events that may represent a danger for human beings have become more and more important thanks to the latest advances of the technology. A microwave radiometer is a sensor capable to detect a fire or an abnormal increase of the internal temperature of the human body (hyperthermia), or an onset of a cancer, or even meteorological phenomena (forest fires, pollution release, ice formation on road pavement). In this paper, the overview of a wearable low-cost low-power system-on-a-chip (SoaC) 13 GHz passive microwave radiometer in CMOS 90 nm technology is presented. In particular, we focused on its application to the fire detection for civil safeguard. In detail, this sensor has been thought to be inserted into the fireman jacket in order to help the fireman in the detection of a hidden fire behind a door or a wall. The simulation results obtained by Ptolemy system simulation have confirmed the feasibility of such a SoaC microwave radiometer in a low-cost standard silicon technology for temperature remote sensing and, in particular, for its application to the safeguard of emergency operators.
Potential dangers of accelerant use in arson.
Heath, Karen; Kobus, Hilton; Byard, Roger W
2011-02-01
Accelerant-enhanced combustion often characterizes a fire that has been deliberately set to disguise a murder scene or to destroy property for insurance purposes. The intensity and rapidity of spread of fires where accelerants have been used are often underestimated by perpetrators who may sustain heat-related injuries. The case of a 49-year-old male who was using gasoline (petrol) as an accelerant is reported to demonstrate another danger of this type of activity. After ignition, an explosion occurred that destroyed the building and caused the death of the victim who was crushed beneath a rear wall of the commercial premises. Gasoline vapour/air mixtures are extremely volatile and may cause significant explosions if exposed to flame. Given the potential danger of explosion, arsonists using accelerants do so at significant risk to themselves and to others in the vicinity. Copyright © 2011 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Influence of wildfires in the boreal forests of Eastern Siberia on atmospheric aerosol parameters
NASA Astrophysics Data System (ADS)
Tomshin, Oleg A.; Solovyev, Vladimir S.
2017-11-01
The results of studies of the dynamics of forest fires in the boreal forests of Yakutia (Eastern Siberia) for 2001-2016 are presented. Variations of aerosol optical thickness (AOT), aerosol index (AI) and total carbon monoxide content during May-September were studied depending on the different forest fire activity level. It is shown that the seasonal variations of AOT, AI and CO in the most fire-dangerous years differ significantly from the fire seasons when forest fire activity was medium or low.
ERIC Educational Resources Information Center
Adams, Valerie
1990-01-01
Developed for State Farm Insurance in cooperation with the Chicago Fire Department and educators, the Smoke Detectives program helps children understand that they can be competent and in control when confronted by fires or other dangerous situations if they know what to do (stop, drop, and roll!) and don't panic. (MLH)
Roy Headley
1916-01-01
The increasing effectiveness of suppression practice is shown by the fact that in 1915 fire suppression cost one-third as much as in 1914, and damage to Government property was kept down to one-fourth the 1914 figure. The seasons were approximately equal in danger. Is further progress to be expected?
Urban Sprawl and Wildfire Danger along the Wildland-Urban Interface
NASA Astrophysics Data System (ADS)
Nghiem, S. V.; Kafatos, M.; Myoung, B.
2015-12-01
Urban sprawl has created an extensive wildland-urban interface (WUI) where urban areas encroach well into the wilderness that is highly susceptible to wildfire danger. To monitor urbanization along WUI, an innovative approach based on the Dense Sampling Method with the Rosette Transform (DSM-RT) enables the use of satellite scatterometer data to obtain observations without gaps in time and in space at 1-km posting in the decade of the 2000s. To explain how the satellite signature processed with DSM-RT represents physical urban infrastructures, the case of the mega city of Los Angeles is presented with the DSM-RT satellite image overlaid on three-dimensional buildings and road network from the commercial and industrial core of the city to the residential suburb extended into the wild land. Then the rate of urban development in the 2000s in terms of physical urban infrastructure change, rather than the arbitrary boundary defined by administrative or legislative measures, for 14 cities along the San Gabriel Mountains in California are evaluated to rank the degree of urbanization along the local WUI, which may increase the probability of fire ignitions and fire impacts. Moreover, the Enhanced Vegetation Index (EVI) from the MODIS Aqua satellite is used to estimate live fuel moisture (LFM) conditions around the WUI to evaluate fire danger levels, which are consistent to the specific definition currently used by fire agencies in making real-life decisions for fire preparedness pro-actively before the fire occurrence. As an example, a map of EVI-derived LFM for the Colby Fire in 2014 showing a complex spatial pattern of LFM reduction along an extensive WUI illustrates satellite advantage in monitoring LFM over the vast wild land in Southern California. Since the method is based on global satellite data, it is applicable to regions prone to wildfires across the world.
Fire Resistant, Moisture Barrier Membrane
NASA Technical Reports Server (NTRS)
St.Clair, Terry L. (Inventor)
2000-01-01
A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.
Fire Resistant, Moisture Barrier Membrane
NASA Technical Reports Server (NTRS)
St.Clair, Terry L. (Inventor)
1998-01-01
A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.
NASA Astrophysics Data System (ADS)
Menezes, Isilda; Freitas, Saulo; Stockler, Rafael; Mello, Rafael; Ribeiro, Nuno; Corte-Real, João; Surový, Peter
2015-04-01
Models of fuel with the identification of vegetation patterns of Montado ecosystem in Portugal was incorporated in the mesoscale Brazilian Atmospheric Modeling System (BRAMS) and coupled with a spread wildland fire model. The BRAMS-FIRE is a new system developed by the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC/INPE, Brazil) and the Instituto de Ciências Agrárias e Ambientais Mediterrâneas (ICAAM, Portugal). The fire model used in this effort was originally, developed by Mandel et al. (2013) and further incorporated in the Weather Research and Forecast model (WRF). Two grids of high spatial resolution were configured with surface input data and fuel models integrated for simulations using both models BRAMS-SFIRE and WRF-SFIRE. One grid was placed in the plain land and the other one in the hills to evaluate different types of fire propagation and calibrate BRAMS-SFIRE. The objective is simulating the effects of atmospheric circulation in local scale, namely the movements of the heat front and energy release associated to it, obtained by this two models in an episode of wildland fire which took place in Alentejo area in the last decade, for application to planning and evaluations of agro wildland fire risks. We aim to model the behavior of forest fires through a set of equations whose solutions provide quantitative values of one or more variables related to the propagation of fire, described by semi-empirical expressions that are complemented by experimental data allow to obtain the main variables related advancing the perimeter of the fire, as the propagation speed, the intensity of the fire front and fuel consumption and its interaction with atmospheric dynamic system References Mandel, J., J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, and M. Vejmelka, 2013. New features in WRF-SFIRE and the wildfire forecasting and danger system in Israel. Natural Hazards and Earth System Sciences, submitted, Numerical Wildfires, Cargèse, France, May 13-18, 2013.
A comparison of 3 models of 1-hr timelag fuel moisture in Hawaii
D.R. Weise; F.M. Fujioka; R.M. Nelson
2005-01-01
The U.S. National Fire Danger Rating System currently uses a moisture diffusion model developed by Fosberg to predict fine fuel moisture in woody fuels. Nelson recently developed a fuel moisture model that includes functions for both heat and moisture transfer. Fuel moisture samples were collected in Hawaii hourly for up to 96 h for three litter, one herbaceous, and...
ERIC Educational Resources Information Center
Walach, Christopher E.
2011-01-01
Imminent danger, managing the unexpected, dealing with the aftereffects of danger and potential trauma, and repeating this intense cycle is part of the military, first responders (police, fire fighters, wild land firefighting crews, EMTs, and paramedics), and emergency management organizations regular mission. Members of these organizations…
The Greek National Observatory of Forest Fires (NOFFi)
NASA Astrophysics Data System (ADS)
Tompoulidou, Maria; Stefanidou, Alexandra; Grigoriadis, Dionysios; Dragozi, Eleni; Stavrakoudis, Dimitris; Gitas, Ioannis Z.
2016-08-01
Efficient forest fire management is a key element for alleviating the catastrophic impacts of wildfires. Overall, the effective response to fire events necessitates adequate planning and preparedness before the start of the fire season, as well as quantifying the environmental impacts in case of wildfires. Moreover, the estimation of fire danger provides crucial information required for the optimal allocation and distribution of the available resources. The Greek National Observatory of Forest Fires (NOFFi)—established by the Greek Forestry Service in collaboration with the Laboratory of Forest Management and Remote Sensing of the Aristotle University of Thessaloniki and the International Balkan Center—aims to develop a series of modern products and services for supporting the efficient forest fire prevention management in Greece and the Balkan region, as well as to stimulate the development of transnational fire prevention and impacts mitigation policies. More specifically, NOFFi provides three main fire-related products and services: a) a remote sensing-based fuel type mapping methodology, b) a semi-automatic burned area mapping service, and c) a dynamically updatable fire danger index providing mid- to long-term predictions. The fuel type mapping methodology was developed and applied across the country, following an object-oriented approach and using Landsat 8 OLI satellite imagery. The results showcase the effectiveness of the generated methodology in obtaining highly accurate fuel type maps on a national level. The burned area mapping methodology was developed as a semi-automatic object-based classification process, carefully crafted to minimize user interaction and, hence, be easily applicable on a near real-time operational level as well as for mapping historical events. NOFFi's products can be visualized through the interactive Fire Forest portal, which allows the involvement and awareness of the relevant stakeholders via the Public Participation GIS (PPGIS) tool.
United States Geological Survey fire science: fire danger monitoring and forecasting
Eidenshink, Jeff C.; Howard, Stephen M.
2012-01-01
Each day, the U.S. Geological Survey produces 7-day forecasts for all Federal lands of the distributions of number of ignitions, number of fires above a given size, and conditional probabilities of fires growing larger than a specified size. The large fire probability map is an estimate of the likelihood that ignitions will become large fires. The large fire forecast map is a probability estimate of the number of fires on federal lands exceeding 100 acres in the forthcoming week. The ignition forecast map is a probability estimate of the number of fires on Federal land greater than 1 acre in the forthcoming week. The extreme event forecast is the probability estimate of the number of fires on Federal land that may exceed 5,000 acres in the forthcoming week.
NASA Astrophysics Data System (ADS)
Sherman, N. J.; Loboda, T.; Sun, G.; Shugart, H. H.; Csiszar, I.
2008-12-01
The remaining natural habitat of the critically endangered Amur tiger (Panthera tigris altaica) and Amur leopard (Panthera pardus orientalis) is a vast, biologically and topographically diverse area in the Russian Far East (RFE). Although wildland fire is a natural component of ecosystem functioning in the RFE, severe or repeated fires frequently re-set the process of forest succession, which may take centuries to return the affected forests to the pre-fire state and thus significantly alters habitat quality and long-term availability. The frequency of severe fire events has increased over the last 25 years, leading to irreversible modifications of some parts of the species' habitats. Moreover, fire regimes are expected to continue to change toward more frequent and severe events under the influence of climate change. Here we present an approach to developing capabilities for a comprehensive assessment of potential Amur tiger and leopard habitat availability throughout the 21st century by integrating regionally parameterized fire danger and forest growth models. The FAREAST model is an individual, gap-based model that simulates forest growth in a single location and demonstrates temporally explicit forest succession leading to mature forests. Including spatially explicit information on probabilities of fire occurrence at 1 km resolution developed from the regionally specific remotely -sensed data-driven fire danger model improves our ability to provide realistic long-term projections of potential forest composition in the RFE. This work presents the first attempt to merge the FAREAST model with a fire disturbance model, to validate its outputs across a large region, and to compare it to remotely-sensed data products as well as in situ assessments of forest structure. We ran the FAREAST model at 1,000 randomly selected points within forested areas in the RFE. At each point, the model was calibrated for temperature, precipitation, slope, elevation, and fire probability. The output of the model includes biomass estimates for 44 tree species that occur in the RFE, grouped by genus. We compared the model outputs with land cover classifications derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data and LIDAR-based estimates of biomass across the entire region, and Russian forest inventory records at selected sites. Overall, we find that the FAREAST estimates of forest biomass and general composition are consistent with the observed distribution of forest types.
NASA Astrophysics Data System (ADS)
ChéRet, VéRonique; Denux, Jean Philippe
2007-06-01
Wildfires are a prevalent natural hazard in the south of France. Planners need a permanent fire danger assessment valid for several years over a territory as large and heterogeneous as Midi-Pyrénées region. To this end, we developed an expert knowledge-based index model adapted to the specific features of the study area. The fire danger depends on two complementary elements: spatial occurrence and fire intensity. Among the GIS layers identified as input variables for modeling, vegetation fire susceptibility is one of the most influent. However, the main difficulty at this scale is the scarcity or the lack of exhaustiveness of the data. In this respect, remote sensing imagery is capable of providing relevant information. We proposed to calculate an annual relative greenness index (annual RGRE) that reflects vegetation dryness in summer. We processed times series of Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION images over the last six available years (1998 to 2003). The first step was to verify that these images characterize vegetation types and highlight intraannual and interannual response variability. It is then possible to identify phenological stages corresponding to the maximum NDVI (and therefore to maximum photosynthetic activity) during the growing season, the minimum NDVI at the end of the growing season and the minimum NDVI during winter period. These phenology metrics ground the annual RGRE calculation. Values obtained for each observation year show significant correlation (r2 = 0.70) with the De Martonne aridity index calculated for the same period. A synthesis of yearly index was integrated in the model as a variable that expresses fire susceptibility.
Numerical Simulation on Smoke Spread and Temperature Distribution in a Corn Starch Explosion
NASA Astrophysics Data System (ADS)
Lin, CherngShing; Hsu, JuiPei
2018-01-01
It is discovered from dust explosion accidents in recent years that deep causes of the accidents lies in insufficient cognition of dust explosion danger, and no understanding on danger and information of the dust explosion. In the study, Fire Dynamics Simulator (FDS) evaluation tool is used aiming at Taiwan Formosa Fun Coast explosion accidents. The calculator is used for rebuilding the explosion situation. The factors affecting casualties under explosion are studied. The injured personnel participating in the party are evaluated according to smoke diffusion and temperature distribution for numerical simulation results. Some problems noted in the fire disaster after actual explosion are proposed, rational site analysis is given, thereby reducing dust explosion risk grade.
Garrison Project - Lake Sakakawea Oil and Gas Management Plan, North Dakota
2012-11-01
When the air gun is fired , pulses of acoustic energy are produced causing the shock waves needed for data collection (Peterson, 2004). • Seismic...The proposed casing program shall include the size, weight, grade, and length of casing proposed, type of thread and coupling, and setting depth of...suppression of fires on public lands caused by its employees, contractors or subcontractors. During conditions of extreme fire danger, surface use
Redesign of Medical Stretcher for Special Operation Pararescue Jumpers
2014-06-30
development. 2. Introduction 2.1. Operational Use Modern combat rescue relies on a rescuer’s ability to brave enemy fire and stabilize injured...horizontal or vertical postion if needed. The rescuer is often under threat of enemy attack throughout the rescue operation. When under fire , the...dangerous because they prevent the rescuer from reaching the site quickly and put them at risk of taking fire themselves. After the injured person is
Fire danger rating and fire behavior prediction in the United States
Patricia L. Andrews
2005-01-01
For the seven year period from 1998 to 2004, an average of almost 79,000 fires per year on U.S. Federal and State land burned a yearly average of over 22,000 km2. An average of 1 billion US dollars was spent on suppression each year by the Federal agencies alone. Variation in climate, vegetation, and population across the U.S. leads to significant differences in the...
30 CFR 75.1501 - Emergency evacuations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... by the mine operator to take charge during mine emergencies involving a fire, explosion, or gas or... prescribed by MSHA's Office of Educational Policy and Development. The course will include topics such as the... there is a mine emergency which presents an imminent danger to miners due to fire or explosion or gas or...
30 CFR 75.1501 - Emergency evacuations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... by the mine operator to take charge during mine emergencies involving a fire, explosion, or gas or... prescribed by MSHA's Office of Educational Policy and Development. The course will include topics such as the... there is a mine emergency which presents an imminent danger to miners due to fire or explosion or gas or...
30 CFR 75.1501 - Emergency evacuations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... by the mine operator to take charge during mine emergencies involving a fire, explosion, or gas or... prescribed by MSHA's Office of Educational Policy and Development. The course will include topics such as the... there is a mine emergency which presents an imminent danger to miners due to fire or explosion or gas or...
30 CFR 75.1501 - Emergency evacuations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... by the mine operator to take charge during mine emergencies involving a fire, explosion, or gas or... prescribed by MSHA's Office of Educational Policy and Development. The course will include topics such as the... there is a mine emergency which presents an imminent danger to miners due to fire or explosion or gas or...
Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, Jacqueline M.; Klaver, R.W.
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i) number of ignitions; (ii) number of fires above a given size; (iii) conditional probabilities of fires greater than a specified size, given ignition. As an illustration, we used the methods to study the skill of the Fire Potential Index an index that incorporates satellite and surface observations to map fire potential at a national scale in forecasting distributions of large fires. ?? 2009 IAWF.
Use of treated woods in roof assembly.
Edlich, Richard F; Winters, Kathryne L; Long, William B; Gubler, K Dean; Britt, L D
2005-01-01
On February 12, 2002, the US Environmental Protection Agency (EPA) announced a voluntary decision by industry to move consumer use of treated lumber products away from a variety of pressure-treated wood that contains Arsenate (As) by December 31, 2003, in favor of new alternative wood preservatives. It is the purpose of this report to outline legislative efforts to ban the use of chromated copper arsenate (CCA)-treated wood for residential roofing in the State of Oregon. At the time that the legislation was introduced, it was coincidental that the National Roofing Contractors Association (NRCA) recommended that CCA-treated wood should not be used in residential roofing. A summary of the report is included in this review. Finally, we discuss some of the potentially harmful environmental hazards of wood preservatives on the environment. In addition to the toxicity of pressure-treated wood on our environment, we point out that wood as well as pressure-treated wood assemblies are highly flammable. Consequently, we recommend the use of residential roofing systems that have Class A fire protection for the homeowner. Because residential roof fires remain a life-threatening danger to residential homeowners in the United States, we describe a national fire prevention program for reducing residential roof fires by use of an Underwriters Laboratories Inc. (UL) and National Fire Protection Association Class A fire-rated roof system.
Modeling human behaviors and reactions under dangerous environment.
Kang, J; Wright, D K; Qin, S F; Zhao, Y
2005-01-01
This paper describes the framework of a real-time simulation system to model human behavior and reactions in dangerous environments. The system utilizes the latest 3D computer animation techniques, combined with artificial intelligence, robotics and psychology, to model human behavior, reactions and decision making under expected/unexpected dangers in real-time in virtual environments. The development of the system includes: classification on the conscious/subconscious behaviors and reactions of different people; capturing different motion postures by the Eagle Digital System; establishing 3D character animation models; establishing 3D models for the scene; planning the scenario and the contents; and programming within Virtools Dev. Programming within Virtools Dev is subdivided into modeling dangerous events, modeling character's perceptions, modeling character's decision making, modeling character's movements, modeling character's interaction with environment and setting up the virtual cameras. The real-time simulation of human reactions in hazardous environments is invaluable in military defense, fire escape, rescue operation planning, traffic safety studies, and safety planning in chemical factories, the design of buildings, airplanes, ships and trains. Currently, human motion modeling can be realized through established technology, whereas to integrate perception and intelligence into virtual human's motion is still a huge undertaking. The challenges here are the synchronization of motion and intelligence, the accurate modeling of human's vision, smell, touch and hearing, the diversity and effects of emotion and personality in decision making. There are three types of software platforms which could be employed to realize the motion and intelligence within one system, and their advantages and disadvantages are discussed.
Estimating grassland curing with remotely sensed data
NASA Astrophysics Data System (ADS)
Chaivaranont, Wasin; Evans, Jason P.; Liu, Yi Y.; Sharples, Jason J.
2018-06-01
Wildfire can become a catastrophic natural hazard, especially during dry summer seasons in Australia. Severity is influenced by various meteorological, geographical, and fuel characteristics. Modified Mark 4 McArthur's Grassland Fire Danger Index (GFDI) is a commonly used approach to determine the fire danger level in grassland ecosystems. The degree of curing (DOC, i.e. proportion of dead material) of the grass is one key ingredient in determining the fire danger. It is difficult to collect accurate DOC information in the field, and therefore ground-observed measurements are rather limited. In this study, we explore the possibility of whether adding satellite-observed data responding to vegetation water content (vegetation optical depth, VOD) will improve DOC prediction when compared with the existing satellite-observed data responding to DOC prediction models based on vegetation greenness (normalised difference vegetation index, NDVI). First, statistically significant relationships are established between selected ground-observed DOC and satellite-observed vegetation datasets (NDVI and VOD) with an r2 up to 0.67. DOC levels estimated using satellite observations were then evaluated using field measurements with an r2 of 0.44 to 0.55. Results suggest that VOD-based DOC estimation can reasonably reproduce ground-based observations in space and time and is comparable to the existing NDVI-based DOC estimation models.
J. D. Carlson; Larry S. Bradshaw; Ralph M. Nelson; Randall R Bensch; Rafal Jabrzemski
2007-01-01
The application of a next-generation dead-fuel moisture model, the 'Nelson model', to four timelag fuel classes using an extensive 21-month dataset of dead-fuel moisture observations is described. Developed by Ralph Nelson in the 1990s, the Nelson model is a dead-fuel moisture model designed to take advantage of frequent automated weather observations....
Global vegetation-fire pattern under different land use and climate conditions
NASA Astrophysics Data System (ADS)
Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.
2008-12-01
Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from wildfires, agricultural and woodfuel burning will be quantified and drivers identified. Future projections of climate and land use change are applied to the model to investigate joint effects on future changes in fire, deforestation and vegetation dynamics in the Amazon basin.
Application of the Haines Index in the fire warning system
NASA Astrophysics Data System (ADS)
Kalin, Lovro; Marija, Mokoric; Tomislav, Kozaric
2016-04-01
Croatia, as all Mediterranean countries, is strongly affected by large wildfires, particularly in the coastal region. In the last two decades the number and intensity of fires has been significantly increased, which is unanimously associated with climate change, e.g. global warming. More extreme fires are observed, and the fire-fighting season has been expanded to June and September. The meteorological support for fire protection and planning is therefore even more important. At the Meteorological and Hydrological Service of Croatia a comprehensive monitoring and warning system has been established. It includes standard components, such as short term forecast of Fire Weather Index (FWI), but long range forecast as well. However, due to more frequent hot and dry seasons, FWI index often does not provide additional information of extremely high fire danger, since it regularly takes the highest values for long periods. Therefore the additional tools have been investigated. One of widely used meteorological products is the Haines index (HI). It provides information of potential fire growth, taking into account only the vertical instability of the atmosphere, and not the state of the fuel. Several analyses and studies carried out at the Service confirmed the correlation of high HI values with large and extreme fires. The Haines index forecast has been used at the Service for several years, employing European Centre for Medium Range Weather Forecast (ECMWF) global prediction model, as well as the limited-area Aladin model. The verification results show that these forecast are reliable, when compared to radiosonde measurements. All these results provided the introduction of the additional fire warnings, that are issued by the Service's Forecast Department.
James D. Haywood; Tessa A. Bauman; Richard A. Goyer; Finis L. Harris
2004-01-01
Without fire in the Southeastern United States, loblolly pine (Pinus taeda L.) often becomes the overstory dominant on sites historically dominated by longleaf pine (P. palustris Mill.). Beneath the loblolly pine canopy a mature midstory and understory develops of woody vegetation supporting draped fuels. The resulting deep shade...
Where and when to measure forest fire danger
G. Lloyd. Hayes
1944-01-01
This article presents the results of a study to determine the place, time, and number of measurements that should be made to obtain dependable ratings of "average-bad" fire conditions without an excessive number of stations or observations. The author concludes that under the conditions prevailing in the Priest River Experimental Forest in northern Idaho a...
A rapid response database in support of post-fire hydrological modeling
Mary Ellen Miller; William J. Elliot
2016-01-01
Being prepared for an emergency is important. Every year wildfires threaten homes and lives, but danger persists even after the flames are extinguished. Post-fire flooding and erosion (Figure 1) can threaten lives, property, and natural resources. To respond to this threat, interdisciplinary Burned Area Emergency Response (BAER) teams assess potential erosion and flood...
B. W. Butler; T. Wallace; J. Hogge
2015-01-01
Towers and poles supporting power transmission and telecommunication lines have collapsed due to heating from wildland fires. Such occurrences have led to interruptions in power or communication in large municipal areas with associated social and political implications as well as increased immediate danger to humans. Vegetation clearance standards for overhead...
B. W. Butler; J. Webb; J. Hogge; T. Wallace
2015-01-01
Towers and poles supporting power transmission and telecommunication lines have collapsed due to heating from wildland fires. Such occurrences have led to interruptions in power or communication in large municipal areas with associated social and political implications as well as increased immediate danger to humans. Unfortunately, no studies address the question of...
Right-of-way management: A key to controlling the spread of cogograss (Imperata cylindrica)
W.H. Faircloth; M.G. Patterson; James H. Miller; D.H. Teem
2004-01-01
Cogongrass [Imperata cylindrica(L.) Beauv.] is an undesired species on highway rights-of-way (ROWS) due to its displacenent of native and/or more manageable grasses, unsightly growth characteristic, and propensity for fire. Fire not only poses a danger to motorists but could cause property loss to adjoining landowners. Most importantly, ROWS provide...
Exploring the future change space for fire weather in southeast Australia
NASA Astrophysics Data System (ADS)
Clarke, Hamish; Evans, Jason P.
2018-05-01
High-resolution projections of climate change impacts on fire weather conditions in southeast Australia out to 2080 are presented. Fire weather is represented by the McArthur Forest Fire Danger Index (FFDI), calculated from an objectively designed regional climate model ensemble. Changes in annual cumulative FFDI vary widely, from - 337 (- 21%) to + 657 (+ 24%) in coastal areas and - 237 (- 12%) to + 1143 (+ 26%) in inland areas. A similar spread is projected in extreme FFDI values. In coastal regions, the number of prescribed burning days is projected to change from - 11 to + 10 in autumn and - 10 to + 3 in spring. Across the ensemble, the most significant increases in fire weather and decreases in prescribed burn windows are projected to take place in spring. Partial bias correction of FFDI leads to similar projections but with a greater spread, particularly in extreme values. The partially bias-corrected FFDI performs similarly to uncorrected FFDI compared to the observed annual cumulative FFDI (ensemble root mean square error spans 540 to 1583 for uncorrected output and 695 to 1398 for corrected) but is generally worse for FFDI values above 50. This emphasizes the need to consider inter-variable relationships when bias-correcting for complex phenomena such as fire weather. There is considerable uncertainty in the future trajectory of fire weather in southeast Australia, including the potential for less prescribed burning days and substantially greater fire danger in spring. Selecting climate models on the basis of multiple criteria can lead to more informative projections and allow an explicit exploration of uncertainty.
Modelling of a spread of hazardous substances in a Floreon+ system
NASA Astrophysics Data System (ADS)
Ronovsky, Ales; Brzobohaty, Tomas; Kuchar, Stepan; Vojtek, David
2017-07-01
This paper is focused on a module of an automatized numerical modelling of a spread of hazardous substances developed for the Floreon+ system on demand of the Fire Brigade of Moravian-Silesian. The main purpose of the module is to provide more accurate prediction for smog situations that are frequent problems in the region. It can be operated by non-scientific user through the Floreon+ client and can be used as a short term prediction model of an evolution of concentrations of dangerous substances (SO2, PMx) from stable sources, such as heavy industry factories, local furnaces or highways or as fast prediction of spread of hazardous substances in case of crash of mobile source of contamination (transport of dangerous substances) or in case of a leakage in a local chemical factory. The process of automatic gathering of atmospheric data, connection of Floreon+ system with an HPC infrastructure necessary for computing of such an advantageous model and the model itself are described bellow.
Development of fire test methods for airplane interior materials
NASA Technical Reports Server (NTRS)
Tustin, E. A.
1978-01-01
Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.
Paschalidou, A K; Kassomenos, P A
2016-01-01
Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Quigley, K. W.; Roberts, D. A.; Miller, D.
2017-12-01
Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those temperatures.
Prevention of residential roof fires by use of a class "A" fire rated roof system.
Edlich, Richard F; Winters, Kathryne L; Long, William B; Britt, L D
2004-01-01
Because residential roof fires remain a life-threatening danger to residential homeowners in the United States, we describe in detail a national fire prevention program for reducing residential roof fires by use of an Underwriters Laboratories Inc. (UL) and National Fire Protection Association Class A fire rated roof system. This Class A system should comply with the test requirements for fire resistance of roof coverings, as outlined in UL 790 or in ASTM International (ASTM) E-108. Both the Asphalt Roofing Manufacturer's Association (ARMA) and the National Roofing Contractors Association (NRCA) have set up guidelines for selecting a new roof for the homeowner. Class A, fiber-glass-based asphalt roofing shingles represent an overwhelming share of the United States residential roofing market, and, as such, the Class A rated roofing system remains an excellent alternative to wood shingles and shakes. Fortunately, the Class A fire rating is available for certain wood shingle products that incorporate a factory-applied, fire resistant treatment. However, in this circumstance, wood products labeled as Class B shakes or shingles must be installed over spaced or solid sheathing that have been covered either with one layer of 1/4 in. (6.4 mm) thick noncombustible roof board, or with one layer of minimum 72-lb. fiber-glass-based mineral surfaced cap sheet, or with another specialty roofing sheet to obtain the Class A fire rating. Clay, tile, slate, and metal have been assigned Class A fire ratings in the codes (but often without testing). These alternative roofing materials are often considerably more expensive. Proper application, ventilation, and insulation of roofing systems are required to prevent heat and moisture buildup in the attic, which can damage the roofing system, making it more susceptible to water leakage as well as ignition in the event of a fire. The NRCA has devised excellent recommendations for the homeowner to prequalify the contractor. In addition, a warranty for any new roofing material is important for the homeowner to ensure that the roofing can be repaired by the contractor or manufacturer during the specified warranty period, in case of contractor error or a manufacturing defect. In addition, the homeowner should ensure that the warranty is transferable to any future owner of the home to allow the buyer to have the same warranty benefits as the original owner. The State of California has mandated strict roofing requirements to prevent residential fires. In the absence of this legislation in other states, the homeowner must follow the guidelines outlined in this collective review to ensure that a roofing system with Class A fire protection is installed. Other fire safety precautions that should also be considered mandatory are to include smoke alarms, escape plans, and retrofit fire sprinklers.
NASA Technical Reports Server (NTRS)
Bickler, Donald B.; Sword, Lee F.; Lindemann, Randel A.
1994-01-01
Tires used where elastomeric and pneumatic tires would not function. Metal tires withstand extreme temperatures. Used on Earth for vehicles and robots that fight fires or clean up dangerous chemicals.
2011-04-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, smoke rises from a smoldering brush fire southeast of the Turn Basin. The fire was spotted near Kennedy’s Press Site approximately three miles away from Launch Pad 39A. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service. No personnel are in danger and currently there is no to impact any operations related to space shuttle Endeavour’s launch countdown. Photo credit: NASA/Jack Pfaller
2011-04-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, smoke rises from a smoldering brush fire southeast of the Turn Basin. The fire was spotted near Kennedy’s Press Site approximately three miles away from Launch Pad 39A. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service. No personnel are in danger and currently there is no to impact any operations related to space shuttle Endeavour’s launch countdown. Photo credit: NASA/Kim Shiflett
2011-04-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, smoke rises from a smoldering brush fire southeast of the Turn Basin. The fire was spotted near Kennedy’s Press Site approximately three miles away from Launch Pad 39A. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service. No personnel are in danger and currently there is no to impact any operations related to space shuttle Endeavour’s launch countdown. Photo credit: NASA/Jack Pfaller
2011-04-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, smoke rises from a smoldering brush fire southeast of the Turn Basin. The fire was spotted near Kennedy’s Press Site approximately three miles away from Launch Pad 39A. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service. No personnel are in danger and currently there is no to impact any operations related to space shuttle Endeavour’s launch countdown. Photo credit: NASA/Jack Pfaller
2011-04-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, smoke rises from a smoldering brush fire southeast of the Turn Basin. The fire was spotted near Kennedy’s Press Site approximately three miles away from Launch Pad 39A. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service. No personnel are in danger and currently there is no to impact any operations related to space shuttle Endeavour’s launch countdown. Photo credit: NASA/Kim Shiflett
2011-04-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, smoke rises from a smoldering brush fire southeast of the Turn Basin. The fire was spotted near Kennedy’s Press Site approximately three miles away from Launch Pad 39A. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service. No personnel are in danger and currently there is no to impact any operations related to space shuttle Endeavour’s launch countdown. Photo credit: NASA/Jack Pfaller
2011-04-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, smoke rises from a smoldering brush fire southeast of the Turn Basin. The fire was spotted near Kennedy’s Press Site approximately three miles away from Launch Pad 39A. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service. No personnel are in danger and currently there is no to impact any operations related to space shuttle Endeavour’s launch countdown. Photo credit: NASA/Jack Pfaller
2011-04-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, smoke rises from a smoldering brush fire southeast of the Turn Basin. The fire was spotted near Kennedy’s Press Site approximately three miles away from Launch Pad 39A. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service. No personnel are in danger and currently there is no to impact any operations related to space shuttle Endeavour’s launch countdown. Photo credit: NASA/Troy Cryder
Mitigating Wildfire Risk in the Wildland Urban Interface: The Role of Regulations
Cheryl R. Renner; Margaret Reams; Terry Haines
2006-01-01
The growth of residential communities within forest areas throughout the country, and particularly in the West, has increased the danger to life and property from uncontrolled wildfire. The conflict of permanent residential settlements built next to a fire-adapted ecosystem has been further exacerbated by 100 years of fire suppression and an extended drought in the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... interchangeably in fire science literature. Section 1915.11(b)Definition of “Upper explosive limit.” The terms upper flammable limit (UFL) and upper explosive limit (UEL) are used interchangeably in fire science... life and is adequate for entry. However, any oxygen level greater than 20.8 percent by volume should...
33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The waters.... Upon being so warned vessels working in the area shall leave the area immediately. (b) Bombing, rocket... regulations. (i) The area described in paragraph (b)(1) of this section will be used as bombing, rocket firing...
33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The waters.... Upon being so warned vessels working in the area shall leave the area immediately. (b) Bombing, rocket... regulations. (i) The area described in paragraph (b)(1) of this section will be used as bombing, rocket firing...
33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The waters.... Upon being so warned vessels working in the area shall leave the area immediately. (b) Bombing, rocket... regulations. (i) The area described in paragraph (b)(1) of this section will be used as bombing, rocket firing...
33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The waters.... Upon being so warned vessels working in the area shall leave the area immediately. (b) Bombing, rocket... bombing, rocket firing, and strafing areas. Live and dummy ammunition will be used. The area shall be...
33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The waters.... Upon being so warned vessels working in the area shall leave the area immediately. (b) Bombing, rocket... regulations. (i) The area described in paragraph (b)(1) of this section will be used as bombing, rocket firing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... interchangeably in fire science literature. Section 1915.11(b)Definition of “Upper explosive limit.” The terms upper flammable limit (UFL) and upper explosive limit (UEL) are used interchangeably in fire science... life and is adequate for entry. However, any oxygen level greater than 20.8 percent by volume should...
NASA Astrophysics Data System (ADS)
Trinh, Le Hung; Zablotskii, V. R.
2017-12-01
The Khanh Hoa coal mine is a surface coal mine in the Thai Nguyen province, which is one of the largest deposits of coal in the Vietnam. Numerous reasons such as improper mining techniques and policy, as well as unauthorized mining caused surface and subsurface coal fire in this area. Coal fire is a dangerous phenomenon which affects the environment seriously by releasing toxic fumes which causes forest fires, and subsidence of infrastructure surface. This article presents study on the application of LANDSAT multi-temporal thermal infrared images, which help to detect coal fire. The results obtained in this study can be used to monitor fire zones so as to give warnings and solutions to prevent coal fire.
NASA Astrophysics Data System (ADS)
Filizzola, Carolina; Belloni, Antonella; Benigno, Giuseppe; Biancardi, Alberto; Corrado, Rosita; Coviello, Irina; De Costanzo, Giovanni; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Marchese, Francesco; Mazzeo, Giuseppe; Merzagora, Cinzio; Paciello, Rossana; Pergola, Nicola; Sannazzaro, Filomena; Serio, Salvatore; Tramutoli, Valerio
2013-04-01
Every year, hundreds of thousands of hectares of European forests are destroyed by fires. Due to the particular topography, landscape and demographic distribution in Europe (very different from typical scenarios of China, USA, Canada and Australia), rapidity in fire sighting is still the determining factor in limiting damages to people and goods. Moreover, the possibility of early fire detection means also potentially to reduce the size of the event to be faced, the necessary fire fighting resources and, therefore, even the reaction times. In such a context, integration of satellite technologies (mainly high temporal resolution data) and traditional surveillance systems within the fire fighting procedures seems to positively impact on the effectiveness of active fire fighting as demonstrated by recent experiences over Italian territory jointly performed by University of Basilicata, IMAA-CNR and Local Authorities. Real time implementation was performed since 2007, during fire seasons, over several Italian regions with different fire regimes and features, in order to assess the actual potential of different satellite-based fire detection products to support regional and local authorities in efficiently fighting fires and better mitigating their negative effects. Real-time campaigns were carried out in strict collaboration with end-users within the framework of specific projects (i.e. the AVVISA, AVVISTA and AVVISA-Basilicata projects) funded by Civil Protection offices of Regione Lombardia, Provincia Regionale di Palermo and Regione Basilicata in charge of fire risk management and mitigation. A tailored training program was dedicated to the personnel of Regional Civil Protection offices in order to ensure the full understanding and the better integration of satellite based products and tools within the existing fire fighting protocols. In this work, outcomes of these practices are shown and discussed, especially highlighting the impact that a real time satellite system may have in assisting and complementing traditional surveillance systems to mitigate damages due to fires. In particular, the usefulness of satellite technology in an operational context was demonstrated mainly in reference to: i) the possibility of identifying fires at an early stage (so avoiding that small hotbeds could extend and become dangerous for citizens and destructive for environmental protected areas) as well as ii) the possibility to have an effective territorial control (e.g. discovering illegal burning fires such as unauthorized cleaning fires, and permitting local authorities to rapidly intervene and catch red-handed pyromaniacs).
Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spickermann, Thomas
2012-08-01
In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergencymore » situations; and (3) Plan recovery and keep squirrels out.« less
Seasonal Forecasts of Extreme Conditions for Wildland Fire Management in Alaska using NMME
NASA Astrophysics Data System (ADS)
Bhatt, U. S.; Bieniek, P.; Thoman, R.; York, A.; Ziel, R.
2016-12-01
The summer of 2015 was the second largest Alaska fire season since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned and was costly from property loss (> 35M) and emergency personnel (> 17M). In addition to requiring significant resources, wildfire smoke impacts air quality in Alaska and downstream into North America. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Fire managers rely on weather/climate outlooks for allocating staff and resources from days to a season in advance. Though currently few tested products are available at the seasonal scale. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Advanced knowledge of both lightning and fuel conditions would assist managers in planning resource allocation for the upcoming season. For fuel conditions, the Canadian Forest Fire Weather Index System (CFFWIS) has been used since 1992 because it better suits the Alaska fire regime than the standard US National Fire Danger Rating System (NFDRS). This CFFWIS is based on early afternoon values of 2-m air temperature, relative humidity, and 10-m winds and daily total precipitation. Extremes of these indices and the variables are used to calculate these indices will be defined in reference to fire weather for the boreal forest. The CFFWIS will be applied and evaluated for the NMME hindcasts. This study will evaluate the quality of the forecasts comparing the hindcast NMME CFFWIS to acres burned in Alaska. Spatial synoptic patterns in the NMME related to fire weather extremes will be constructed using self-organized maps and probabilities of occurrence will be evaluated against acres burned.
Wire-reinforced endotracheal tube fire during tracheostomy -A case report-.
Shin, Young Duck; Lim, Seung-Woon; Bae, Jin Ho; Yim, Kyoung Hoon; Sim, Jae Hwan; Kwon, Eun Jung
2012-08-01
Every operation could have a fire emergency, especially in the case of a tracheostomy. When a flammable gas meets a source of heat, the danger of fire is remarkable. A tracheal tube filled with a high concentration of oxygen is also a great risk factor for fire. Intra-tracheal tube fire is a rare, yet critical emergency with catastrophic consequences. Thus, numerous precautions are taken during a tracheostomy like, use of a special tube to prevent laser damage, ballooning of the tube with normal saline instead of air, and dilution of FiO(2) with helium or nitrogen. Since the first recorded cases on tube fires, most of the fires were initiated in the balloon and the tip. In the present case report, however, we came across a fire incidence, which originated from the wire.
Wire-reinforced endotracheal tube fire during tracheostomy -A case report-
Shin, Young Duck; Bae, Jin Ho; Yim, Kyoung Hoon; Sim, Jae Hwan; Kwon, Eun Jung
2012-01-01
Every operation could have a fire emergency, especially in the case of a tracheostomy. When a flammable gas meets a source of heat, the danger of fire is remarkable. A tracheal tube filled with a high concentration of oxygen is also a great risk factor for fire. Intra-tracheal tube fire is a rare, yet critical emergency with catastrophic consequences. Thus, numerous precautions are taken during a tracheostomy like, use of a special tube to prevent laser damage, ballooning of the tube with normal saline instead of air, and dilution of FiO2 with helium or nitrogen. Since the first recorded cases on tube fires, most of the fires were initiated in the balloon and the tip. In the present case report, however, we came across a fire incidence, which originated from the wire. PMID:22949984
NASA Astrophysics Data System (ADS)
Drews, M. J.
Despite a reduction in Federal regulatory activity, research concerned with flame retardancy and smoke suppression in the private sector appears to be increasing. This trend seem related to the increased utilization of plastics for end uses which traditionally have employed metal or wood products. As a result, new markets have appeared for thermally stable and fire resistance thermoplastic materials, and this in turn has spurred research and development activity. In addition, public awareness of the dangers associated with fire has increased as a result of several highly publicized hotel and restaurant fires within the past two years. The consumers recognition of flammability characteristics as important materials property considerations has increased. The current status of fire and smoke retardant chemistry and research are summarized.
NASA Astrophysics Data System (ADS)
Rogers, M. A.; Schranz, S.
2017-12-01
The Front Range of the Rocky Mountains in Colorado is a region particularly susceptable to both wildfire and flash flooding. As the population of Colorado continues to boom, it is critical to enhance the familiarity of resources that are available to the general public to understand, predict, and react to these dangers. At the Cooperative Institute for Research in the Atmosphere (CIRA), a NOAA Cooperative Institute in partnership with Colorado State University, several research products related fire and precipitation processes have been evaluated and developed for public use. As part of a pilot program under development at CIRA, extensive use of CIRA public-facing products are now being used as part of teacher professional development programs available to educators on an ad-hoc basis along the Front Range. These PD programs address state standards in weather prediction, hazard mitigation, and natural disaster awareness, and are designed to incorporate NOAA resources into the classroom, including use of satellite imagery products such as the Satellite Loop Interactive Data Explorer in Real-Time (SLIDER) package, fire weather products developed at the Earth Systems Research Laboratory, and others. Resilience-focused efforts are drawn from fire weather training resources developed for and used by NWS IMET teams, and state suggestions for fire and flood mitigation efforts, tying in these concepts to the basic science made observable using NOAA products. Teachers become proficient in using products as teaching elements in the classroom, with the end goal of improving both awareness and resiliency while improving the awareness of NOAA products. Citizen science programs also incorporate these elements in ad-hoc presentations to museum groups and through partnerships with citizen science networks along the Front Range. Subject-matter expert presentations to community members of local organizations such as the Soaring Eagle Ecology Center and the Anythink Library Network stimulates interest and helps build community connections to increase awareness about the dangers of fire flood and drought. Examples and lessons learned from both programs will be presented.
Real Time Fire Reconnaissance Satellite Monitoring System Failure Model
NASA Astrophysics Data System (ADS)
Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique
2013-09-01
In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.
Geomorphology of coal seam fires
NASA Astrophysics Data System (ADS)
Kuenzer, Claudia; Stracher, Glenn B.
2012-02-01
Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.
NASA Astrophysics Data System (ADS)
Ghica, Daniela; Corneliu Rau, Dan; Ionescu, Constantin; Grigore, Adrian
2010-05-01
During the last 70 years, four major earthquakes occurred in the Vrancea seismic area affected Romania territory: 10 November 1940 (Mw = 7.7, 160 km depth), 4 March 1977 (Mw = 7.5, 100 km depth), 30 August 1986 (Mw = 7.2, 140 km depth), 30 May 30 1990 (Mw = 6.9, 80 km depth). Romania is a European country with significant seismicity. So far, the 1977 event had the most catastrophic consequences: about 33,000 residences were totally destroyed or partially deteriorated, 1,571 people dies and another 11,300 were injured. Moreover, 61 natural-gas pipelines were damaged, causing destructive fires. The total losses were estimated at 3 mld. U.S. dollars. Recent studies clearly pointed out that in case of a strong earthquake occurrence in Vrancea region (Ms above 7), the biggest danger regarding the major cities comes from explosions and fires started immediately after the earthquake, and the most important factor of risk are the natural gas distribution networks. The damages are strongly amplified by the fact that, simultaneously, water and electric energy lines distributions are damaged too, making impossible the efficient firemen intervention, for localizing the fire sources. Presently, in Romania safe and efficient accepted solutions for improving the buildings securing, using antiseismic protection of the dangerous installations as natural-gas pipelines are not available. Therefore, we propose a seismic detection system based on a seismically actuated gas shut-off valve, which is automatically shut down in case of a seismic shock. The device is intended to be installed in the natural-gas supply line outside of buildings, as well at each user (group of users), inside of the buildings. The seismic detection system for blocking the dangerous installations in case of a strong earthquake occurrence was designed on the basis of 12 criteria enforced by the US regulations for seismic valves, aimed to eliminate the critical situations as fluids and under pressure gases leakage caused by the seismic shocks. The system is mechanical actuated (no external power sources needed) and consists of two main parts: the element for energy accumulation, i.e. elicoidal spring, and the blocking system for shut-off and secured positioning of the installation. The criteria of the energy accumulating and storing are successfully accomplished by the torsion spring: the exact amount of needed mechanical energy is stored, the certain rotation couple is ensured, the mechanical energy is not influenced by the external factors (temperature, humidity, radiation etc.), the energy stored is time-stable and no energy loss is possible during the operation. The device is self-functioning, independent of any energy source, and the mechanism used in the locking system is not involving gravitational field; moreover, the blocking down energy is stored and adjustable, being possible to overrun several times the minimum necessary energy needed for locking the system, with a high level of stability. Additionally, the blocking system of the seismic valve remains closed (visibly) until the device is manually unblocked and armed, after a preliminary checking of the full installation functionality. The device conception and execution allow a very stable operation for more than 30 years. Since the fluid is not flowing through the blocking mechanism, the system can be successfully used for: natural gases installations, protection of GPL tanks, corrosive poisonous substances, polluting agents etc.
NASA Astrophysics Data System (ADS)
Sampath, A.; Bhatt, U. S.; Bieniek, P.; York, A.; Peng, P.; Brettschneider, B.; Thoman, R.; Jandt, R.; Ziel, R.; Branson, G.; Strader, M. H.; Alden, M. S.
2017-12-01
The summer 2004 and 2015 wildfires in Alaska were the two largest fire seasons on record since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned while the 2015 wildfire season resulted in 5.2 million acres burned. In addition to the logistical cost of fighting fires and the loss of infrastructure, wildfires also lead to dangerous air quality in Alaska. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Advanced weather/climate outlooks for allocating staff and resources from days to a season are particularly needed by fire managers. However, there are no operational seasonal products currently for the Alaska region. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Earlier insight of both lightening and fuel conditions would assist fire managers in planning resource allocation for the upcoming season. For fuel conditions, the state-of-the-art NMME (1982-2017) climate predictions were used to compute the Canadian Forest Fire Weather Index System (CFFWIS). The CFFWIS is used by fire managers to forecast forest fires in Alaska. NMME forecast (March and May) based Buildup Index (BUI) values were underestimated compared to BUI based on reanalysis and station data, demonstrating the necessity for bias correction. Post processing of NMME data will include bias correction using the quantile mapping technique. This study will provide guidance as to the what are the best available products for anticipating the fire season.
Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass
Yi Qi; Philip E. Dennison; W. Matt Jolly; Rachael C. Kropp; Simon C. Brewer
2014-01-01
Live fuel moisture content (LFMC), the ratio of water mass to dry mass contained in live plant material, is an important fuel property for determining fire danger and for modeling fire behavior. Remote sensing estimation of LFMC often relies on an assumption of changing water and stable dry mass over time. Fundamental understanding of seasonal variation in plant water...
33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico, south of St....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan... such agencies as he may designate. [33 FR 4464, Mar. 13, 1968, as amended at 36 FR 15528, Aug. 17, 1971...
33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico, south of St....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan... an arc with a 10,500 meter radius with its center located on the south shore line of St. George...
Code of Federal Regulations, 2014 CFR
2014-07-01
... explosive limit (LEL) are used interchangeably in fire science literature. Section 1915.11(b)Definition of... interchangeably in fire science literature. Section 1915.12(a)(3). After a tank has been properly washed and... oxygen content of 19.5 percent can support life and is adequate for entry. However, any oxygen level...
Code of Federal Regulations, 2013 CFR
2013-07-01
... explosive limit (LEL) are used interchangeably in fire science literature. Section 1915.11(b)Definition of... interchangeably in fire science literature. Section 1915.12(a)(3). After a tank has been properly washed and... oxygen content of 19.5 percent can support life and is adequate for entry. However, any oxygen level...
Code of Federal Regulations, 2012 CFR
2012-07-01
... explosive limit (LEL) are used interchangeably in fire science literature. Section 1915.11(b)Definition of... interchangeably in fire science literature. Section 1915.12(a)(3). After a tank has been properly washed and... oxygen content of 19.5 percent can support life and is adequate for entry. However, any oxygen level...
Code of Federal Regulations, 2010 CFR
2010-07-01
... of Chesapeake Beach, Md.; firing range, Naval Research Laboratory. 334.170 Section 334.170 Navigation..., Naval Research Laboratory. (a) The danger zone—(1) Area A. A roughly rectangular area bounded on the... enter or remain in Area B or Area C between the hours of 1:00 p.m. and 5:00 p.m. daily except Sundays...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of Chesapeake Beach, Md.; firing range, Naval Research Laboratory. 334.170 Section 334.170 Navigation..., Naval Research Laboratory. (a) The danger zone—(1) Area A. A roughly rectangular area bounded on the... enter or remain in Area B or Area C between the hours of 1:00 p.m. and 5:00 p.m. daily except Sundays...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean in vicinity of San Pedro, Calif.; practice firing range for U.S. Army Reserve, National Guard, and Coast Guard units. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.940 Pacific Ocean in vicinity of San...
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Shen, Suhung; Csiszar, Ivan; Romanov, Peter; Loboda, Tatiana; Gerasimov, Irina
2008-01-01
A large number of fires detected in July of 2003 - a nearly 200-time increase in fire detections compared to other years during 2001-2006. despite the summer monsoon suppression of large fire occurrence. Traditional vegetation indices (NDVI and EVI) included in operational fire danger assessment provide little information on the fuel state in this ecosystem pre- or post-fire. No considerable differences in surface temperature and soil moisture in July were observed between the catastrophic year of 2003 and the two subsequent years of low summer fire occurrence of 2004 and 2005. However, the temporal analysis indicates that dry spring conditions in 2003 (detected through low soil moisture measurements in April and May) may have led to a stressed vegetative state and created conditions conducive to catastrophic fire occurrence.
Quantitative Risk Analysis on the Transport of Dangerous Goods Through a Bi-Directional Road Tunnel.
Caliendo, Ciro; De Guglielmo, Maria Luisa
2017-01-01
A quantitative risk analysis (QRA) regarding dangerous goods vehicles (DGVs) running through road tunnels was set up. Peak hourly traffic volumes (VHP), percentage of heavy goods vehicles (HGVs), and failure of the emergency ventilation system were investigated in order to assess their impact on the risk level. The risk associated with an alternative route running completely in the open air and passing through a highly populated urban area was also evaluated. The results in terms of social risk, as F/N curves, show an increased risk level with an increase the VHP, the percentage of HGVs, and a failure of the emergency ventilation system. The risk curves of the tunnel investigated were found to lie both above and below those of the alternative route running in the open air depending on the type of dangerous goods transported. In particular, risk was found to be greater in the tunnel for two fire scenarios (no explosion). In contrast, the risk level for the exposed population was found to be greater for the alternative route in three possible accident scenarios associated with explosions and toxic releases. Therefore, one should be wary before stating that for the transport of dangerous products an itinerary running completely in the open air might be used if the latter passes through a populated area. The QRA may help decisionmakers both to implement additional safety measures and to understand whether to allow, forbid, or limit circulation of DGVs. © 2016 Society for Risk Analysis.
Evidence of Human Health Impacts from Uncontrolled Coal Fires in Jharia, India
NASA Astrophysics Data System (ADS)
Dhar, U.; Balogun, A. H.; Finkelman, R.; Chakraborty, S.; Olanipekun, O.; Shaikh, W. A.
2017-12-01
Uncontrolled coal fires and burning coal waste piles have been reported from dozens of countries. These fires can be caused by spontaneous combustion, sparks from machinery, lightning strikes, grass or forest fires, or intentionally. Both underground and surface coal fires mobilize potentially toxic elements such as sulfur, arsenic, selenium, fluorine, lead, and mercury as well as dangerous organic compounds such as benzene, toluene, xylene, ethylbenzene and deadly gases such as CO2 and CO. Despite the serious health problems that can be caused by uncontrolled coal fires it is rather surprising that there has been so little research and documentation of their health impacts. Underground coal fires in the Jharia region of India where more than a million people reside, have been burning for 100 years. Numerous villages exist above the underground fires exposing the residents daily to dangerous emissions. Local residents near the fire affected areas do their daily chores without concern about the intensity of nearby fires. During winter children enjoy the heat of the coal fires oblivious to the potentially harmful emissions. To determine if these uncontrolled coal fires have caused health problems we developed a brief questionnaire on general health indices and administered it to residents of the Jharia region. Sixty responses were obtained from residents of two villages, one proximal to the coal fires and one about 5 miles away from the fires. The responses were statistically analyzed using SAS 9.4. It was observed that at a significance level of 5%, villagers who lived more than 5 miles away from the fires had a 98.3% decreased odds of having undesirable health outcomes. This brief survey indicates the risk posed by underground coal fires and how it contributes to the undesirable health impacts. What remains is to determine the specific health issues, what components of the emissions cause the health problems, and what can be done to minimize these problems. Collaboration between geoscientists and public health researchers are essential to assess complex geohealth issues such as those that may be caused by uncontrolled coal fires. This type of multidisciplinary collaboration must be maintained and expanded to include engineers, social scientists, and others to help minimize or avoid these problems.
30 CFR 57.20031 - Blasting underground in hazardous areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL... dangerous accumulations of water, gas, mud, or fire atmosphere could be encountered, persons shall be...
1953 midsummer fuel moistures in Oregon and Washington national forests compared with other years.
Owen P. Cramer
1954-01-01
Flammability of Oregon and Washington national forests during the middle of the 1953 fire season was slightly less than the 3941-51 normal as indicated by slightly above normal fuel moistures (table 1). The rating is based on the 25 lowest daily observations of fuel-moisture indicator sticks in the July 16 to August 31 period. Records are from 68 key fire-danger...
1952 midsummer fuel moistures in Oregon and Washington national forests compared with other years.
Owen P. Cramer
1953-01-01
The inflammability of Oregon and Washington national forests during the middle of the 1952 fire season was slightly lass than the 12-year record high set in 1951 (table 1). The rating is based on the 25 lowest daily observations of fuel-moisture indicator sticks in the July 16 to August 21 period. Stick readings from 64 key fire-danger stations near the exterior...
Guide for the Prevention, Control, and Cleanup of Pesticide Fires.
1980-07-01
fire are compounded by the danger of pesticide poisoning and widespread environmental contamination. Proper planning and training can greatly reduce the...physician who is familiar with pesticide poisoning . (3) The local poison control center. (4) The CHENTREC (800-424-9300). (5) Any emergency numbers listed on...firefighters. The center would also provide assistance to other personnel who show symptoms of pesticide poisoning . Detailed guidance on how to prepare
Chemical Fracturing of Refractory-Metal Vessels
NASA Technical Reports Server (NTRS)
Campana, R. J.
1986-01-01
Localized reactions cause refractory-metal vessels to break up at predetermined temperatures. Device following concept designed to break up along predetermined lines into smaller pieces at temperature significantly below melting point of metal from which made. Possible applications include fire extinguishers that breakup to release extinguishing gas in enclosed areas, pressure vessels that could otherwise burst dangerously in fire, and self-destroying devices. Technique particularly suitable modification to already existing structures.
NASA Astrophysics Data System (ADS)
Bedia, J.; Herrera, S.; Gutiérrez, J. M.
2014-01-01
Most fire protection agencies throughout the world have developed forest fire risk forecast systems, usually building upon existing fire danger indices and meteorological forecast data. In this context, the daily predictability of wildfires is of utmost importance in order to allow the fire protection agencies to issue timely fire hazard alerts. In this study, we address the predictability of daily fire occurrence using the components of the Canadian Fire Weather Index (FWI) System and related variables calculated from the latest ECMWF (European Centre for Medium Range Weather Forecasts) reanalysis, ERA-Interim. We develop daily fire occurrence models in peninsular Spain for the period 1990-2008 and, considering different minimum burned area thresholds for fire definition, assess their ability to reproduce the inter-annual fire frequency variability. We based the analysis on a phytoclimatic classification aiming the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climate/fuel conditions. We then extend the analysis in order to assess the predictability of monthly burned areas. The sensitivity of the models to the level of spatial aggregation of the data is also evaluated. Additionally, we investigate the gain in model performance with the inclusion of socioeconomic and land use/land cover (LULC) covariates in model formulation. Fire occurrence models have attained good performance in most of the phytoclimatic zones considered, being able to faithfully reproduce the inter-annual variability of fire frequency. Total area burned has exhibited some dependence on the meteorological drivers, although model performance was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, highlighting the adequacy of the FWI system for fire occurrence prediction in the study area. The results were improved when using aggregated data across regions compared to when data were sampled at the grid-box level. The inclusion of socioeconomic and LULC covariates contributed marginally to the improvement of the models, and in most cases attained no relevant contribution to total explained variance - excepting northern Spain, where anthropogenic factors are known to be the major driver of fires. Models of monthly fire counts performed better in the case of fires larger than 0.1 ha, and for the rest of the thresholds (1, 10 and 100 ha) the daily occurrence models improved the predicted inter-annual variability, indicating the added value of daily models. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as a response variable. Our results leave the door open to the development a more complex modelling framework based on daily data from numerical climate model outputs based on the FWI system.
Personnel Safety on Electrified Railroads
DOT National Transportation Integrated Search
1980-06-01
Potential electrical hazards to fire, police, and rescue personnel responding to emergencies on electrified railways are examined. Data on descriptions of electrical facilities, types of accidents and danger to emergency personnel, and reviews of ope...
46 CFR 190.20-50 - Heating and cooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the space. (b) Radiators and other heating apparatus must be so placed and shielded, where necessary, to avoid risk of fire, danger or discomfort to the occupants. Pipes leading to radiators or heating...
Ballesteros, Michael F; Jackson, Mark L; Martin, Maurice W
2005-01-01
To address residential fires and related injuries, the Centers for Disease Control and Prevention funds state health departments to deliver a Smoke Alarm Installation and Fire Safety Education (SAIFE) program in high-risk homes in 16 states. This program involves recruiting local communities and community partners, hiring a local coordinator, canvassing neighborhood homes, installing long-lasting lithium-powered smoke alarms, and providing general fire safety education and 6-month follow-up to determine alarm functionality. Local fire departments are vital community partners in delivering this program. Since the program's inception, more than 212,000 smoke alarms have been installed in more than 126,000 high-risk homes. Additionally, approximately 610 lives have potentially been saved as a result of a program alarm that provided early warning to a dangerous fire incident.
Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems
NASA Astrophysics Data System (ADS)
Moritz, Max A.; Moody, Tadashi J.; Krawchuk, Meg A.; Hughes, Mimi; Hall, Alex
2010-02-01
Fire plays a crucial role in many ecosystems, and a better understanding of different controls on fire activity is needed. Here we analyze spatial variation in fire danger during episodic wind events in coastal southern California, a densely populated Mediterranean-climate region. By reconstructing almost a decade of fire weather patterns through detailed simulations of Santa Ana winds, we produced the first high-resolution map of where these hot, dry winds are consistently most severe and which areas are relatively sheltered. We also analyzed over half a century of mapped fire history in chaparral ecosystems of the region, finding that our models successfully predict where the largest wildfires are most likely to occur. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses of their spatial variation will be important for effective fire management and sustainable long-term urban development on fire-prone landscapes.
Fire and worker health and safety: an introduction to the special issue.
Campbell, Richard; Levenstein, Charles
2015-02-01
One century ago, the landmark fire at the Triangle Shirtwaist Factory in New York City claimed the lives of 146 garment workers and helped spur the adoption of fire safety measures and laws targeting dangerous working conditions. Since that time, continuing advances have been made to address the threat of fire-in workplace fire safety practices and regulations, in training and safety requirements for firefighters and first responders, and in hazard communication laws that enhance disaster planning and response. Recent high profile events, including the West, Texas fertilizer plant explosion, derailments of fuel cargo trains, and garment factory fires in Bangladesh, have brought renewed attention to fire as a workplace health and safety issue and to the unevenness of safety standards and regulatory enforcement, in the United States as well as internationally. In this article, we provide an overview of fire as a workplace health and safety hazard and an introduction to the essays included in this special issue of New Solutions on fire and work. © 2015 SAGE Publications.
How Can We Make PV Modules Safer?: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlgemuth, J. H.; Kurtz, S. R.
2012-06-01
Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IECmore » 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.« less
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
Trends in fire risk and burned area in Brazil in the 20th century
NASA Astrophysics Data System (ADS)
Silva, P.; Bastos, A.; DaCamara, C.; Libonati, R.
2016-12-01
Fire has a significant contribution to the global greenhouse gas emissions and vast ecological and climatic impacts. Worldwide, Brazil is one of the areas most affected by fire, which highly influences the state of the vegetation cover, the ecological diversity of the region and has significant consequences to the global CO2 balance [1]. Hence, with the increasing evidence of human induced climate change, it becomes essential to understand the present and future trends of fire risk in Brazil. Although a large number of fires in Brazil are anthropogenic, it has been shown that the burned area is mainly controlled by meteorological conditions [2], therefore being partially determined by fire risk. In this study we use a fire danger index specifically tailored for the Brazilian climate and biome characteristics, the MFDI developed by INPE, to assess the patterns and trends of fire risk in Brazil. The index relies on values of maximum temperature, accumulated precipitation over different periods, minimum relative humidity and vegetation cover to estimate the likelihood of fire occurrence. We test the sensitivity of the index to different climate reanalyses and evaluate the trends in fire risk in Brazil during the past four decades for different biomes. We further assess the link between the calculated fire risk and observed fire occurrence and burned area. Finally, we compare the results with fire risk simulated by a regional climate model (RCA4 forced by EC-Earth from CORDEX) in order to evaluate its suitability for future projections of fire risk and burned area. [1] Bowman, D. M. et al. Fire in the earth system. Science, v. 324, p. 481-484, 24 apr. 2009. [2] Libonati, R. et al. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 μm MODIS Imagery. Remote Sensing, v. 7, p. 15782-15803, 2015.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Lessons Learned Entry: Hypergolic Propellant Related Spills and Fires
NASA Technical Reports Server (NTRS)
Nufer, Brian
2009-01-01
The attached report is a compilation of all credible, unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, Titan Program, and a few other programs. Spill sites include the following government facilities: KSC, JSC, WSTF, VAFB, CCAFS, EAFB, Little Rock AFB, and McConnell AFB. The root causes and consequences of the incidents contained in this document vary drastically; however, certain "themes" can be deduced and utilized for future hypergolic propellant handling. Some of those common "themes" are summarized below: (1) Improper configuration control and complacency can lead to being falsely comfortable with a system (2) Communication breakdown can escalate an incident to a level where injuries occur and/or hardware is damaged (3) Improper propulsion system and ground support system designs can destine a system for failure (4) Improper training of technicians, engineers, and safety personnel can put lives in danger (5) Improper PPE, spill protection, and staging of fire extinguishing equipment can result in unnecessary injuries or hardware damage if an incident occurs (6) Improper procedural oversight, development, and adherence to the procedure can be detrimental and quickly lead to an undesirable incident (7) Improper local cleanliness or compatibility can result in fires or explosions The items listed above are only a short list of the issues that should be recognized prior to handling of hypergolic fluids or processing of vehicles containing hypergolic propellants. The summary of incidents in this report is intended to cover many more issues than those listed above that have been found during nearly the entire spectrum. of hypergolic propellant and/or vehicle processing.
Use of regionalisation approach to develop fire frequency curves for Victoria, Australia
NASA Astrophysics Data System (ADS)
Khastagir, Anirban; Jayasuriya, Niranjali; Bhuyian, Muhammed A.
2017-11-01
It is important to perform fire frequency analysis to obtain fire frequency curves (FFC) based on fire intensity at different parts of Victoria. In this paper fire frequency curves (FFCs) were derived based on forest fire danger index (FFDI). FFDI is a measure related to fire initiation, spreading speed and containment difficulty. The mean temperature (T), relative humidity (RH) and areal extent of open water (LC2) during summer months (Dec-Feb) were identified as the most important parameters for assessing the risk of occurrence of bushfire. Based on these parameters, Andrews' curve equation was applied to 40 selected meteorological stations to identify homogenous stations to form unique clusters. A methodology using peak FFDI from cluster averaged FFDIs was developed by applying Log Pearson Type III (LPIII) distribution to generate FFCs. A total of nine homogeneous clusters across Victoria were identified, and subsequently their FFC's were developed in order to estimate the regionalised fire occurrence characteristics.
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Sauer, J.; Linn, R.
2015-12-01
Anomalous and unexpected fire behavior in complex terrain continues to result in substantial loss of property and extremely dangerous conditions for firefighting field personnel. We briefly discuss proposed hypotheses of fire interactions with atmospheric flows over complex terrain that can lead to poorly-understood and potentially catastrophic scenarios. Then, our recent results of numerical investigations via large-eddy simulation of coupled atmosphere-topography-fire phenomenology with the Los Alamos National Laboratory, HiGrad-Firetec model are presented as an example of the potential for increased understanding of these complex processes. This investigation focuses on the influence of downslope surface wind enhancement through stably stratified flow over an isolated hill, and the resulting dramatic changes in fire behavior including spread rate, and intensity. Implications with respect to counter-intuitive fire behavior and extreme fire events are discussed. This work demonstrates a tremendous opportunity to immediately create safer and more effective policy for field personnel through improved predictability of atmospheric conditions over complex terrain
46 CFR 148.11 - Hazardous or potentially dangerous characteristics.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Contact with water may cause evolution of flammable gases, which may form explosive mixtures with air. 3 Contact with water may cause evolution of toxic gases. 4 If involved in a fire, will greatly intensify the...
46 CFR 148.11 - Hazardous or potentially dangerous characteristics.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Contact with water may cause evolution of flammable gases, which may form explosive mixtures with air. 3 Contact with water may cause evolution of toxic gases. 4 If involved in a fire, will greatly intensify the...
46 CFR 148.11 - Hazardous or potentially dangerous characteristics.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Contact with water may cause evolution of flammable gases, which may form explosive mixtures with air. 3 Contact with water may cause evolution of toxic gases. 4 If involved in a fire, will greatly intensify the...
46 CFR 148.11 - Hazardous or potentially dangerous characteristics.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Contact with water may cause evolution of flammable gases, which may form explosive mixtures with air. 3 Contact with water may cause evolution of toxic gases. 4 If involved in a fire, will greatly intensify the...
16 CFR 1500.15 - Labeling of fire extinguishers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... hazard “Dangerous gas formed when used to extinguish flame or on contact with heat” are required labeling...)(1), the signal word “Danger” and the statement of hazard “Poisonous gases formed when used to...
16 CFR 1500.15 - Labeling of fire extinguishers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... hazard “Dangerous gas formed when used to extinguish flame or on contact with heat” are required labeling...)(1), the signal word “Danger” and the statement of hazard “Poisonous gases formed when used to...
16 CFR 1500.15 - Labeling of fire extinguishers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... hazard “Dangerous gas formed when used to extinguish flame or on contact with heat” are required labeling...)(1), the signal word “Danger” and the statement of hazard “Poisonous gases formed when used to...
The tragic fire event of June 17, 2017 in Portugal: the meteorological perspective
NASA Astrophysics Data System (ADS)
DaCamara, C.; Trigo, R. M.; Pinto, M. M.; Nunes, S. A.; Trigo, I. F.
2017-12-01
Like Mediterranean Europe, Portugal is prone to the occurrence of large and destructive wildfires that have serious impacts at the socio-economic and ecological levels. A tragic example is the episode of June 17, 2017 at Pedrógão Grande-Góis, with an official death toll of 64 people, almost 500 buildings destroyed and a continuous patch of more than 42 thousand hectares burned in one week. Climate and meteorology play a determinant role in the onset and spreading of large wildfire events in the Mediterranean basin. Two main kinds of atmospheric mechanisms may be identified. At the regional and the seasonal levels, a wetter-than usual winter followed by a warmer and drier than average spring makes the landscape prone to the occurrence of large fires. At the local and the daily scales, extreme weather conditions favor the ignition and spread of wildfires. This dual role may be assessed by means of indices of meteorological fire danger like FWI and DSR. We show that the severity of the 2017 fire season was correctly anticipated by means of a statistical model based on cumulated values of DSR starting on April 1. We then show that extreme danger of fire on June 17 was correctly forecasted for the area of Pedrógão Grande-Góis, based on values of estimated probability of exceedance of daily released energy by active fires. These two statistical approaches are on the basis of a website developed at Instituto Dom Luiz (IDL) at the Faculty of Sciences of the University of Lisbon. With more than 400 registered users, the website relies on products disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF), coordinated by IPMA, the Portuguese Weather Service.
Mapping burned areas and burn severity patterns across the Mediterranean region
NASA Astrophysics Data System (ADS)
Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea
2010-05-01
The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: • The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. • The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. • Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. • Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Hritz, Richard J.; Barrett, Carolyn A.
1997-01-01
The main engines of the Space Shuttle use hydrogen and oxygen as the fuel and oxidant. The explosive and fire hazards associated with these two components pose a serious danger to personnel and equipment. Therefore prior to use the main engines undergo extensive leak tests. Instead of using hazardous gases there tests utilize helium as the tracer element. This results in a need to monitor helium in the ppm level continuously for hours. The major challenge in developing such a low level gas monitor is the sample delivery system. This paper discuss a system developed to meet the requirements while also being mobile. Also shown is the calibration technique, stability, and accuracy results for the system.
Lithium battery fires: implications for air medical transport.
Thomas, Frank; Mills, Gordon; Howe, Robert; Zobell, Jim
2012-01-01
Lithium-ion batteries provide more power and longer life to electronic medical devices, with the benefits of reduced size and weight. It is no wonder medical device manufacturers are designing these batteries into their products. Lithium batteries are found in cell phones, electronic tablets, computers, and portable medical devices such as ventilators, intravenous pumps, pacemakers, incubators, and ventricular assist devices. Yet, if improperly handled, lithium batteries can pose a serious fire threat to air medical transport personnel. Specifically, this article discusses how lithium-ion batteries work, the fire danger associated with them, preventive measures to reduce the likelihood of a lithium battery fire, and emergency procedures that should be performed in that event. Copyright © 2012 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.
Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout
2012-03-15
Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Gollner, Michael J.; Xiao, Huahua
2018-01-01
Fire whirls present a powerful intensification of combustion, long studied in the fire research community because of the dangers they present during large urban and wildland fires. However, their destructive power has hidden many features of their formation, growth, and propagation. Therefore, most of what is known about fire whirls comes from scale modeling experiments in the laboratory. Both the methods of formation, which are dominated by wind and geometry, and the inner structure of the whirl, including velocity and temperature fields, have been studied at this scale. Quasi-steady fire whirls directly over a fuel source form the bulk of current experimental knowledge, although many other cases exist in nature. The structure of fire whirls has yet to be reliably measured at large scales; however, scaling laws have been relatively successful in modeling the conditions for formation from small to large scales. This review surveys the state of knowledge concerning the fluid dynamics of fire whirls, including the conditions for their formation, their structure, and the mechanisms that control their unique state. We highlight recent discoveries and survey potential avenues for future research, including using the properties of fire whirls for efficient remediation and energy generation.
A Construction Grammar for the Classroom
ERIC Educational Resources Information Center
Holme, Randal
2010-01-01
Construction grammars (Lakoff, Women, fire and dangerous things: What categories reveal about the Mind, University of Chicago Press, 1987; Langacker, Foundations of cognitive grammar: Theoretical pre-requisites, Stanford University Press, 1987; Croft, Radical construction grammar: Syntactic theory in typological perspective, Oxford University…
16 CFR § 1500.15 - Labeling of fire extinguishers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the statement of hazard “Dangerous gas formed when used to extinguish flame or on contact with heat... in § 1500.3(c)(1), the signal word “Danger” and the statement of hazard “Poisonous gases formed when...
1983-12-01
participant spaces are limited, selection for attendance will be based upon the following priorities: a. Unit is willing to have both line officers with...Proximity Re-Emerged as Primary Treatment Principle. * Clinical Picture: Tremors, Paralvsis, Mutism , Ganser Syndrome. 5. WW II: * lo Effective Treatment...aspects of the job, not on the danger. A soldier who is concentrating on firing his weacon and on selecting his next firing position is not concentrating
Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?
NASA Technical Reports Server (NTRS)
2005-01-01
Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.
Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment
NASA Astrophysics Data System (ADS)
Scanlon, Michael V.
2008-04-01
The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.
A Novel Classification System for Injuries After Electronic Cigarette Explosions.
Patterson, Scott B; Beckett, Allison R; Lintner, Alicia; Leahey, Carly; Greer, Ashley; Brevard, Sidney B; Simmons, Jon D; Kahn, Steven A
Electronic cigarettes (e-cigarettes) contain lithium batteries that have been known to explode and/or cause fires that have resulted in burn injury. The purpose of this article is to present a case study, review injuries caused by e-cigarettes, and present a novel classification system from the newly emerging patterns of burns. A case study was presented and online media reports for e-cigarette burns were queried with search terms "e-cigarette burns" and "electronic cigarette burns." The reports and injury patterns were tabulated. Analysis was then performed to create a novel classification system based on the distinct injury patterns seen in the study. Two patients were seen at our regional burn center after e-cigarette burns. One had an injury to his thigh and penis that required operative intervention after ignition of this device in his pocket. The second had a facial burn and corneal abrasions when the device exploded while he was inhaling vapor. The Internet search and case studies resulted in 26 cases for evaluation. The burn patterns were divided in direct injury from the device igniting and indirect injury when the device caused a house or car fire. A numerical classification was created: direct injury: type 1 (hand injury) 7 cases, type 2 (face injury) 8 cases, type 3 (waist/groin injury) 11 cases, and type 5a (inhalation injury from using device) 2 cases; indirect injury: type 4 (house fire injury) 7 cases and type 5b (inhalation injury from fire started by the device) 4 cases. Multiple e-cigarette injuries are occurring in the United States and distinct patterns of burns are emerging. The classification system developed in this article will aid in further study and future regulation of these dangerous devices.
Parra, Antonio; Moreno, José M
2018-06-01
In fire-prone ecosystems, changes in rainfall after fire could differentially affect seeders and resprouters, thus leading to long-lasting impacts on the vegetation. Climate change in the Mediterranean region is projected to reduce precipitation, expand the summer drought and increase fire danger. Understanding the sensitivity to changes in rainfall during the post-fire regeneration stage is critical to anticipate the impacts of climate change on Mediterranean-type areas of the world. Here, we investigated how species differing in post-fire regeneration strategy (seeders vs resprouters) responded to rainfall changes in a Cistus-Erica shrubland of central Spain. Drought treatments were implemented using a system of automatic rainout shelters with an irrigation facility before (one season) and after (four years) burning a set of experimental plots. Treatments applied were: environmental control (natural rainfall), historical control (mimicking the long-term rainfall), moderate drought (-25% rainfall), and severe drought (-45% rainfall). Plant demography and vigour (main woody shrubs), as well as abundance (shrubs and herbs) were monitored during the first four years after fire. The first post-fire year was the key period for the recovery of seeders (Cistus ladanifer and Rosmarinus officinalis), and their recruitment, cover and size significantly decreased with drought. However, density four years after fire was larger than unburned and it was significantly correlated with emergence during the first year, indicating that population controls were more on emergence than on establishment. In contrast, resprouters (Erica arborea, Erica scoparia and Phillyrea angustifolia) were hardly affected by drought. Plant community dynamics in the burned control plots progressively converged with the unburned ones, while that in the drought-treated plots lagged behind them, maintaining a higher cover, richness and diversity of herbs. This post-fire "herbalization" due to drought might facilitate an untimely fire, before seeders would reach sexual maturity, which could have major implications for the maintenance of the community. Copyright © 2018 Elsevier B.V. All rights reserved.
The impact of precipitation regimes on forest fires in Yunnan Province, southwest China.
Chen, Feng; Niu, Shukui; Tong, Xiaojuan; Zhao, Jinlong; Sun, Yu; He, Tengfei
2014-01-01
The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982-1988 and 1989-2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I-III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.
NASA Astrophysics Data System (ADS)
Julià Selvas, Núria; Ninyerola Casals, Miquel
2015-04-01
It has been implemented an automatic system to predict the fire risk in the Principality of Andorra, a small country located in the eastern Pyrenees mountain range, bordered by Catalonia and France, due to its location, his landscape is a set of a rugged mountains with an average elevation around 2000 meters. The system is based on the Fire Weather Index (FWI) that consists on different components, each one, measuring a different aspect of the fire danger calculated by the values of the weather variables at midday. CENMA (Centre d'Estudis de la Neu i de la Muntanya d'Andorra) has a network around 10 automatic meteorological stations, located in different places, peeks and valleys, that measure weather data like relative humidity, wind direction and speed, surface temperature, rainfall and snow cover every ten minutes; this data is sent daily and automatically to the system implemented that will be processed in the way to filter incorrect measurements and to homogenizer measurement units. Then this data is used to calculate all components of the FWI at midday and for the level of each station, creating a database with the values of the homogeneous measurements and the FWI components for each weather station. In order to extend and model this data to all Andorran territory and to obtain a continuous map, an interpolation method based on a multiple regression with spline residual interpolation has been implemented. This interpolation considerer the FWI data as well as other relevant predictors such as latitude, altitude, global solar radiation and sea distance. The obtained values (maps) are validated using a cross-validation leave-one-out method. The discrete and continuous maps are rendered in tiled raster maps and published in a web portal conform to Web Map Service (WMS) Open Geospatial Consortium (OGC) standard. Metadata and other reference maps (fuel maps, topographic maps, etc) are also available from this geoportal.
Fire risk and adaptation strategies in Northern Eurasian forests
NASA Astrophysics Data System (ADS)
Shvidenko, Anatoly; Schepaschenko, Dmitry
2013-04-01
On-going climatic changes substantially accelerate current fire regimes in Northern Eurasian ecosystems, particularly in forests. During 1998-2012, wildfires enveloped on average ~10.5 M ha year-1 in Russia with a large annual variation (between 3 and 30 M ha) and average direct carbon emissions at ~150 Tg C year-1. Catastrophic fires, which envelope large areas, spread in usually incombustible wetlands, escape from control and provide extraordinary negative impacts on ecosystems, biodiversity, economics, infrastructure, environment, and health of population, become a typical feature of the current fire regimes. There are new evidences of correlation between catastrophic fires and large-scale climatic anomalies at a continental scale. While current climatic predictions suggest the dramatic warming (at the average at 6-7 °C for the country and up to 10-12°C in some northern continental regions), any substantial increase of summer precipitation does not expected. Increase of dryness and instability of climate will impact fire risk and severity of consequences. Current models suggest a 2-3 fold increase of the number of fires by the end of this century in the boreal zone. They predict increases of the number of catastrophic fires; a significant increase in the intensity of fire and amount of consumed fuel; synergies between different types of disturbances (outbreaks of insects, unregulated anthropogenic impacts); acceleration of composition of the gas emissions due to enhanced soil burning. If boreal forests would become a typing element, the mass mortality of trees would increase fire risk and severity. Permafrost melting and subsequent change of hydrological regimes very likely will lead to the degradation and destruction of boreal forests, as well as to the widespread irreversible replacement of forests by other underproductive vegetation types. A significant feedback between warming and escalating fire regimes is very probable in Russia and particularly in the permafrost areas. Overall, Russia should expect a disproportionate escalation of fire regimes compared to increasing climatic fire danger. Thus, development and implementation of an efficient adaptation strategy is a pressing problem of current forest management of the country. An appropriate system of forest fire protection which would be able to meet challenges of future climates is a corner stone of such a strategy. We consider possible systems solutions of this complex problem including (1) integrated ecological and socio-economic analysis of current and future fire regimes; (2) regional requirements to and specific features of a new paradigm of forest fire protection in the boreal zone of Northern Eurasia; (3) anticipatory strategy of the prevention of large-scale disturbances in forests, including adaptation of forest landscapes to the future climates (regulation of tree composition; setup of relevant spatial structure of forest landscapes; etc.); (4) implementation of an effective system of forest monitoring as part of integrated observing systems; (5) transition to ecologically-friendly systems of industrial development of northern territories; (6) development of new/ improvement of existing legislation and institutional frameworks of forest management which would be satisfactory to react on challenges of climate change; and (6) international cooperation.
A bioinspired collision detection algorithm for VLSI implementation
NASA Astrophysics Data System (ADS)
Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.
2005-06-01
In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.
Surgical fires, a clear and present danger.
Yardley, I E; Donaldson, L J
2010-04-01
A surgical fire is potentially devastating for a patient. Fire has been recognised as a potential complication of surgery for many years. Surgical fires continue to happen with alarming frequency. We present a review of the literature and an examination of possible solutions to this problem. The PubMed and Medline databases from 1948 onwards were searched using the subject headings "operating rooms", "fire", "safety" and "safety management". "Surgical fire" was also searched as a keyword. Relevant references from articles were obtained. Fire occurs when the three elements of the fire triad, fuel, oxidiser and ignition coincide. Surgical fires are unusual in the absence of an oxygen-enriched atmosphere. The ignition source is most commonly diathermy but lasers carry a relatively greater risk. The majority of fires occur during head and neck surgery. This is due to the presence of oxygen and the extensive use of lasers. The risk of fire can be reduced with an awareness of the risk and good communication. Surgery will always carry a risk of fire. Reducing this risk requires a concerted effort from all team members. Copyright 2010 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Risk for large-scale fires in boreal forests of Finland under changing climate
NASA Astrophysics Data System (ADS)
Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.
2015-08-01
The target of this work was to assess the impact of projected climate change on the number of large forest fires (over 10 ha fires) and burned area in Finland. For this purpose, we utilized a strong relationship between fire occurrence and the Canadian fire weather index (FWI) during 1996-2014. We used daily data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. Our results also reveal substantial inter-model variability in the rate of the projected increase in forest-fire danger. We moreover showed that the majority of large fires occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is more important cause of fires.
NASA Astrophysics Data System (ADS)
Khamukhin, A. A.; Demin, A. Y.; Sonkin, D. M.; Bertoldo, S.; Perona, G.; Kretova, V.
2017-01-01
Crown fires are extremely dangerous as the speed of their distribution is dozen times higher compared to surface fires. Therefore, it is important to classify the fire type as early as possible. A method for forest fires classification exploits their computed acoustic emission spectrum compared with a set of samples of the typical fire acoustic emission spectrum stored in the database. This method implies acquisition acoustic data using Wireless Sensors Networks (WSNs) and their analysis in a central processing and a control center. The paper deals with an algorithm which can be directly implemented on a sensor network node that will allow reducing considerably the network traffic and increasing its efficiency. It is hereby suggested to use the sum of the squares ratio, with regard to amplitudes of low and high frequencies of the wildfire acoustic emission spectrum, as the indicator of a forest fire type. It is shown that the value of the crown fires indicator is several times higher than that of the surface ones. This allows classifying the fire types (crown, surface) in a short time interval and transmitting a fire type indicator code alongside with an alarm signal through the network.
2003-12-01
This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
2003-12-01
In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
Prototype of smart office system using based security system
NASA Astrophysics Data System (ADS)
Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.
2018-05-01
Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.
NASA Astrophysics Data System (ADS)
Yungmeyster, D. A.; Urazbakhtin, R. Yu
2017-10-01
The mining industry was potentially dangerous at all times, even with the use of modern equipment in mines, accidents continue to occur, including catastrophic ones. Accidents in mines are due to the presence of specific features in the conduct of mining operations. These include the inconsistency of mining and geological conditions, the contamination of the mine atmosphere due to the release of gases from minerals, the presence of self-igniting coal strata, which creates the danger of underground fires, gas explosions. The main cause of accidents is the irresponsibility of both the manager and the personnel who violate the safety rules during mining operations.
Blender for Antimisting Kerosene
NASA Technical Reports Server (NTRS)
Parikh, Pradip G.; Sarohia, Virendra; Yavrouian, Andre H.
1987-01-01
Blender continuously disperses controlled amount of flammability-reducing additive into stream of jet fuel. Resulting mixture consists of homogeneous suspension of additive polymer particles in fuel. Particles dissolve within 15 to 30 min, without agitation, forming airplane fuel known as antimisting kerosene which promises to reduce danger from fire in crashes.
33 CFR 334.230 - Potomac River.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 334.230 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.230 Potomac River. (a) Naval Surface Weapons... except Sundays. (ii) When firing is in progress, no person, or fishing or oystering vessels shall operate...
RISICO: A decision support system (DSS) for dynamic wildfire risk evaluation in Italy
NASA Astrophysics Data System (ADS)
D'Andrea, Mirko; Fiorucci, Paolo; Gaetani, Francesco; Negro, Dario
2010-05-01
The system RISICO provides Italian Civil Protection Department (DPC) with daily wildland fire risk forecast maps relevant to the whole national territory since 2003. RISICO support the activities relating to Italian national forest fires warning system and National fires fighting air fleet. The RISICO system has a complex software architecture based on a framework able to manage geospatial data as well as time dependent information (e.g, Numerical Weather Prediction, real time meteorological observations, and satellite data). Within the system semi-physical models, able to simulate in space and time the variability of the fuel moisture content, are implemented. This parameter represents the main variable related with the ignition of a fire. Based on this information and introducing information on topography and wind field the model provides the rate of spread and the linear intensity of a potential fire generated by accidental or deliberate ignition. The model takes into account the vegetation patterns, in terms of fuel load and flammability. It needs territorial and meteorological data. Territorial data used by the system are vegetation cover and topography. Meteorological data are mainly represented by Numerical Weather Prediction (Limited Area model). Meteorological data provided in real time by a meteorological network are also used by the model as well as satellite data (e.g., vegetation index, snow cover). The output information are provided on a web-gis based system according with the OGC-INSPIRE standard. In 2007 the system has been improved introducing some changes both in the model structure and its functionality. Spatial resolution is increased up to 100m in the implementation at regional level. The fine fuel moisture model has been changed, introducing the FFMC of the CFFDRS with some slightly differences. In addition, a different nominal rate of spread (no-wind on flat terrain) has been introduced for each different class of vegetation. The operational chain of the RISICO system is considerably changed. In the first release the system run daily making use of observations only to define the initial state of the dead fine fuel moisture content. The new version of the system is able to run each 3-h making use of observations at each time step. In order to validate the RISICO system, the information obtained from the analysis of really occurred fires has been compared with the information generated by RISICO system. In particular, a data set of more than 11000 wildland fires occurred in Italy between 01/01/2007 and 31/12/2008 has been considered in the validation procedure. The performance indexes selected in order to measure the system effectiveness are relevant to the capability of identifying the correct danger classes with reference to the extension and duration of the fire. In this connection, a comparison between the performance obtained by the new release of the RISICO system and the previous one has been carried out highlighting separately the improvement given by the higher resolution, the model structure and the operational chain. The system RISICO is able to integrate the main Fire Hazard Indexes present in the literature providing a suitable tool for testing the different indexes on the same platform in different environmental and climatic conditions. Risico represents an operational approach to forest fires management both during the prevention and fire fighting phases. The prevention phase represents the main goal for the DPC. Prevention starts with a daily bulletin issue. The bulletin is based on RISICO data, forecast, meteorological data and other observed data such as active fires. The bulletin is dispatched to all operative bodies employed both in fire fighting and civil protection activities. During the fire fighting activities Risico support decision maker to define the best strategies. The objective of the paper is to promote the use of Fire Hazard Forecast as operational tool in fire risk prevention and management and to provide know-how for standardisation of the fire hazard "mapping" or "alert" systems in Europe. This work was funded by the Italian Civil Protection.
An analysis on Wildland Urban Interface in North Sardinia
NASA Astrophysics Data System (ADS)
Arca, B.; Pellizzaro, G.; Canu, A.; Pintus, G. V.; Ferrara, R.; Duce, P.
2012-04-01
Climate variability and drought, typical of the Mediterranean climate, together with different anthropogenic disturbances (modifications of land use, deforestation, grazing, forest fires, etc.) makes the Mediterranean basin ecosystems extremely sensitive and vulnerable. In the last three decades, an increasing number of fires threatening the wildland urban interface (WUI) was observed. In Sardinia, this phenomenon is particularly evident in tourist and coastal areas where a large number of resorts is built within and surrounded by Mediterranean vegetation that is highly prone to events of wildfire. In these situations, the related risk of damage for villages, tourist resorts, other human activities and people is elevated especially in summer when the presence of human people is highest and meteorological conditions are extreme. In addition, fire can have significant effect on the hydrological response of the WUI causing the intensification of the erosive processes. Therefore, the development of planning policies is required in order to implement strategies to prevent and reduce wildfire and soil erosion risk in wildland urban interface areas. The main aims of this work are i) to assess presence and characteristics of wildland urban interface in a touristic areas of North Sardinia and ii) to evaluate fire danger and soil erosion risk in the studied area. The study was carried out in a coastal area located in North Sardinia, characterized by strong touristic development in the last thirty years. In that area, the characterization and mapping of the WUI were performed. In addition several simulation were carried out by the Farsite fire area simulator with the aim to study the spatial pattern of the fire danger factors in the vegetated areas closer to the WUI. Finally, maps of soil erosion were produced for the identification of the areas at high erosion risk in the WUI. This work is supported by MIIUR - Metodologie e indicatori per la valutazione del rischio di Incendio nelle aree di Interfaccia Urbano Rurale in ambiente mediterraneo. Legge Regionale 7 agosto 2007, n. 7.
A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.
Kong, Biao; Li, Zenghua; Yang, Yongliang; Liu, Zhen; Yan, Daocheng
2017-10-01
In recent years, the ecology, security, and sustainable development of modern mines have become the theme of coal mine development worldwide. However, spontaneous combustion of coal under conditions of oxygen supply and automatic exothermic heating during coal mining lead to coalfield fires. Coal spontaneous combustion (CSC) causes huge economic losses and casualties, with the toxic and harmful gases produced during coal combustion not only polluting the working environment, but also causing great damage to the ecological environment. China is the world's largest coal producer and consumer; however, coal production in Chinese mines is seriously threatened by the CSC risk. Because deep underground mining methods are commonly adopted in Chinese coal mines, coupling disasters are frequent in these mines with the coalfield fires becoming increasingly serious. Therefore, in this study, we analyzed the development mechanism of CSC. The CSC risk assessment was performed from the aspects of prediction, detection, and determination of the "dangerous area" in a coal mine (i.e., the area most susceptible to fire hazards). A new geophysical method for CSC determination is proposed and analyzed. Furthermore, the main methods for CSC fire prevention and control and their advantages and disadvantages are analyzed. To eventually construct CSC prevention and control integration system, future developmental direction of CSC was given from five aspects. Our results can present a reference for the development of CSC fire prevention and control technology and promote the protection of ecological environment in China.
The Impact of Precipitation Regimes on Forest Fires in Yunnan Province, Southwest China
Chen, Feng; Niu, Shukui; Tong, Xiaojuan; Zhao, Jinlong; Sun, Yu; He, Tengfei
2014-01-01
The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982–1988 and 1989–2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I–III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change. PMID:25243208
ERIC Educational Resources Information Center
Yee, Roger
1974-01-01
Built into 26 new Chicago school designs are two features: physical plants offering educators latitude to remove nearly all internal partitions for open plan teaching or to return to a traditional "eggorate" format if need be; and a new fire control technology placing a building on electronic alert for immediate reaction to dangerous symptoms with…
75 FR 27934 - Qualified Nonpersonal Use Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... that the vehicle is a police, fire, or public safety officer vehicle. A marking on a license plate is.... Rescue activity means search or rescue assistance in locating or extracting from danger persons lost... law to carry firearms, execute search warrants, and to make arrests (other than merely a citizen's...
76 FR 28917 - Medical Foster Homes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-19
... be safely and properly stored in either the original, labeled container, or in a safety can as defined by NPFA 30 (2008 edition). This is to ensure that dangerous materials are only kept in containers... containers which might increase fire risk associated with those materials. In proposed Sec. 17.74(p), we...
46 CFR 98.30-37 - Firefighting requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks § 98.30-37... a dry chemical type are— (1) Located to protect the deck area 10 feet in any horizontal direction..., there are 2 or more dry chemical fire extinguishers of 300 pounds or more total capacity of...
Stand density reductions have been proposed as a method by which old-growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre-1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing product...
Scientists assess impact of Indonesia fires
NASA Astrophysics Data System (ADS)
Showstack, Randy
The fires burning in Indonesia over the past several months are setting aflame the biomass and wildlife habitat of the tropical forests, spreading a dangerously unhealthy haze across the populous country and nearby nations in southeast Asia, causing transportation hazards, and sending plumes of smoke up into the troposphere.Most of the fires have been set—by big landowners, commercial loggers, and small farmers—in attempts to clear and cultivate the land, as people have done in the past. But this year a drought induced by El Niño limited the rainfall that could help extinguish the flames and wash away the smoke and haze. In addition, some scientists say that smoke could even delay the monsoon, which usually arrives in early November.
Wildfires in California, August 17, 2015
2017-12-08
Very hot, dry and unstable conditions in California and across the Pacific Northwest add to the challenges facing firefighters as they battle blazes around the region. Cal Fire is urging Californians to be extremely cautious, especially for the next few days, as the current conditions increase the dangers authorities face. This image was taken by NASA-NOAA's Suomi NPP satellite's VIIRS instrument around 2145 UTC (5:45 p.m. EDT) on August 17, 2015. Northern California is seeing smoke from the River Complex, Route Complex, South Complex, Fork Complex and Mad River Complex fires combine over a large area of the Shasta-Trinity National Forest west of Redding, California, while the Rough Fire in Fresno County is spreading toward the Black Rock Reservoir, causing evacuations and road closures. Fires across the Pacific Northwest aren't limited to California. Please see the Suomi NPP VIIRS composites in NOAA View to see the growth and extent of fires over the past weeks. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory
NASA Astrophysics Data System (ADS)
Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei
2016-09-01
In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.
Giguère, Denis; Marchand, Denis
2005-01-01
Injuries related to emergency vehicles represent 19% of compensated work accidents for fire fighters, 37% of which occur while stepping down from their vehicles. This study compared the impact forces, the use of upper limbs and the perception of danger of fire fighters as they step down from five different locations on fire trucks. The results show that stepping down from the crew cab facing the street produces impact forces averaging 3.2 times the subject's body weight, but is also perceived as the safest way to descend in one of the two groups of fire fighters that participated in the study. Stepping down from the same location, but facing the truck, produced significantly less impact force and a better distribution of the energy over time. This may be achieved through better control of the descending leg, ankle flexion, and the use of grab bars. A re-design of the access to emergency vehicles should take into account both the safety needs and reduction in biomechanical stress of fire fighters.
[Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].
Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai
2012-07-01
Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.
Developing an aviation exposure index to inform risk-based fire management decisions
Crystal S. Stonesifer; David E. Calkin; Matthew P. Thompson; Jeffrey D. Kaiden
2014-01-01
Wildland firefighting is an inherently dangerous activity, and aviation-related accidents in particular comprise a large share of firefighter fatalities. Due to limited understanding of operational factors that lead to aviation accidents, it is unclear how local decisionmakers, responsible for requesting aviation support, can mitigate the risk of an aviation accident...
29 CFR 1915.509 - Definitions applicable to this subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an... area—an area established for hot work after an inspection that is free of fire hazards. Drop Test—a... external resources or a combination of both, or total or partial employee evacuation of the area exposed to...
29 CFR 1915.509 - Definitions applicable to this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an... area—an area established for hot work after an inspection that is free of fire hazards. Drop Test—a... external resources or a combination of both, or total or partial employee evacuation of the area exposed to...
29 CFR 1915.509 - Definitions applicable to this subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an... area—an area established for hot work after an inspection that is free of fire hazards. Drop Test—a... external resources or a combination of both, or total or partial employee evacuation of the area exposed to...
29 CFR 1915.509 - Definitions applicable to this subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an... area—an area established for hot work after an inspection that is free of fire hazards. Drop Test—a... external resources or a combination of both, or total or partial employee evacuation of the area exposed to...
Teaching beyond "Once Upon a Time."
ERIC Educational Resources Information Center
Ballentine, Darcy; Hill, Lisa
2000-01-01
Argues that the purpose of teaching students to read includes challenging children to take up books that contain "dangerous truths." Discusses two such books: "Forged by Fire" by Sharon Draper and "The Watsons Go to Birmingham--1963" by Christopher Paul Curtis. Includes children's statements regarding why they insist on being able to read good…
46 CFR 15.855 - Cabin watchmen and fire patrolmen.
Code of Federal Regulations, 2010 CFR
2010-10-01
... other danger. (b) On a fish processing vessel of more than 100 gross tons, there must be a suitable....400(c) of this chapter. (2) All grills, broilers, and deep-fat fryers are fitted with a grease... alarms are located in each space with a through hull fitting below the deepest load waterline, a...
Large airtanker use and outcomes in suppressing wildland fires in the United States
David E. Calkin; Crystal S. Stonesifer; Matthew P. Thompson; Charles W. McHugh
2014-01-01
Wildfire activity in the United States incurs substantial costs and losses, and presents challenges to federal, state, tribal and local agencies that have responsibility for wildfire management. Beyond the potential socioeconomic and ecological losses, and the monetary costs to taxpayers due to suppression, wildfire management is a dangerous occupation. Aviation...
46 CFR 148.115 - Report of incidents.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Report of incidents. 148.115 Section 148.115 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.115 Report of incidents. (a) When a fire or other hazardous condition...
Protective system for civil buildings and industrial structures subjected to the seismic risk
NASA Astrophysics Data System (ADS)
Ghica, D.; Grigore, A.; Ionescu, C.
2009-04-01
Romania is a European country with significant seismicity. The most active seismic zone is represented by the Vrancea area, located within the arch of the Carpathians Mountains. Vrancea seismicity is characterized by intermediate depth earthquakes which occur in a narrow epicentral and hypocentral region. During the last 70 years, Romania experienced four strong Vrancea earthquakes: 10 November 1940 (Mw =7.7, 160 km depth), 4 March 1977 (Mw =7.5, 100 km depth), 30 August 1986 (Mw =7.2, 140 km depth), 30 May 30 1990 (Mw =6.9, 80 km depth). The 1977 event was characterized by catastrophic consequences: 1500 casualties and collapsing of 35 high-risk buildings, mostly occurring in Bucharest. The purpose of this paper is to present a protective system designed to be installed in the civil buildings and industrial structures placed in the high seismic regions, and therefore to contribute to the mitigation of the strong earthquake effects on human society. This system proposes an efficient antiseismic protection, respectively shutting down the installations and equipments mounted in the building's infrastructure, which can become extremely dangerous in case of a major earthquake by appearing the possibility of explosions, deflagration, fires, toxic and polluting fluids leakage. The damages are strongly amplified by the fact that, simultaneously, water and electric energy lines distributions are damaged too, making impossible an efficient firemen intervention, for localizing the fire sources. Moreover, the installations of the individual heating stations which operate with open flame increase the risk of explosions inside the buildings during an earthquake. The protective system consists of a seismic switch used for activating through weak-electric-currents of the building's safety systems in case of strong earthquake, especially designed for building's elevators, as well as for moving parts of installations, which require positioning in safety place areas. The originality of this device is based of a network of minimum three seismic sensors (accelerometers), which, through a coincidence circuit, endorses the presence of a seismic shock, excluding the accidental triggers caused by local noises and mechanical shocks from neighboring area. When is activated, the system allows to automatically place in safe position the most dangerous installations located in buildings, such as elevators, heating systems using natural gas or high pressure liquid, water pipes, thermal stations, electrical power line etc. Presently, in Romania, such protective systems installed in the buildings and structures subjected to seismic risk are not available. The only possibility of protection against the potential disastrous effects of earthquakes (wounded, lost of human lives, important material losses, explosions, fires, damages of the water and electricity lines) is to adopt clear solutions for preventing and reducing as much as it is possible the dimensions of material damages and casualties.
Numerical Modelling by FLAC on Coal Fires in North China
NASA Astrophysics Data System (ADS)
Gusat, D.; Drebenstedt, C.
2009-04-01
Coal fires occur in many countries all over the world (e.g. Australia, China, India, Indonesia, USA and Russia) in underground and on surface. In China the most coal fires occur especially in the North. Economical and environmental damages are the negative effects of the coal fires: coal fires induce open fractures and fissures within the seam and neighbouring rocks. So that these are the predominant pathways for oxygen flow and exhaust gases from a coal fire. All over northern China there are a large number of coal fires, which cause and estimated yearly coal loss of between 100 and 200 million tons ([1], [2], [3]). Spontaneous combustion is a very complicated process and is influenced by number of factors. The process is an exothermic reaction in which the heat generated is dissipated by conduction to the surrounding environment, by radiation, by convection to the ventilation flow, and in some cases by evaporation of moisture from the coal [4]. The coal fires are very serious in China, and the dangerous extent of spontaneous combustion is bad which occupies about 72.9% in mining coal seams. During coal mining in China, the coal fires of spontaneous combustion are quite severity. The dangerous of coal spontaneous combustion has been in 56% of state major coalmines [5]. The 2D and 3D-simulation models describing coal fire damages are strong tools to predict fractures and fissures, to estimate the risk of coal fire propagation into neighbouring seams, to test and evaluate coal fire fighting and prevention methods. The numerical simulations of the rock mechanical model were made with the software for geomechanical and geotechnical calculations, the programs FLAC and FLAC3D [6]. To fight again the coal fires, exist several fire fighting techniques. Water, slurries or liquefied nitrogen can be injected to cool down the coal or cut of air supply with the backfill and thereby extinct the fire. Air supply also can be cut of by covering the coal by soil or sealing of the coal mine with the backfill. A smaller fires can also be handled by taking out burning coal by bulldozing techniques described above are applicable to small fires, but they do not work well in extinction of large coal fires. References [1] http://www.coalfire.caf.dlr.de [2] Schalke, H.J.W.G.; Rosema, A.; Van Genderen, J.L. (1993): Environmental monitoring of coal fires in North China. Project Identification Mission Report. Report Remote Sensing Programme Board, Derft, the Netherlands. [3] Zhang, X.; Kroonenberg, S. B.; De Boer, C. B. (2004): Dating of coal fires in Xinjiang, north-west China. Terra Nova. Band 16, No 2, S. 68-74. DOI: 10.1111/j.1365-3121.2004.00532.x [4] Deng Jun, Hou Shuang, Li Huirong, e.t.c (2006): Oxidation Mechanism at Initial Stage of a Simulated Coal Molecule with -CH2O-[J]. Journal of Changchun University of Science and Technology, 29(2), P. 84-87. [5] Deng, Jun (2008): Presentation. Chinese Researches and Practical Experiences on Controlling Underground Coal Fires. The 2nd Australia-China Symposium on Science, Technology and Education. 15-18 October 2008, Courtyard Marriott, Surfers Paradise Beach, Gold Coast, Queensland, Australia. [6] Itasca (2003): FLAC, Fast Lagrangian Analysis of Continua. Itasca Consultants Group, Inc., Minneapolis.
Climate, Santa Ana Winds and Autumn Wildfires in Southern California
NASA Astrophysics Data System (ADS)
Westerling, Anthony L.; Cayan, Daniel R.; Brown, Timothy J.; Hall, Beth L.; Riddle, Laurence G.
2004-08-01
Wildfires periodically burn large areas of chaparral and adjacent woodlands in autumn and winter in southern California. These fires often occur in conjunction with Santa Ana weather events, which combine high winds and low humidity, and tend to follow a wet winter rainy season. Because conditions fostering large fall and winter wildfires in California are the result of large-scale patterns in atmospheric circulation, the same dangerous conditions are likely to occur over a wide area at the same time. Furthermore, over a century of watershed reserve management and fire suppression have promoted fuel accumulations, helping to shape one of the most conflagration-prone environments in the world. Combined with a complex topography and a large human population, southern Californian ecology and climate pose a considerable physical and societal challenge to fire management.
A Summary of NASA and USAF Hypergolic Propellant Related Spills and Fires
NASA Technical Reports Server (NTRS)
Nufer, Brian M.
2009-01-01
Several unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, the Titan Program, and a few others have occurred over the past several decades. Spill sites include the following government facilities: Kennedy Space Center (KSC), Johnson Space Center (JSC), White Sands Test Facility (WSTF), Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS), Edwards Air Force Base (EAFB), Little Rock AFB, and McConnell AFB. Until now, the only method of capturing the lessons learned from these incidents has been "word of mouth" or by studying each individual incident report. The root causes and consequences of the incidents vary drastically; however, certain "themes" can be deduced and utilized for future hypergolic propellant handling. Some of those common "themes" are summarized below: (1) Improper configuration control and internal or external human performance shaping factors can lead to being falsely comfortable with a system (2) Communication breakdown can escalate an incident to a level where injuries occur and/or hardware is damaged (3) Improper propulsion system and ground support system designs can destine a system for failure (4) Improper training of technicians, engineers, and safety personnel can put lives in danger (5) Improper PPE, spill protection, and staging of fire extinguishing equipment can result in unnecessary injuries or hardware damage if an incident occurs (6) Improper procedural oversight, development, and adherence to the procedure can be detrimental and quickly lead to an undesirable incident (7) Improper materials cleanliness or compatibility and chemical reactivity can result in fires or explosions (8) Improper established "back-out" and/or emergency safing procedures can escalate an event The items listed above are only a short list of the issues that should be recognized prior to handling hypergolic fluids or processing vehicles containing hypergolic propellants. The summary of incidents in this report is intended to cover many more issues than those listed above.
Forest fires in Italy: An econometric analysis of major driving factors
NASA Astrophysics Data System (ADS)
Michetti, Melania; Pinar, Mehmet
2013-04-01
Despite the relevant fire risk to which Italy is subject from north to south, very few analysis focus on this area. This article investigates the causes of forest fires frequency and intensity in Italy during the first decade of the XXI century. The dynamical aspects of fire danger are explored through the use of panel data techniques which fully capture the impacts on forest fires of changes in both socio-economic and climatic conditions. Italy is treated as a unique region in a first model specification, while it is then split into 3 geographical areas (north, centre, and south) to capture locally specific aspects. Two different dependent variables are alternatively employed and a number of ad hoc tests are performed to corroborate the robustness of our estimates. Results highlight the importance of considering the fire situation separately for the northern, central, and southern parts of Italy. While the presence of railway networks positively affects fire risk, the impact of livestock depends on its specific composition. Favourable effects in fire reduction are represented by the increase in education levels (north and centre) and touristic flows (north and south), and by the containment of illegal activities (south). Weather patterns appear to be important determinants all over the Italian peninsula.
NASA Astrophysics Data System (ADS)
Stocks, B. J.; Fromm, M. D.; Servranckx, R.; Lindsey, D.
2007-12-01
The recent confirmation that smoke from high-intensity boreal forest fires can reach the Upper Troposphere/Lower Stratosphere (UTLS) through pyroconvection and be transported long distances has raised concern over the wider-scale environmental impact of boreal fire smoke. This concern is further elevated as climate change projections indicate a significant increase in the frequency and severity of boreal forest fires over the next century. Smoke in the UTLS is frequently transported to the Arctic and may have important implications for the radiative energy budget in the polar region. Soot deposition from fires may lead to enhanced melting of sea ice and glaciers, and the chemical impact of fire emissions at high altitudes is largely unknown. This knowledge gap will be addressed during the International Polar Year (IPY), as boreal fire emissions will be tracked and documented in detail through aerial, satellite and ground-based measurements, as a key component of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) and ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) projects to be conducted in 2008. A large fire in the Canadian Northwest Territories burned throughout the month of June 2007, in a remote region where forest fires are not actively suppressed, eventually reaching 90,000 hectares in size. This fire was monitored for blowup one week in advance; it erupted into pyroconvection on June 25, 2007. We present an analysis of this event combining satellite data with ground-based measurements to document the development and impact of this classic pyroCb event. Under extreme fire danger conditions, the fire burned close to 20,000 hectares on that day. Fire behavior was consistent with predictions using the Canadian Fire Behavior Prediction System, with the fire spreading at 2.7 km/hr, consuming 33,000 kg of fuel hourly, generating an energy release rate of ~45,000 kW/m. This constitutes a typical high-intensity boreal crown fire, common across northern Canada every summer, and often capable of producing independent pyroconvection. The June 25 blowup was monitored using OMI AI, CALIPSO, Aqua MODIS, AVHRR and GOES satellite imagery, and these measurements validated the predicted fire behavior, including the development of a convection column that rose 10-11 km and injected smoke within the UTLS. Over subsequent days this smoke spread to Arctic latitudes (70-80 degrees N).
Design and realization of disaster assessment algorithm after forest fire
NASA Astrophysics Data System (ADS)
Xu, Aijun; Wang, Danfeng; Tang, Lihua
2008-10-01
Based on GIS technology, this paper mainly focuses on the application of disaster assessment algorithm after forest fire and studies on the design and realization of disaster assessment based on GIS. After forest fire through the analysis and processing of multi-sources and heterogeneous data, this paper integrates the foundation that the domestic and foreign scholars laid of the research on assessment for forest fire loss with the related knowledge of assessment, accounting and forest resources appraisal so as to study and approach the theory framework and assessment index of the research on assessment for forest fire loss. The technologies of extracting boundary, overlay analysis, and division processing of multi-sources spatial data are available to realize the application of the investigation method of the burnt forest area and the computation of the fire area. The assessment provides evidence for fire cleaning in burnt areas and new policy making on restoration in terms of the direct and the indirect economic loss and ecological and environmental damage caused by forest fire under the condition of different fire danger classes and different amounts of forest accumulation, thus makes forest resources protection operated in a faster, more efficient and more economical way. Finally, this paper takes Lin'an city of Zhejiang province as a test area to confirm the method mentioned in the paper in terms of key technologies.
Fires and fuels: Vegetation change over time in the Zuni Mountains, New Mexico
NASA Astrophysics Data System (ADS)
Wylie, Luke Anthony
The Zuni Mountains are a region that has been dramatically changed by human interference. Anthropogenically, fire suppression practices have allowed a buildup of fuels and caused a change in the fire-adapted ponderosa pine ecosystem such that the new ecosystem now incorporates many fire-intolerant species. As a result, the low-severity fires that the ecosystem once depended on to regenerate the forest are much reduced, and these low-severity fires are now replaced by crown-level infernos that threaten the forest and nearby towns. In order to combat these effects, land managers are implementing fuel reduction practices and are striving to better understand the local ecosystem. In this study, a predictive fire spread model (FARSITE) was implemented to predict spatio-temporal distribution of fire in the Zuni Mountains based on change in vegetation types that are most prone to fire. Using Landsat imagery and historical fire spread data from 2001 to 2014, the following research questions were investigated: (1) What variables are responsible for fire spread in the Zuni Mountains, New Mexico? (2) Which areas are prone to destructive and canopy level fires? and (3) How have the fuel model types that are most conducive to fire spread changed in the past twenty years? The utilization of spatial modeling and remote sensing to understand the interaction of meteorological variables and vegetation in predicting fire spread in this region is a novel approach. This study showed that (i) fires are more likely to occur in the valleys and high elevation grassland areas of the Zuni Mountains, (ii) certain vegetation types including grass and shrub lands in the area present a greater danger to canopy fire than others, and (iii) that these vegetation types have changed in the past sixteen years.
Changing Horses in Midstream: The Dangers of Unplanned Head Transitions
ERIC Educational Resources Information Center
Quinby, Lee
2015-01-01
Quick leadership transitions may succeed in other industries, but they don't usually work in the "business of relationships" we call school. Boards that respond to a solvable problem by firing the head may believe that action is necessary and good for the school. In truth, these abrupt changes almost always hurt schools, with devastating…
Escape Geography--Developing Middle-School Students' Sense of Place.
ERIC Educational Resources Information Center
Allen, Rodney F.; Molina, Laurie E. S.
1992-01-01
Suggests a social studies unit on escaping geography. Examines escape from dangerous places including an airliner, hotel fire, or war zone or from a social situation such as a boring speech or party. Describes historic escapes such as the Underground Railroad and the Berlin Wall. Lists learning strategies such as awareness of space and cognitive…
Terry Haines; Cheryl Renner; Margaret Reams; James Granskog
2005-01-01
The growth of residential communities within forested areas has increased the danger to life and property from uncontrolled wildfire. In response, states, counties and local governments in the United States have dramatically increased their wildfire mitigation efforts. Policymakers and fire officials are employing a wide range of regulatory and voluntary wildfire risk...
Perspectives/Taking Stock of the Teaching Life
ERIC Educational Resources Information Center
Scherer, Marge
2016-01-01
Although they may not have to confront the physical dangers fire fighters, and pilots face every day, teachers, principals, and administrators are responsible for many children and to many adults, our authors note (Tomlinson, Danielson, DuFour, Collins, Anderson). What teachers do or don't do affects the well-being of many and they have to make…
A community in the wildland-urban interface
María Cecilia Ciampoli Halaman
2013-01-01
Communities located in the wildland-urban interface undergo a process of transformation until they can guard against fires occurring in the area. This study analyzed this process for the Estación neighborhood in the city of Esquel, Chubut Province, Argentina. The analysis was performed by comparing the level of danger diagnosed for each neighborhood home in 2004 with...
Influence of altitude and aspect on daily variations in factors of forest fire danger
G. Lloyd. Hayes
1941-01-01
Altitude, in broad subdivisions, exerts recognized and well-understood effects on climate. Aspect further modifies the altitudinal influence. Many publications have dealt with the interrelations of these geographic factors with climate and life zones or have discussed variations of individual weather elements as influenced by local altitude and aspect differences and...
Use of the 1990 census to defire wildland urban interface problems
James B. Davis
1991-01-01
Predicting the movement of people into rural wildlands previously has been limited to studies of population and housing growth in counties or other large geographical areas. In these studies, the areas of high fire danger that contain dispersed rural housing cannot be distinguished from the areas less vulnerable to wildfire (small towns and adjacent urban...
Coupled numerical simulation of fire in tunnel
NASA Astrophysics Data System (ADS)
Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.
2018-01-01
In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is considered sufficiently accurate in this first phase of the research.
Ground Penetrating Radar, a Method for Exploration and Monitoring of Coal Fires in China
NASA Astrophysics Data System (ADS)
Gundelach, Volker
2010-05-01
Due to the climate change it is a global task to fight against gas emission of coal fires. In China exists many burning coal seams which should be extinguished. A Chinese-German initiative tries to find new technologies and solutions to control these fires. Most of the fires are close to the surface in arid areas. In that case GPR is a possible geophysical method to get detailed information about the structure of the soil. Mining activities and the burning coal are leaving voids which collapse or still exist as dangerous areas. With GPR it is possible to detect voids and clefts. Crevices are potential paths for oxygen transport from the surface to the fire. The knowledge of these structures would help to extinguish the fire. The heat of the burning coal changes the permittivity and the conductivity of the rock. This affects the radar signal and makes it possible to separate burning zones from intact zones. Monitoring of the burning zones helps to find optimal solutions for fire extinguishing strategies. Several field campaigns were made in China. One campaign was in the province Xinjiang with a 50 MHz system from Mala on a steep dipping coal seam. Other campaigns were in the Inner Mongolia with 40 MHz to 200 MHz antennae from GSSI on shallow dipping coal seams. The experiences from these measurements will be shown. The surveys were collected in rough terrain. The data from the unshielded antennae contained a lot of effects coming through the air. The limits of detecting crevices with GPR will be demonstrated. Some parts of the measurements over burning coal were influenced by strong anomalies of the magnetization. Modeling of the radar signal helps at the interpretation. Parts of the interpretation from the surveys can be validated by the outcrop of the investigated structures. A spatial visualization of the results is the basis for discussions.
Temporal and Spatial Wildfire Dynamics of Northern Siberia: Larch Forests and Insect Outbreak Areas
NASA Astrophysics Data System (ADS)
Kharuk, Viacheslav; Antamoshkina, Olga; Ponomarev, Eugene
2017-04-01
Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45 - 73°N) were studied based on NOAA/AVHRR and Terra/MODIS data and field measurements for the period since 1996. In addition, fire return interval along the south-north transect was analyzed. Third, pest outbreak (Siberian silkmoth) impact on the wildfires was studied. Both, number of forest fires and burned area in Siberia increased during recent decades. Significant correlations were found between forest fires, burned areas and air temperature (r = 0.5) and drought index (SPEI) (r = -0.43). Within larch stands along the transect wildfire frequency was strongly correlated with incoming solar radiation (r = 0.91). Fire danger period length decreased linearly from south to north along the transect. Fire return interval increased from 80 years at 62°N to 200 years at the Arctic Circle (66°33'N), and to about 300 years near the northern limit of closed forest stands ( 71+°N). That increase was negatively correlated with incoming solar radiation (r = -0.95). Siberian silkmoth outbreaks leads to an order of magnitude increase in burned area and fire frequency. Multiple fires turns former "dark needle conifer" taiga into grass and bush communities for decades.
Wildfires Dynamics in Siberian Larch Forests
NASA Technical Reports Server (NTRS)
Ponomarev, Evgenii I.; Kharuk, Viacheslav I.; Ranson, Kenneth J.
2016-01-01
Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45deg-73degN) were studied based on NOAA/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very High Resolution Radiometer) and Terra/MODIS (Moderate Resolution Imaging Spectroradiometer) data and field measurements for the period 1996-2015. In addition, fire return interval (FRI) along the south-north transect was analyzed. Both the number of forest fires and the size of the burned area increased during recent decades (p < 0.05). Significant correlations were found between forest fires, burned areas and air temperature (r = 0.5) and drought index (The Standardized Precipitation Evapotranspiration Index, SPEI) (r = 0.43). Within larch stands along the transect, wildfire frequency was strongly correlated with incoming solar radiation (r = 0.91). Fire danger period length decreased linearly from south to north along the transect. Fire return interval increased from 80 years at 62 N to 200 years at the Arctic Circle (6633' N), and to about 300 years near the northern limit of closed forest stands (about 71+ N). That increase was negatively correlated with incoming solar radiation (r = 0.95). Keywords: wildfires; drought index; larch stands; fire return interval; fire frequency; burned area; climate-induced trends in Siberian wildfires
Fuel moisture content estimation: a land-surface modelling approach applied to African savannas
NASA Astrophysics Data System (ADS)
Ghent, D.; Spessa, A.; Kaduk, J.; Balzter, H.
2009-04-01
Despite the importance of fire to the global climate system, in terms of emissions from biomass burning, ecosystem structure and function, and changes to surface albedo, current land-surface models do not adequately estimate key variables affecting fire ignition and propagation. Fuel moisture content (FMC) is considered one of the most important of these variables (Chuvieco et al., 2004). Biophysical models, with appropriate plant functional type parameterisations, are the most viable option to adequately predict FMC over continental scales at high temporal resolution. However, the complexity of plant-water interactions, and the variability associated with short-term climate changes, means it is one of the most difficult fire variables to quantify and predict. Our work attempts to resolve this issue using a combination of satellite data and biophysical modelling applied to Africa. The approach we take is to represent live FMC as a surface dryness index; expressed as the ratio between the Normalised Difference Vegetation Index (NDVI) and land-surface temperature (LST). It has been argued in previous studies (Sandholt et al., 2002; Snyder et al., 2006), that this ratio displays a statistically stronger correlation to FMC than either of the variables, considered separately. In this study, simulated FMC is constrained through the assimilation of remotely sensed LST and NDVI data into the land-surface model JULES (Joint-UK Land Environment Simulator). Previous modelling studies of fire activity in Africa savannas, such as Lehsten et al. (2008), have reported significant levels of uncertainty associated with the simulations. This uncertainty is important because African savannas are among some of the most frequently burnt ecosystems and are a major source of greenhouse trace gases and aerosol emissions (Scholes et al., 1996). Furthermore, regional climate model studies indicate that many parts of the African savannas will experience drier and warmer conditions in future (IPCC 2007). The simulation of realistic fire disturbance regimes with biophysical and biogeochemical models is a prerequisite for reducing the uncertainty of the African carbon cycle, and the feedbacks associated with this cycle and the global climate system. Using multi-temporal modelling analysis techniques, we present preliminary results that provide a more robust estimation of live FMC. References Chuvieco, E., Aguado, I. and Dimitrakopoulos, A. P. (2004) Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 34(11): 2284-2293. IPCC (2007) 'Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)].' IPCC, (Geneva, Switzerland). Lehsten, V., Tansey, K. J., Balzter, H, Thonicke, K., Spessa, A., Weber, U., Smith, B., and Arneth, A. (2008). Estimating carbon emissions from African wildfires. Accepted Biogeosciences. Sandholt, I., Rasmussen, K. & Andersen, J. (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment 79(2-3): 213-224. Scholes, R. J., Ward, D. E. and Justice, C. O. (1996) Emissions of trace gases and aerosol particles due to vegetation burning in southern hemisphere Africa. Journal of Geophysical Research-Atmospheres 101(D19): 23677-23682. Snyder, R. L., Spano, D., Duce, P., Baldocchi, D., Xu, L. K. & Kyaw, T. P. U. (2006) A fuel dryness index for grassland fire-danger assessment. Agricultural and Forest Meteorology 139(1-2): 1-11.
Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.
2016-06-30
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Paul Breckenridge
2007-05-01
Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate themore » changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be feasible and can collect imagery for very large areas in a short period of time. It was accurate for bare ground and grasses. Both UAV systems have limitations, but these will be reduced as the technology advances. In both cases, the UAV systems collected data at a much faster rate than possible on the ground. The study concluded that improvements in automating the image processing efforts would greatly improve use of the technology. In the near future, UAV technology may revolutionize rangeland monitoring in the same way Global Positioning Systems have affected navigation while conducting field activities.« less
Littell, Jeremy
2015-01-01
Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity.
Higuera, Philip E.; Abatzoglou, John T.; Littell, Jeremy S.; Morgan, Penelope
2015-01-01
Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity. PMID:26114580
Fire, humans and landscape. Is there a connection?
NASA Astrophysics Data System (ADS)
Valese, Eva; Ascoli, Davide; Conedera, Marco; Held, Alex
2013-04-01
Fire evolved on the earth under the direct influence of climate and the accumulation of burnable biomass at various times and spatial scales. As a result, fire regimes depend not only on climatic and biological factors, but also greatly reflect the cultural background of how people do manage ecosystems and fire. A new awareness among scientists and managers has been rising about the ecological role of fire and the necessity to understand its past natural and cultural dynamics in different ecosystems, in order to preserve present ecosystem functionality and minimize management costs and negative impacts. As a consequence we assisted in the last decades to a general shift from the fire control to the fire management approach, where fire prevention, fire danger rating, fire ecology, fire pre-suppression and suppression strategies are fully integrated in the landscape management. Nowadays, a large number of authors recognize that a total suppression strategy, as the one adopted during last decades, leads to a fire paradox: the more we fight for putting out all fires, the more extreme events occur and cause long term damages. The aim of this review is to provide a state of art about the connection between fire, humans and landscape, along time and space. Negative and positive impacts on ecosystem services and values are put in evidence, as well as their incidence on human aptitude to fire use as to fire suppression. In order to capture a consistent fragment of fire history, palaeofires and related palynological studies are considered. They enable a valuable, even if partial, look at the millenary fire regime. Actual strategies and future directions are described in order to show what are the alternatives for living with fire, since removing completely this disturbance from earth is not a option, nor feasible neither advisable. Examples from the world, in particular from the Alps and the Mediterranean basin, are shown for better illustrating the signature of anthropogenic fire on landscapes.
Higuera, Philip E; Abatzoglou, John T; Littell, Jeremy S; Morgan, Penelope
2015-01-01
Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity.
Estimating the fuel moisture content of indicator sticks from selected weather variables
Theodore G. Storey
1965-01-01
Equations were developed to predict the fuel moisture content of indicator sticks from the controlling weather variables. Moisture content of ⅛-inch thick basswood slats used in the South and East could be determined with about equal precision by equation in the critical low moisture range or by weighing at fire danger stations. The most useful equation...
Fuel and weather influence wildfires in sand pine forests
W. A. Hough
1973-01-01
A complex combination of fuel and weather factors accounts for the dangerous fires that often develop during the spring in sand pine forests of Florida. Moisture content of live needles is lowest in March, and resin and energy contents reach their yearly highs during the 4-month period from February through May. These fuel properties become critical, however, only when...
Travis B. Paveglio; Pamela J. Jakes; Matthew S. Carroll; Daniel R. Williams
2009-01-01
The lack of knowledge regarding social diversity in the Wildland Urban Interface (WUI) or an in-depth understanding of the ways people living there interact to address common problems is concerning, perhaps even dangerous, given that community action is necessary for successful wildland fire preparedness and natural resource management activities. In this article, we...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... the community's ability to access the cultural sites of Pagat Village and Pagat Cave. In response to... about locating Surface Danger Zones for the ranges over Pagat Village and Pagat Cave, in January 2011... manner that would not impact access to Pagat Village and Cave via the existing trail. The DoN further...
Wildfires in the Lab: Simple Experiment and Models for the Exploration of Excitable Dynamics
ERIC Educational Resources Information Center
Punckt, Christian; Bodega, Pablo S.; Kaira, Prabha; Rotermund, Harm H.
2015-01-01
Wildfires lead to the loss of life and property in many parts of the world. Understanding their dangers and, more particularly, the underlying dynamics which lead to fires of catastrophic scale contributes to better awareness as well as prevention and firefighting capabilities within the affected areas. In order to enable a basic understanding of…
Philip E. Dennison; Dar A. Roberts; Sommer R. Thorgusen; Jon C. Regelbrugge; David Weise; Christopher Lee
2003-01-01
Live fuel moisture, an important determinant of fire danger in Mediterranean ecosystems, exhibits seasonal changes in response to soil water availability. Both drought stress indices based on meteorological data and remote sensing indices based on vegetation water absorption can be used to monitor live fuel moisture. In this study, a cumulative water balance index (...
County and municipal ordinances to protect wildland-urban interface communities
Terry Haines; Cheryl Renner; Margaret Reams
2008-01-01
The growth of residential communities within and adjacent to high-fire risk forests in the past several decades, has increased the danger to life, property and natural assets from wildfire. Under the police powers granted by the Constitution, state and local governments have the power to pass laws to protect the health, safety and welfare of their citizens. As this...
USDA-ARS?s Scientific Manuscript database
One of the primary variables affecting ignition and spread of wildfire is fuel moisture content (FMC), which is the ratio of water mass to dry mass in living and dead plant material. Because dead FMC may be estimated from available weather data, remote sensing is needed to monitor the spatial distr...
Flammability of gas mixtures. Part 1: fire potential.
Schröder, Volkmar; Molnarne, Maria
2005-05-20
International and European dangerous substances and dangerous goods regulations refer to the standard ISO 10156 (1996). This standard includes a test method and a calculation procedure for the determination of the flammability of gases and gas mixtures in air. The substance indices for the calculation, the so called "Tci values", which characterise the fire potential, are provided as well. These ISO Tci values are derived from explosion diagrams of older literature sources which do not take into account the test method and the test apparatus. However, since the explosion limits are influenced by apparatus parameters, the Tci values and lower explosion limits, given by the ISO tables, are inconsistent with those measured according to the test method of the same standard. In consequence, applying the ISO Tci values can result in wrong classifications. In this paper internationally accepted explosion limit test methods were evaluated and Tci values were derived from explosion diagrams. Therefore, an "open vessel" method with flame propagation criterion was favoured. These values were compared with the Tci values listed in ISO 10156. In most cases, significant deviations were found. A detailed study about the influence of inert gases on flammability is the objective of Part 2.
Nighttime View of California’s Rim Fire
2013-08-27
The winter of 2013 was among the driest on record for California, setting the stage for an active fire season. By August 26, the Rim Fire had made its way into the record books. At just 15 percent contained, the fire is now the 13th largest in California since records began in 1932. Apart from being large, the fire is also threatening one of the United States’ greatest natural treasures: Yosemite National Park. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite tracked the growth of the fire between August 23 and August 26 in a series of nighttime images. The VIIRS day-night band is extremely sensitive to low light, making it possible to see the fire front from space. The brightest, most intense parts of the fire glow white, exceeding the brightness of the lights of Reno, Nevada to the north. Pale gray smoke streams north away from the fire throughout the sequence. The perimeter of the fire grows from day to day along different fronts, depending on winds and fire fighting efforts. On August 24, fire fighters focused their efforts on containing the western edge of the fire to prevent it from burning into Tuolumne City and the populated Highway 108 corridor. They also fought the eastern edge of the fire to protect Yosemite National Park. These efforts are evident in the image: Between August 23 and 24, the eastern edge of the fire held steady, and the western edge receded. The fire grew in the southeast. On the morning of August 25 fire managers reported that the fire was growing in the north and east. In the image, the most intense activity is just inside Yosemite National Park. Fire fighters reported that the Rim Fire continued to be extremely active on its eastern front on the morning of August 26, and this activity is visible in the image. By 8:00 a.m., the fire had burned 149,780 acres. The fire forced firefighters in Yosemite National Park to take measures to protect the Merced and Tuolumne Groves of Giant Sequoias, but the National Park Service reported that the trees were not in imminent danger. While parts of the park are closed, webcams show that most of the park has not been impacted. The Rim Fire started on the afternoon of August 17. It has destroyed 23 structures and threatened 4,500 other buildings. Its cause is under investigation. More details: 1.usa.gov/18ilEAA NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day Night Band data. Caption by Holli Riebeek. Instrument: Suomi NPP - VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Nighttime View of California’s Rim Fire
2017-12-08
The winter of 2013 was among the driest on record for California, setting the stage for an active fire season. By August 26, the Rim Fire had made its way into the record books. At just 15 percent contained, the fire is now the 13th largest in California since records began in 1932. Apart from being large, the fire is also threatening one of the United States’ greatest natural treasures: Yosemite National Park. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite tracked the growth of the fire between August 23 and August 26 in this series of nighttime images. The VIIRS day-night band is extremely sensitive to low light, making it possible to see the fire front from space. The brightest, most intense parts of the fire glow white, exceeding the brightness of the lights of Reno, Nevada to the north. Pale gray smoke streams north away from the fire throughout the sequence. The perimeter of the fire grows from day to day along different fronts, depending on winds and fire fighting efforts. On August 24, fire fighters focused their efforts on containing the western edge of the fire to prevent it from burning into Tuolumne City and the populated Highway 108 corridor. They also fought the eastern edge of the fire to protect Yosemite National Park. These efforts are evident in the image: Between August 23 and 24, the eastern edge of the fire held steady, and the western edge receded. The fire grew in the southeast. On the morning of August 25 fire managers reported that the fire was growing in the north and east. In the image, the most intense activity is just inside Yosemite National Park. Fire fighters reported that the Rim Fire continued to be extremely active on its eastern front on the morning of August 26, and this activity is visible in the image. By 8:00 a.m., the fire had burned 149,780 acres. The fire forced firefighters in Yosemite National Park to take measures to protect the Merced and Tuolumne Groves of Giant Sequoias, but the National Park Service reported that the trees were not in imminent danger. While parts of the park are closed, webcams show that most of the park has not been impacted. The Rim Fire started on the afternoon of August 17. It has destroyed 23 structures and threatened 4,500 other buildings. Its cause is under investigation. More details: 1.usa.gov/18ilEAA NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day Night Band data. Caption by Holli Riebeek. Instrument: Suomi NPP - VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Developing a high-resolution regional atmospheric reanalysis for Australia
NASA Astrophysics Data System (ADS)
White, Christopher; Fox-Hughes, Paul; Su, Chun-Hsu; Jakob, Dörte; Kociuba, Greg; Eisenberg, Nathan; Steinle, Peter; Harris, Rebecca; Corney, Stuart; Love, Peter; Remenyi, Tomas; Chladil, Mark; Bally, John; Bindoff, Nathan
2017-04-01
A dynamically consistent, long-term atmospheric reanalysis can be used to support high-quality assessments of environmental risk and likelihood of extreme events. Most reanalyses are presently based on coarse-scale global systems that are not suitable for regional assessments in fire risk, water and natural resources, amongst others. The Australian Bureau of Meteorology is currently working to close this gap by producing a high-resolution reanalysis over the Australian and New Zealand region to construct a sequence of atmospheric conditions at sub-hourly intervals over the past 25 years from 1990. The Australia reanalysis consists of a convective-scale analysis nested within a 12 km regional-scale reanalysis, which is bounded by a coarse-scale ERA-Interim reanalysis that provides the required boundary and initial conditions. We use an unchanging atmospheric modelling suite based on the UERRA system used at the UK Met Office and the more recent version of the Bureau of Meteorology's operational numerical prediction model used in ACCESS-R (Australian Community Climate and Earth-System Simulator-Regional system). An advanced (4-dimensional variational) data assimilation scheme is used to optimally combine model physics with multiple observations from aircrafts, sondes, surface observations and satellites to create a best estimate of state of the atmosphere over a 6-hour moving window. This analysis is in turn used to drive a higher-resolution (1.5 km) downscaling model over selected subdomains within Australia, currently eastern New South Wales and Tasmania, with the capability to support this anywhere in the Australia-New Zealand domain. The temporal resolution of the gridded analysis fields for both the regional and higher-resolution subdomains are generally one hour, with many fields such as 10 m winds and 2 m temperatures available every 10 minutes. The reanalysis also produces many other variables that include wind, temperature, moisture, pressure, cloud cover, precipitation, evaporation, soil water, and energy fluxes. In this presentation, we report on the implementation of the Australia regional reanalysis and results from first stages of the project, with a focus on the Tasmanian subdomain. An initial benchmarking 1.5 km data set - referred to as the 'Initial Analysis' - has been constructed over the subdomains consisting of regridded and harmonised analysis and short-term forecast fields from the operational ACCESS-C model using the past 5 years (2011-2015) of archived data. Evaluation of the Initial Analysis against surface observations from automatic weather stations indicate changes in model skills over time that may be attributed to changes in NWP and assimilation systems, and model cycling frequency. Preliminary evaluations of the reanalysis across Tasmania and its inter-comparisons with the Initial Analysis and the ERA-Interim reanalysis products will be presented, including some features across the Tasmanian subdomain such as means and extremes of analysed weather variables. Finally, we describe a number of applications across Tasmania of the reanalysis of immediate interest to meteorologists, fire and landscape managers and other members of the emergency management community, including the use of the data to create post-processed fields such as soil dryness, tornados and fire danger indices for forest fire danger risk assessment, including a climatology of Continuous Haines Index.
Setterfield, Samantha A.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Wainger, Lisa; Petty, Aaron M.; Barrow, Piers; Shepherd, Ian J.; Ferdinands, Keith B.
2013-01-01
Background Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. Methodology/Principal Findings We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha−1 in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha−1 resulted in an increase from five to 38 days with fire risk in the ‘severe’ category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. Conclusions/Significance This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies. PMID:23690917
Setterfield, Samantha A; Rossiter-Rachor, Natalie A; Douglas, Michael M; Wainger, Lisa; Petty, Aaron M; Barrow, Piers; Shepherd, Ian J; Ferdinands, Keith B
2013-01-01
Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha(-1) in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha(-1) resulted in an increase from five to 38 days with fire risk in the 'severe' category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies.
Fire occurrence prediction in the Mediterranean: Application to Southern France
NASA Astrophysics Data System (ADS)
Papakosta, Panagiota; Öster, Jan; Scherb, Anke; Straub, Daniel
2013-04-01
The areas that extend in the Mediterranean basin have a long fire history. The climatic conditions of wet winters and long hot drying summers support seasonal fire events, mainly ignited by humans. Extended land fragmentation hinders fire spread, but seasonal winds (e.g. Mistral in South France or Meltemia in Greece) can drive fire events to become uncontrollable fires with severe impacts to humans and the environment [1]. Prediction models in these areas should incorporate both natural and anthropogenic factors. Several indices have been developed worldwide to express fire weather conditions. The Canadian Fire Weather Index (FWI) is currently adapted by many countries in Europe due to the easily observable input weather parameters (temperature, wind speed, relative humidity, precipitation) and the easy-to-implement algorithms of the Canadian formulation describing fuel moisture relations [2],[3]. Human influence can be expressed directly by human presence (e.g. population density) or indirectly by proxy indicators (e.g. street density [4], land cover type). The random nature of fire occurrences and the uncertainties associated with the influencing factors motivate probabilistic prediction models. The aim of this study is to develop a prediction model of fire occurrence probability under natural and anthropogenic influence in Southern France and to compare it with earlier developed predictions in other Mediterranean areas [5]. Fire occurrence is modeled as a Poisson process. Two interpolation methods (Kriging and Inverse Distance Weighting) are used to interpolate daily weather observations from weather stations to a 1 km² spatial grid and their results are compared. Poisson regression estimates the parameters of the model and the resulting daily predictions are provided in terms of maps displaying fire occurrence rates. The model is applied to the regions Provence-Alpes-Côtes D'Azur und Languedoc-Roussillon in the South of France. Weather data are obtained from the German and French Weather Services (Deutscher Wetterdienst and Météo-France). Historical fire events are taken from Prométhée database. Time series 2000-2010 are used as learning data and data from 2011 is used as the validation data. The resulting model can support real-time fire risk estimation for improved allocation of firefighting resources and planning of other mitigation actions. [1] Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. (2012): Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, New York, USA, pp.515 [2] Lawson, B.D.; Armitage, O.B. (2008): Weather Guide for the Canadian Forest Fire Danger Rating System. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada. [3] Van Wagner, C.E.; Pickett, T.L. (1985): Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System. Forestry Technical Report 33. Canadian Forestry Service, Government of Canada, Ottawa, Ontario, Canada [4] Syphard, A.D.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. (2008): Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17, pp.602-613 [5] Papakosta, P.; Klein, F.; König, S.; Straub, D. (2012): Linking spatio-temporal data to the Fire Weather Index to estimate the probability of wildfire in the Mediterranean. Geophysical Research Abstracts, Vol.14, EGU2012-12737, EGU General Assembly 2012
Riley, Karin L.; Loehman, Rachel A.
2016-01-01
Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.
Lazzaro, Martina; Feldman, Mario F.
2017-01-01
ABSTRACT The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens, it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter, which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia’s RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. PMID:28830939
NASA Astrophysics Data System (ADS)
Romagnoli, E.; Barboni, T.; Santoni, P.-A.; Chiaramonti, N.
2014-05-01
Prescribed burning represents a serious threat to personnel fighting fires due to smoke inhalation. The aim of this study was to investigate exposure by foresters to smoke from prescribed burning, focusing on exposure to volatile organic compounds (VOCs). The methodology for smoke sampling was first evaluated. Potentially dangerous compounds were identified among the VOCs emitted by smoke fires at four prescribed burning plots located around Corsica. The measured mass concentrations for several toxic VOCs were generally higher than those measured in previous studies due to the experimental framework (short sampling distance between the foresters and the flame, low combustion, wet vegetation). In particular, benzene, phenol and furfural exceeded the legal short-term exposure limits published in Europe and/or the United States. Other VOCs such as toluene, ethybenzene or styrene remained below the exposure limits. In conclusion, clear and necessary recommendations were made for protection of personnel involved in fighting fires.
Analysis of firetruck crashes and associated firefighter injuries in the United States.
Donoughe, Kelly; Whitestone, Jennifer; Gabler, Hampton C
2012-01-01
Motor vehicle crashes are the second leading cause of death for on-duty firefighters. Firetruck crashes, occurring at a rate of approximately 30,000 crashes per year, have potentially dire consequences for the vehicle occupants and for the community if the firetruck was traveling to provide emergency services. Data from the United States Fire Administration and the National Highway Traffic Safety Administration shows that firefighters neglect to buckle their seatbelts while traveling in a fire apparatus, thus putting themselves at a high risk for injuries if the truck crashes, especially in rollover crashes. Despite national regulations and departmental guidelines aiming to improve safety on fire apparatuses, belt use among firefighters remains dangerously low. The results from this study indicate that further steps need to be taken to improve belt use. One promising solution would be to redesign firetruck seatbelts to improve the ease of buckling and to accommodate wider variations in firefighter sizes.
Analysis of Firetruck Crashes and Associated Firefighter Injuries in the United States
Donoughe, Kelly; Whitestone, Jennifer; Gabler, Hampton C.
2012-01-01
Motor vehicle crashes are the second leading cause of death for on-duty firefighters. Firetruck crashes, occurring at a rate of approximately 30,000 crashes per year, have potentially dire consequences for the vehicle occupants and for the community if the firetruck was traveling to provide emergency services. Data from the United States Fire Administration and the National Highway Traffic Safety Administration shows that firefighters neglect to buckle their seatbelts while traveling in a fire apparatus, thus putting themselves at a high risk for injuries if the truck crashes, especially in rollover crashes. Despite national regulations and departmental guidelines aiming to improve safety on fire apparatuses, belt use among firefighters remains dangerously low. The results from this study indicate that further steps need to be taken to improve belt use. One promising solution would be to redesign firetruck seatbelts to improve the ease of buckling and to accommodate wider variations in firefighter sizes. PMID:23169118
A common-sense approach to asbestos in roofing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinmetz, W.R. Jr.
The word asbestos carries an ominous connotation to many plant engineers and building owners. Many are caught up in the hype surrounding asbestos abatement. Others are confused about how to face the questions surrounding this mysterious, dangerous, and often misunderstood substance. Asbestos issues cast a particularly perplexing spell over decisions about how to deal with the material in the removal of roofing systems. The product is an excellent roofing choice because it is fire-resistant, durable, and nonrotting. And most significantly on the other hand, asbestos causes three deadly diseases: lung cancer, asbestosis, and mesothelioma (cancer of the lung lining andmore » always fatal). This danger prompted enactment of the Asbestos Hazard Emergency Response Act (AHERA) in the early 1980s. The regulation required every K-12 school in the US to develop a management plant for dealing with asbestos. Since then, much has been done to raise awareness of the issues surrounding this material. The standard`s earliest form based removal requirements primarily on exposure levels. A 1994 revision, however, extended stringent removal requirements to all roof removal work involving asbestos, regardless of exposure level. This paper looks at the regulations, concerns, considerations, and procedures for dealing with the problem.« less
NASA Astrophysics Data System (ADS)
Kareem Salih, Watheq
2018-05-01
Fire retardants have an extraordinary importance because of their role in saving the people, property and reducing the damages and minimizing the dangers resulting from fires and burning of polymeric composites which are used in different civil and industrial fields. The work in this paper can be divided into two main stages. In first one nano-clay was manufactured from Iraqi bentonite and it was characterized using AFM, XRD, XRF, SEM, and BET. The AFM test showed the particle size of prepared nano clay was about 99.25 nm. In the second stage, polypropylene/nano clay composites at three low loading percents (0%,2%,4%,6%) were formulated via twin screw extruder. The fire retardancy tests included burning rate according to ASTM:D-635 and maximum flame height of flame according to ASTM:D-3014. Besides, the mechanical tests and thermal behavior of prepared samples were investigated. The results showed that (4%) of nano-clay had the maximum fire retardancy and while at (2%) loading, the maximum value of tensile strength and Yong modulus were obtained. The maximum heat of fusion was recorded for 6% nano clay sample. The final results assessment confirmed on the possibility of using low loadings of prepared nano clay to improve the fire retardancy, mechanical and thermal properties successfully.
NASA Astrophysics Data System (ADS)
Sebastián-López, Ana; Urbieta, Itziar R.; de La Fuente Blanco, David; García Mateo, Rubén.; Moreno Rodríguez, José Manuel; Eftichidis, George; Varela, Vassiliki; Cesari, Véronique; Mário Ribeiro, Luís.; Viegas, Domingos Xavier; Lanorte, Antonio; Lasaponara, Rosa; Camia, Andrea; San Miguel, Jesús
2010-05-01
Forest fires burn at the local scale, but their massive occurrence causes effects which have global dimensions. Furthermore climate change projections associate global warming to a significant increase in forest fire activity. Warmer and drier conditions are expected to increase the frequency, duration and intensity of fires, and greater amounts of fuel associated with forest areas in decline may cause more frequent and larger fires. These facts create the need for establishing strategies for harmonizing fire danger rating, fire risk assessment, and fire prevention policies at a supranational level. Albeit forest fires are a permanent threat for European ecosystems, particularly in the south, there is no commonly accepted fuel classification scheme adopted for operational use by the Member States of the EU. The European Commission (EC) DG Environment and JRC have launched a set of studies following a resolution of the European Parliament on the further development and enhancement of the European Forest Fire Information System (EFFIS), the EC focal point for information on forest fires in Europe. One of the studies that are being funded is the FUELMAP project. The objective of FUELMAP is to develop a novel fuel classification system and a new European fuel map that will be based on a comprehensive classification of fuel complexes representing the various vegetation types across EU27, plus Switzerland, Croatia and Turkey. The overall work plan is grounded on a throughout knowledge of European forest landscapes and the key features of fuel situations occurring in natural areas. The method makes extended use of existing databases available in the Member States and European Institutions. Specifically, our proposed classification combines relevant information on ecoregions, land cover and uses, potential and actual vegetation, and stand structure. GIS techniques are used in order to define the geographic extent of the classification units and for identifying the main driving factors that determine the spatial distribution of the resulting fuel complexes. Furthermore, relevant parameters influencing fire potential and effects such as fuel load, live/dead ratio, and fuels' size classes' distribution are considered. National- and local-scale datasets (vegetation maps, forest inventory plots, fuel maps...) will be also studied and compared. Local ground- truth data will be used to assess the accuracy of the classification and will contribute, along with literature values and experts' opinion, to characterize the fuels' physical properties. The resulting classification aims to support the characterization of the fire potential, serve as input in fire emissions models, and be used to assess the expected impact of fire in the European landscapes. The work plan includes the development of a GIS software tool to automatically update the fuel map from modified (up-to-date) input data layers. The fuel map of Europe is mainly intended to support the implementation of the EFFIS modules that can be enhanced by the use of improved information on forest fuel properties and spatial distribution, though it is also envisaged that the results of the project might be useful for other relevant applications at different spatial scales. To this purpose, the classification will be designed with a hierarchical and flexible structure for describing heterogeneous landscapes. The work is on-going and this presentation shows the first results towards the envisaged European fuel map.
Automation of closed environments in space for human comfort and safety
NASA Technical Reports Server (NTRS)
1991-01-01
The development of Environmental Control and Life Support Systems (ECLSS) for Space Station Freedom, future colonization of the Moon, and Mars missions presents new challenges for present technologies. ECLSS that operate during long-duration missions must be semi-autonomous to allow crew members environmental control without constant supervision. A control system for the ECLSS must address these issues as well as being reliable. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The ECLSS for Freedom is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire-sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort.
NASA Astrophysics Data System (ADS)
Brodny, Jarosław; Tutak, Magdalena
2016-12-01
One of the most dangerous and most commonly present risks in hard coal mines is methane hazard. During exploitation by longwall system with caving, methane is emitted to mine heading from the mined coal and coal left in a pile. A large amount of methane also flows from neighboring seams through cracks and fissures formed in rock mass. In a case of accumulation of explosive methane concentration in goaf zone and with appropriate oxygen concentration and occurrence of initials (e.g. spark or endogenous fire), it may come to the explosion of this gas. In the paper there are presented results of numerical analysis of mixture of air and methane streams flow through the real heading system of a mine, characterized by high methane hazard. The aim of the studies was to analyze the ventilation system of considered heading system and determination of braking zones in goaf zone, in which dangerous and explosive concertation of methane can occur with sufficient oxygen concentration equal to at least 12%. Determination of position of these zones is necessary for the selection of appropriate parameters of the ventilation system to ensure safety of the crew. Analysis of the scale of methane hazard allows to select such a ventilation system of exploitation and neighboring headings that ensures chemical composition of mining atmosphere required by regulation, and required efficiency of methane drainage. The obtained results clearly show that numerical methods, combined with the results of tests in real conditions can be successfully used for the analysis of variants of processes related to ventilation of underground mining, and also in the analysis of emergency states.
NASA Astrophysics Data System (ADS)
Morandini, F.; Silvani, X.; Honoré, D.; Boutin, G.; Susset, A.; Vernet, R.
2014-08-01
Slope is among the most influencing factor affecting the spread of wildfires. A contribution to the understanding of the fluid dynamics of a fire spreading in these terrain conditions is provided in the present paper. Coupled optical diagnostics are used to study the slope effects on the flow induced by a fire at laboratory scale. Optical diagnostics consist of particle image velocimetry, for investigating the 2D (vertical) velocity field of the reacting flow and chemiluminescence imaging, for visualizing the region of spontaneous emission of OH radical occurring during gaseous combustion processes. The coupling of these two techniques allows locating accurately the contour of the reaction zone within the computed velocity field. The series of experiments are performed across a bed of vegetative fuel, under both no-slope and 30° upslope conditions. The increase in the rate of fire spread with increasing slope is attributed to a significant change in fluid dynamics surrounding the flame. For horizontal fire spread, flame fronts exhibit quasi-vertical plume resulting in the buoyancy forces generated by the fire. These buoyancy effects induce an influx of ambient fresh air which is entrained laterally into the fire, equitably from both sides. For upward flame spread, the induced flow is strongly influenced by air entrainment on the burnt side of the fire and fire plume is tilted toward unburned vegetation. A particular attention is paid to the induced air flow ahead of the spreading flame. With increasing the slope angle beyond a threshold, highly dangerous conditions arise because this configuration induces wind blows away from the fire rather than toward it, suggesting the presence of convective heat transfers ahead of the fire front.
Probabilistic calibration of the SPITFIRE fire spread model using Earth observation data
NASA Astrophysics Data System (ADS)
Gomez-Dans, Jose; Wooster, Martin; Lewis, Philip; Spessa, Allan
2010-05-01
There is a great interest in understanding how fire affects vegetation distribution and dynamics in the context of global vegetation modelling. A way to include these effects is through the development of embedded fire spread models. However, fire is a complex phenomenon, thus difficult to model. Statistical models based on fire return intervals, or fire danger indices need large amounts of data for calibration, and are often prisoner to the epoch they were calibrated to. Mechanistic models, such as SPITFIRE, try to model the complete fire phenomenon based on simple physical rules, making these models mostly independent of calibration data. However, the processes expressed in models such as SPITFIRE require many parameters. These parametrisations are often reliant on site-specific experiments, or in some other cases, paremeters might not be measured directly. Additionally, in many cases, changes in temporal and/or spatial resolution result in parameters becoming effective. To address the difficulties with parametrisation and the often-used fitting methodologies, we propose using a probabilistic framework to calibrate some areas of the SPITFIRE fire spread model. We calibrate the model against Earth Observation (EO) data, a global and ever-expanding source of relevant data. We develop a methodology that tries to incorporate the limitations of the EO data, reasonable prior values for parameters and that results in distributions of parameters, which can be used to infer uncertainty due to parameter estimates. Additionally, the covariance structure of parameters and observations is also derived, whcih can help inform data gathering efforts and model development, respectively. For this work, we focus on Southern African savannas, an important ecosystem for fire studies, and one with a good amount of EO data relevnt to fire studies. As calibration datasets, we use burned area data, estimated number of fires and vegetation moisture dynamics.
NASA Astrophysics Data System (ADS)
Belen Hinojosa, M.; Parra, Antonio; Laudicina, V. Armando; Moreno, José M.
2017-04-01
Climate change in subtropical areas, like the Mediterranean, is projected to decrease precipitation and to lengthen the seasonal drought period. Fire danger is also projected to increase under the most severe conditions. Little is known about the effects of increasing drought and, particularly, its legacy when precipitation resumes to normal, on the recovery of burned ecosystems. Here we studied the effects of post-fire drought and its legacy two years after it stopped on soil microbial community structure and functionality of a Cistus-Erica shrubland. To do this, a manipulative experiment was setup in which rainfall total patterns were modified by means of a rain-out shelters and irrigation system in a fully replicated set of previously burned plots. The treatments were: environmental control (natural rainfall), historical control (average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). One set of unburned plots under natural rainfall served as an additional control. Availability of the main soil nutrients and microbial community composition and functionality were monitored over 4 years under these rainfall manipulation treatments. Thereafter, treatments were discontinued and plots were subjected to ambient rainfall for two additional years. Post-fire drought had not effect on total C or N. Fire increased soil P and N availability. However, post-fire drought reduced available soil P and increased nitrate in the short term. Post- fire reduction of available K was accentuated by continued drought. Fire significantly reduced soil organic matter, enzyme activities and carbon mineralization, mainly in drought treated soils. Fire also decreased soil microbial biomass and the proportion of fungi, while that of actinomycetes increased in the short term. Post-fire drought accentuated the decrease of soil total microbial biomass and fungi, with bacteria becoming more abundant. After discontinuing the drought treatments, the effect of the previous drought was significant for available P and enzyme activities. Although the microbial biomass did not show a drought legacy effect of the previous drought period, the proportion of fungi was still lower in post-fire drought treatments and the proportion of bacteria (mainly Gram+) higher. Our results show that post-fire drought had an effect on soil functionality and microbial community structure, and that once the drought ceased its effects on some biogeochemical constituents and microbial groups were still visible two years thereafter. The fact that in a lapse of two years some variables had resume to normal while others still differed among drought treatment signifies that the legacies will last for some additional years, impairing during this time the normal functioning of the soil. However, these legacy was related to the magnitude of drought and, although not tested in our study, on the time since the occurrence of the phenomenon, and the sensitivity of the ecological system.
Neurons in the Amygdala with Response-Selectivity for Anxiety in Two Ethologically Based Tests
Wang, Dong V.; Wang, Fang; Liu, Jun; Zhang, Lu; Wang, Zhiru; Lin, Longnian
2011-01-01
The amygdala is a key area in the brain for detecting potential threats or dangers, and further mediating anxiety. However, the neuronal mechanisms of anxiety in the amygdala have not been well characterized. Here we report that in freely-behaving mice, a group of neurons in the basolateral amygdala (BLA) fires tonically under anxiety conditions in both open-field and elevated plus-maze tests. The firing patterns of these neurons displayed a characteristic slow onset and progressively increased firing rates. Specifically, these firing patterns were correlated to a gradual development of anxiety-like behaviors in the open-field test. Moreover, these neurons could be activated by any impoverished environment similar to an open-field; and introduction of both comfortable and uncomfortable stimuli temporarily suppressed the activity of these BLA neurons. Importantly, the excitability of these BLA neurons correlated well with levels of anxiety. These results demonstrate that this type of BLA neuron is likely to represent anxiety and/or emotional values of anxiety elicited by anxiogenic environmental stressors. PMID:21494567
NASA Technical Reports Server (NTRS)
2007-01-01
Several large fires were burning in southern Georgia on April 29, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite passed overhead and captured this image. Places where MODIS detected actively burning fires are outlined in red. The Roundabout Fire sprang up on April 27, according to the U.S. Southern Area Coordination Center, and was about 3,500 acres as of April 30. That fire was threatening homes in the community of Kirkland. Meanwhile, south of Waycross, two large blazes were burning next to each other in the northern part of Okefenokee Swamp. The Sweat Farm Road Fire threatened the town of Waycross in previous weeks, but at the end of April, activity had moved to the southeastern perimeter. The fire had affected more than 50,000 acres of timber (including pine tree plantations) and swamps. Scores of residences scattered throughout the rural area are threatened. The Big Turnaround Complex is burning to the east. The 26,000-acre fire was extremely active over the weekend, with flame lengths more than 60 feet (just over 18 meters) in places. The two blazes appeared to overlap in fire perimeter maps available from the U.S. Geospatial Multi-Agency Coordination Team. According to the Southern Area Coordination Center morning report on April 30, the Sweat Farm Road Fire 'will be a long term fire. Containment and control will depend on significant rainfall, due to the inaccessible swamp terrain.' No expected containment date was available for the Big Turnaround Complex Fire, either. Describing that fire, the report stated, 'Heavy fuel loading, high fire danger, and difficulty of access continue to hamper suppression efforts.' The large image provided above has a spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response Team provides twice-daily images of the region in additional resolutions. They also provide a version of the image that shows smoke plumes stretching out across the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.
2016-03-01
Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in shaping continental-scale pyrogeography.
The Real Rebalancing: American Diplomacy and the Tragedy of President Obama’s Foreign Policy
2015-10-01
engagement” to its list of warfight- ing functions, along with mission command, move- ment and maneuver, intelligence , fires, sustainment, and protection...technologies, and foreign intelligence collection. Even earlier, see National Security Strategy, Washington, DC: The White House, August 1991, p. 8... Malnutrition , illiteracy and poverty put dangerous pressures on democratic institutions as hungry, uneducated or poorly 33 housed citizens are ripe for
Colleges Weigh When to Alert Students of Danger
ERIC Educational Resources Information Center
Hoover, Eric; Lipka, Sara
2007-01-01
At the University of Chicago, the third Monday in November began with an hour of violence. Around 12:30 a.m., an assailant fired a shot at a staff member who was walking on the campus. At 1:15 a group of men robbed two female students on a nearby street. Just before 1:30, Amadou Cisse, a doctoral student, was shot and killed while walking to his…
Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate.
McKenna, Sean T; Birtles, Robert; Dickens, Kathryn; Walker, Richard G; Spearpoint, Michael J; Stec, Anna A; Hull, T Richard
2018-04-01
This paper uses fire statistics to show the importance of fire toxicity on fire deaths and injuries, and the importance of upholstered furniture and bedding on fatalities from unwanted fires. The aim was to compare the fire hazards (fire growth and smoke toxicity) using different upholstery materials. Four compositions of sofa-bed were compared: three meeting UK Furniture Flammability Regulations (FFR), and one using materials without flame retardants intended for the mainland European market. Two of the UK sofa-beds relied on chemical flame retardants to meet the FFR, the third used natural materials and a technical weave in order to pass the test. Each composition was tested in the bench-scale cone calorimeter (ISO 5660) and burnt as a whole sofa-bed in a sofa configuration in a 3.4 × 2.25 × 2.4 m 3 test room. All of the sofas were ignited with a No. 7 wood crib; the temperatures and yields of toxic products are reported. The sofa-beds containing flame retardants burnt somewhat more slowly than the non-flame retarded EU sofa-bed, but in doing so produced significantly greater quantities of the main fire toxicants, carbon monoxide and hydrogen cyanide. Assessment of the effluents' potential to incapacitate and kill is provided showing the two UK flame retardant sofa-beds to be the most dangerous, followed by the sofa-bed made with European materials. The UK sofa-bed made only from natural materials (Cottonsafe ® ) burnt very slowly and produced very low concentrations of toxic gases. Including fire toxicity in the FFR would reduce the chemical flame retardants and improve fire safety. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kutschker, Thomas; Glade, Thomas
2016-04-01
Heavy rainfall in central Europe is one of the assumed effects of climate change, which occurs with large seasonal and regional differences in its magnitude. The extent of loss depends on natural parameters (e.g. topography and vegetation) as well as on socio-economic factors like urbanized and industrialized areas and population density. Dangerous cascade effects appear, if critical infrastructure like the electrical power supply is affected. In some cases mudflows and flash floods cause inundated or undercut roads and cause a high demand for fast and effective assistance of the authorities. The civil protection in Germany is based on a federal system with a bottom-up command-structure and responsibility to the local community. Commonly this responsibility is taken by the fire brigades and civil protection units of the community or district. After heavy rainfall in an urban area, numerous incidents and emergency calls appearing at a time are overstressing the human and technical resources of the fire brigades within the local authority frequently. In this study, a method of comprehensive evaluation of meteorological data and the operation data from local fire brigades shall be developed for the Rhine-Main-Area in order to identify particular affected spots of heavy rain and bundle resources of the fire brigades. It is to be found out if the study area contains regions with a particularly high exposure to heavy rain and high application numbers of the fire department and whether there is a relationship of rainfall and frequency of use. To evaluate particular local effects on the fire brigades capability, a brief analysis of the meteorological data provided by the German Meteorological Service (DWD) as well as the evaluation of the incident data of the affected fire brigades, is used to frame a realistic approach. In particular fire brigade operation data can be used accordingly to describe the intensity of the aftermath when heavy precipitation strikes a certain area. It shows that most of the damage is caused by spilled sewage drains flooding basements and streets. Besides less fire brigade operations are observed in rural areas with constant amount of rainfall. The occurrence of heavy rain events is spatially limited, hot-spot areas with higher probability can be detected. Based on this finding, a resource management strategy for the fire brigade can be developed. Keywords: emergency planning strategy, critical infrastructure, heavy rainfall, fire-brigade resource management
NASA Astrophysics Data System (ADS)
Barboni, T.; Santoni, P.-A.
2013-11-01
Prescribed burning represents a serious threat to the personnel fighting fires because of smoke inhalation. This study aims to increase the knowledge about foresters exposure to the prescribed burning smoke by focusing on exposure to volatile organic compounds (VOCs). We initially assessed the methodology for smoke sampling. Then, we identified potentially dangerous molecules among the VOCs identified at 4 prescribed burning sites located around Corsica. The values measured were very high, exceeding the exposure limits, particularly for benzene, phenol, and furfural, whose concentrations were above short-term exposure limit (STEL) values. In conclusion, obvious but necessary recommendations were made for the protection of the personnel involved in fighting fires on a professional basis.
Anosmia: Differential diagnosis, evaluation, and management.
Scangas, George A; Bleier, Benjamin S
2017-01-01
The ability to scrutinize our surroundings remains heavily dependent on the sense of smell. From the ability to detect dangerous situations such as fires to the recollection of a fond memory triggered by an odor, the advantages of an intact olfactory system cannot be overstated. Outcomes studies have highlighted the profound negative impact of anosmia and parosmia on the overall quality of life. The National Institute on Deafness and Other Communication Disorders estimates that ∼1.4% of the United States population experiences chronic olfactory dysfunction and smell loss. Efforts have focused on improving both the diagnosis of olfactory dysfunction through olfactory testing and improved reporting of treatment outcomes of olfactory training. The purpose of this article was to review the differential diagnosis, workup, and current treatment strategies of anosmia and smell disorders.
2004-04-15
Firefighters are like astronauts. They both face dangerous, even hostile environments such as a building full of fire and the vacuum of space. They are both get breathing air from tanks on their backs. Early in the 1970's, NASA began working to improve firefighter breathing systems, which had hardly changed since the 1940s. NASA's Johnson Space Center conducted a 4-year program that applied technology from the portable life support systems used by Apollo astronauts on the moon. The new breathing system is made up of an air bottle, a frame and harness, a face mask, and a warning device. The new system weighs less than 20 pounds, one-third less than the old gear. The new air bottle provides 30 minutes of breathing air, as much as the old system. Like a good hiker's backpack, the new system puts the weight on the firefighter's hips rather than the shoulders. The face mask provides better visibility and the warning device lets the firefighter know when air in the bottle is low. Though they have made many design modifications and refinements, manufacturers of breathing apparatus still incorporate the original NASA technology.
Chavez, Audrie A; Duzinski, Sarah V; Wheeler, Tareka C; Lawson, Karla A
2014-09-01
To evaluate the effectiveness of the Danger Rangers Fire Safety Curriculum in increasing the fire safety knowledge of low-income, minority children in an urban community setting. Data was collected from child participants via teacher/researcher administered pre-, post-, and retention tests. A self-administered questionnaire was collected from parents pre- and post-intervention to assess fire/burn prevention practices. Paired t-tests were conducted to compare pre-, post-, and retention test mean scores by grade group. McNemar's test was used to determine if there was a change in parent-reported prevention practices following the intervention. The first/second grade group and the third grade group scored significantly higher on the post- and retention test as compared to the pre-test (p<0.0001 for all comparisons). There was no significant change in scores for the pre-k/k group after the intervention. There was a significant increase in 2 of 4 parent-reported fire/burn-related prevention practices after the intervention. Fire safety knowledge improved among first to third grade children, but not among pre-kinder and kindergarten children who participated in the intervention. This study also showed that a program targeted towards children and delivered in a classroom setting has the potential to influence familial prevention practices by proxy. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
D. A. Roberts; P.E. Dennison; S. Peterson; S. Sweeney; J. Rechel
2006-01-01
Dynamic changes in live fuel moisture (LFM) and fuel condition modify fire danger in shrublands. We investigated the empirical relationship between field-measured LFM and remotely sensed greenness and moisture measures from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Moderate Resolution Imaging Spectrometer (MODIS). Key goals were to assess the...
Elsevier's maritime dictionary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakr, M.
1987-01-01
This is a dictionary for terms relating to maritime activities, and provides the terminology in three international languages. It also provides maritime terminology in Arabic. The dictionary covers the most recent terms used in satellite navigation and telecommunication. Its other topics include: acoustics, insurance, containers, cargo, bulk chemicals, carriage of dangerous goods, chemistry, radiocommunication, economics, electricity, environment, finance, fire protection, fishing vessels, hydrography, legal matters, meteorology, navigation, optics, pollution, radars, satellites, shipbuilding, stability, mechanics, and life-saving appliances.
Boeing's CST-100 Launch Abort Engine Test
2016-10-20
A launch abort engine built by Aerojet Rocketdyne is hot-fired during tests in the Mojave Desert in California. The engine produces up to 40,000 pounds of thrust and burns hypergolic propellants. The engines have been designed and built for use on Boeing’s CST-100 Starliner spacecraft in sets of four. In an emergency at the pad or during ascent, the engines would ignite to push the Starliner and its crew out of danger.
Boeing's CST-100 Launch Abort Engine Test
2016-10-17
A launch abort engine built by Aerojet Rocketdyne is hot-fired during tests in the Mojave Desert in California. The engine produces up to 40,000 pounds of thrust and burns hypergolic propellants. The engines have been designed and built for use on Boeing’s CST-100 Starliner spacecraft in sets of four. In an emergency at the pad or during ascent, the engines would ignite to push the Starliner and its crew out of danger.
Printing Insecurity? The Security Implications of 3D-Printing of Weapons.
Walther, Gerald
2015-12-01
In 2013, the first gun printed out of plastic by a 3D-printer was successfully fired in the U.S. This event caused a major media hype about the dangers of being able to print a gun. Law enforcement agencies worldwide were concerned about this development and the potentially huge security implications of these functional plastic guns. As a result, politicians called for a ban of these weapons and a control of 3D-printing technology. This paper reviews the security implications of 3D-printing technology and 3D guns. It argues that current arms control and transfer policies are adequate to cover 3D-printed guns as well. However, while this analysis may hold up currently, progress in printing technology needs to be monitored to deal with future dangers pre-emptively.
NASA Astrophysics Data System (ADS)
Canu, Annalisa; Arca, Bachisio; Pellizzaro, Grazia; Valeriano Pintus, Gian; Ferrara, Roberto; Duce, Pierpaolo
2017-04-01
In the last decades a rapid and intense development of the tourism industry led to an increasing of anthropic pressure on several coastal areas of Sardinia. This fact not only modified the coastal aesthetics, but has also generated an increase of risk for the environment. This phenomenon affected also the ancient structure of the landscape with a negative impact mainly caused by the following factors: land abandonment, wildfire occurrence, post-fire erosion, urbanization. These regional changes can be analyzed in detail by considering the geo-diachronic dynamics. The main objectives of this work were i) to perform a diachronic analysis of land use and land cover dynamics, ii) to analyse the recent dynamics of wildfires, and iii) to predict the soil erosion risk in relation to land use change occurred between the 1950s and the 2000s. The study was realized in a coastal area located in North-East Sardinia where the geo-historical processes were summarized and organized in a geographic information system that has been employed to examine the landscape variations at three different time steps: 1954, 1977 and 2000. In addition, different scenarios of wildfire propagation were simulated by FlamMap in order to estimate the spatial pattern of fire danger factors in the study area. Afterwards, maps of post-fire soil erosion were produced to identify the temporal and spatial variations of the erosion risk. The results show how the changes in land use and the significant and rapid increase of the residential areas affect the risk of both wildfires and post-fire soil erosion. The study reveals the capabilities of this type of approach and can be used by management agencies and policy makers e in sustainable landscape management planning. This approach can be extended to other regions of the Mediterranean basin characterized by complex interactions among landscape and anthropic factors affecting the environmental risk.
Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular
NASA Astrophysics Data System (ADS)
Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.
2015-12-01
The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.
NASA Astrophysics Data System (ADS)
Atila, U.; Karas, I. R.; Turan, M. K.; Rahman, A. A.
2013-09-01
One of the most dangerous disaster threatening the high rise and complex buildings of today's world including thousands of occupants inside is fire with no doubt. When we consider high population and the complexity of such buildings it is clear to see that performing a rapid and safe evacuation seems hard and human being does not have good memories in case of such disasters like world trade center 9/11. Therefore, it is very important to design knowledge based realtime interactive evacuation methods instead of classical strategies which lack of flexibility. This paper presents a 3D-GIS implementation which simulates the behaviour of an intelligent indoor pedestrian navigation model proposed for a self -evacuation of a person in case of fire. The model is based on Multilayer Perceptron (MLP) which is one of the most preferred artificial neural network architecture in classification and prediction problems. A sample fire scenario following through predefined instructions has been performed on 3D model of the Corporation Complex in Putrajaya (Malaysia) and the intelligent evacuation process has been realized within a proposed 3D-GIS based simulation.
Staley, Dennis M.; Smoczyk, Gregory M.; Reeves, Ryan R.
2013-01-01
Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. Existing empirical models were used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year recurrence interval rainstorm for the 2013 Powerhouse fire near Lancaster, California. Overall, the models predict a relatively low probability for debris-flow occurrence in response to the design storm. However, volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 44 of the 73 basins identified as having potential debris-flow volumes between 10,000 and 100,000 cubic meters. These results suggest that even though the likelihood of debris flow is relatively low, the consequences of post-fire debris-flow initiation within the burn area may be significant for downstream populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings and that residents adhere to any evacuation orders.
Landsat imagery evidences great recent land cover changes induced by wild fires in central Siberia*
NASA Astrophysics Data System (ADS)
Antamoshkina, O. A.; Trofimova, N. V.; Antamoshkin, O. A.
2016-04-01
The article discusses the methods of satellite image classification to determine general types of forest ecosystems, as well as the long-term monitoring of ecosystems changes using satellite imagery of medium spatial resolution and the daily data of space monitoring of active fires. The area of interest of this work is 100 km footprint of the Zotino Tall Tower Observatory (ZOTTO), located near the Zotino settlement, Krasnoyarsk region. The study area is located in the middle taiga subzone of Western Siberia, are presented by the left and right banks of the Yenisei river. For Landsat satellite imagery supervised classification by the maximum likelihood method was made using ground-based studies over the last fifteen years. The results are the identification of the 10 aggregated classes of land surface and composition of the study area thematic map. Operational satellite monitoring and analysis of spatial information about ecosystem in the 100-kilometer footprint of the ZOTTO tall tower allows to monitor the dynamics of forest disturbance by fire and logging over a long time period and to estimate changes in forest ecosystems of the study area. Data on the number and area of fires detected in the study region for the 2000-2014 received in the work. Calculations show that active fires have burned more than a quarter of the footprint area over the study period. Fires have a significant impact on the redistribution of classes of land surface. Area of all types of vegetation ecosystems declined dramatically under the influence of fires, whereas industrial logging does not impact seriously on it. The results obtained in our work indicate the highest occurrence of fires for lichen forest types within study region, probably due to their high natural fire danger, which is consistent with other studies. The least damage the fire caused to the wetland ecosystem due to high content of moisture and the presence of a large number of fire breaks in the form of open water.
Scientific and social challenges for the management of fire-prone wildland-urban interfaces
NASA Astrophysics Data System (ADS)
Gill, A. Malcolm; Stephens, Scott L.
2009-09-01
At their worst, fires at the rural-urban or wildland-urban interface cause tragic loss of human lives and homes, but mitigating these fire effects through management elicits many social and scientific challenges. This paper addresses four interconnected management challenges posed by socially disastrous landscape fires. The issues concern various assets (particularly houses, human life and biodiversity), fuel treatments, and fire and human behaviours. The topics considered are: 'asset protection zones'; 'defensible space' and urban fire spread in relation to house ignition and loss; 'stay-or-go' policy and the prediction of time available for safe egress and the possible conflict between the creation of defensible space and wildland management objectives. The first scientific challenge is to model the effective width of an asset protection zone of an urban area. The second is to consider the effect of vegetation around a house, potentially defensible space, on fire arrival at the structure. The third scientific challenge is to present stakeholders with accurate information on rates of spread, and where the fire front is located, so as to allow them to plan safe egress or preparation time in their particular circumstances. The fourth scientific challenge is to be able to predict the effects of fires on wildland species composition. Associated with each scientific challenge is a social challenge: for the first two scientific challenges the social challenge is to co-ordinate fuel management within and between the urban and rural or wildland sides of the interface. For the third scientific challenge, the social challenge is to be aware of, and appropriately use, fire danger information so that the potential for safe egress from a home can be estimated most accurately. Finally, the fourth social challenge is to for local residents of wildland-urban interfaces with an interest in biodiversity conservation to understand the effects of fire regimes on biodiversity, thereby assisting hard-pressed wildland managers to make informed choices.
The Ophidia framework: toward cloud-based data analytics for climate change
NASA Astrophysics Data System (ADS)
Fiore, Sandro; D'Anca, Alessandro; Elia, Donatello; Mancini, Marco; Mariello, Andrea; Mirto, Maria; Palazzo, Cosimo; Aloisio, Giovanni
2015-04-01
The Ophidia project is a research effort on big data analytics facing scientific data analysis challenges in the climate change domain. It provides parallel (server-side) data analysis, an internal storage model and a hierarchical data organization to manage large amount of multidimensional scientific data. The Ophidia analytics platform provides several MPI-based parallel operators to manipulate large datasets (data cubes) and array-based primitives to perform data analysis on large arrays of scientific data. The most relevant data analytics use cases implemented in national and international projects target fire danger prevention (OFIDIA), interactions between climate change and biodiversity (EUBrazilCC), climate indicators and remote data analysis (CLIP-C), sea situational awareness (TESSA), large scale data analytics on CMIP5 data in NetCDF format, Climate and Forecast (CF) convention compliant (ExArch). Two use cases regarding the EU FP7 EUBrazil Cloud Connect and the INTERREG OFIDIA projects will be presented during the talk. In the former case (EUBrazilCC) the Ophidia framework is being extended to integrate scalable VM-based solutions for the management of large volumes of scientific data (both climate and satellite data) in a cloud-based environment to study how climate change affects biodiversity. In the latter one (OFIDIA) the data analytics framework is being exploited to provide operational support regarding processing chains devoted to fire danger prevention. To tackle the project challenges, data analytics workflows consisting of about 130 operators perform, among the others, parallel data analysis, metadata management, virtual file system tasks, maps generation, rolling of datasets, import/export of datasets in NetCDF format. Finally, the entire Ophidia software stack has been deployed at CMCC on 24-nodes (16-cores/node) of the Athena HPC cluster. Moreover, a cloud-based release tested with OpenNebula is also available and running in the private cloud infrastructure of the CMCC Supercomputing Centre.
1983-09-16
snow; do not place in either cold or warm watsr; do not expose to hot air or open fires; do not use ointment or poultices. Thawing in the field...even in relatively warm temperatures if the wind penetrates the layer of insulating warm air to expose body tissue. As an example, with the wind calm...of 10 m/s (20 kts), the equivalent chill tempera- ture is -590C (-750F). Under these conditions thare is great danger and&I exposed flesh may freeze
Credit WCT. Original 4" x 5" black and white print ...
Credit WCT. Original 4" x 5" black and white print housed in the JPL Archives, Pasadena, California. This view displays the west elevation of the mixer building and barricades. The slide from the second floor balcony (missing in 1995) provided rapid emergency evacuation for personnel in case of fire or other imminent danger. JPL negative 384-10506, 7 July 1964 - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
Xie, Qiyuan; Zhang, Heping; Ye, Ruibo
2009-07-30
The objective of this work is to quantitatively study the burning characteristics of thermoplastics. A new experimental setup with a T-shape trough is designed. Based on this setup, the loop mechanism between the wall fire and pool fires induced by the melting and dripping of thermoplastic can be well simulated and studied. Additionally, the flowing characteristics of pool fires can also be quantitatively analyzed. Experiments are conducted for PP and PE sheets with different thicknesses. The maximum distances of the induced flowing pool flame in the T-shape trough are recorded and analyzed. The typical fire parameters, such as heat release rates (HRRs), CO concentrations are also monitored. The results show that the softening and clinging of the thermoplastic sheets plays a considerable role for their vertical wall burning. It is illustrated that the clinging of burning thermoplastic sheet may be mainly related with the softening temperatures and the ignition temperatures of the thermoplastics, as well as their viscosity coefficients. Through comparing the maximum distances of flowing flame of induced pool fires in the T-shape trough for thermoplastic sheets with different thicknesses, it is indicated that the pool fires induced by PE materials are easier to flow away than that of PP materials. Therefore, PE materials may be more dangerous for their faster pool fire spread on the floor. These experimental results preliminarily illustrate that this new experimental setup is helpful for quantitatively studying the special burning feature of thermoplastics although further modifications is needed for this setup in the future.
Outdoor recreational fires: a review of 329 adult and pediatric patients.
Neaman, Keith C; Do, Viet H; Olenzek, Emily K; Baca, Marissa; Ford, Ronald D; Wilcox, Richard M
2010-01-01
Outdoor recreational fires are a frequent occurrence during the summer months and can be associated with burns resulting in significant morbidity. Both pediatric and adult populations can be affected, and their mechanism of injury is often different. Understanding these mechanisms is important when designing prevention programs. It is the goal of this study to review our experience with outdoor recreational fires. All patients who presented to Spectrum Health Blodgett Regional Burn Unit for burns secondary to an outdoor recreational fire over an 8-year period were reviewed. Demographic data, mechanism of injury, body area involved, TBSA burned, treatments undertaken, and subsequent complications were recorded. Pediatric patients (aged 16 years and younger) were analyzed independently, and risk factors were determined. A total of 329 patients suffered burns secondary to outdoor recreational fires over the length of the study. More than 35% required inpatient treatment, with an average length of stay of 4.8 days. Hands were the most frequently affected body part, with the mean TBSA involved being 3.5%. Ninety-four patients (28.6%) required split-thickness skin grafting. The most common mechanism of injury in both adult and pediatric populations was falling into an ongoing fire. Wound infection was the most common complication. Alcohol intoxication was associated with a higher burn severity and complication rate. Pediatric patients represented 39.8% of the sample. Burns secondary to outdoor recreational fires are associated with significant morbidity. Adult prevention programs should target awareness with respect to alcohol consumption and campfires secondary to the morbidity associated with these injuries. Pediatric patients are particularly susceptible, and parents should remain diligent about campfire safety and be educated about the inherent dangers of both active and extinguished fires.
Modelling leaf, plant and stand flammability for ecological and operational decision making
NASA Astrophysics Data System (ADS)
Zylstra, Philip
2014-05-01
Numerous factors have been found to affect the flammability of individual leaves and plant parts; however the way in which these factors relate to whole plant flammability, fire behaviour and the overall risk imposed by fire is not straightforward. Similarly, although the structure of plant communities is known to affect the flammability of the stand, a quantified, broadly applicable link has proven difficult to establish and validate. These knowledge gaps have presented major obstacles to the integration into fire behaviour science of research into factors affecting plant flammability, physiology, species succession and structural change, so that the management of ecosystems for fire risk is largely uninformed by these fields. The Forest Flammability Model (Zylstra, 2011) is a process-driven, complex systems model developed specifically to address this disconnect. Flame dimensions and position are calculated as properties emerging from the capacity for convective heat to propagate flame between horizontally and vertically separated leaves, branches, plants and plant strata, and this capacity is determined dynamically from the ignitability, combustibility and sustainability of those objects, their spatial arrangement and a vector-based model of the plume temperature from each burning fuel. All flammability properties as well as the physics of flame dimensions, angle and temperature distributions and the vertical structure of wind within the plant array use published sub-models which can be replaced as further work is developed. This modular structure provides a platform for the immediate application of new work on any aspect of leaf flammability or fire physics. Initial validation of the model examined its qualitative predictions for trends in forest flammability as a function of time since fire. The positive feedback predicted for the subalpine forest examined constituted a 'risky prediction' by running counter to the expectations of the existing approach, however examination of historical fire sizes confirmed the positive feedback (Zylstra, 2013). The capacity to model even counter-intuitive trends in flammability represents a fundamental advance in the management of fire risk, underpinning the importance of work on those fields that compose the sub-models. Ongoing validation work has focused on accuracy in flame height and fire severity prediction, with excellent results to date. Further studies will examine quantitative estimates of fire risk parameters and the reliability of rate of spread predictions. By accurately modelling the relationship between seemingly disparate studies of leaf flammability, moisture, physiology and forest structure, the Forest Flammability Model has the potential to resolve some long-standing questions (Yebra et al., 2013) as well as to provide insight into the effect of climate or management-induced ecosystem changes on fire behaviour and risk. References Yebra, M., Dennison, P. E., Chuvieco, E., Riaño, D., Zylstra, P., Hunt, E. R., … Jurdao, S. (2013). A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sensing of Environment, 136, 455-468. doi:10.1016/j.rse.2013.05.029 Zylstra, P. (2011). Forest Flammability: Modelling and Managing a Complex System. PhD Thesis, University of NSW @ ADFA. Retrieved from http://handle.unsw.edu.au/1959.4/51656 Zylstra, P. (2013). The historical influence of fire on the flammability of subalpine Snowgum forest and woodland. Victorian Naturalist, 130(6), 232-239.
Infrared Instrument for Detecting Hydrogen Fires
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Ihlefeld, Curtis; Immer, Christopher; Oostdyk, Rebecca; Cox, Robert; Taylor, John
2006-01-01
The figure shows an instrument incorporating an infrared camera for detecting small hydrogen fires. The instrument has been developed as an improved replacement for prior infrared and ultraviolet instruments used to detect hydrogen fires. The need for this or any such instrument arises because hydrogen fires (e.g., those associated with leaks from tanks, valves, and ducts) pose a great danger, yet they emit so little visible light that they are mostly undetectable by the unaided human eye. The main performance advantage offered by the present instrument over prior hydrogen-fire-detecting instruments lies in its greater ability to avoid false alarms by discriminating against reflected infrared light, including that originating in (1) the Sun, (2) welding torches, and (3) deliberately ignited hydrogen flames (e.g., ullage-burn-off flames) that are nearby but outside the field of view intended to be monitored by the instrument. Like prior such instruments, this instrument is based mostly on the principle of detecting infrared emission above a threshold level. However, in addition, this instrument utilizes information on the spatial distribution of infrared light from a source that it detects. Because the combination of spatial and threshold information about a flame tends to constitute a unique signature that differs from that of reflected infrared light originating in a source not in the field of view, the incidence of false alarms is reduced substantially below that of related prior threshold- based instruments.
2008-03-01
lands; crashes and near collisions of jets and Osprey helicopters; danger from munitions during live-fire exercises; sexual assault; theft; noise ...STATIONING WITHIN THE CONTEXT OF A NEW EUROPE In the wake of the present crisis, the location of American troops in Romania represents a new...concerning the war in Iraq. In the same article, she notes that in the wake of the initial phase of the Iraq campaign in 2003 that “privately, however
On Alarm Protocol in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Cichoń, Jacek; Kapelko, Rafał; Lemiesz, Jakub; Zawada, Marcin
We consider the problem of efficient alarm protocol for ad-hoc radio networks consisting of devices that try to gain access for transmission through a shared radio communication channel. The problem arise in tasks that sensors have to quickly inform the target user about an alert situation such as presence of fire, dangerous radiation, seismic vibrations, and more. In this paper, we present a protocol which uses O(logn) time slots and show that Ω(logn/loglogn) is a lower bound for used time slots.
Launchers and Improved Components for 4.5 in. Rockets
1946-02-09
Engagements 132 Loading 133 Release 133 "Dig In" Characteristic 133 Cushioning 134 TABLE OF CONTENTS (Conttd) PAGE *Overshooting" in Loading 134 Effect on... loaded for a cold climate and used in a hot climate without removing some of the propellent powder there will be danger of its bursting. Conversely, if...it is loaded for use in a hot climate, there vwill not be sufficient powder for firing at low temperature. A regulating pressure device that would
A landscape perspective for forest restoration
Sisk, Thomas D.; Savage, Melissa; Falk, Donald A.; Allen, Craig D.; Muldavin, Esteban; McCarthy, Patrick
2005-01-01
Forest managers throughout the West are anxiously seeking solutions to the problem of “large crown fires” - destructive blazes atypical of many forest types in the region. These wildfires have created a crisis mentality in management that has focused on rigid prescriptions for fuels reduction, rather than the restoration of diverse, resilient, and self-regulating forest ecosystems. Now, as we shape our responses to the threat of larger and more frequent crown fires, we are in danger of missing the forest for the trees.
Fire and Explosion Hazards Expected in a Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasool, Shireen R.; Al-Dahhan, Wedad; Al-Zuhairi, Ali Jassim
Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript is the fifth in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. In this study, we summarize unsafe practices involving the improper installation of a Gas Chromatograph (GC) at an Iraqi university which, if not corrected, could have resulted in a dangerous fire and explosion. Wemore » summarize the identified infractions and highlight lessons learned. By openly sharing the experiences at the university involved, we hope to minimize the possibility of another researcher being injured due to similarly unsafe practices in the future.« less
NASA Astrophysics Data System (ADS)
Medvedeva, M. A.; Vozbrannaya, A. E.; Sirin, A. A.; Maslov, A. A.
2017-12-01
The capabilities of several multispectral satellite data types to identify the status of peatlands affected by peat extraction and abandoned deposits are examined to assess potential fire dangers and rewetting effectiveness. The available level of detail of describing land/vegetation cover for monitoring abandoned peat extraction sites using Spot-5 HRG, Spot-6 HRG, and Landsat-7 ETM+ satellite images has been demonstrated using the example of peatlands in the Meschera National Park (Vladimir oblast). The results reflect the pros and cons of using different data types to analyze the status of abandoned peat-extraction lands for purposes of peatland inventory, land-cover monitoring, and the prioritization of sites subject to rewetting and mire restoration, as well as for an evaluation of the effectiveness of these measures.
NASA Astrophysics Data System (ADS)
San Jose, Roberto; Perez, Juan Luis; Gonzalez-Barras, Rosa M.; Pecci, Julia; Palacios, Marino
2014-05-01
Forest fires continue to be a very dangerous and extreme violent episode jeopardizing the human lives and owns. Spain is plagued by forest and brush fires every summer, when extremely dry weather sets in along with high temperatures. The use of fire behavior models requires the availability of high resolution environmental and fuel data; in absence of realistic data, errors on the simulated fire spread con be compounded to produce o decrease of the spatial and temporal accuracy of predicted data. In this work we have carried out a sensitivity analysis of different components of the fire model and particularly the fuel moisture content (FMC) such as microphysics and solar radiation model. Three different real fire models have been used: Murcia (September, 7, 2010 19h09 and 9 hours duration), Gabiel (March, 7, 2007, 22h15 and 38 hours duration) and Culla (Marzo, 7, 2007, 23h36 and 37 hours duration). We use the 100 m European Corine Land Cover map. We use the WRF-Fire model developed by NCAR (USA). The WRF mode is run using the GFS global data and over the Iberian Peninsula with 15 km spatial resolution. We apply the nesting approach over the fires areas (located in the South East of the Iberian Peninsula) with 3 km, 1 km and 200 m spatial resolution. The Fire module included into WRF is run with 20 m spatial resolution and the landuse is interpolated from the Corine 100 m land use map. The results show that the Thompson et al. microphysics scheme and the RRTM solar radiation scheme are those with the best combination using a specific counting score to classify the goodness of the results compare with the real burned area. Those pixels not burned by the simulations but burned by the observational data sets are penalized double compare with the vice versa process. The NDVI obtained by satellite on the day of starting the fire is included in the simulations and a substantial improving in the final score is obtained.
33 CFR 62.29 - Isolated danger marks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Isolated danger marks. 62.29 Section 62.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.29 Isolated danger...
33 CFR 62.29 - Isolated danger marks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Isolated danger marks. 62.29 Section 62.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.29 Isolated danger...
33 CFR 62.29 - Isolated danger marks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Isolated danger marks. 62.29 Section 62.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.29 Isolated danger...
33 CFR 62.29 - Isolated danger marks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Isolated danger marks. 62.29 Section 62.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.29 Isolated danger...
33 CFR 62.29 - Isolated danger marks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Isolated danger marks. 62.29 Section 62.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.29 Isolated danger...
Study of the Weathering Process of Gasoline by eNose
Aliaño-González, María José; Ayuso, Jesús; Palma, Miguel; Barroso, Carmelo G.
2018-01-01
In a fire investigation the rapid detection of the presence of ignitable liquids like gasoline is of great importance as it allows appropriate treatment of the remains, the identification of prevention methods and detects the possible presence of an arsonist. In some cases, analysts cannot access the fire scene in the first few hours due to the dangers involved in the situation and, as a consequence, phenomena such as weathering start. Ignitable liquid weathering is an evaporation process that results in an increase in the abundance of non-volatile compounds relative to volatile compounds, and this process changes the chemical composition. In the present work, the weathering of samples of gasoline at different times (from 0 h to a month) has been studied using an electronic nose (eNose). The influence of the volume used (40 µL and 80 µL) and the type of support (cork, wood, paper and cotton sheet) has been studied. Chemometric tools have been used with the aim of ascertaining the weathering time for which the developed method is capable of detecting the presence of gasoline. The eNose was able to discriminate samples of weathered gasoline. The support used for the samples did not seem to have an influence on the detection and the system. PMID:29304020
Applications of UAVs for Remote Sensing of Critical Infrastructure
NASA Technical Reports Server (NTRS)
Wegener, Steve; Brass, James; Schoenung, Susan
2003-01-01
The surveillance of critical facilities and national infrastructure such as waterways, roadways, pipelines and utilities requires advanced technological tools to provide timely, up to date information on structure status and integrity. Unmanned Aerial Vehicles (UAVs) are uniquely suited for these tasks, having large payload and long duration capabilities. UAVs also have the capability to fly dangerous and dull missions, orbiting for 24 hours over a particular area or facility providing around the clock surveillance with no personnel onboard. New UAV platforms and systems are becoming available for commercial use. High altitude platforms are being tested for use in communications, remote sensing, agriculture, forestry and disaster management. New payloads are being built and demonstrated onboard the UAVs in support of these applications. Smaller, lighter, lower power consumption imaging systems are currently being tested over coffee fields to determine yield and over fires to detect fire fronts and hotspots. Communication systems that relay video, meteorological and chemical data via satellite to users on the ground in real-time have also been demonstrated. Interest in this technology for infrastructure characterization and mapping has increased dramatically in the past year. Many of the UAV technological developments required for resource and disaster monitoring are being used for the infrastructure and facility mapping activity. This paper documents the unique contributions from NASA;s Environmental Research Aircraft and Sensor Technology (ERAST) program to these applications. ERAST is a UAV technology development effort by a consortium of private aeronautical companies and NASA. Details of demonstrations of UAV capabilities currently underway are also presented.
NASA Astrophysics Data System (ADS)
Zhan, Qi; Wang, Xin; Mu, Baozhong; Xu, Jie; Xie, Qing; Li, Yaran; Chen, Yifan; He, Yanan
2016-10-01
Dangerous materials inspection is an important technique to confirm dangerous materials crimes. It has significant impact on the prohibition of dangerous materials-related crimes and the spread of dangerous materials. Lobster-Eye Optical Imaging System is a kind of dangerous materials detection device which mainly takes advantage of backscatter X-ray. The strength of the system is its applicability to access only one side of an object, and to detect dangerous materials without disturbing the surroundings of the target material. The device uses Compton scattered x-rays to create computerized outlines of suspected objects during security detection process. Due to the grid structure of the bionic object glass, which imitate the eye of a lobster, grids contribute to the main image noise during the imaging process. At the same time, when used to inspect structured or dense materials, the image is plagued by superposition artifacts and limited by attenuation and noise. With the goal of achieving high quality images which could be used for dangerous materials detection and further analysis, we developed effective image process methods applied to the system. The first aspect of the image process is the denoising and enhancing edge contrast process, during the process, we apply deconvolution algorithm to remove the grids and other noises. After image processing, we achieve high signal-to-noise ratio image. The second part is to reconstruct image from low dose X-ray exposure condition. We developed a kind of interpolation method to achieve the goal. The last aspect is the region of interest (ROI) extraction process, which could be used to help identifying dangerous materials mixed with complex backgrounds. The methods demonstrated in the paper have the potential to improve the sensitivity and quality of x-ray backscatter system imaging.
NASA Astrophysics Data System (ADS)
Yoon, S.; Won, M.; Jang, K.; Lim, J.
2016-12-01
As there has been a recent increase in the case of forest fires in North Korea descending southward through the De-Militarized Zone (DMZ), ensuring proper response to such events has been a challenge. Therefore, in order to respond and manage these forest fires appropriately, an improvement in the forest fire predictability through integration of mountain weather information observed at the most optimal site is necessary. This study is a proactive case in which a spatial analysis and an on-site assessment method were developed for selecting an optimum site for a mountain weather observation in national forest. For spatial analysis, the class 1 and 2 forest fire danger areas for the past 10 years, accessibility maximum 100m, Automatic Weather Station (AWS) redundancy within 2.5km, and mountain terrains higher than 200m were analyzed. A final overlay analysis was performed to select the candidates for the field assessment. The sites selected through spatial analysis were quantitatively evaluated based on the optimal meteorological environment, forest and hiking trail accessibility, AWS redundancy, and supply of wireless communication and solar powered electricity. The sites with total score of 70 and higher were accepted as adequate. At the final selected sites, an AMOS was established, and integration of mountain and Korea Meteorological Administration (KMA) weather data improved the forest fire predictability in South Korea by 10%. Given these study results, we expect that establishing an automatic mountain meteorology observation station at the optimal sites in inaccessible area and integrating mountain weather data will improve the predictability of forest fires.
The Human and Physical Determinants of Wildfires and Burnt Areas in Israel
NASA Astrophysics Data System (ADS)
Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive
2016-09-01
Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.
The Human and Physical Determinants of Wildfires and Burnt Areas in Israel.
Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive
2016-09-01
Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.
The estimation of territiry predeposition to wildfires
NASA Astrophysics Data System (ADS)
Panchenko, Ekaterina; Dukarev, Anatoly
2010-05-01
Wildfires have significant environmental effects. The indirect damages because of fires are an emission of various combustion products such as aerosols, greenhouse gases and carcinogen. Analysis of smoke emission show that from 1 ha burning area emitted aerosols from 0.2 to 1 ton. The aim of our research is to estimate biomass burning emission: Biomass Burning Emission=BA x FL x CE x EF, where BA is Burned Area (ha); FL is forest litter cover (cm); CE is Combustion Efficiency (0-1), depends on a class of fire danger; EF is Emission Factor (kg emitted / kg dry-mass burnt). Consequently for estimation of biomass burning emission it is necessary to analyze of territory predisposition to wildfires and give characteristic of combustion material types for detection fire hazard, for prognosis fire origin and extension. Prognosis of occurrence of wildfires and definition of emissions is possible by means of data of depth forest litter, types of vegetation and type of landscapes including concrete weather conditions (seasons, length of arid period, current temperature, wind speed and its direction). The investigated object is the territory Tomskii district near to the city of Tomsk (56° 31 N-85°08 E) - with the population more than 500 thousand people. The conducted analysis of investigated territory and the calculation will be basic prognostic model for researching wildfires.
Modeling fire occurrence as a function of landscape
NASA Astrophysics Data System (ADS)
Loboda, T. V.; Carroll, M.; DiMiceli, C.
2011-12-01
Wildland fire is a prominent component of ecosystem functioning worldwide. Nearly all ecosystems experience the impact of naturally occurring or anthropogenically driven fire. Here, we present a spatially explicit and regionally parameterized Fire Occurrence Model (FOM) aimed at developing fire occurrence estimates at landscape and regional scales. The model provides spatially explicit scenarios of fire occurrence based on the available records from fire management agencies, satellite observations, and auxiliary geospatial data sets. Fire occurrence is modeled as a function of the risk of ignition, potential fire behavior, and fire weather using internal regression tree-driven algorithms and empirically established, regionally derived relationships between fire occurrence, fire behavior, and fire weather. The FOM presents a flexible modeling structure with a set of internal globally available default geospatial independent and dependent variables. However, the flexible modeling environment adapts to ingest a variable number, resolution, and content of inputs provided by the user to supplement or replace the default parameters to improve the model's predictive capability. A Southern California FOM instance (SC FOM) was developed using satellite assessments of fire activity from a suite of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, Monitoring Trends in Burn Severity fire perimeters, and auxiliary geospatial information including land use and ownership, utilities, transportation routes, and the Remote Automated Weather Station data records. The model was parameterized based on satellite data acquired between 2001 and 2009 and fire management fire perimeters available prior to 2009. SC FOM predictive capabilities were assessed using observed fire occurrence available from the MODIS active fire product during 2010. The results show that SC FOM provides a realistic estimate of fire occurrence at the landscape level: the fraction of area impacted by fire from the total available area within a given value of the Fire Occurrence Index (FOI) increased from 9.e-06 at FOI < 3 to 28.e-06 at 25 < FOI <= 28. Additionally, the model has revealed a new important relationship between fire occurrence, anthropogenic activity, and fire weather. Data analysis has demonstrated that human activity can alter the expected weather/fire occurrence relationships and result in considerable modifications of fire regimes contrary to the assumed ecological parameters. Specifically, between 2001 and 2009 over 50% of total fire impacted area burned during the low fire danger conditions (Canadian Fire Weather Index < 5). These findings and the FOM capabilities offer a new theoretical construct and an advanced tool for assessing the potential impacts of climate changes on fire regimes, particularly within landscapes which are impacted strongly by human activities. Future development of the FOM will focus on ingesting and internal downscaling of climate variables produced by General or Regional Circulation Models to develop scenarios of potential future change in fire occurrence under the influence of projected climate change at the appropriate regional or landscape scales.
48 CFR 245.7310-4 - Dangerous property.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Dangerous property. 245... Dangerous property. The following warning shall be included when it cannot be certified that the property is completely harmless: Dangerous Property Purchasers are warned that the property purchased may contain items...
Helmet-Mounted Display Of Clouds Of Harmful Gases
NASA Technical Reports Server (NTRS)
Diner, Daniel B.; Barengoltz, Jack B.; Schober, Wayne R.
1995-01-01
Proposed helmet-mounted opto-electronic instrument provides real-time stereoscopic views of clouds of otherwise invisible toxic, explosive, and/or corrosive gas. Display semitransparent: images of clouds superimposed on scene ordinarily visible to wearer. Images give indications on sizes and concentrations of gas clouds and their locations in relation to other objects in scene. Instruments serve as safety devices for astronauts, emergency response crews, fire fighters, people cleaning up chemical spills, or anyone working near invisible hazardous gases. Similar instruments used as sensors in automated emergency response systems that activate safety equipment and emergency procedures. Both helmet-mounted and automated-sensor versions used at industrial sites, chemical plants, or anywhere dangerous and invisible or difficult-to-see gases present. In addition to helmet-mounted and automated-sensor versions, there could be hand-held version. In some industrial applications, desirable to mount instruments and use them similarly to parking-lot surveillance cameras.
Automation of closed environments in space for human comfort and safety
NASA Technical Reports Server (NTRS)
1990-01-01
The Environmental Control and Life Support System (ECLSS) for the Space Station Freedom and future colonization of the Moon and Mars presents new challenges for present technologies. Current plans call for a crew of 8 to live in a safe, shirt-sleeve environment for 90 days without ground support. Because of these requirements, all life support systems must be self-sufficient and reliable. The ECLSS is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. Because it is impractical, if not impossible, to supply the station with enough fresh air and water for the duration of the space station's extended mission, these elements are recycled. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The approach chosen to solve this problem is to divide the design into three phases. The first phase is to research the ECLSS as a whole system and then concentrate efforts on the automation of a single subsystem. The AR subsystem was chosen for our focus. During the second phase, the system control process will then be applied to the AR subsystem.
34 CFR 668.49 - Institutional fire safety policies and fire statistics.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning resulting from a fire, or the control of a fire. This may include sprinkler systems or other fire extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the presence...
34 CFR 668.49 - Institutional fire safety policies and fire statistics.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning resulting from a fire, or the control of a fire. This may include sprinkler systems or other fire extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the presence...
34 CFR 668.49 - Institutional fire safety policies and fire statistics.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning resulting from a fire, or the control of a fire. This may include sprinkler systems or other fire extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the presence...
34 CFR 668.49 - Institutional fire safety policies and fire statistics.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning resulting from a fire, or the control of a fire. This may include sprinkler systems or other fire extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the presence...
LaWen Hollingsworth; James Menakis
2010-01-01
This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...
Electronic firing systems and methods for firing a device
Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID
2012-04-24
An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.
Muralidhar, Venkiteswaran
2017-03-15
This is the first reported case of a work-related head injury in a coal-fired thermal power plant in India. This case highlights the trend of not reporting work injuries due to fears of reprisal from the management team that may include the termination of employment. Post-traumatic amnesia in a worker presenting with head trauma must be recognised by coworkers, so the cause of injury can be elicited early and the victim gets timely medical help. There are few published studies on work-related traumatic brain injury, and they provide no information on either anatomical localisation or signs and symptoms. It is imperative that this under-researched area is studied, so detailed epidemiology and accurate national and global statistics are made available to address this dangerous yet preventable condition. 2017 BMJ Publishing Group Ltd.
Airborne contaminants during controlled residential fires.
Fent, Kenneth W; Evans, Douglas E; Babik, Kelsey; Striley, Cynthia; Bertke, Stephen; Kerber, Steve; Smith, Denise; Horn, Gavin P
2018-05-01
In this study, we characterize the area and personal air concentrations of combustion byproducts produced during controlled residential fires with furnishings common in 21 st century single family structures. Area air measurements were collected from the structure during active fire and overhaul (post suppression) and on the fireground where personnel were operating without any respiratory protection. Personal air measurements were collected from firefighters assigned to fire attack, victim search, overhaul, outside ventilation, and command/pump operator positions. Two different fire attack tactics were conducted for the fires (6 interior and 6 transitional) and exposures were compared between the tactics. For each of the 12 fires, firefighters were paired up to conduct each job assignment, except for overhaul that was conducted by 4 firefighters. Sampled compounds included polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs, e.g., benzene), hydrogen cyanide (HCN), and particulate (area air sampling only). Median personal air concentrations for the attack and search firefighters were generally well above applicable short-term occupational exposure limits, with the exception of HCN measured from search firefighters. Area air concentrations of all measured compounds decreased after suppression. Personal air concentrations of total PAHs and benzene measured from some overhaul firefighters exceeded exposure limits. Median personal air concentrations of HCN (16,300 ppb) exceeded the exposure limit for outside vent firefighters, with maximum levels (72,900 ppb) higher than the immediately dangerous to life and health (IDLH) level. Median air concentrations on the fireground (including particle count) were above background levels and highest when collected downwind of the structure and when ground-level smoke was the heaviest. No statistically significant differences in personal air concentrations were found between the 2 attack tactics. The results underscore the importance of wearing self-contained breathing apparatus when conducting overhaul or outside ventilation activities. Firefighters should also try to establish command upwind of the structure fire, and if this cannot be done, respiratory protection should be considered.
14 CFR 29.1195 - Fire extinguishing systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing systems. 29.1195 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1195 Fire... inches must have a fire extinguishing system for the designated fire zones. The fire extinguishing system...
Wildfires in Siberian Mountain Forest
NASA Astrophysics Data System (ADS)
Kharuk, V.; Ponomarev, E. I.; Antamoshkina, O.
2017-12-01
The annual burned area in Russia was estimated as 0.55 to 20 Mha with >70% occurred in Siberia. We analyzed Siberian wildfires distribution with respect to elevation, slope steepness and exposure. In addition, wildfires temporal dynamic and latitudinal range were analyzed. We used daily thermal anomalies derived from NOAA/AVHRR and Terra/MODIS satellites (1990-2016). Fire return intervals were (FRI) calculated based on the dendrochronology analysis of samples taken from trees with burn marks. Spatial distribution of wildfires dependent on topo features: relative burned area increase with elevation increase (ca. 1100 m), switching to following decrease. The wildfires frequency exponentially decreased within lowlands - highlands transition. Burned area is increasing with slope steepness increase (up to 5-10°). Fire return intervals (FRI) on the southfacing slopes are about 30% longer than on the north facing. Wildfire re-occurrence is decreasing exponentially: 90% of burns were caused by single fires, 8.5% by double fires, 1% burned three times, and on about 0.05% territory wildfires occurred four times (observed period: 75 yr.). Wildfires area and number, as well as FRI, also dependent on latitude: relative burned area increasing exponentially in norward direction, whereas relative fire number is exponentially decreasing. FRI increases in the northward direction: from 80 years at 62°N to 200 years at the Arctic Circle, and to 300 years at the northern limit of closed forests ( 71+°N). Fire frequency, fire danger period and FRI are strongly correlated with incoming solar radiation (r = 0.81 - 0.95). In 21-s century, a positive trend of wildfires number and area observed in mountain areas in all Siberia. Thus, burned area and number of fires in Siberia are significantly increased since 1990th (R2 =0.47, R2 =0.69, respectively), and that increase correlated with air temperatures and climate aridity increases. However, wildfires are essential for supporting fire-resistant species (e.g., Larix sibirica, L, dahurica and Pinus silvestris) reforestation and completion with non-fire-resistant species. This work was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk krai, the Krasnoyarsk Fund for Support of Scientific and Technological Activities (N 17-41-240475)
Cost-Effective Fuel Treatment Planning
NASA Astrophysics Data System (ADS)
Kreitler, J.; Thompson, M.; Vaillant, N.
2014-12-01
The cost of fighting large wildland fires in the western United States has grown dramatically over the past decade. This trend will likely continue with growth of the WUI into fire prone ecosystems, dangerous fuel conditions from decades of fire suppression, and a potentially increasing effect from prolonged drought and climate change. Fuel treatments are often considered the primary pre-fire mechanism to reduce the exposure of values at risk to wildland fire, and a growing suite of fire models and tools are employed to prioritize where treatments could mitigate wildland fire damages. Assessments using the likelihood and consequence of fire are critical because funds are insufficient to reduce risk on all lands needing treatment, therefore prioritization is required to maximize the effectiveness of fuel treatment budgets. Cost-effectiveness, doing the most good per dollar, would seem to be an important fuel treatment metric, yet studies or plans that prioritize fuel treatments using costs or cost-effectiveness measures are absent from the literature. Therefore, to explore the effect of using costs in fuel treatment planning we test four prioritization algorithms designed to reduce risk in a case study examining fuel treatments on the Sisters Ranger District of central Oregon. For benefits we model sediment retention and standing biomass, and measure the effectiveness of each algorithm by comparing the differences among treatment and no treat alternative scenarios. Our objective is to maximize the averted loss of net benefits subject to a representative fuel treatment budget. We model costs across the study landscape using the My Fuel Treatment Planner software, tree list data, local mill prices, and GIS-measured site characteristics. We use fire simulations to generate burn probabilities, and estimate fire intensity as conditional flame length at each pixel. Two prioritization algorithms target treatments based on cost-effectiveness and show improvements over those that use only benefits. Variations across the heterogeneous surfaces of costs and benefits create opportunities for fuel treatments to maximize the expected averted loss of benefits. By targeting these opportunities we demonstrate how incorporating costs in fuel treatment prioritization can improve the outcome of fuel treatment planning.